On a Degenerate Eddy Current Problem-revisited.

AANMPDE 10, Paleochora, Crete, Greece

October 2-6, 2017

Rainer Picard, TU Dresden (joint work with Dirk Pauly, U Duisburg-Essen)

What are Evo-Systems?

Consider systems of the form

$$(\partial_0 \mathscr{M} + A) U = F,$$

where A, A^* are accretive in a real Hilbert space H and \mathcal{M} is a so-called material law operator. Solutions are discussed in a weighted real L^2 -space $H_{\rho}\left(\mathbb{R},H\right)$, constructed by completion of the space $\mathring{C}_1\left(\mathbb{R},H\right)$ of differentiable H-valued functions with compact support w.r.t. $\langle\,\cdot\,|\,\cdot\,\rangle_{\rho,H}$ (norm: $|\,\cdot\,|_{\rho,H}$) $(\varphi,\psi)\mapsto\int_{\mathbb{T}}\langle\varphi(t)\,|\,\psi(t)\rangle_H\exp(-2\rho\,t)\,dt$.

Time-differentiation ∂_0 as a closed operator in $H_{\rho}\left(\mathbb{R},H\right)$ induced by

$$\mathring{\mathcal{C}}_{1}\left(\mathbb{R},H\right)\subseteq H_{\rho}\left(\mathbb{R},H\right)\rightarrow H_{\rho}\left(\mathbb{R},H\right),\ \varphi\mapsto\varphi'.$$

What are Evo-Systems?

Time-differentiation ∂_0 is a normal operator in $H_{\rho}(\mathbb{R},H)$. For $\rho_0 \in]0,\infty[,\ \rho \in]\rho_0,\infty[$, we have

$$\operatorname{sym} \partial_0 = \rho \ge \rho_0 > 0,$$

i.e. ∂_0 is a strictly (and uniformly w.r.t. $\rho \in [\rho_0, \infty[$) positive definite operator

with respect to the real inner product

$$(\phi, \psi) \mapsto \mathfrak{Re} \langle \phi | \psi \rangle_{\rho, H}$$
.

Allows the discussion of the problem class:

$$\overline{\left(\partial_{0} M\left(\partial_{0}^{-1}\right) + A\right)} U = F$$
 (Evo-Sys)

Basic Solution Theory of Evo-Systems in $H_{\rho}(\mathbb{R},H)$

$$\overline{\left(\partial_{0} M\left(\partial_{0}^{-1}\right) + A\right)} U = F$$
 (Evo-Sys)

Theorem

Let $z \mapsto M(z)$ be a rational $\mathcal{L}(H,H)$ -valued function in a neighborhood of 0 such that

$$\rho M(0) + \operatorname{sym} M'(0) + A, \rho M(0) + \operatorname{sym} M'(0) + A^* \ge c_0 > 0$$

for some $c_0 \in \mathbb{R}$ and all $\rho \in]0,\infty[$ sufficiently large. Then well-posedness of (Evo-Sys) follows for all $\rho \in]\rho_0,\infty[$.

Moreover, the solution operator $\overline{\left(\partial_0 M\left(\partial_0^{-1}\right)+A\right)}^{-1}$ is causal in the sense that

$$\chi_{]-\infty,0]}\overline{\left(\partial_{0}M\left(\partial_{0}^{-1}\right)+A\right)}^{-1}=\chi_{]-\infty,0]}\overline{\left(\partial_{0}M\left(\partial_{0}^{-1}\right)+A\right)}^{-1}\chi_{]-\infty,0]}.$$

We want to inspect

$$\left(\partial_0 \sigma + \operatorname{curl} \mu^{-1} \mathring{\operatorname{curl}}\right) E = -\partial_0 J =: f,$$

where σ, μ are continuous selfadjoint mappings with $\sigma \geq 0$ and μ strictly positive definite. We read off

$$\rho \langle E | \sigma E \rangle_{\rho,0,0} + \left\langle \mathring{\text{curl}} E | \mu^{-1} \mathring{\text{curl}} E \right\rangle_{\rho,0,0} = \langle E | f \rangle_{\rho,0,0}$$
That
$$E \in \mathcal{M}(\sigma) \cap \mathcal{M}(\mathring{\text{curl}})$$

showing that

$$E \in N(\sigma) \cap N(\mathring{\text{curl}})$$

will cause difficulties, unless

$$f \in H_0 := \left(N(\sigma) \cap N\left(\mathring{\operatorname{curl}}\right)\right)^{\perp}.$$

Moreover,

$$E \in H_0$$

will enforce uniqueness.

