A new approach to mixed methods for biharmonic problems in 2D and 3D

Walter Zulehner

Institute of Computational Mathematics JKU Linz, Austria

AANMPDE-9 2016

St. Wolfgang, July 4-7, 2016

Acknowledgment

Joint work with:
Wolfgang Krendl, Katharina Rafetseder, Martin Neumüller (Linz), Dirk Pauly (Essen)

The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK12, and S11702-N23

Outline

(9) A mixed method for biharmonic problems
(2) A Helmholtz-like decomposition
(3) Discretization

4 Extensions

Biharmonic problems

domain $\Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$, bounded and simply connected boundary $\partial \Omega=\Gamma$ connected, polygonal/polyhedral
find u such that

$$
\Delta^{2} u=f \quad \text { in } \Omega, \quad u=\partial_{n} u=0 \quad \text { on } \Gamma
$$

observe that

$$
\Delta^{2} u=\operatorname{div} \operatorname{Div}\left(\nabla^{2} u\right)
$$

primal variational formulation
find $u \in W=H_{0}^{2}(\Omega)$ such that

$$
\int_{\Omega} \nabla^{2} u: \nabla^{2} v d x=\langle f, v\rangle \quad \text { for all } v \in W=\mathrm{H}_{0}^{2}(\Omega)
$$

in short

$$
\Delta^{2} u=f \quad \text { in } W^{*}=\mathrm{H}^{-2}(\Omega)
$$

Biharmonic problems

observe that

$$
\Delta^{2} u=-\operatorname{div} \operatorname{Div} \mathbf{M} \quad \text { with } \quad \mathbf{M}=-\nabla^{2} u
$$

mixed variational formulation

find $\mathbf{M} \in \mathbf{L}^{2}(\Omega, \mathbb{S})$ and $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{array}{ll}
\mathbf{M}+\nabla^{2} u & =0 \quad \text { in } \mathbf{L}^{2}(\Omega, \mathbb{S}) \\
\operatorname{div} \operatorname{Div} \mathbf{M} & =-f \quad \text { in } H^{-2}(\Omega)
\end{array}
$$

in detail
$\begin{array}{rlrl}\int_{\Omega} \mathbf{M}: \mathbf{N} d x & & \int_{\Omega}(\operatorname{div} \operatorname{Div} \mathbf{N}) u d x & =0 \\ & & \text { for all } \mathbf{N} \in \mathbf{L}^{2}(\Omega, \mathbb{S}) \\ \int_{\Omega}(\operatorname{div} \operatorname{Div} \mathbf{M}) v d x & & =-\langle f, v\rangle & \\ \text { for all } v \in H_{0}^{2}(\Omega)\end{array}$

Biharmonic problems

New variational formulation for $f \in \mathrm{H}^{-1}(\Omega)$

Find $\mathbf{M} \in \mathbf{V}$ and $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{rlrl}
\mathbf{M} & +\nabla^{2} u & =0 \quad \text { in } \mathbf{V}^{*} \\
\operatorname{div} \operatorname{Div} \mathbf{M} & =-f & & \text { in } \mathrm{H}^{-1}(\Omega)
\end{array}
$$

The space $L^{2}(\Omega, \mathbb{S})$ is replaced by

$$
\mathbf{V}=\left\{\mathbf{N} \in \mathbf{L}^{2}(\Omega, \mathbb{S}): \operatorname{div} \operatorname{Div} \mathbf{N} \in \mathbf{H}^{-1}(\Omega)\right\} \equiv \mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})
$$

norm

$$
\|\mathbf{N}\|_{\mathbf{v}}=\left(\|\mathbf{N}\|_{0}^{2}+\|\operatorname{div} \operatorname{Div} \mathbf{N}\|_{-1}^{2}\right)^{1 / 2}
$$

Bernardi/Girault/Maday (1992), Z. (2015), Pechstein/Schöberl (2011)

