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The elliptic Dirichlet control problem

bounded polygonal domain Ω with boundary Γ

state variable y ∈ Y := L2(Ω)

control variable u ∈ Uad := {u ∈ L2(Γ) : a ≤ u(x) ≤ b for a.a. x ∈ Γ}

Dirichlet control problem

min
(y,u)∈Y×Uad

J(y ,u) :=
1
2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ)

subject to −∆y = 0 in Ω, y = u on Γ, in very weak sense

⇔ (y ,∆v)L2(Ω) = (u, ∂nv)L2(Γ) ∀v ∈ H1
0 (Ω) ∩ H1

∆(Ω)

desired state yd ∈ Hs(Ω) with some s ≥ 0
small parameter ν
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First order optimality conditions

adjoint state p̄ ∈ V := {v ∈ H1
0 (Ω) : ∆v ∈ L2(Ω)}

projection operator Π[a,b](c) := min{b,max{a, c}}

First order optimality system

−∆ȳ = f in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω
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Discretization
Let Th be a conforming finite element mesh. Define

Yh = {vh ∈ H1(Ω) : vh|T ∈ P1 ∀T ∈ Th}, Y0h = Yh ∩ H1
0 (Ω), Uh

ad = Yh|Γ ∩ Uad

Discrete Dirichlet control problem

min
(yh,uh)∈Yh×Uh

ad

J(yh,uh) :=
1
2
‖yh − yd‖2

L2(Ω) +
ν

2
‖uh‖2

L2(Γ)

subject to (∇yh,∇vh)L2(Ω) = (f , vh)L2(Ω) for all vh ∈ Y0h and yh|Γ = uh

Discrete optimality system

(∇ȳh,∇vh)L2(Ω) = 0 ∀vh ∈ Y0h and ȳh|Γ = ūh,

(∇p̄h,∇vh)L2(Ω) = (ȳh − yd , vh)L2(Ω) ∀vh ∈ Y0h,

(νūh − ∂h
n p̄h,uh − ūh)L2(Γ) ≥ 0 ∀uh ∈ Uh

ad ,

where the discrete normal derivative ∂h
n p̄h ∈ Yh|Γ is defined by

(∂h
n p̄h, vh)L2(Γ) = −(ȳh − yd , vh)L2(Ω) + (∇p̄h,∇vh)L2(Ω) for all vh ∈ Yh\Y0h
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Approximation results

Contributions, among others:
E. Casas, J.-P. Raymond: Error estimates for the numerical
approximation of Dirichlet boundary control for semilinear elliptic
equations. SICON 45(2006), 1586–1611.
K. Deckelnick, A. Günther, M. Hinze: Finite element approximation of
Dirichlet boundary control for elliptic PDEs on two- and three-dimensional
curved domains. SICON 48(2009), 2798–2819.
S. May, R. Rannacher, B. Vexler: Error analysis for a finite element
approximation of elliptic Dirichlet boundary control problems. SICON
51(2013), 2585–2611.
Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: Error estimates for Dirichlet
control problems in polygonal domains: Quasi-uniform meshes.
arXiv:1704.08843
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General error estimate

Sh : Uh → Yh is the discrete harmonic extension
Qh : L2(Γ)→ Uh is the L2(Γ)-projection
u∗h ∈ Uh

ad such that (νū − ∂np̄,u∗h − ū)L2(Γ) = 0.

General error estimate

‖ū − ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω)

≤ c

(
‖ū − u∗h‖L2(Γ) + ‖ȳ − ShQhū‖L2(Ω) + sup

ψh∈Uh

∣∣(∇p̄,∇Shψh)L2(Ω)

∣∣
‖ψh‖L2(Γ)

)

first term: quasi-interpolation error
second term: contains approximation of non-smooth boundary condition,
in general y 6∈ H1(Ω)

third term: corresponds to error estimate of normal derivative,
determines the overall convergence order,
numerator equals:

∣∣(∇(p̄ − Ihp̄),∇Shψh)L2(Ω)

∣∣
note the L2(Γ)-norm in the denominator
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Superconvergence meshes: contributions

Many contributions, among them:
M. Křı́žek, P. Neittaanmäki. On superconvergence techniques. Acta
Applicandae Mathematicae, 9(3):175–198, 1987.
J.Z. Zhu, O.C. Zienkiewicz. Superconvergence recovery technique and a
posteriori error estimators. IJNME, 30:1321–1339, 1990.
L.B. Wahlbin. Superconvergence in Galerkin Finite Element Methods.
Springer, Berlin, 1995.
A.M. Lakhany, I. Marek, J.R. Whiteman. Superconvergence results on
mildly structured triangulations. CMAME, 189(1):1–75, 2000.
J. Brandts, M. Křı́žek. History and future of superconvergence in
three-dimensional finite element methods. In Finite element methods
(Jyväskylä, 2000), pages 22–33. Gakkotosho, Tokyo, 2001.
R.E. Bank, J. Xu. Asymptotically exact a posteriori error estimators,
part I: Grids with superconvergence. SINUM, 41(6):2294–2312, 2003.

