

Adaptive non-symmetric coupling of Finite Volume and Boundary Element Method

<u>Robert Schorr</u>^{1,2} Christoph Erath^{1,2}

¹Graduate School of Computational Engineering, TU Darmstadt

²AG Numerik und Wissenschaftliches Rechnen, TU Darmstadt

AANMPDE-9-16 July 4, 2016

Motivation

 Example: flow on domain with reentrant corner

Interior domain Ω and complement Ω_e (boundary $\Gamma)$

Motivation

Vector field and source

Adaptively generated mesh

イロト 不得 トイヨト イヨト 二日

Motivation

Computed solution

Requirements on our numerical method

Model problem for transport and flow in porous media

Model problem for transport and flow in porous media

Interior problem:

- Stable solution for convection dominated problems
- Flux conservation
- ⇒ Finite Volume Method

Model problem for transport and flow in porous media

Interior problem:

- Stable solution for convection dominated problems
- Flux conservation
- ⇒ Finite Volume Method

Exterior problem:

- Treat unbounded domains without truncation
- ⇒ Boundary Element Method

Then: couple these methods at the boundary.

Model problem (2D)

Find $u \in H^1(\Omega)$ and $u_e \in H^1_{loc}(\Omega_e)$ such that

 $\operatorname{div}(-\mathbf{A}\nabla u + \mathbf{b}u) + cu = f \qquad \qquad \text{in }\Omega,$

Model problem (2D)

Find $u \in H^1(\Omega)$ and $u_e \in H^1_{loc}(\Omega_e)$ such that

$$\begin{split} \operatorname{div}(-\mathbf{A}\nabla u + \mathbf{b}u) + cu &= f & \text{in } \Omega, \\ &- \Delta u_e &= 0 & \text{in } \Omega_e, \\ &u_e(x) &= C_\infty \log |x| + \mathcal{O}(1/|x|) & \text{for } |x| \to \infty, \end{split}$$

Model problem (2D)

Find $u \in H^1(\Omega)$ and $u_e \in H^1_{\ell oc}(\Omega_e)$ such that

$$\begin{split} \operatorname{div}(-\mathbf{A}\nabla u + \mathbf{b}u) + cu &= f & \text{in } \Omega, \\ &- \Delta u_e &= 0 & \text{in } \Omega_e, \\ &u_e(x) &= C_\infty \log |x| + \mathcal{O}(1/|x|) & \text{for } |x| \to \infty, \\ &u &= u_e & \text{on } \Gamma, \\ &(\mathbf{A}\nabla u - \mathbf{b}u) \cdot \mathbf{n} &= \frac{\partial u_e}{\partial \mathbf{n}} & \text{on } \Gamma^{in} \quad (\mathbf{b} \cdot \mathbf{n} < 0), \\ &(\mathbf{A}\nabla u) \cdot \mathbf{n} &= \frac{\partial u_e}{\partial \mathbf{n}} & \text{on } \Gamma^{out} \quad (\mathbf{b} \cdot \mathbf{n} \ge 0). \end{split}$$

Model problem (2D)

Find $u \in H^1(\Omega)$ and $u_e \in H^1_{loc}(\Omega_e)$ such that

 $\operatorname{div}(-\mathbf{A}\nabla u + \mathbf{b}u) + cu = f$ in Ω , $-\Delta u_{a}=0$ in Ω_{e} , for $|x| \to \infty$. $u_e(x) = C_{\infty} \log |x| + \mathcal{O}(1/|x|)$ on Γ . $u = u_e$ $(\mathbf{A}\nabla u - \mathbf{b}u) \cdot \mathbf{n} = \frac{\partial u_e}{\partial \mathbf{n}}$ on Γ^{in} (**b** · **n** < 0), $(\mathbf{A}\nabla u)\cdot\mathbf{n}=\frac{\partial u_e}{\partial \mathbf{n}}$ on Γ^{out} (**b** · **n** > 0).

A... s.p.d. diffusion matrix, c... reaction function. $C_{\infty} \in \mathbb{R}$... radiation constant, $\frac{1}{2} \operatorname{div} b + c \geq 0$

b... convectional velocity field, f... source term,

Well-posedness: [Erath, SINUM 2012]

Representation formula for exterior problem

The solution u_e of the exterior can be represented as (for $x \in \Omega_e$)

$$u_e(x) = -\int_{\Gamma} G(x-y) \frac{\partial u_e}{\partial \mathbf{n}}(y) \, ds_y + \int_{\Gamma} \frac{\partial_y}{\partial \mathbf{n}} G(x-y) u_e(y) \, ds_y,$$

with the fundamental solution of the Laplacian $-\Delta$

$$G(x-y) = \begin{cases} -\frac{1}{2\pi} \log |x-y| & \text{ for } d = 2, \\ \frac{1}{4\pi} \frac{1}{|x-y|} & \text{ for } d = 3. \end{cases}$$

