Inverse point source location for the Helmholtz equation

Konstantin Pieper Bao Tang Philip Trautmann Daniel Walter

IGDK 1754

July 5, 2016

Contents

\author{

1. The Helmholtz Equation
}
2. Inverse Problem
3. Numerical Treatment

The time-periodic wave equation

We consider the propagation of acoustic waves in a homogeneous medium

$$
\begin{align*}
\partial_{t t} p(t)-\Delta p(t)=f(t) & \text { in } \Omega, \\
\partial_{t} p(t)+\partial_{\nu} p(t)=0 & \text { on } \Gamma_{\mathrm{art}}, \tag{1}\\
\partial_{\nu} p(t)=0 & \text { on } \Gamma_{\mathrm{D}} .
\end{align*}
$$

$\partial \Omega=\Gamma_{\text {art }} \cup \Gamma_{\mathrm{D}}$ and a source term f given by

$$
f(t)=\hat{u}(t) \delta_{\hat{x}} \quad \hat{x} \in \Omega_{c} \subsetneq \Omega
$$

and a time periodic signal

$$
\left.\hat{u}=\sum_{n=1}^{N} a_{n} \sin \left(-\omega_{n} t+\varphi_{n}\right)\right)=\sum_{n=1}^{N} \operatorname{Re}\left(\hat{u}_{n} \exp \left(-i \omega_{n} t\right)\right),
$$

with frequencies ω_{n}, phaseshifts φ_{n}, amplitudes a_{n} and $\hat{u}_{n}=a_{n} \exp \left(i \varphi_{n}\right) \in \mathbb{C}$.

The Helmholtz equation

By a Fourier transform in t the solution p to (1) is given by

$$
p(t)=\sum_{n=1}^{N} \operatorname{Re}\left(p_{n} \exp \left(-i \omega_{n} t\right)\right)
$$

where the functions p_{n} are the solutions to the Helmholtz equation

$$
\begin{align*}
-\Delta p_{n}-\omega_{n}^{2} p_{n}=\hat{u}_{n} \delta_{\hat{x}} & \text { in } \Omega, \\
\partial_{\nu} p_{n}-i \omega_{n} p_{n}=0 & \text { on } \Gamma_{\mathrm{art}} \tag{2}\\
\partial_{\nu} p_{n}=0 & \text { on } \Gamma_{\mathrm{D}},
\end{align*}
$$

The inverse problem

Problem statement

Given some measurements of the acoustic pressure at the points $\left\{x_{k}\right\}_{k=1, \ldots, K}$, find the location $\hat{x} \in \Omega_{c}$ and coefficients $u_{n} \in \mathbb{C}^{N}$.

The inverse problem

Problem statement

Given some measurements of the acoustic pressure at the points $\left\{x_{k}\right\}_{k=1, \ldots, k}$, find the location $\hat{x} \in \Omega_{c}$ and coefficients $u_{n} \in \mathbb{C}^{N}$.

- nonconvex optimization problem formulation, see Bermudez et. al 2004
(3)

$$
\begin{aligned}
\min _{x \in \Omega_{c}, \hat{u} \in \mathbb{C}^{N}} & \frac{1}{2} \sum_{k=1}^{K}\left|\vec{p}\left(x_{k}\right)-p_{d}^{k}\right|_{\mathbb{C}^{N}}^{2}+\alpha|\hat{u}|_{\mathbb{C}^{N}}, \\
\text { subject to } & -\Delta \vec{p}-\vec{\omega}^{2} \vec{p}=\hat{u} \delta_{x}, \quad(+\mathrm{BC})
\end{aligned}
$$

The inverse problem

Problem statement

Given some measurements of the acoustic pressure at the points $\left\{x_{k}\right\}_{k=1, \ldots, k}$, find the location $\hat{x} \in \Omega_{c}$ and coefficients $u_{n} \in \mathbb{C}^{N}$.