All for quasi-uniform meshes.
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Superconvergence meshes: definition

[Bank/Xu 03]: meshes with O(h2) approximate parallelogram property

Mesh produced by Max Winkler

The lengths of any two opposite edges
differ by O(h2)

except in a region of size O(h2σ)

for some applications (Neumann boundary conditions) there is another
condition for boundary edges

Result for any u ∈W 3,∞(Ω) and any vh ∈ Vh (p.w. linears):∣∣∣∣∫
Ω

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ ch1+min{1,σ}| log h|1/2‖u‖W 3,∞(Ω)|vh|H1(Ω)

Note that a piecewise O(h2) approximate parallelogram property is sufficient.



Superconvergence meshes: applications

Applications of the formula∣∣∣∣∫
Ω

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ ch1+min{1,σ}| log h|1/2‖u‖W 3,∞(Ω)|vh|H1(Ω)

1. Supercloseness of interpolant:

c1‖uh − Ihu‖H1(Ω) ≤ sup
vh∈Vh

a(uh − Ihu, vh)

‖vh‖H1(Ω)

= sup
vh∈Vh

a(u − Ihu, vh)

‖vh‖H1(Ω)

≤ ch1+min{1,σ}| log h|1/2‖u‖W 3,∞(Ω)

Note the H1(Ω)-norm in the denominator.

Corollary: properties of gradient recovery [Bank/Xu 03, Thm. 4.2]:

‖∇u −Qh∇uh‖L2(Ω) ≤ ch1+min{1,σ}| log h|1/2‖u‖W 3,∞(Ω)

Qh : L2(Ω)→ Vh is the L2(Ω)-projection operator
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Superconvergence meshes: applications
Applications of the formula∣∣∣∣∫

Ω

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ ch1+min{1,σ}| log h|1/2‖u‖W 3,∞(Ω)|vh|H1(Ω)

2. Approximation of normal derivatives: By the definition of the variational
normal derivative ∂h

nuh we have

(∂nu − ∂h
nuh, zh)Γ = (∇(u − uh),∇zh)Ω ∀zh ∈ Vh

Moreover, we have

‖∂nu − ∂h
nuh‖2

L2(Γ) = (∂nu − ∂h
nuh, ∂nu − ∂h

nuh)Γ

= (∂nu − ∂h
nuh, ∂nu −Qh∂nu)Γ + (∂nu − ∂h

nuh,Qh∂nu − ∂h
nuh)Γ

With eh := Qh∂nu − ∂h
nuh and the discrete harmonic extension operator Sh we

get

(∂nu − ∂h
nuh,eh)Γ = (∇(u − uh),∇Sheh)Ω = (∇(u − Ihu),∇Sheh)Ω

which can be estimated by the Bank/Xu-formula
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Superconvergence meshes: applications

3. Deckelnick/Günther/Hinzeconsidered the approximation of smooth domains
and modified the estimate with r > 2 to∣∣∣∣∫

Ωh

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ c‖u‖W 3,r (Ωh)

(
h1+min{1,σ}‖vh‖H1(Ωh) + h3/2‖vh‖L2(Γh)

)
and used it in the analysis of Dirichlet control problems with L2-regularization.
The approximation order 3

2 for control and state is optimal due to regularity
issues.

Note: It is not obvious whether this estimate holds for meshes with only
piecewise O(h2) approximate parallelogram property.

This result stimulated our treatment of superconvergence meshes within the
investigation of Dirichlet control problems in non-smooth domains.

K. Deckelnick, A. Günther, M. Hinze: Finite element approximation of Dirichlet boundary control for
elliptic PDEs on two- and three-dimensional curved domains, SIAM J. Control Optim. 48(2009), 2798–2819.
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Graded meshes: contributions
Many contributions, among them:

L.A. Oganesyan, L.A. Rukhovets. Variational-difference schemes for linear
second-order elliptic equations in a two-dimensional region with piecewise
smooth boundary. Zh. Vychisl. Mat. Mat. Fiz., 8:97–114, 1968.

I. Babuška. Finite element method for domains with corners. Computing,
6:264–273, 1970.

G. Raugel. Résolution numérique par une méthode d’éléments finis du problème
de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sèr. A,
286(18):A791–A794, 1978.

