Inverse point source location for the Helmholtz equation

Konstantin Pieper Bao Tang Philip Trautmann Daniel Walter

July 5, 2016

Contents

1. The Helmholtz Equation

2. Inverse Problem

3. Numerical Treatment

The time-periodic wave equation

We consider the propagation of acoustic waves in a homogeneous medium

(1)

$$\begin{aligned} \partial_{tt} p(t) - \Delta p(t) &= f(t) & \text{in } \Omega, \\ \partial_t p(t) + \partial_\nu p(t) &= 0 & \text{on } \Gamma_{\text{art}}, \\ \partial_\nu p(t) &= 0 & \text{on } \Gamma_{\text{D}}. \end{aligned}$$

 $\partial \varOmega = \varGamma_{\mathrm{art}} \cup \varGamma_{\mathrm{D}}$ and a source term f given by

$$f(t) = \hat{u}(t)\delta_{\hat{x}} \quad \hat{x} \in \Omega_c \subsetneq \Omega$$

and a time periodic signal

$$\hat{u} = \sum_{n=1}^{N} a_n \sin(-\omega_n t + \varphi_n)) = \sum_{n=1}^{N} \operatorname{Re}(\hat{u}_n \exp(-i\omega_n t)),$$

with frequencies ω_n , phaseshifts φ_n , amplitudes a_n and $\hat{u}_n = a_n \exp(i\varphi_n) \in \mathbb{C}$.

The Helmholtz equation

By a Fourier transform in t the solution p to (1) is given by

$$p(t) = \sum_{n=1}^{N} \operatorname{Re}(p_n \exp(-i\omega_n t)).$$

where the functions p_n are the solutions to the Helmholtz equation

(2)
$$\begin{aligned} -\Delta p_n - \omega_n^2 p_n &= \hat{u}_n \delta_{\hat{x}} & \text{in } \Omega, \\ \partial_\nu p_n - i \omega_n p_n &= 0 & \text{on } \Gamma_{\text{art}}, \\ \partial_\nu p_n &= 0 & \text{on } \Gamma_D, \end{aligned}$$

ПП

The inverse problem

Problem statement

Given some measurements of the acoustic pressure at the points $\{x_k\}_{k=1,...,K}$, find the location $\hat{x} \in \Omega_c$ and coefficients $u_n \in \mathbb{C}^N$.

ТШ

The inverse problem

Problem statement

Given some measurements of the acoustic pressure at the points $\{x_k\}_{k=1,...,K}$, find the location $\hat{x} \in \Omega_c$ and coefficients $u_n \in \mathbb{C}^N$.

▶ nonconvex optimization problem formulation, see Bermudez et. al 2004

(3)
$$\min_{\substack{x \in \Omega_{c}, \theta \in \mathbb{C}^{N} \\ \text{subject to}}} \frac{1}{2} \sum_{k=1}^{K} |\vec{p}(x_{k}) - p_{d}^{k}|_{\mathbb{C}^{N}}^{2} + \alpha |\hat{u}|_{\mathbb{C}^{N}},$$

$$\sup_{k=1}^{K} |\vec{p}(x_{k}) - p_{d}^{k}|_{\mathbb{C}^{N}}^{2} + \alpha |\hat{u}|_{\mathbb{C}^{N}},$$

ТШ

The inverse problem

Problem statement

Given some measurements of the acoustic pressure at the points $\{x_k\}_{k=1,...,K}$, find the location $\hat{x} \in \Omega_c$ and coefficients $u_n \in \mathbb{C}^N$.

