

Multigrid methods for Isogeometric analysis

Stefan Takacs

joint work with Clemens Hofreither

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria

AANMPDE(JS)-9-16

Outline

1 Introduction

- 2 Abstract multigrid theory
- 3 Approximation error and inverse estimates
- 4 A robust multigrid solver

5 Numerical results

Model problem

Elliptic model problem: Find $u \in H^1(\Omega)$:

$$-\Delta u + u = f$$
 in Ω , $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$

Variational formulation: Find $u \in V$:

$$a(u,v) = \langle f,v \rangle \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} (\nabla u \cdot \nabla v + uv) \, dx, \qquad \langle f,v \rangle = \int_{\Omega} fv \, dx.$$

Or as a linear system:

$$Au = f$$
.

Model problem

Elliptic model problem: Find $u \in H^1(\Omega)$:

$$-\Delta u + u = f$$
 in Ω , $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$

Variational formulation: Find $u \in V$:

$$a(u,v) = \langle f,v \rangle \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} (\nabla u \cdot \nabla v + uv) \, dx, \qquad \langle f,v \rangle = \int_{\Omega} fv \, dx.$$

Or as a linear system:

$$Au = f$$
.

Model problem

Elliptic model problem: Find $u \in H^1(\Omega)$:

$$-\Delta u + u = f$$
 in Ω , $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$

Variational formulation: Find $u \in V$:

$$a(u,v) = \langle f,v \rangle \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} (\nabla u \cdot \nabla v + uv) \, dx, \qquad \langle f,v \rangle = \int_{\Omega} fv \, dx.$$

Or as a linear system:

$$Au = f$$
.

What is Isogeometric Analysis?

Idea: One method that can be used for design (CAD) and numerical simulation

Technical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

CMAME, 194, p. 4135 - 4195, 2004.

What is Isogeometric Analysis?

- Idea: One method that can be used for design (CAD) and numerical simulation
- **Technical:** B-spline (NURBS) based FEM
- T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

СМАМЕ, 194, р. 4135 - 4195, 2004.

What is Isogeometric Analysis?

- Idea: One method that can be used for design (CAD) and numerical simulation
- **Technical:** B-spline (NURBS) based FEM
- T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

CMAME, 194, p. 4135 - 4195, 2004.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Approximation error and inverse estimates are approximated as a second effective ending and the estimated as a second end of the estimated

What is Isogeometric Analysis?

Technical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

CMAME, 194, p. 4135 - 4195, 2004.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

Stefan Takacs, Multigrid methods for Isogeometric analysis

B-spline basis functions

Let $m \in \mathbb{N}$, h = 1/m and let

$$S_{p,h} := \{ u \in C^{p-1}(0,1) : u |_{((j-1)h,jh)} \in \mathcal{P}^p \quad \forall j = 1, \dots, m \},$$

denote the **spline space** over [0, 1] with degree p, maximum continuity C^{p-1} , and mesh size h.

We denote the standard **B-spline basis functions** by

$$S_{p,h} = \operatorname{span}(\mathcal{B}), \qquad \mathcal{B} = \{\phi_1, \dots, \phi_n\},$$

where $n = \dim S_{p,h} = m + p$.

B-spline basis functions

Let $m \in \mathbb{N}$, h = 1/m and let

$$S_{p,h} := \{ u \in C^{p-1}(0,1) : u |_{((j-1)h,jh)} \in \mathcal{P}^p \quad \forall j = 1, \dots, m \},$$

denote the **spline space** over [0, 1] with degree p, maximum continuity C^{p-1} , and mesh size h.

We denote the standard **B-spline basis functions** by

$$S_{p,h} = \operatorname{span}(\mathcal{B}), \qquad \mathcal{B} = \{\phi_1, \ldots, \phi_n\},$$

where $n = \dim S_{p,h} = m + p$.

In higher dimensions, we form tensor product spline spaces:

$$S^2_{p,h} = S_{p,h} \otimes S_{p,h}, \qquad \phi_{j_1,j_2}(x,y) := \phi_{j_1}(x)\phi_{j_2}(y).$$

Global geometry transformation

More complicated domains:

Multi-patch discretization with tensor-product patches

Global geometry transformation

More complicated domains:

Multi-patch discretization with tensor-product patches

Finite element method

Courant element

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

www.ricam.oeaw.ac.at

Stefan Takacs, Multigrid methods for Isogeometric analysis

Finite element method

Courant element

Non-negativity: $\phi_i(x) \ge 0$

Partition of unity: $\sum_i \phi_i(x) = 1$

Approximation power:

 $||u - u_h||_{L_2} \le C_p h^p |u|_{H^p}$

dim $S_{p,h} = n + p$, unlike dim $S_{p,0,h} = n p + 1$ Condition number (of the basis):

 $\kappa(M_{p,h}) = \mathcal{O}(2^{pd}) \qquad \kappa(K_{p,h}) = \mathcal{O}(h^{-2}2^{pd}),$

where $M_{p,h}$ is the mass matrix and $K_{p,h}$ is the stiffness matrix.

- Non-negativity: $\phi_i(x) \ge 0$
 - Partition of unity: $\sum_i \phi_i(x) = 1$

Approximation power:

 $||u - u_h||_{L_2} \le C_p h^p |u|_{H^p}$

dim $S_{p,h} = n + p$, unlike dim $S_{p,0,h} = n p + 1$ Condition number (of the basis):

 $\kappa(M_{p,h}) = \mathcal{O}(2^{pd}) \qquad \kappa(K_{p,h}) = \mathcal{O}(h^{-2}2^{pd}),$

where $M_{p,h}$ is the mass matrix and $K_{p,h}$ is the stiffness matrix.

