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Formulation of the problem Well-posedness analysis Conclusion

Motivation

Electro�kinetic phenomena in bio�molecular or electro�chemical models
Speci�c interest concerns lithium ion batteries

Sources: Wikipedia, University of Oxford: Energy and Power Group
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Overwiew

Modeling

Discontinuous solution in a two-phase medium
Nonlinear reactions at the face interface
Taking pressure into account
(as a consequence of the Navier�Stokes equations)
Mass and volume balances
Positivity of concentrations

Well�posedness

Generalized formulation coupled with dual entropy variables and
constraints
Existence theorem based on the reduced formulation without constraints
A priori energy and entropy estimates
Weak maximum principle
Uniqueness in a special case
Lyapunov stability

Anna Zubkova (KFU) Generalized PNP system 2 / 21



Formulation of the problem Well-posedness analysis Conclusion

Geometry

-

Q

+

Q pore phase, ω solid phase, ∂ω interface with a jump J · K = · |∂ω+ − · |∂ω−

Ω = Q ∪ ω ∪ ∂ω two-phase domain

Spatial dimension d ∈ {1, 2, 3}
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PNP | The generalized Poisson�Nernst�Planck system. 1

For charge species i = 1, . . . , n in (0, T )× (Q ∪ ω):

The Fick's law of di�usion:
∂ci
∂t
− div Ji = 0 (1a)

with di�usion �uxes: Ji =

n∑
j=1

cj(∇µj)>miD
ij (1b)

in particles (0, T )× ω:

electro-chemical potentials: µi = kBΘln(βici) (1c)

the Ohm's law: − div((∇ϕ)>A) = 0 (1d)

ci
(
mol/m3

)
concentrations of charged species with the charge numbers zi,

Ji
(
mol/(m2 · s)

)
di�usion �uxes,

Dij
(
m2/(J · s)

)
di�usivity matrices in Rd×d,

ϕ (V ) electrostatic potential,
µi (J) (quasi�Fermi) electro-chemical potentials,
A (F/m) electric permittivity in Rd×d,

mi > 0, kB > 0, Θ > 0, βi > 0 are constant
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PNP | The generalized Poisson�Nernst�Planck system. 2

In pore (0, T )×Q:

quasi�Fermi electro-chemical potentials:

µi = kBΘln(βici) +
1

NA

( 1

C
p+ ziϕ

)
(2a)

the force balance: ∇p = −
( n∑
k=1

zkck

)
∇ϕ (2b)

the Gauss's �ux law: − div((∇ϕ)>A) =

n∑
k=1

zkck (2c)

C
(
mol/m3

)
summary concentration,

p (Pa) pressure,

NA > 0 constant
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PNP | Boundary and initial conditions

Dirichlet conditions:

ci = cDi , i = 1, . . . , n, on (0, T )× ∂Ω (3a)

ϕ = ϕD on (0, T )× ∂Ω (3b)

Interface conditions:

JJiKν = 0, −Jiν = gi
(
c, ϕ

)
on (0, T )× ∂ω (4a)

J(∇ϕ)>AKν = 0, −(∇ϕ)>Aν + αJϕK = g on (0, T )× ∂ω (4b)

Initial conditions:
ci = cini on Q ∪ ω (5)
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PNP | Thermodynamic properties

Positivity of concentrations:

ci > 0, i = 1, . . . , n, in (0, T )× (Q ∪ ω) (6)

Volume balance:
n∑
i=1

ci = C in (0, T )× (Q ∪ ω) (7)

Mass balance:
n∑
i=1

Ji = 0 in (0, T )× (Q ∪ ω) (8)

follows from volume balance (7) and di�usivity property (19)
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PNP | Data of the problem

Initial data as t = 0

Volume balance:
n∑
i=1

cini = C in Q ∪ ω (9)

Positivity:
cini > 0, i = 1, . . . , n, in Q ∪ ω (10)

Boundary data

Volume balance:
n∑
i=1

cDi = C on (0, T )× ∂ω (11)

Positivity:
cDi > 0 on (0, T )× ∂ω (12)

Compatibility conditions:

cDi (0, ·) = cini , i = 1, . . . , n, in Q ∪ ω (13)

Anna Zubkova (KFU) Generalized PNP system 8 / 21



Formulation of the problem Well-posedness analysis Conclusion

PNP | Assumptions. 1

Nonlinear boundary data

Growth conditions:∫
∂ω

|gi(c, ϕ)|2 dx 6 γi1 + γi2||ϕ||2L2(0,T ;H1(Q)×H1(ω)), i = 1, . . . , n, (14)

where γi1 > 0 and γi2 > 0

Mass balance:
n∑
i=1

gi(c, ϕ) = 0 on (0, T )× ∂ω (15)

Positive production rate:

gi(c, ϕ)Jc−i K = 0 on (0, T )× ∂ω, for all ci, i = 1, . . . , n (16)

where c+i := max{0, ci}, c−i := −min{0, ci},
such that ci = c+i − c

−
i , c

+
i > 0, c−i > 0, c+i c

−
i = 0, for i = 1, . . . , n.
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Example of gi(c, ϕ)

