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Linz, Austria

AANMPDE-9-16, St. Wolfgang, July 4, 2016

Motivation and modeling Optimization in space and time Numerical results Summary and outlook

www.oeaw.ac.at M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics



Johann Radon Institute for Computational and Applied Mathematics

Outline

1 Motivation and modeling

2 Optimization in space and time

3 Numerical results

4 Summary and outlook

Motivation and modeling Optimization in space and time Numerical results Summary and outlook

www.oeaw.ac.at M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics



Johann Radon Institute for Computational and Applied Mathematics

Pedestrian motion

Empirical studies of human crowds started about 50 years ago.

Nowadays there is a large literature on different micro- and
macroscopic approaches available.

Challenges: microscopic interactions not clearly defined,
multiscale effects, finite size effects,.....
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Microscopic and macroscopic models

Microscopic models (model every particle):

force based models: position of a particle is determined by
forces acting on it

stochastic optimal control models: each agent wants to
minimize a stochastic cost functional

lattice based models: domain divided into cells, particles may
(or may not) jump from one cell to another with a certain
transition probability

Macroscopic models: number of individuals goes to infinity,
nonlinear transport-diffusion equation based on conservation of
mass
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Nonlinear diffusion transportation models

Intuitive assumption: total number of individuals is conserved in
time and the speed of individuals is linked to the density of the
surrounding pedestrian flow.

Conservation law:

∂tρ(x , t) + div(F (ρ(x , t))v(x , t)) = 0,

where x ∈ Ω ⊂ Rd with d = {1, 2, 3} is the position in space,
t ∈ (0,T ] the time, ρ(x , t) the pedestrian density, v(x , t) the
velocity and F (ρ) the mobility/penalization function for high
densities such as F (ρ) = ρmax − ρ or F (ρ) = ρ(ρmax − ρ)2 with
ρmax being the maximal density, e.g., we will choose ρmax = 1
later. See also

R. L. Hughes. A continuum theory for the flow of pedestrians.
Transportation Research Part B: Methodological, 36(6):507–535, 2002.
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Hughes’ model for pedestrian flow

Pedestrians have a common sense/drive of the task described
via a potential φ, where −∇φ gives the direction.

Pedestrians try to minimize the travel time.

Pedestrians try to avoid high densities, speed depends on the
density of the surrounding pedestrian flow.

ρt − div(ρf 2(ρ)∇φ) = 0,

|∇φ| =
1

f (ρ)
,

where f (ρ) provides a weighting or cost wrt high densities, i.e.,
saturation for ρ→ ρmax . More detailed discussion can be found in

M. Burger, M. Di Francesco, P. Markowich and M-T. Wolfram. Mean field games with nonlinear mobilities
in pedestrian dynamics,
A continuum theory for the flow of pedestrians. DCDS B, 19, 2014.
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An optimal control approach for fast exit scenarios

Let us consider an evacuation/fast exit scenario, i.e., a room with
one or several exits from which a group wants to leave as fast as
possible. Let Ω ⊂ R2, Γ = ∂Ω = ΓE ∪ ΓN , and (0,T ) be the time
interval. The minimization reads as: minρ,v J (ρ, v) with

J (ρ, v) =
1

2

∫ T

0

∫
Ω
ρ(x , t)|v(x , t)|2dx dt︸ ︷︷ ︸
kinetic energy

+
α

2

∫ T

0

∫
Ω
ρ(x , t) dx dt︸ ︷︷ ︸

exit time

,

s.t. ∂tρ+ div(ρv) =
σ2

2
4ρ, in Ω× (0,T ),

(−σ
2

2
∇ρ+ ρv) · n = 0, on ΓN × (0,T ),

(−σ
2

2
∇ρ+ ρv) · n = βρ, on ΓE × (0,T ), ρ(·, 0) = ρ0(·), in Ω.
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Two different approaches to solve the problem

Target: evacuate the group of people as fast as possible

Approach 1: group has to leave the room via the exit(s)

Approach 2: group has to get from one place to the other
→ transport problem
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Space-time approach to optimal mass transport

J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass
transfer problem,
Numerische Mathematik, 84(3):375–393, 2000.

proposed to reset the L2 Monge-Kantorovich mass transfer
problem in a fluid mechanics framework: minρ,v J (ρ, v) with

J (ρ, v) =

∫ T

0

∫
Ω
ρ(x , t)|v(x , t)|2dx dt,

subject to

∂tρ+ div(ρv) = 0, ρ(x , 0) = ρ0(x), ρ(x ,T ) = ρT (x).