Non-negativity: $\phi_i(x) \ge 0$

Partition of unity: $\sum_i \phi_i(x) = 1$

Approximation power:

$$||u - u_h||_{L_2} \le C_p h^p |u|_{H^p}$$

dim $S_{p,h} = n + p$, unlike dim $S_{p,0,h} = n p + 1$ Condition number (of the basis):

 $\kappa(M_{p,h}) = \mathcal{O}(2^{pd}) \qquad \kappa(K_{p,h}) = \mathcal{O}(h^{-2}2^{pd}),$

where $M_{p,h}$ is the mass matrix and $K_{p,h}$ is the stiffness matrix.

- Non-negativity: $\phi_i(x) \ge 0$
- Partition of unity: $\sum_i \phi_i(x) = 1$
- Approximation power:

$$||u - u_h||_{L_2} \le C_p h^p |u|_{H^p}$$

$$\kappa(M_{p,h}) = \mathcal{O}(2^{pd}) \qquad \kappa(K_{p,h}) = \mathcal{O}(h^{-2}2^{pd}),$$

where $M_{p,h}$ is the mass matrix and $K_{p,h}$ is the stiffness matrix.

- Non-negativity: $\phi_i(x) \ge 0$
- Partition of unity: $\sum_i \phi_i(x) = 1$
- Approximation power:

$$||u - u_h||_{L_2} \le C_p h^p |u|_{H^p}$$

dim S_{p,h} = n + p, unlike dim S_{p,0,h} = n p + 1
Condition number (of the basis):

$$\kappa(M_{p,h}) = \mathcal{O}(2^{pd}) \qquad \kappa(K_{p,h}) = \mathcal{O}(h^{-2}2^{pd}),$$

where $M_{p,h}$ is the mass matrix and $K_{p,h}$ is the stiffness matrix.

Fast solver for Au = f

Requirements:

Fast solver must be robust in h

Should behave well in p

We know from finite element world:

Multigrid converges robustly in *h*.

Use $S_{p,H} \subset S_{p,h}$ for H = 2h, setup a *h*-multigrid with fixed p

Fast solver for Au = f

Requirements:

Fast solver must be robust in h

Should behave well in p

We know from finite element world:

Multigrid converges robustly in *h*.

Use $S_{p,H} \subset S_{p,h}$ for H = 2h, setup a *h*-multigrid with fixed *p*

Multigrid with Gauss-Seidel smoother

$\ell \diagdown p$	1	2	3	4	5	6	7	8	\geq 9
8	10	12	37	127	462	1762	6531	21657	>50k
7	10	12	37	127	488	1856	7247	23077	>50k
6	10	12	39	131	485	1883	6723	23897	>50k

V-cycle multigrid, $\nu_{pre} + \nu_{post} = 1 + 1$, stopping criterion: ℓ^2 norm of the initial residual is reduced by a factor of $\epsilon = 10^{-8}$

Observations and problems

Obtain *h*-robustness of the method $\kappa(A) = \mathcal{O}(h^{-2}), \qquad \kappa(M) = \mathcal{O}(1)$

In *p*: bad condition number of the mass matrix: $\kappa(A)$ and $\kappa(M)$ grow exponentially in *p*

Idea: Basis-independent method (mass-smoother

Observations and problems

Obtain *h*-robustness of the method $\kappa(A) = \mathcal{O}(h^{-2}), \qquad \kappa(M) = \mathcal{O}(1)$

In *p*: bad condition number of the mass matrix: $\kappa(A)$ and $\kappa(M)$ grow exponentially in *p*

Basis-independent method (mass-smooth

Observations and problems

Obtain *h*-robustness of the method $\kappa(A) = \mathcal{O}(h^{-2}), \qquad \kappa(M) = \mathcal{O}(1)$

In *p*: bad condition number of the mass matrix: $\kappa(A)$ and $\kappa(M)$ grow exponentially in *p*

Idea:

Basis-independent method (mass-smoother)

Outline

1 Introduction

- 2 Abstract multigrid theory
- 3 Approximation error and inverse estimates
- 4 A robust multigrid solver

5 Numerical results

Multigrid framework

One step of the multigrid method applied to iterate $u^{(0,0)} = u^{(0)}$ and right-hand-side f to obtain $u^{(1)}$ is given by:

Apply ν smoothing steps

$$u^{(0,m)} = u^{(0,m-1)} + \tau L^{-1}(f - Au^{(0,m-1)})$$

for $m = 1, ..., \nu$.

Apply coarse-grid correction

Compute defect and restrict to coarser grid

Solve problem on coarser grid

Prolongate and add result

If realized exactly (two-grid method):

$$u^{(1)} = u^{(0,\nu)} + l_H^h A_H^{-1} l_h^H (f - A u^{(0,\nu)})$$

Two-grid convergence \Rightarrow multigrid (W-cycle) convergence

Multigrid framework

One step of the multigrid method applied to iterate $u^{(0,0)} = u^{(0)}$ and right-hand-side f to obtain $u^{(1)}$ is given by:

Apply ν smoothing steps

$$u^{(0,m)} = u^{(0,m-1)} + \tau L^{-1}(f - Au^{(0,m-1)})$$

for $m = 1, ..., \nu$.

