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Evolutionary Equations

The General Shape of Evolutionary Equations.

General Form: ∂0 ≡ ∂

∂ t
≡ ∂t

∂0V +AU = f on ]0,∞[ ,

V (0+) = Φ,

in a suitable Hilbert space setting.

Without much loss of generality: Φ= 0. Thus

∂0MU+AU = f on R. (1)

Evolutionary Equation in a simple, standard case: M =M0+∂
−1
0
M1 and

A skew-selfadjoint,

(∂0M0+M1+A)U = f .
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Time Derivative

The Time Derivative

Solution Theory: Does the operator

(∂0M +A)−1

exist as a continuous linear mapping on a suitable Hilbert space?

Which �suitable� Hilbert space?

A weighted L2-space Hρ (R,H) constructed by completion of the

space C̊1 (R,H) of di�erentiable H-valued functions with compact

support w.r.t. 〈 · | · 〉
ρ,H (norm: | · |

ρ,H)

(ϕ,ψ) 7→
∫
R
〈ϕ (t) |ψ (t)〉H exp(−2ρt)dt.

Time-di�erentiation ∂0 as a closed operator in Hρ (R,H) induced by

C̊1 (R,H)⊆ Hρ (R,H)→ Hρ (R,H) ,

ϕ 7→ ϕ
′.
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Time Derivative

The Time Derivative (as a strictly positive-de�nite operator)

Time-di�erentiation ∂0 is a normal operator in Hρ (R,H). For
ρ0 ∈ ]0,∞[, ρ ∈ ]ρ0,∞[, we have

Re∂0 = ρ ≥ ρ0 > 0,

i.e.

∂0 is a strictly (and uniformly w.r.t. ρ) positive de�nite operator

with respect to the real inner product

(φ ,ψ) 7→Re〈φ |ψ〉
ρ,H .
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Basic Solution Theory

Basic Solution Theory in Hρ (R,H)
Evolutionary Problem:

(∂0M0+M1+A)U = F (Evo-Sys)

Key-Question: When is (∂0M0+M1+A) (and its adjoint) (real)

strictly positive de�nite in Hρ (R,H)?

Theorem

Let A be skew-selfadjoint and M0, M1 be continuous linear

operators in H such that M0 is selfadjoint and

Re(∂0M0+M1) = ρM0+ReM1 ≥ c0 > 0

for some c0 ∈ R and all ρ ∈ ]ρ0,∞[ , where ρ0 ∈ ]0,∞[ is
su�ciently large.

Then well-posedness of (Evo-Sys) follows for all
ρ ∈ ]ρ0,∞[.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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The Model Equations

Let Ω⊆ R3 be a non-empty open set. The equation of elasticity:

∂
2
0 ρ∗u−DivT = F0, (2)

here u : R×Ω→ R3 displacement, T : R×Ω→ sym
[
R3×3] stress

tensor, ρ∗ : Ω→ R mass density, F0 : R×Ω→ R3 external force

term.

Maxwell's equation:

∂0B+ curlE = F3,

∂0D− curlH = F2−σE . (3)

Here, B,D,E ,H : R×Ω→ R3 are magnetic �ux density, electric

displacement, electric �eld and magnetic �eld, respectively. The

functions F2,F3 : R×Ω→ R3 are given source terms and

σ : Ω→ R denotes the resistance.
R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Boundary Conditions

Heat conduction:
∂0Θ0η +divq = F4,

where η : R×Ω→ R entropy density, q : R×Ω→ R3 heat �ux,
F2 : R×Ω→ R external heat source, Θ0 ∈ ]0,∞[ reference
temperature. Coupling in abstract form∂0M0+M1+


0 −Div 0 0 0 0

−Grad 0 0 0 0 0

0 0 0 −curl 0 0

0 0 curl 0 0 0

0 0 0 0 0 div

0 0 0 0 grad 0







v

T

E

H

Θ−1
0

θ

q

= F ,

for suitable bounded operators M0,M1 on the Hilbert space

H := L2(Ω)3⊕sym
[
L2(Ω)3×3

]
⊕L2(Ω)3⊕L2(Ω)3⊕L2(Ω)⊕L2(Ω)3.

