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Plan of the talk

0 Motivation: Dirichlet control problems
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The elliptic Dirichlet control problem

@ bounded polygonal domain © with boundary I
o state variable y € Y := L3(Q)
@ control variable u € Uyg :={uc L?(IN): a<u(x) < bfora.a.xcTl}

Dirichlet control problem

(y’u{QL”XuadJ(y’U)- ||y yd||L2(Q)+ ||U||L2(r)

subjectto — Ay =0 inQ, y=u onl, inveryweaksense
= (y, AV)LZ(Q) = (U, 8HV)L2(F) Vv € Hg (Q) N H1A(Q)

@ desired state yy € H5(Q2) with some s > 0
@ small parameter v

der Bundeswehr

Universitdt L\ Miinchen



First order optimality conditions

o adjointstate p e V :={v e H}(Q) : Av € [3(Q)}
@ projection operator M, (c) := min{b, max{a, c}}

First order optimality system

—Ay=f inQ, y=u on 9 in very weak sense
—Ap=y—ysinQ, p=0 on 90 in weak sense
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Let 7, be a conforming finite element mesh. Define
YhZ{Vh€H1(Q) Vh|T€P1 VTE']?,} Yon = YhﬂHO(Q) ad* Yh|rﬂUad
Discrete Dirichlet control problem
1 v
min - J(¥n, Un) := =|1¥h — Yalloerqy + = llunll?
nmeax U, (Vs Un) 5 1¥h = YallZz) > llunllZ2(r)

subject to  (Vyn, Vi) 2(q) = (f, Vh)2(q) forall vy € Yo and yulr = up

Discrete optimality system

(V}_/h, VVh)Lz(Q =0 VVh S Yoh and }7h||’ = Elh,
(VPn, VVh)i2io) = (¥ — Yd, Vh) 12y VVh € Yon,
(vTn — Op P, Un — Tn)2(ry > O Yup € ULy,

where the discrete normal derivative 0/py, € Y} |r is defined by
(7P, Vi) i2(ry = —(Vh — Yas Va)iz@) + (VPh, VVi)iziy  for all vy € Yi\ Yon




Approximation results

Contributions, among others:

o E. Casas, J.-P. Raymond: Error estimates for the numerical
approximation of Dirichlet boundary control for semilinear elliptic
equations. SICON 45(2006), 1586—1611.

o K. Deckelnick, A. Glunther, M. Hinze: Finite element approximation of
Dirichlet boundary control for elliptic PDEs on two- and three-dimensional
curved domains. SICON 48(2009), 2798-2819.

@ S. May, R. Rannacher, B. Vexler: Error analysis for a finite element
approximation of elliptic Dirichlet boundary control problems. SICON
51(2013), 2585-2611.

@ Th. Apel, M. Mateos, J. Pfefferer, A. R6sch: Error estimates for Dirichlet

control problems in polygonal domains: Quasi-uniform meshes.
arXiv:1704.08843
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General error estimate

o S, : Uy, — Yy is the discrete harmonic extension
@ Qp: L2(T) — Uy is the L?(I")-projection
© u; € Ul such that (v — 0nP, U}, — U)2(ry = 0.

General error estimate

1T = Tnllizqry + 1Y = Pnlliz)

., _ _ (VP, V Shtpn) 2
<c| 1T — vl + 17 — ShQnlll2q) + Sup | @]
PneUn ll¥onll2(ry

o first term: quasi-interpolation error
@ second term: contains approximation of non-smooth boundary condition,
in general y ¢ H'(Q)
@ third term: corresponds to error estimate of normal derivative,
determines the overall convergence order,
numerator equals: |(V(p — /hP), VShtn) 2()|
note the L2(I')-norm in the denominator Universitdt (¢ Miinchen
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Superconvergence meshes: contributions

Many contributions, among them:

@ M. Krizek, P. Neittaanmaki. On superconvergence techniques. Acta
Applicandae Mathematicae, 9(3):175-198, 1987.

@ J.Z. Zhu, O.C. Zienkiewicz. Superconvergence recovery technique and a
posteriori error estimators. IUNME, 30:1321-1339, 1990.

o L.B. Wahlbin. Superconvergence in Galerkin Finite Element Methods.
Springer, Berlin, 1995.

