Superconvergent graded meshes for Dirichlet control problems

Th. Apel ${ }^{1} \quad$ M. Mateos ${ }^{2}$ J. Pfefferer ${ }^{3} \quad$ A. Rösch ${ }^{4}$
${ }^{1}$ Universität der Bundeswehr München . ${ }^{3}$ Technische Universität München
${ }^{2}$ Universidad de Oviedo . ${ }^{4}$ Universität Duisburg-Essen

10th Workshop on Analysis and Advanced Numerical Methods for PDEs
Paleochora, Crete, Greece, October 2-6, 2017

Support by DFG (IGDK 1754) is gratefully acknowledged.

Plan of the talk

(1) Motivation: Dirichlet control problems
(2) Superconvergence meshes
(3) Graded meshes

4 Superconvergent graded meshes
(5) The Dirichlet control problem revisited

6 Summary

Plan of the talk

(1) Motivation: Dirichlet control problems

2 Superconvergence meshes
(3) Graded meshes

4 Superconvergent graded meshes
(5) The Dirichlet control problem revisited
(6) Summary

Universität dersendeswenr München

The elliptic Dirichlet control problem

- bounded polygonal domain Ω with boundary Γ
- state variable $y \in Y:=L^{2}(\Omega)$
- control variable $u \in U_{a d}:=\left\{u \in L^{2}(\Gamma): a \leq u(x) \leq b\right.$ for a.a. $\left.x \in \Gamma\right\}$

Dirichlet control problem

$$
\begin{aligned}
& \min _{(y, u) \in Y \times U_{a d}} J(y, u):=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\nu}{2}\|u\|_{L^{2}(\Gamma)}^{2} \\
& \text { subject to } \quad-\Delta y=0 \quad \text { in } \Omega, \quad y=u \quad \text { on } \Gamma, \quad \text { in very weak sense } \\
& \quad \Leftrightarrow \quad(y, \Delta v)_{L^{2}(\Omega)}=\left(u, \partial_{n} v\right)_{L^{2}(\Gamma)} \quad \forall v \in H_{0}^{1}(\Omega) \cap H_{\Delta}^{1}(\Omega)
\end{aligned}
$$

- desired state $y_{d} \in H^{s}(\Omega)$ with some $s \geq 0$
- small parameter ν

First order optimality conditions

- adjoint state $\bar{p} \in V:=\left\{v \in H_{0}^{1}(\Omega): \Delta v \in L^{2}(\Omega)\right\}$
- projection operator $\Pi_{[a, b]}(c):=\min \{b, \max \{a, c\}\}$

First order optimality system

$$
\begin{array}{llll}
-\Delta \bar{y}=f & \text { in } \Omega, & \bar{y}=\bar{u} & \text { on } \partial \Omega \\
\text { in very weak sense } \\
-\Delta \bar{p}=\bar{y}-y_{d} \text { in } \Omega, & \bar{p}=0 & \text { on } \partial \Omega & \text { in weak sense } \\
& \bar{u}=\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) & \text { on } \partial \Omega &
\end{array}
$$

Discretization

Let \mathcal{T}_{h} be a conforming finite element mesh. Define

$$
Y_{h}=\left\{v_{h} \in H^{1}(\Omega):\left.v_{h}\right|_{T} \in \mathcal{P}_{1} \forall T \in \mathcal{T}_{h}\right\}, Y_{0 h}=Y_{h} \cap H_{0}^{1}(\Omega), U_{a d}^{h}=\left.Y_{h}\right|_{\Gamma} \cap U_{a d}
$$

Discrete Dirichlet control problem

$$
\min _{\left(y_{h}, u_{h}\right) \in Y_{h} \times U_{a d}^{h}} J\left(y_{h}, u_{h}\right):=\frac{1}{2}\left\|y_{h}-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\nu}{2}\left\|u_{h}\right\|_{L^{2}(\Gamma)}^{2}
$$

subject to $\quad\left(\nabla y_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)}=\left(f, v_{h}\right)_{L^{2}(\Omega)} \quad$ for all $v_{h} \in Y_{0 h}$ and $\left.y_{h}\right|_{\Gamma}=u_{h}$

Discrete optimality system

$$
\begin{array}{rlrl}
\left(\nabla \bar{y}_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)} & =0 & & \forall v_{h} \in Y_{0 h} \text { and } \bar{y}_{h} \mid \Gamma=\bar{u}_{h}, \\
\left(\nabla \bar{p}_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)} & =\left(\bar{y}_{h}-y_{d}, v_{h}\right)_{L^{2}(\Omega)} & & \forall v_{h} \in Y_{0 h}, \\
\left(\nu \bar{u}_{h}-\partial_{n}^{h} \bar{p}_{h}, u_{h}-\bar{u}_{h}\right)_{L^{2}(\Gamma)} \geq 0 & & \forall u_{h} \in U_{a d}^{h},
\end{array}
$$

where the discrete normal derivative $\left.\partial_{n}^{h} \bar{p}_{h} \in Y_{h}\right|_{\Gamma}$ is defined by

$$
\left(\partial_{n}^{h} \bar{p}_{h}, v_{h}\right)_{L^{2}(\Gamma)}=-\left(\bar{y}_{h}-y_{d}, v_{h}\right)_{L^{2}(\Omega)}+\left(\nabla \bar{p}_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)} \quad \text { for all } v_{h} \in Y_{h} \backslash Y_{0 h}
$$

Approximation results

Contributions, among others:

- E. Casas, J.-P. Raymond: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SICON 45(2006), 1586-1611.
- K. Deckelnick, A. Günther, M. Hinze: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SICON 48(2009), 2798-2819.
- S. May, R. Rannacher, B. Vexler: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SICON 51(2013), 2585-2611.
- Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. arXiv:1704.08843

General error estimate

- $S_{h}: U_{h} \rightarrow Y_{h}$ is the discrete harmonic extension
- $Q_{h}: L^{2}(\Gamma) \rightarrow U_{h}$ is the $L^{2}(\Gamma)$-projection
- $u_{h}^{*} \in U_{a d}^{h}$ such that $\left(\nu \bar{u}-\partial_{n} \bar{p}, u_{h}^{*}-\bar{u}\right)_{L^{2}(\Gamma)}=0$.