nonconvex optimization problem formulation, see Bermudez et. al 2004

(3)
$$\min_{\substack{x \in \Omega_c, \theta \in \mathbb{C}^N \\ \text{subject to}}} \frac{1}{2} \sum_{k=1}^K |\vec{p}(x_k) - p_d^k|_{\mathbb{C}^N}^2 + \alpha |\hat{u}|_{\mathbb{C}^N},$$
$$= \sum_{k=1}^K |\vec{p}(x_k) - \rho_d^k|_{\mathbb{C}^N}^2 + \alpha |\hat{u}|_{\mathbb{C}^N}, \quad (+BC)$$

convex(ified) optimization problem formulation, see Bredies/Pikkarainen 2013

(4)
$$\min_{\substack{u \in \mathcal{M}(\Omega_c, \mathbb{C}^N) \\ \text{subject to}}} \frac{1}{2} \sum_{k=1}^K |\vec{p}(x_k) - p_d^k|_{\mathbb{C}^N}^2 + \alpha ||u||_{\mathcal{M}(\Omega_c, \mathbb{C}^N)},$$
$$(4)$$

Inverse problem

Consider

(5)
$$\min_{u \in \mathcal{M}(\Omega_{c}, \mathbb{C}^{N})} J(p, u) := \frac{1}{2} \sum_{k=1}^{K} |p(x_{k}) - p_{d}^{k}|_{\mathbb{C}^{N}}^{2} + \alpha ||u||_{\mathcal{M}(\Omega_{c}, \mathbb{C}^{N})},$$

(6) subject to
$$\begin{cases} -\Delta p_{n} - \omega_{n}^{2} p_{n} = u_{n}|_{\Omega}, & x \in \Omega, \\ \partial_{\nu} p_{n} - i\omega_{n} p_{n} = 0, & x \in \Gamma_{art}, \quad n = 1, 2, \dots, N. \\ \partial_{\nu} p_{n} = u_{n}|_{\Gamma_{D}}, & x \in \Gamma_{D}, \end{cases}$$

- ▶ $\Omega \subset \mathbb{R}^d$, $d \leq 3$, convex polygonal/polyhedral, $\Omega_c \subset \overline{\Omega}$ compact.
- $\Omega_c \cap \Gamma_{art} = \emptyset$.
- $\Gamma_D = \bigcup_i \overline{\Gamma_i}, \ \overline{\Gamma_i}$ plane face of $\Gamma, \ \Gamma_{art} = \partial \Omega \setminus \Gamma_D$.
- $\{x_k\}_{k=1}^K \subset \Omega \setminus \Omega_c$.

Wellposedness of State equation

Consider the following very weak formulation of (6)

(7)
$$-(p, \Delta \varphi + \omega^2 \varphi)_{\Omega} = \langle u, \chi_{\Omega_c} \varphi \rangle \quad \forall \varphi \in H^2(\Omega) \text{ with } \partial_{\nu} \varphi + \chi_{\Gamma_{art}} i \omega \varphi = 0 \text{ on}$$

Wellposedness of State equation

Consider the following very weak formulation of (6)

(7) $-(p, \Delta \varphi + \omega^2 \varphi)_{\Omega} = \langle u, \chi_{\Omega_c} \varphi \rangle \quad \forall \varphi \in H^2(\Omega) \text{ with } \partial_{\nu} \varphi + \chi_{\Gamma_{art}} i \omega \varphi = 0 \text{ on}$

Existence of very weak solutions

For any $u \in \mathcal{M}(\Omega_c)$, there exists a unique very weak solution $p \in L^2(\Omega)$ to (6) and there holds

$$\|p\|_{L^2(\Omega)} \leq C \|u\|_{\mathcal{M}(\Omega_c)}$$

for some C > 0.

Wellposedness of State equation

Consider the following very weak formulation of (6)

(7) $-(p, \Delta \varphi + \omega^2 \varphi)_{\Omega} = \langle u, \chi_{\Omega_c} \varphi \rangle \quad \forall \varphi \in H^2(\Omega) \text{ with } \partial_{\nu} \varphi + \chi_{\Gamma_{art}} i \omega \varphi = 0 \text{ on}$

Existence of very weak solutions

For any $u \in \mathcal{M}(\Omega_c)$, there exists a unique very weak solution $p \in L^2(\Omega)$ to (6) and there holds

$$\|p\|_{L^2(\Omega)} \le C \|u\|_{\mathcal{M}(\Omega_c)}$$

for some C > 0.

