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Motivation

Electro—kinetic phenomena in bio—molecular or electro—chemical models
Specific interest concerns lithium ion batteries

[ ——o—
Electrolyte J‘\

Current collector (Zn!

Sources: Wikipedia, University of Oxford: Energy and Power Group
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e Modeling

e Discontinuous solution in a two-phase medium
o Nonlinear reactions at the face interface
o Taking pressure into account
(as a consequence of the Navier—Stokes equations)
o Mass and volume balances
o Positivity of concentrations

o Well-posedness

o Generalized formulation coupled with dual entropy variables and
constraints

Existence theorem based on the reduced formulation without constraints
A priori energy and entropy estimates

Weak maximum principle

Uniqueness in a special case

Lyapunov stability
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Geometry

@ pore phase, w solid phase, dw interface with a jump [-] = *|sw+ — * |gw-
Q = Q UwU dw two-phase domain

Spatial dimension d € {1,2, 3}
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PNP | The generalized Poisson—Nernst—Planck sy

For charge species i = 1,...,nin (0,T) X (Q Uw):

dc;
The Fick’s law of diffusion: Ct —divJ; =0 (1a)
with diffusion fluxes: J; = Z ¢;j(Vu;) "'m;D¥ (1b)
j=1
in particles (0,T) x w:
electro-chemical potentials: p; = kpOln(8;c;) (1c)
the Ohm’s law: — div((Vy) A) =0 (1d)

Ci (mol / m3) concentrations of charged species with the charge numbers z;,
Ji (mol/(m” - s)) diffusion fluxes,

DY (m?/(J - s)) diffusivity matrices in R**?,

¢ (V) electrostatic potential,

wi (J) (quasi—Fermi) electro-chemical potentials,

A (F/m) electric permittivity in R*?,

m; 20, kg 20,0 >0, §; >0 are constant
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PNP | The generalized Poisson—Nernst—Planck

In pore (0,7) x Q:
quasi—Fermi electro-chemical potentials:

1 1
Wi = kB@ln(Bzcl) + NiA (ap + 2199) (23)

the force balance: Vp = — (Z zkck)Vap (2b)

the Gauss’s flux law:  — div((Vp) ' A) = Z 2K Ck (2¢)

C (mol/m?’) summary concentration,
p (Pa) pressure,
N4 = 0 constant
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Formulation of the problem
[e]e] le]e}

PNP | Boundary and initial conditions

Dirichlet conditions:

Interface conditions:

[[Ji]]y = 0.,

[(Ve) " Alv =0,

Initial conditions:

Anna Zubkova (KFU)

—Jiv=gi(c,p) on (0,T) x dw

—(Vo)TAv +afe] =g on (0,T) x dw

c=c" onQUuw

Generalized PNP system

(4a)

(4b)




PNP | Thermodynamic properties

Positivity of concentrations:

¢ >0, ¢=1,...,n, in (0,7)%x(QUuw) (6)

Volume balance: .
Y e=C in (0,T)x(QUuw) (7)

i=1

Mass balance: .
Y Ji=0 in (0,7)x (QUuw) (8)

i=1

follows from volume balance (7) and diffusivity property (19)
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Initial data as t = 0

Volume balance:

Zcﬁ":(}’ in QUuw (9)

Positivity:

Boundary data

Volume balance:

n
Zcf =C on (0,7)x 0w (11)
=1
Positivity:
>0 on (0,T) x dw (12)
Compatibility conditions:
P00, )=d", i=1,...,n, in QUuw (13)
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Nonlinear boundary data
Growth conditions:

/a|gi< D)2 dz <+l ooy P =L (14)

where 7{ >0 and 'yé >0
Mass balance: .,
> gi(e,p) =0 on (0,T) x dw (15)