The solution u_e of the exterior can be represented as (for $x \in \Omega_e$)

$$u_e(x) = -\int_{\Gamma} G(x-y) \frac{\partial u_e}{\partial \mathbf{n}}(y) \, ds_y + \int_{\Gamma} \frac{\partial_y}{\partial \mathbf{n}} G(x-y) u_e(y) \, ds_y,$$

with the fundamental solution of the Laplacian $-\Delta$

$$G(x - y) = \begin{cases} -\frac{1}{2\pi} \log |x - y| & \text{ for } d = 2, \\ \frac{1}{4\pi} \frac{1}{|x - y|} & \text{ for } d = 3. \end{cases}$$

Taking traces, the representation formula becomes ($\phi := \partial u_e / \partial \mathbf{n}$)

 $u_e|_{\Gamma} = -\mathcal{V}(\phi) + (1/2 + \mathcal{K}) (u_e|_{\Gamma})$

 \mathcal{V} ... single layer operator, \mathcal{K} ... double layer operator.

Weak coupling formulation

Combine weak formulation of interior problem with Galerkin approach to integral equation:

Weak coupling formulation

Combine weak formulation of interior problem with Galerkin approach to integral equation: Find $u \in H^1(\Omega)$, $\phi \in H^{-1/2}(\Gamma)$ such that

$$\mathcal{A}(u,v) - \langle \phi, v
angle_{\Gamma} = (f,v)_{\Omega}, \ \langle \psi, (1/2 - \mathcal{K}) u
angle_{\Gamma} + \langle \psi, \mathcal{V} \phi
angle_{\Gamma} = 0$$

for all $v \in H^1(\Omega)$, $\psi \in H^{-1/2}(\Gamma)$, where

 $\mathcal{A}(u,v) := (\mathbf{A} \nabla u - \mathbf{b} u, \nabla v)_{\Omega} + (cu,v)_{\Omega} + \langle \mathbf{b} \cdot \mathbf{n} \, u, v \rangle_{\Gamma^{out}}$

Weak coupling formulation

Combine weak formulation of interior problem with Galerkin approach to integral equation: Find $u \in H^1(\Omega)$, $\phi \in H^{-1/2}(\Gamma)$ such that

$$egin{aligned} \mathcal{A}(u,v) - \langle \phi,v
angle_{\Gamma} &= (f,v)_{\Omega} \ \mathcal{W}, (1/2-\mathcal{K})u
angle_{\Gamma} + \langle \psi,\mathcal{V}\phi
angle_{\Gamma} &= 0 \end{aligned}$$

for all $v \in H^1(\Omega)$, $\psi \in H^{-1/2}(\Gamma)$, where

$$\mathcal{A}(u,v) := (\mathbf{A}\nabla u - \mathbf{b}u, \nabla v)_{\Omega} + (cu, v)_{\Omega} + \langle \mathbf{b} \cdot \mathbf{n} \, u, v \rangle_{\Gamma^{out}}$$

▲□▶▲□▶▲□▶▲□▶ □ 少への

[Johnson, Nédélec, Math. Comp 1980] (for smooth boundary) [Sayas, SINUM 2009] (for Lipschitz boundary, purely diffusive) [Erath, Of, Sayas, Numer. Math. 2016] (this case)

Here: vertex-centered FVM

• $u_h \in S^1(\mathcal{T})$ (piecewise affine linear functions)

 $\text{Primal mesh} \ \mathcal{T}$

Here: vertex-centered FVM

- $u_h \in S^1(\mathcal{T})$ (piecewise affine linear functions)
- Use Gaussian theorem over control volume V

Dual mesh \mathcal{T}^*

Here: vertex-centered FVM

u_h ∈ S¹(T) (piecewise affine linear functions)
Use Gaussian theorem over control volume V

Dual mesh \mathcal{T}^*

$$\int_{V} f \, dx = \int_{V} \operatorname{div}(-\mathbf{A}\nabla u_h + \mathbf{b}u_h) + cu_h \, dx$$

Here: vertex-centered FVM

u_h ∈ S¹(T) (piecewise affine linear functions)
Use Gaussian theorem over control volume V