Biharmonic problems

Find $\mathbf{M} \in \mathbf{V}=\mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})$ and $u \in Q=H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{llrl}
\langle\mathbf{M}, \mathbf{N}\rangle & +\langle\operatorname{div} \operatorname{Div} \mathbf{N}, u\rangle & =0 & \\
\text { for all } \mathbf{N} \in \mathbf{V} \\
\langle\operatorname{div} \operatorname{Div} \mathbf{M}, v\rangle & & =-\langle f, v\rangle & \\
\text { for all } v \in Q
\end{array}
$$

Theorem

The mixed problem is well-posed in $\mathbf{V} \times Q$, equipped with the norms

$$
\|\mathbf{N}\|_{\mathbf{v}}=\left(\|\mathbf{N}\|_{0}^{2}+\|\operatorname{div} \operatorname{Div} \mathbf{N}\|_{-1}^{2}\right)^{1 / 2}, \quad\|v\|_{Q}=|v|_{1}
$$

Its solution (\mathbf{M}, u) satisfies $u \in W=H_{0}^{2}(\Omega)$ with

$$
\Delta^{2} u=f \quad \text { in } W^{*}=\mathrm{H}^{-2}(\Omega)
$$

and, vice versa, ...
Krendl/Rafetseder/Z. $(2014,2016)$

A Helmholtz-like decomposition

Each $\mathbf{M} \in \mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})$ can be uniquely written as

$$
\mathbf{M}=p \mathbf{I}+\mathbf{M}_{0} \quad \text { with } \quad \mathbf{I} \quad \text { identity matrix in } \mathbb{R}^{d}
$$

where $p \in H_{0}^{1}(\Omega)$ is determined by

$$
\underbrace{\operatorname{div} \operatorname{Div}(p \mathbf{I}))}_{=\Delta p}=\operatorname{div} \operatorname{Div} \mathbf{M}
$$

and

$$
\operatorname{div} \operatorname{Div} \mathbf{M}_{0}=0
$$

Kernel of div Div in 2D

Let $\mathbf{M} \in \mathbf{L}^{2}(\Omega ; \mathbb{S})$. Then

$$
\operatorname{div} \operatorname{Div} \mathbf{M}=0 \quad \Longleftrightarrow \mathbf{M}=\operatorname{sym} \operatorname{Curl} \phi, \phi \in \mathrm{H}^{1}(\Omega)^{2}
$$

with

$$
\operatorname{Curl} \phi=\left[\begin{array}{ll}
\partial_{2} \phi_{1} & -\partial_{1} \phi_{1} \\
\partial_{2} \phi_{2} & -\partial_{1} \phi_{2}
\end{array}\right]
$$

Proof.

Since $\operatorname{div}(\operatorname{Div} \mathbf{M})=0$ and $\operatorname{Div} \mathbf{M} \in H^{-1}(\Omega)$, we have

$$
\operatorname{Div} \mathbf{M}=\operatorname{curl} \rho=-\operatorname{Div} \operatorname{Spin}(\rho) \text { with } \operatorname{Spin}(\rho)=\left[\begin{array}{cc}
0 & -\rho \\
\rho & 0
\end{array}\right]
$$

for some $\rho \in \mathrm{L}^{2}(\Omega)$.

Kernel of div Div in 2D

Proof.

Hence $\operatorname{Div}(\mathbf{M}+\operatorname{Spin}(\rho))=0$. Therefore

$$
\mathbf{M}+\operatorname{Spin}(\rho)=\operatorname{Curl} \phi .
$$

for some $\phi \in \mathrm{H}^{1}(\Omega)^{2}$.
This implies

$$
\mathbf{M}=\operatorname{sym} \operatorname{Curl} \phi \quad \text { and } \quad \operatorname{Spin}(\rho)=\operatorname{skw} \operatorname{Curl} \phi .
$$

Beirão da Veiga/Niiranen/Stenberg(2007), Huang/Huang/Xu (2011)

Kernel of div Div in 3D

Let $\mathbf{M} \in \mathbf{L}^{2}(\Omega ; \mathbb{S})$. Then

$$
\operatorname{div} \operatorname{Div} \mathbf{M}=0 \quad \Longleftrightarrow \quad \mathbf{M}=\operatorname{sym} \operatorname{Curl} \boldsymbol{\Phi}, \boldsymbol{\Phi} \in \mathbf{H}^{1}(\Omega)
$$

Proof.