Additional regularity

There holds $p \in W^{1,s}(\Omega) \cap \mathcal{C}(\Omega \setminus \mathcal{N}_{\varepsilon}(\Omega_c))$ for any s < d/(d-1), $\varepsilon > 0$ where

$$\mathcal{N}_{\varepsilon}(\Omega_{c}) = \{ x \in \Omega \mid \operatorname{dist}(x, \Omega_{c}) \leq \varepsilon \}.$$

Existence of optimal solutions

Control-to-observation operator

The operator S given by

$$S: \mathcal{M}(\Omega_c, \mathbb{C}^N) \to (\mathbb{C}^N)^K \quad S(u) = (p(x_1), p(x_2), \dots, p(x_K)).$$

is weak*-to-strong continuous. Moreover it is the dual of S^* : $(\mathbb{C}^N)^K \to \mathcal{C}(\Omega_c, \mathbb{C}^N)$ with $S^*q = \xi|_{\Omega_c}$, $\xi = (\xi_1, \ldots, \xi_N)$ and

(8)
$$\begin{cases} -\Delta\xi_n - \omega_n\xi_n = \sum_{k=1}^{K} q_{n,k}\delta_{x_k}, & x \in \Omega, \\ \partial_{\nu}\xi_n + i\omega_n\xi_n = 0, & x \in \Gamma_{art}, & n \in \{1, 2, \dots, N\}, \\ \partial_{\nu}\xi_n = 0, & x \in \Gamma_D, \end{cases}$$

Existence of optimal solutions

Control-to-observation operator

The operator S given by

$$S: \mathcal{M}(\Omega_c, \mathbb{C}^N) \to (\mathbb{C}^N)^K \quad S(u) = (p(x_1), p(x_2), \dots, p(x_K)).$$

is weak*-to-strong continuous. Moreover it is the dual of S^* : $(\mathbb{C}^N)^K \to \mathcal{C}(\Omega_c, \mathbb{C}^N)$ with $S^*q = \xi|_{\Omega_c}, \xi = (\xi_1, \dots, \xi_N)$ and

(8)
$$\begin{cases} -\Delta\xi_n - \omega_n\xi_n = \sum_{k=1}^{K} q_{n,k}\delta_{x_k}, & x \in \Omega, \\ \partial_{\nu}\xi_n + i\omega_n\xi_n = 0, & x \in \Gamma_{art}, & n \in \{1, 2, \dots, N\}, \\ \partial_{\nu}\xi_n = 0, & x \in \Gamma_D, \end{cases}$$

Existence of optimal solutions

The optimal control problem (5) has an optimal solution \widehat{u} .

Bound on the number of support points

There exists an optimal solution \hat{u} to (5) which consists of $N_d \leq 2NK$ point sources,

$$\widehat{u} = \sum_{j=1}^{N_d} \widehat{u}_j \, \delta_{\widehat{x}_j} \quad \text{where } \widehat{u}_j \in \mathbb{C}^N, \ \widehat{x}_j \in \Omega_c.$$

Bound on the number of support points

There exists an optimal solution \hat{u} to (5) which consists of $N_d \leq 2NK$ point sources,

$$\widehat{u} = \sum_{j=1}^{N_d} \widehat{u}_j \, \delta_{\widehat{x}_j} \quad \text{where } \widehat{u}_j \in \mathbb{C}^N, \ \widehat{x}_j \in \Omega_c.$$

"Sketch" of the proof: Let $U_{p_d, \alpha}$ denote the set of optimal solutions

Bound on the number of support points

There exists an optimal solution \hat{u} to (5) which consists of $N_d \leq 2NK$ point sources,

$$\widehat{u} = \sum_{j=1}^{N_d} \widehat{u}_j \, \delta_{\widehat{x}_j} \quad \text{where } \widehat{u}_j \in \mathbb{C}^N, \ \widehat{x}_j \in \Omega_c.$$

"Sketch" of the proof: Let $U_{p_d,\alpha}$ denote the set of optimal solutions

Show

$$U_{p_d,\alpha} = \overline{\operatorname{conv} \left\{ \ u \in U_{p_d,\alpha} \ | \ u \text{ extremal }
ight\}^{\operatorname{weak}-*}}$$