A.H. Schatz, L.B. Wahlbin. Maximum norm estimates in the finite element method
on plane polygonal domains. Part 2: Refinements. Math. Comp.,
33(146):465–492, 1979.

R. Fritzsch, P. Oswald. Zur optimalen Gitterwahl bei Finite-Elemente-
Approximationen. WZ TU Dresden, 37(3):155–158, 1988.

C. Băcuţă, V. Nistor, L.T. Zikatanov. Improving the rate of convergence of high
order finite elements on polygons and domains with cusps. Numer. Math.,
100(2):165–184, 2005.

All without superconvergence.
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Definition of graded meshes

With global mesh parameter h and grading parameter µ ∈ (0,1],
let the element size hT := diamT be related to the distance rT to the corner

hT ∼


h1/µ for rT = 0
hr1−µ

T for R ≥ rT > 0
h for rT > R

(∗)
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Purpose of mesh grading: regularity issues

Consider polygonal domain Ω with boundary Γ and

−∆u + u = f in Ω

with Dirichlet or Neumann boundary conditions.

We have near corners with interior angle ω

u = ur + ξ(r) rλ Φ(ϕ)

with regular part ur , cut-off function ξ(r), smooth function Φ(ϕ), and λ = π/ω.
The letter λ denotes the singularity exponent in the whole talk.

u ∈ H2(Ω) for ω < π

u ∈W 2,∞(Ω) for ω < π/2
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Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

‖u − uh‖H1(Ω) ≤ ch min{1,λ/µ−ε}‖f‖L2(Ω)

‖u − uh‖L2(Ω) ≤ ch 2 min{1,λ/µ−ε}‖f‖L2(Ω)

[Oganesyan/Rukhovets 68, 74, 79], [Babuška 70], [Raugel 78], . . . , [Pfefferer 12, 15]

‖u − uh‖L∞(Ω) ≤ ch min{2,λ/µ}−ε‖f‖X

[Schatz/Wahlbin 79] for smooth right hand sides f and c = c(f )

[Sirch 10] for X = C0,σ(Ω), h−ε=̂| log h|3/2, Dirichlet problem

[Rogovs et al. 17] for X = C0,σ(Ω), h−ε=̂| log h|1, Neumann and Dirichlet problems
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Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

‖u − uh‖L2(Γ) ≤ ch min{2,( 1
2 +λ)/µ}−ε‖f‖X

[Pfefferer et al. 15] for X = C0,σ(Ω), h−ε=̂| log h|1+δ, δ = δ(λ, µ), Neumann problem

‖∂nu − Πh∂nu‖L2(Γ) ≤ ch min{1/2,(λ− 1
2 )/µ}−ε‖f‖L2(Ω)

[Apel/Nicaise/Pfefferer 16] Dirichlet problem, Πh . . . L2(Γ)-projection
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Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 1.4142, µ = 1.0 h = 1.4142, µ = 1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.5, µ = 1.0 h = 0.5, µ = 1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 1.0 h = 0.25, µ = 1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 1.0 h = 0.125, µ = 1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.9 h = 0.125, µ = 0.9

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.8 h = 0.125, µ = 0.8

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.7 h = 0.125, µ = 0.7

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.6 h = 0.125, µ = 0.6

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.5 h = 0.125, µ = 0.5

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.4 h = 0.125, µ = 0.4

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.3 h = 0.125, µ = 0.3

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.2 h = 0.125, µ = 0.2

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection
Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T ∈ Th for refinement which satisfies

hT > h or hT > h
( rT

R

)1−µ

until the desired mesh is reached. [Fritzsch/Oswald 88]

h = 0.25, µ = 0.1 h = 0.125, µ = 0.1

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 1.4142, µ = 1.0 h = 1.4142, µ = 1.0

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.7071, µ = 1.0 h = 0.7071, µ = 1.0

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.3536, µ = 1.0 h = 0.3536, µ = 1.0

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 1.0 h = 0.1768, µ = 1.0

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 1.0 h = 0.0884, µ = 1.0

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.9 h = 0.0884, µ = 0.9

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.8 h = 0.0884, µ = 0.8

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.7 h = 0.0884, µ = 0.7

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.6 h = 0.0884, µ = 0.6

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.5 h = 0.0884, µ = 0.5

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.4 h = 0.0884, µ = 0.4

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.3 h = 0.0884, µ = 0.3

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.2 h = 0.0884, µ = 0.2

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

1 Refine a coarse start mesh uniformly until hT ∼ h ∀T ∈ Th with desired
mesh size h.

2 Transform the nodes X (i) ∈ Ω ∩ SR according to X (i)
new = X (i)

(
r(X (i))

