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Fractional-derivative PDE (initial-boundary value problem)

Lu := Dα
t u − p

∂2u

∂x2
+ r(x)u = f (x , t)

for (x , t) ∈ Q := (0, l)× (0,T ], with

u(0, t) = u(l , t) = 0 for t ∈ (0,T ],

u(x , 0) = φ(x) for x ∈ [0, l ],

where Dα
t u is a Caputo fractional derivative of order α ∈ (0, 1),

p is a positive constant,
the functions r , f are continuous on Q̄ := [0, l ]× [0,T ]
with r(x) ≥ 0 for all x ,
and φ ∈ C [0, l ].



The fractional derivative

Dα
t denotes the Caputo fractional derivative defined by

Dα
t g(x , t) :=

1

Γ(1− α)

∫ t

s=0
(t − s)−α

(
∂g

∂t

)
(x , s) ds

for (x , t) ∈ Q.

The derivative definition is not local (unlike classical derivatives).

Fact: if g ∈ C 1(Q̄), then

lim
α→1−

[Dα
t g(x , t)] = gt(x , t) for each (x , t) ∈ Q.



Example (part 1)
Example. Consider the fractional heat equation

Dα
t v −

∂2v

∂x2
= 0 on (0, π)× (0,T ]

with initial condition v(x , 0) = sin x
and boundary conditions v(0, t) = v(π, t) = 0.
Its solution is

v(x , t) = Eα(−tα) sin x for (x , t) ∈ [0, π]× [0, 1],

where the Mittag-Leffler function

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
.

M-L function is fractional analogue of the exponential function:

Dα
t Eα(λtα) = λEα(tα).



Graph of solution to Example

Plot of surface v(x , t) and its cross-section at x = π/2 when
α = 0.3.
An initial layer in v at t = 0 is evident.
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Example (part 2)

In this Example, one has [recall that 0 < α < 1]

vt(x , t) ≈ Ctα−1 sin x as t → 0+,

vtt(x , t) ≈ Ctα−2 sin x as t → 0+,

while ∣∣∣∣∂ iv(x , t)

∂x i

∣∣∣∣ ≤ C for i = 0, 1, 2, 3, 4 and all (x , t) ∈ Q̄.



Regularity of the solution u (part 1)

Return to our problem

Lu := Dα
t u − p

∂2u

∂x2
+ r(x)u = f (x , t).

Existence/uniqueness/regularity of the solution is examined in
K.Sakamoto and M.Yamamoto, J. Math. Anal. Appl., 382 (2011),
426–447.
Y.Luchko, Fract. Calc. Appl. Anal., 15 (2012) 141–160.
— uses separation of variables to prove existence and uniqueness
of a classical solution to this problem
— i.e., a function u whose derivatives exist and satisfy the PDE
and the initial-boundary conditions pointwise
— under some extra hypotheses on the data



Regularity of the solution u (part 2)

Can extend results of those papers to show that∣∣∣∣∂iu(x , t)

∂x i

∣∣∣∣ ≤ C for i = 0, 1, 2, 3, 4 and all (x , t) ∈ Q̄.

and ∣∣∣∣∂ju(x , t)

∂t j

∣∣∣∣ ≤ Ctα−j for j = 1, 2 and all (x , t) ∈ Q

Here and subsequently, C denotes a generic constant that depends
only on the data α, p, r , f , φ, l ,T .

These bounds are sharp: they agree with the behaviour of our
earlier example

v(x , t) = Eα(−tα) sin x for (x , t) ∈ [0, π]× [0, 1].



You can’t assume too much regularity!

Consider the time-fractional heat equation

Dα
t v −

∂2v

∂x2
= 0 on (0, π)× (0,T ]

with initial condition v(x , 0) = φ(x) ∈ C 2[0, 1]
satisfying φ(0) = φ(π) = 0 and v(0, t) = v(π, t) = 0.
If one assumes that vt(x , t) is continuous on [0, π]× [0,T ], then

one must have v ≡ 0.

M.Stynes, Too much regularity may force too much uniqueness,
Fract. Calc. Appl. Anal. 19 (2016), no. 6, 1554–1562.

Y.Lin and C.Xu, Finite difference/spectral approximations for the
time-fractional diffusion equation, J. Comput. Phys., 225 (2007),
1533–1552. MathSciNet references: 207
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Uniform mesh, spatial discretisation

Let M and N be positive integers. Set

xn := nh for n = 0, 1, . . . ,N with h := l/N,

tm := mτ for m = 0, 1, . . . ,M with τ := T/M.

Computed approximation to the solution at each mesh point
(xn, tm) is denoted by umn .

uxx is discretised using a standard approximation:

∂2u

∂x2
(xn, tm) ≈ δ2

xu
m
n :=

umn+1 − 2umn + umn−1

h2
.



