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|
The Navier—Stokes Equations

The Navier-Stokes equations for a viscous, incompressible Newtonian fluid
in a domain Q C R%, d=2 or 3, and for t > 0,

w+ (u-Vu+Vp—vAu = f,
diva = 0,

u(0) = uy,

where
e u= (u, v, w) is the velocity field,
@ p is the pressure,
e f is a known forcing term (e.g., gravity),

@ v > 0 is the kinematic viscosity coefficient,
@ ug are given initial data.
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Conserved quantities

With assumptions on v, f, b.c., conserved or properly balanced:
o 1 9
Kinetic energy — [ |ul*dx;
2 Ja
Linear momentum /udx;
Q
Angular momentum / u x xdx.
Q
and forw =V X u,
Helicity / u- wdx;
Q
1 2
2D Enstrophy 3 |w|“dx (for a 2D flow);
Q

Total vorticity /wdx.
Q
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Conservation properties of discretized equations

Conservation of helicity, vorticity, 2D enstrophy is lost for wj, = V x uy,. J
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Conservation properties of discretized equations

Conservation of helicity, vorticity, 2D enstrophy is lost for wj, = V x uy,. J

divuy, # 0 pointwise

Y

Conservation of some or all of kinetic energy, linear momentum, angular
momentum are lost.
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Conservation properties of discretized equations

Conservation of helicity, vorticity, 2D enstrophy is lost for wj, = V x uy,. J

divuy, # 0 pointwise

Y

Conservation of some or all of kinetic energy, linear momentum, angular
momentum are lost.

Bring back conservation laws to NSE, shallow water and other discretized
fluid equations: The papers of A. Arakawa, G. Fix, V. Lamb, R. Temam,
T. Hughes, A. Majda, L. Rebholz and others.
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Conservation properties of discretized equations

Why div uy # 0 pointwise is hard for the Galerkin method?
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Conservation properties of discretized equations

Why div uy # 0 pointwise is hard for the Galerkin method?

Let X C [Hé(Q)]d, Q C L*(Q) of finite dimensions.
Then divu = 0 yields to

u, € X (divup,q) =0 Vge@.
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Conservation properties of discretized equations

Why div uy # 0 pointwise is hard for the Galerkin method?

Let X C [Hé(Q)]d, Q C L*(Q) of finite dimensions.
Then divu = 0 yields to

u,b € X (divuy,g) =0 VqeQ.

This implies divuy, = 0 if divX C Q.
However, X should be large enough to ensure the inf-sup stability:

i
inf sup (VUL o
1€Q u,ex |[Vupll|lq]|
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u,b € X (divuy,g) =0 VqeQ.

This implies divuy, = 0 if divX C Q.
However, X should be large enough to ensure the inf-sup stability:

i
inf sup (VUL o
1€Q u,ex |[Vupll|lq]|

Recent attempts to build pointwise mass preserving Galerkin methods:
R. Falk and M. Neilan (SINUM 2013), J. Guzman and M. Neilan (Math
Comp 2014, IMA Num Anal 2014), S. Zhang (Math Comp 2005), J.
Evans and T. Hughes (JCP 2013).
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Conservation properties with divu # 0

Galerkin method with a generic form of inertia term: find {u,p} € X x Q

<aaltl + N(u),v> — (p,divv) + (¢,divu) + v(Vu, Vv) = (f,v)

for all v € X, ¢ € Q. Conservation properties are largely dictated by N(u).
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Conservation properties with divu # 0

Galerkin method with a generic form of inertia term: find {u,p} € X x Q

ot

for all v € X, ¢ € Q. Conservation properties are largely dictated by N(u).

convective

skew-symmetric

rotational

conservative

<6u + N(u),v> — (p,divv) + (¢, divu) + v(Vu, Vv) = (f,v)

1
=u-Vu+ §(divu)u

=(V xu) xu,
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Conservation properties with divu # 0

Galerkin method with a generic form of inertia term: find {u,p} € X x Q

<aaltl + N(u),v> — (p,divv) + (¢, divu) + v(Vu, Vv) = (f,v)
for all v € X, ¢ € Q. Conservation properties are largely dictated by N(u).

convective : N(u

rotational : N

(u)

skew-symmetric : N(u) =u-Vu+ %(div u)u
(u) = (V xu) xu,
(u)

conservative : N(u) = div(u®u) =u-Vu+ (divu)u.
New energy momentum and angular momentum (EMA) conserving form:
EMA conserving : N(u)=2D(u)u+ (divu)u,

where D(u) = 1(Vu + V7u) is the rate of strain tensor
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Conservation properties with divu # 0

(%2 + N(u),v) — (p,divv) + (¢,divu) + v(Vu, Vv) = (f,v)

name N(u) pressure
convective: u-Vu p (kinematic)
skew-symmetric: u-Vu+ 3(divu)u p (kinematic)
rotational:  (V x u) x u p+ %[ul? (Bernoulli)
conservative:  div(u®u) p (kinematic)