Since $\operatorname{div}(\operatorname{Div} \mathbf{M})=0$ and $\operatorname{Div} \mathbf{M} \in \mathrm{H}^{-1}(\Omega)$, we have

$$
\operatorname{Div} \mathbf{M}=\operatorname{curl} \vec{\rho}=-\operatorname{Div} \operatorname{Spin}(\vec{\rho}) \text { with } \operatorname{Spin}(\vec{\rho})=\left[\begin{array}{ccc}
0 & -\rho_{3} & \rho_{2} \\
\rho_{3} & 0 & -\rho_{1} \\
-\rho_{2} & \rho_{1} & 0
\end{array}\right] \text {. }
$$

for some $\vec{\rho} \in \mathrm{L}^{2}(\Omega)$.

Kernel of div Div in 3D

Proof.

Hence $\operatorname{Div}(\mathbf{M}+\operatorname{Spin}(\vec{\rho}))=0$. Therefore

$$
\mathbf{M}+\operatorname{Spin}(\vec{\rho})=\operatorname{Curl} \boldsymbol{\Phi} .
$$

for some $\boldsymbol{\Phi} \in \mathbf{H}^{1}(\Omega)$.
This implies
$\mathbf{M}=\operatorname{sym} \operatorname{Curl} \Phi \quad$ and $\quad \operatorname{Spin}(\vec{\rho})=\operatorname{skw} \operatorname{Curl} \Phi$.

Since symCurl $(q \mathbf{I})=0$ for all $q \in L^{2}(\Omega)$, we also have

$$
\operatorname{div} \operatorname{Div} \mathbf{M}=0 \quad \Longleftrightarrow \mathbf{M}=\operatorname{sym} \text { Curl } \boldsymbol{\Phi}, \boldsymbol{\Phi} \in \mathbf{H}(\operatorname{sym} \text { Curl; } \Omega, \mathbb{T})
$$

Decomposition of the biharmonic problem

Find $\mathbf{M} \in \mathbf{V}=\mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})$ and $u \in Q=H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{llrl}
\langle\mathbf{M}, \mathbf{N}\rangle & +\langle\operatorname{div} \operatorname{Div} \mathbf{N}, u\rangle & =0 & \\
\text { for all } \mathbf{N} \in \mathbf{V} \\
\langle\operatorname{div} \operatorname{Div} \mathbf{M}, v\rangle & & =-\langle f, v\rangle & \text { for all } v \in Q
\end{array}
$$

in 2D

$$
\mathbf{M}=p \mathbf{I}+\operatorname{sym} \operatorname{Curl} \phi, \quad \mathbf{N}=q \mathbf{I}+\operatorname{sym} \operatorname{Curl} \psi
$$

in 3D

$$
\mathbf{M}=p \mathbf{I}+\operatorname{sym} \operatorname{Curl} \mathbf{\Phi}, \quad \mathbf{N}=q \mathbf{I}+\operatorname{sym} \operatorname{Curl} \Psi
$$

Decomposition of the biharmonic problem

$\langle\mathbf{M}, \mathbf{N}\rangle+\langle\operatorname{div} \operatorname{Div} \mathbf{N}, u\rangle=0 \quad$ for $\quad \mathbf{N}=q \mathbf{l}$

$$
\Longleftrightarrow \quad\langle p \mathbf{I}, q \mathbf{I}\rangle+\langle\operatorname{sym} \operatorname{Cur} \phi, q \mathbf{I}\rangle+\langle\Delta q, p\rangle=0
$$

