

Space-time methods for optimal control models in pedestrian dynamics

Monika Wolfmayr

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria

AANMPDE-9-16, St. Wolfgang, July 4, 2016

www.oeaw.ac.at	M. Wolfmayr, Space-time methods for op	ptimal control models in ped	estrian dynamics

Outline

2 Optimization in space and time

- 3 Numerical results
- 4 Summary and outlook

www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	estrian dynamics

Pedestrian motion

- Empirical studies of human crowds started about 50 years ago.
- Nowadays there is a large literature on different micro- and macroscopic approaches available.
- Challenges: microscopic interactions not clearly defined, multiscale effects, finite size effects,.....

Motivation and modeling •00000 Optimization in space and

Numerical result

Summary and outlook

www.oeaw.ac.at

M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics

Microscopic and macroscopic models

Microscopic models (model every particle):

- force based models: position of a particle is determined by forces acting on it
- stochastic optimal control models: each agent wants to minimize a stochastic cost functional
- lattice based models: domain divided into cells, particles may (or may not) jump from one cell to another with a certain transition probability

Macroscopic models: number of individuals goes to infinity, nonlinear transport-diffusion equation based on conservation of mass

www.oeaw.ac.at	M. Wolfmayr, Space-time methods for op	otimal control models in ped	estrian dynamics
Motivation and modeling 00000	Optimization in space and time		

Nonlinear diffusion transportation models

Intuitive assumption: total number of individuals is conserved in time and the speed of individuals is linked to the density of the surrounding pedestrian flow.

Conservation law:

$$\partial_t \rho(\mathbf{x}, t) + \operatorname{div}(F(\rho(\mathbf{x}, t))\mathbf{v}(\mathbf{x}, t)) = 0,$$

where $x \in \Omega \subset \mathbb{R}^d$ with $d = \{1, 2, 3\}$ is the position in space, $t \in (0, T]$ the time, $\rho(\mathbf{x}, t)$ the pedestrian density, $\mathbf{v}(\mathbf{x}, t)$ the velocity and $F(\rho)$ the **mobility/penalization function** for high densities such as $F(\rho) = \rho_{max} - \rho$ or $F(\rho) = \rho(\rho_{max} - \rho)^2$ with ρ_{max} being the maximal density, e.g., we will choose $\rho_{max} = 1$ later. See also

 R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507–535, 2002.

Motivation and modeling 00●000			
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for op	ptimal control models in ped	estrian dynamics

Hughes' model for pedestrian flow

- Pedestrians have a common sense/drive of the task described via a potential ϕ , where $-\nabla \phi$ gives the direction.
- Pedestrians try to minimize the travel time.
- Pedestrians try to avoid high densities, speed depends on the density of the surrounding pedestrian flow.

$$egin{aligned} &
ho_t - \mathsf{div}(
ho f^2(
ho)
abla \phi) = 0, \ &|
abla \phi| = rac{1}{f(
ho)}, \end{aligned}$$

where $f(\rho)$ provides a weighting or cost wrt high densities, i.e., saturation for $\rho \rightarrow \rho_{max}$. More detailed discussion can be found in

- M. Burger, M. Di Francesco, P. Markowich and M-T. Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics,
 - A continuum theory for the flow of pedestrians. DCDS B, 19, 2014.

Motivation and modeling 000●00			
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	otimal control models in ped	estrian dynamics

Moti 000 www

An optimal control approach for fast exit scenarios

Let us consider an evacuation/fast exit scenario, i.e., a room with one or several exits from which a group wants to leave as fast as possible. Let $\Omega \subset \mathbb{R}^2$, $\Gamma = \partial \Omega = \Gamma_E \cup \Gamma_N$, and (0, T) be the time interval. The minimization reads as: $\min_{\rho, \mathbf{v}} \mathcal{J}(\rho, \mathbf{v})$ with