General error estimate

$$
\begin{aligned}
\| \bar{u} & -\bar{u}_{h}\left\|_{L^{2}(\Gamma)}+\right\| \bar{y}-\bar{y}_{h} \|_{L^{2}(\Omega)} \\
& \leq c\left(\left\|\bar{u}-u_{h}^{*}\right\|_{L^{2}(\Gamma)}+\left\|\bar{y}-S_{h} Q_{h} \bar{u}\right\|_{L^{2}(\Omega)}+\sup _{\psi_{h} \in U_{h}} \frac{\left|\left(\nabla \bar{p}, \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|}{\left\|\psi_{h}\right\|_{L^{2}(\Gamma)}}\right)
\end{aligned}
$$

- first term: quasi-interpolation error
- second term: contains approximation of non-smooth boundary condition, in general $y \notin H^{1}(\Omega)$
- third term: corresponds to error estimate of normal derivative, determines the overall convergence order, numerator equals: $\left|\left(\nabla\left(\bar{p}-I_{h} \bar{p}\right), \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|$ note the $L^{2}(\Gamma)$-norm in the denominator

Plan of the talk

（1）Motivation：Dirichlet control problems

（2）Superconvergence meshes
（3）Graded meshes

4 Superconvergent graded meshes
（5）The Dirichlet control problem revisited
（6）Summary

Universität Mä⿱宀⿱一𧰨刂灬 München

Superconvergence meshes: contributions

Many contributions, among them:

- M. Křížek, P. Neittaanmäki. On superconvergence techniques. Acta Applicandae Mathematicae, 9(3):175-198, 1987.
- J.Z. Zhu, O.C. Zienkiewicz. Superconvergence recovery technique and a posteriori error estimators. IJNME, 30:1321-1339, 1990.
- L.B. Wahlbin. Superconvergence in Galerkin Finite Element Methods. Springer, Berlin, 1995.
- A.M. Lakhany, I. Marek, J.R. Whiteman. Superconvergence results on mildly structured triangulations. CMAME, 189(1):1-75, 2000.
- J. Brandts, M. Křížek. History and future of superconvergence in three-dimensional finite element methods. In Finite element methods (Jyväskylä, 2000), pages 22-33. Gakkotosho, Tokyo, 2001.
- R.E. Bank, J. Xu. Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence. SINUM, 41(6):2294-2312, 2003.
All for quasi-uniform meshes.

Superconvergence meshes: definition

[Bank/Xu 03]: meshes with $O\left(h^{2}\right)$ approximate parallelogram property

The lengths of any two opposite edges differ by $O\left(h^{2}\right)$
except in a region of size $O\left(h^{2 \sigma}\right)$
for some applications (Neumann boundary conditions) there is another condition for boundary edges

Result for any $u \in W^{3, \infty}(\Omega)$ and any $v_{h} \in V_{h}$ (p.w. linears):

$$
\left|\int_{\Omega} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3}, \infty(\Omega)}\left|v_{h}\right|_{H^{1}(\Omega)}
$$

Note that a piecewise $O\left(h^{2}\right)$ approximate parallelogram property is sufficient.

Superconvergence meshes: applications

Applications of the formula

$$
\left|\int_{\Omega} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3, \infty}(\Omega)}\left|v_{h}\right|_{H^{1}(\Omega)}
$$

1. Supercloseness of interpolant:

$$
\begin{aligned}
c_{1}\left\|u_{h}-I_{h} u\right\|_{H^{1}(\Omega)} & \leq \sup _{v_{h} \in V_{h}} \frac{a\left(u_{h}-I_{h} u, v_{h}\right)}{\left\|v_{h}\right\|_{H^{\prime}(\Omega)}}=\sup _{v_{h} \in V_{h}} \frac{a\left(u-I_{h} u, v_{h}\right)}{\left\|v_{h}\right\|_{H^{\prime}(\Omega)}} \\
& \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3}, \infty(\Omega)}
\end{aligned}
$$

Note the $H^{1}(\Omega)$-norm in the denominator.

Superconvergence meshes: applications

Applications of the formula

$$
\left|\int_{\Omega} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3}, \infty(\Omega)}\left|v_{h}\right|_{H^{1}(\Omega)}
$$

1. Supercloseness of interpolant:

$$
\begin{aligned}
c_{1}\left\|u_{h}-I_{h} u\right\|_{H^{1}(\Omega)} & \leq \sup _{v_{h} \in V_{h}} \frac{a\left(u_{h}-I_{h} u, v_{h}\right)}{\left\|v_{h}\right\|_{H^{\prime}}(\Omega)}=\sup _{v_{h} \in V_{h}} \frac{a\left(u-I_{h} u, v_{h}\right)}{\left\|v_{h}\right\|_{H^{1}(\Omega)}} \\
& \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3, \infty}(\Omega)}
\end{aligned}
$$

Corollary: properties of gradient recovery [Bank/Xu 03, Thm. 4.2]:

$$
\left\|\nabla u-Q_{h} \nabla u_{h}\right\|_{L^{2}(\Omega)} \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3, \infty}(\Omega)}
$$

$Q_{h}: L^{2}(\Omega) \rightarrow V_{h}$ is the $L^{2}(\Omega)$-projection operator

Superconvergence meshes: applications

Applications of the formula

$$
\left|\int_{\Omega} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{1+\min \{1, \sigma\}}|\log h|^{1 / 2}\|u\|_{W^{3}, \infty(\Omega)}\left|v_{h}\right|_{H^{1}(\Omega)}
$$

2. Approximation of normal derivatives: By the definition of the variational normal derivative $\partial_{n}^{h} u_{h}$ we have

$$
\left(\partial_{n} u-\partial_{n}^{h} u_{h}, z_{h}\right)_{\Gamma}=\left(\nabla\left(u-u_{h}\right), \nabla z_{h}\right)_{\Omega} \quad \forall z_{h} \in V_{h}
$$

Moreover, we have

$$
\begin{aligned}
& \left\|\partial_{n} u-\partial_{n}^{h} u_{n}\right\|_{L^{2}(\Gamma)}^{2}=\left(\partial_{n} u-\partial_{n}^{h} u_{h}, \partial_{n} u-\partial_{n}^{h} u_{h}\right)_{\Gamma} \\
& \quad=\left(\partial_{n} u-\partial_{n}^{h} u_{h}, \partial_{n} u-Q_{h} \partial_{n} u\right)_{\Gamma}+\left(\partial_{n} u-\partial_{n}^{h} u_{h}, Q_{h} \partial_{n} u-\partial_{n}^{h} u_{h}\right)_{\Gamma}
\end{aligned}
$$

With $e_{h}:=Q_{h} \partial_{n} u-\partial_{n}^{h} u_{h}$ and the discrete harmonic extension operator S_{h} we get

$$
\left(\partial_{n} u-\partial_{n}^{h} u_{h}, e_{h}\right)_{\Gamma}=\left(\nabla\left(u-u_{h}\right), \nabla S_{h} e_{h}\right)_{\Omega}=\left(\nabla\left(u-I_{h} u\right), \nabla S_{h} e_{h}\right)_{\Omega}
$$

Superconvergence meshes: applications

3. Deckelnick/Günther/Hinzeconsidered the approximation of smooth domains and modified the estimate with $r>2$ to

$$
\left|\int_{\Omega_{h}} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c\|u\|_{W^{3, r}\left(\Omega_{h}\right)}\left(h^{1+\min \{1, \sigma\}}\left\|v_{h}\right\|_{H^{1}\left(\Omega_{h}\right)}+h^{3 / 2}\left\|v_{h}\right\|_{L^{2}\left(\Gamma_{h}\right)}\right)
$$

and used it in the analysis of Dirichlet control problems with L^{2}-regularization.
The approximation order $\frac{3}{2}$ for control and state is optimal due to regularity issues.