Here, v := ∂0u and θ : R×Ω→ R temperature.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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A �Simpli�cation�

Boundary Conditions

Boundary conditions?

We denote by C̊1(Ω) the space of di�erentiable functions with
compact support in Ω. Then we de�ne the operator ˚grad as the

closure of

C̊1(Ω)⊆ L2(Ω)→ L2(Ω)3

φ 7→ (∂1φ ,∂2φ ,∂3φ)

as well as d̊iv as the closure of

C̊1(Ω)
3 ⊆ L2(Ω)3 → L2(Ω)

(φ1,φ2,φ3) 7→
3

∑
i=1

∂iφi .

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Boundary Conditions

It is d̊iv ⊆−( ˚grad)∗. We set div :=−
(

˚grad
)∗

and

grad :=−
(
d̊iv
)∗

. Similarly, the operator ˚curl is the closure of

C̊1(Ω)
3 ⊆ L2(Ω)3 → L2(Ω)3

(φ1,φ2,φ3) 7→

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 φ1

φ2

φ3


and curl :=

(
˚curl
)∗

⊇ ˚curl.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Boundary Conditions

Analogously for ˚Grad and D̊iv as the closure of

C̊1(Ω)
3 ⊆ L2(Ω)3 → sym

[
L2(Ω)3×3

]
(φ1,φ2,φ3) 7→

1

2
(∂jφi +∂iφj)i ,j∈{1,2,3}

and of

sym
[
C̊1(Ω)

3×3
]
⊆ sym

[
L2(Ω)3×3

]
→ L2(Ω)3

(φij)i ,j∈{1,2,3} 7→

(
3

∑
j=1

∂jφij

)
i∈{1,2,3}

,

respectively. Grad :=−
(
D̊iv
)∗

Div :=−
(

˚Grad
)∗

.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Boundary Conditions

For smooth boundary ∂Ω

u = 0 on ∂Ω

for u ∈ D( ˚grad) or u ∈ D( ˚Grad),

u ·n = 0 on ∂Ω

for u ∈ D(d̊iv) or u ∈ D(D̊iv), where n denotes the exterior unit

normal vector �eld on ∂Ω and

u×n = 0 on ∂Ω,

for u ∈ D( ˚curl).

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Boundary Conditions

We will assume that v = 0,E ×n = 0 and q ·n = 0 on the boundary

in the generalized sense. The spatial block operator is replaced by

0 −Div 0 0 0 0

− ˚Grad 0 0 0 0 0

0 0 0 −curl 0 0

0 0 ˚curl 0 0 0

0 0 0 0 0 d̊iv

0 0 0 0 grad 0


,

which is now a skew-selfadjoint operator on H.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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The Model Equations

The material relations ( E := Gradu strain tensor)

T = C E − eE −λθ ,

D = e∗E + εE +pθ ,

B = µ H,

η = λ
∗E +p∗E +α Θ−1

0 θ .

Here C ∈ L
(
sym

[
L2(Ω)3×3

])
is the elasticity tensor,

ε,µ ∈ L
(
L2(Ω)3

)
are the permittivity and permeability, respectively,

α := ρ∗c ∈ L(L2(Ω)) is the product of the mass density ρ∗ ∈ L∞(Ω)
and the speci�c heat capacity c ∈ L(L2(Ω)) and Θ0 ∈ ]0,∞[
reference temperature. The operators

e ∈ L
(
L2(Ω)3;sym

[
L2(Ω)3×3

])
, λ ∈ L

(
L2(Ω);sym

[
L2(Ω)3×3

])
,

p ∈ L(L2(Ω);L2(Ω)3) are �coupling parameters�.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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The Model Equations

