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The PDE system of variational/phase-field fracture1

Formulation
Define V := H1

0(B), Win := {w ∈ H1(B)|w ≤ ϕold ≤ 1 a.e. on B}, and W := H1(B). For the
loading steps n = 1, 2, 3, . . .: Find vector-valued displacements and a scalar-valued phase-field variable
(u, ϕ) ∈ {uD + V} ×W such that((

(1− κ)ϕ2 + κ
)

σ(u), e(w)
)
= 0 ∀w ∈ V, (1)

and
(1− κ)(ϕ σ(u) : e(u), ψ−ϕ)

+ Gc

(
− 1

ε
(1− ϕ, ψ−ϕ) + ε(∇ϕ,∇(ψ− ϕ))

)
≥ 0 ψ ∈ Win ∩ L∞(B)

(2)

Therein, ε, κ > 0 and κ = o(ε), and Gc is the critical energy release rate. Moreover,

σ := σ(u) = 2µe(u) + λ tr(e(u))I.

Here, µ and λ are material parameters, e(u) = 1
2 (∇u +∇uT) is the strain tensor, and I the identity

matrix. Key challenges are:

• Relation of ε to spatial discretization parameter h;

• Non-convexity of the related energy functional due to
((

(1− κ)ϕ2 + κ
)

σ(u), e(w)
)

.

1Francfort/Marigo; 1998, Bourdin et al.; 2000, Miehe et al.; 2010
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A first example: damage and fatigue of screws

Figure: Industrial collaboration: Uniaxial tension and crack nucleation at points with
highest stresses. Experimental data from D. Wick (EJOT, Germany).

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 4



A first example: damage and fatigue of screws

Figure: Industrial collaboration: Uniaxial tension and crack nucleation at points with
highest stresses. Experimental data from D. Wick (EJOT, Germany).

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 5



A 2nd example: Two perpendicular fractures in a 3D
heterogeneous porous medium 2
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Figure: Two of snapshots of fractures propagating at each time step number n in
three dimensional heterogeneous media. Both fractures grow non-planarly, then they
join at n = 11 and start branching at n = 13. At right, mesh refinement studies show
computational stability for energy computations.

2Lee/Wheeler/Wick; CMAME, 2016
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Philosophy of our analysis and discretization

• Formulation as a semi-linear form:

Formulation

Find U := {u, ϕ} ∈ V×W such that

A(U)(Ψ−U) ≥ 0 ∀Ψ := {w, ψ} ∈ V×Win. (3)

• Relaxing the inequality constraint ∂t ϕ ≤ 0 (e.g., augmented Lagrangian);

• Discretization in time (incremental formulation);

• Adaptive discretization in space;

• Newton’s method (needs to be modified for fully monolithic solution!)
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A monolithically-coupled formulation
Formulation
Given ϕn−1, ϕ̃ ∈ H1(B). For the loading steps n = 1, 2, 3, . . .: Find
Un := U = {u, ϕ} ∈ {uD + V} ×W such that

A(U)(Ψ) =
((

(1− κ)ϕ̃2 + κ
)

σ(u), e(w)
)

+ (1− κ)(ϕ σ(u) : e(u), ψ) + Gc

(
− 1

ε
(1− ϕ, ψ) + ε(∇ϕ,∇ψ)

)
+ ([Ξ + γ(ϕ− ϕn−1)]+, ψ)

= 0 ∀Ψ := {w, ψ} ∈ V×W,

where ϕ̃ is a linear extrapolation of ϕn−1 and ϕn−2.

Why monolithic?

1 High accuracy of coupling conditions;

2 Numerical stability and implicit discretizations (e.g., in FSI - added-mass effect);

3 Consistent modeling of gradient-based optimization and dual-weighted error
estimation;

4 Space-time formulations;

5 Finally, sometimes, the monolithic solution is even more efficient than subiterations
(Gerasimov/Lorenzis; 2016, CMAME).
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Adaptive discretization in space 3

• Adaptive spatial discretization:

• Galerkin finite element scheme
with H1 conforming discrete
spaces Vh ⊂ V and Wh ⊂ W
consisting of bilinear functions
Qc

1 on
quadrilaterals/hexahedra.

• The key challenge is the
relation of the model
regularization parameter ε and
the spatial mesh size h (high
mesh resolution required!)
since h < ε.