R

)1/µ−1

[Oganesyan/Rukhovets 68, 74, 79]

h = 0.1768, µ = 0.1 h = 0.0884, µ = 0.1

no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

Other metric can be used for relocation [Raugel]:



Generation of graded meshes 3:
hierarchic with relocation

Contributions, among others:
Th. Apel, J. Schöberl. Multigrid methods for anisotropic edge refinement.
SINUM, 40(5):1993–2006, 2002.
C. Băcuţă, V. Nistor, L.T. Zikatanov. Improving the rate of convergence of
high order finite elements on polygons and domains with cusps. Numer.
Math., 100(2):165–184, 2005.
L. Chen, H. Li. Superconvergence of gradient recovery schemes on
graded meshes for corner singularities. J. Comp. Math., 28(1):11–31,
2010.



Generation of graded meshes 3:
hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2−1/µ : 1.

h = 1.4142, µ = 0.5 h = 1.4142, µ = 0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:
hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2−1/µ : 1.

h = 1.0607, µ = 0.5 h = 1.2739, µ = 0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:
hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2−1/µ : 1.

h = 0.5303, µ = 0.5 h = 0.6370, µ = 0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:
hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2−1/µ : 1.

h = 0.2652, µ = 0.5 h = 0.3185, µ = 0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:
hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2−1/µ : 1.

h = 0.1326, µ = 0.5 h = 0.1592, µ = 0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:
hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2−1/µ : 1.

h = 0.0663, µ = 0.5 h = 0.0796, µ = 0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)
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Superconvergent graded meshes: contributions

Contributions, among others:

Y.-Q. Huang. The superconvergence of finite element methods on
domains with reentrant corners. In Finite element methods (Jyväskylä,
1997), pages 169–182. Dekker, New York, 1998.

for Raugel-type meshes

L. Chen, H. Li. Superconvergence of gradient recovery schemes on
graded meshes for corner singularities. J. Comp. Math., 28(1):11–31,
2010.

for hierarchic meshes with relocation

Results:
estimates for ‖∇(uh − Ihu)‖L2(Ω) and for recovered gradient with
µ < min{1, 1

2λ},
not the right estimate for our purposes
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 1.0

⇒

new, µ = 1.0

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.9

⇒

new, µ = 0.9

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.8

⇒

new, µ = 0.8

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.7

⇒

new, µ = 0.7

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.6

⇒

new, µ = 0.6

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.5

⇒

new, µ = 0.5

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.4

⇒

new, µ = 0.4

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.3

⇒

new, µ = 0.3

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.2

⇒

new, µ = 0.2

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, µ = 0.1

⇒

new, µ = 0.1

approximate parallelogram property is satisfied
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Error estimate

If
Th is a superconvergent graded mesh with grading parameter µ, and
the approximate parallelogram property holds for all edges
(no exceptions)

we have for any vh ∈ Vh∣∣∣∣∫
Ω

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ c
(
‖r3(1−µ)/2∇3u‖L2(Ω) + ‖r (1−3µ)/2∇2u‖L2(Ω)

)
·
(

h2‖r (1−µ)/2∇vh‖L2(Ω) + h3/2‖vh‖L2(Γ)

)
provided that the norms are finite.
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Discussion of the result

∣∣∣∣∫
Ωh

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ c
(
‖r3(1−µ)/2∇3u‖L2(Ω) + ‖r (1−3µ)/2∇2u‖L2(Ω)

)
·
(

h2‖r (1−µ)/2∇vh‖L2(Ω) + h3/2‖vh‖L2(Γ)

)
If the function u is the solution of a homogenous Dirichlet problem with
sufficiently smooth right hand side, then the assumptions
r3(1−µ)/2∇3u ∈ L2(Ω) and r (1−3µ)/2∇2u ∈ L2(Ω) are satisfied for
µ < 2

3 (λ− 1
2 ).

In the investigation of a Dirichlet control problem we use the estimate for
the adjoint state.

In improvement of the proofs in [Bank/Xu 03] and [Deckelnick/Günther/
Hinze 09] we avoided (weighted) Lr -norms with r > 2 of second and third
derivatives of u.
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Discussion of the result

∣∣∣∣∫
Ωh

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ c
(
‖r3(1−µ)/2∇3u‖L2(Ω) + ‖r (1−3µ)/2∇2u‖L2(Ω)

)
·
(

h2‖r (1−µ)/2∇vh‖L2(Ω) + h3/2‖vh‖L2(Γ)

)
If the function vh is discrete harmonic then

‖r (1−µ)/2∇vh‖L2(Ω) ≤ ch−1/2‖vh‖L2(Γ)

and the second factor on the right hand side is just h3/2‖vh‖L2(Γ).
Therefore we use ‖r (1−µ)/2∇vh‖L2(Ω) and not just ‖∇vh‖L2(Ω).