- nonconvex optimization problem formulation, see Bermudez et. al 2004

$$
\begin{align*}
\min _{x \in \Omega_{c}, \hat{u} \in \mathbb{C}^{N}} & \frac{1}{2} \sum_{k=1}^{k}\left|\vec{p}\left(x_{k}\right)-p_{d}^{k}\right|_{\mathbb{C}^{N}}^{2}+\alpha|\hat{u}|_{\mathbb{C}^{N}}, \tag{3}\\
\text { subject to } & -\Delta \vec{p}-\vec{\omega}^{2} \vec{p}=\hat{u} \delta_{x}, \quad(+\mathrm{BC})
\end{align*}
$$

- convex(ified) optimization problem formulation, see Bredies/Pikkarainen 2013

$$
\begin{array}{ll}
\min _{u \in \mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right)} & \frac{1}{2} \sum_{k=1}^{K}\left|\vec{p}\left(x_{k}\right)-p_{d}^{k}\right|_{\mathbb{C}^{N}}^{2}+\alpha\|u\|_{\mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right)} \tag{4}\\
\text { subject to } & -\Delta \vec{p}-\vec{\omega}^{2} \vec{p}=u . \quad(+\mathrm{BC})
\end{array}
$$

Inverse problem

Consider

$$
\begin{equation*}
\min _{u \in \mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right)} J(p, u):=\frac{1}{2} \sum_{k=1}^{K}\left|p\left(x_{k}\right)-p_{d}^{k}\right|_{\mathbb{C}^{N}}^{2}+\alpha\|u\|_{\mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right)} \tag{5}
\end{equation*}
$$

$$
\text { subject to } \begin{cases}-\Delta p_{n}-\omega_{n}^{2} p_{n}=\left.u_{n}\right|_{\Omega}, & x \in \Omega \tag{6}\\ \partial_{\nu} p_{n}-i \omega_{n} p_{n}=0, & x \in \Gamma_{\text {art }}, \quad n=1,2, \ldots, N . \\ \partial_{\nu} p_{n}=\left.u_{n}\right|_{\Gamma_{D}}, & x \in \Gamma_{D},\end{cases}
$$

- $\Omega \subset \mathbb{R}^{d}, d \leq 3$, convex polygonal/polyhedral, $\Omega_{c} \subset \bar{\Omega}$ compact.
- $\Omega_{c} \cap \Gamma_{a r t}=\emptyset$.
- $\Gamma_{D}=U_{i} \overline{\Gamma_{i}}, \overline{\Gamma_{i}}$ plane face of $\Gamma, \Gamma_{\text {art }}=\partial \Omega \backslash \Gamma_{D}$.
- $\left\{x_{k}\right\}_{k=1}^{K} \subset \Omega \backslash \Omega_{c}$.

Wellposedness of State equation

Consider the following very weak formulation of (6)
(7) $\quad-\left(p, \Delta \varphi+\omega^{2} \varphi\right)_{\Omega}=\left\langle u, \chi_{\Omega_{c}} \varphi\right\rangle \quad \forall \varphi \in H^{2}(\Omega)$ with $\partial_{\nu} \varphi+\chi_{\Gamma_{a r t}} i \omega \varphi=0$ on

Wellposedness of State equation

Consider the following very weak formulation of (6)
(7) $\quad-\left(p, \Delta \varphi+\omega^{2} \varphi\right)_{\Omega}=\left\langle u, \chi_{\Omega_{c}} \varphi\right\rangle \quad \forall \varphi \in H^{2}(\Omega)$ with $\partial_{\nu} \varphi+\chi_{\Gamma_{\text {art }}} i \omega \varphi=0$ on

Existence of very weak solutions

For any $u \in \mathcal{M}\left(\Omega_{c}\right)$, there exists a unique very weak solution $p \in L^{2}(\Omega)$ to (6) and there holds

$$
\|p\|_{L^{2}(\Omega)} \leq C\|u\|_{\mathcal{M}\left(\Omega_{c}\right)}
$$

for some $C>0$.

Wellposedness of State equation

Consider the following very weak formulation of (6)
(7) $\quad-\left(p, \Delta \varphi+\omega^{2} \varphi\right)_{\Omega}=\left\langle u, \chi_{\Omega_{c}} \varphi\right\rangle \quad \forall \varphi \in H^{2}(\Omega)$ with $\partial_{\nu} \varphi+\chi_{\Gamma_{a r t}} i \omega \varphi=0$ on

Existence of very weak solutions

For any $u \in \mathcal{M}\left(\Omega_{c}\right)$, there exists a unique very weak solution $p \in L^{2}(\Omega)$ to (6) and there holds

$$
\|p\|_{L^{2}(\Omega)} \leq C\|u\|_{\mathcal{M}\left(\Omega_{c}\right)}
$$

for some $C>0$.