→ Predictor-corrector mesh
adaptivity with hanging nodes
(the mesh grows with the
fracture).

Figure: Predictor-corrector scheme: 1.
advance in time, crack leaves fine mesh. 2.
refine and go back in time (interpolate old
solution). 3. advance in time on new
mesh. Repeat until mesh doesn’t change
anymore. Refinement is triggered for
ϕ < C = 0.2 (green contour line) here.

3Heister/Wheeler/Wick; CMAME, 2015
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Basic structure of Newton’s method

Formulation
Find Uh ∈ {uh

D + Vh} ×Wh such that

A(Uh)(Ψ) = 0 ∀Ψ := {w, ψ} ∈ Vh ×Wh. (4)

To solve this nonlinear problem, we employ an error-oriented Newton4 scheme within
an inexact augmented Lagrangian loop.

Formulation (Newton as defect-correction scheme)
For the iteration steps m = 0, 1, 2, . . ., the Newton update
δUh := {δuh, δϕh} ∈ Vh ×Wh is computed by solving:

A′(Uh,m)(δUh, ψ) = −A(Uh,m)(Ψ) ∀Ψ ∈ Vh ×Wh,
Uh,m+1 = Uh,m + ωδUh,

(5)

with a line search parameter ω ∈ (0, 1].

4P. Deuflhard; Newton Methods for Nonlinear Problems, 2011
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Numerical tests5

• Single edge notched shear test.

5Implementation in open-source FE package deal.II (C++)
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Single edge notched shear test in mechanics 6 7

Figure: Comparison of experiment and
numerical simulation.
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Figure: Setting and functional
evaluation in terms of the
load-displacement curve

6All parameters taken from Miehe et al. (2010) CMAME
7In addition, stress is split into tensile and compressive parts - again Miehe et al.

2010 / Amor et al. 2009
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Goals

• Computational analysis of Γ-convergence properties, i.e., interplay of ε
and h:

• Case 1: ε = 2h,

• Case 2: ε = ch0.5, c = 0.25,

• Case 3: ε = ch0.25, c = 0.125.

• Wall clock comparisons to show effectiveness of predictor-corrector
mesh refinement.

• Complete numerical analysis not yet present in the literature!
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Results: Crack path

Figure: Crack path on 4 + 2-refined meshes. Crack propagation in red and dynamic
mesh refinement at different times T = 100, 120, 150 using predictor-corrector
refinement with C = 0.8.
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Results: Spatial refinement for different ε
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Figure: Mesh refinement studies for the three different Cases 1,2,3. We observe that if
we choose h and ε according to the theoretical requirement of Γ convergence with
h = o(ε), then spatial mesh convergence is obtained (Cases 2+3)
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Results: Wall clock time and computational cost
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Figure: Comparison of computational cost in terms of the wall clock time (left) and
corresponding evolution of the degrees of freedom. The wall clock time is measured
for each time step.

Table: Comparison of computational cost for different refinement strategies.

Time/s Number of steps DoFs: min/avg/max

global refinement 5036 151 50115
local prerefinement 1277 151 19746
predictor/corrector (0.8) 233 151+63 3315/4731/8286
predictor/corrector (0.6) 184 151+53 3315/4225/6666
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Remarks to error estimation for phase-field fracture

• Define a goal functional J(u):

J(u) = u(x0, y0), or J(ϕ) =
∫

Γ
ϕ ds,

or a global norm.

• In phase-field fracture, the error must be split into a model error and a
discretization error

J(U)− J(Uh) = J(U)− J(Uε) + J(Uε)− J(Uε,h),

thus
|J(U)− J(Uh)| ≤ |J(U)− J(Uε)|︸ ︷︷ ︸

Model err.

+ |J(Uε)− J(Uε,h)|︸ ︷︷ ︸
Discretization err.

.

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 19



Observation: Poisson’s problem on slit domain 8

• Set ε = chl with

• Case 1: c = 2.0, l = 1,
• Case 2: c = 0.5, l = 0.5,
• Case 3: c = 0.5, l = 0.25.
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Figure: Crack, denoted in red color, (top) and 3D plot of the displacement field
to show the discontinuity along the line (x, 0) for −1 ≤ x ≤ 0 and comparison
of convergence rates for a point value evaluation. Manufactured solution for
ε = 0 (true slit domain) by Andersson/Mikayelyan; arXiv, 2015.

