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Model problem
Elliptic model problem: Find u ∈ H1(Ω):

−∆u + u = f in Ω,
∂u
∂n = 0 on ∂Ω

Variational formulation: Find u ∈ V :
a(u, v) = 〈f , v〉 ∀v ∈ V

where

a(u, v) =

∫
Ω

(∇u · ∇v + uv) dx , 〈f , v〉 =

∫
Ω
fv dx .

Or as a linear system:
Au = f .
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Isogeometric Analysis
What is Isogeometric Analysis?

Idea: One method that can be used for design (CAD) and
numerical simulation
Technical: B-spline (NURBS) based FEM

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs.
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement.
CMAME, 194, p. 4135 - 4195, 2004.
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B-spline basis functions
Let m ∈ N, h = 1/m and let

Sp,h := {u ∈ Cp−1(0, 1) : u|((j−1)h,jh) ∈ Pp ∀j = 1, . . . ,m},
denote the spline space over [0, 1] with degree p, maximum
continuity Cp−1, and mesh size h.

We denote the standard B-spline basis functions by
Sp,h = span(B), B = {φ1, . . . , φn},

where n = dimSp,h = m + p.
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Sp,h := {u ∈ Cp−1(0, 1) : u|((j−1)h,jh) ∈ Pp ∀j = 1, . . . ,m},
denote the spline space over [0, 1] with degree p, maximum
continuity Cp−1, and mesh size h.

We denote the standard B-spline basis functions by
Sp,h = span(B), B = {φ1, . . . , φn},

where n = dimSp,h = m + p.

In higher dimensions, we form tensor product spline spaces:

S2
p,h = Sp,h ⊗ Sp,h, φj1,j2(x , y) := φj1(x)φj2(y).
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Isogeometric Analysis

Global geometry transformation

G

More complicated domains:
Multi-patch discretization with tensor-product patches
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Finite element method

Courant element
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Properties of the B-spline basis

Non-negativity: φi (x) ≥ 0
Partition of unity:

∑
i φi (x) = 1

Approximation power:

‖u − uh‖L2 ≤ Cphp|u|Hp

dim Sp,h = n + p, unlike dim Sp,0,h = n p + 1
Condition number (of the basis):

κ(Mp,h) = O(2pd ) κ(Kp,h) = O(h−22pd ),

where Mp,h is the mass matrix and Kp,h is the stiffness matrix.
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Fast solver for Au = f

Requirements:

Fast solver must be robust in h

Should behave well in p

We know from finite element world:

Multigrid converges robustly in h.

Use Sp,H ⊂ Sp,h for H = 2h, setup a h-multigrid with fixed p
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Multigrid with Gauss-Seidel smoother

` � p 1 2 3 4 5 6 7 8 ≥ 9

8 10 12 37 127 462 1762 6531 21657 >50k
7 10 12 37 127 488 1856 7247 23077 >50k
6 10 12 39 131 485 1883 6723 23897 >50k

V-cycle multigrid, νpre + νpost = 1 + 1, stopping criterion: `2 norm
of the initial residual is reduced by a factor of ε = 10−8
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Observations and problems

Obtain h-robustness of the method
κ(A) = O(h−2), κ(M) = O(1)

In p: bad condition number of the mass matrix:
κ(A) and κ(M) grow exponentially in p

Idea:
Basis-independent method (mass-smoother)
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Multigrid framework
One step of the multigrid method applied to iterate u(0,0) = u(0)

and right-hand-side f to obtain u(1) is given by:
Apply ν smoothing steps

u(0,m) = u(0,m−1) + τL−1(f − Au(0,m−1))

for m = 1, . . . , ν.
Apply coarse-grid correction

Compute defect and restrict to coarser grid
Solve problem on coarser grid
Prolongate and add result

If realized exactly (two-grid method):

u(1) = u(0,ν) + IhHA−1
H IHh (f − Au(0,ν))

Two-grid convergence ⇒ multigrid (W-cycle) convergence
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Multigrid setup