- Apply coarse-grid correction
 - Compute defect and restrict to coarser grid
 - Solve problem on coarser grid
 - Prolongate and add result

If realized exactly (two-grid method):

$$u^{(1)} = u^{(0,\nu)} + I_{H}^{h} A_{H}^{-1} I_{h}^{H} (f - A u^{(0,\nu)})$$

Two-grid convergence \Rightarrow multigrid (W-cycle) convergence

Multigrid framework

One step of the multigrid method applied to iterate $u^{(0,0)} = u^{(0)}$ and right-hand-side f to obtain $u^{(1)}$ is given by:

Apply ν smoothing steps

$$u^{(0,m)} = u^{(0,m-1)} + \tau L^{-1}(f - Au^{(0,m-1)})$$

for $m = 1, ..., \nu$.

Apply coarse-grid correction

- Compute defect and restrict to coarser grid
- Solve problem on coarser grid
- Prolongate and add result

If realized exactly (two-grid method):

$$u^{(1)} = u^{(0,\nu)} + I_H^h A_H^{-1} I_h^H (f - A u^{(0,\nu)})$$

I Two-grid convergence \Rightarrow multigrid (W-cycle) convergence

Nested spaces: $S_{p,H}(\Omega) \subset S_{p,h}(\Omega)$

The prolongation I_H^h is the canonical embedding

The restriction is its transpose: $I_h^H = (I_H^h)^T$

 Hackbusch-like analysis: smoothing property and approximation property
Based on: inverse inequality, approximation error estimate

Nested spaces: $S_{p,H}(\Omega) \subset S_{p,h}(\Omega)$

The prolongation I_H^h is the canonical embedding

The restriction is its transpose: $I_h^H = (I_H^h)^T$

Hackbusch-like analysis: smoothing property and approximation property Based on: inverse inequality, approximation error estimate

Nested spaces: $S_{p,H}(\Omega) \subset S_{p,h}(\Omega)$

The prolongation I_H^h is the canonical embedding

The restriction is its transpose: $I_h^H = (I_H^h)^T$

Hackbusch-like analysis: smoothing property and approximation property Based on: inverse inequality, approximation error estimate

Nested spaces: $S_{p,H}(\Omega) \subset S_{p,h}(\Omega)$

The prolongation I_H^h is the canonical embedding

I The restriction is its transpose: $I_h^H = (I_H^h)^T$

Hackbusch-like analysis: smoothing property and approximation property Based on: inverse inequality, approximation error estimate

Outline

1 Introduction

- 2 Abstract multigrid theory
- 3 Approximation error and inverse estimates
- 4 A robust multigrid solver

5 Numerical results

A *p*-robust estimate for high smoothness

$$\widetilde{S}_{p,h}(0,1) := \left\{ u \in S_{p,h}(0,1) : \begin{array}{l} \frac{\partial^{2i+1}}{\partial x^{2i+1}} u(0) = 0\\ \frac{\partial^{2i+1}}{\partial x^{2i+1}} u(1) = 0 \end{array} \right. \forall_{i \in \mathbb{Z} \text{ with } 1 \le 2i+1 < p} \right\}$$

Theorem (T., Takacs 2016)

For each $u \in H^1(\Omega)$, each $p \in \mathbb{N}$ and each h,

$$\|(I - \Pi)u\|_{L^2(\Omega)} \le \sqrt{2} h|u|_{H^1(\Omega)}$$

is satisfied for Π being the H^1 -orthogonal projection into $\widetilde{S}_{p,h}(\Omega)$.

Johann Radon Institute for Computational and Applied Mathematics

Idea behind $\widetilde{S}_{\rho,h}(0,1)$

A *p*-robust inverse inequality does not exist for $S_{p,h}(\Omega)$:

 $\|u\|_{H^1(\Omega)} \leq C \ h^{-1} \|u\|_{L^2(\Omega)} o$ not true for all $u \in S_{p,h}(\Omega)$

Choose u*(x) := max{0, h - x}^p
 What about the space S_{p,h}(Ω)?

Theorem (T., Takacs 2016)

For each $p \in \mathbb{N}$ and each h,

 $\|u\|_{H^1} \le 2\sqrt{3}h^{-1}\|u\|_{L^2}$

is satisfied for all $u \in \widetilde{S}_{p,h}(\Omega)$.

ightarrow number of outliers is bounded by $2\lfloor p/2 floor$

A *p*-robust inverse inequality does not exist for $S_{p,h}(\Omega)$:

 $\|u\|_{H^1(\Omega)} \leq C \ h^{-1} \|u\|_{L^2(\Omega)} o$ not true for all $u \in S_{p,h}(\Omega)$

Choose $u^*(x) := \max\{0, h - x\}^p$ What about the space $S_{p,h}(\Omega)$?

Theorem (T., Takacs 2016)

For each $p \in \mathbb{N}$ and each h,

$$\|u\|_{H^1} \le 2\sqrt{3}h^{-1}\|u\|_{L^2}$$

is satisfied for all $u \in \widetilde{S}_{p,h}(\Omega)$.

ightarrow number of outliers is bounded by $2\lfloor p/2 floor$

A *p*-robust inverse inequality does not exist for $S_{p,h}(\Omega)$:

 $\|u\|_{H^1(\Omega)} \leq C \ h^{-1} \|u\|_{L^2(\Omega)} o$ not true for all $u \in S_{p,h}(\Omega)$

Choose u^{*}(x) := max{0, h − x}^p
 What about the space S_{p,h}(Ω)?