Dual mesh \mathcal{T}^*

$$\int_{V} f \, dx = \int_{V} \operatorname{div}(-\mathbf{A}\nabla u_{h} + \mathbf{b}u_{h}) + cu_{h} \, dx$$
$$= \int_{\partial V} (-\mathbf{A}\nabla u_{h} + \mathbf{b}u_{h}) \cdot \mathbf{n} \, ds + \int_{V} cu_{h} \, dx$$

•

Here: vertex-centered FVM

u_h ∈ S¹(T) (piecewise affine linear functions)
Use Gaussian theorem over control volume V

Dual mesh \mathcal{T}^*

$$\int_{V} f \, dx = \int_{V} \operatorname{div}(-\mathbf{A}\nabla u_{h} + \mathbf{b}u_{h}) + cu_{h} \, dx$$

$$= \int_{\partial V} (-\mathbf{A}\nabla u_{h} + \mathbf{b}u_{h}) \cdot \mathbf{n} \, ds + \int_{V} cu_{h} \, dx$$

$$= \int_{\partial V \setminus \Gamma} (-\mathbf{A}\nabla u_{h} + \mathbf{b}u_{h}) \cdot \mathbf{n} \, ds + \int_{\partial V \cap \Gamma} -(\mathbf{A}\nabla u_{h} - \mathbf{b}u_{h}) \cdot \mathbf{n} \, ds$$

$$+ \int_{V} cu_{h} \, dx$$

TU Darmstadt | GSC CE | R. Schorr | Adaptive non-symmetric FVM-BEM | 8/22

FVM-BEM coupling

Find

- $u_h \in \mathcal{S}^1(\mathcal{T})$
- $\phi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$ (piecewise constant functions on boundary mesh)

FVM-BEM coupling

Find

• $u_h \in \mathcal{S}^1(\mathcal{T})$

• $\phi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$ (piecewise constant functions on boundary mesh) such that

$$\int_{\partial V \setminus \Gamma} (-\mathbf{A} \nabla u_h + \mathbf{b} u_h) \cdot \mathbf{n} \, ds + \int_V c u_h \, dx$$
$$+ \int_{\partial V \cap \Gamma} -(\mathbf{A} \nabla u_h - \mathbf{b} u_h) \cdot \mathbf{n} \, ds = \int_V f \, dx$$

FVM-BEM coupling

Find

• $u_h \in \mathcal{S}^1(\mathcal{T})$

• $\phi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$ (piecewise constant functions on boundary mesh) such that

$$\int_{\partial V \setminus \Gamma} (-\mathbf{A} \nabla u_h + \mathbf{b} u_h) \cdot \mathbf{n} \, ds + \int_V c u_h \, dx$$
$$+ \int_{\partial V \cap \Gamma} -(\mathbf{A} \nabla u_h - \mathbf{b} u_h) \cdot \mathbf{n} \, ds = \int_V f \, dx$$
$$\langle \psi_h, (1/2 - \mathcal{K}) u_{eh} \rangle_{\Gamma} + \langle \psi_h, \mathcal{V} \phi_h \rangle_{\Gamma} = 0,$$

< 日 > < 団 > < 三 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

FVM-BEM coupling

Find

• $u_h \in \mathcal{S}^1(\mathcal{T})$

• $\phi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$ (piecewise constant functions on boundary mesh) such that

$$\int_{\partial V \setminus \Gamma} (-\mathbf{A} \nabla u_h + \mathbf{b} u_h) \cdot \mathbf{n} \, ds + \int_V c u_h \, dx$$
$$+ \int_{\partial V \cap \Gamma} -(\mathbf{A} \nabla u_h - \mathbf{b} u_h) \cdot \mathbf{n} \, ds = \int_V f \, dx$$
$$\langle \psi_h, (1/2 - \mathcal{K}) u_{eh} \rangle_{\Gamma} + \langle \psi_h, \mathcal{V} \phi_h \rangle_{\Gamma} = 0,$$

FVM-BEM coupling

Find

• $u_h \in \mathcal{S}^1(\mathcal{T})$

• $\phi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$ (piecewise constant functions on boundary mesh) such that

$$\int_{\partial V \setminus \Gamma} (-\mathbf{A} \nabla u_h + \mathbf{b} u_h) \cdot \mathbf{n} \, ds + \int_V c u_h \, dx$$
$$+ \int_{\partial V \cap \Gamma^{out}} \mathbf{b} \cdot \mathbf{n} u_h \, ds - \int_{V \cap \Gamma} \phi_h \, ds = \int_V f \, dx$$
$$\langle \psi_h, (1/2 - \mathcal{K}) u_h \rangle_{\Gamma} + \langle \psi_h, \mathcal{V} \phi_h \rangle_{\Gamma} = 0,$$