EMAC: 2D(u)u+ (divu)u p— 3|ul*> (no name)
EMAC is based on the following simple identity:

1
u-Vu=2D(u)u-— §V|u|2.
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Conservation properties with divu # 0

(%2 + N(u),v) — (p,divv) + (¢, divu) + v(Vu, Vv) = (f,v)

name N(u) Energy | Momentum | Ang. Moment.
convective: u-Vu
skew-symmetric:  u-Vu + 3(divu)u +
rotational:  (V x u) x u +
conservative:  div(u®u) + +
EMAC: 2D(u)u+ (divu)u + + +

Proposition

The skew-symmetric, rotational, and EMAC formulations conserve kinetic energy
(for v =0, £ = 0), and only the EMAC and conservative formulations conserve
momentum (for £ with zero linear momentum) and angular momentum (for £
with zero angular momentum).
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Conservation properties with divu # 0

(%‘: + N(u),v) — (p,divv) + (¢,divu) + v(Vu, Vv) = (f,v)

name N(u) Energy | Momentum | Ang. Moment.
convective: u-Vu
skew-symmetric:  u-Vu + 3(divu)u +
rotational:  (V x u) x u +
conservative:  div(u®u) + +
EMAC: 2D(u)u+ (divu)u + + +

Proposition

The skew-symmetric, rotational, and EMAC formulations conserve kinetic energy
(for v =0, £ = 0), and only the EMAC and conservative formulations conserve
momentum (for £ with zero linear momentum) and angular momentum (for £
with zero angular momentum).

wp, = V X uy conserves nothing of vorticity, helicity, 2D-enstrophy for any of the
formulations. Even if divuy, = 0 pointwise.
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-
Vorticity equation

Even uy, s.t. divuy, = 0, does not conserve

/ (Vth /|V><uh| dx /quhdx.
Q Q

To address this, consider vorticity equation:
wi+ (u-V)w— (w-V)u—vAw =V x f.

0., Rebholz in JCP (2010) Evans, Hughes in JCP (2013)
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-
Vorticity equation

Even uy, s.t. divuy, = 0, does not conserve

/ (Vth /|V><uh| dx /quhdx.
Q Q

To address this, consider vorticity equation:
wi+ (u-V)w— (w-V)u—vAw =V x f.

and use uy, instead of u in the Galerkin formulation:

0
( ;;h + (up - V)wp, — (wp, - V)uh’v>

+ v(Vwy, Vvi) + (nh,divv) — (g, divwy) = (V x £,v)

.. or in the Galerkin formulation:

(8;;]1 + (uh . V)V~Vh — (VNVh . V)uh,v> + ((div uh)v~vh,v) — ((div V~Vh)llh,V)
v(VWwy, Vv) + (np,divv) — (¢, divwy) = (V x £,v)
Similar for 2D vorticity!

0., Rebholz in JCP (2010) Evans, Hughes in JCP (2013)
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Vorticity equation

Proposition

Let u, Galerkin solutions with the EMA-conserving form, and wy,, Wy, wy, are finite
element vorticity solutions. Then helicity (for f = 0, v = 0), 2D enstrophy

(for V. x £ =0, v = 0), and total vorticity are conserved in the sense of the quantities:
H = (uh,wh), H2D = %HwhHQ, and Wl = (v~vh,e¢).

and use uy, instead of u in the Galerkin formulation:

(8;;h + (un - V)wp, — (wy, - V)uh,v>

+ v(Vwi, Vvi) + (nh,divv) — (g, divwy) = (V x £,v)

.. or in the Galerkin formulation:
Owy,
ot

+ (uh . V)\X/h — (W;L . V)uh,v> + ((diV uh)v?/h,v) — ((diV v?/h)uh,v)

—

+ v(VWh, VV) + (np,divv) — (q,divwy) = (V x £,v)
Similar for 2D vorticity!

O., Rebholz in JCP (2010); Evans, Hughes in JCP (2013)
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Numerical Example (Standing vortex)

Standing vortex equilibrium solution (solves u- Vu + Vp = 0):

True velocity solution as a vector plot (left) and speed contour plot (right)

Compute with different formulations, Crank-Nicolson time stepping, f = 0,
v =0, (P, P1) Taylor-Hood elements on a 32x32 uniform mesh,
At = 0.01, and u|;—o= Interp(exact solution).
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Numerical Example (Standing vortex)

Standing vortex equilibrium solution (solves u- Vu + Vp = 0):
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Numerical Example (Standing vortex)

Standing vortex equilibrium solution (solves u- Vu + Vp = 0):

True velocity solution as a vector plot (left) and speed contour plot (right)
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Numerical Example: Channel flow around a cylinder