Theorem (T., Takacs 2016)

For each $p \in \mathbb{N}$ and each h,

 $\|u\|_{H^1} \le 2\sqrt{3}h^{-1}\|u\|_{L^2}$

is satisfied for all $u \in \widetilde{S}_{p,h}(\Omega)$.

ightarrow number of outliers is bounded by $2\lfloor p/2 floor$

A *p*-robust inverse inequality does not exist for $S_{p,h}(\Omega)$:

 $\|u\|_{H^1(\Omega)} \leq C \ h^{-1} \|u\|_{L^2(\Omega)} o$ not true for all $u \in S_{p,h}(\Omega)$

Choose u^{*}(x) := max{0, h − x}^p
 What about the space S_{p,h}(Ω)?

Theorem (T., Takacs 2016)

For each $p \in \mathbb{N}$ and each h,

 $|u|_{H^1} \le 2\sqrt{3}h^{-1}||u||_{L^2}$

is satisfied for all $u \in \widetilde{S}_{p,h}(\Omega)$.

ightarrow number of outliers is bounded by $2\lfloor p/2
floor$

A *p*-robust inverse inequality does not exist for $S_{p,h}(\Omega)$:

 $\|u\|_{H^1(\Omega)} \leq C \ h^{-1} \|u\|_{L^2(\Omega)} o$ not true for all $u \in S_{p,h}(\Omega)$

Choose u^{*}(x) := max{0, h − x}^p
 What about the space S_{p,h}(Ω)?

Theorem (T., Takacs 2016)

For each $p \in \mathbb{N}$ and each h,

$$|u|_{H^1} \le 2\sqrt{3}h^{-1}||u||_{L^2}$$

is satisfied for all $u \in \widetilde{S}_{p,h}(\Omega)$.

ightarrow number of outliers is bounded by $2\lfloor p/2 \rfloor$

Outline

1 Introduction

- 2 Abstract multigrid theory
- 3 Approximation error and inverse estimates
- 4 A robust multigrid solver

5 Numerical results

How to choose the smoother L such that the two-grid/multigrid method **converges robustly** in h and p?

- Standard smoothers (e.g., **Gauss-Seidel**) achieve *h*-robustness but scale poorly with *p*.
- Our previous concept: mass smoother with low-rank boundary correction is robust in *h* and *p*, but only efficient up to 2D. (Hofreither, T., Zulehner, CMAME 2016)
- New idea: stable splitting of the spline space subspace correction. Robust and efficient in arbitrary dimension. \rightarrow This talk.

How to choose the smoother L such that the two-grid/multigrid method **converges robustly** in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieve *h*-robustness but scale poorly with *p*.

Our previous concept: mass smoother with low-rank boundary correction is robust in *h* and *p*, but only efficient up to 2D. (Hofreither, T., Zulehner, CMAME 2016)

New idea: stable splitting of the spline space – subspace correction. Robust and efficient in arbitrary dimension. \rightarrow This talk.

How to choose the smoother L such that the two-grid/multigrid method **converges robustly** in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieve *h*-robustness but scale poorly with *p*.

Our previous concept: mass smoother with low-rank boundary correction is robust in *h* and *p*, but only efficient up to 2D. (Hofreither, T., Zulehner, CMAME 2016)

New idea: stable splitting of the spline space – subspace correction. Robust and efficient in arbitrary dimension. \rightarrow This talk.

How to choose the smoother L such that the two-grid/multigrid method **converges robustly** in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieve *h*-robustness but scale poorly with *p*.

Our previous concept: mass smoother with low-rank boundary correction is robust in *h* and *p*, but only efficient up to 2D. (Hofreither, T., Zulehner, CMAME 2016)

New idea: stable splitting of the spline space – subspace correction. Robust and efficient in arbitrary dimension.
→ This talk.

Splittings of spline spaces

Any spline $u \in S_{p,h}(0,1)$ can be split into $u_l \in S_{p,h}^l(0,1)$ and $u_{\Gamma} \in S_{p,h}^{\Gamma}(0,1)$:

 $u = u_1 + u_{\Gamma}$

Have: Inverse inequality: $||v||_1 \le ch^{-1} ||v||_0 \qquad \forall v \in S'_{p,h}(0,1).$ Problem: Splitting is not stable.

 $c^{-1} \|u\|_1 \le \|u_I\|_1 + \|u_{\Gamma}\|_1 \le c \|u\|_1 \qquad \forall u \in S_{p,h}(0,1) \to \text{wrong!}$

The subspace $S_{p,h}(0,1)$

We have seen that for $\widetilde{S}_{p,h}(0,1)$,

an approximation error estimate and

an inverse inequality holds.

Define: $V := S_{p,h}(0,1)$ $V_0 := \widetilde{S}_{p,h}(0,1)$ V_1 is the L^2 -orthogonal complement of V_0 in V

The subspace $\widetilde{S}_{p,h}(0,\overline{1})$

We have seen that for $\widetilde{S}_{p,h}(0,1)$,

an approximation error estimate and

an inverse inequality holds.