For the application to Dirichlet control problems we get for µ < 2
3 (λ− 1

2 )∣∣∣∣∫
Ωh

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ ch3/2‖vh‖L2(Γ)
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Discussion of the result

So far: For globally superconvergent meshes we get for µ < 2
3 (λ− 1

2 ) and
discrete harmonic vh∣∣∣∣∫

Ωh

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ ch3/2‖vh‖L2(Γ) (*)

What about piecewise superconvergent graded meshes?

If Ω =
⋃n

j=1 Ωj and the meshes are superconvergent in each polygon Ωj ,
we get ∣∣∣∣∫

Ωh

∇(u − Ihu) · ∇vh

∣∣∣∣ ≤ ch3/2
∑

j

‖vh‖L2(∂Ωj )

But we were able to show for discrete harmonic vh and µ < 2λ− 1
n∑

j=1

‖vh‖L2(∂Ωj ) ≤ cn‖vh‖L2(Γ)

such that (*) holds also for piecewise superconvergent graded meshes.
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The elliptic Dirichlet control problem

state variable y ∈ Y := L2(Ω)

control variable u ∈ Uad := {u ∈ L2(Γ) : a ≤ u(x) ≤ b for a.a. x ∈ Γ}

Dirichlet control problem

min
(y,u)∈Y×Uad

J(y ,u) :=
1
2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ)

subject to −∆y = 0 in Ω, y = u on Γ, in very weak sense

⇔ (y ,∆v)L2(Ω) = (u, ∂nv)L2(Γ) ∀v ∈ H1
0 (Ω) ∩ H1

∆(Ω)

adjoint state p̄ ∈ V := {v ∈ H1
0 (Ω) : ∆v ∈ L2(Ω)}

projection operator Π[a,b](c) := min{b,max{a, c}}

First order optimality system

−∆ȳ = f in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω
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Discretization

Let Th be a conforming finite element mesh. Define

Yh = {vh ∈ H1(Ω) : vh|T ∈ P1 ∀T ∈ Th}, Y0h = Yh ∩ H1
0 (Ω), Uh

ad = Yh|Γ ∩ Uad

Discrete optimality system

(∇ȳh,∇vh)L2(Ω) = 0 ∀vh ∈ Y0h and ȳh|Γ = ūh,

(∇p̄h,∇vh)L2(Ω) = (ȳh − yd , vh)L2(Ω) ∀vh ∈ Y0h,

(νūh − ∂h
n p̄h,uh − ūh)L2(Γ) ≥ 0 ∀uh ∈ Uh

ad ,

where the discrete normal derivative ∂h
n p̄h ∈ Yh|Γ is defined by

(∂h
n p̄h, vh)L2(Γ) = −(ȳh − yd , vh)L2(Ω) + (∇p̄h,∇vh)L2(Ω) for all vh ∈ Yh\Y0h
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General error estimate

Sh : Uh → Yh is the discrete harmonic extension
Qh : L2(Γ)→ Uh is the L2(Γ)-projection
u∗h ∈ Uh

ad such that (νū − ∂np̄,u∗h − ū)L2(Γ) = 0.

General error estimate

‖ū − ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω)

≤ c

(
‖ū − u∗h‖L2(Γ) + ‖ȳ − ShQhū‖L2(Ω) + sup

ψh∈Uh

∣∣(∇p̄,∇Shψh)L2(Ω)

∣∣
‖ψh‖L2(Γ)

)

first term: quasi-interpolation error
second term: contains approximation of non-smooth boundary condition,
in general y 6∈ H1(Ω)

third term: corresponds to error estimate of normal derivative,
determines the overall convergence order,
numerator equals

∣∣(∇(p̄ − Ihp̄),∇Shψh)L2(Ω)

∣∣
The estimates depend on the regularity of ū, p̄, and ȳ .
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Regularity in the unconstrained case −a = b =∞

Optimality system

−∆ȳ = f in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = 1
ν ∂np̄ on ∂Ω

Let ω be the largest interior angle of the polygonal domain Ω ⊂ R2, and
λ = π/ω ∈ ( 1

2 ,3] be the leading singularity exponent.

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Kinks of ∂np̄ at corners lead to bound 3
2 − ε.

Corner singularities of type cξrλ sin(λθ) in the adjoint state lead to λ− 1
2 − ε.

Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: On the regularity of the solutions of Dirichlet optimal control
problems in polygonal domains. SIAM J. Control Optim. 53(2015), 3620–3641.
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Approximation results – unconstrained case

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Approximation error orders for the control (up to logarithmic terms or h−ε):

quasi-uniform meshes

quasi-interpolation of ū min{λ− 1
2 ,

3
2}

literature (λ > 1) min{ 1
2λ,1}

E. Casas, J.-P. Raymond: Error estimates for the numerical approximation of Dirichlet boundary control
for semilinear elliptic equations. SICON 45(2006), 1586–1611.