Note: It is not obvious whether this estimate holds for meshes with only piecewise $O\left(h^{2}\right)$ approximate parallelogram property.
This result stimulated our treatment of superconvergence meshes within the investigation of Dirichlet control problems in non-smooth domains.
K. Deckelnick, A. Günther, M. Hinze: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains, SIAM J. Control Optim. 48(2009), 2798-2819.

Plan of the talk

(1) Motivation: Dirichlet control problems

(2) Superconvergence meshes
(3) Graded meshes

4 Superconvergent graded meshes
(5) The Dirichlet control problem revisited

6 Summary

Universität cear München

Graded meshes: contributions

Many contributions, among them:

- L.A. Oganesyan, L.A. Rukhovets. Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. Zh. Vychisl. Mat. Mat. Fiz., 8:97-114, 1968.
- I. Babuška. Finite element method for domains with corners. Computing, 6:264-273, 1970.
- G. Raugel. Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sèr. A, 286(18):A791-A794, 1978.
- A.H. Schatz, L.B. Wahlbin. Maximum norm estimates in the finite element method on plane polygonal domains. Part 2: Refinements. Math. Comp., 33(146):465-492, 1979.
- R. Fritzsch, P. Oswald. Zur optimalen Gitterwahl bei Finite-ElementeApproximationen. WZ TU Dresden, 37(3):155-158, 1988.
- C. Băcuţă, V. Nistor, L.T. Zikatanov. Improving the rate of convergence of high order finite elements on polygons and domains with cusps. Numer. Math., 100(2):165-184, 2005.
All without superconvergence.

Definition of graded meshes

With global mesh parameter h and grading parameter $\mu \in(0,1]$, let the element size $h_{T}:=\operatorname{diam} T$ be related to the distance r_{T} to the corner

$$
h_{T} \sim \begin{cases}h^{1 / \mu} & \text { for } r_{T}=0 \tag{*}\\ h r_{T}^{1-\mu} & \text { for } R \geq r_{T}>0 \\ h & \text { for } r_{T}>R\end{cases}
$$

der Bundeswehr

Purpose of mesh grading: regularity issues

Consider polygonal domain Ω with boundary Γ and

$$
-\Delta u+u=f \quad \text { in } \Omega
$$

with Dirichlet or Neumann boundary conditions.
We have near corners with interior angle ω

$$
u=u_{r}+\xi(r) r^{\lambda} \Phi(\varphi)
$$

with regular part u_{r}, cut-off function $\xi(r)$, smooth function $\Phi(\varphi)$, and $\lambda=\pi / \omega$. The letter λ denotes the singularity exponent in the whole talk.

- $u \in H^{2}(\Omega)$ for $\omega<\pi$
- $u \in W^{2, \infty}(\Omega)$ for $\omega<\pi / 2$

Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} & \leq h^{\min \{1, \lambda / \mu-\varepsilon\}}\|f\|_{L^{2}(\Omega)} \\
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} & \leq h^{2 \min \{1, \lambda / \mu-\varepsilon\}}\|f\|_{L^{2}(\Omega)}
\end{aligned}
$$

[Oganesyan/Rukhovets 68, 74, 79], [Babuška 70], [Raugel 78], ..., [Pfefferer 12, 15]

Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} & \leq c^{\min \{1, \lambda / \mu-\varepsilon\}}\|f\|_{L^{2}(\Omega)} \\
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} & \leq c h^{2 \min \{1, \lambda / \mu-\varepsilon\}}\|f\|_{L^{2}(\Omega)}
\end{aligned}
$$

[Oganesyan/Rukhovets 68, 74, 79], [Babuška 70], [Raugel 78], ..., [Pfefferer 12, 15]

$$
\left\|u-u_{h}\right\|_{L \infty(\Omega)} \leq c h^{\min \{2, \lambda / \mu\}-\varepsilon}\|f\|_{x}
$$

[Schatz/Wahlbin 79] for smooth right hand sides f and $c=c(f)$ [Sirch 10] for $X=C^{0, \sigma}(\Omega), h^{-\varepsilon} \widehat{=}|\log h|^{3 / 2}$, Dirichlet problem
[Rogovs et al. 17] for $X=C^{0, \sigma}(\Omega), h^{-\varepsilon}=|\log h|^{1}$, Neumann and Dirichlet problems

Purpose of mesh grading: error estimates

For the piecewise linear finite element approximation we have:

$$
\left\|u-u_{h}\right\|_{L^{2}(\Gamma)} \leq c h^{\min \left\{2,\left(\frac{1}{2}+\lambda\right) / \mu\right\}-\varepsilon}\|f\|_{X}
$$

[Pfefferer et al. 15] for $X=C^{0, \sigma}(\Omega), h^{-\varepsilon} \widehat{=}|\log h|^{1+\delta}, \delta=\delta(\lambda, \mu)$, Neumann problem

$$
\left\|\partial_{n} u-\Pi_{h} \partial_{n} u\right\|_{L^{2}(\Gamma)} \leq c h^{\min \left\{1 / 2,\left(\lambda-\frac{1}{2}\right) / \mu\right\}-\varepsilon}\|f\|_{L^{2}(\Omega)}
$$

[Apel/Nicaise/Pfefferer 16] Dirichlet problem, $\Pi_{h} \ldots L^{2}(\Gamma)$-projection

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$$
h=1.4142, \mu=1.0
$$

$$
h=1.4142, \mu=1.0
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.5, \mu=1.0$

$$
h=0.5, \mu=1.0
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=1.0$

$$
h=0.25, \mu=1.0
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=1.0$

$h=0.125, \mu=1.0$
mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.9$

$$
h=0.125, \mu=0.9
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.8$

$$
h=0.125, \mu=0.8
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.7$

$$
h=0.125, \mu=0.7
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.6$

$$
h=0.125, \mu=0.6
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.5$

$$
h=0.125, \mu=0.5
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.4$

$$
h=0.125, \mu=0.4
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.3$

$$
h=0.125, \mu=0.3
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.2$

$h=0.125, \mu=0.2$
mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 1: Bisection

Initialize refinement algorithm with coarse start mesh. Afterwards, mark every element $T \in \mathcal{T}_{h}$ for refinement which satisfies

$$
h_{T}>h \quad \text { or } \quad h_{T}>h\left(\frac{r_{T}}{R}\right)^{1-\mu}
$$

until the desired mesh is reached. [Fritzsch/Oswald 88]

$h=0.25, \mu=0.1$

$$
h=0.125, \mu=0.1
$$

mesh hierarchy, smooth transition from one element to the next but approximate parallelogram property is violated

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right.}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=1.4142, \mu=1.0$

$$
h=1.4142, \mu=1.0
$$

no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right.}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.7071, \mu=1.0$

$h=0.7071, \mu=1.0$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right.}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.3536, \mu=1.0$

$h=0.3536, \mu=1.0$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right.}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=1.0$

