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Model problem

Let Ω ⊂ Rd , d = 2, 3, be a d-dimensional rectangular domain. The
pressure field satisfies the Helmholtz partial differential equation

−4u − ω2u = f in Ω, (1)

Bu = 0 on Γ, (2)

where ω denotes the wave number. The boundary
Γ = ∂Ω = ΓN ∪ ΓB is decomposed into Neumann boundary
condition (BC) ΓN and (first-order) absorbing BC (ABC) ΓB :

Bu = ∇u · n = 0 on ΓN , (3)

Bu = ∇u · n − iωu = 0 on ΓB , (4)

where n denotes the outward normal to the boundary.
Equation (2) is an approximation for the Sommerfeld
radiation condition.
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Discretization

Weak formulation for the Helmholtz problem (1)–(2): Find
u ∈ V = H1(Ω) such that

a(u, v) =

∫
Ω
fv dx ∀v ∈ V , (5)

where

a(u, v) =

∫
Ω

(
∇u · ∇v − ω2uv

)
dx − iω

∫
∂Ω

uv ds. (6)

Discretizing (5) by bilinear or trilinear finite elements on an
orthogonal mesh leads to a system of linear equations given by

Au = f , (7)

where the matrix A has a separable tensor product form.
The mesh will be equidistant in each direction xj .
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Discretization

For the two-dimensional (2d) case, the matrix A is given by

A = (K 1 − ω2M1)⊗M2 + M1 ⊗K 2,

whereas in three dimensions (3d) it is given by

A = (K 1 − ω2M1)⊗M2 ⊗M3 + M1 ⊗ (K 2 ⊗M3 + M2 ⊗K 3),

where K j and M j are one-dimensional stiffness and mass matrices,
respectively, in the xj -direction with possible modifications on or
near the boundaries due to the ABC.
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Discretization

K j and M j are computed by 1d numerical quadrature on [0, 1]:

K j =
1

hj



k1,1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 knj ,nj

 , M j =
hj

6



2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 2



where the first and last entries are including the corresponding BCs.
ABCs (4) yield the entries k1,1 = knj ,nj = 1− iωhj , whereas
Neumann BCs lead to k1,1 = knj ,nj = 1.

M j is the same for both Neumann and (first-order) ABCs.

Let the ABCs be given in direction of x1 for both
(opposite) sides.
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Fast solver - idea

The main idea for solving the problem Au = f is to consider an
auxiliary problem Bv = f , where the system matrix B is derived
by changing the ABCs to periodic ones.
The key is that we can solve the modified (periodic) problem
Bv = f now by using the FFT method, which is not possible for
the original problem Au = f .

The problem Au = f can be solved applying the following steps:
1. Solve Bv = f .
2. Solve Aw = f − Av = Bv − Av = (B − A)v , u = v + w .
3. Solve Bu = f + (B − A)(v + w).
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Fast solver - the auxiliary problem

In case of periodic BCs in x1-direction, the matrices K 1 and M1

change to KB
1 and MB

1 and are given by

KB
1 =

1

h1



2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

 , MB
1 =

h1

6



4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4

 ,

which means that the BCs on the two opposite x1-boundaries have
been changed to be of periodic type. The matrix B is given by

B = (KB
1 − ω2MB

1 )⊗M2 + MB
1 ⊗K 2 (2d),

B = (KB
1 − ω2MB

1 )⊗M2 ⊗M3 + MB
1 ⊗ (K 2 ⊗M3 + M2 ⊗K 3) (3d).
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Fast solver

After a suitable permutation A and B have the block forms

A =

(
Abb Abr

Arb Arr

)
and B =

(
Bbb Abr

Arb Arr

)
, (8)

the subscripts b and r correspond to the nodes on the ΓB

boundary and to the rest of the nodes, respectively. Note that the
matrix B − A has the structure

B − A =

(
Bbb − Abb 0

0 0

)
. (9)

M. Wolfmayr FFT based direct solver for the Helmholtz problem 9 / 19



Fast solver - some ideas behind applying partial solution
method

The eigenvectors given by the generalized eigenvalue problems

K 1V = M1V ΛA and KB
1 W = MB

1 W ΛB (10)

diagonalize K 1, KB
1 and M1, MB

1 .
The matrices ΛA and ΛB contain the eigenvalues as diagonal
entries and the matrices V and W contain the corresponding
eigenvectors as their columns. The eigenvectors have to form a
basis in Cn1 in order to apply the partial solution method:

V TM1V = I 1 and V TK 1V = ΛA, (11)

W TMB
1 W = I 1 and W TKB

1 W = ΛB . (12)

I 1 denotes the identity matrix of length n1, whereas I j and I jk
denote the identity matrices of lengths nj and nj × nk .
The eigenvalue problems (10) have to be solved only
once during the solution process – in the initialization.
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Fast solver