History: vast literature!
For example: R.C. MacCamy, E. P. Stephan (1984), H. Ammari, A. Buffa, J.-C. Nedelec (2000), T. Pepperl (Dissertation, 2006), M. Costabel, M. Dauge, S. Nicaise (2003), M. Kolmbauer, U. Langer (2011), E. Creusé, S. Nicaise (2012-2016), Ana A. Rodriguez, Alberto Valli (monograph, 2010), X. Jiang, W. Zheng (2012-14)

- $\Omega = \mathbb{R}^3$
 - non-degenerate
 - time-harmonic
 - time-dependent
 - degenerate
 - time-harmonic
 - time-dependent

History: vast literature!
For example: R.C. MacCamy, E. P. Stephan (1984), H. Ammari, A. Buffa, J.-C. Nedelec (2000), T. Pepperl (Dissertation, 2006), M. Costabel, M. Dauge, S. Nicaise (2003), M. Kolmbauer, U. Langer (2011), E. Creusé, S. Nicaise (2012-2016), Ana A. Rodriguez, Alberto Valli (monograph, 2010), X. Jiang, W. Zheng (2012-14)

- $\Omega = \mathbb{R}^3$
 - non-degenerate
 - time-harmonic
 - time-dependent
 - degenerate
 - time-harmonic
 - time-dependent

- $\Omega \subseteq \mathbb{R}^3$ bounded domain
 - non-degenerate
 - time-harmonic
 - time-dependent
 - degenerate
 - time-harmonic
 - time-dependent

History: vast literature!
For example: R.C. MacCamy, E. P. Stephan (1984), H. Ammari, A. Buffa, J.-C. Nedelec (2000), T. Pepperl (Dissertation, 2006), M. Costabel, M. Dauge, S. Nicaise (2003), M. Kolmbauer, U. Langer (2011), E. Creusé, S. Nicaise (2012-2016), Ana A. Rodriguez, Alberto Valli (monograph, 2010), X. Jiang, W. Zheng (2012-14)

- $\Omega = \mathbb{R}^3$
 - non-degenerate
 - time-harmonic
 - time-dependent
 - degenerate
 - time-harmonic
 - time-dependent

- ullet $\Omega\subseteq\mathbb{R}^3$ bounded domain
 - non-degenerate
 - time-harmonic
 - time-dependent
 - degenerate
 - time-harmonic
 - time-dependent

What is missing?

Solution theory with general operator coefficients for 'rough' domains.

$$\operatorname{Op} u = f$$
.

Well-posedness = "The linear operator $Op : D(Op) \subseteq X \to Y$ is injective and surjective, X, Y Banach spaces".

Frequently, Y is not complete, sometimes Op is replaced by Op. Always smooth (at least Lipschitz) domains and interfaces.

Evo-System: $M(\partial_0^{-1}) = \sigma, A = A^* = \operatorname{curl} \mu^{-1} \mathring{\operatorname{curl}}.$

For the underlying domain Ω we assume $\mathscr{H}_{D,\Omega}=\{0\}$ and the compact embedding property

$$D\left(\mathring{\operatorname{curl}}\right)\cap D\left(\operatorname{div}\right)\hookrightarrow\hookrightarrow L^{2}\left(\Omega\right).$$

Since for $E \in D\left(\operatorname{curl} \mu^{-1} \mathring{\operatorname{curl}} \right)$

$$\left\langle E|\operatorname{curl}\mu^{-1}\mathring{\operatorname{curl}}E\right\rangle_{\rho,0,0}=\left\langle \mathring{\operatorname{curl}}E|\mu^{-1}\mathring{\operatorname{curl}}E\right\rangle_{\rho,0,0}$$

it suffices to show

$$\langle E|\sigma E
angle_{
ho,0,0}+\left\langle \mathring{\operatorname{curl}}E|\mu^{-1}\mathring{\operatorname{curl}}E
ight
angle_{
ho,0,0}\geq c_0\,\langle E|E
angle_{
ho,0,0}$$

for all $E \in D(\mathring{\operatorname{curl}}) \cap H_0$.