$h=0.1768, \mu=1.0$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=1.0$

$h=0.0884, \mu=1.0$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.9$

$h=0.0884, \mu=0.9$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.8$

$h=0.0884, \mu=0.8$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.7$

$h=0.0884, \mu=0.7$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.6$

$h=0.0884, \mu=0.6$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.5$

$h=0.0884, \mu=0.5$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.4$

$h=0.0884, \mu=0.4$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.3$

$h=0.0884, \mu=0.3$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.2$

$h=0.0884, \mu=0.2$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

- Refine a coarse start mesh uniformly until $h_{T} \sim h \forall T \in \mathcal{T}_{h}$ with desired mesh size h.
(2) Transform the nodes $X^{(i)} \in \Omega \cap S_{R}$ according to $X_{\text {new }}^{(i)}=X^{(i)}\left(\frac{r\left(X^{(i)}\right)}{R}\right)^{1 / \mu-1}$ [Oganesyan/Rukhovets 68, 74, 79]

$h=0.1768, \mu=0.1$

$h=0.0884, \mu=0.1$
no mesh hierarchy but approximate parallelogram property can be achieved

Generation of graded meshes 2: Relocation

Other metric can be used for relocation [Raugel]:

Generation of graded meshes 3: hierarchic with relocation

Contributions, among others:

- Th. Apel, J. Schöberl. Multigrid methods for anisotropic edge refinement. SINUM, 40(5):1993-2006, 2002.
- C. Băcuţă, V. Nistor, L.T. Zikatanov. Improving the rate of convergence of high order finite elements on polygons and domains with cusps. Numer. Math., 100(2):165-184, 2005.
- L. Chen, H. Li. Superconvergence of gradient recovery schemes on graded meshes for corner singularities. J. Comp. Math., 28(1):11-31, 2010.

Generation of graded meshes 3: hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four subtriangles by introducing new nodes at each edge. The new nodes are usually the midpoints of the edges except if an edge is adjacent to a singular corner. In this case the edge is split in the ratio $2^{-1 / \mu}: 1$.

$h=1.4142, \mu=0.5$

$$
h=1.4142, \mu=0.3
$$

mesh hierarchy and approximate parallelogram property is satisfied up to region of size $O(h)$ (edges of coarse grid and edges of non-bisecting nodes)

Generation of graded meshes 3: hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four subtriangles by introducing new nodes at each edge. The new nodes are usually the midpoints of the edges except if an edge is adjacent to a singular corner. In this case the edge is split in the ratio $2^{-1 / \mu}: 1$.

$$
h=1.0607, \mu=0.5
$$

$h=1.2739, \mu=0.3$
mesh hierarchy and approximate parallelogram property is satisfied up to region of size $O(h)$ (edges of coarse grid and edges of non-bisecting nodes)

Generation of graded meshes 3: hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four subtriangles by introducing new nodes at each edge. The new nodes are usually the midpoints of the edges except if an edge is adjacent to a singular corner. In this case the edge is split in the ratio $2^{-1 / \mu}: 1$.

$$
h=0.5303, \mu=0.5
$$

$h=0.6370, \mu=0.3$
mesh hierarchy and approximate parallelogram property is satisfied up to region of size $O(h)$ (edges of coarse grid and edges of non-bisecting nodes)

Generation of graded meshes 3: hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four subtriangles by introducing new nodes at each edge. The new nodes are usually the midpoints of the edges except if an edge is adjacent to a singular corner. In this case the edge is split in the ratio $2^{-1 / \mu}: 1$.

$h=0.2652, \mu=0.5$

$h=0.3185, \mu=0.3$
mesh hierarchy and approximate parallelogram property is satisfied up to region of size $O(h)$ (edges of coarse grid and edges of non-bisecting nodes)

Generation of graded meshes 3: hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four subtriangles by introducing new nodes at each edge. The new nodes are usually the midpoints of the edges except if an edge is adjacent to a singular corner. In this case the edge is split in the ratio $2^{-1 / \mu}: 1$.

mesh hierarchy and approximate parallelogram property is satisfied up to region of size $O(h)$ (edges of coarse grid and edges of non-bisecting nodes)

Generation of graded meshes 3: hierarchic with relocation

Start with a coarse mesh and split the triangles recursively into four subtriangles by introducing new nodes at each edge. The new nodes are usually the midpoints of the edges except if an edge is adjacent to a singular corner. In this case the edge is split in the ratio $2^{-1 / \mu}: 1$.

$h=0.0663, \mu=0.5$

$h=0.0796, \mu=0.3$
mesh hierarchy and approximate parallelogram property is satisfied up to region of size $O(h)$ (edges of coarse grid and edges of non-bisecting nodes)

Plan of the talk

(1) Motivation: Dirichlet control problems

(2) Superconvergence meshes
(3) Graded meshes
(4) Superconvergent graded meshes
(5) The Dirichlet control problem revisited
(6) Summary

Universität cer Bundeswehr München

Superconvergent graded meshes: contributions

Contributions, among others:

- Y.-Q. Huang. The superconvergence of finite element methods on domains with reentrant corners. In Finite element methods (Jyväskylä, 1997), pages 169-182. Dekker, New York, 1998.
for Raugel-type meshes
- L. Chen, H. Li. Superconvergence of gradient recovery schemes on graded meshes for corner singularities. J. Comp. Math., 28(1):11-31, 2010.
for hierarchic meshes with relocation
Results:
- estimates for $\left\|\nabla\left(u_{h}-I_{h} u\right)\right\|_{L^{2}(\Omega)}$ and for recovered gradient with $\mu<\min \left\{1, \frac{1}{2} \lambda\right\}$,
- not the right estimate for our purposes

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität
München

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität
München

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

der Bundeswehr
Universität

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

Superconvergent graded meshes

We modify the relocation strategy and are able to generate superconvergent graded meshes:

approximate parallelogram property is satisfied

Error estimate

If

- \mathcal{T}_{h} is a superconvergent graded mesh with grading parameter μ, and
- the approximate parallelogram property holds for all edges (no exceptions)
we have for any $v_{h} \in V_{h}$

$$
\begin{aligned}
&\left|\int_{\Omega} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c\left(\left\|r^{3(1-\mu) / 2} \nabla^{3} u\right\|_{L^{2}(\Omega)}+\left\|r^{(1-3 \mu) / 2} \nabla^{2} u\right\|_{L^{2}(\Omega)}\right) \\
& \cdot\left(h^{2}\left\|r^{(1-\mu) / 2} \nabla v_{h}\right\|_{L^{2}(\Omega)}+h^{3 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)}\right)
\end{aligned}
$$

provided that the norms are finite.

