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Introduction

Evolutionary Equations

The General Shape of Evolutionary Equations.

General Form: dy = 5. = 0;
bV +AU=1f on ]0,o],
V(0+)=9,
in a suitable Hilbert space setting.
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Introduction

Evolutionary Equations

The General Shape of Evolutionary Equations.

General Form: dy = 4. =0,
doV+AU="f on ]0,0],
V(0+)=9,
in a suitable Hilbert space setting.

Without much loss of generality: ® =0. Thus

. #U+AU=f on R. (1)
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Introduction

Evolutionary Equations

The General Shape of Evolutionary Equations.

General Form: dy = 4. =0,
doV+AU="f on ]0,0],
V(0+)=9,
in a suitable Hilbert space setting.
Without much loss of generality: ® =0. Thus

. #U+AU=f on R. (1)

Evolutionary Equation in a simple, standard case: .Z = Mo+80_1M1 and
A skew-selfadjoint,

(80M0+M1 +A)U: f.
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Basic Ideas Time Derivative

The Time Derivative

Solution Theory: Does the operator

(G027 +A) "

exist as a continuous linear mapping on a suitable Hilbert space?
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Basic Ideas Time Derivative

The Time Derivative

Solution Theory: Does the operator

(G0 +A)!
exist as a continuous linear mapping on a suitable Hilbert space?
Which “suitable” Hilbert space?
A weighted L?-space H, (R, H) constructed by completion of the
space (i (R, H) of differentiable H-valued functions with compact
support w.r.t. (-[-), ;4 (norm: ||, 1)

(0.9) > [ (9() v (£)) s exp(~2p1) .
Time-differentiation dy as a closed operator in H, (R, H) induced by

°

&1 (R, H) C Hy (R, H) — H, (R, H),
o— ¢
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Basic Ideas Time Derivative

The Time Derivative (as a strictly positive-definite operator)

Time-differentiation dy is a normal operator in H, (R, H). For
Po €]0,00[, p €]po,oo[, we have

Redyp =p > po >0,
i.e.
do is a strictly (and uniformly w.r.t. p) positive definite operator

with respect to the real inner product

(¢7 ‘I/) — Re <¢|W>pH
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Basic Solution Theory Bl Sellien Th=em

Basic Solution Theory in H, (R, H)

Evolutionary Problem:
((90 My + My + A)U =F (EVO—SyS)

Key-Question: When is (dg Mo+ My + A) (and its adjoint) (real)
strictly positive definite in H, (R, H)?
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Basic Solution Theory Bl Sellien Th=em

Basic Solution Theory in H, (R, H)

Evolutionary Problem:

((90 MO =+ Ml + A)U =F (EVO—SyS)

Key-Question: When is (dg Mo+ My + A) (and its adjoint) (real)
strictly positive definite in H, (R, H)?

Theorem
Let A be skew-selfadjoint and My, M, be continuous linear
operators in H such that My is selfadjoint and

Re(doMo+ M) =pMy+ReM; > ¢y >0
for some ¢y € R and all p € |pg,o[ , where py € ]0,00] is
sufficiently large.
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Basic Solution Theory Bl Sellien Th=em

Basic Solution Theory in H, (R, H)

Evolutionary Problem:
((90 My + My + A)U =F (EVO—SyS)

Key-Question: When is (dg Mo+ My + A) (and its adjoint) (real)
strictly positive definite in H, (R, H)?

Theorem
Let A be skew-selfadjoint and My, M, be continuous linear
operators in H such that My is selfadjoint and

Re(doMo+ M) =pMy+ReM; > ¢y >0
for some ¢y € R and all p € |pg,o[ , where py € ]0,00] is
sufficiently large.
Then well-posedness of (Evo-Sys) follows for all

p € ]po,el.
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The Model Equations
A “Simplification”
Thermo-Piezo-Electric Coupling

The Model Equations

Let Q C R3 be a non-empty open set. The equation of elasticity:

d3psu—DivT = Fy, (2)

here u: R x Q — R? displacement, T : R x  — sym [R3*3] stress
tensor, P, : 2 — R mass density, Fp : RxQ — R3 external force
term.