Nested spaces: Sp,H(Ω) ⊂ Sp,h(Ω)

The prolongation IhH is the canonical embedding

The restriction is its transpose: IHh = (IhH)T

Hackbusch-like analysis: smoothing property and
approximation property
Based on: inverse inequality, approximation error estimate
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A p-robust estimate for high smoothness

S̃p,h(0, 1) :=

{
u ∈ Sp,h(0, 1) :

∂2i+1

∂x2i+1 u(0) = 0
∂2i+1

∂x2i+1 u(1) = 0
∀i∈Z with 1≤2i+1<p

}

Theorem (T., Takacs 2016)

For each u ∈ H1(Ω), each p ∈ N and each h,

‖(I − Π)u‖L2(Ω) ≤
√
2 h|u|H1(Ω)

is satisfied for Π being the H1-orthogonal projection into S̃p,h(Ω).
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Idea behind S̃p,h(0, 1)
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Inverse inequality

A p-robust inverse inequality does not exist for Sp,h(Ω):
|u|H1(Ω) ≤ C h−1‖u‖L2(Ω) → not true for allu ∈ Sp,h(Ω)

Choose u∗(x) := max{0, h − x}p
What about the space S̃p,h(Ω)?

Theorem (T., Takacs 2016)

For each p ∈ N and each h,

|u|H1 ≤ 2
√
3h−1‖u‖L2

is satisfied for all u ∈ S̃p,h(Ω).

→ number of outliers is bounded by 2bp/2c
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Robust multigrid for IgA

How to choose the smoother L such that the two-grid/multigrid
method converges robustly in h and p?

Standard smoothers (e.g., Gauss-Seidel) achieve
h-robustness but scale poorly with p.
Our previous concept: mass smoother with low-rank
boundary correction is robust in h and p, but only efficient
up to 2D. (Hofreither, T., Zulehner, CMAME 2016)
New idea: stable splitting of the spline space – subspace
correction. Robust and efficient in arbitrary dimension.
→ This talk.
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Splittings of spline spaces
Any spline u ∈ Sp,h(0, 1) can be split into uI ∈ S I

p,h(0, 1) and
uΓ ∈ SΓ

p,h(0, 1):
u = uI + uΓ
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Have: Inverse inequality: ‖v‖1 ≤ ch−1‖v‖0 ∀v ∈ S I
p,h(0, 1).

Problem: Splitting is not stable.

c−1‖u‖1 ≤ ‖uI‖1 + ‖uΓ‖1 ≤ c‖u‖1 ∀u ∈ Sp,h(0, 1)→ wrong!
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The subspace S̃p,h(0, 1)

We have seen that for S̃p,h(0, 1),

an approximation error estimate and

an inverse inequality holds.

Define:
V := Sp,h(0, 1)

V0 := S̃p,h(0, 1)
V1 is the L2-orthogonal complement of V0 in V
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Stability of the splitting based on V0

Any spline u ∈ V can be split into u0 ∈ V0, u1 ∈ V1: u = u0 + u1
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Due to orthogonality, we have: ‖u‖20 = ‖u0‖20 + ‖u1‖20 ∀u ∈ V .

Theorem (Hofreither, T. 2016)

Stability of the splitting

c−1‖u‖21 ≤ ‖u0‖21 + ‖u1‖21 ≤ c‖u‖21 ∀u ∈ V

holds, where c does not depend on h or p.
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Setting up the splitting in 1D

Construction of V0 and V1 is local process on the boundary

Basis functions away from the boundary are directly taken as
basis functions in V0

For the first and last p basis functions, we can use a SVD (for
two p × p matrices) to set up the `2-orthogonal splitting
representing the basis functions for for V0 and V1 as linear
combination of the φi

The vectors representing the basis functions on V1 are
pre-multiplied with M−1 to obtain L2-orthogonality
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Stability of the splitting based on V0 (once more)
Any spline u ∈ V can be split into u0 ∈ V0, u1 ∈ V1: u = u0 + u1
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Due to orthogonality, we have: ‖u‖20 = ‖u0‖20 + ‖u1‖20 ∀u ∈ V .

