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Wave propagation

Phenomenon: propagation of time-harmonic waves.
Analysis of time-harmonic waves in time-domain (not in frequency
domain).
As the time-domain analysis often leads to large problems, we
accelerate the solution process via so-called controllability methods
(Bristeau, Glowinski, and Periaux 1993, 1998).
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Controllability techniques

Controllability methods by Glowinki et al. were first formulated
basing on variational methods.
For a scalar wave equation in a mixed formulation, controllability
algorithm was proposed by Glowinski and Rossi in 2006 (variational
formulation).
Theoretical framework on the controllability techniques has further
been discussed by Pauly and Rossi in 2011, generalizing the theory
for a generalized Maxwell’s equation in the context of differential
forms.
Discretization of differential form formulation is naturally done with
discrete exterior calculus (DEC) (Hirani 2003, doctoral dissertation).
Finite element method (FEM) with Raviart-Thomas type elements
provides natural discretization for the variational formulation (of the
mixed wave problem).
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Wave problem in a mixed formulation

Exterior scalar wave problem with first-order approximation of
absorbing boundary:

c−2 ∂v

∂ t
−div p = 0 , in Ω× (0,T ) , (1)

∂p
∂ t
−grad v = 0 , in Ω× (0,T ) , (2)

v = g , on γ× (0,T ) , (3)

c−1v +p ·n = 0 , on Σext× (0,T ) , (4)

v(0) = v(T ) , p(0) = p(T ) (5)

where T > 0 is the time period, Ω is a bounded domain in Rk , γ is the
boundary on the obstacle, and Σext is the external boundary.
Further on, v is a scalar function, p is a vector function, c is a known
scalar parameter (propagation velocity of wave), g is a known source on γ

and n is an outward unit normal vector.
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Notice

We have also directly written the scalar wave problem in a mixed
formulation, (1-5). Notice, that writing

v =
∂w

∂ t
, p = grad w , (6)

we may reduce (1-5) to a (classical formulation of) wave problem with
respect to variable function w .
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This presentation

This presentation discusses computational performance of a
controllability algorithm (Glowinski) for time-periodic solutions of a
scalar wave equation (linear acoustics).

Since, method used in spatial discretization contributes the
performance of the controllability algorithm, this presentation
addresses comparison of two discretizations,

the first one being based on FEM and
the second one on DEC (aka discrete differential forms).
The numerical performance of the mentioned controllability
techniques for a time-periodic two-dimensional scalar wave
equation has been studied with finite element spatial
discretization (Kähkönen et al. 2011).

The discussion concentrates on scattering of a plane wave in a
two-dimensional setup paying also attention on sensitivity of the
numerical solution on quality of the computation grid.
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Spatial discretization with FEM

In FEM-discretized form, the equations read∫
Ω

(c−2 ∂vh
∂ t
−div ph)wh dx = 0∫

Ω
(

∂ph

∂ t
·qh + vh ·div qh) dx + c

∫
Σext

ph ·nqh ·nds =
∫

γ

g qh ·nds

where vh, wh ∈ Vh, ph, qh ∈ Ph,

Vh =
{
v ∈ L2(Ω) : T ∈T , v |T ∈ P0(T )

}
,

Ph = {p ∈ H(div;Ω) : q|T ∈ RT1(T )} ,

and RT1 is the lowest order Raviart-Thomas element. T is the finite
element triangulation.
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Spatial discretization with DEC

In DEC-discretized form, the equations read

∂v

∂ t
− c2MkDk−1f = 0 , in Ωh× (0,T ) , (7)

Mk−1
∂ f

∂ t
− (−1)kDT

k−1v = 0 , in Ωh× (0,T ) , (8)

v = g on γh× (0,T ) , (9)
v +C f = 0 , on Σext,h× (0,T ) , . (10)

where v is associated with discrete 0-forms (on dual mesh) and f (flux) is
associated with discrete (k−1)-forms (primal mesh), f =

{∫
lj
p ·ndl

}
j
,

M` is the discrete Hodge star that maps discrete primal `-forms to
corresponding dual (k− `)-forms. D` is discrete exterior derivative operating on
discrete `-forms.
(Relation Ddual

0 =−(1)kDT
k−1 has been used.) Here, k is the spatial dimension

(in the examples, k = 2);
C = c Mk−1,bound. and Mk−1,bound. is now a discrete Hodge star that maps
boundary primal (k−1)-forms to dual 0-forms.
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Degrees of freedom in FEM and in DEC
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Time discretization

Time discretization is done in a leapfrog manner. Magnitude v is
discretized on the set {tn}Nn=0 and magnitude f is discretized on the set
{tn+1/2}Nn=0.
As we assume time-harmonicity from the solutions, time-stepping
schemes can be written as exact schemes:

f n+1 =
f n+1/2 + f n+3/2

2cos(ω∆t/2)
(11)(

∂ f

∂ t

)n+1

=
f n+3/2− f n+1/2

2
ω
sin(ω∆t/2)

(12)

vn+1/2 =
vn + vn+1

2cos(ω∆t/2)
(13)(

∂v

∂ t

)n+1/2

=
vn+1−vn

2
ω
sin(ω∆t/2)

(14)
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Discrete problem

Discrete problem after space and time discretizations will be as

Avn+1 = Avn +Bf n+1/2 (15)

Cf n+3/2 = Cf n+1/2 +Dvn+1 (16)

where (15) is exactly same equation for both FEM and DEC
discretizations used. Furthermore, A is a diagonal matrix and thus
its inverse matrix is directly accessible.
In DEC discretization, also C is diagonal (if diagonal Hodge star is
used).
For FEM, C does not become diagonal, and thus for each time step,
a linear equation system needs to be solved.
Clearly, matrix multiplication is cheaper operation than solving a
linear equation, which makes DEC much more efficient. But will
there be problems with accuracy?
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Conjugate Gradient Method

We are to minimize a functional

J(u1,u2) =
1
2

[
c−2‖v(T )−u1‖2L2(Ω) +‖f (T )−u2‖2L2(Ω)

]
(17)

i.e. the difference between the initial conditions of the time-dependent
problem and the corresponding variables after one time period.
The least squares minimization is performed by the conjugate gradient
(CG) method. The gradient needed by the CG-method is gained by
solving the adjoint problem.
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Implementation and considered example

In the implementation of the algorithm (spatial discretizations), we
utilized PyDEC software (published by Bell and Hirani (2012)) and
FEniCS software.
As an example, we consider a circular scatterer with "sound-soft"
boundary, and solve numerically the scattered wave as the incident
wave is supposed to be given.
As incident wave, we used plane wave with expression

vin = ℜ(e i(kx−ωt)) = cos(kx−ωt) (18)
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Circular scatterer
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The analytical solution of the scattered plane wave for a circular
scatterer can be expressed with series solution of Bessel and Hankel
functions in unbounded domain.
Since the numerical solution is computed with first order artificial
boundary condition, the approximative boundary condition produces
a modelling error.
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Different meshes
Regular and unstructured
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Convergence (DEC)
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Convergence (FEM)
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Convergence, comparison
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Error of function v
Numerical vs analytical
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Max error for function v
Numerical vs analytical
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DEC and FEM spatial discretizations give approximately same rate
of convergence in the controllability algorithm.

In DEC, the grid quality significantly affects the error of the
solution, as expected.

The same holds also for FEM.

Efficiency: DEC leads to discretization, where one only needs
to operate with matrix multiplications by each time step, but
in FEM (with lowest order Raviart-Thomas elements combined
with piecewise constant elements) we are to solve a linear
equation system with each time step.
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