Bound on the number of support points

There exists an optimal solution \hat{u} to (5) which consists of $N_d \leq 2NK$ point sources,

$$\widehat{u} = \sum_{j=1}^{N_d} \widehat{u}_j \, \delta_{\widehat{x}_j} \quad \text{where } \widehat{u}_j \in \mathbb{C}^N, \ \widehat{x}_j \in \Omega_c.$$

"Sketch" of the proof: Let $\mathit{U}_{\mathit{p_d}, \alpha}$ denote the set of optimal solutions

Show

$$U_{p_d,\alpha} = \overline{\operatorname{conv} \{ \ u \in U_{p_d,\alpha} \ | \ u \text{ extremal } \}}^{\operatorname{weak}_{*}}$$

Show

$$\{ u \in U_{p_d,\alpha} \mid u \text{ extremal } \} \subset \left\{ \sum_{j=1}^{2NK} u_j \delta_{x_j} \mid u_j \in \mathbb{C}^N, x_j \in \Omega_c \right\}.$$

Optimality condition

Support condition

A measure $\widehat{u} \in \mathcal{M}(\Omega_c, \mathbb{C}^N)$ is a solution to (5) if and only if the adjoint state $\widehat{\xi} = S^*(S\widehat{u} - p_d)$ satisfies $\|\widehat{\xi}\|_{\mathcal{C}(\Omega_c, \mathbb{C}^N)} \leq \alpha$ and the polar decomposition $d\widehat{u} = \widehat{u}' d|\widehat{u}|$, with $\widehat{u}' \in L^1(\Omega_c, |\widehat{u}|, \mathbb{C}^N)$, satisfies

 $lpha \widehat{u}' = - \widehat{\xi}$ $|\widehat{u}|$ -almost everywhere.

Thereby, supp $|\hat{u}| \subset \{x \in \Omega_c : |\hat{\xi}(x)|_{\mathbb{C}^N} = \alpha\}$ for each solution \hat{u} .

Numerical solution, see Bredies/Pikkarainen 2013

1. Set
$$u^1 = 0$$
, $i=1$, $M = \frac{\sum_{k=1}^{K} |p_d^k|^2}{2\alpha}$, $\varphi(t) = \begin{cases} \beta t, & t \leq M \\ \frac{\beta}{2M} (t^2 + M^2), & else \end{cases}$
while $s_i \neq 0$ do

2. Calculate
$$\xi^{i} = S^{*}(Su_{k} - p_{d})$$
. Determine $x^{i} \in \Omega_{c}$ with $\langle -\xi^{i}, \delta_{x^{i}} \rangle = \|\xi^{i}\|_{\mathcal{C}(\Omega_{c}, \mathbb{C}^{N})}$
3. Set $\theta^{i} = \begin{cases} 0, & \|\xi^{i}\|_{\mathcal{C}(\Omega_{c}, \mathbb{C}^{N})} \leq \alpha \\ -\frac{M}{\beta}\xi^{i}(x_{k}), & else \end{cases}$
4. Set $s_{i} = \min\left\{1, \frac{\alpha \|u_{k}\|_{\mathcal{M}(\Omega_{c}, \mathbb{C}^{N})} - \varphi(\theta^{i}) + \langle u^{i} - \theta^{i}\delta_{x^{i}}, \xi^{i} \rangle}{\|S(u^{i} - \theta^{i}\delta_{x^{i}})\|_{\mathbb{C}^{NK}}^{2}}\right\}$ and $u_{i+\frac{1}{2}} = (1 - s_{i})u^{i} + s_{i}\theta^{i}\delta_{x^{i}} = \sum_{k=1}^{N_{d}^{i+\frac{1}{2}}} \widetilde{u}_{k}^{i+\frac{1}{2}}\delta_{x_{k}^{i+\frac{1}{2}}}.$