Define: $V := S_{p,h}(0,1)$ $V_0 := \widetilde{S}_{p,h}(0,1)$ V_1 is the L^2 -orthogonal complement of V_0 in V

Stability of the splitting based on V_0

Any spline $u \in V$ can be split into $u_0 \in V_0, u_1 \in V_1$: $u = u_0 + u_1$

Due to orthogonality, we have: $||u||_0^2 = ||u_0||_0^2 + ||u_1||_0^2 \quad \forall u \in V.$

Theorem (Hofreither, T. 2016)

Stability of the splitting

$c^{-1} \|u\|_1^2 \le \|u_0\|_1^2 + \|u_1\|_1^2 \le c \|u\|_1^2 \qquad \forall u \in V$

holds, where c does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

www.ricam.oeaw.ac.at

Stefan Takacs, Multigrid methods for Isogeometric analysis

Stability of the splitting based on V_0

Any spline $u \in V$ can be split into $u_0 \in V_0, u_1 \in V_1$: $u = u_0 + u_1$

Due to orthogonality, we have: $||u||_0^2 = ||u_0||_0^2 + ||u_1||_0^2 \quad \forall u \in V.$

Theorem (Hofreither, T. 2016)

Stability of the splitting

 $c^{-1} \|u\|_1^2 \le \|u_0\|_1^2 + \|u_1\|_1^2 \le c \|u\|_1^2 \qquad \forall u \in V$

holds, where c does not depend on h or p.

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

www.ricam.oeaw.ac.at

Stefan Takacs, Multigrid methods for Isogeometric analysis

Stability of the splitting based on V_0

Any spline $u \in V$ can be split into $u_0 \in V_0, u_1 \in V_1$: $u = u_0 + u_1$

Due to orthogonality, we have: $||u||_0^2 = ||u_0||_0^2 + ||u_1||_0^2 \quad \forall u \in V.$

Theorem (Hofreither, T. 2016)

Stability of the splitting

 $c^{-1} \|u\|_1^2 \le \|u_0\|_1^2 + \|u_1\|_1^2 \le c \|u\|_1^2 \qquad \forall u \in V$

holds, where c does not depend on h or p.

Setting up the splitting in $1\mathsf{D}$

Construction of V_0 and V_1 is local process on the boundary

- Basis functions away from the boundary are directly taken as basis functions in $\ensuremath{V_0}$
- For the first and last p basis functions, we can use a SVD (for two $p \times p$ matrices) to set up the ℓ^2 -orthogonal splitting representing the basis functions for for V_0 and V_1 as linear combination of the ϕ_i
 - The vectors representing the basis functions on V_1 are pre-multiplied with M^{-1} to obtain L^2 -orthogonality

Setting up the splitting in 1D

- Construction of V_0 and V_1 is local process on the boundary
- | Basis functions away from the boundary are directly taken as basis functions in $\,V_0\,$
- For the first and last p basis functions, we can use a SVD (for two $p \times p$ matrices) to set up the ℓ^2 -orthogonal splitting representing the basis functions for for V_0 and V_1 as linear combination of the ϕ_i
 - The vectors representing the basis functions on V_1 are pre-multiplied with M^{-1} to obtain L^2 -orthogonality

Setting up the splitting in 1D

- Construction of V_0 and V_1 is local process on the boundary
- Basis functions away from the boundary are directly taken as basis functions in V_0
- For the first and last p basis functions, we can use a SVD (for two $p \times p$ matrices) to set up the ℓ^2 -orthogonal splitting representing the basis functions for for V_0 and V_1 as linear combination of the ϕ_i

The vectors representing the basis functions on V_1 are pre-multiplied with M^{-1} to obtain L^2 -orthogonality

Setting up the splitting in 1D

- Construction of V_0 and V_1 is local process on the boundary
- Basis functions away from the boundary are directly taken as basis functions in V_0
- For the first and last p basis functions, we can use a SVD (for two $p \times p$ matrices) to set up the ℓ^2 -orthogonal splitting representing the basis functions for for V_0 and V_1 as linear combination of the ϕ_i
- The vectors representing the basis functions on V_1 are pre-multiplied with M^{-1} to obtain L^2 -orthogonality

Stability of the splitting based on V_0 (once more)

Any spline $u \in V$ can be split into $u_0 \in V_0, u_1 \in V_1$: $u = u_0 + u_1$

Due to orthogonality, we have: $||u||_0^2 = ||u_0||_0^2 + ||u_1||_0^2 \quad \forall u \in V.$

Theorem (Hofreither, T. 2016)

Stability of the splitting

 $c^{-1} \|u\|_1^2 \le \|u_0\|_1^2 + \|u_1\|_1^2 \le c \|u\|_1^2 \qquad \forall u \in V$

holds, where c does not depend on h or p.

A stable splitting in 2D

The 2D tensor product spline space is given by

$$V^{2} = V \otimes V$$

= $(V_{0} \oplus V_{1}) \otimes (V_{0} \oplus V_{1})$
= $(V_{0} \otimes V_{0}) \oplus (V_{0} \otimes V_{1}) \oplus (V_{1} \otimes V_{0}) \oplus (V_{1} \otimes V_{1})$
= $V_{00} \oplus V_{01} \oplus V_{10} \oplus V_{11}.$

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

www.ricam.oeaw.ac.at

Stefan Takacs, Multigrid methods for Isogeometric analysis

A stable splitting in 2D

Let

$$Q_0: V \rightarrow V_0, \qquad Q_1: V \rightarrow V_1$$

denote the L_2 -orthogonal projectors into V_0 and V_1 . Then

$$Q_{lpha_1,lpha_2}:=Q_{lpha_1}\otimes Q_{lpha_2}$$
 : $V^2 o V_{lpha_1,lpha_2}$

is the L₂-orthogonal projector into V_{α_1,α_2} .