@ A.M. Lakhany, I. Marek, J.R. Whiteman. Superconvergence results on
mildly structured triangulations. CMAME, 189(1):1-75, 2000.

o J. Brandts, M. KFfizek. History and future of superconvergence in
three-dimensional finite element methods. In Finite element methods
(Jyvaskyla, 2000), pages 22—33. Gakkotosho, Tokyo, 2001.

@ R.E. Bank, J. Xu. Asymptotically exact a posteriori error estimators,
part |: Grids with superconvergence. SINUM, 41(6):2294-2312, 2003.

All for quasi-uniform meshes.
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Superconvergence meshes: definition

[Bank/Xu 03]: meshes with O(h?) approximate parallelogram property
The lengths of any two opposite edges
differ by O(h?)
except in a region of size O(h?”)

Mesh produced by Max Winkler

for some applications (Neumann boundary conditions) there is another
condition for boundary edges

Result for any u € W3>(Q) and any v, € V} (p.w. linears):

— Ihu) - Vvy| < ch™™™M3 log AV ull e, () Vil 1 ()

Note that a piecewise O(h?) approximate parallelogram property is sufficient.



Superconvergence meshes: applications

Applications of the formula

/ V(U = Ipu) - Vvy| < ch™™ 073 [log h|"/2|ul| s, )| Vil i ()
Q

1. Supercloseness of interpolant:

a(un — Ihu, v, a(u— Ihu, v
C1||Uh— Ihu||H1(Q) < sup M = su u

weve  IValli (@) wevn  IVallH ()
< ch™™n o3 log h|'/2||u| s, (q)

Note the H'(Q2)-norm in the denominator.
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Superconvergence meshes: applications

Applications of the formula

‘/ V(u—lhu) Vv
Q

< ch™™™" 3 log h|"/2||u]| e, ()| Va1 (o)
1. Supercloseness of interpolant:

a(up — Ihu, v a(u— lhu, v
Cil|un — Intl| (@) < sup alun — I, v) _ a(u — Iy, vi)
eV IValli (@) wmevn  IVallHi (@)

< ™M1} | log h['/2||u] e oy

Corollary: properties of gradient recovery [Bank/Xu 03, Thm. 4.2]:
VU — QnVUnlliz(@) < ch™™™™ 7} log h|"/2||u| e. (q)

Qp : L2(Q) — Vs the L2(Q)-projection operator
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Superconvergence meshes: applications

Applications of the formula

— Ihu) - Vvy| < ch'™™™M3 log AV ull ye.oo () Vil 1 ()

2. Approximation of normal derivatives: By the definition of the variational
normal derivative 97u, we have

(Ont — 3Mup, zn)r = (V(U — Up),VZn)a Vzn € Vi
Moreover, we have
100t — O} n|Z2(ry = (Ont — O, Dpu — O up)r
= (8pu — Alup, Opu — QrdpU)r + (O — Alup, Qudau — dlup)r

With ej, := Quo,u — 9lu, and the discrete harmonic extension operator Sy, we
get

(anu — 8,’,7Uh, eh)r = (V(U — Uh), VSheh)Q = (V(U — /hU), VSheh)&mm
iversitét (5 Miinch
which can be estimated by the Bank/Xu-formula Universitat i Munchen



Superconvergence meshes: applications

3. Deckelnick/Gilinther/Hinzeconsidered the approximation of smooth domains
and modified the estimate with r > 2 to

V(u—lhu)- Vv
Qp

< cllullws.r () (h1+min{1’a}||Vh||H1(Q,,) + h3/2||Vh||L2(rh)>

and used it in the analysis of Dirichlet control problems with L?-regularization.
The approximation order % for control and state is optimal due to regularity
issues.

Note: It is not obvious whether this estimate holds for meshes with only
piecewise O(h?) approximate parallelogram property.

This result stimulated our treatment of superconvergence meshes within the
investigation of Dirichlet control problems in non-smooth domains.

K. Deckelnick, A. Guinther, M. Hinze: Finite element approximation of Dirichlet boundary control for
elliptic PDEs on two- and three-dimensional curved domains, SIAM J. Control Optim. 48(2009), 2798-2819.
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Graded meshes: contributions

Many contributions, among them:

@ L.A. Oganesyan, L.A. Rukhovets. Variational-difference schemes for linear
second-order elliptic equations in a two-dimensional region with piecewise
smooth boundary. Zh. Vychisl. Mat. Mat. Fiz., 8:97-114, 1968.