Additional regularity

There holds $p \in W^{1, s}(\Omega) \cap \mathcal{C}\left(\Omega \backslash \mathcal{N}_{\varepsilon}\left(\Omega_{c}\right)\right)$ for any $s<d /(d-1), \varepsilon>0$ where

$$
\mathcal{N}_{\varepsilon}\left(\Omega_{c}\right)=\left\{x \in \Omega \mid \operatorname{dist}\left(x, \Omega_{c}\right) \leq \varepsilon\right\} .
$$

Existence of optimal solutions

Control-to-observation operator

The operator S given by

$$
S: \mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right) \rightarrow\left(\mathbb{C}^{N}\right)^{K} \quad S(u)=\left(p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{K}\right)\right)
$$

is weak*-to-strong continuous. Moreover it is the dual of $S^{*}:\left(\mathbb{C}^{N}\right)^{K} \rightarrow \mathcal{C}\left(\Omega{ }_{c}, \mathbb{C}^{N}\right)$ with $S^{*} q=\left.\xi\right|_{\Omega_{c}}, \xi=\left(\xi_{1}, \ldots, \xi_{N}\right)$ and
(8) $\begin{cases}-\Delta \xi_{n}-\omega_{n} \xi_{n}=\sum_{k=1}^{K} q_{n, k} \delta_{x_{k}}, & x \in \Omega, \\ \partial_{\nu} \xi_{n}+i \omega_{n} \xi_{n}=0, & x \in \Gamma_{\text {art }}, \quad n \in\{1,2, \ldots, N\}, \\ \partial_{\nu} \xi_{n}=0, & x \in \Gamma_{D},\end{cases}$

Existence of optimal solutions

Control-to-observation operator

The operator S given by

$$
S: \mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right) \rightarrow\left(\mathbb{C}^{N}\right)^{K} \quad S(u)=\left(p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{K}\right)\right)
$$

is weak*-to-strong continuous. Moreover it is the dual of $S^{*}:\left(\mathbb{C}^{N}\right)^{K} \rightarrow \mathcal{C}\left(\Omega{ }_{c}, \mathbb{C}^{N}\right)$ with $S^{*} q=\left.\xi\right|_{\Omega_{c}}, \xi=\left(\xi_{1}, \ldots, \xi_{N}\right)$ and

$$
\begin{cases}-\Delta \xi_{n}-\omega_{n} \xi_{n}=\sum_{k=1}^{K} a_{n, k} \delta_{x_{k}}, & x \in \Omega, \tag{8}\\ \partial_{\nu} \xi_{n}+i \omega_{n} \xi_{n}=0, & x \in \Gamma_{a r t}, \quad n \in\{1,2, \ldots, N\} \\ \partial_{\nu} \xi_{n}=0, & x \in \Gamma_{D},\end{cases}
$$

Existence of optimal solutions

The optimal control problem (5) has an optimal solution \widehat{u}.

Existence of finitely supported solutions

Bound on the number of support points
There exists an optimal solution \widehat{u} to (5) which consists of $N_{d} \leq 2 N K$ point sources,

$$
\widehat{u}=\sum_{j=1}^{N_{d}} \widehat{u}_{j} \delta_{\widehat{x}_{j}} \quad \text { where } \widehat{u}_{j} \in \mathbb{C}^{N}, \widehat{x}_{j} \in \Omega_{c} .
$$

Existence of finitely supported solutions

Bound on the number of support points

There exists an optimal solution \widehat{u} to (5) which consists of $N_{d} \leq 2 N K$ point sources,

$$
\widehat{u}=\sum_{j=1}^{N_{d}} \widehat{u}_{j} \delta_{\widehat{x}_{j}} \quad \text { where } \widehat{u}_{j} \in \mathbb{C}^{N}, \widehat{x}_{j} \in \Omega_{c} .
$$

"Sketch" of the proof: Let $U_{p_{d}, \alpha}$ denote the set of optimal solutions

Existence of finitely supported solutions

Bound on the number of support points

There exists an optimal solution \widehat{u} to (5) which consists of $N_{d} \leq 2 N K$ point sources,

$$
\widehat{u}=\sum_{j=1}^{N_{d}} \widehat{u}_{j} \delta_{\widehat{x}_{j}} \quad \text { where } \widehat{u}_{j} \in \mathbb{C}^{N}, \widehat{x}_{j} \in \Omega_{c} .
$$

"Sketch" of the proof: Let $U_{p_{d}, \alpha}$ denote the set of optimal solutions