8T. Wick; Comp. Mech, 2016
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PU-DWR for goal functional evaluations

• Use a posteriori error estimation for accurate measurements of quantities of interest
(i.e., goal functionals):

|J(U)− J(Uh)| ≈ η.

• Error representation is weighted by local adjoint sensitivity measures Z ∈ X (exactly
the same as for gradient-based optimization)

⇒ Solve a dual problem to obtain these sensitivity measures

• To localize the error estimator to obtain indicators for refinement, the influence of
neighboring elements is required 9.

• Here, we keep the weak form 10 (in contrast to the classical method) and add a
partition-of-unity (PU)

⇒ This PU-DWR is (very) easy to implement and to analyze!

• Use local error indicators ηi to mark cells for refinement (or possibly for coarsening)

• The algorithm follows the standard procedure for mesh adaptivity:

Solve, Estimate, Mark, Adapt

9Carstensen/Verfürth; SINUM, 1999
10Similar to Braack/Ern; 2003
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PU-DWR for goal functional evaluations 11

Proposition (Wick 2016)
For the finite element approximation of the phase-field problem, we have the a posteriori error estimate:

|J(U)− J(Uh)| ≤
N

∑
i
|ηi| =

N

∑
i

∣∣∣(−((1− κ)ϕ̃2
h − κ

)
σ+(uh), e(wh)

)
− (σ−(uh), e(wh))− (ϕ̃2p,∇ ·wh)

− (1− κ)(ϕh σ+(uh) : e(uh), ψh)− 2(ϕh p ∇ · uh, ψh)

−Gc

(
− 1

ε
(1− ϕh, ψh) + ε(∇ϕh,∇ψh)

)
− (γ[ϕ− ϕn−1]+, ψ)

∣∣∣∣ ,

where the weighting functions are defined as

w := (w(2)
2h − zu

h)χ
i
h, ψ := (ψ

(2)
2h − zϕ

h )χ
i
h.

The first factors w(2)
2h − zu

h and ψ
(2)
2h − zϕ

h of the weights are standard. Here, w(2)
2h is a higher-order

finite element approximation (i.e., Qc
2) of the dual solution zu, respectively for ψ

(2)
2h and zϕ. The second

function χi
h is a partition-of-unity.

11Richter/Wick; 2015, CAM
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PU-DWR for goal functional evaluations (cont’d)
Proof.

• We know the general error representation for the primal estimator12:

J(U)− J(Uh) = B(Z− ihZ)−A(Uh)(Z− ihZ)

+ R2(U−Uh, Z− Zh),

where ih denotes an interpolation operator from the continuous spaces into the FE
spaces.

• The functional and semilinear forms are defined as

B(Z− ihZ) = −(ϕ̃2p, div(zu − ihzu)),

A(Uh)(Z− ihZ)

=
((

(1− κ)ϕ̃2 + κ
)

σ+(u), e(zu − ihzu)
)

+ (σ−(u), e(zu − ihzu))

+ (1− κ)(ϕ σ+(u) : e(u), zϕ − ihzϕ)

+ 2(ϕ p div u, zϕ − ihzϕ)

+ Gc

(
− 1

ε
(1− ϕ, ψ) + ε(∇ϕ,∇(zϕ − ihzϕ))

)
+ (γ[ϕ− ϕn−1]+, zϕ − ihzϕ).

12Becker/Ranncher; 2001, Acta Numerica
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PU-DWR for goal functional evaluations (cont’d)

• Taking the absolute value yields:

|J(U)− J(Uh)| ≤ |B(Z− ihZ)−A(Uh)(Z− ihZ)|

+ |R2(U−Uh, Z− Zh)|.

Neglecting the remainder term and introducing the PU χi
h and summing over all

degrees of freedom i = 1, . . . , N brings us to:

|J(U)− J(Uh)|

≤
N

∑
i
|B((Z− ihZ)χi

h)−A(Uh)((Z− ihZ)χi
h)|.