Maxwell’s equation:

8OB+curIE: F3,
80D—cur|H:F2—GE. (3)

Here, B,D,E,H : R x Q — R3 are magnetic flux density, electric
displacement, electric field and magnetic field, respectively. The
functions F,, F3 : R x Q — R3 are given source terms and

o : Q) — R denotes the resistance.
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Boundary Conditions

Heat conduction: 200 +divg = F,
where 1 : R x Q — R entropy density, g : R x Q — R3 heat flux,
F>2 : R xQ — R external heat source, ©g € ]0,0o[ reference
temperature. Coupling in abstract form

0 -Div O 0 0 O© v
—~Grad 0 0 0 0 0 T
0 0 0 —curl 0 0 E
DMt M+l g o w0 0 o0 H |=F
0 0 0 0 0 di oy'e
0 0 0 0 grad O q

for suitable bounded operators My, My on the Hilbert space
H = L1?(Q)3@sym [L2(Q)*3] @ 12(Q)P @ 2(Q) @ L2(Q) & L3(Q)3.
Here, v :=dou and 0 : R x Q — R temperature.
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Boundary Conditions

Boundary conditions?

We denote by (1(R) the space of differentiable functions with
compact support in £. Then we define the operator grad as the
closure of

G1(Q) C L2(Q) = L2(Q)*
¢+ (d19,020,050)

as well as div as the closure of

°

G(Q)? C L?(Q)® — [3(Q)

3
(¢1,92,93) — Y 9i.
=
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Boundary Conditions

It is div C —(grad)*. We set div == — (groad>* and

° * °
grad .= — (div) . Similarly, the operator curl is the closure of

G(Q)3 C 2(Q)® — L2(Q)?
0 —d3 o 01

(01,02,¢3)— [ d5 0 —o 02
—82 81 0 03

° * °
and curl == (curl) Dcurl.
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Boundary Conditions

Analogously for Grad and Div as the closure of

o

Cl(Q)3 C L2(Q)3 — sym [L2(Q)3X3]
1
(91,92,03) = = (9j9i +9i9)); j1.23)
and of

sym [Cl (Q)3X3] C sym [L2(Q)>°] — L3(Q)?

3
(0if)ijef123) — (/Z 3j¢ij> ,
ic{12,3}

=1
respectively. Grad := — (Doiv>* Div := — (Groad)*.
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Boundary Conditions

For smooth boundary Q2
u=0ondN
for u € D(grad) or u € D(Grad),
u-n=0on JdN

for u € D(div) or u € D(Div), where n denotes the exterior unit
normal vector field on dQ and

uxn=0on dQ,

for u € D(curl).
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Boundary Conditions

We will assume that v=0,E x n=0 and g-n =0 on the boundary
in the generalized sense. The spatial block operator is replaced by

0 -Div 0O 0 0 0
~Grad 0 0 0 0 O
0 0 0 —curl 0 O
0 0 cul 0 0 0 [’
0 0 0 0 0 div
0 0 0 0 grad 0

which is now a skew-selfadjoint operator on H.
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The Model Equations

The material relations ( & := Grad u strain tensor)

T =C&—eE— 0,
D=e*'&+eE+po,

B =uH,

n=A8E+p E+ad,'e.

Here C € L (sym [L?(2)**3]) is the elasticity tensor,

euel (L2(Q)3) are the permittivity and permeability, respectively,
a = p.c € L(L?(Q)) is the product of the mass density p, € L~(Q)
and the specific heat capacity ¢ € L(L2(£2)) and ©g € ]0, 0]
reference temperature. The operators

e € L(L2(Q)%sym [L3(Q)*3]), A € L(L3(Q);sym [L3()**3]),

p € L(L?(Q); L2(R2)?) are “coupling parameters”.
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The Model Equations

Relative temperature @al 6 as new unknown

T =C&—eE—(100)0,6,
D = e*&+eE+(p©g) ©,10,
B =uH,
On = (eol*)<§+(@0p*)E+yO@519,

where we introduced the abbreviation

Y = @(]Ot.
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The Model Equations

Maxwell-Cattaneo-Vernotte modification
dok1q+ Ko_lq—i—grad 6 =0,

for operators ko, k1 € L(L?(2)3). To adapt the material relations to
our framework we solve for & and obtain