Discussion of the result

$$
\begin{aligned}
\left|\int_{\Omega_{h}} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c & \left(\left\|r^{3(1-\mu) / 2} \nabla^{3} u\right\|_{L^{2}(\Omega)}+\left\|r^{(1-3 \mu) / 2} \nabla^{2} u\right\|_{L^{2}(\Omega)}\right) \\
& \cdot\left(h^{2}\left\|r^{(1-\mu) / 2} \nabla v_{h}\right\|_{L^{2}(\Omega)}+h^{3 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)}\right)
\end{aligned}
$$

- If the function u is the solution of a homogenous Dirichlet problem with sufficiently smooth right hand side, then the assumptions $r^{3(1-\mu) / 2} \nabla^{3} u \in L^{2}(\Omega)$ and $r^{(1-3 \mu) / 2} \nabla^{2} u \in L^{2}(\Omega)$ are satisfied for $\mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)$.
- In the investigation of a Dirichlet control problem we use the estimate for the adjoint state.
- In improvement of the proofs in [Bank/Xu 03] and [Deckelnick/Günther/ Hinze 09] we avoided (weighted) L^{r}-norms with $r>2$ of second and third derivatives of u.

Discussion of the result

$$
\begin{aligned}
\left|\int_{\Omega_{h}} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c & \left(\left\|r^{3(1-\mu) / 2} \nabla^{3} u\right\|_{L^{2}(\Omega)}+\left\|r^{(1-3 \mu) / 2} \nabla^{2} u\right\|_{L^{2}(\Omega)}\right) \\
\cdot & \left(h^{2}\left\|r^{(1-\mu) / 2} \nabla v_{h}\right\|_{L^{2}(\Omega)}+h^{3 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)}\right)
\end{aligned}
$$

- If the function v_{h} is discrete harmonic then

$$
\left\|r^{(1-\mu) / 2} \nabla v_{h}\right\|_{L^{2}(\Omega)} \leq c h^{-1 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)}
$$

and the second factor on the right hand side is just $h^{3 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)}$.
Therefore we use $\left\|r^{(1-\mu) / 2} \nabla v_{h}\right\|_{L^{2}(\Omega)}$ and not just $\left\|\nabla v_{h}\right\|_{L^{2}(\Omega)}$.

- For the application to Dirichlet control problems we get for $\mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)$

$$
\left|\int_{\Omega_{h}} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{3 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)}
$$

Discussion of the result

- So far: For globally superconvergent meshes we get for $\mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)$ and discrete harmonic v_{h}

$$
\begin{equation*}
\left|\int_{\Omega_{h}} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{3 / 2}\left\|v_{h}\right\|_{L^{2}(\Gamma)} \tag{*}
\end{equation*}
$$

What about piecewise superconvergent graded meshes?

- If $\Omega=\bigcup_{j=1}^{n} \Omega_{j}$ and the meshes are superconvergent in each polygon Ω_{j}, we get

$$
\left|\int_{\Omega_{h}} \nabla\left(u-I_{h} u\right) \cdot \nabla v_{h}\right| \leq c h^{3 / 2} \sum_{j}\left\|v_{h}\right\|_{L^{2}\left(\partial \Omega_{j}\right)}
$$

But we were able to show for discrete harmonic v_{h} and $\mu<2 \lambda-1$

$$
\sum_{j=1}^{n}\left\|v_{h}\right\|_{L^{2}\left(\partial \Omega_{j}\right)} \leq c_{n}\left\|v_{h}\right\|_{L^{2}(\Gamma)}
$$

such that (*) holds also for piecewise superconvergent graded meshes.

Plan of the talk

(1) Motivation: Dirichlet control problems

(2) Superconvergence meshes
(3) Graded meshes

4 Superconvergent graded meshes
(5) The Dirichlet control problem revisited
(6) Summary

The elliptic Dirichlet control problem

- state variable $y \in Y:=L^{2}(\Omega)$
- control variable $u \in U_{a d}:=\left\{u \in L^{2}(\Gamma): a \leq u(x) \leq b\right.$ for a.a. $\left.x \in \Gamma\right\}$

Dirichlet control problem

$$
\min _{(y, u) \in Y \times U_{a d}} J(y, u):=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\nu}{2}\|u\|_{L^{2}(\Gamma)}^{2}
$$

subject to $-\Delta y=0$ in $\Omega, \quad y=u$ on Γ, \quad in very weak sense

$$
\Leftrightarrow \quad(y, \Delta v)_{L^{2}(\Omega)}=\left(u, \partial_{n} v\right)_{L^{2}(\Gamma)} \quad \forall v \in H_{0}^{1}(\Omega) \cap H_{\Delta}^{1}(\Omega)
$$

- adjoint state $\bar{p} \in V:=\left\{v \in H_{0}^{1}(\Omega): \Delta v \in L^{2}(\Omega)\right\}$
- projection operator $\Pi_{[a, b]}(c):=\min \{b, \max \{a, c\}\}$

First order optimality system

$$
\begin{array}{llll}
-\Delta \bar{y}=f & \text { in } \Omega, & \bar{y}=\bar{u} & \text { on } \partial \Omega \\
\text { in very weak sense } \\
-\Delta \bar{p}=\bar{y}-y_{d} \text { in } \Omega, & \bar{p}=0 & \text { on } \partial \Omega & \text { in weak sense } \\
& \bar{u}=\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) & \text { on } \partial \Omega &
\end{array}
$$

Discretization

Let \mathcal{T}_{h} be a conforming finite element mesh. Define

$$
Y_{h}=\left\{v_{h} \in H^{1}(\Omega):\left.v_{h}\right|_{T} \in \mathcal{P}_{1} \forall T \in \mathcal{T}_{h}\right\}, Y_{0 h}=Y_{h} \cap H_{0}^{1}(\Omega), U_{a d}^{h}=Y_{h} \mid \Gamma \cap U_{a d}
$$

Discrete optimality system

$$
\begin{array}{rlrl}
\left(\nabla \bar{y}_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)} & =0 & & \forall v_{h} \in Y_{0 h} \text { and } \bar{y}_{h} \mid \Gamma=\bar{u}_{h}, \\
\left(\nabla \bar{p}_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)} & =\left(\bar{y}_{h}-y_{d}, v_{h}\right)_{L^{2}(\Omega)} & & \forall v_{h} \in Y_{0 h}, \\
\left(\nu \bar{u}_{h}-\partial_{n}^{h} \bar{p}_{h}, u_{h}-\bar{u}_{h}\right)_{L^{2}(\Gamma)} \geq 0 & & \forall u_{h} \in U_{a d}^{h},
\end{array}
$$

where the discrete normal derivative $\left.\partial_{n}^{h} \bar{p}_{h} \in Y_{h}\right|_{\Gamma}$ is defined by

$$
\left(\partial_{n}^{h} \bar{p}_{h}, v_{h}\right)_{L^{2}(\Gamma)}=-\left(\bar{y}_{h}-y_{d}, v_{h}\right)_{L^{2}(\Omega)}+\left(\nabla \bar{p}_{h}, \nabla v_{h}\right)_{L^{2}(\Omega)} \quad \text { for all } v_{h} \in Y_{h} \backslash Y_{0 h}
$$

General error estimate

- $S_{h}: U_{h} \rightarrow Y_{h}$ is the discrete harmonic extension
- $Q_{h}: L^{2}(\Gamma) \rightarrow U_{h}$ is the $L^{2}(\Gamma)$-projection
- $u_{h}^{*} \in U_{a d}^{h}$ such that $\left(\nu \bar{u}-\partial_{n} \bar{p}, u_{h}^{*}-\bar{u}\right)_{L^{2}(\Gamma)}=0$.