Theorem (Hofreither, T. 2016)

For any tensor product spline $u \in V^2$, we have

$$c^{-1} \|u\|_1^2 \leq \sum_{(lpha_1, lpha_2) = (0, 0)}^{(1, 1)} \|Q_{lpha_1, lpha_2} u\|_1^2 \leq c \|u\|_1^2$$

with a constant c which does not depend on h or p.

Stable splitting in arbitrary dimensions

For a multiindex $\alpha \in \{0,1\}^d$, we define projectors

 $Q_{\alpha} := Q_{\alpha_1} \otimes \ldots \otimes Q_{\alpha_d} \quad : \quad V^d \to V_{\alpha_1} \otimes \ldots \otimes V_{\alpha_d} =: V_{\alpha}$

into the 2^d subspaces V_{α} .

Theorem (Hofreither, T. 2016)

For any d-dimensional tensor product spline $u \in V^d$, we have

$$\|c^{-1}\|u\|_1^2 \leq \sum_{lpha=(0,...,0)}^{(1,...,1)} \|Q_lpha u\|_1^2 \leq c \|u\|_1^2$$

with a constant c which does not depend on h or p.

A smoother based on subspace correction

In each subspace V_{α} , we apply a local smoothing operator $L_{\alpha}: V_{\alpha} \to V'_{\alpha}$. The overall operator is

$$\mathcal{L} = \sum_{lpha} \mathcal{Q}'_{lpha} \mathcal{L}_{lpha} \mathcal{Q}_{lpha}.$$

Theorem (a variant of Hackbusch's analysis)

Assume that we have an appropriate approxiamtion error estimate and

$$\langle Av, v \rangle \leq c \langle Lv, v \rangle \qquad \forall v \in V$$

and

$$\langle Lv,v\rangle \leq c \langle (A+h^{-2}M^d)v,v\rangle \qquad \forall v \in V.$$

Then the two-grid method with smoother based on L converges with a rate which depends only on c.

A smoother based on subspace correction

In each subspace V_{α} , we apply a local smoothing operator $L_{\alpha}: V_{\alpha} \to V'_{\alpha}$. The overall operator is

$$\mathcal{L} = \sum_{lpha} \mathcal{Q}'_{lpha} \mathcal{L}_{lpha} \mathcal{Q}_{lpha}.$$

Theorem (Hofreither, T. 2016)

Assume that we have an appropriate approxiamtion error estimate and for every $\alpha \in \{0,1\}^d$ we have

 $egin{aligned} &\langle A_lpha v_lpha, v_lpha
angle \leq c \langle L_lpha v_lpha, v_lpha
angle & orall v_lpha \in V_lpha \ &\langle L_lpha v_lpha, v_lpha
angle \leq c \langle (A_lpha + h^{-2} M^d_lpha) v_lpha, v_lpha
angle & orall v_lpha \in V_lpha. \end{aligned}$

Then the two-grid method with smoother based on L converges with a rate which depends only on c.

Let M and K denote the 1D mass and stiffness operators. Then

 $A = K \otimes M + M \otimes K + M \otimes M.$

The restriction to the subspace V_{α_1,α_2} is

$$A_{\alpha} = K_{\alpha_1} \otimes M_{\alpha_2} + M_{\alpha_1} \otimes K_{\alpha_2} + M_{\alpha_1} \otimes M_{\alpha_2}.$$

The robust inverse inequality in V_0 states that

$$K_0 \leq ch^{-2}M_0.$$

We want

$$c^{-1}A_{lpha} \leq L_{lpha} \leq c(A_{lpha} + h^{-2}M_{lpha}^d).$$

Using $K_0 \leq ch^{-2}M_0$, we estimate:

 $\begin{aligned} A_{00} &= K_0 \otimes M_0 + M_0 \otimes K_0 + M_0 \otimes M_0 \lesssim h^{-2} M_0 \otimes M_0 \\ A_{01} &= K_0 \otimes M_1 + M_0 \otimes K_1 + M_0 \otimes M_1 \lesssim M_0 \otimes (h^{-2} M_1 + K_1) \\ A_{10} &= K_1 \otimes M_0 + M_1 \otimes K_0 + M_1 \otimes M_0 \lesssim (h^{-2} M_1 + K_1) \otimes M_0 \end{aligned}$

So we choose

 $L_{00} := h^{-2} M_0 \otimes M_0 \qquad \qquad L_{01} := M_0 \otimes (h^{-2} M_1 + K_1)$ $L_{10} := (h^{-2} M_1 + K_1) \otimes M_0 \qquad \qquad L_{11} := A_{11}$

 L_{00}, L_{01}, L_{10} have tensor product structure. Invert using

$$(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$$

L_{11} lives in the small space V_{11} ($\mathcal{O}(p^2)$ dofs) – invert directly.