@ |. Babuska. Finite element method for domains with corners. Computing,
6:264—-273, 1970.

@ G. Raugel. Résolution numérique par une méthode d’éléments finis du probleme
de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Ser. A,
286(18):A791-A794, 1978.

@ A.H. Schatz, L.B. Wahlbin. Maximum norm estimates in the finite element method
on plane polygonal domains. Part 2: Refinements. Math. Comp.,
33(146):465-492, 1979.

@ R. Fritzsch, P. Oswald. Zur optimalen Gitterwahl bei Finite-Elemente-
Approximationen. WZ TU Dresden, 37(3):155—-158, 1988.

@ C. Bacuta, V. Nistor, L.T. Zikatanov. Improving the rate of convergence of high
order finite elements on polygons and domains with cusps. Numer. Math.,
100(2):165—184, 2005. o

Universitdt \x\ Miinchen

All without superconvergence. N



Definition of graded meshes

With global mesh parameter h and grading parameter n € (0, 1],
let the element size hr := diamT be related to the distance ry to the corner

h'/k forrr=0
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Purpose of mesh grading: regularity issues

Consider polygonal domain Q with boundary I and
—Au+u=f inQ

with Dirichlet or Neumann boundary conditions.

We have near corners with interior angle w
u=ur+&(r)r o)

with regular part u;, cut-off function £(r), smooth function ®(¢), and \ = 7 /w.
The letter A denotes the singularity exponent in the whole talk.

o ucH)(Q)forw<m
0 ue Wa>(Q)forw< m/2
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Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

U= Upl| ) < ch™ A E=<H|If]] 2
U= unllizgq) < ch®™M A=< 1f] 2y

[Oganesyan/Rukhovets 68, 74, 79], [Babuska 70], [Raugel 78], ..., [Pfefferer 12, 15]



Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

U= Upl| ) < ch™ A E=<H|If]] 2
U= unllizgq) < ch®™M A=< 1f] 2y

[Oganesyan/Rukhovets 68, 74, 79], [Babuska 70], [Raugel 78], ..., [Pfefferer 12, 15]
U — Unll (@) < ch™MEA1I=<| ]|

[Schatz/Wahlbin 79] for smooth right hand sides f and ¢ = ¢(f)
[Sirch 10] for X = C%“(Q), h===|log h|*#, Dirichlet problem
[Rogovs et al. 17] for X = C%?(Q), h~°=|log h|', Neumann and Dirichlet problems



Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:
U = Unllizry < ch™M N2
[Pfefferer et al. 15] for X = C%?(Q), h~°=|log h|'*?, 6 = 6(), 1), Neumann problem
10nt = Madntl| 2y < ch™M/2O=2D/ =2 f]] 5 g

[Apel/Nicaise/Pfefferer 16] Dirichlet problem, N, ... L2(F)—projection



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=14142, 41 =1.0 h=14142, 4, =1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=05,u=1.0 h=05,u=1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=02541=1.0 h=025p1=1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=02541=1.0 h=0.125,1=1.0

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25,41=09 h=0.125, 1 =0.9

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25,41=0.8 h=0.125, 1 =0.8

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25 =07 h=0.125, 1 =0.7

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25,1=0.6 h=0.125, 1 =0.6

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25,41=05 h=0.125, 4 =0.5

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25 =04 h=0.125, 1 = 0.4

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25,41=0.3 h=0.125, 4 =0.3

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25, = 0.2 h=0.125, 1 =0.2

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every
element T € Ty, for refinement which satisfies

hr>h or hr> h(%)1_M

until the desired mesh is reached. [Fritzsch/Oswald 88]

h=0.25, = 0.1 h=0.125, ;= 0.1

mesh hierarchy, smooth transition from one element to the next
but approximate parallelogram property is violated



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=14142, 1, =1.0 h=14142, 1 =1.0
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.7071, . =1.0 h=0.7071, . =1.0
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.3536, 1 =1.0 h=0.3536, =10
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, . =1.0 h=0.1768, 1 =1.0
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, . =1.0 h=0.0884, u=1.0
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, 1 = 0.9 h=0.0884, x=0.9
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, 1 = 0.8 h=0.0884, 1 =0.8
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, u = 0.7 h=0.0884, 1 =0.7
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, 1 = 0.6 h=0.0884, 1 =0.6
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, . = 0.5 h=0.0884, u =05
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, u. =0.4 h=0.0884, 1 =0.4
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, 1 = 0.3 h=0.0884, 1 =0.3
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, 1 =0.2 h=0.0884, 1 =0.2
no mesh hierarchy but approximate parallelogram property can be achieved