- Show

$$
U_{p_{d}, \alpha}=\overline{\operatorname{conv}\left\{u \in U_{p_{d}, \alpha} \mid u \text { extremal }\right\}^{\text {weak-* }} .}
$$

Existence of finitely supported solutions

Bound on the number of support points

There exists an optimal solution \widehat{u} to (5) which consists of $N_{d} \leq 2 N K$ point sources,

$$
\widehat{u}=\sum_{j=1}^{N_{d}} \widehat{u}_{j} \delta_{\widehat{x}_{j}} \quad \text { where } \widehat{u}_{j} \in \mathbb{C}^{N}, \widehat{x}_{j} \in \Omega_{c} .
$$

"Sketch" of the proof: Let $U_{p_{d}, \alpha}$ denote the set of optimal solutions

- Show

$$
U_{p_{d}, \alpha}={\overline{\operatorname{conv}}\left\{u \in U_{p_{d}, \alpha} \mid u \text { extremal }\right\}^{\text {weak-* }} .}^{\text {. }}
$$

- Show

$$
\left\{u \in U_{p_{d}, \alpha} \mid u \text { extremal }\right\} \subset\left\{\sum_{j=1}^{2 N K} u_{j} \delta_{x_{j}} \mid u_{j} \in \mathbb{C}^{N}, x_{j} \in \Omega_{c}\right\}
$$

Optimality condition

Support condition

A measure $\widehat{u} \in \mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right)$ is a solution to (5) if and only if the adjoint state $\widehat{\xi}=S^{*}\left(S \widehat{u}-p_{d}\right)$ satisfies $\|\widehat{\xi}\|_{\mathcal{C}\left(\Omega_{c}, \mathbb{C}^{N}\right)} \leq \alpha$ and the polar decomposition $\mathrm{d} \widehat{u}=\widehat{u}^{\prime} \mathrm{d}|\widehat{u}|$, with $\widehat{u}^{\prime} \in L^{1}\left(\Omega_{c},|\widehat{u}|, \mathbb{C}^{N}\right)$, satisfies

$$
\alpha \widehat{u}^{\prime}=-\widehat{\xi} \quad|\widehat{u}|-\text { almost everywhere. }
$$

Thereby, supp $|\widehat{u}| \subset\left\{x \in \Omega_{c}:|\widehat{\xi}(x)|_{\mathbb{C}^{N}}=\alpha\right\}$ for each solution \widehat{u}.

Numerical solution, see Bredies/Pikkarainen 2013

1. Set $u^{1}=0, \mathrm{i}=1, M=\frac{\sum_{k=1}^{K}\left|D^{k}\right|^{2}}{2 \alpha}, \varphi(t)= \begin{cases}\beta t, & t \leq M \\ \frac{\beta}{2 M}\left(t^{2}+M^{2}\right), & e / s e\end{cases}$
while $s_{i} \neq 0$ do
2. Calculate $\xi^{i}=S^{*}\left(S u_{k}-p_{d}\right)$. Determine $x^{i} \in \Omega_{c}$ with $\left\langle-\xi^{i}, \delta_{x^{i}}\right\rangle=\left\|\xi^{i}\right\|_{C\left(\Omega_{c}, \mathbb{Q}^{N}\right)}$
3. Set $\theta^{i}= \begin{cases}0, & \left\|\xi^{i}\right\|_{\mathcal{C}\left(\Omega, \mathbb{C}^{N}\right)} \leq \alpha \\ -\frac{M}{\beta} \xi^{i}\left(x_{k}\right), & \text { else }\end{cases}$
4. Set $s_{i}=\min \left\{1, \frac{\alpha\left\|u_{k}\right\|_{\mathcal{M}\left(\Omega, C_{0}(N)\right.}-\varphi\left(\theta^{i}\right)+\left\langle u^{i}-\theta^{i} \delta_{x^{\prime}} \xi^{i}\right)}{\left\|S\left(u^{i}-\theta^{i} \delta_{x^{\prime}}\right)\right\|_{C N K}^{2}}\right\}$ and
$u_{i+\frac{1}{2}}=\left(1-s_{i}\right) u^{i}+s_{i} \theta^{i} \delta_{x^{i}}=\sum_{k=1}^{N_{d}^{i+\frac{1}{2}}} \tilde{u}_{k}^{i+\frac{1}{2}} \delta_{x_{k}^{i+\frac{1}{2}}}$.