Inserting the definitions of B(Z− ihZ) and A(Uh)(Z− ihZ) and using the short notation

w := (w(2)
2h − zu

h)χ
i
h and ψ := (ψ

(2)
2h − zϕ

h )χ
i
h yields the statement. Q.E.D.
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Numerical results
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Figure: Top: point functional evaluation in the slit domain (but the slit is not given in
the geometry but through phase-field). Bottom: Sneddon’s test (elasticity with a
given pressure p) and computation of

∫
Γ ϕ ds as goal functional. In both computations

the crack tip is also refined - as expected.

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 25



1 Motivation

2 Phase-field fracture in elasticity

3 Goal functional evaluations with the PU-DWR method

4 Towards multiple goal functionals evaluations (contributed by a young
Junior Scientist)

5 Conclusions

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 26



Multiple goal functional evaluations 14

• We are given N goal functionals Ji, i = 1, . . . , N;

• Why? Specifically in flow and multiphysics problems such as
Navier-Stokes flow, porous media, phase-field fracture, fluid-structure
interaction, etc. the purpose might be on several quantities of interest;

• Challenge: In a naive and standard approach, we need to solve N dual
problems: Find Zi such that A(U, Zi) = Ji(U) for all U ∈ V.

• We follow Hartmann/Houston (2003) and Hartmann (2008) and use an
approach in which only 2 additional problems need to be solved;

• At the same time we employ again a PU-localization for the error
estimator;

• Current state13: Poisson’s problem on l-shaped domains; next step: slit
domain, which then already be compared to the phase-field results.

13Endtmayer/Wick; Ongoing work, 2016
14Hartmann/Houston; 2003, Hartmann; SISC, 2008
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Combined functional

Idea:

• combine the functionals to a new functional Jc(.), where

Jc(v) :=
N

∑
i

wiJi(v)

for some weights wi (not only positive ones)

• the choice of these weights is very crucial

• bad choice of weights maybe leads to error cancelling.

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 28



Algorithm

1 Compute the approximate solution A(Uh, Ψh) = F(Ψh)

2 Solve a discrete error problem (or also called dual-dual)
A(E, Ψ) = RUh(Ψ) (this dual-dual problem is only needed for the signs
of the weights wi!!)

3 Construct the combined functional Jc(Ψ)

4 If |Jc(U)− Jc(Uh)| = |Jc(E)| < TOL stop

5 Else: Solve the dual problem A(U, Z) = Jc(U) for the weights of the error
functional

6 Compute local error estimators |ηi|

7 If |ηi| < 1
nh

∑i |ηi| we flag i-th element for refinement

8 Refine all the flagged elements in the mesh

9 Go to 1

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 29



Numerical results

First of all we consider the problem (L-shaped domain):

Ω = (−1, 1)× (−1, 1)\(−1, 0)× (−1, 0)

−∆u(x, y) = f (x, y) ∀x ∈ Ω

u(x, y) = 0 ∀x ∈ ∂Ω

f (x, y) = x(8− 2x2 − 6y2 + e3y(1− 3y(4 + y) + x2(−7 + 3y(4 + 3y)))

Here the solution is given by

u(x, y) = x(y2 − 1)(x2 − 1)(e3y − 1)

Thomas Wick (RICAM Linz) PU-DWR for phase-field fracture 30



Numerical results: goal functionals, effectivity index,
meshes

We are interested in the func-
tional evaluations:

J0(u) := u(0.5, 0.5)

J1(u) :=
∫

Ω1

u(x, y)d(x, y)

J2(u) :=
∫

Γ1

∇u(x, y).n d(x, y)

where Ω1 = (−0.5, 0) × (0.5, 1)
and Γ1 = {1} × (0, 1).

Figure: Ieff versus refinement levels.

Figure: Mesh adaptation w.r.t. to J1, J2, J3, Jc.
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Numerical results: error plot

Figure: Relative error |Ji(u)−Ji(uh)|
|Ji(uh)|

versus DoFs.
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Conclusions
Conclusions

• Modeling and robust algorithms (monolithic formulations!) for
phase-field fractures;

• Computational analysis of the ε-h relationship and systematic
development to measure goal functionals using a PU-DWR method;

• Extension of PU-DWR (currently for Poisson’s problem) to multiple
target functionals.

Key references of this talk

• T. Richter, T. Wick; Variational localizations of the dual weighted residual
estimator; JCAM, 2015

• T. Wick; Goal functional evaluations for phase-field fracture using
PU-based DWR mesh adaptivity; Comp. Mech. 2016

The end for today - thanks!
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