Generation of graded meshes 2: Relocation

@ Refine a coarse start mesh uniformly until hy ~ hVT € T, with desired
mesh size h.

i i . i 1/p—1
@ Transform the nodes X() € Q N S according to X2, = X (’(X—R())) g
[Oganesyan/Rukhovets 68, 74, 79]

h=0.1768, u = 0.1 h=0.0884, 1 = 0.1
no mesh hierarchy but approximate parallelogram property can be achieved
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Generation of graded meshes 3:

hierarchic with relocation

Contributions, among others:

@ Th. Apel, J. Schéberl. Multigrid methods for anisotropic edge refinement.
SINUM, 40(5):1993-2006, 2002.

o C. Bacuta, V. Nistor, L.T. Zikatanov. Improving the rate of convergence of
high order finite elements on polygons and domains with cusps. Numer.
Math., 100(2):165-184, 2005.

@ L. Chen, H. Li. Superconvergence of gradient recovery schemes on
graded meshes for corner singularities. J. Comp. Math., 28(1):11-31,
2010.



Generation of graded meshes 3:

hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2=/ : 1.

h=14142, 41 =05 h=14142, 41 =0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:

hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2=/ : 1.

h=1.0607, xn =0.5 h=12739, 1 =0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:

hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2=/ : 1.

h=0.5308, » =0.5 h=0.6370, »n =0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:

hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2=/ : 1.

h=0.2652, 4 =0.5 h=0.3185, 1 =0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)



Generation of graded meshes 3:

hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2=/ : 1.

\Y 7

R

Z

A

7

h=0.1326, =05 h=0.1592, 1 =0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)




Generation of graded meshes 3:

hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four
subtriangles by introducing new nodes at each edge. The new nodes are
usually the midpoints of the edges except if an edge is adjacent to a singular
corner. In this case the edge is split in the ratio 2=/ : 1.
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h=0.0663, ;1 = 0.5 h=0.0796, » =0.3

mesh hierarchy and approximate parallelogram property is satisfied up to
region of size O(h) (edges of coarse grid and edges of non-bisecting nodes)




Plan of the talk

0 Superconvergent graded meshes
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Superconvergent graded meshes: contributions

Contributions, among others:

@ Y.-Q. Huang. The superconvergence of finite element methods on
domains with reentrant corners. In Finite element methods (Jyvaskyla,
1997), pages 169—182. Dekker, New York, 1998.

for Raugel-type meshes

@ L. Chen, H. Li. Superconvergence of gradient recovery schemes on
graded meshes for corner singularities. J. Comp. Math., 28(1):11-31,
2010.

for hierarchic meshes with relocation

Results:

@ estimates for ||V (un — Inu)||12(q) and for recovered gradient with
p< min{1, 1A},
@ not the right estimate for our purposes

der Bundeswehr
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, n=1.0 new, u=1.0

approximate parallelogram property is satisfied

der Bundeswehr
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, . =0.9 new, u = 0.9

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, »n=0.8 new, u = 0.8

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, n =0.7 new, u = 0.7

approximate parallelogram property is satisfied

der Bundeswehr
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, n=0.6 new, u = 0.6

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, n=0.5 new, u = 0.5

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, n =0.4 new, u = 0.4

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, n=0.3 new, u = 0.3

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, 1 =0.2 new, u = 0.2

approximate parallelogram property is satisfied
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Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent
graded meshes:

old, = 0.1 new, u = 0.1

approximate parallelogram property is satisfied
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Error estimate

If
@ T is a superconvergent graded mesh with grading parameter x, and

@ the approximate parallelogram property holds for all edges
(no exceptions)

we have for any v, € V,

/V(u— Ihu) - Vv
Q

< ¢ (IP0=/29%0 () + 1 =3)/220) 2(q) )
: <h2||f(1_“)/2VVh||L2(Q) + h3/2||Vh||L2(r)>

provided that the norms are finite.

der Bundeswehr
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Discussion of the result

/ V(u— Ipu) - Vv
Qp

< ¢ (IP0=/29%0 () + 1P =3)/220) 2(q) )

. <h2||r(1—u)/2vvh”L2(m + h3/2||Vh||L2(r)>

@ If the function u is the solution of a homogenous Dirichlet problem with
sufficiently smooth right hand side, then the assumptions
r30-m/2y8y ¢ 12(Q) and r(1—31/2v2y ¢ 1?(Q) are satisfied for

2 1
n<3z(A=3)

@ In the investigation of a Dirichlet control problem we use the estimate for
the adjoint state.