&=CIT+CleE+C1(160)0,'0,
D=eClT+(e+e Cle)E+ (pOg+e'C1A0g) 0,6,
B =uH,
©oN = OoA*C 1T+ (Ogp" +©oA*C le) E+
+ (1 +©0A*Ct10,) O, 6.
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The Model Equations

Material law operators:

P+ 0 0 0 0 0
o ¢! Cle 0 C1A6q 0
Mo = 0 e*C! (e+e*Cle) 0 (pPSo+e"C116g) 0
0 0 0 u 0 0
0 QA C™t  (©op*+60A*C7le) 0 (1p+©oA*C*1600) 0
0 0 0 0 0 K1
and
00000 O
00000 O
000600 O
Mi=100000 o0
00000 O
00000 Kt
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Well-Posedness

Theorem

Assume that p.,€, 1, C, Yy are selfadjoint and non-negative.
Furthermore, we assume p,, 1, C,% > 0 as well as

p (€—OopYy 'p*@p) +0,pki +ky ' >0 (“>0" short for
uniformly strictly positive definite) for sufficiently large p > 0. Then,
My and M satisfy the positive definiteness condition and hence,

the corresponding problem of thermo-piezo-electricity is well-posed. |
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Well-Posedness

Proof.

Obviously, My selfadjoint. Moreover, p,, 1, Pk + K(;l > 0 for
sufficiently large p. Left to show

c! Cle C'A0q 000
p e*C1 e+e*Cle pOo+e*C 1200 |+| 0G0 |>0
OoA*C™1  Opp*+6pA*Cle 1+6gA*C 110, 000

for sufficiently large p. Congruent to

c! 0 0 000
pl 0 e—Gupytp© 0 |+| 000
0 0 % 000

The latter operator is then strictly positive definite by assumption
and so the assertion follows. O

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling




The Model Equations
A “Simplification”
Thermo-Piezo-Electric Coupling

A “Simplification”

Use electrostatics!

E= —griad(p for a potential ¢ € D(groad) and D € D(div) and we
set y :=divD. Moreover, no conductivity term, i.e. ¢ =0 and no
magnetic field, then

Px 0 0 0 v
al 0 c1 C 1100 0 T N
91 0 @A C1 (o+©0A*C1180) O [Srer]
0 0 0 K1 q
000 0 v 0 -Div 0 0 v
000 0 T —~Grad 0 0 o T
*looo o & [Tl o o o div]||ete|T
000 xt q 0 0 grad 0 q
0 Fo
) CleE | A
Ol [ (©op*+002*C2e)E | T | Fa
0 Fs
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A “Simplification”

To express E in terms of the other unknowns:
D=e"C'T+(e+e" Cle)E+(pOo+e"C '10,)0,0. (4)
Setting
®:=e"C 1T+ (pOg+e"C'A0g) (6;'6)
=e" C (T +20)+pb,

D=(e+e*'Cle)E+o.
Using now that y =divD and E = —gr%d(p we get that
—div(8+e*C_1e)gr3d(p+divd>: V.

We assume that C, € are selfadjoint and €+ e*C e > 0 and set
M =+e+e*Cle.
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A “Simplification”

Then, the latter equality can be written as

° . |2
—div M2 gradg + div MM 1 & = ’Mgrad‘ ¢+ div MM 1o
=y,

which gives
gradep + M1 ((Mgr3d> ]Mgréd ]_2 div M) M1o =
= M! (Mgr3d> (M gr?-m]*2 v,
if we assume that w € D <(Mgr"ad)_2> .
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A “Simplification”

This suggests to replace

E = —grado

Y <(Mgr:?|d> ‘Mgr"ad‘izdiv M> M-lo
~ M (Mgr5d> ‘Mgread‘i2 v,
With P = P

Mgrad[L2(Q)]

E=—M'PM 10— M1 (/v/gr%d) ‘Mgrzd‘_Q .
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A “Simplification”

Hence,

( 0

CleE

( (eop*+eol*C’1e)E>
0

0
cleM1PM—1o

( (Gop* +©0A* C1e) M*‘PM*‘Q)) +
)