FVM-BEM coupling

Find

• $u_h \in \mathcal{S}^1(\mathcal{T})$

• $\phi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$ (piecewise constant functions on boundary mesh) such that

$$\begin{split} \int_{\partial V \setminus \Gamma} (-\mathbf{A} \nabla u_h + \mathbf{b} u_h) \cdot \mathbf{n} \, ds &+ \int_V c u_h \, dx \\ &+ \int_{\partial V \cap \Gamma^{out}} \mathbf{b} \cdot \mathbf{n} u_h \, ds - \int_{V \cap \Gamma} \phi_h \, ds = \int_V f \, dx \\ &\langle \psi_h, (1/2 - \mathcal{K}) u_h \rangle_{\Gamma} + \langle \psi_h, \mathcal{V} \phi_h \rangle_{\Gamma} = 0, \end{split}$$

for all $V \in \mathcal{T}^*$ and $\psi_h \in \mathcal{P}^0(\mathcal{E}_{\Gamma})$.

Existence, uniqueness, convergence under some model restrictions: [Erath, Of, Sayas, Numer. Math. 2016] (For smooth enough input: O(h))

Upwind stabilization

How do we get stable solutions for convection dominated problems? \rightarrow Upwind stabilization

Upwind stabilization

How do we get stable solutions for convection dominated problems? \rightarrow Upwind stabilization

In the term $\int_{\partial V \setminus \Gamma} \mathbf{b} \cdot \mathbf{n} u_h$ replace u_h along τ_{ij} by

 $u_{h,ij} := \lambda_{ij}u_h(a_i) + (1 - \lambda_{ij})u_h(a_j),$

 λ_{ij} depends on A, b, τ_{ij} and $|\tau_{ij}|$.

Residual a posteriori error estimator

Use robust computable error estimator $\eta(u_h)$ to steer an adaptive algorithm

Residual a posteriori error estimator

Use robust computable error estimator η(u_h) to steer an adaptive algorithm
Efficiency and Reliability:

$$C_{\text{eff}}\eta(u_h) \leq |||u - u_h|||_{\Omega} + ||\phi - \phi_h||_{H^{-1/2}(\Gamma)} \leq C_{\text{rel}}\eta(u_h)$$

Measure error in energy (semi-)norm for robustness:

$$|||v|||_{\Omega}^{2} := ||\mathbf{A}^{1/2} \nabla v||_{L^{2}(\Omega)}^{2} + ||\left(\frac{1}{2} \operatorname{div} \mathbf{b} + c\right)^{1/2} v||_{L^{2}(\Omega)}^{2}$$

Residual a posteriori error estimator

Use robust computable error estimator η(u_h) to steer an adaptive algorithm
 Efficiency and Reliability:

$$C_{\text{eff}}\eta(u_h) \leq |||u - u_h|||_{\Omega} + ||\phi - \phi_h||_{H^{-1/2}(\Gamma)} \leq C_{\text{rel}}\eta(u_h)$$

Measure error in energy (semi-)norm for robustness:

$$||\!| v |\!|\!|_{\Omega}^2 := |\!| \mathbf{A}^{1/2} \nabla v |\!|_{L^2(\Omega)}^2 + |\!| \left(\frac{1}{2} \operatorname{div} \mathbf{b} + c\right)^{1/2} v |\!|_{L^2(\Omega)}^2$$

Element-wise contributions:

$$\eta = \left(\sum_{T \in \mathcal{T}} \eta_T^2\right)^{1/2}$$

◆ロト ◆ 個 ト ◆ 臣 ト ◆ 臣 ト ◆ 国 ト ◆ 回 ト

$$\eta_T^2 := \eta_T^R + \eta_T^{J_i} + \eta_T^{J_e} + \eta_T^{BEM} + \eta_T^{Up},$$

where

- η_T^R ... residual contribution $(\mu_T^2 || f \operatorname{div}(-\mathbf{A}\nabla u_h + \mathbf{b}u_h) cu_h ||_{L^2(T)}^2)$
- $\eta_T^{J_i}$... jumps in the interior $(\alpha_E^{-1/2} \min\{h_E \alpha_E^{-1/2}, \beta_E^{-1/2}\} \| [(-\mathbf{A} \nabla u_h)|_{E,T} - (-\mathbf{A} \nabla u_h)|_{E,T'}] \cdot \mathbf{n} \|_{L^2(E)}^2)$
- $\eta_T^{J_e}$... jumps on the coupling boundary
- η_T^{BEM} ... tangential part of the integral equation

$$\eta_T^2 := \eta_T^R + \eta_T^{J_i} + \eta_T^{J_e} + \eta_T^{BEM} + \eta_T^{Up},$$