Numerical solution, see Bredies/Pikkarainen 2013

1. Set $u^{1}=0, \mathrm{i}=1, M=\frac{\left.\sum_{k=1}^{K}\left|p^{k}\right|^{2}\right|^{2}}{2 \alpha}, \varphi(t)= \begin{cases}\beta t, & t \leq M \\ \frac{\beta}{2 M}\left(t^{2}+M^{2}\right), & \text { else }\end{cases}$
while $s_{i} \neq 0$ do
2. Calculate $\xi^{i}=S^{*}\left(S u_{k}-p_{d}\right)$. Determine $x^{i} \in \Omega_{c}$ with $\left\langle-\xi^{i}, \delta_{x^{i}}\right\rangle=\left\|\xi^{i}\right\|_{\left(\Omega_{c}, \mathbb{Q}^{N}\right)}$
3. Set $\theta^{i}= \begin{cases}0, & \left\|\xi^{i}\right\|_{\mathcal{C}\left(\Omega, \mathbb{C}^{N}\right)} \leq \alpha \\ -\frac{M}{\beta} \xi^{i}\left(x_{k}\right), & \text { else }\end{cases}$
4. Set $s_{i}=\min \left\{1, \frac{\alpha\left\|u_{k}\right\|_{\mathcal{M}\left(\Omega, C_{0}(N)\right.}-\varphi\left(\theta^{i}\right)+\left\langle u^{i}-\theta^{i} \delta_{x^{\prime}} \xi^{i}\right)}{\left\|S\left(u^{i}-\theta^{i} \delta_{x^{\prime}}\right)\right\|_{C N K}^{2}}\right\}$ and
$u_{i+\frac{1}{2}}=\left(1-s_{i}\right) u^{i}+s_{i} \theta^{i} \delta_{x^{i}}=\sum_{k=1}^{N_{d}^{i+\frac{1}{2}}} \tilde{u}_{k}^{i+\frac{1}{2}} \delta_{x_{k}^{i+\frac{1}{2}}}$.
5. Postprocess $u_{k+\frac{1}{2}}$ to get $u_{k+\frac{3}{4}}=\sum_{k=1}^{N_{d}^{i+\frac{3}{4}}} \tilde{u}_{k}^{i+\frac{3}{4}} \delta_{x_{k}^{i+\frac{3}{4}}}, N_{d}^{i+\frac{3}{4}} \leq 2 N K$

Numerical solution, see Bredies/Pikkarainen 2013

1. Set $u^{1}=0, \mathrm{i}=1, M=\frac{\left.\sum_{k=1}^{K}\left|p^{k}\right|^{2}\right|^{2}}{2 \alpha}, \varphi(t)= \begin{cases}\beta t, & t \leq M \\ \frac{\beta}{2 M}\left(t^{2}+M^{2}\right), & e / s e\end{cases}$
while $s_{i} \neq 0$ do
2. Calculate $\xi^{i}=S^{*}\left(S u_{k}-p_{d}\right)$. Determine $x^{i} \in \Omega_{c}$ with $\left\langle-\xi^{i}, \delta_{x^{i}}\right\rangle=\left\|\xi^{i}\right\|_{\left(\Omega_{c}, \mathbb{Q}^{N}\right)}$
3. Set $\theta^{i}= \begin{cases}0, & \left\|\xi^{i}\right\|_{C\left(\Omega, \mathbb{C}^{N}\right)} \leq \alpha \\ -\frac{M}{\beta} \xi^{i}\left(x_{k}\right), & e / s e\end{cases}$
4. Set $s_{i}=\min \left\{1, \frac{\alpha\left\|u_{k}\right\|_{\mathcal{M}(\Omega, C, C N)} \| \varphi\left(\theta^{i}\right)+\left\langle u^{i}-\theta^{i} \delta_{x^{\prime}}, \xi^{i}\right\rangle}{\left\|S\left(u^{i}-\theta^{i} \delta_{x^{\prime}}\right)\right\|_{C N K}^{2}}\right\}$ and
$u_{i+\frac{1}{2}}=\left(1-s_{i}\right) u^{i}+s_{i} \theta^{i} \delta_{x^{i}}=\sum_{k=1}^{N_{d}^{i+\frac{1}{2}}} \tilde{u}_{k}^{i+\frac{1}{2}} \delta_{x_{k}^{i+\frac{1}{2}}}$.
5. Postprocess $u_{k+\frac{1}{2}}$ to get $u_{k+\frac{3}{4}}=\sum_{k=1}^{N_{d}^{i+\frac{3}{4}}} \tilde{u}_{k}^{i+\frac{3}{4}} \delta_{x_{k}}, \frac{3}{4}, N_{d}^{i+\frac{3}{4}} \leq 2 N K$
6. Get u_{k+1} by solving