$\langle\mathbf{M}, \mathbf{N}\rangle+\langle\operatorname{div} \operatorname{Div} \mathbf{N}, u\rangle=0 \quad$ for $\quad \mathbf{N}=\operatorname{sym} \operatorname{Curl} \psi$
$\Longleftrightarrow \quad\langle\mathbf{M}$, sym Curl $\psi\rangle=0$
$\Longleftrightarrow\langle p \mathbf{I}$, sym Curl $\psi\rangle+\langle\operatorname{sym} \operatorname{Curl} \phi, \operatorname{sym} \operatorname{Curl} \psi\rangle=0$

$$
\langle\operatorname{div} \operatorname{Div} \mathbf{M}, v\rangle=-\langle f, v\rangle \quad \Longleftrightarrow \quad\langle\Delta p, v\rangle=-\langle f, v\rangle
$$

Decomposition of the biharmonic problem

Find $p \in H_{0}^{1}(\Omega), \phi \in \mathrm{H}^{1}(\Omega)^{2}$, and $u \in H_{0}^{1}(\Omega)$ such that

$\langle\mathbf{I}, q \mathbf{I}\rangle+\langle\operatorname{sym} \operatorname{Curl} \phi, q \mathbf{I}\rangle$ $+\langle\Delta q, u\rangle$	$=0$
$\langle p \mathbf{I}, \operatorname{sym} \operatorname{Curl} \psi\rangle+\langle\operatorname{sym} \operatorname{Curl} \phi, \operatorname{sym} \operatorname{Curl} \psi\rangle$	
$\langle\Delta p, v\rangle$	
	$=0$
	$=-\langle f, v\rangle$

for all $q \in H_{0}^{1}(\Omega), \psi \in H^{1}(\Omega)^{2}$, and $v \in H_{0}^{1}(\Omega)$.

Decomposition of the biharmonic problem

Find $p \in H_{0}^{1}(\Omega), \Phi \in \mathbf{H}(\operatorname{sym} \operatorname{Curl}, \Omega, \mathbb{T})$, and $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{ll}
\langle p \mathbf{I}, q \mathbf{I}\rangle+\langle\operatorname{sym} \operatorname{Cur} \mathbf{\Phi}), q \mathbf{I}\rangle & +\langle\Delta q, u\rangle \\
=0 \\
\langle p \mathbf{I}, \operatorname{sym} \operatorname{Curl} \Psi\rangle+\langle\operatorname{sym} \operatorname{Curl} \boldsymbol{\Phi}, \operatorname{sym} \operatorname{Curl} \Psi\rangle & \\
& =0 \\
\langle\Delta p, v\rangle &
\end{array}
$$

for all $q \in H_{0}^{1}(\Omega), \Psi \in \mathbf{H}(\operatorname{sym} \operatorname{Curl}, \Omega, \mathbb{T})$, and $v \in H_{0}^{1}(\Omega)$.

Kernel of sym Curl in 2D

Let $\phi \in \mathrm{L}^{2}(\Omega)^{2}$. Then

$$
\operatorname{sym} \operatorname{Curl} \phi=0 \Longleftrightarrow \phi \in \mathrm{RT}_{0}=\left\{a x+b: a \in \mathbb{R}, b \in \mathbb{R}^{2}\right\}
$$

Proof.

$$
\begin{gathered}
\text { sym Curl } \phi=0 \Longrightarrow \operatorname{Curl} \phi=\operatorname{skw} \operatorname{Curl} \phi=\operatorname{Spin}(\rho) \\
\Longrightarrow 0=\operatorname{Div}(\operatorname{Spin}(\rho))=-\operatorname{curl} \rho \\
\operatorname{curl} \rho=0 \Longrightarrow \rho(x)=a \quad \text { for some } a \in \mathbb{R} \\
\operatorname{Curl}(\phi(x)-a x)=\operatorname{Spin} \rho-\operatorname{Spin} a=0 \\
\Longrightarrow \phi(x)-a x=b \quad \text { some } b \in \mathbb{R}^{2}
\end{gathered}
$$

Kernel of sym Curl in 3D

Let $\Phi \in \mathrm{L}^{2}(\Omega)$. Then

$$
\operatorname{sym} \operatorname{Curl} \Phi=0 \Longleftrightarrow \Phi=q \mathbf{I}+\nabla v, q \in \mathrm{~L}^{2}(\Omega), v \in \mathrm{H}^{1}(\Omega)^{3}
$$