More efficient numerical treatment proposed in
E. Haber and R. Horesh. A multilevel method for the solution of time dependent optimal transport.
Numerical Mathematics: Theory, Methods and Applications, 8(1):97–111, 2015.

by setting the momentum m = ρv .
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Generalization of the optimal control problem

Introducing the function F (ρ) describing the nonlinear mobilities, we
consider the following optimization problem:

min
ρ,v
J (ρ, v) = min

ρ,v

1

2

∫
QT

F (ρ(x , t))|v(x , t)|2dx dt +
α

2

∫
QT

ρ(x , t) dx dt,

such that

∂tρ(x , t) + div(F (ρ(x , t))v(x , t)) =
σ2

2
4ρ(x , t), in Ω× (0,T ),

(F (ρ)v − σ2

2
∇ρ) · n = 0, on ΓN × (0,T ),

(F (ρ)v − σ2

2
∇ρ) · n = βρ, on ΓE × (0,T ),

ρ(x , 0) = ρ0(x), in Ω.
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Momentum formulation

Denoting the momemtum m = F (ρ)v , we can rewrite the
minimization functional as

J (ρ,m) =
1

2

∫ T

0

∫
Ω

|m(x , t)|2

F (ρ(x , t))
dx dt +

α

2

∫ T

0

∫
Ω
ρ(x , t) dx dt,

s.t. ∂tρ+ div(m) =
σ2

2
4ρ, in Ω× (0,T ),

(m − σ2

2
∇ρ) · n = 0, on ΓN × (0,T ),

(m − σ2

2
∇ρ) · n = βρ, on ΓE × (0,T ),

ρ(x , 0) = ρ0(x), in Ω.
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Optimality system

Find the solution (ρ,m, λ), where λ is the Lagrange multiplier, of

∂tρ+ div(m)− σ2

2
4ρ = 0, in Ω× (0,T ),

m
F (ρ)

−∇λ = 0, in Ω× (0,T ),

∂tλ+
F ′(ρ)|m|2

2F 2(ρ)
+
σ2

2
4λ =

α

2
, in Ω× (0,T ),

(m − σ2

2
∇ρ) · n = 0,

σ2

2
∇λ · n = 0, on ΓN × (0,T ),

(m − σ2

2
∇ρ) · n = βρ,

σ2

2
∇λ · n + βλ = 0, on ΓE × (0,T ),

ρ(x , 0) = ρ0(x), λ(x ,T ) = 0, in Ω.
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A priori estimate for the forward problem

V = L2(0,T ;H1(Ω)) ∩ H1(0,T ;H−1(Ω)), Q = [L2(Ω× (0,T ))]d

Lemma

Let ρ0 ∈ L2(Ω). Let F (ρ) ∈ C 1(R) be bounded and non-negative
for 0 ≤ ρ ≤ ρmax and let σ > 0, β ≥ 0. Let v ∈ Q and let ρ ∈ V
be a weak solution of

〈∂tρ, ψ〉H−1,H1 +

∫
Ω

(
σ2

2
∇ρ− F (ρ)v

)
· ∇ψ dx = −

∫
ΓE

βρψ ds,

for all ψ ∈ H1(Ω). Then there exist constants C1,C2 > 0
depending on F , σ,Ω and T only, such that

‖ρ‖V ≤ C1‖v‖Q + C2.
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Existence and uniqueness

Theorem

Under the assumptions of the Lemma the variational problem for
min(ρ,v)∈V×Q J (ρ, v) subject to ∂tρ+ div(F (ρ)v) = σ2

2 4ρ has at
least a weak solution in V × Q with given ρ0 ∈ L2(Ω).

Theorem

For fixed ρ0 ∈ L2(Ω), there exists a unique weak solution

(ρ, λ) ∈ L2(0,T ;H1(Ω))× L2(0,T ;H1(Ω))

to the (reduced) optimality system.
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Numerical results

The code was implemented in the programming language Julia,
see http://julialang.org.

Let F (ρ) = ρ(1− ρ)2 as in Hughes’ model. The optimality system
is discretized by a finite volume method in space-time.

Octree mesh with 323 space-time cubes (32 time slices).

In order to solve the constrained optimization problem, we apply a
version of the line search sequential quadratic programming (SQP)
method (Newton-type scheme).

We have two types of numerical experiments:

with BCs, without final time condition, with σ 6= 0,

with final time condition, without BCs, with σ = 0.
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Numerical results - with exits

Initial distribution: ρ0(x) = 0.4 for x ∈ [0.2, 0.8]× [0.5, 0.7] and
ρ0(x) = 0 elsewhere; β = 10, σ = 1, α = 20;
22 SQP iterations needed
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Numerical results - mass transport

2 Examples (with higher and lower initial density):

Initial distribution: ρ0(x) = 0.4 for x ∈ [0.5, 0.7]× [0.4, 0.6]
and ρ0(x) = 0 elsewhere; terminal distribution: ρT (x) = 0.3
for x ∈ [0.05, 0.25]× [0.4, 0.6], ρT (x) = 0.1 for
x ∈ [0.65, 0.85]× [0.2, 0.4] and ρT (x) = 0 elsewhere.

Initial distribution: ρ0(x) = 0.8 for x ∈ [0.5, 0.7]× [0.4, 0.6]
and ρ0(x) = 0 elsewhere; terminal distribution: ρT (x) = 0.5
for x ∈ [0.05, 0.25]× [0.4, 0.6], ρT (x) = 0.3 for
x ∈ [0.65, 0.85]× [0.2, 0.4] and ρT (x) = 0 elsewhere.
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Summary and outlook

Summary:

Optimal control approach to the modeling of pedestrian
dynamics

Space-time solver based on Benamou-Brenier and
Haber-Horesh

Outlook:

Improve the model as well the solver

More numerical results, e.g., include obstacles in the domain,
finer space-time meshes

Preconditioning

Adaptive methods in space and time

New minimal time optimization problem for evacuation
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Thank you for your attention!
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