Discretisation in time

The Caputo fractional derivative

Dα
t u(xn, tm) =

1

Γ(1− α)

m−1∑
k=0

∫ tk+1

s=tk

(tm − s)−α
∂u(xn, s)

∂t
ds

is approximated by the so-called L1 approximation

Dα
Mumn :=

1

Γ(1− α)

m−1∑
k=0

uk+1
n − ukn

τ

∫ tk+1

s=tk

(tm − s)−α ds

=
τ−α

Γ(2− α)

[
d1u

m
n − dmu

0
n +

m−1∑
k=1

(dk+1 − dk)um−kn

]
,

with dk := k1−α − (k − 1)1−α for k ≥ 1.
Here d1 = 1, dk > dk+1 > 0, and
(1− α)k−α ≤ dk ≤ (1− α)(k − 1)−α.



The scheme

Thus we approximate the IBVP by the discrete problem

LN,Mumn := Dα
Mumn − p δ2

xu
m
n + r(xn)umn = f (xn, tm)

for 1 ≤ n ≤ N − 1, 1 ≤ m ≤ M;

um0 = 0, umN = 0 for 0 < m ≤ M,

u0
n = φ(xn) for 0 ≤ n ≤ N.

This discretisation is standard; it is considered for example in
F.Liu, P.Zhuang & K.Burrage, Numerical methods and analysis for
a class of fractional advection-dispersion models, Comput. Math.
Appl., 64 (2012), 2990–3007.



Properties of discrete system

At each time level,

I Must solve a tridiagonal linear system; matrix is an M-matrix
so scheme satisfies a discrete maximum principle.

I Have to use computed solutions at all previous time levels



Previous numerical analysis: a criticism

—In our discussion of convergence,
we consider only the discrete L∞ norm—

There exist papers (e.g., Liu, Zhang & Burrage 2012) that
consider problems and discretisations like ours, and prove
O(h2 + τ2−α) convergence of the numerical method, under the
hypothesis that the solution u of the original problem is in C 4,2(Q̄)
—which is satisfied only for very special data!

We are interested in proving a convergence result under the
realistic hypothesis that u ∈ C 4,0(Q̄) with∣∣∣∣∂`u∂t` (x , t)

∣∣∣∣ ≤ C (1 + tα−`) for ` = 0, 1, 2.
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Numerical evidence

Numerical experiments with our simple but typical first Example

v(x , t) = Eα(−tα) sin x for (x , t) ∈ [0, π]× [0, 1],

show that for our numerical method one obtains O(h2 + τα)
convergence, not the O(h2 + τ2−α) that occurs only for
unrealistically smooth solutions.



Truncation error; convergence of scheme

Temporal truncation error: one can show (a bit long and messy)
that

|Dα
Mu(xn, tm)− Dα

t u(xn, tm)| ≤ Cm−α.

Also need to sharpen stability estimate of Liu, Zhang & Burrage
2012.

Theorem
For m = 1, 2, . . . ,M the solution umn of the scheme satisfies

max
(xn,tm)∈Q̄

|u(xn, tm)− umn | ≤ C (h2 + τα).

Numerical experiments show that this bound is sharp.
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Mesh graded in time

Let M and N be positive integers. Set

xn := nh for n = 0, 1, . . . ,N with h := l/N,

tm:= T (m/M)r for m = 0, 1, . . . ,M

with mesh grading r ≥ 1 chosen by the user.

Set τm = tm − tm−1 for m = 1, 2, . . . ,M.

Computed approximation to the solution at each mesh point
(xn, tm) is denoted by umn .

uxx is discretised as before



Discretisation in time

The Caputo fractional derivative

Dα
t u(xn, tm) =

1

Γ(1− α)

m−1∑
k=0

∫ tk+1

s=tk

(tm − s)−α
∂u(xn, s)

∂t
ds

is again approximated by the L1 approximation (but now the mesh
is nonuniform in time)

Dα
Mumn :=

1

Γ(1− α)

m−1∑
k=0

uk+1
n − ukn
τk+1

∫ tk+1

s=tk

(tm − s)−α ds

=
1

Γ(1− α)

m−1∑
k=0

uk+1
n − ukn
τk+1

[
(tm − tk)1−α − (tm − tk+1)1−α]



Truncation error and stability on graded meshes

Lemma (temporal truncation error)

There exists a constant C such that for all (xm, tn) ∈ Q one has

|Dα
Nu(xm, tn)− Dα

t u(xm, tn)| ≤ Cn−min{2−α, rα}.

Also need to prove new discrete stability result (delicate).

Lemma (stability of L1 scheme)

For n = 1, 2, . . . ,N one has

‖un‖∞ ≤ ‖u0‖∞ + τ δn Γ(2− δ)
n∑

j=1

θn,j‖f j‖∞

where θn,n = 1 and θn,j =

n−j∑
k=1

τ δn−k(dn,k − dn,k+1)θn−k,j

for n = 1, 2 . . . ,N and j = 1, 2, . . . , n − 1.



Convergence on graded meshes

Theorem
The solution unm of the scheme satisfies

max
(xm,tn)∈Q̄

|u(xm, tn)− unm| ≤ CTα
(
h2 + N−min{2−α, rα}

)
.

Hence: for r ≥ (2− α)/α, the rate of convergence is

O
(
h2 + N−(2−α)

)
.

Numerical experiments show our theorem is sharp.
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Future work

I Alternative discretizations of the fractional derivative?

I Some alternative way of dealing with the weak singularity at
t = 0?

I Two spatial dimensions?

I etc. etc.



Thank you for your attention ¨̂
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