Proof.

$$
\operatorname{sym} \operatorname{Curl} \Phi=0 \Longrightarrow \operatorname{Curl} \Phi=\operatorname{skw} \operatorname{Curl} \Phi=\operatorname{Spin}(\vec{\rho})
$$

$$
\Longrightarrow \quad 0=\operatorname{Div}(\operatorname{Spin}(\vec{\rho}))=-\operatorname{curl} \vec{\rho}
$$

$$
\operatorname{curl} \vec{\rho}=0 \Longrightarrow \vec{\rho}=\nabla q \quad \text { for some } q \in \mathrm{~L}^{2}(\Omega)
$$

$$
\begin{aligned}
& \operatorname{Curl}(\mathbf{\Phi}-q \mathbf{I})=\text { Spin } \rho-\operatorname{Spin}(\nabla q)=0 \\
& \Longrightarrow \quad \Phi-q \mathbf{I}=\nabla v \quad \text { some } v \in \mathrm{H}^{1}(\Omega)^{3} .
\end{aligned}
$$

Hilbert complexes

Let $\Phi \in \mathbf{L}^{2}(\Omega, \mathbb{T})$. Then

$$
\operatorname{sym} \operatorname{Curl} \Phi=0 \quad \Longleftrightarrow \quad \Phi=\operatorname{dev} \nabla v, v \in \mathrm{H}^{1}(\Omega)^{3}
$$

exact Hilbert complex

$$
\mathrm{H}^{1}(\Omega)^{2} \xrightarrow{\text { sym Curl }} \mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S}) \xrightarrow{\text { div Div }} \mathbf{H}^{-1}(\Omega)
$$

exact Hilbert complex

$$
\mathbf{H}^{1}(\Omega)^{3} \xrightarrow{\operatorname{dev} \nabla} \mathbf{H}(\text { sym Curl; } \Omega, \mathbb{T}) \xrightarrow{\text { symCurl }} \mathbf{H}^{0,-1}(\operatorname{div} \text { Div; } \Omega, \mathbb{S}) \xrightarrow{\text { div Div }} \mathbf{H}^{-1}(\Omega)
$$

Quenneville-Bélair (2015)

$$
\operatorname{dev} \nabla v=0 \Longleftrightarrow \quad v \in R_{0}=\left\{a x+b: a \in \mathbb{R}, b \in \mathbb{R}^{3}\right\}
$$

Biharmonic problems in 3D

Gauging

$$
\operatorname{div} \operatorname{Div} \mathbf{M}=0 \quad \Longleftrightarrow \mathbf{M}=\operatorname{sym} \operatorname{Curl} \Phi, \mathbf{\Phi} \in \mathbf{H}(\operatorname{sym} \operatorname{Curl} ; \Omega, \mathbb{T})
$$

Observe that Φ is uniquely determined in

$$
\mathbf{H}(\text { sym Curl, } \Omega, \mathbb{T}) \cap \mathbf{H}_{0}(\operatorname{Div}, \Omega)
$$

with
$\operatorname{Div} \Phi=0 \quad$ in $\Omega, \quad \Phi n=0 \quad$ on Γ.

Decomposition of biharmonic problems in 2D

Since

$$
\operatorname{sym} \operatorname{Curl} \psi=\left(\operatorname{div} \psi^{\perp}\right) \mathbf{I}-\operatorname{sym} \nabla \psi^{\perp} \quad \text { with } \quad \psi^{\perp}=\left[\begin{array}{c}
-\psi_{2} \\
\psi_{1}
\end{array}\right]
$$

it follows that

$$
\langle\operatorname{sym} \operatorname{Curl} \phi, \operatorname{sym} \operatorname{Curl} \psi\rangle=\int_{\Omega} \operatorname{sym} \nabla \phi^{\perp}: \operatorname{sym} \nabla \psi^{\perp} d x
$$