Positive production rate:

gi(c,p)[ec;]=0 on (0,T)x 0w, foralle, i=1,...,n (16)

where ¢ :=max{0,¢;}, ¢; := —min{0, ¢;},
I - L
suchthatcl—c —c; ,¢; 20,c; 20,¢/c; =0,fori=1,...,n
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Example of gi(c, p)

For example, the non trivial functions

gi(e,9) = Gi((clow+)t)G1((clow-)1) G2 ((clow+) ) Ga((clow-)"),
g2(¢, ) —g1(c, ¢)

where G;(c) := ncij such that |G;(c)| < 1 and Gj(c*)c; =0,
D k1 Ck , ,
fulfill all the conditions (14)—(16) with 4 = 0 and v} = |Ow]|.
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Formulation of the problem
ooe

PNP | Assumptions on matrices

Symmetric positive definiteness of A: There exist 0 < a < a such that
aléP <¢TAE<alg), ¢eR% (17a)
Strong ellipticity condition for D%: There exist 0 < d < d such that
dY G < Y EmiDV g <dY (G &L & €RY (17D)
i=1 i,j=1 i=1
Symmetric positive definiteness of D: There exist 0 < d < d such that
gl <€TDe<dgP, ¢eR? (18)

Properties of diffusivity matrices

Weak assumption:
n
ZmiDij:D, ji=1,...,m (19)
i=1
Strong assumption:

m;D¥ =6;D, i,j=1,...,n. (20)
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Find discontinuous functions ci, ..., c,, and ¢ such that

ci € L0, T; L*(Q) x L*(w)) N L*(0,T; H(Q) x H'(w)), (21a)
0 e L™(0,T; H(Q) x H'(w)), (21b)
ciVi € L*((0,T) x (QUw)) fori=1,...,n, (21c)

which satisfy the Dirichlet boundary conditions, the initial conditions, the volume
balance and positivity, as well as fulfill the following variational equations:

T, 862'_ n T o
/0 /Quw{atci+§ [kBOVe; + 10T ()Ve| miD7Ve; | dudt
Jj=1
~ [ [ steolelds. . (22a)
0J 0w

/ (Ve AV — 1Y (c)p) dx + /
QUwW

Ow

alell7] ds, = /6 gleldS,,  (22b)

for all test functions &; € H*(0,T; L*(Q) x L*(w)) N L*(0,T; H'(Q) x H'(w)) and
@€ H'Y(Q) x H'(w) such that & = 0 on (0,7) x 92 and ¢ = 0 on 9N

1 1 n
=N, 9 (Zj — aT(c)) and Y(c) :==> ;_, zkck
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PNP | Reduced formulation. 1

The formulation after excluding u; and p and reducing the constraints.

Reduced system of the equations

8Ci 9 = + T ij .
5 —d1VZ[k‘B@ch+1QFj(c )V(p} m; DY =0 in (0,7)x(QUuw) (23)
=1
+
—div(Vy T A) = 10 cZk 1L5% in (0,7) x (QUw) (24)
Dkt €
here T'j(c™) ¢ _9 ( Z:1 chzr) are uniformly bounded
whner ilc = <n I \% 0 == = re unirormly un :
! Na Y\ > ko1 Ch

Z
+ — .
0<I(c)) < A,Wherer Eﬁ | 2]

+
If constraints (6) and (7) hold, then I';(c*) = T, (c) and czil %~ Y(e)
k 1Ck
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PNP | Reduced formulation. 2

Boundary conditions

Neumann—Robin conditions:

[Ji]lv =0, —Jiv=gi(c,p) on (0,T)x Ouw, (25)
where

Ji —

NIE

T g
{kB@vcj + 1er(c+)w} m; DY
1

<.
Il

[(Vo)TAlv =0, —(Vo)TAv+afe]=¢g on (0,T) x dw; (26)

Dirichlet conditions:

Do i=1,...,n, on (0,T) x 9% (27)

Initial conditions
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stence theorem. 1