@ In improvement of the proofs in [Bank/Xu 03] and [Deckelnick/Glinther/
Hinze 09] we avoided (weighted) L"-norms with r > 2 of second and third
derivatives of u.

der Bundeswehr
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Discussion of the result

< o (IPO=/293 Uz + | =3/2920) (g )

V(u— Ihu) - Vv
Qp

: (h2||r(1_”)/2VVh||L2(Q) + h3/2th||L2(r))

@ If the function v, is discrete harmonic then
[ =2 vl 20y < €h™ /2| Vil i2(r

and the second factor on the right hand side is just /2| vy | ;2(r).-
Therefore we use || r('=1/2V |12y and not just ||V vy 12(0)-

o For the application to Dirichlet control problems we get for i < %(/\ )

V(U — Iht) - Vvh| < ch®?|| vy 2

Qp

der Bundeswehr
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Discussion of the result

@ So far: For globally superconvergent meshes we get for p < %()\ — 15) and
discrete harmonic v,

V(u— Ipu) - Vvy
Qp

< ch®2|| V| 2(ry *)

What about piecewise superconvergent graded meshes?

0 IfQ= Ujf’:1 ); and the meshes are superconvergent in each polygon €,
we get

/ V(u— Ipu) - Vvy
Qp

< ch®/? Z 1Valli2(00,)
)

But we were able to show for discrete harmonic v, and p < 2\ — 1
n

Z [Vl 2(a0;) < CnllValliz(r)
j=1

such that (*) holds also for piecewise superconvergent graded meshes.
Universitt'z'tji} Miinchen
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e The Dirichlet control problem revisited
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The elliptic Dirichlet control problem

o state variable y € Y := L3(Q)
@ control variable u € Uyg == {u € L?(I'): a<u(x) < bforaa. xecrl}

Dirichlet control problem

; _1 2 Y2
(y,u)rg/nxuad J(y,u) = 2||y Yallzz () + 2||U||L2(F)

subjectto — Ay =0 inQ, y=u onl, inveryweaksense
& (Y, AV)p@) = (U, 00V) 2y YV € HJ(Q) N HA(Q)

o adjointstate p e V := {v € HI(Q) : Av € [2(Q)}
@ projection operator M, (c) := min{b, max{a, c}}

First order optimality system
—Ay="f in Q,
—Ab:J_’—Yd in Q’

u on 9 in very weak sense
=0 on 90 in weak sense




Let 75, be a conforming finite element mesh. Define

Y= {vhe H(Q): vt € Py VT € Th}, Yon = Ya N HYI(Q), UL, = Yilr N Usg

Discrete optimality system

(V}_/h, VVh)Lz(Q) =0 Vvh € Yon and }_/h||' = Up,
(VPn, VVh)izia) = (Vh — Ya: Vh)iz@@)  YVh € Yon,
(vUp — 3:,7,5[,, up — Elh)Lz(r) >0 Yup € Ugdv

where the discrete normal derivative 9/p;, € Y- is defined by

(OnPn, Vi)iz(ry = —(Vh — Ya, Vin)iz) + (VPh, Vi) 12y for all v € Y\ Yor




General error estimate

@ S, : Uy, — Y, is the discrete harmonic extension

@ Qy: L3(I') — Uy is the L?(I')-projection

o u; € Ul such that (v — 0nP, U}, — U)2(ry = 0.
General error estimate

1T — nll 2y + 1Y — Valliz)

_, _ _ (VD, VSpin) iz
< c | 1a— uillizry + 17 — ShOnlll2@) + Sup | )|
YneUs 19nll 2(r)

o first term: quasi-interpolation error
@ second term: contains approximation of non-smooth boundary condition,

in general y ¢ H'(Q)
@ third term: corresponds to error estimate of normal derivative,

determines the overall convergence order,

numerator equals |(V(P — /1hP), V Sntbn) 20|

. . _ _ Universitdt (5 Miinchen
The estimates depend on the regularity of u, p, and y. e



Regularity in the unconstrained case —a= b = ¢

Optimality system

—Ay=f inQ, y=u on 02 in very weak sense
—Ap=y—ysinQ, p=0 on 92 in weak sense
U= 19,pon o

Let w be the largest interior angle of the polygonal domain Q ¢ R?, and
A=7/we (15, 3] be the leading singularity exponent.

e Hmin{)\f1/2,3/2}75(r) J

Kinks of d,p at corners lead to bound g —e.