Relative temperature Θ−1
0 θ as new unknown

T = C E − eE − (λΘ0)Θ
−1
0 θ ,

D = e∗E + εE +(pΘ0) Θ
−1
0 θ ,

B = µ H,

Θ0η = (Θ0λ
∗)E +(Θ0p

∗)E + γ0Θ
−1
0 θ ,

where we introduced the abbreviation

γ0 := Θ0α.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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The Model Equations

Maxwell-Cattaneo-Vernotte modi�cation

∂0κ1q+κ
−1
0 q+gradθ = 0,

for operators κ0,κ1 ∈ L(L2(Ω)3). To adapt the material relations to

our framework we solve for E and obtain

E = C−1T +C−1eE +C−1 (λΘ0)Θ
−1
0 θ ,

D = e∗C−1T +
(
ε + e∗C−1e

)
E +

(
pΘ0+ e∗C−1

λΘ0

)
Θ−1

0 θ ,

B = µ H,

Θ0η = Θ0λ
∗C−1T +

(
Θ0p

∗+Θ0λ
∗C−1e

)
E +

+
(
γ0+Θ0λ

∗C−1
λΘ0

)
Θ−1

0 θ .

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Material law operators:

M0 :=



ρ∗ 0 0 0 0 0

0 C−1 C−1e 0 C−1λΘ0 0

0 e∗C−1 (
ε + e∗C−1e

)
0

(
pΘ0+ e∗C−1λΘ0

)
0

0 0 0 µ 0 0

0 Θ0λ ∗C−1 (
Θ0p

∗+Θ0λ ∗C−1e
)

0
(
γ0+Θ0λ ∗C−1λΘ0

)
0

0 0 0 0 0 κ1


and

M1 :=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 σ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 κ
−1
0

 .

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Well-Posedness

Theorem

Assume that ρ∗,ε,µ,C ,γ0 are selfadjoint and non-negative.

Furthermore, we assume ρ∗,µ,C ,γ0 � 0 as well as

ρ
(
ε −Θ0pγ

−1
0 p∗Θ0

)
+σ ,ρκ1+κ

−1
0 � 0 (�� 0� short for

uniformly strictly positive de�nite) for su�ciently large ρ > 0. Then,
M0 and M1 satisfy the positive de�niteness condition and hence,

the corresponding problem of thermo-piezo-electricity is well-posed.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Well-Posedness

Proof.

Obviously, M0 selfadjoint. Moreover, ρ∗,µ,ρκ1+κ
−1
0 � 0 for

su�ciently large ρ . Left to show

ρ

 C−1 C−1e C−1λΘ0

e∗C−1 ε + e∗C−1e pΘ0+ e∗C−1λΘ0

Θ0λ ∗C−1 Θ0p
∗+Θ0λ ∗C−1e γ0+Θ0λ ∗C−1λΘ0

+

 0 0 0

0 σ 0

0 0 0

� 0

for su�ciently large ρ. Congruent to

ρ

C−1 0 0

0 ε −Θ0pγ
−1
0 p∗Θ0 0

0 0 γ0

+

 0 0 0

0 σ 0

0 0 0

 .

The latter operator is then strictly positive de�nite by assumption

and so the assertion follows.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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A �Simpli�cation�

Use electrostatics!

E =− ˚gradϕ for a potential ϕ ∈ D( ˚grad) and D ∈ D(div) and we
set ψ := divD. Moreover, no conductivity term, i.e. σ = 0 and no
magnetic �eld, then

∂0


ρ∗ 0 0 0

0 C−1 C−1λΘ0 0

0 Θ0λ∗C−1 (
γ0+Θ0λ∗C−1λΘ0

)
0

0 0 0 κ1




v

T

Θ−1
0

θ

q

+

+


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 κ
−1
0




v

T

Θ−1
0

θ

q

+


0 −Div 0 0

− ˚Grad 0 0 0

0 0 0 d̊iv
0 0 grad 0




v

T

Θ−1
0

θ

q

+

+∂0


(

0

C−1eE

)
( (

Θ0p
∗+Θ0λ∗C−1e

)
E

0

)
=


F0
F1
F4
F5

 .