$$\mathcal{J}(\rho, \mathbf{v}) = \underbrace{\frac{1}{2} \int_{0}^{T} \int_{\Omega} \rho(\mathbf{x}, t) |\mathbf{v}(\mathbf{x}, t)|^{2} d\mathbf{x} dt}_{\text{kinetic energy}} + \underbrace{\frac{\alpha}{2} \int_{0}^{T} \int_{\Omega} \rho(\mathbf{x}, t) d\mathbf{x} dt}_{\text{exit time}},$$
s.t. $\partial_{t}\rho + \operatorname{div}(\rho\mathbf{v}) = \frac{\sigma^{2}}{2} \Delta \rho, \quad \text{in } \Omega \times (0, T),$
 $(-\frac{\sigma^{2}}{2} \nabla \rho + \rho \mathbf{v}) \cdot \mathbf{n} = 0, \quad \text{on } \Gamma_{N} \times (0, T),$
 $(-\frac{\sigma^{2}}{2} \nabla \rho + \rho \mathbf{v}) \cdot \mathbf{n} = \beta \rho, \text{ on } \Gamma_{E} \times (0, T), \quad \rho(\cdot, 0) = \rho_{0}(\cdot), \text{ in } \Omega.$
ation and modeling Optimization in space and time Numerical results Optimized control models in pedestrian dynamics
$$M. Wolfmayr, \text{ Space-time methods for optimal control models in pedestrian dynamics}$$

Two different approaches to solve the problem

Target: evacuate the group of people as fast as possible

Approach 1: group has to leave the room via the exit(s)

Approach 2: group has to get from one place to the other \rightarrow transport problem

Motivation and modeling ○○○○○●	Optimization in space and time	Numerical results	Summary and outlook
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	estrian dynamics

Space-time approach to optimal mass transport

 J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik, 84(3):375–393, 2000.

proposed to reset the L^2 Monge-Kantorovich mass transfer problem in a fluid mechanics framework: $\min_{\rho, \mathbf{v}} \mathcal{J}(\rho, \mathbf{v})$ with

$$\mathcal{J}(\rho, \mathbf{v}) = \int_0^T \int_\Omega \rho(\mathbf{x}, t) |\mathbf{v}(\mathbf{x}, t)|^2 d\mathbf{x} dt,$$

subject to

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = 0, \qquad \rho(\mathbf{x}, 0) = \rho_0(\mathbf{x}), \qquad \rho(\mathbf{x}, T) = \rho_T(\mathbf{x}).$$

More efficient numerical treatment proposed in

E. Haber and R. Horesh. A multilevel method for the solution of time dependent optimal transport. Numerical Mathematics: Theory, Methods and Applications, 8(1):97–111, 2015.

by setting the momentum $\boldsymbol{m} = \rho \boldsymbol{v}$.

	Optimization in space and time •00000		
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	estrian dynamics

Generalization of the optimal control problem

Introducing the function $F(\rho)$ describing the nonlinear mobilities, we consider the following optimization problem:

$$\min_{\rho,\mathbf{v}} \mathcal{J}(\rho,\mathbf{v}) = \min_{\rho,\mathbf{v}} \frac{1}{2} \int_{Q_{\tau}} F(\rho(\mathbf{x},t)) |\mathbf{v}(\mathbf{x},t)|^2 d\mathbf{x} dt + \frac{\alpha}{2} \int_{Q_{\tau}} \rho(\mathbf{x},t) d\mathbf{x} dt,$$

such that

$$\begin{cases} \partial_t \rho(\mathbf{x}, t) + \operatorname{div}(F(\rho(\mathbf{x}, t))\mathbf{v}(\mathbf{x}, t)) = \frac{\sigma^2}{2} \triangle \rho(\mathbf{x}, t), & \text{in } \Omega \times (0, T), \\ (F(\rho)\mathbf{v} - \frac{\sigma^2}{2} \nabla \rho) \cdot \mathbf{n} = 0, & \text{on } \Gamma_N \times (0, T), \\ (F(\rho)\mathbf{v} - \frac{\sigma^2}{2} \nabla \rho) \cdot \mathbf{n} = \beta \rho, & \text{on } \Gamma_E \times (0, T), \\ \rho(\mathbf{x}, 0) = \rho_0(\mathbf{x}), & \text{in } \Omega. \end{cases}$$

	Optimization in space and time		
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	lestrian dynamics