 σ is degenerate in the sense that

$$\sigma=\iota_{\Omega_c}\widetilde{\sigma}\,\iota_{\Omega_c}^*$$

for

$$\widetilde{\sigma}:L^{2}\left(\Omega_{c},\mathbb{R}^{3}
ight)
ightarrow L^{2}\left(\Omega_{c},\mathbb{R}^{3}
ight)$$

such that $\widetilde{\sigma}$ is strictly positive definite, where the open set $\Omega_c \subseteq \Omega$ is assumed to be such that $\overline{\Omega_c} \subseteq \Omega$ and that Ω_c has a Lebesgue null set as topological boundary.

$$H_0^{\perp} = N\left(\mathring{\operatorname{curl}}\right) \cap L^2\left(\Omega \setminus \overline{\Omega_c}, \mathbb{R}^3\right).$$

As an assumption on the boundary quality we require

$$H_0^\perp = N\left(\mathring{\operatorname{curl}}_{\Omega\setminus\overline{\Omega_c}}
ight)$$

for which for example segment property for Ω_c would be sufficient.

Here $\check{\operatorname{curl}}_{\Omega\setminus\overline{\Omega_c}}$ denotes the operator $\check{\operatorname{curl}}$ constructed with Ω replaced by $\Omega\setminus\overline{\Omega_c}$. In this case

$$\begin{split} H_0 &= \overline{R\left(\mathsf{curl}_{\Omega\backslash\overline{\Omega_c}}\right)} \oplus L^2\left(\Omega_c,\mathbb{R}^3\right) \\ &= \left(R\left(\mathring{\mathsf{grad}}_{\Omega\backslash\overline{\Omega_c}}\right) \oplus \mathscr{H}_{D,\Omega\backslash\overline{\Omega_c}}\right)^\perp \oplus L^2\left(\Omega_c,\mathbb{R}^3\right) \\ &= \left(N\left(\mathsf{div}_{\Omega\backslash\overline{\Omega_c}}\right) \cap \mathscr{H}_{D,\Omega\backslash\overline{\Omega_c}}^\perp\right) \oplus L^2\left(\Omega_c,\mathbb{R}^3\right), \end{split}$$

where $\operatorname{grad}_{\Omega\setminus\overline{\Omega_c}}$ denotes the operator grad constructed with Ω replaced by $\Omega\setminus\overline{\Omega_c}$, $\operatorname{div}_{\Omega\setminus\overline{\Omega_c}}:=-\operatorname{grad}_{\Omega\setminus\overline{\Omega_c}}^*$ with adjoint taken in $L^2\left(\Omega\setminus\overline{\Omega_c},\mathbb{R}^3\right)$ and

$$\mathscr{H}_{D,\Omega\setminus\overline{\Omega_c}}:=\textit{N}\left(\mathsf{div}_{\Omega\setminus\overline{\Omega_c}}\right)\cap\textit{N}\left(\mathring{\mathsf{curl}}_{\Omega\setminus\overline{\Omega_c}}\right)$$

denotes the space of harmonic Dirichlet fields in $L^2\left(\Omega\setminus\overline{\Omega_c},\mathbb{R}^3\right)$.

We will use the orthogonal decomposition

$$H_0 = R(\operatorname{curl}) \oplus H_1 \oplus H_2. \tag{1}$$

where

$$H_1 \coloneqq N\left(\mathring{\operatorname{curl}}\right) \cap R\left(\sigma\right) = N\left(\mathring{\operatorname{curl}}_{\Omega_c}\right) \subseteq N\left(\mathring{\operatorname{curl}}\right)$$

$$\begin{array}{ll} \textit{H}_2 \; \coloneqq \; \textit{N}\left(\mathring{\text{curl}}\right) \cap \left(\left(\textit{N}\left(\mathsf{div}_{\Omega_c}\right) \cap \mathscr{H}_{D,\Omega_c}^{\perp}\right) \oplus \left(\textit{N}\left(\mathsf{div}_{\Omega \setminus \overline{\Omega_c}}\right) \cap \mathscr{H}_{D,\Omega \setminus \overline{\Omega_c}}^{\perp}\right)\right) \\ & \subseteq \textit{N}\left(\mathring{\text{curl}}\right). \end{array}$$

Lemma : We have for $U_k \in H_k$, k = 1, 2,

$$|\chi_{\Omega_c}(U_1+U_2)|^2 = |U_1|^2 + |\chi_{\Omega_c}U_2|^2.$$

Proof: (Idea) $U_1 = \chi_{\Omega_c} U_1 = \operatorname{grad}_{\Omega_c} \psi \perp N(\operatorname{div}_{\Omega_c})$ and $\chi_{\Omega_c} U_2 \in N(\operatorname{div}_{\Omega_c})$.