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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A �Simpli�cation�

To express E in terms of the other unknowns:

D = e∗C−1T +
(
ε + e∗C−1e

)
E +

(
pΘ0+ e∗C−1

λΘ0

)
Θ−1

0 θ . (4)

Setting

Φ := e∗C−1T +
(
pΘ0+ e∗C−1

λΘ0

)(
Θ−1

0 θ
)

= e∗C−1 (T +λθ)+pθ ,

D = (ε + e∗C−1e)E +Φ.

Using now that ψ = divD and E =− ˚gradϕ we get that

−div
(
ε + e∗C−1e

)
˚gradϕ +divΦ= ψ.

We assume that C ,ε are selfadjoint and ε + e∗C−1e � 0 and set

M :=
√

ε + e∗C−1e.
R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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A �Simpli�cation�

Then, the latter equality can be written as

−divM2 ˚gradϕ +divMM−1Φ=
∣∣∣M ˚grad

∣∣∣2ϕ +divMM−1Φ

= ψ,

which gives

˚gradϕ +M−1
((

M ˚grad
)∣∣∣M ˚grad

∣∣∣−2 divM)M−1Φ=

=M−1
(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2ψ,

if we assume that ψ ∈ D

(∣∣∣M ˚grad
∣∣∣−2) .

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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A �Simpli�cation�

This suggests to replace

E =− ˚gradϕ

=M−1
((

M ˚grad
)∣∣∣M ˚grad

∣∣∣−2 divM)M−1Φ+

−M−1
(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2ψ,

With P := P
M ˚grad[L2(Ω)]

E =−M−1PM−1Φ−M−1
(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2ψ.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling



23/30

Introduction
Basic Ideas

Basic Solution Theory
Thermo-Piezo-Electric Coupling

The Model Equations
A �Simpli�cation�

A �Simpli�cation�

Hence,


(

0

C−1eE

)
( (

Θ0p
∗+Θ0λ∗C−1e

)
E

0

)


=−


(

0

C−1eM−1PM−1Φ

)
( (

Θ0p
∗+Θ0λ∗C−1e

)
M−1PM−1Φ

0

)
+

−


(

0

C−1eM−1
(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2ψ

)
( (

Θ0p
∗+Θ0λ∗C−1e

)
M−1

(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2ψ

0

)
 .

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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A �Simpli�cation�

Using now the de�nition of Φ, we can write

−


(

0

C−1eM−1PM−1Φ

)
( (

Θ0p
∗+Θ0λ∗C−1e

)
M−1PM−1Φ

0

)


=−


(

0

C−1eM−1PM−1e∗C−1T

)
( (

Θ0p
∗+Θ0λ∗C−1e

)
M−1PM−1e∗C−1T
0

)
+

−


(

0

C−1eM−1PM−1 (pΘ0+e
∗C−1λΘ0

)(
Θ−1
0

θ

) )( (
Θ0p

∗+Θ0λ∗C−1e
)
M−1PM−1 (pΘ0+e

∗C−1λΘ0

)(
Θ−1
0

θ

)
0

)