Using $K_0 \leq ch^{-2}M_0$, we estimate:

 $A_{00} = K_0 \otimes M_0 + M_0 \otimes K_0 + M_0 \otimes M_0 \lesssim h^{-2}M_0 \otimes M_0$ $A_{01} = K_0 \otimes M_1 + M_0 \otimes K_1 + M_0 \otimes M_1 \lesssim M_0 \otimes (h^{-2}M_1 + K_1)$ $A_{10} = K_1 \otimes M_0 + M_1 \otimes K_0 + M_1 \otimes M_0 \lesssim (h^{-2}M_1 + K_1) \otimes M_0$

So we choose

 $L_{00} := h^{-2} M_0 \otimes M_0 \qquad \qquad L_{01} := M_0 \otimes (h^{-2} M_1 + K_1)$ $L_{10} := (h^{-2} M_1 + K_1) \otimes M_0 \qquad \qquad L_{11} := A_{11}$

 L_{00}, L_{01}, L_{10} have tensor product structure. Invert using

$$(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$$

L_{11} lives in the small space V_{11} ($\mathcal{O}(p^2)$ dofs) – invert directly.

Using $K_0 \leq ch^{-2}M_0$, we estimate:

 $\begin{aligned} A_{00} &= K_0 \otimes M_0 + M_0 \otimes K_0 + M_0 \otimes M_0 \lesssim \quad h^{-2}M_0 \otimes M_0 \\ A_{01} &= K_0 \otimes M_1 + M_0 \otimes K_1 + M_0 \otimes M_1 \lesssim M_0 \otimes (h^{-2}M_1 + K_1) \\ A_{10} &= K_1 \otimes M_0 + M_1 \otimes K_0 + M_1 \otimes M_0 \lesssim (h^{-2}M_1 + K_1) \otimes M_0 \end{aligned}$

So we choose

 $L_{00} := h^{-2} M_0 \otimes M_0 \qquad \qquad L_{01} := M_0 \otimes (h^{-2} M_1 + K_1)$ $L_{10} := (h^{-2} M_1 + K_1) \otimes M_0 \qquad \qquad L_{11} := A_{11}$

 L_{00}, L_{01}, L_{10} have tensor product structure. Invert using

$$(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$$

L_{11} lives in the small space V_{11} ($\mathcal{O}(p^2)$ dofs) – invert directly.

Using $K_0 \leq ch^{-2}M_0$, we estimate:

$$\begin{split} A_{00} &= K_0 \otimes M_0 + M_0 \otimes K_0 + M_0 \otimes M_0 \lesssim h^{-2}M_0 \otimes M_0 \\ A_{01} &= K_0 \otimes M_1 + M_0 \otimes K_1 + M_0 \otimes M_1 \lesssim M_0 \otimes (h^{-2}M_1 + K_1) \\ A_{10} &= K_1 \otimes M_0 + M_1 \otimes K_0 + M_1 \otimes M_0 \lesssim (h^{-2}M_1 + K_1) \otimes M_0 \end{split}$$

So we choose

$$\begin{split} L_{00} &:= h^{-2} M_0 \otimes M_0 & L_{01} &:= M_0 \otimes (h^{-2} M_1 + K_1) \\ L_{10} &:= (h^{-2} M_1 + K_1) \otimes M_0 & L_{11} &:= A_{11} \end{split}$$

 L_{00}, L_{01}, L_{10} have tensor product structure. Invert using

$$(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$$

L_{11} lives in the small space V_{11} ($\mathcal{O}(p^2)$ dofs) – invert directly.

Using $K_0 \leq ch^{-2}M_0$, we estimate:

$$\begin{split} A_{00} &= K_0 \otimes M_0 + M_0 \otimes K_0 + M_0 \otimes M_0 \lesssim h^{-2}M_0 \otimes M_0 \\ A_{01} &= K_0 \otimes M_1 + M_0 \otimes K_1 + M_0 \otimes M_1 \lesssim M_0 \otimes (h^{-2}M_1 + K_1) \\ A_{10} &= K_1 \otimes M_0 + M_1 \otimes K_0 + M_1 \otimes M_0 \lesssim (h^{-2}M_1 + K_1) \otimes M_0 \end{split}$$

So we choose

$$\begin{split} L_{00} &:= h^{-2} M_0 \otimes M_0 & L_{01} &:= M_0 \otimes (h^{-2} M_1 + K_1) \\ L_{10} &:= (h^{-2} M_1 + K_1) \otimes M_0 & L_{11} &:= A_{11} \end{split}$$

 L_{00}, L_{01}, L_{10} have tensor product structure. Invert using

$$(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$$

 L_{11} lives in the small space V_{11} ($\mathcal{O}(p^2)$ dofs) – invert directly.

Robust convergence

By construction, the subspace smoothers satisfy

$$\langle A_{\alpha} v_{\alpha}, v_{\alpha} \rangle \leq c \langle L_{\alpha} v_{\alpha}, v_{\alpha} \rangle \qquad \forall v_{\alpha} \in V_{\alpha}$$

and

$$\langle L_{\alpha}v_{\alpha}, v_{\alpha} \rangle \leq c \langle (A_{\alpha} + h^{-2}M_{\alpha}^d)v_{\alpha}, v_{\alpha} \rangle \qquad \forall v_{\alpha} \in V_{\alpha}.$$

In both cases, c does not depend on h or p.

Theorem (Hofreither, T. 2016)

The two-grid method with the subspace correction smoother L converges with a rate which does not depend on h or p.

The extension to W-cycle multigrid is standard.

Computational costs

Construction is easily extended to d dimensions.

Complexity analysis:

Setup costs $\mathcal{O}(np^2 + p^{3d})$ Application costs $\mathcal{O}(n^d p + \max_{k=0,...,d} n^k p^{2(d-k)})$ $= \mathcal{O}(n^d p + p^{2d})$ Stiffness matrix costs $\mathcal{O}(n^d p^d)$

For $d \ge 2$ and $p^2 \le n$, both setup and application of the smoother are **not more expensive** than applying the stiffness matrix.