S. May, R. Rannacher, and B. Vexler: Error analysis for a finite element approximation of elliptic
Dirichlet boundary control problems. SICON 51(2013), 2585–2611.
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Approximation results – unconstrained case

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Approximation error orders for the control (up to logarithmic terms or h−ε):

quasi-uniform meshes

quasi-interpolation of ū min{λ− 1
2 ,

3
2}

literature (λ > 1) min{ 1
2λ,1}

general quasi-uniform meshes min{λ− 1
2 ,1}

Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: Error estimates for Dirichlet control problems in polygonal domains:
Quasi-uniform meshes. arXiv:1704.08843
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Approximation results – unconstrained case

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Approximation error orders for the control (up to logarithmic terms or h−ε):

quasi-uniform meshes

quasi-interpolation of ū min{λ− 1
2 ,

3
2}

literature (λ > 1) min{ 1
2λ,1}

general quasi-uniform meshes min{λ− 1
2 ,1}

superconvergence meshes min{λ− 1
2 ,

3
2}

Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: Error estimates for Dirichlet control problems in polygonal domains:
Quasi-uniform meshes. arXiv:1704.08843
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Approximation results – unconstrained case

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Approximation error orders for the control (up to logarithmic terms or h−ε):

quasi-uniform meshes

quasi-interpolation of ū min{λ− 1
2 ,

3
2}

literature (λ > 1) min{ 1
2λ,1}

general quasi-uniform meshes min{λ− 1
2 ,1}

superconvergence meshes min{λ− 1
2 ,

3
2}
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Approximation results – unconstrained case

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Approximation error orders for the control (up to logarithmic terms or h−ε):

quasi-uniform meshes

quasi-interpolation of ū min{λ− 1
2 ,

3
2}

literature (λ > 1) min{ 1
2λ,1}

general quasi-uniform meshes min{λ− 1
2 ,1}

superconvergence meshes min{λ− 1
2 ,

3
2}
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Approximation results – unconstrained case

ū ∈ Hmin{λ−1/2,3/2}−ε(Γ)

Approximation error orders for the control (up to logarithmic terms or h−ε):

quasi-uniform meshes

quasi-interpolation of ū min{λ− 1
2 ,

3
2}

literature (λ > 1) min{ 1
2λ,1}

general quasi-uniform meshes min{λ− 1
2 ,1}

superconvergence meshes min{λ− 1
2 ,

3
2}

Numerical tests show that these results are sharp.

s
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.

Approximation order for the control

Apel/Mateos/Pfefferer/Rösch The Dirichlet control problem revisited AANMPDE 10 38 / 49



Graded meshes – unconstrained case

General error estimate

‖ū − ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω)

≤ c

(
‖ū − u∗h‖L2(Γ) + ‖ȳ − ShQhū‖L2(Ω) + sup

ψh∈Uh

∣∣(∇p̄,∇Shψh)L2(Ω)

∣∣
‖ψh‖L2(Γ)

)

With Clément interpolant u∗h = Chū:

‖ū − u∗h‖L2(Γ) ≤

{
ch for µ < λ− 1

2

ch3/2−ε for µ < 2
3 (λ− 1

2 )

Using
∣∣(∇p̄,∇Shψh)L2(Ω)

∣∣ =
∣∣(∇(p̄ − Ihp̄),∇Shψh)L2(Ω)

∣∣:
sup
ψh∈Uh

∣∣(∇p̄,∇Shψh)L2(Ω)

∣∣
‖ψh‖L2(Γ)

≤

{
ch1−ε for general graded meshes and µ < λ− 1

2

ch3/2−ε for superconvergent graded meshes and µ < 2
3 (λ− 1

2 )
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Numerical test

Ω = {(x1, x2) ∈ (−1,1)× (−1,1) : 0 < θ < ω} with

ω =

{
3
4π (convex domain)
5
4π (non-convex domain)

λ = π/ω, ν = 1,

ϕ̄ =

{
rλ sin(λθ)(1− x1)(1− x2) if ω1 = 3

4π,

rλ sin(λθ)(1− x2
1 )(1− x2) if ω1 = 5

4π,

ū = ∂νϕ̄, ȳ = Sū, yd = ȳ + ∆ϕ̄
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Numerical test: bisection (general graded mesh)

ω = 3
4π:

µ EOC TOC

1.00 0.89 0.83
0.83 0.97 1.00
0.75 1.00 1.00
0.55 1.00 1.00
0.40 1.00 1.00

ω = 5
4π:

µ EOC TOC

1.00 0.30 0.30
0.75 0.37 0.40
0.50 0.61 0.60
0.30 0.97 1.00
0.25 1.00 1.00

EOC: estimated order of convergence
TOC: theoretical order of convergence min{1, (λ− 1

2 )/µ}
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Numerical test: superconvergent graded meshes

S: “smooth relocation”, N: “non-smooth relocation”, H: “hierarchical”
ω = 3

4π: µ TOC EOC for S EOC for N EOC for H

1.00 0.83 0.83 0.83 0.83
0.83 1.00 1.00 1.01 1.00
0.75 1.11 1.12 1.13 1.11
0.55 1.50 1.50 1.52 1.37
0.40 1.50 1.51 1.52 1.47

ω = 5
4π:

µ TOC EOC for S EOC for N EOC for H

1.00 0.30 0.29 0.29 0.29
0.75 0.40 0.40 0.40 0.40
0.50 0.60 0.60 0.60 0.60
0.30 1.00 1.00 1.00 1.00
0.25 1.20 1.20 1.20 1.20
0.20 1.50 1.51 1.51 1.46

TOC = min{ 3
2 , (λ−

1
2 )/µ}
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Regularity in the constrained case a < 0 < b
convex case

Optimality system

−∆ȳ = 0 in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω

Π[a,b] leads to kinks but ū is not more regular than H3/2−ε(Γ) anyway.

In the following we will always assume a finite number of kinks.

Convex case:
the same regularity as in the unconstrained case
the same approximation result (just using a different u∗h ).

The non-convex case is more interesting.
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Regularity in the constrained case a < 0 < b
non-convex case

Optimality system

−∆ȳ = 0 in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω

Consider critical interior angle ω ∈ (π,2π), i.e. λ = π
ω ∈ ( 1

2 ,1).

With bootstrapping arguments follows ȳ ∈ Hλ−ε(Ω), hence for yd ∈ Hλ−ε(Ω)

p̄ = preg + c1ξrλ sin(λθ) + c2ξr2λ sin(2λθ) preg ∈ H2+λ−ε(Ω)

∂np̄ = ∂npreg − c1 ξrλ−1︸ ︷︷ ︸
→±∞ for r→0

∓c2ξr2λ−1 ∂npreg ∈ H1/2+λ−ε(Γ)

c1 6= 0: ū is flat near the critical corner, ū ∈ H3/2−ε locally
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Regularity in the constrained case a < 0 < b
non-convex case

Optimality system

−∆ȳ = 0 in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω

Consider critical interior angle ω ∈ (π,2π), i.e. λ = π
ω ∈ ( 1

2 ,1).

With bootstrapping arguments follows ȳ ∈ Hλ−ε(Ω), hence for yd ∈ Hλ−ε(Ω)

p̄ = preg + c1ξrλ sin(λθ) + c2ξr2λ sin(2λθ) preg ∈ H2+λ−ε(Ω)

∂np̄ = ∂npreg − c1 ξrλ−1︸ ︷︷ ︸
→±∞ for r→0

∓c2ξr2λ−1 ∂npreg ∈ H1/2+λ−ε(Γ)

c1 6= 0: ū is flat near the critical corner, ū ∈ H3/2−ε locally
i.g., convex corners determine the regularity of ū
example: ū ∈ Hmin{Λ−1/2,3/2}−ε(Γ), Λ = π

ω2
,

i.e. ū ∈ HΛ−1/2−ε(Γ) if ω2 >
π
2 .

ω1

ω2
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Regularity in the constrained case a < 0 < b
non-convex case

Optimality system

−∆ȳ = 0 in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω

Consider critical interior angle ω ∈ (π,2π), i.e. λ = π
ω ∈ ( 1

2 ,1).

With bootstrapping arguments follows ȳ ∈ Hλ−ε(Ω), hence for yd ∈ Hλ−ε(Ω)

p̄ = preg + c1ξrλ sin(λθ) + c2ξr2λ sin(2λθ) preg ∈ H2+λ−ε(Ω)

∂np̄ = ∂npreg − c1 ξrλ−1︸ ︷︷ ︸
→±∞ for r→0

∓ c2ξr2λ−1︸ ︷︷ ︸
→0 for r→0

∂npreg ∈ H1/2+λ−ε(Γ)

c1 6= 0: ū is flat near the critical corner, ū ∈ H3/2−ε locally

c1 = 0: ū is not flat locally, but ū ∈ H2λ−1/2−ε(Γ).
This case is rare but worse than c1 6= 0.
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Regularity in the constrained case a < 0 < b
non-convex case