0
( CleM 1 (Mgr;d) ‘Mgrﬁad‘iz v )
(@oP* +©oA*C 1e) M1 (Mgr;d) ’Mgruad‘iz y )
0
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A “Simplification”

Using now the definition of ®, we can write

0
B (C teM 'PM 10
( (©op* +60A*CLe)M 1PM~ 10 )
0

0
_ CleM PM-terC'T

( (@0p* +OoA*Ce) M- 1PM e C AT ) +
0

0
< CteM 1PM~1 (pOo +e"C1160) (©50) )
( (Gop" +©01"C e) M 1PM ™ (pOo +e"C 1180) (©56) )

0
v
7
=—Wo —1
ogle
q
with
0 0 0 0
Wee | © CleM1pM-1lerCc1 CleM1PM~1 (pOg +e*C 110g) 0
07| 0 (Gop*+©0A* CLe)MIPM 1 C1 (Ogp* +©oA*C e) M 2PM~1 (pOg +e*C110p) 0
0 o 0 0
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A “Simplification”

Summarizing,

pe O 0o o 000 0 0 -Div 0 0 v
3 0 Myg Mgz 0 000 0 | | -Grad 0 0 0 T G
° 0 Mj, M2 O 000 o0 0 0 o0 div ogte | 7™
0 0 0 K 000 xt 0 0 grad 0 q
with

Myy =Cl-ClemipmieCc?
Mz = C 1100 - C lem1pMm1 (p@o tet C’ll@o)
=M11100 —C teM 1PM1pOg

Mo = (yo T eoz*c*zeo) - (eop* +eo/1*c*1e) M1PMt (pBo + e*c*lxeo)

and the right-hand side has to be adjusted to

Fo
Fi+Clem1 (Mgr;d) ‘Mgr;d| 290l[/
Fat (@op*JreoA*Cfle) M1 (Mgr;d) ‘Mgrnad‘i2 do ¥
Fs

G:=
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A “Simplification”

Theorem

Let C,M,p., k1 be selfadjoint and non-negative such that
C,M,p,, vk + Ko’l >> 0 for sufficiently large v and P be an
orthogonal projector. We set @ := PM~le* C~2 and assume that

1-Q"Q@ >0,
% —©op M IP(1—QQ*) ' PM1pOy > 0.

Then, the thermo-piezo-electric system with quasi-static electric
interaction is well-posed.

R. Picard, TU Dresden Thermo-Piezo-Electric Coupling



The Model Equations
E olutio S A “Simplification”
Thermo-Piezo-Electric Coupling

A “Simplification”

We need to verify our solvability condition. For doing so, it suffices
to consider the block operator sub-matrix

< M1 Mo >
Mi, My /-
Noting that My; = C 1 —C2Q*QC 2 =C 2 (1—Q*Q)C 2, we

obtain that My is boundedly invertible. Hence, by a symmetric
Gauss step

<M11 0 )
0 My — MM My )

which is strictly positive definite if and only if
Moy — My M Mo > 0.
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A “Simplification”

Proof (continued)
We have

M22 =% + eol*M]_]_}LGO‘f‘
_ (eop*l\/l’lPM’l pOo +2%Re (eop*/\rl QC*%A@()))

and .
Mz = M11109 — C~2Q*M ! p@y.
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A “Simplification”

Proof (continued)
Thus,

My MG My = M, (zeo MR M p@o)
— ©pA* M1 Ay — 2Re (eox*c—% Q*M—lpeo) +
+ O M IQC M C 2 Q M pOy.
Hence, we get
Moy — Mz Myt Mo = Yo+
—0yp" (M-lpm-l +MIQC I MG C Q*M—l) pOy.
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A “Simplification”

Proof (ending)
Using that Ml_l1 —C2 (1- Q"Q)_1 C2 we obtain

QC M C2Q =Q(1-QQ) ' Q' =-1+(1-QQ")
and since @ = PQ we have
QCEMGCTZQ" =—P+P(1-QQ") P

and thus, Moy — My Mt My = v+
_eop*M—lp(l _ QQ*)71 PM_lpe[)7

which is strictly positive definite by assumption. Ol
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