Theorem (Hofreither, T. 2016)

Stability of the splitting

c−1‖u‖21 ≤ ‖u0‖21 + ‖u1‖21 ≤ c‖u‖21 ∀u ∈ V

holds, where c does not depend on h or p.
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A stable splitting in 2D
The 2D tensor product spline space is given by

V 2 = V ⊗ V
= (V0 ⊕ V1)⊗ (V0 ⊕ V1)

= (V0 ⊗ V0)⊕ (V0 ⊗ V1)⊕ (V1 ⊗ V0)⊕ (V1 ⊗ V1)

= V00 ⊕ V01 ⊕ V10 ⊕ V11.

V00

⊕

V01

⊕

V10

⊕

V11
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A stable splitting in 2D
Let

Q0 : V → V0, Q1 : V → V1

denote the L2-orthogonal projectors into V0 and V1. Then
Qα1,α2 := Qα1 ⊗ Qα2 : V 2 → Vα1,α2

is the L2-orthogonal projector into Vα1,α2 .

Theorem (Hofreither, T. 2016)

For any tensor product spline u ∈ V 2, we have

c−1‖u‖21 ≤
(1,1)∑

(α1,α2)=(0,0)

‖Qα1,α2u‖21. ≤ c‖u‖21

with a constant c which does not depend on h or p.
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Stable splitting in arbitrary dimensions

For a multiindex α ∈ {0, 1}d , we define projectors

Qα := Qα1 ⊗ . . .⊗ Qαd : V d → Vα1 ⊗ . . .⊗ Vαd =: Vα

into the 2d subspaces Vα.

Theorem (Hofreither, T. 2016)

For any d-dimensional tensor product spline u ∈ V d , we have

c−1‖u‖21 ≤
(1,...,1)∑

α=(0,...,0)

‖Qαu‖21 ≤ c‖u‖21

with a constant c which does not depend on h or p.
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A smoother based on subspace correction
In each subspace Vα, we apply a local smoothing operator
Lα : Vα → V ′α. The overall operator is

L =
∑
α

Q′αLαQα.

Theorem (a variant of Hackbusch’s analysis)

Assume that we have an appropriate approxiamtion error estimate
and

〈Av , v〉 ≤ c〈Lv , v〉 ∀v ∈ V
and

〈Lv , v〉 ≤ c〈(A + h−2Md )v , v〉 ∀v ∈ V .

Then the two-grid method with smoother based on L converges
with a rate which depends only on c.
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Construction of the subspace smoothers (2D)
Let M and K denote the 1D mass and stiffness operators. Then

A = K ⊗M + M ⊗ K + M ⊗M.

The restriction to the subspace Vα1,α2 is

Aα = Kα1 ⊗Mα2 + Mα1 ⊗ Kα2 + Mα1 ⊗Mα2 .

The robust inverse inequality in V0 states that

K0 ≤ ch−2M0.

We want
c−1Aα ≤ Lα ≤ c(Aα + h−2Md

α).
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Construction of the subspace smoothers (2D)
Using K0 ≤ ch−2M0, we estimate:

A00 = K0 ⊗M0 + M0 ⊗ K0 + M0 ⊗M0 . h−2M0 ⊗M0

A01 = K0 ⊗M1 + M0 ⊗ K1 + M0 ⊗M1 .M0 ⊗ (h−2M1 + K1)

A10 = K1 ⊗M0 + M1 ⊗ K0 + M1 ⊗M0 .(h−2M1 + K1)⊗M0

So we choose

L00 := h−2M0 ⊗M0 L01 := M0 ⊗ (h−2M1 + K1)

L10 := (h−2M1 + K1)⊗M0 L11 := A11

L00, L01, L10 have tensor product structure. Invert using

(A⊗ B)−1 = A−1 ⊗ B−1.