We also note: we have for some positive constant k_0 that

$$|U_0|^2 \leq k_0 \left| \mathring{\operatorname{curl}} U_0 \right|^2$$

for all $U_0 \in D\left(\mathring{\operatorname{curl}}\right) \cap R\left(\operatorname{curl}\right)$.

Proof: (Idea) compact embedding property.

Finally we need the following more subtle lemma.

Lemma: We have a positive constant k_1 so that

$$|U_2| \le k_2 \left| \chi_{\Omega_c} U_2 \right| \tag{2}$$

for all $U_2 \in H_2$.

Proof: (Idea) $U_2 = \mathring{\mathsf{grad}} \varphi \in \mathcal{N}\left(\mathring{\mathsf{curl}}\right)$ and

$$\operatorname{\mathsf{div}}\operatorname{\mathsf{grad}} \phi = 0 \ \operatorname{\mathsf{in}} \ \Omega_c \cup \Omega \setminus \overline{\Omega_c}.$$

Common boundary values on the interface! Thus, U_2 is determined by $\chi_{\Omega_c} U_2$ and the continuity estimate can be shown.

Lemma: There is a positive constant c_0 such that we have

$$c_0 |U|^2 \le \left| \sigma^{1/2} U \right|^2 + \left| \mathring{\operatorname{curl}} U \right|^2 \tag{3}$$

for all $U \in D(C) \cap H_0$.

4□▶ 4♂▶ 4½▶ 4½▶ ½ 900°

Proof: We observe

$$\min\left\{1,c_*\right\} \left(\left| \chi_{\Omega_c} \, U \right|^2 + \left| \mathring{\mathsf{curl}} \, U \right|^2 \right) \leq \left| \sigma^{1/2} \, U \right|^2 + \left| \mathring{\mathsf{curl}} \, U \right|^2$$

and so the estimate follows if we can show that

$$|c_1|U|^2 \leq \left|\chi_{\Omega_c}U\right|^2 + \left|\operatorname{curl} U\right|^2.$$

We shall employ the above decomposition so that

$$U=U_0+U_1+U_2$$
 with $U_0\in R$ (curl), $U_k\in H_k$, $k=1,2$.

$$\begin{split} |U|^2 &= |U_0|^2 + |U_1|^2 + |U_2|^2 \\ &\leq k_0^2 \left| \mathring{\text{curl}} U_0 \right|^2 + \left| \chi_{\Omega_c} U_1 \right|^2 + k_2^2 \left| \chi_{\Omega_c} U_2 \right|^2 \\ &\leq k_0^2 \left| \mathring{\text{curl}} U_0 \right|^2 + 2 \max \left\{ 1, k_2^2 \right\} \left| \chi_{\Omega_c} \left(U_0 + U_1 + U_2 \right) \right|^2 + \\ &+ 2 \max \left\{ 1, k_2^2 \right\} |U_0|^2 \,, \end{split}$$

$$\begin{split} |U|^2 &= |U_0|^2 + |U_1|^2 + |U_2|^2 \\ &\leq k_0^2 \left| \mathring{\text{curl}} U_0 \right|^2 + \left| \chi_{\Omega_c} U_1 \right|^2 + k_2^2 \left| \chi_{\Omega_c} U_2 \right|^2 \\ &\leq k_0^2 \left| \mathring{\text{curl}} U_0 \right|^2 + 2 \max \left\{ 1, k_2^2 \right\} \left| \chi_{\Omega_c} \left(U_0 + U_1 + U_2 \right) \right|^2 + \\ &\quad + 2 \max \left\{ 1, k_2^2 \right\} |U_0|^2 \,, \\ &\leq \max \left\{ 1, k_0^2 \right\} \left(1 + 2 \max \left\{ 1, k_2^2 \right\} \right) \left(\left| \mathring{\text{curl}} U \right|^2 + \left| \chi_{\Omega_c} U \right|^2 \right). \end{split}$$