where

- η_T^R ... residual contribution $(\mu_T^2 || f \operatorname{div}(-\mathbf{A}\nabla u_h + \mathbf{b}u_h) cu_h ||_{L^2(T)}^2)$
- $\eta_T^{J_i}$... jumps in the interior $(\alpha_E^{-1/2}\min\{h_E\alpha_E^{-1/2},\beta_E^{-1/2}\} \| [(-\mathbf{A}\nabla u_h)|_{E,T} - (-\mathbf{A}\nabla u_h)|_{E,T'}] \cdot \mathbf{n} \|_{L^2(E)}^2)$
- $\eta_T^{J_e}$... jumps on the coupling boundary
- η_T^{BEM} ... tangential part of the integral equation

Additionally, if an upwind stabilization is used:

• η_T^{Up} ... measures upwind error on edges of the dual mesh

Reliability and Efficiency

Theorem (Reliability)

Under some restrictions on the eigenvalues of **A** there holds: $\|\|u - u_h\|\|_{\Omega} + \|\phi - \phi_h\|_{H^{-1/2}(\Gamma)} \leq C_{\text{rel}}\eta.$

 $C_{\rm rel}$ is robust (indep. of the number of elements or variaton of the model data).

Reliability and Efficiency

Theorem (Reliability)

Under some restrictions on the eigenvalues of **A** there holds: $\|\|u - u_h\|\|_{\Omega} + \|\phi - \phi_h\|_{H^{-1/2}(\Gamma)} \leq C_{\text{rel}}\eta.$

 $C_{\rm rel}$ is robust (indep. of the number of elements or variaton of the model data).

Theorem (Efficiency)

If the mesh on the boundary is quasi-uniform: η is also a lower bound (up to higher order terms and a constant).

The constant is semirobust (additionally depends on the local Péclet number $\alpha_T^{-1} \|\mathbf{b}\|_{L^{\infty}(T)} h_T$).

Proofs: [Erath, S., Preprint 2016], robust estimates from [Erath, SINUM, 2013]

Adaptive Algorithm

Numerical example with analytical solution

Setup for numerical example:

L-shaped domain

•
$$\mathbf{A} = \begin{pmatrix} 10 + \cos x_1 & 160 x_1 x_2 \\ 160 x_1 x_2 & 10 + \sin x_2 \end{pmatrix}$$

- No convection, reaction
- Prescribed solution in Ω (polar coordinates):

$$u(x_1, x_2) = r^{2/3} \sin(2\varphi/3)$$

Solution in Ω_e :

$$u_e(x_1, x_2) = \log \sqrt{(x_1 + 0.125)^2 + (x_2 - 0.125)^2}$$

のとの 周 (山田) (田) (田) (日)

Calculate right hand side f (and jumps) accordingly

Numerical example with analytical solution

Figure: Adaptively generated mesh $\mathcal{T}^{(6)}$ with 6314 elements.

Numerical example with analytical solution

Figure: Convergence plot, the adaptive strategy yields a higher convergence rate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Setup for numerical example:

L-shaped domain

$$\mathbf{A} = \alpha \mathbf{I}, \, \alpha = \begin{cases} 0.5 & \text{for } x_1 > 0, \\ 10 & \text{for } x_2 \le 0, \\ 50 & \text{else,} \end{cases}$$

b =
$$(15000, 10000)^T$$
,

$$c = 0.01$$
,

$$f(x_1, x_2) = \begin{cases} 50 & \text{for } -0.2 \le x_1 \le -0.1, & -0.2 \le x_2 \le -0.05, \\ 0 & \text{else,} \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• t_0 and u_0 set to zero.

(and radiation condition $u_e(x) = a_{\infty} + O(1/|x|)$ for $|x| \to \infty$.)

Figure: Computed solution on adaptive mesh with 3471 elements.

Figure: Adaptively generated mesh $\mathcal{T}^{(6)}$ with 8451 elements.

Figure: Convergence plot, the adaptive strategy yields a higher convergence rate.

(ロト (個) (E) (E) (E) (E) (O)(C)

References / The End

Thank you for your attention!

- C. Erath and R. Schorr: An adaptive non-symmetric finite volume and boundary element coupling method for a fluid mechanics interface problem.
 Preprint (2016), available online: http://arxiv.org/abs/1605.07031.
- C. Erath, G. Of, and F.-J. Sayas: A non-symmetric coupling of the finite volume method and the boundary element method.
 - To appear in: Numer. Math., available online: http://arxiv.org/abs/1509.00440.

Acknowledgment: This work is supported by the Excellence Initiative of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt.