$$
\min _{\tilde{u}} J\left(S\left(u_{k+\frac{3}{4}}(\tilde{u})\right), u_{k+\frac{3}{4}}(\tilde{u})\right) \text { s.t. } u_{k+\frac{3}{4}}(\tilde{u})=\sum_{k=1}^{N_{d}^{i+\frac{3}{4}}} \tilde{u}_{k} \delta_{x_{k}^{i+\frac{3}{4}}}
$$

Postprocessing

1. Let $u=\sum_{k=1}^{N_{d}} \mathbf{u}_{k} \delta_{x_{k}}, N_{d}=2 N K+1$
2. Set

$$
u_{k}=\left.u\right|_{\left\{x_{k}\right\}}=\mathbf{u}_{k} \delta_{x_{k}}, \text { and } w_{k}=S\left(\mathbf{v}_{k} \delta_{x_{k}}\right), \text { where } \mathbf{v}_{k}=\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}
$$

3. Find nontrivial solution $\lambda \in \mathbb{R}^{N_{d}}$ of $\sum_{k=1, \ldots, N_{d}} \lambda_{k} w_{k}=0$ with $\sum_{k=1, \ldots, N_{d}} \lambda_{k} \geq 0$.
4. Set $u_{\text {new }}=\sum_{k=1}^{N_{d}}\left(1-\frac{\lambda_{k}}{\tau\left\|\mathbf{u}_{k}\right\|}\right) \mathbf{u}_{k} \delta_{x_{k}}$ with $\tau=\max _{k=1, \ldots, N_{d}} \frac{\lambda_{k}}{\left\|u_{k}\right\|} \geq 0$.
5. \#supp $u_{\text {new }} \leq N_{d}-1, J\left(S\left(u_{\text {new }}\right), u_{\text {new }}\right) \leq J(S(u), u)$.

Convergence

Sublinear Convergence (Bredies13)

Let the sequence $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ be generated by the generalized conditional gradient method. Then $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ is a minimizing sequence for J, every u_{i} has at most $2 N K$ support points and every subsequence of $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ has a weak* convergent subsequence that converges to a minimizer \widehat{u}, \# supp $\widehat{u} \leq 2 N K$ of J. Furthermore

$$
J\left(S\left(u_{i}\right), u_{i}\right)-J(S(\widehat{u}), \widehat{u}) \leq \frac{c}{i}
$$

for a positive, i-independent constant c

Numerical Example

- Consider the unit square $\Omega, \Omega_{c}=\left\{x \in \Omega \mid x_{1} \leq 0.75, x_{2} \leq 0.95\right\}$, $x_{k}=\left(0.875, \frac{k}{16}\right), k=1, \ldots, 15, \omega_{1}=13$.
- Try to recover a single Dirac located in $\hat{x}=(0.125,0.75), u_{1}=0.538+0.867 i$
- Solve (5) for $\alpha_{k}=(0.6)^{k}, k=3, \ldots, 33$

But...

Set $w_{\Omega}^{n}=\frac{1}{K} \sum_{k=1}^{K}\left|G_{n}^{X_{k}}\right|$, and consider as admissible set

$$
\mathcal{M}_{w}\left(\Omega_{c}, \mathbb{C}^{N}\right)=\left\{u \in \mathcal{M}\left(\Omega_{c}, \mathbb{C}^{N}\right)\left|\int_{\Omega_{c}}\right| w_{\Omega} u^{\prime}|\mathrm{d}| u \mid<\infty\right\} .
$$

and the corresponding total variation norm

$$
\|u\|_{\mathcal{M}_{w}\left(\Omega_{c}, \mathbb{C}^{N}\right)}=\int_{\Omega_{c}}\left|w u^{\prime}\right| \mathrm{d}|u|=\int_{\Omega_{c}} \sqrt{\sum_{n=1}^{N}\left(w^{n}(x)\left|u_{n}^{\prime}(x)\right|\right)^{2}} \mathrm{~d}|u|(x)
$$

And it works!

- Still a lot to do here, when should you use which weight, does it work in general?
- Maybe get rid of assumption that $\Omega_{c} \subsetneq \Omega$.

Last but not least...

Thank you for your attention!