Numerical solution, see Bredies/Pikkarainen 2013

1. Set
$$u^1 = 0$$
, $i=1$, $M = \frac{\sum_{k=1}^{K} |p_d^k|^2}{2\alpha}$, $\varphi(t) = \begin{cases} \beta t, & t \le M \\ \frac{\beta}{2M} (t^2 + M^2), & else \end{cases}$
while $s_i \ne 0$ do

2. Calculate
$$\xi^{i} = S^{*}(Su_{k} - p_{d})$$
. Determine $x^{i} \in \Omega_{c}$ with $\langle -\xi^{i}, \delta_{x^{i}} \rangle = \|\xi^{i}\|_{\mathcal{C}(\Omega_{c}, \mathbb{C}^{N})}$
3. Set $\theta^{i} = \begin{cases} 0, & \|\xi^{i}\|_{\mathcal{C}(\Omega_{c}, \mathbb{C}^{N})} \leq \alpha \\ -\frac{M}{\beta}\xi^{i}(x_{k}), & else \end{cases}$
4. Set $s_{i} = \min \left\{ 1, \frac{\alpha \|u_{k}\|_{\mathcal{M}(\Omega_{c}, \mathbb{C}^{N})} - \varphi(\theta^{i}) + \langle u^{i} - \theta^{i}\delta_{x^{i}}, \xi^{i} \rangle}{\|S(u^{i} - \theta^{i}\delta_{x^{i}})\|_{\mathbb{C}NK}^{2}} \right\}$ and
 $u_{i+\frac{1}{2}} = (1 - s_{i})u^{i} + s_{i}\theta^{i}\delta_{x^{i}} = \sum_{k=1}^{N_{d}^{i+\frac{1}{2}}} \tilde{u}_{k}^{i+\frac{1}{2}}\delta_{x_{k}^{i+\frac{1}{2}}}.$
5. Postprocess $u_{k+\frac{1}{2}}$ to get $u_{k+\frac{3}{4}} = \sum_{k=1}^{N_{d}^{i+\frac{3}{4}}} \tilde{u}_{k}^{i+\frac{3}{4}}\delta_{x_{k}^{i+\frac{3}{4}}}, N_{d}^{i+\frac{3}{4}} \leq 2NK$

Numerical solution, see Bredies/Pikkarainen 2013

1. Set
$$u^1 = 0$$
, i=1, $M = \frac{\sum_{k=1}^{K} |p_d^k|^2}{2\alpha}$, $\varphi(t) = \begin{cases} \beta t, & t \le M \\ \frac{\beta}{2M} (t^2 + M^2), & else \end{cases}$

2. Calculate $\xi^i = S^*(Su_k - p_d)$. Determine $x^i \in \Omega_c$ with $\langle -\xi^i, \delta_{x^i} \rangle = \|\xi^i\|_{\mathcal{C}(\Omega_c \mathbb{C}^N)}$ 3. Set $\theta^{i} = \begin{cases} 0, & \|\xi^{i}\|_{\mathcal{C}(\Omega_{c},\mathbb{C}^{N})} \leq \alpha \\ -\frac{M}{R}\xi^{i}(x_{k}), & else \end{cases}$ 4. Set $s_i = \min\left\{1, \frac{\alpha \|u_k\|_{\mathcal{M}(\Omega_C, \mathbb{C}^N)} - \varphi(\theta^i) + \langle u^i - \theta^i \delta_{x^i}, \xi^i \rangle}{\|S(u^i - \theta^i \delta_{x^i})\|^2 \dots}\right\}$ and $u_{i+\frac{1}{2}} = (1 - s_i)u^i + s_i\theta^i\delta_{x^i} = \sum_{k=1}^{N_d^{i+\frac{1}{2}}} \tilde{u}_k^{i+\frac{1}{2}}\delta_{x^{i+\frac{1}{2}}}.$ 5. Postprocess $u_{k+\frac{1}{2}}$ to get $u_{k+\frac{3}{4}} = \sum_{k=1}^{N_d^{i+\frac{3}{4}}} \tilde{u}_k^{i+\frac{3}{4}} \delta_{v^{i+\frac{3}{4}}}$, $N_d^{i+\frac{3}{4}} \le 2NK$ 6. Get u_{k+1} by solving $N_{d}^{i+\frac{3}{4}}$ $\min_{\tilde{u}} J(S(u_{k+\frac{3}{4}}(\tilde{u})), u_{k+\frac{3}{4}}(\tilde{u})) \text{ s.t. } u_{k+\frac{3}{4}}(\tilde{u}) = \sum_{k=1}^{5} \tilde{u}_k \delta_{x_k^{j+\frac{3}{4}}}$