Optimality system

−∆ȳ = 0 in Ω, ȳ = ū on ∂Ω in very weak sense
−∆p̄ = ȳ − yd in Ω, p̄ = 0 on ∂Ω in weak sense

ū = Π[a,b]

( 1
ν ∂np̄

)
on ∂Ω

The regularity near the j-th corner is determined by

λ′j :=

{
λj if λj > 1,
2λj if λj < 1,

where λj = π/ωj and ωj being the angle at j-th corner
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Approximation results

ū ∈ Hmin{λ′−1/2,3/2}−ε(Γ)

Approximation error orders (up to logarithmic terms or h−ε):

quasi-uniform meshes

interpolation of ū min{λ′ − 1
2 ,

3
2}

general quasi-uniform meshes min{λ′ − 1
2 ,1}

superconvergence meshes min{λ′ − 1
2 ,

3
2 ,2λ}

Assumption: When the control bounds are active in the vicinity of some
non-convex corner then they are also active for the approximate control.

The proof of this assumption is incomplete in a O(h1+ε)-neighborhood
of the non-convex corners.
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interpolation of ū min{λ′ − 1
2 ,

3
2}

general quasi-uniform meshes min{λ′ − 1
2 ,1}

superconvergence meshes min{λ′ − 1
2 ,

3
2 ,2λ}

Assumption: When the control bounds are active in the vicinity of some
non-convex corner then they are also active for the approximate control.

The proof of this assumption is incomplete in a O(h1+ε)-neighborhood
of the non-convex corners.

For convex domains this is the same result as in the
unconstrained case.
For non-convex domains, the convergence order depends on
the largest convex angle, this can be π − ε leading to
λ′ − 1

2 ≈
1
2 .

s

ω

π

2
2π
3

4π
3

0.5

1.0

1.5

π 2π

quasiuniform

superconvergence

constrained

unconstrained

.

Approximation order for the control
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Approximation results

ū ∈ Hmin{λ′−1/2,3/2}−ε(Γ)

Approximation error orders (up to logarithmic terms or h−ε):

quasi-uniform meshes

interpolation of ū min{λ′ − 1
2 ,

3
2}

general quasi-uniform meshes min{λ′ − 1
2 ,1}

superconvergence meshes min{λ′ − 1
2 ,

3
2 ,2λ}

Assumption: When the control bounds are active in the vicinity of some
non-convex corner then they are also active for the approximate control.

The proof of this assumption is incomplete in a O(h1+ε)-neighborhood
of the non-convex corners.

If the largest convex angle is ≤ 2π
3 and cj,1 6= 0, then the

convergence order is 1 for general quasi-uniform meshes.
If the largest convex angle is ≤ π

2 and cj,1 6= 0, then the
convergence order is min{ 3

2 ,2λ} for superconvergence
meshes.

s

ω

π

2
2π
3

4π
3

0.5

1.0

1.5

π 2π

quasiuniform

superconvergence

small convex angles .

Approximation order for the control
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Graded meshes
What do we expect to achieve with graded meshes?

s

ω

π

2
2π
3

4π
3

0.5

1.0

1.5

π 2π

quasiuniform

superconvergence

small convex angles .

Convergence order 1 for general graded meshes
I ω ∈ [ 2

3π, π): µ < λ− 1
2

I ω ∈ [ 4
3π, 2π): µ < 2λ− 1

2 (worst case)

Convergence order 3
2 for superconvergent graded meshes

I ω ∈ [ 2
3π, π): µ < 2

3 (λ− 1
2 )

I ω ∈ [π, 2π): µ < 2
3 (2λ− 1

2 ) = 4
3λ−

1
3 (worst case)

I ω ∈ [ 4
3π, 2π): µ < 4

3λ (generic case)
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Plan of the talk

1 Motivation: Dirichlet control problems

2 Superconvergence meshes

3 Graded meshes

4 Superconvergent graded meshes

5 The Dirichlet control problem revisited

6 Summary
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Summary

We discussed ways of constructing graded meshes. Some of them lead
to superconvergence effects.
We observed superconvergence effects in Dirichlet control problems not
only with uniform but also with graded meshes.
In unconstrained Dirichlet control problems, we need strong mesh
grading with µ < 2

3 (λ− 1
2 ) to obtain O(h3/2) in the error of the control.

In the constained case the necessary grading is not that strong.
For certain families of superconvergent graded meshes we proved a core
estimate.

Apel/Mateos/Pfefferer/Rösch Summary AANMPDE 10 49 / 49


	Motivation: Dirichlet control problems
	Superconvergence meshes
	Graded meshes
	Superconvergent graded meshes
	The Dirichlet control problem revisited
	Summary