Momentum formulation

Denoting the momentum $\boldsymbol{m} = F(\rho)\boldsymbol{v}$, we can rewrite the minimization functional as

$$\mathcal{J}(\rho, \boldsymbol{m}) = \frac{1}{2} \int_0^T \int_\Omega \frac{|\boldsymbol{m}(\boldsymbol{x}, t)|^2}{F(\rho(\boldsymbol{x}, t))} d\boldsymbol{x} dt + \frac{\alpha}{2} \int_0^T \int_\Omega \rho(\boldsymbol{x}, t) d\boldsymbol{x} dt,$$

s.t.
$$\partial_t \rho + \operatorname{div}(\boldsymbol{m}) = \frac{\sigma^2}{2} \Delta \rho,$$
 in $\Omega \times (0, T),$
 $(\boldsymbol{m} - \frac{\sigma^2}{2} \nabla \rho) \cdot \boldsymbol{n} = 0,$ on $\Gamma_N \times (0, T),$
 $(\boldsymbol{m} - \frac{\sigma^2}{2} \nabla \rho) \cdot \boldsymbol{n} = \beta \rho,$ on $\Gamma_E \times (0, T),$
 $\rho(\boldsymbol{x}, 0) = \rho_0(\boldsymbol{x}),$ in $\Omega.$

	Optimization in space and time		
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	estrian dynamics

Optimality system

Find the solution ($\rho, \textit{\textbf{m}}, \lambda)$, where λ is the Lagrange multiplier, of

$$\begin{aligned} \partial_t \rho + \operatorname{div}(\boldsymbol{m}) - \frac{\sigma^2}{2} \Delta \rho &= 0, & \text{in } \Omega \times (0, T), \\ \frac{\boldsymbol{m}}{F(\rho)} - \nabla \lambda &= 0, & \text{in } \Omega \times (0, T), \\ \partial_t \lambda + \frac{F'(\rho)|\boldsymbol{m}|^2}{2F^2(\rho)} + \frac{\sigma^2}{2} \Delta \lambda &= \frac{\alpha}{2}, & \text{in } \Omega \times (0, T), \\ (\boldsymbol{m} - \frac{\sigma^2}{2} \nabla \rho) \cdot \boldsymbol{n} &= 0, & \frac{\sigma^2}{2} \nabla \lambda \cdot \boldsymbol{n} &= 0, & \text{on } \Gamma_N \times (0, T), \\ (\boldsymbol{m} - \frac{\sigma^2}{2} \nabla \rho) \cdot \boldsymbol{n} &= \beta \rho, & \frac{\sigma^2}{2} \nabla \lambda \cdot \boldsymbol{n} + \beta \lambda &= 0, & \text{on } \Gamma_E \times (0, T), \\ \rho(\boldsymbol{x}, 0) &= \rho_0(\boldsymbol{x}), & \lambda(\boldsymbol{x}, T) &= 0, & \text{in } \Omega. \end{aligned}$$

	Optimization in space and time		
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	estrian dynamics

A priori estimate for the forward problem

 $V = L^2(0, T; H^1(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \ Q = [L^2(\Omega \times (0, T))]^d$

Lemma

Let $\rho_0 \in L^2(\Omega)$. Let $F(\rho) \in C^1(\mathbb{R})$ be bounded and non-negative for $0 \le \rho \le \rho_{max}$ and let $\sigma > 0$, $\beta \ge 0$. Let $\mathbf{v} \in Q$ and let $\rho \in V$ be a weak solution of

$$\langle \partial_t \rho, \psi \rangle_{H^{-1}, H^1} + \int_{\Omega} \left(\frac{\sigma^2}{2} \nabla \rho - F(\rho) \mathbf{v} \right) \cdot \nabla \psi \, d\mathbf{x} = - \int_{\Gamma_E} \beta \rho \psi \, ds,$$

for all $\psi \in H^1(\Omega)$. Then there exist constants $C_1, C_2 > 0$ depending on F, σ, Ω and T only, such that

 $\|\rho\|_V \leq C_1 \|\mathbf{v}\|_Q + C_2.$

	Optimization in space and time		
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	lestrian dynamics

Existence and uniqueness

Theorem

Under the assumptions of the Lemma the variational problem for $\min_{(\rho, \mathbf{v}) \in V \times Q} \mathcal{J}(\rho, \mathbf{v})$ subject to $\partial_t \rho + div(F(\rho)\mathbf{v}) = \frac{\sigma^2}{2} \triangle \rho$ has at least a weak solution in $V \times Q$ with given $\rho_0 \in L^2(\Omega)$.

Theorem

For fixed $\rho_0 \in L^2(\Omega)$, there exists a unique weak solution

 $(\rho,\lambda) \in L^2(0,T;H^1(\Omega)) \times L^2(0,T;H^1(\Omega))$

to the (reduced) optimality system.