Decomposition of biharmonic problems in 2D

decomposition
(1) Poisson problem with Dirichlet boundary conditions for p

$$
\Delta p=f \quad \text { in } \Omega, \quad p=0 \quad \text { on } \Gamma
$$

(2) pure traction problem with Poisson ratio 0 for ϕ

$$
-\operatorname{Div}\left(\operatorname{sym} \nabla \phi^{\perp}\right)=\nabla p \quad \text { in } \Omega, \quad\left(\operatorname{sym} \nabla \phi^{\perp}\right) n=0 \quad \text { on } \Gamma
$$

(3) Poisson problem with Dirichlet boundary conditions for u

$$
\Delta u=2 p+\operatorname{div} \phi^{\perp} \quad \text { in } \Omega, \quad u=0 \quad \text { on } \Gamma
$$

Discretization

The Hellan-Herrmann-Johnson method

$k \in \mathbb{N}, P_{k}$ polynomials of total degree $\leq k$.
approximation space for M

$$
\mathbf{V}_{h}=\left\{\mathbf{N} \in \mathbf{L}^{2}(\Omega, \mathbb{S}):\left.\mathbf{N}\right|_{T} \in P_{k-1} \text { for all } T \in \mathcal{T}_{h},\right. \text { and }
$$ $\mathbf{N}_{n n}$ is continuous across all $\left.E \in \mathcal{E}_{h}\right\}$.

approximation space for u

$$
Q_{h}=\mathcal{S}_{h, 0}=\mathcal{S}_{h} \cap H_{0}^{1}(\Omega)
$$

with the standard finite element spaces

$$
\mathcal{S}_{h}=\left\{v \in C(\bar{\Omega}):\left.v\right|_{T} \in P_{k} \text { for all } T \in \mathcal{T}_{h}\right\}
$$

Discretization

Hellan-Herrmann-Johnson element of order $k=1$
degrees of freedom

Discretization

Hellan-Herrmann-Johnson element of order $k=2$
degrees of freedom

$\mathbf{M}_{n n}$

u

Discretization

Hellan-Herrmann-Johnson element of order $k=3$
degrees of freedom

The HHJ method

Observe that

$$
\mathbf{V}_{h} \not \subset \mathbf{V}=\mathbf{H}^{0,-1}(\operatorname{div} \operatorname{Div} ; \Omega, \mathbb{S})
$$

Hellan-Herrmann-Johnson (HHJ) method:

Find $\mathbf{M}_{h} \in \mathbf{V}_{h}$ and $u_{h} \in Q_{h}$ such that

$$
\left.\begin{array}{llr}
\left\langle\mathbf{M}_{h}, \mathbf{N}_{h}\right\rangle & & \text { for all } \mathbf{N}_{h} \in \mathbf{V}_{h} \\
\left\langle\operatorname{div} \operatorname{Div}_{h} \mathbf{M}_{h}, v_{h}\right\rangle & & \left.=-\left\langle f, \operatorname{Div}_{h}\right\rangle \mathbf{N}_{h}, u_{h}\right\rangle
\end{array}\right) \quad \text { for all } v_{h} \in Q_{h}
$$

where

$$
\left\langle\operatorname{div} \operatorname{Div}_{h} \mathbf{N}, v\right\rangle=\sum_{T \in \mathcal{T}_{h}}\left\{\int_{T} \mathbf{N}: \nabla^{2} v d x-\int_{\partial T} \mathbf{N}_{n n} \partial_{n} v d s\right\}
$$

The HHJ method

norm on V_{h} :

$$
\|\mathbf{N}\|_{\mathbf{v}, h}=\left(\|\mathbf{N}\|_{0}^{2}+\left\|\operatorname{div} \operatorname{Div}_{h} \mathbf{N}\right\|_{-1, h}^{2}\right)^{1 / 2}
$$

with

$$
\|\ell\|_{-1, h}=\sup _{0 \neq v_{h} \in \mathcal{S}_{h, 0}} \frac{\left\langle\ell, v_{h}\right\rangle}{\left|v_{h}\right|_{1}}
$$

norm on Q_{h} :

$$
\|v\|_{Q}=|v|_{1}
$$

Theorem

The mixed problem is uniformly well-posed in $\mathbf{V}_{h} \times Q_{h}$ w.r.t

$$
\|\mathbf{N}\|_{\mathbf{v}, h}=\left(\|\mathbf{N}\|_{0}^{2}+\left\|\operatorname{div} \operatorname{Div}_{h} \mathbf{N}\right\|_{-1, h}^{2}\right)^{1 / 2}, \quad\|v\|_{Q}=|v|_{1} .
$$