=−W0


v

T

Θ−1
0

θ

q


with

W0 :=


0 0 0 0

0 C−1eM−1PM−1e∗C−1 C−1eM−1PM−1 (pΘ0+e
∗C−1λΘ0

)
0

0
(
Θ0p

∗+Θ0λ∗C−1e
)
M−1PM−1e∗C−1 (

Θ0p
∗+Θ0λ∗C−1e

)
M−1PM−1 (pΘ0+e

∗C−1λΘ0

)
0

0 0 0 0

 .
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Summarizing,

∂0




ρ∗ 0 0 0
0 M11 M12 0
0 M∗

12
M22 0

0 0 0 κ1

+


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 κ
−1
0

+


0 −Div 0 0

− ˚Grad 0 0 0

0 0 0 d̊iv
0 0 grad 0





v

T

Θ−1
0

θ

q

=G ,

with

M11 :=C−1−C−1eM−1PM−1e∗C−1

M12 :=C−1
λΘ0−C−1eM−1PM−1

(
pΘ0+e

∗C−1
λΘ0

)
=M11λΘ0−C−1eM−1PM−1pΘ0

M22 :=
(

γ0+Θ0λ
∗C−1

λΘ0

)
−
(
Θ0p

∗+Θ0λ
∗C−1e

)
M−1PM−1

(
pΘ0+e

∗C−1
λΘ0

)

and the right-hand side has to be adjusted to

G :=


F0

F1+C
−1eM−1

(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2 ∂0ψ

F4+
(
Θ0p

∗+Θ0λ∗C−1e
)
M−1

(
M ˚grad

)∣∣∣M ˚grad
∣∣∣−2 ∂0ψ

F5

 .
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Theorem

Let C ,M,ρ∗,κ1 be selfadjoint and non-negative such that

C ,M,ρ∗,νκ1+κ
−1
0 � 0 for su�ciently large ν and P be an

orthogonal projector. We set Q := PM−1e∗C− 1
2 and assume that

1−Q∗Q � 0,

γ0−Θ0p
∗M−1P (1−QQ∗)−1PM−1pΘ0 � 0.

Then, the thermo-piezo-electric system with quasi-static electric

interaction is well-posed.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Proof

We need to verify our solvability condition. For doing so, it su�ces

to consider the block operator sub-matrix(
M11 M12

M∗
12 M22

)
.

Noting that M11 = C−1−C− 1
2Q∗QC− 1

2 = C− 1
2 (1−Q∗Q)C− 1

2 , we
obtain that M11 is boundedly invertible. Hence, by a symmetric

Gauss step (
M11 0

0 M22−M∗
12M

−1
11 M12

)
,

which is strictly positive de�nite if and only if

M22−M∗
12M

−1
11 M12 � 0.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling
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Proof (continued)

We have

M22 = γ0+Θ0λ
∗M11λΘ0+

−
(
Θ0p

∗M−1PM−1pΘ0+2Re
(
Θ0p

∗M−1QC− 1
2 λΘ0

))
and

M12 =M11λΘ0−C− 1
2Q∗M−1pΘ0.
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Proof (continued)

Thus,

M∗
12M

−1
11 M12 =M∗

12

(
λΘ0−M−1

11 C
− 1

2Q∗M−1pΘ0

)
=Θ0λ

∗M11λΘ0−2Re
(
Θ0λ

∗C− 1
2Q∗M−1pΘ0

)
+

+Θ0p
∗M−1QC− 1

2M−1
11 C

− 1
2Q∗M−1pΘ0.

Hence, we get

M22−M∗
12M

−1
11 M12 = γ0+

−Θ0p
∗
(
M−1PM−1+M−1QC− 1

2M−1
11 C

− 1
2Q∗M−1

)
pΘ0.
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Proof (ending)

Using that M−1
11 = C

1
2 (1−Q∗Q)−1C

1
2 we obtain

QC− 1
2M−1

11 C
− 1

2Q∗ = Q (1−Q∗Q)−1Q∗ =−1+(1−QQ∗)−1

and since Q = PQ we have

QC− 1
2M−1

11 C
− 1

2Q∗ =−P+P (1−QQ∗)−1P

and thus, M22−M∗
12M

−1
11 M12 = γ0+

−Θ0p
∗M−1P (1−QQ∗)−1PM−1pΘ0,

which is strictly positive de�nite by assumption.
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