General error estimate

$$
\left.\begin{array}{l}
\| \bar{u}
\end{array}-\bar{u}_{h}\left\|_{L^{2}(\Gamma)}+\right\| \bar{y}-\bar{y}_{h} \|_{L^{2}(\Omega)}\right)
$$

- first term: quasi-interpolation error
- second term: contains approximation of non-smooth boundary condition, in general $y \notin H^{1}(\Omega)$
- third term: corresponds to error estimate of normal derivative, determines the overall convergence order, numerator equals $\left|\left(\nabla\left(\bar{p}-I_{h} \bar{p}\right), \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|$
The estimates depend on the regularity of \bar{u}, \bar{p}, and \bar{y}.

Regularity in the unconstrained case $-a=b=\infty$

Optimality system

$$
\begin{array}{llll}
-\Delta \bar{y}=f & \text { in } \Omega, & \bar{y}=\bar{u} & \text { on } \partial \Omega \\
& \text { in very weak sense } \\
-\Delta \bar{p}=\bar{y}-y_{d} \text { in } \Omega, & \bar{p}=0 & \text { on } \partial \Omega & \text { in weak sense } \\
& \bar{u}=\frac{1}{\nu} \partial_{n} \bar{p} \text { on } \partial \Omega
\end{array}
$$

Let ω be the largest interior angle of the polygonal domain $\Omega \subset \mathbb{R}^{2}$, and $\lambda=\pi / \omega \in\left(\frac{1}{2}, 3\right]$ be the leading singularity exponent.

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Kinks of $\partial_{n} \bar{p}$ at corners lead to bound $\frac{3}{2}-\varepsilon$.
Corner singularities of type $c \xi r^{\lambda} \sin (\lambda \theta)$ in the adjoint state lead to $\lambda-\frac{1}{2}-\varepsilon$.
Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53(2015), 3620-3641.

Approximation results - unconstrained case

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Approximation error orders for the control (up to logarithmic terms or $h^{-\varepsilon}$):

quasi-uniform meshes

quasi-interpolation of \bar{u}	$\min \left\{\lambda-\frac{1}{2}, \frac{3}{2}\right\}$
literature $(\lambda>1)$	$\min \left\{\frac{1}{2} \lambda, 1\right\}$

E. Casas, J.-P. Raymond: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SICON 45(2006), 1586-1611.
S. May, R. Rannacher, and B. Vexler: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SICON 51(2013), 2585-2611.

Approximation results - unconstrained case

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Approximation error orders for the control (up to logarithmic terms or $h^{-\varepsilon}$):

quasi-uniform meshes	
quasi-interpolation of \bar{u}	$\min \left\{\lambda-\frac{1}{2}, \frac{3}{2}\right\}$
literature $(\lambda>1)$	$\min \left\{\frac{1}{2} \lambda, 1\right\}$
general quasi-uniform meshes	$\min \left\{\lambda-\frac{1}{2}, 1\right\}$

Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. arXiv:1704.08843

Approximation results - unconstrained case

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Approximation error orders for the control (up to logarithmic terms or $h^{-\varepsilon}$):
quasi-uniform meshes

quasi-interpolation of \bar{u}	$\min \left\{\lambda-\frac{1}{2}, \frac{3}{2}\right\}$
literature $(\lambda>1)$	$\min \left\{\frac{1}{2} \lambda, 1\right\}$
general quasi-uniform meshes	$\min \left\{\lambda-\frac{1}{2}, 1\right\}$
superconvergence meshes	$\min \left\{\lambda-\frac{1}{2}, \frac{3}{2}\right\}$

Th. Apel, M. Mateos, J. Pfefferer, A. Rösch: Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. arXiv:1704.08843

Approximation results - unconstrained case

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Approximation error orders for the control (up to logarithmic terms or $h^{-\varepsilon}$):

Universität 傢 München

Approximation results - unconstrained case

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Approximation error orders for the control (up to logarithmic terms or $h^{-\varepsilon}$):

Universität 傢 München

Approximation results - unconstrained case

$$
\bar{u} \in H^{\min \{\lambda-1 / 2,3 / 2\}-\varepsilon}(\Gamma)
$$

Approximation error orders for the control (up to logarithmic terms or $h^{-\varepsilon}$):

Numerical tests show that these results are sharp.

Graded meshes - unconstrained case

General error estimate

$$
\begin{aligned}
& \left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}(\Gamma)}+\left\|\bar{y}-\bar{y}_{h}\right\|_{L^{2}(\Omega)} \\
& \quad \leq c\left(\left\|\bar{u}-u_{h}^{*}\right\|_{L^{2}(\Gamma)}+\left\|\bar{y}-S_{h} Q_{h} \bar{u}\right\|_{L^{2}(\Omega)}+\sup _{\psi_{h} \in U_{h}} \frac{\left|\left(\nabla \bar{p}, \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|}{\left\|\psi_{h}\right\|_{L^{2}(\Gamma)}}\right)
\end{aligned}
$$

- With Clément interpolant $u_{h}^{*}=C_{h} \bar{u}$:

$$
\left\|\bar{u}-u_{h}^{*}\right\|_{L^{2}(\Gamma)} \leq \begin{cases}c h & \text { for } \mu<\lambda-\frac{1}{2} \\ c h^{3 / 2-\varepsilon} & \text { for } \mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)\end{cases}
$$

- Using $\left|\left(\nabla \bar{p}, \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|=\left|\left(\nabla\left(\bar{p}-I_{h} \bar{p}\right), \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|$:

$$
\begin{aligned}
& \sup _{\psi_{h} \in U_{h}} \frac{\left|\left(\nabla \bar{p}, \nabla S_{h} \psi_{h}\right)_{L^{2}(\Omega)}\right|}{\left\|\psi_{h}\right\|_{L^{2}(\Gamma)}} \\
& \leq \begin{cases}c h^{1-\varepsilon} & \text { for general graded meshes and } \mu<\lambda-\frac{1}{2} \\
c h^{3 / 2-\varepsilon} & \text { for superconvergent graded meshes and } \mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)\end{cases}
\end{aligned}
$$

Numerical test

- $\Omega=\left\{\left(x_{1}, x_{2}\right) \in(-1,1) \times(-1,1): 0<\theta<\omega\right\}$ with

$$
\omega= \begin{cases}\frac{3}{4} \pi & \text { (convex domain) } \\ \frac{5}{4} \pi & \text { (non-convex domain) }\end{cases}
$$

- $\lambda=\pi / \omega, \nu=1$,

$$
\bar{\varphi}= \begin{cases}r^{\lambda} \sin (\lambda \theta)\left(1-x_{1}\right)\left(1-x_{2}\right) & \text { if } \omega_{1}=\frac{3}{4} \pi \\ r^{\lambda} \sin (\lambda \theta)\left(1-x_{1}^{2}\right)\left(1-x_{2}\right) & \text { if } \omega_{1}=\frac{5}{4} \pi,\end{cases}
$$

$$
\bar{u}=\partial_{\nu} \bar{\varphi}, \bar{y}=S \bar{u}, y_{d}=\bar{y}+\Delta \bar{\varphi}
$$