Benchmark from Schafer & Turek with variable Re (from 0 to 100)

Method | dim(X,) | At e lerror| T lerror| Ap(8) lerror|

ROT 34,762 0.005 | 2.94442 | 6.48E-3 | 0.412069 | 6.59E-2 | -0.11168 | 8.20E-5
CONV 34,762 0.005 | 2.94672 | 4.18E-3 | 0.470062 | 7.94E-3 | -0.11176 | 1.62E-4
SKEW 34,762 0.005 | 2.94678 | 4.12E-3 | 0.467538 | 1.05E-2 | -0.11177 | 1.70E-4
CONS 34,762 0.005 | 2.94667 | 4.25E-3 | 0.450239 | 2.77E-2 | -0.11179 | 1.90E-4
EMAC 34,762 0.005 | 2.94819 | 2.71E-3 | 0.525675 | 4.77E-2 | -0.11166 | 5.68E-5

ROT 61,694 0.005 | 2.94638 | 4.52E-3 | 0.484486 | 6.49E-3 | -0.11139 | 2.10E-4
CONV | 61,694 | 0.005 | 2.94893 | 1.97E-3 | 0.478282 | 2.82E-4 | -0.11159 | 1.13E-5
SKEW 61,694 0.005 | 2.94892 | 1.98E-3 | 0.477249 | 7.51E-4 | -0.11158 | 2.15E-5
CONS 61,694 | 0.005 | 2.94891 | 1.99E-3 | 0.477013 | 9.37E-4 | -0.11149 | 1.10E-4
EMAC 61,694 0.005 | 2.94961 | 1.29E-3 | 0.490655 | 1.27E-2 | -0.11119 | 4.06E-4

ROT | 95738 | 0.005 | 2.94919 | 1.71E-3 | 0.480021 | 2.02E-3 | -0.11186 | 2.64E-4
CONV | 95,738 | 0.005 | 2.94966 | 1.24E-3 | 0.478567 | 5.67E-4 | -0.11155 | 5.00E-5
SKEW | 95,738 | 0.005 | 2.94966 | 1.24E-3 | 0.478106 | 1.06E-4 | -0.11154 | 6.04E-5
CONS 95,738 | 0.005 | 2.94966 | 1.24E-3 | 0.477831 | 1.19E-4 | -0.11155 | 5.00E-5
EMAC | 95,738 | 0.005 | 2.04986 | 1.04E-3 | 0.484425 | 6.43E-3 | -0.11141 | 1.93E-4
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|
Numerical Example: Flow past a flat plate, Re=100

plate with
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|
Numerical Example: Flow past a flat plate, Re=100

Formulation Re | Average Cy | Recirculation point
CONV 100 | 2.5434 1.1577
EMAC 100 | 2.6598 1.1648
SKEW 100 | 2.5903 1.1565
ROT 100 | failed: energy blows up at T=25
CONS 100 | failed: energy blows up at T=78

’ Very fine discretization

100 | 2.6454

1.1373
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|
Numerical example: Channel flow past a forward-backward
facing step
Finer grid:
CONV

10

= |
o 5 10 15 20 25 30 35 40

CONS formulation FE solution blows up.
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Numerical example: Channel flow past a forward-backward
facing step

Coarser grid

CONV

CONS formulation FE solution blows up.
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Numerical example: 3D Flow around a Square Cylinder

Re=100 is close to the critical one, where the transition from equilibrium
to unsteady periodic solution takes place. = Right balance of inertia and

viscous diffusion is crucial for numerical method to produce stable periodic
solutions.
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Numerical example: 3D Flow around a Square Cylinder

Re=100 is close to the critical one, where the transition from equilibrium
to unsteady periodic solution takes place. = Right balance of inertia and
viscous diffusion is crucial for numerical method to produce stable periodic
solutions.
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Lift and drag coefficients plotted over time.
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Numerical example: 3D Flow around a Square Cylinder

max drag | max lift Strouhal | Dofs
EMAC results 4.890 0.0271 0.351 6.4 mill
OTV (2013) 4.484 0.0316 0.307 17 mill
Schafer et al (1996) | 4.32-4.67 | 0.015-0.05 | 0.27-0.35 | Up to 6 mill

Q-criterion and vorticity magnitude contours at t=12.0
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Conclusions

o New (?!) EMAC formulation, 2(Du)u+ (divu)u— 3 V|u|?, conserves
all of energy, momentum, angular momentum of Galerkin solutions;

@ It also conserves appropriately defined vorticity, helicity, and
enstrophy;

@ None of convective, conservative, rotational, and skew-symmetric
formulations conserve each of these quantities;

@ In a few numerical experiments EMAC performs at least as good, or
better, than the commonly used formulations;

@ Things to do: More testing, efficient solvers, higher Re numbers and
turbulent flows, preservation of coherent flow structures, etc.

Alternative to div-free CFD?7!
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