L11 lives in the small space V11 (O(p2) dofs) – invert directly.
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Robust convergence
By construction, the subspace smoothers satisfy

〈Aαvα, vα〉 ≤ c〈Lαvα, vα〉 ∀vα ∈ Vα

and

〈Lαvα, vα〉 ≤ c〈(Aα + h−2Md
α)vα, vα〉 ∀vα ∈ Vα.

In both cases, c does not depend on h or p.

Theorem (Hofreither, T. 2016)

The two-grid method with the subspace correction smoother L
converges with a rate which does not depend on h or p.

The extension to W-cycle multigrid is standard.
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Computational costs

Construction is easily extended to d dimensions.

Complexity analysis:

Setup costs O(np2 + p3d )
Application costs O

(
ndp + maxk=0,...,d nkp2(d−k)

)
= O

(
ndp + p2d)

Stiffness matrix costs O
(
ndpd)

For d ≥ 2 and p2 . n, both setup and application of the smoother
are not more expensive than applying the stiffness matrix.
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Outline

1 Introduction

2 Abstract multigrid theory

3 Approximation error and inverse estimates

4 A robust multigrid solver

5 Numerical results
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Iteration numbers: d = 1

` � p 1 2 3 4 5 6 7 8 9 10

9 27 33 34 34 33 33 33 32 31 31
8 27 33 34 34 32 33 33 31 30 30
7 27 33 34 34 32 33 33 31 28 30

V-cycle multigrid, νpre + νpost = 1 + 1, stopping criterion: `2 norm
of the initial residual is reduced by a factor of ε = 10−8
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Iteration numbers: d = 2

` � p 1 2 3 4 5 6 7 8 9 10

8 34 38 39 39 39 38 38 37 37 36
7 34 38 39 39 38 38 37 36 36 34
6 34 38 38 38 37 37 35 34 34 32
5 34 36 37 34 34 32 30 28 26 24
4 34 33 32 28 25 21 19 16 13 11
3 38 25 21 15 11 9 7 - - -

Iteration numbers using standard Gauss-Seidel smoother:
` � p 1 2 3 4 5 6 ≥ 7

8 10 12 37 127 462 1762 >5k
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Iteration numbers: d = 3

` � p 2 3 4 5

5 44 43 42 39
4 39 36 32 29
3 30 42 18 23
2 16 23 - -
1 - - - -

Iteration numbers using standard Gauss-Seidel smoother:

` � p 2 3 4 ≥5

5 38 240 1682 >5k
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Multigrid solver

Single-patch solver (some DD approach might be used for
multi-patch domains)

Robust convergence rates, robust number of smoothing
steps

Optimal computational complexity in the sense: “same
complexity as the multiplication with the stiffness matrix A”

Mild dependence of the rates on d (not fully analyzed)

Rigorous analysis
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Construction of the subspace smoothers (3D)

Using K0 ≤ ch−2M0, we estimate:

A000 = K0 ⊗M0 ⊗M0 + M0 ⊗ K0 ⊗M0 + M0 ⊗M0 ⊗ K0 + M0 ⊗M0 ⊗M0

. h−2M0 ⊗M0 ⊗M0 =: L000

A100 = K1 ⊗M0 ⊗M0 + M1 ⊗ K0 ⊗M0 + M1 ⊗M0 ⊗ K0 + M1 ⊗M0 ⊗M0

. (K1 + h−2M1)⊗M0 ⊗M0 =: L100

A110 = K1 ⊗M1 ⊗M0 + M1 ⊗ K1 ⊗M0 + M1 ⊗M1 ⊗ K0 + M1 ⊗M1 ⊗M0

. (K1 ⊗M1 + M1 ⊗ K1 + h−2M1 ⊗M1)⊗M0 =: L110

A111 = K1 ⊗M1 ⊗M1 + M1 ⊗ K1 ⊗M1 + M1 ⊗M1 ⊗ K1 + M1 ⊗M1 ⊗M1

=: L111
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