Postprocessing

1. Let
$$u = \sum_{k=1}^{N_d} \mathbf{u}_k \delta_{x_k}$$
, $N_d = 2NK + 1$

$$u_k = u|_{\{x_k\}} = \mathbf{u}_k \delta_{x_k}$$
, and $w_k = S(\mathbf{v}_k \delta_{x_k})$, where $\mathbf{v}_k = \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}$.

3. Find nontrivial solution $\lambda \in \mathbb{R}^{N_d}$ of $\sum_{k=1,\dots,N_d} \lambda_k w_k = 0$ with $\sum_{k=1,\dots,N_d} \lambda_k \ge 0$.

4. Set
$$u_{new} = \sum_{k=1}^{N_d} \left(1 - \frac{\lambda_k}{\pi \|\mathbf{u}_k\|} \right) \mathbf{u}_k \delta_{x_k}$$
 with $\tau = \max_{k=1,\dots,N_d} \frac{\lambda_k}{\|\mathbf{u}_k\|} \ge 0$.

5. #supp $u_{new} \leq N_d - 1$, $J(S(u_{new}), u_{new}) \leq J(S(u), u)$.

Convergence

Sublinear Convergence (Bredies13)

Let the sequence $\{u_i\}_{i\in\mathbb{N}}$ be generated by the generalized conditional gradient method. Then $\{u_i\}_{i\in\mathbb{N}}$ is a minimizing sequence for J, every u_i has at most 2NK support points and every subsequence of $\{u_i\}_{i\in\mathbb{N}}$ has a weak* convergent subsequence that converges to a minimizer \hat{u} , # supp $\hat{u} \leq 2NK$ of J. Furthermore

$$J(S(u_i), u_i) - J(S(\widehat{u}), \widehat{u}) \leq \frac{c}{i}$$

for a positive, i-independent constant c

International Research Training Group IGDK 1754

Numerical Example

- Consider the unit square Ω , $\Omega_c = \{x \in \Omega \mid x_1 \le 0.75, x_2 \le 0.95\}, x_k = (0.875, \frac{k}{16}), k = 1, \dots, 15, \omega_1 = 13.$
- Try to recover a single Dirac located in $\hat{x} = (0.125, 0.75), u_1 = 0.538 + 0.867i$
- Solve (5) for $\alpha_k = (0.6)^k$, k = 3, ..., 33

But...

Set $w_{\Omega}^{n} = \frac{1}{K} \sum_{k=1}^{K} |G_{n}^{x_{k}}|$, and consider as admissible set

$$\mathcal{M}_{w}(\Omega_{c},\mathbb{C}^{N}) = \left\{ \left| u \in \mathcal{M}(\Omega_{c},\mathbb{C}^{N}) \right| \int_{\Omega_{c}} |w_{\Omega}u'| \, \mathrm{d}|u| < \infty \right\}.$$

and the corresponding total variation norm

$$\|u\|_{\mathcal{M}_w(\Omega_c,\mathbb{C}^N)} = \int_{\Omega_c} |wu'| \, \mathrm{d}|u| = \int_{\Omega_c} \sqrt{\sum_{n=1}^N (w^n(x)|u'_n(x)|)^2 \, \mathrm{d}|u|(x)}$$

And it works!

- > Still a lot to do here, when should you use which weight, does it work in general?
- Maybe get rid of assumption that $\Omega_c \subsetneq \Omega$.

Last but not least...

Thank you for your attention!