For example, the non trivial functions

g1(c, ϕ) = G1

(
(c|∂ω+)+

)
G1

(
(c|∂ω−)+

)
G2

(
(c|∂ω+)+

)
G2

(
(c|∂ω−)+

)
,

g2(c, ϕ) = −g1(c, ϕ)

where Gj(c) :=
cj∑n
k=1 ck

such that |Gj(c)| 6 1 and Gj(c
+)c−j = 0,

ful�ll all the conditions (14)�(16) with γi2 = 0 and γi1 = |∂ω|.
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PNP | Assumptions on matrices

Symmetric positive de�niteness of A: There exist 0 < a 6 ā such that

a|ξ|2 6 ξ>Aξ 6 ā|ξ|2, ξ ∈ Rd. (17a)

Strong ellipticity condition for Dij : There exist 0 < d 6 d̄ such that

d
n∑
i=1

|ξi|2 6
n∑

i,j=1

ξ>i miD
ij ξj 6 d̄

n∑
i=1

|ξi|2, ξ1, . . . , ξn ∈ Rd. (17b)

Symmetric positive de�niteness of D: There exist 0 < d 6 d̄ such that

d|ξ|2 6 ξ>D ξ 6 d̄|ξ|2, ξ ∈ Rd. (18)

Properties of di�usivity matrices

Weak assumption:
n∑
i=1

miD
ij = D, j = 1, . . . , n; (19)

Strong assumption:

miD
ij = δijD, i, j = 1, . . . , n. (20)
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PNP | Weak formulation of the problem

Find discontinuous functions c1, . . . , cn, and ϕ such that

ci ∈ L∞(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)), (21a)

ϕ ∈ L∞(0, T ;H1(Q)×H1(ω)), (21b)

ci∇ϕi ∈ L2((0, T )× (Q ∪ ω)) for i = 1, . . . , n, (21c)

which satisfy the Dirichlet boundary conditions, the initial conditions, the volume

balance and positivity, as well as ful�ll the following variational equations:∫ T

0

∫
Q∪ω

{∂ci
∂t
c̄i +

n∑
j=1

[
kBΘ∇cj + 1QΥj(c)∇ϕ

]>
miD

ij∇c̄i
}
dx dt

=

∫ τ

0

∫
∂ω

gi(c, ϕ)Jc̄iK dSx dt, (22a)∫
Q∪ω

(∇ϕ>A∇ϕ̄− 1QΥ(c)ϕ̄) dx+

∫
∂ω

αJϕKJϕ̄K dSx =

∫
∂ω

gJϕ̄K dSx, (22b)

for all test functions c̄i ∈ H1(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)) and

ϕ̄ ∈ H1(Q)×H1(ω) such that c̄i = 0 on (0, T )× ∂Ω and ϕ̄ = 0 on ∂Ω

Υj(c) :=
1

NA
cj
(
zj −

1

C
Υ(c)

)
and Υ(c) :=

∑n
k=1 zkck
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PNP | Reduced formulation. 1

The formulation after excluding µi and p and reducing the constraints.

Reduced system of the equations

∂ci
∂t
−div

n∑
j=1

[
kBΘ∇cj +1QΓj(c

+)∇ϕ
]>
miD

ij = 0 in (0, T )×(Q∪ω) (23)

−div(∇ϕ>A) = 1QC

∑n
k=1 zkc

+
k∑n

k=1 c
+
k

in (0, T )× (Q ∪ ω) (24)

where Γj(c
+) :=

C

NA

c+j∑n
k=1 c

+
k

(
zj −

∑n
k=1 zkc

+
k∑n

k=1 c
+
k

)
are uniformly bounded:

0 6 Γ(c+j ) 6
CZ

NA
, where Z =

n∑
i=1

|zi|

If constraints (6) and (7) hold, then Γj(c
+) = Υj(c) and C

∑n
k=1 zkc

+
k∑n

k=1 c
+
k

= Υ(c)
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PNP | Reduced formulation. 2

Boundary conditions

Neumann�Robin conditions:

JJiKν = 0, −Jiν = gi(c, ϕ) on (0, T )× ∂ω, (25)

where

Ji =

n∑
j=1

[
kBΘ∇cj + 1QΓj(c

+)∇ϕ
]>
miD

ij ;

J(∇ϕ)>AKν = 0, −(∇ϕ)>Aν + αJϕK = g on (0, T )× ∂ω; (26)

Dirichlet conditions:

ci = cDi , i = 1, . . . , n, on (0, T )× ∂Ω; (27)

ϕ = ϕD on (0, T )× ∂Ω. (28)

Initial conditions

ci(0, ·) = cini , i = 1, . . . , n, as t = 0. (29)
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Existence theorem. 1

Theorem 1 (Existence of a weak solution of the reduced problem)