Corner singularities of type c¢r sin(Af) in the adjoint state lead to A — % —e.

Th. Apel, M. Mateos, J. Pfefferer, A. Résch: On the regularity of the solutions of Dirichlet optimal control
problems in polygonal domains. SIAM J. Control Optim. 53(2015), 3620—-3641. der Bundeswehr
Universitt'z'tji} Miinchen



Approximation results — unconstrained case

Uc Hmin{A—1/2,3/2}—a(r) J

Approximation error orders for the control (up to logarithmic terms or h=¢):

quasi-uniform meshes

quasi-interpolation of min{\ — 1,
literature (\ > 1) min{ 3\, 1

E. Casas, J.-P. Raymond: Error estimates for the numerical approximation of Dirichlet boundary control
for semilinear elliptic equations. SICON 45(2006), 1586—1611.

S. May, R. Rannacher, and B. Vexler: Error analysis for a finite element approximation of elliptic
Dirichlet boundary control problems. SICON 51(2013), 2585-2611.
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Approximation results — unconstrained case

Ue Hmin{>\—1/2,3/2}—a(r) J

Approximation error orders for the control (up to logarithmic terms or h=¢):

quasi-uniform meshes

quasi-interpolation of T min{\ — 3, 3}
literature (\ > 1) min{3\, 1}
general quasi-uniform meshes ~ min{\ — 1,1}

Th. Apel, M. Mateos, J. Pfefferer, A. Rosch: Error estimates for Dirichlet control problems in polygonal domains:
Quasi-uniform meshes. arXiv:1704.08843
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Approximation results — unconstrained case

Ue Hmin{>\—1/2,3/2}—a(r) J

Approximation error orders for the control (up to logarithmic terms or h=¢):

quasi-uniform meshes

quasi-interpolation of & min{\ — %, 3}
literature (\ > 1) min{3X, 1}

general quasi-uniform meshes ~ min{\ — 1,1}
superconvergence meshes min{\ — ;, 2}

Th. Apel, M. Mateos, J. Pfefferer, A. Rosch: Error estimates for Dirichlet control problems in polygonal domains:
Quasi-uniform meshes. arXiv:1704.08843
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Approximation results — unconstrained case

Ue Hmin{>\—1/2,3/2}—a(r) J

Approximation error orders for the control (up to logarithmic terms or h=¢):

S
15 + (I 1 I
| | | |
_L_guasiuniform ] ] ]
1.0 [CR06] 1\ | |
[M,R,V 13] 1 | 1 1
05 1 o I
11 | |
- —w
x 2m 4n
2 3 as 3 2

Approximation order for the control
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Approximation results — unconstrained case

Ue Hmin{>\—1/2,3/2}—a(r) J

Approximation error orders for the control (up to logarithmic terms or h=¢):

s
1.5 + o 1 1
(. | |
_L_guasiuniform ] ]
1.0 [CRO6] | | |
[M,R,V 13] 1 | 1 1
0.5 1+ I I
(.
! —w
2 4
23 T 3 2
Approximation order for the control
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Approximation results — unconstrained case

Ue Hmin{>\—1/2,3/2}—a(r) J

Approximation error orders for the control (up to logarithmic terms or h=¢):

S

1 5 superconvergence

uasiuniform
[C.R 06]
[M,R,V 13]

1.0

05 1

S

I
I
I
I
|
1
%2% T %ﬁ 27

Approximation order for the control

Numerical tests show that these results are sharp.

der Bundeswehr
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Graded meshes — unconstrained case

General error estimate

||l — Dh”L?(r) + ||y — }_/h”L?(Q)

o, _ _ (VD, VShn) iz
<c|t—uplleeqry + Iy — ShQnll|12(0) + SUP | @]
wneUn lnll 2(r)

@ With Clément interpolant u}, = Cu:

_ ch forpu< -1

— yr < 2
10 = tillezqr) < {ch:*'/z—6 for p < 5(A = 3)

o Using [(VP, VShtbn)iz(y| = [(V(B — 1hB), VShthn)iz(ay |-

|(VP, VShibn)12(q)|
bneUp 19nll 2(r

ch'=¢=  for general graded meshes and ;1 < \ — %
~ | ch®2==  for superconvergent graded meshes and ;i < 5(A — )



Numerical test

0 Q={(x1,x) e (-1,1)x(-1,1): 0< 6 <w} with

" 37 (convex domain)
27 (non-convex domain)

0 A=7/w,v=1,

_ ] rsin(0) (1 —x)(1 —xe)  ifwy =37,
| A sin(0)(1 = x2)(1 - x) ifw =37,

U=0,p,y=5U,yg=y+Ap

der Bundeswehr

Universitdt j(\} Miinchen



Numerical test: bisection (general graded mesh)

EOC

TOC

1.00
0.83
0.75
0.55
0.40

0.89
0.97
1.00
1.00
1.00

0.83
1.00
1.00
1.00
1.00

EOC: estimated order of convergence

EOC

TOC

1.00
0.75
0.50
0.30
0.25

0.30
0.37
0.61
0.97
1.00

0.30
0.40
0.60
1.00
1.00

TOC: theoretical order of convergence min{1, (A — %)/M}
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Numerical test: superconvergent graded meshes

S: “smooth relocation”, N: “non-smooth relocation”, H: “hierarchical”
3

W= g n  TOC EOCforS EOCforN EOC forH
1.00 0.83 0.83 0.83 0.83
0.83 1.00 1.00 1.01 1.00
0.75 1.11 1.12 1.13 1.11
0.55 1.50 1.50 1.52 1.37
0.40 1.50 1.51 1.52 1.47
w= 237
I TOC EOCforS EOCforN EOC forH
1.00 0.30 0.29 0.29 0.29
0.75 0.40 0.40 0.40 0.40
0.50 0.60 0.60 0.60 0.60
0.30 1.00 1.00 1.00 1.00
025 1.20 1.20 1.20 1.20
020 1.50 1.51 1.51 1.46

TOC = min{g, ()\ — %)/u} Universitﬁtdzﬁnj\e;lwgryrchen



Regularity in the constrained case a< 0 < b

convex case

Optimality system
—Ay=0 in Q,
—Ap=Y—VYd in £,
u= I'I[a7b] (1;3,7,5) on 092

u onodQ invery weak sense
=0 ondQ inweaksense

Mia,5) leads to kinks but & is not more regular than H3/2-¢(I") anyway.
In the following we will always assume a finite number of kinks.
Convex case:

@ the same regularity as in the unconstrained case

@ the same approximation result (just using a different uy).

The non-convex case is more interesting.

der Bundeswehr
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Regularity in the constrained case a< 0 < b

non-convex case

Optimality system
on 9Q in very weak sense

—Ay =0 inQ, y=u
p=0 onoQ inweaksense

—AP=Y Y in 2,
U= (10p) onoQ

Consider critical interior angle w < (7,27),i.e. A = = ¢ (%, 1).
With bootstrapping arguments follows y € H*~<(Q), hence for y, € H*~<(Q)
l_) = Preg + ¢ €I”\ S|n()\9) + C2£r2>\ Sln(2)\9) Preg € H2+)\—e(Q)
8;7[_) = 8npreg - C1 £r>\71 :FCZ£r2)\71 anpreg c H‘I /2+)\76(r)
——
—=+o0 for r—0

der Bundeswehr
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Regularity in the constrained case a< 0 < b

non-convex case

Optimality system

on 0 in very weak sense

-Ay =0 in Q, u
=0 ondf) inweak sense

—AP=y —yq4 in Q,
u= I'Ila,b] (1;8,7[_)) on 092

y
B

Consider critical interior angle w € (7, 27), i.e. A = = € (3,1).
With bootstrapping arguments follows y € H*~<(Q), hence for y, € H*~<(Q)
P = Preg + C1&r* sin(\0) + c2£r®* sin(2)0) Preg € H*T274(Q)
Onp = anpreg —C f’)\q 43025”2)\71 anpreg eH' /2+)\76(r)
——
— o0 for r—0
@ ¢y # 0: i is flat near the critical corner, & € H%/2~< locally