The HHJ method

Helmholtz-like decomposition

Each $\mathbf{M}_{h} \in \mathbf{V}_{h}$ can be uniquely written as

$$
\mathbf{M}_{h}=\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right)+\operatorname{sym} \operatorname{Curl} \phi_{h}
$$

with $p_{h} \in \mathcal{S}_{h, 0}$ and $\phi_{h} \in\left(\mathcal{S}_{h}\right)^{2}$ and the interpolation operator

$$
\boldsymbol{\Pi}_{h}: \boldsymbol{W} \subset \mathbf{V} \longrightarrow \mathbf{V}_{h}
$$

given by the conditions

$$
\begin{aligned}
\int_{E}\left(\left(\Pi_{h} \mathbf{N}\right)_{n n}-\mathbf{N}_{n n}\right) q d s=0, & \text { for all } q \in P_{k-1}, E \in \mathcal{E}_{h}, \\
\int_{T}\left(\Pi_{h} \mathbf{N}-\mathbf{N}\right) q d x=0, & \text { for all } q \in P_{k-2}, \quad T \in \mathcal{T}_{h}
\end{aligned}
$$

Brezzi/Raviart (1977)

The HHJ method

With the representation

$$
\mathbf{M}_{h}=\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right)+\operatorname{sym} \text { Curl } \phi_{h} \quad \text { and } \quad \mathbf{N}_{h}=\boldsymbol{\Pi}_{h}\left(q_{h} \mathbf{I}\right)+\operatorname{sym} \text { Curl } \psi_{h}
$$

the HHJ method reads:

Find $p_{h} \in \mathcal{S}_{h, 0}, \phi_{h} \in \mathcal{S}_{h}^{2}$, and $u_{h} \in \mathcal{S}_{h, 0}$ such that

$$
\begin{aligned}
\left\langle\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right), \boldsymbol{\Pi}_{h}\left(q_{h} \mathbf{I}\right)\right\rangle+\left\langle\operatorname{sym} \operatorname{Curl} \phi_{h}, \boldsymbol{\Pi}_{h}\left(q_{h} \mathbf{I}\right)\right\rangle+\left\langle\Delta u_{h}, q_{h}\right\rangle & =0 \\
\left\langle\boldsymbol{\Pi}_{h}\left(p_{h} \mathbf{I}\right), \text { sym Curl } \psi_{h}\right\rangle+\left\langle\left\langle\operatorname{sym} \operatorname{Curl} \phi_{h}, \text { sym Curl } \psi_{h}\right\rangle\right. & \\
\begin{array}{ll}
\left\langle\Delta p_{h}, v_{h}\right\rangle &
\end{array} & =-\left\langle f, v_{h}\right\rangle
\end{aligned}
$$

for all $q_{h} \in \mathcal{S}_{h, 0}, \psi_{h} \in \mathcal{S}_{h}^{2}$, and $v_{h} \in \mathcal{S}_{h, 0}$.