	Optimization in space and time		
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in peo	lestrian dynamics

Numerical results

The code was implemented in the **programming language Julia**, see http://julialang.org.

Let $F(\rho) = \rho(1-\rho)^2$ as in Hughes' model. The optimality system is discretized by a finite volume method in space-time.

Octree mesh with 32^3 space-time cubes (32 time slices).

In order to solve the constrained optimization problem, we apply a version of the line search sequential quadratic programming (SQP) method (Newton-type scheme).

We have two types of numerical experiments:

- with <u>BCs</u>, without final time condition, with $\sigma \neq 0$,
- with <u>final time condition</u>, without BCs, with $\sigma = 0$.

		Numerical results •00000	
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for op	otimal control models in ped	estrian dynamics

Numerical results - with exits

Initial distribution: $\rho_0(\mathbf{x}) = 0.4$ for $\mathbf{x} \in [0.2, 0.8] \times [0.5, 0.7]$ and $\rho_0(\mathbf{x}) = 0$ elsewhere; $\beta = 10$, $\sigma = 1$, $\alpha = 20$; 22 SQP iterations needed

 Motivation and modeling
 Optimization in space and time
 Numerical results
 Summary and outlook

 000000
 00000
 00000
 00000

 www.oeaw.ac.at
 M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics

Numerical results

www.oeaw.ac.at

M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics

Numerical results - mass transport

2 Examples (with higher and lower initial density):

- Initial distribution: $\rho_0(\mathbf{x}) = 0.4$ for $\mathbf{x} \in [0.5, 0.7] \times [0.4, 0.6]$ and $\rho_0(\mathbf{x}) = 0$ elsewhere; terminal distribution: $\rho_T(\mathbf{x}) = 0.3$ for $\mathbf{x} \in [0.05, 0.25] \times [0.4, 0.6]$, $\rho_T(\mathbf{x}) = 0.1$ for $\mathbf{x} \in [0.65, 0.85] \times [0.2, 0.4]$ and $\rho_T(\mathbf{x}) = 0$ elsewhere.
- Initial distribution: $\rho_0(\mathbf{x}) = 0.8$ for $\mathbf{x} \in [0.5, 0.7] \times [0.4, 0.6]$ and $\rho_0(\mathbf{x}) = 0$ elsewhere; terminal distribution: $\rho_T(\mathbf{x}) = 0.5$ for $\mathbf{x} \in [0.05, 0.25] \times [0.4, 0.6]$, $\rho_T(\mathbf{x}) = 0.3$ for $\mathbf{x} \in [0.65, 0.85] \times [0.2, 0.4]$ and $\rho_T(\mathbf{x}) = 0$ elsewhere.

		Numerical results	
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	lestrian dynamics

Numerical results

www.oeaw.ac.at

M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics

Numerical results

www.oeaw.ac.at

M. Wolfmayr, Space-time methods for optimal control models in pedestrian dynamics

Summary and outlook

Summary:

- Optimal control approach to the modeling of pedestrian dynamics
- Space-time solver based on Benamou-Brenier and Haber-Horesh

Outlook:

- Improve the model as well the solver
- More numerical results, e.g., include obstacles in the domain, finer space-time meshes
- Preconditioning
- Adaptive methods in space and <u>time</u>
- New minimal time optimization problem for evacuation

			Summary and outlook ●0
www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	lestrian dynamics

References

- R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507–535, 2002.
- 2 M. Burger, M. Di Francesco, P. Markowich and M-T. Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. A continuum theory for the flow of pedestrians. DCDS B, 19, 2014.
- 3 J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393, 2000.
- 4 E. Haber and R. Horesh. A multilevel method for the solution of time dependent optimal transport. Numerical Mathematics: Theory, Methods and Applications, 8(1):97–111, 2015.
- 5 J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Medial, 2006.
- 6 M. Di Francesco, P. A. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. On the Hughes' model for pedestrian flow: The one-dimensional case. Journal of Differential Equations, 250(3):1334–1362, 2011.
- E. Carlini, A. Festa, F. Silva and M.-T. Wolfram. A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow. *Preprint*, 2016.

Thank you for your attention!

www.oeaw.ac.at	M. Wolfmayr, Space-time methods for o	ptimal control models in ped	lestrian dynamics
			Summary and outlook ○●