Outline

1 Introduction

- 2 Abstract multigrid theory
- 3 Approximation error and inverse estimates
- 4 A robust multigrid solver

5 Numerical results

Iteration numbers: d = 1

$\ell \diagdown p$	1	2	3	4	5	6	7	8	9	10
9	27	33	34	34	33	33	33	32	31	31
8	27	33	34	34	32	33	33	31	30	30
7	27	33	34	34	32	33	33	31	28	30

V-cycle multigrid, $\nu_{pre} + \nu_{post} = 1 + 1$, stopping criterion: ℓ^2 norm of the initial residual is reduced by a factor of $\epsilon = 10^{-8}$

Iteration numbers: d = 2

$\ell \diagdown p$	1	2	3	4	5	6	7	8	9	10
8	34	38	39	39	39	38	38	37	37	36
7	34	38	39	39	38	38	37	36	36	34
6	34	38	38	38	37	37	35	34	34	32
5	34	36	37	34	34	32	30	28	26	24
4	34	33	32	28	25	21	19	16	13	11
3	38	25	21	15	11	9	7	-	-	-

Iteration numbers using standard Gauss-Seidel smoother:

$\ell \smallsetminus p$	1	2	3	4	5	6	≥ 7
8	10	12	37	127	462	1762	>5k

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

Iteration numbers: d = 3

$\ell \diagdown p$	2	3	4	5
5	44	43	42	39
4	39	36	32	29
3	30	42	18	23
2	16	23	-	-
1	-	-	-	-

Iteration numbers using standard Gauss-Seidel smoother:

$\ell \diagdown p$	2	3	4	≥5
5	38	240	1682	>5k

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

Stefan Takacs, Multigrid methods for Isogeometric analysis

- Single-patch solver (some DD approach might be used for multi-patch domains)
- **Robust convergence rates**, robust number of smoothing steps
- **Optimal computational complexity** in the sense: "same complexity as the multiplication with the stiffness matrix *A*"
 - Mild dependence of the rates on *d* (not fully analyzed)

Rigorous analysis

- Single-patch solver (some DD approach might be used for multi-patch domains)
- Robust convergence rates, robust number of smoothing steps
- Optimal computational complexity in the sense: "same complexity as the multiplication with the stiffness matrix A"
- Mild dependence of the rates on *d* (not fully analyzed)

Rigorous analysis

- Single-patch solver (some DD approach might be used for multi-patch domains)
- Robust convergence rates, robust number of smoothing steps
- **Optimal computational complexity** in the sense: "same complexity as the multiplication with the stiffness matrix *A*"
 - Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

- Single-patch solver (some DD approach might be used for multi-patch domains)
- Robust convergence rates, robust number of smoothing steps
- **Optimal computational complexity** in the sense: "same complexity as the multiplication with the stiffness matrix *A*"
 - Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis

- Single-patch solver (some DD approach might be used for multi-patch domains)
- Robust convergence rates, robust number of smoothing steps
- **Optimal computational complexity** in the sense: "same complexity as the multiplication with the stiffness matrix *A*"
 - Mild dependence of the rates on *d* (not fully analyzed)

Rigorous analysis

Literature

S. Takacs and T. Takacs.

Approximation error estimates and inverse inequalities for B-splines of maximum smoothness.

M³AS, 26 (7), p. 1411 - 1445, 2016.

- C. Hofreither, S. Takacs and W. Zulehner.
 A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction.
 CMAME, available online, 2016.
- C. Hofreither and S. Takacs.

Robust Multigrid for Isogeometric Analysis using Subspace Correction. *In preparation*, 2016.

Thanks for your attention!

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap

Construction of the subspace smoothers (3D)

Using $K_0 \leq ch^{-2}M_0$, we estimate:

 $\begin{aligned} A_{000} &= K_0 \otimes M_0 \otimes M_0 + M_0 \otimes K_0 \otimes M_0 + M_0 \otimes M_0 \otimes K_0 + M_0 \otimes M_0 \otimes M_0 \\ &\lesssim h^{-2} M_0 \otimes M_0 \otimes M_0 =: L_{000} \\ A_{100} &= K_1 \otimes M_0 \otimes M_0 + M_1 \otimes K_0 \otimes M_0 + M_1 \otimes M_0 \otimes K_0 + M_1 \otimes M_0 \otimes M_0 \\ &\lesssim (K_1 + h^{-2} M_1) \otimes M_0 \otimes M_0 =: L_{100} \\ A_{110} &= K_1 \otimes M_1 \otimes M_0 + M_1 \otimes K_1 \otimes M_0 + M_1 \otimes M_1 \otimes K_0 + M_1 \otimes M_1 \otimes M_0 \\ &\lesssim (K_1 \otimes M_1 + M_1 \otimes K_1 + h^{-2} M_1 \otimes M_1) \otimes M_0 =: L_{110} \\ A_{111} &= K_1 \otimes M_1 \otimes M_1 + M_1 \otimes K_1 \otimes M_1 + M_1 \otimes M_1 \otimes K_1 + M_1 \otimes M_1 \otimes M_1 \\ &=: L_{111} \end{aligned}$

Introduction Abstract multigrid theory Approximation error and inverse estimates A robust multigrid solver Numerical results Ap