The HHJ method

Hellan-Herrmann-Johnson element of order $k=1$
all degrees of freedom for \mathbf{M} and u are collocated

$$
p, \phi, u
$$

The HHJ method

Hellan-Herrmann-Johnson element of order $k=2$
all degrees of freedom for \mathbf{M} and u are collocated

$$
p, \phi, u
$$

The HHJ method

Hellan-Herrmann-Johnson element of order $k=3$
all degrees of freedom for \mathbf{M} and u are collocated

p, ϕ, u

Extensions

Kirchhoff-Love plate

$$
-\operatorname{div} \operatorname{Div} \mathbf{M}=f \quad \text { with } \quad \mathbf{M}=-\mathcal{D} \nabla^{2} u \quad \text { in } \Omega
$$

with the boundary conditions

$$
\begin{array}{lll}
u=0, & \partial_{n} u=0 & \text { on } \Gamma_{c} \\
u=0, & \mathbf{M}_{n n}=0 & \text { on } \Gamma_{s} \\
\mathbf{M}_{n n}=0, & \partial_{s} \mathbf{M}_{n s}+\operatorname{Div} \mathbf{M} \cdot n=0 & \text { on } \Gamma_{f}
\end{array}
$$

on

$$
\Gamma=\Gamma_{c} \cup \Gamma_{s} \cup \Gamma_{f}
$$

and the corner conditions

$$
\llbracket \mathbf{M}_{n s} \rrbracket_{x}=0 \quad \text { for all } x \in \mathcal{V}_{f}
$$

Extension: Kirchhoff-Love plate

primal formulation

$$
u \in W=\left\{v \in \mathrm{H}^{2}(\Omega): v=0 \text { on } \Gamma_{c} \cup \Gamma_{s}, \partial_{n} v=0 \text { on } \Gamma_{c}\right\}
$$

mixed formulation

$$
\begin{aligned}
& u \in Q=\left\{v \in \mathrm{H}^{1}(\Omega): v=0 \text { on } \Gamma_{c} \cup \Gamma_{s}\right\} \\
& \mathbf{M} \in \mathbf{V}=\left\{\mathbf{N} \in \mathbf{L}^{2}(\Omega, \mathbb{S}): \operatorname{div}_{\operatorname{Div}}^{W} \mathbf{N} \in Q^{*}\right\}
\end{aligned}
$$

with

$$
\left\langle\operatorname{div}^{\operatorname{Div}_{W}} \mathbf{N}, v\right\rangle=\int_{\Omega} \mathbf{N}: \nabla^{2} v d x \quad \text { for all } v \in W
$$

Extension: Kirchhoff-Love plate

Helmholtz-like decomposition

For each $\mathbf{M} \in \mathbf{V}$ there exists a unique decomposition

$$
\mathbf{M}=p \mathbf{I}+\operatorname{sym} \operatorname{Curl} \phi,
$$

with $p \in Q$ and $\phi \in \mathrm{H}^{1}(\Omega)^{2}$ subject to

$$
\langle(\operatorname{Curl} \phi) n, \nabla v\rangle_{\Gamma}=-\int_{\Gamma} p \partial_{n} v d s \quad \text { for all } v \in W
$$

on Γ_{C} : void
on $\Gamma_{s}: n \cdot \partial_{s} \phi=0$
on $\Gamma_{f}: n \cdot \partial_{s} \phi=p$ and $s \cdot \partial_{s} \phi=0$

Extensions

General self-adjoint fourth-order problems

$$
\operatorname{div} \operatorname{Div}\left(\mathcal{D} \nabla^{2} u\right)-\operatorname{div}(K \nabla u)+c u=f \quad \text { in } \Omega
$$

mixed formulation

$$
\begin{array}{rlrl}
\mathbf{M} & & +\nabla^{2} u & =0 \\
& \text { in } \mathbf{V} \\
\operatorname{div} \operatorname{Div} \mathbf{M}-(-\operatorname{div}(K \nabla u)+c u) & =-f & & \text { in } Q
\end{array}
$$

decomposition $\mathbf{M}=p \mathbf{I}+\operatorname{sym} \operatorname{Curl} \phi$

$$
\begin{array}{rlrl}
2 p+\text { curl }^{*} \phi & +\Delta u & =0 & \\
\text { in } Q \\
\text { curl } p+\operatorname{Curl} \operatorname{sym} \operatorname{Curl} \phi & & =0 & \\
\text { in } \mathrm{V} \\
\Delta p & -(-\operatorname{div}(K \nabla u)+c u) & =-f & \\
\text { in } Q
\end{array}
$$