Let the growth conditions for reactions on the boundary∫
∂ω

|gi(c, ϕ)|2 dx 6 γi1 + γi2||ϕ||L2(0,T ;H1(Q)×H1(ω)), i = 1, . . . , n,

and the assumptions on coe�cient matrices hold:

a|ξ|2 6 ξ>Aξ 6 ā|ξ|2, ξ ∈ Rd, (30)

d

n∑
i=1

|ξi|2 6
n∑

i,j=1

ξ>i miD
ij ξj 6 d̄

n∑
i=1

|ξi|2, ξ1, . . . , ξn ∈ Rd (31)

Then there exists a weak solution of the reduced problem.
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Two auxiliary lemmas

Lemma 2 (Volume conservation)

Under assumptions on the boundary and the weak assumption of the di�usivity

matrices

n∑
i=1

gi(c, ϕ) = 0 on (0, T )× ∂ω,
n∑
i=1

miD
ij = D, j = 1, . . . , n,

the volume constraint
∑n
i=1 ci = C is satis�ed a.e. on (0, T )× (Q ∪ ω).

Lemma 3 (Weak maximum principle)

Under assumptions on the data

gi(c, ϕ)Jc−i K = 0 on (0, T )× ∂ω, ∀ci, i = 1, . . . , n,

miD
ij = δijD, i, j = 1, . . . , n,

we have the positive solution ci > 0 a.e. on (0, T )× (Q ∪ ω) for i = 1, . . . , n.
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Existence theorem. 2

From Lemma 2 and Lemma 3 it follows

Lemma 4 (Equivalence of formulations)

Under assumptions made in Lemmas 2 and 3 the complete and the reduced

problems are equivalent.

Theorem 5 (Well�posedness of generalized Poisson�Nernst�Planck system)

Let assumptions on the nonlinear boundary terms hold.

1 If the weak assumption on di�usivity matrices holds, then there exists a

weak solution of the problem. By continuity, c > 0 locally for small t > 0.

2 If additionally the strong assumption on di�usivity matrices holds, then

c > 0 globally for T > 0.

A weak solution satis�es a priori estimates

||ϕ||2L∞(0,T ;H1(Q)×H1(ω)) 6 Kϕ, (32)

||c||2L∞(0,T ;L2(Q)×L2(ω)) + ||c||2L2(0,T ;H1(Q)×H1(ω)) 6 Kc + γcKϕ. (33)
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Uniqueness theorem

Theorem 6 (Uniqueness of the solution of generalized Poisson�Nernst�Planck
system)

Let ϕ be smooth such that

ϕ ∈ L∞((0, T )× (Q ∪ ω))d and ∇ϕ ∈ L∞((0, T )× (Q ∪ ω))d (34)

and the nonlinear boundary �uxes are injective and satisfy the following

assumption: there exists G̃i(c
(1), c(2), ϕ(1), ϕ(2)) > 0 such that∣∣∣∣∫

∂ω

(
gi(c

(1), ϕ(1))− gi(c(2), ϕ(2))
)
Jc(1)i − c

(2)
i K dSx

∣∣∣∣
6 G̃i(c

(1), c(2), ϕ(1), ϕ(2))

∫
Q∪ω

(c
(1)
i − c

(2)
i )2 dx, i = 1, . . . , n, (35)

for all c(1) > 0, c(2) > 0 such that
∑n
i=1 c

(1)
i =

∑n
i=1 c

(2)
i = C and for all ϕ(1),

ϕ(2).

Then a weak solution of the complete problem is unique.
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Lyapunov stability

Entropy and entropy dissipation

We de�ne the entropy as follows:

S : R+ → R, S(t) := −kBNA
n∑
i=1

∫
Q∪ω

ci ln(βici) dx.

We introduce the function of dissipation: D : R+ → R,

D(t) := −dS
dt

= kBNA

n∑
i=1

∫
Q∪ω

∂ci
∂t

ln(βici) dx.

Theorem 7 (Lyapunov stability)

Under assumptions miD
ij = dδijI, A = aI,

∑n
i=1 zic

D
i = 0 and cDi = 1/βi on ∂Ω for

the mass concentrations ci satisfying the constraints (6) and (7), the entropy

dissipation can be expressed equivalently as follows: D = D1 +D2, where

D1 :=
dkB
a

∫
Q

( n∑
i=1

zici
)2
dx+ 4dk2BNAΘ

n∑
i=1

∫
Q∪ω
|∇(
√
ci)|2 dx, (36)

D2 :=
dkB
a

∫
∂ω

(g − αJϕK)
n∑

i=1

ziJciK dSx − kBNA

n∑
i=1

∫
∂ω

gi(c, ϕ)
[[

ln

(
ci
cDi

)]]
dSx.

Here, D1 > 0 and the dissipation inequality D > 0 can be assured by

non-negative D2.
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Results and future work

We have derived the rigorous mathematical formulation for the physical
model

We have got existence based on the reduced model without constraints

We have provided uniqueness in a special case

We have obtained a priori energy and entropy estimates of the solution

We have obtained the dissipation of the entropy

Plans:

Homogenization of a porous medium with respect to a solid
micro�particle size

Numerical algorithms and tests
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