These conditions also lead to a convenient representation for the
inverses of the system matrices A and B.
We obtain for the system matrix B the following representation:

B−1 = (W ⊗ I 2) H−1
B (W T ⊗ I 2),

HB = (ΛB − ω2I 1)⊗M2 + I 1 ⊗K 2

for 2d as well as

B−1 = (W ⊗ I 23) H−1
B (W T ⊗ I 23),

HB = ((ΛB − ω2I 1)⊗M2 + I 1 ⊗K 2)⊗M3 + I 1 ⊗M2 ⊗K 3

for 3d.
The representation for A goes completely analogously.
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Fast solver - efficient computation for the inverses of HB

and HA

2d: Compute the LU decomposition of LU = HB . Instead of
directly computing the inverse of HB , solve the linear system

HBy = LUy = r

by solving the problems

Lz = r and Uy = z (13)

iteratively (with r being some right-hand side).
3d: Instead of solving the problems (13) with the block diagonal
matrices L and U , split them into n1 subproblems of size n2 × n3

corresponding to the respective diagonal blocks.
Then solve the independent n1 subproblems in the
same iterative scheme (13) leading to a faster
implementation for the 3d problem.
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Fast solver - Step 1

Compute the Fourier transformation f̂ of f using FFT and save it,
since it will be needed in Step 3 as well. Solve the auxiliary problem

Bv = B
(

vb

v r

)
= f , (14)

but compute only vb and not v r . Performing the inverse Fourier
transformation would provide both vb and v r . Instead of that, it is
efficient to solve problem HBy = LUy = f̂ and then multiply the
resulting vector by the eigenvectors of W which correspond to the
boundary ΓB .
Recall, e.g., in 2d, B−1 = (W ⊗ I 2) H−1

B (W T ⊗ I 2).
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Fast solver - Step 2

Introduce an additional vector w given by w = u − v , and solve
the problem

Aw = A
(

wb

w r

)
= (B − A)v =

(
(Bbb − Abb)vb

0

)
, (15)

since

Aw = Au − Av = f − Av = Bv − Av , (16)

but compute only wb and not w r . Problem (15) can be solved
efficiently using the diagonalization with multiplications by the
eigenvector matrices V T and V of A corresponding to
the boundary ΓB .
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Fast solver - Step 3

Solve now the problem

Bu = f + (B − A)(v + w)

= f +

(
(Bbb − Abb)(vb + wb)

0

)
(17)

due to Bu = Au + Bu − Au. Use the Fourier transformation f̂ of
f from Step 1. The Fourier transformation of the second term

g = (B − A)(v + w) =

(
(Bbb − Abb)(vb + wb)

0

)
(18)

can be performed efficiently by multiplying it by W T as the term
(18) is sparse again.
Finally, solve HBy = LUy = f̂ + ĝ and then perform
the inverse FFT on the resulting vector leading to
the solution u of the original problem Au = f .
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Numerical results

The numerical experiments have been computed in Matlab.

Ω = [0, 1]d , ω = 2π, uniform meshes wrt each xj , step size h = 1/n

Right-hand side is chosen as 0.01 for the first n entries and 1 for
all the other entries

We compare the CPU times in seconds for computing the solution
by applying Matlab’s backslash, the fast solver presented as well as
second version of it, where in step 1 and 3 we use the FFT instead
of the multiplications by W . We present the times for the
computations in the initialization process as well.
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Numerical results (2d)

CPU times in seconds:

nj 65 129 257 513 1025

Initialization 0.11 0.26 0.82 3.93 22.92
Matlab’s backslash 0.04 0.16 0.52 3.17 13.11

Fast Solver 0.02 0.05 0.13 0.47 2.09
Fast Solver version 2 0.01 0.03 0.07 0.37 1.74
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Numerical results (3d)

CPU times in seconds:

nj 9 17 33 65 129 257

Initialization 0.09 0.13 0.32 1.95 15.32 152.28
Matlab’s backslash 0.06 0.31 7.33 671.77 – –

Fast Solver 0.06 0.13 0.53 4.64 63.94 631.39
Fast Solver version 2 0.08 0.12 0.51 4.45 61.41 647.46
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Conclusions and outlook

Efficient numerical method employing FFT combined with a fast
direct solver for the Helmholtz problem with ABCs. Solving the
Helmholtz equation is in general difficult or impossible to solve
efficiently with most numerical methods.

E. Heikkola, T. Rossi, and J. Toivanen, Fast direct solution of the
Helmholtz equation with a perfectly matched layer or an absorbing
boundary condition , International journal for numerical methods in
engineering, 57(14), 2007–2025, 2003.

J. Toivanen and M. Wolfmayr, A Fast Fourier Transform based
direct solver for the Helmholtz problem, in preparation, 2017.

Outlook:

More complicated domains and data
Combine this solver with domain decomposition
methods for layered media
Parallel implementation Eυχαριστώ !
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