Let the growth conditions for reactions on the boundary

/ lgi(e, ©) 2 dz < i +Yalloll L2 o m (@ x HI(w))s &= 1,---,7,
ow

and the assumptions on coefficient matrices hold:
aéf? <€TAE<alEf, €eR’, (30)
dY Gl <) &miDig <dy l6l°, &, .6 eRT (31)
i=1 i,j=1 i=1

Then there exists a weak solution of the reduced problem.
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osedness analysis

Two auxiliary lemmas

Lemma 2 (Volume conservation)

Under assumptions on the boundary and the weak assumption of the diffusivity
matrices

Zgi(q ©)=0 on (0,7) x Jw, Zsz” =
i=1

D, j=1,....n

the volume constraint >, ¢; = C is satisfied a.e. on (0,T) x (Q Uw).

Lemma 3 (Weak maximum principle)

Under assumptions on the data
gi(e,o)[c;1=0 on (0,T) X 0w, Ve, i=1,...,n,
sl = Gl g = L

we have the positive solution c;

n,

>0 a.e on (0,7) X (QUuw) fori=1,...

Anna Zubkova (KFU)

Generalized PNP system




xistence theorem. 2

From Lemma 2 and Lemma 3 it follows

Lemma 4 (Equivalence of formulations)

Under assumptions made in Lemmas 2 and 3 the complete and the reduced
problems are equivalent.

Theorem 5 (Well-posedness of generalized Poisson—-Nernst—-Planck system)

Let assumptions on the nonlinear boundary terms hold.

Q If the weak assumption on diffusivity matrices holds, then there exists a
weak solution of the problem. By continuity, ¢ > 0 locally for small t > 0.

@ If additionally the strong assumption on diffusivity matrices holds, then
c > 0 globally for T > 0.

A weak solution satisfies a priori estimates

1117 0o (0,7, 1 (@) x 1 () < K (32)
el 2o 0.7:22(@)x 22(w)) + 1€llT2 0,101 (@) x 1 () € Ko + 7K. (33)
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Uniqueness theorem

Theorem 6 (Uniqueness of the solution of generalized Poisson—Nernst—Planck
system)

Let ¢ be smooth such that

0 € L((0,T) x (QUw))? and Vyp € L=((0,T) x (Q Uw))? (34)

and the nonlinear boundary fluzes are injective and satisfy the following
assumption: there exists G;(c), ¢, oM ©?)) > 0 such that

/6 (g:(cD, oM) — gi(e®, @) [V — P dSz’

< Gi(eW, @ M) @(2))/ (cgl) — 052))2 de, i=1,...,n, (35)

QUw

for all ¢V >0, ¢? >0 such that 7, Z =37, c Z = C and for all o'
(2)
o),

Then a weak solution of the complete problem is unique.
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Lyapunov stability

Entropy and entropy dissipation

We define the entropy as follows:

S:RT =R, S(t):= —kBNAZ/ ¢; In(B;c;) do.
QUw
We introduce the function of dissipation: D : RT — R,

D(t) = -2 = kBNAZ/ acl In(Bic;) da.

QUw

Theorem 7 (Lyapunov stability)

Under assumptions m;D¥ = dé;;I, A = al, DR zicP? =0 and c? = 1/6; on 9Q for
the mass concentrations c; satisfying the constraints (6) and (7), the entropy
dissipation can be expressed equivalently as follows: D = Dy + D2, where

Dy = d’“B/(ch) dac+4dkBNA@Z/ V(&) da, (36)

dkB (g — ofe]) Zzl[[cl]]ds *kBNAZ/ gi(e, ) (S—D)]]dsz

DQI
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Results and future work

@ We have derived the rigorous mathematical formulation for the physical
model

We have got existence based on the reduced model without constraints
@ We have provided uniqueness in a special case

o We have obtained a priori energy and entropy estimates of the solution
e We have obtained the dissipation of the entropy

Plans:

e Homogenization of a porous medium with respect to a solid
micro—particle size

e Numerical algorithms and tests
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