Numerical test: bisection (general graded mesh)

$$
\omega=\frac{3}{4} \pi:
$$

$$
\omega=\frac{5}{4} \pi:
$$

μ	EOC	TOC
1.00	0.89	0.83
$0.8 \overline{3}$	0.97	1.00
0.75	1.00	1.00
$0.5 \overline{5}$	1.00	1.00
0.40	1.00	1.00

μ	EOC	TOC
1.00	0.30	0.30
0.75	0.37	0.40
0.50	0.61	0.60
0.30	0.97	1.00
0.25	1.00	1.00

EOC: estimated order of convergence TOC: theoretical order of convergence $\min \left\{1,\left(\lambda-\frac{1}{2}\right) / \mu\right\}$

Numerical test: superconvergent graded meshes

S: "smooth relocation", N: "non-smooth relocation", H: "hierarchical"
$\omega=\frac{3}{4} \pi$:

μ	TOC	EOC for S	EOC for N	EOC for H
1.00	0.83	0.83	0.83	0.83
$0.8 \overline{3}$	1.00	1.00	1.01	1.00
0.75	1.11	1.12	1.13	1.11
$0.5 \overline{5}$	1.50	1.50	1.52	1.37
0.40	1.50	1.51	1.52	1.47

$\omega=\frac{5}{4} \pi:$

μ	TOC	EOC for S	EOC for N	EOC for H
1.00	0.30	0.29	0.29	0.29
0.75	0.40	0.40	0.40	0.40
0.50	0.60	0.60	0.60	0.60
0.30	1.00	1.00	1.00	1.00
0.25	1.20	1.20	1.20	1.20
0.20	1.50	1.51	1.51	1.46

$\mathrm{TOC}=\min \left\{\frac{3}{2},\left(\lambda-\frac{1}{2}\right) / \mu\right\}$

Regularity in the constrained case $a<0<b$

convex case

Optimality system

$$
\begin{array}{rlrlrl}
-\Delta \bar{y} & =0 & & \text { in } \Omega, \quad \bar{y}=\bar{u} & \text { on } \partial \Omega & \\
\text { in very weak sense } \\
-\Delta \bar{p} & =\bar{y}-y_{d} & & \text { in } \Omega, \quad \bar{p}=0 & & \text { on } \partial \Omega \\
& \text { in weak sense } \\
\bar{u} & =\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) & & \text { on } \partial \Omega & &
\end{array}
$$

$\Pi_{[a, b]}$ leads to kinks but \bar{u} is not more regular than $H^{3 / 2-\varepsilon}(\Gamma)$ anyway.
In the following we will always assume a finite number of kinks.
Convex case:

- the same regularity as in the unconstrained case
- the same approximation result (just using a different u_{h}^{*}).

The non-convex case is more interesting.

Regularity in the constrained case $a<0<b$

Optimality system

$$
\begin{array}{rlrlrl}
-\Delta \bar{y} & =0 & & \text { in } \Omega, \quad \bar{y}=\bar{u} & & \text { on } \partial \Omega \\
& & \text { in very weak sense } \\
-\Delta \bar{p} & =\bar{y}-y_{d} & & \text { in } \Omega, \quad \bar{p}=0 & & \text { on } \partial \Omega \\
& & \text { in weak sense } \\
\bar{u} & =\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) & & \text { on } \partial \Omega & &
\end{array}
$$

Consider critical interior angle $\omega \in(\pi, 2 \pi)$, i.e. $\lambda=\frac{\pi}{\omega} \in\left(\frac{1}{2}, 1\right)$.
With bootstrapping arguments follows $\bar{y} \in H^{\lambda-\epsilon}(\Omega)$, hence for $y_{d} \in H^{\lambda-\epsilon}(\Omega)$

$$
\begin{array}{rlr}
\bar{p} & =p_{\text {reg }}+c_{1} \xi r^{\lambda} \sin (\lambda \theta)+c_{2} \xi r^{2 \lambda} \sin (2 \lambda \theta) & p_{\text {reg }} \in H^{2+\lambda-\epsilon}(\Omega) \\
\partial_{n} \bar{p} & =\partial_{n} p_{\text {reg }}-c_{1} \underbrace{\xi r^{\lambda-1}}_{\rightarrow \pm \infty \text { for } r \rightarrow 0} \mp c_{2} \xi r^{2 \lambda-1} & \partial_{n} p_{\text {reg }} \in H^{1 / 2+\lambda-\epsilon}(\Gamma)
\end{array}
$$

Regularity in the constrained case $a<0<b$

Optimality system

$$
\begin{array}{rlrlrl}
-\Delta \bar{y} & =0 & & \text { in } \Omega, & \bar{y}=\bar{u} & \\
\text { on } \partial \Omega & & \text { in very weak sense } \\
-\Delta \bar{p} & =\bar{y}-y_{d} & & \text { in } \Omega, \quad \bar{p}=0 & & \text { on } \partial \Omega \\
& & \text { in weak sense } \\
\bar{u} & =\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) & & \text { on } \partial \Omega & &
\end{array}
$$

Consider critical interior angle $\omega \in(\pi, 2 \pi)$, ie. $\lambda=\frac{\pi}{\omega} \in\left(\frac{1}{2}, 1\right)$.
With bootstrapping arguments follows $\bar{y} \in H^{\lambda-\epsilon}(\Omega)$, hence for $y_{d} \in H^{\lambda-\epsilon}(\Omega)$

$$
\begin{array}{rlr}
\bar{p} & =p_{\text {reg }}+c_{1} \xi r^{\lambda} \sin (\lambda \theta)+c_{2} \xi r^{2 \lambda} \sin (2 \lambda \theta) & p_{\text {reg }} \in H^{2+\lambda-\epsilon}(\Omega) \\
\partial_{n} \bar{p} & =\partial_{n} p_{\text {reg }}-c_{1} \underbrace{\xi r^{\lambda-1}}_{\rightarrow \pm \infty \text { for } r \rightarrow 0} \mp c_{2} \xi r^{2 \lambda-1} & \partial_{n} p_{\text {reg }} \in H^{1 / 2+\lambda-\epsilon}(\Gamma)
\end{array}
$$

- $c_{1} \neq 0: \bar{u}$ is flat near the critical corner, $\bar{u} \in H^{3 / 2-\epsilon}$ locally
- i.g., convex corners determine the regularity of \bar{u}
- example: $\bar{u} \in H^{\min \{\Lambda-1 / 2,3 / 2\}-\epsilon}(\Gamma), \Lambda=\frac{\pi}{\omega_{2}}$, ie. $\bar{u} \in H^{\wedge-1 / 2-\epsilon}(\Gamma)$ if $\omega_{2}>\frac{\pi}{2}$.