@ i.g., convex corners determine the regularity of u
o example: U € HMMA—1/23/2b=¢(M) A = =,
ie.0e HM127¢(T) if wp > .

der Bundeswehr
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Regularity in the constrained case a< 0 < b

non-convex case

Optimality system
—Ay=0 inQ, y=u onodQ inveryweak sense
—Ap=y —yq4 inQ2, p=0 ondQ inweak sense

U= (10p) onoQ

Consider critical interior angle w € (7, 27),i.e. A = = € (5, 1).
With bootstrapping arguments follows y € H*~<(Q), hence for yy € H*~(Q)
P = Preg + C16r* sin(A0) + co€r?* sin(2)0) Preg € H*T27(Q)

anp = 8npreg — G ff)‘_1 + CZfrz)\_1 6npreg S H1/2+)\_€(r)

—*+ooforr—0 —0forr—0
@ ¢ # 0: U is flat near the critical corner, o € H/2~< locally
@ ¢y = 0: bis not flat locally, but o € H>*~1/2==(T).
This case is rare but worse than ¢y # 0. Universitdt (¢ Miinchen



Regularity in the constrained case a< 0 < b

non-convex case

Optimality system
—Ay =0 in Q,
—Ap=Y—VYd in £,

u= I'I[a,b] (1;6,7,5) on 022

u onoQ invery weak sense
0 onodQ2 inweak sense

y
B

The regularity near the j-th corner is determined by

A= )xj if>\j>1,
T2y if A<,

where \; = 7/w; and w; being the angle at j-th corner

der Bundeswehr
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Approximation results

Uc Hmin{)\l—1/2,3/2}—6(r) J

Approximation error orders (up to logarithmic terms or h~¢):

quasi-uniform meshes

interpolation of T min{\’ — é, 3
general quasi-uniform meshes min{\" — 5,1}
superconvergence meshes min{\' — %, 2,2)}

Assumption: When the control bounds are active in the vicinity of some
non-convex corner then they are also active for the approximate control.

The proof of this assumption is incomplete in a O(h'*<)-neighborhood
of the non-convex corners.
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Approximation results
0e Hmin{/\’—1/2,3/2}—s(r) |

@ For convex domains this is the same result as in the
Appr unconstrained case.

@ For non-convex domains, the convergence order depends on
the largest convex angle, this can be © — ¢ leading to

/ 11
W led,
S
15 _1_superconvergence . . .
| | |
1.0 _|_guasiuniform ] ]
non- 0.5 A : : I : constrained
| | | unconstrained
o ————— —w
of the x 2m 4n .
2 3 as 3 o

leswehr

Approximation order for the control Miinchen




Approximation results

0e Hmin{A’—1/2,3/2}—s(r) l

Apor o If the largest convex angle is < %” and ¢; 1 # 0, then the
PP convergence order is 1 for general quasi-uniform meshes.

@ If the largest convex angle is < 7 and ¢; 1 # 0, then the
convergence order is min{g, 2)\} for superconvergence

meshes.
S
] superconvergence P
1‘5 | : Nr = ~ inall convex angles
1.0 quasiuniform _| ] 1 — _\:_\ -
. | | | |
Assu 1T , ,
non- 0.5 + [ | |
| | | |
The — f ' —w
of the L 2

leswehy

Approximation order for the control Miinchen




Graded meshes

What do we expect to achieve with graded meshes?

S

1 5 superconvergence
O 1

1.0 jrausiunifor

05 1

N - ——— ==
N

oy 4----L--
S

3

N

3

@ Convergence order 1 for general graded meshes
»weldmm)ip<A—3
> w € [gm,2m) p < 2\ — } (worst case)
@ Convergence order 2 for superconvergent graded meshes
rweldmm)ip<i(A-13)
> we[m2r)p< 52X — 1) = 2A — 1 (worst case)
> w € [&r,27): p < £ (generic case) Universitit ((; Miinchen



Plan of the talk

e Summary
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@ We discussed ways of constructing graded meshes. Some of them lead
to superconvergence effects.

@ We observed superconvergence effects in Dirichlet control problems not
only with uniform but also with graded meshes.

@ In unconstrained Dirichlet control problems, we need strong mesh
grading with 1« < (A — }) to obtain O(h®/2) in the error of the control.

@ In the constained case the necessary grading is not that strong.

@ For certain families of superconvergent graded meshes we proved a core
estimate.
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