Regularity in the constrained case $a<0<b$

Optimality system

$$
\begin{array}{rlrlrl}
-\Delta \bar{y} & =0 & & \text { in } \Omega, \quad \bar{y}=\bar{u} & \text { on } \partial \Omega & \\
\text { in very weak sense } \\
-\Delta \bar{p} & =\bar{y}-y_{d} & & \text { in } \Omega, \quad \bar{p}=0 & & \text { on } \partial \Omega
\end{array} \begin{array}{ll}
\text { in weak sense } \\
\bar{u} & =\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) \\
& \text { on } \partial \Omega
\end{array}
$$

Consider critical interior angle $\omega \in(\pi, 2 \pi)$, i.e. $\lambda=\frac{\pi}{\omega} \in\left(\frac{1}{2}, 1\right)$.
With bootstrapping arguments follows $\bar{y} \in H^{\lambda-\epsilon}(\Omega)$, hence for $y_{d} \in H^{\lambda-\epsilon}(\Omega)$

$$
\begin{array}{rr}
\bar{p} & =p_{\text {reg }}+c_{1} \xi r^{\lambda} \sin (\lambda \theta)+c_{2} \xi r^{2 \lambda} \sin (2 \lambda \theta)
\end{array} \begin{array}{r}
p_{\text {reg }} \in H^{2+\lambda-\epsilon}(\Omega) \\
\partial_{n} \bar{p}
\end{array}=\partial_{n} p_{\text {reg }}-c_{1} \underbrace{\xi r^{\lambda-1}}_{ \pm \infty \text { for } r \rightarrow 0} \mp \underbrace{c_{2} \xi r^{2 \lambda-1}}_{\rightarrow 0 \text { for } r \rightarrow 0} \quad \partial_{n} p_{\text {reg }} \in H^{1 / 2+\lambda-\epsilon}(\Gamma)
$$

- $c_{1} \neq 0: \bar{u}$ is flat near the critical corner, $\bar{u} \in H^{3 / 2-\epsilon}$ locally
- $c_{1}=0: \bar{u}$ is not flat locally, but $\bar{u} \in H^{2 \lambda-1 / 2-\varepsilon}(\Gamma)$.

This case is rare but worse than $c_{1} \neq 0$.

Regularity in the constrained case $a<0<b$

Optimality system

$$
\begin{array}{rlrlrl}
-\Delta \bar{y} & =0 & & \text { in } \Omega, & \bar{y}=\bar{u} & \\
\text { on } \partial \Omega & & \text { in very weak sense } \\
-\Delta \bar{p} & =\bar{y}-y_{d} & & \text { in } \Omega, \quad \bar{p}=0 & & \text { on } \partial \Omega \\
& \text { in weak sense } \\
\bar{u} & =\Pi_{[a, b]}\left(\frac{1}{\nu} \partial_{n} \bar{p}\right) & & \text { on } \partial \Omega & &
\end{array}
$$

The regularity near the j-th corner is determined by

$$
\lambda_{j}^{\prime}:= \begin{cases}\lambda_{j} & \text { if } \lambda_{j}>1 \\ 2 \lambda_{j} & \text { if } \lambda_{j}<1\end{cases}
$$

where $\lambda_{j}=\pi / \omega_{j}$ and ω_{j} being the angle at j-th corner

Approximation results

$$
\bar{u} \in H^{\min \left\{\lambda^{\prime}-1 / 2,3 / 2\right\}-\varepsilon}(\Gamma)
$$

Approximation error orders (up to logarithmic terms or $h^{-\varepsilon}$):

> quasi-uniform meshes

$$
\begin{array}{lr}
\hline \text { interpolation of } \bar{u} & \min \left\{\lambda^{\prime}-\frac{1}{2}, \frac{3}{2}\right\} \\
\text { general quasi-uniform meshes } & \min \left\{\lambda^{\prime}-\frac{1}{2}, 1\right\} \\
\text { superconvergence meshes } & \min \left\{\lambda^{\prime}-\frac{1}{2}, \frac{3}{2}, 2 \lambda\right\} \\
\hline
\end{array}
$$

Assumption: When the control bounds are active in the vicinity of some non-convex corner then they are also active for the approximate control.
The proof of this assumption is incomplete in a $O\left(h^{1+\varepsilon}\right)$-neighborhood of the non-convex corners.

Approximation results

$$
\bar{u} \in H^{\min \left\{\lambda^{\prime}-1 / 2,3 / 2\right\}-\varepsilon}(\Gamma)
$$

- For convex domains this is the same result as in the unconstrained case.
- For non-convex domains, the convergence order depends on the largest convex angle, this can be $\pi-\varepsilon$ leading to $\lambda^{\prime}-\frac{1}{2} \approx \frac{1}{2}$.

Approximation results

$$
\bar{u} \in H^{\min \left\{\lambda^{\prime}-1 / 2,3 / 2\right\}-\varepsilon}(\Gamma)
$$

- If the largest convex angle is $\leq \frac{2 \pi}{3}$ and $c_{j, 1} \neq 0$, then the convergence order is 1 for general quasi-uniform meshes.
- If the largest convex angle is $\leq \frac{\pi}{2}$ and $c_{j, 1} \neq 0$, then the convergence order is $\min \left\{\frac{3}{2}, 2 \lambda\right\}$ for superconvergence meshes.

Approximation order for the control

Graded meshes

What do we expect to achieve with graded meshes?

- Convergence order 1 for general graded meshes
- $\omega \in\left[\frac{2}{3} \pi, \pi\right): \mu<\lambda-\frac{1}{2}$
- $\omega \in\left[\frac{4}{3} \pi, 2 \pi\right): \mu<2 \lambda-\frac{1}{2}$ (worst case)
- Convergence order $\frac{3}{2}$ for superconvergent graded meshes
- $\omega \in\left[\frac{2}{3} \pi, \pi\right): \mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)$
- $\omega \in[\pi, 2 \pi): \mu<\frac{2}{3}\left(2 \lambda-\frac{1}{2}\right)=\frac{4}{3} \lambda-\frac{1}{3}$ (worst case)
- $\omega \in\left[\frac{4}{3} \pi, 2 \pi\right): \mu<\frac{4}{3} \lambda$ (generic case)

Plan of the talk

(1) Motivation: Dirichlet control problems

2) Superconvergence meshes
(3) Graded meshes

4 Superconvergent graded meshes
(5) The Dirichlet control problem revisited

6 Summary

Universität 浣 München

Summary

- We discussed ways of constructing graded meshes. Some of them lead to superconvergence effects.
- We observed superconvergence effects in Dirichlet control problems not only with uniform but also with graded meshes.
- In unconstrained Dirichlet control problems, we need strong mesh grading with $\mu<\frac{2}{3}\left(\lambda-\frac{1}{2}\right)$ to obtain $O\left(h^{3 / 2}\right)$ in the error of the control.
- In the constained case the necessary grading is not that strong.
- For certain families of superconvergent graded meshes we proved a core estimate.

