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RELEVANCE OF MODELING PROCESSES IN POROELASTIC MEDIA

Environmental and petroleum
engineering:

@ surface subsidence due
groundwater extraction and
oil pumping,

@ hydraulic and termal
fracturing,

@ oil and gas reservoirs
simulation.
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Biomechanics and chemical
sciences:

@ filtering,

@ effects cerebrospinal fluid
flow on brain,

@ poroelastic modeling of bone.

Earthquake engineering:

@ liquefaction.




INTRODUCTION MODEIL DISCRETIZATION ERROR ESTIMATES CONCLUSIONS AND REFERENCES

o0 00 00000 000000000 0000
\

MOTIVATION
Due to

@ simplifications in the model and
@ uncertainties of solvers,

we arrive at the numerical representation of the data, that
contains modeling and numerical errors.

There is a clear need for

a posteriori error estimates

that allow engineers and mathematicians
@ to make conclusions on the studied model and

@ to detect the error of the numerical solvers.
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BIOT CONSOLIDATION MODEL [BIOT (1941)]:

@ linear elastic, isotropic, porous medium,

@ linearized slightly compressible single-phase fluid, ‘%

@ uis the solid’s displacement, p is the fluid pressure.

MECHANICS (MOMENTUM CONSERVATION)
—div opor(u,p) =f in Q,
Upor(u, P) = O'(u) - CVP]L
o(u) =2pe(u) + Mre(u),
where f is a body force, I is the identity tensor,
A, w are the Lamé constants, and « is the dimensionless Biot-Willis coefficient.

FLOW (MASS CONSERVATION)

% (Bp + adiv u) — divoP =3,
D 1
g = —in]K(VP - Pf,rg)a
where g is a source or sink term, fu is the fluid viscosity, K is the (symmetric, uniformly bounded,
uniformly elliptic in space and constant in time) permeability tensor, i. e.
Mg|T]? < K7 :7, 7€ R? gis the gravitation constant, and py,r is the fluid phase density,

B = % + ¢rpo is a storage coefficient dependent on initial porosity ¢, Biot constant M, and the
fluid compressibility cf.
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BIOT SYSTEM [ZENISEK (1984)], [SHOWALTER (2000)], [PHILIPPS AND WHEELER (2007)]
© =12(0,T; H! (

= {0 € 20, T;HY(Q) | 0lr =pp}
V =C(0,T;H! (Q,RY)) :=

= {0 e C(0,T;H(Q,RY) | v|r« =up}, such that
A+ )V(V - u)

pVu—apl=f in Q x€QCRd={1,2,3}
1 div (K'Y El +adive) =s in Q, Q is Lipschitz bounded domain
" (KVp) + 5 (Bp + o )=s in Q (xgng,meT)T>0
p=pp on IV (x,t) € 2:=0Q x [0,T]
uf KVp-n=py on FI;\I’
u=up on T},
opor-n =1ty on Iy,
u(x,0) =up, p(x,0)=po

in ¥ x {0}, §%ﬁbﬁ
where f € C'(0, T; H-1(Q,RY)), sy € C(0, T; L?(2)),
BCs: pp € C(0, T; H/2(T%))), py € C(0, T; H=/2(T%)))
1
IC: pg € HY(2)

2ty
up € C'(0,T,H/2(T4)), ty € C*(0, T; H— /2(T'%)), and
,u(x,0) = ug € H(Q,RY)

[m]
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NUMERICAL APPROACHES

There are 3 approaches for the coupling of fluid flow and mechanics:
@ Fully implicit coupling (Lewis, Sukirman, Wan, Aziz):

+ stable and convergent;
- linear system is difficult to solve.

@ Loose or explicit coupling (Park, Zienkiewicz, Armero, Yotov):

+ easy to solve and implementation;
- at best conditionally stable.

@ Iterative coupling (Settari, Kim, Helmig, Ehlers, Juanes, Tchelepi, Nordbotten,
Kumar, Wheeler, Mikeli¢):

combines the advantages of above-mentioned approaches:
+ scalable,
+ useful in preconditioning for the fully implicit coupling, ect.
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DISCRETIZATION

@ Test the system with v = v(x) € Vo := L*(0, T; Hy(2)) and

6 =6(x) € Oy := C(0, T; H (Q, RY)):

24 (e(u) : €(v)) + A(div u, div o) + a(Vp,v) = (f,v) + (tn,0)ry, Vo € Vo,
o (KVp, V0) + (5 (Bp + adivu), 0) = (51, 0) + (pv, )y, VO € O

Hf
@ Assume that ty = (0,0)" and py = 0.
@ Consider semi-discrete scheme at the n-th time-step (t,—1, t,):

p" and u" are unknowns, and 7, = t, — t,_1,
2 (e(@") : €(v)) + A(div u",div o) + a(Vp",v) = (f*,v),
%(KVP”7V9) +B(p".0) + a(div u",0) = (57,0),

where 5} = 7sf + Bp" ! + adivu'"
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ITERATIVE ALGORITHM ON EACH (t,_1, t;)

@ Initial value:

p"0 = p(x,0), where p(x,0) follows from Vp(x,0) = o8,
u™0 = u(x,0), where u(x,0) follows from mechanics.

@ k-th iterative: p™* and uF

(a) solve the flow equation for p™* using u™*=1:

1 (K9P, 90) + 6", 0) + afdivu™ 1, 0) = G}, 0).

(b) solve the mechanics equation for u"-F using p"*:

2 (e(@™) : (v)) + A(div u™*, div ) + (V" v) = (fF, ).
@ On each k-th iteration, solve (a) and (b) to obtain:
approximation p;:‘k and u;:’k .

@ Stability [Kim, Tchelepi, and Juanes (2011)],
contraction [Mikeli¢ and Wheeler (2013)],
convergence [Mikeli¢, Wang, and Wheeler (2014)].
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GOAL: TO STUDY A POSTERIORI ERROR ESTIMATES
- (”h Py ) is the conforming approximation of the pair (u,p) € V x ©,
@ D is the problem data.
FUNCTIONAL A POSTERIORI ERROR ESTIMATES

[Gp = p " = N = U = W5 + e — 0 Uy < MG 5, D), J

where

k k k
IHP—p"’ I3 =vIVe—p") Ik +ellp—rp "I
I — w13 = wll e(u — w2 + €]l div (u — ") |2

with parameters v = #Lf' 0= B = 2, & = A, and norm

T’

| w3 ::(leKwﬂwdx7 w € L2(Q, RY).

DERIVATION OF M IS BASED ON COMBINATION OF:

@ Ostrowski’s estimates for the contractive iterations [Ostrowski (1971)] and
@ functional error estimates [Repin (2000)].

- < 9/23
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CONTRACTION IN “FIXED STRESS’ SPLIT SCHEME

"Fixed stress’ split: o™ = adivu™ —Lp™*, ~,L > 0.

Consider dp"* = p"* — p™*~1and su"* = u™* — y"*=1;
_fyég-”xk*l

(1):  (B+L)(6p",0) + ;—;(KVép"‘k, V0) = (Lop™* " — adiv su™ ", 0),

(2): 2p(e(6u™) : e(v)) + A(div 6u™*, div v) — a(6p™", div v) = 0.

THEOREM (ON CONTRACTION IN "FIXED STRESS” SPLIT SCHEME)

With~? =2Land L = %, the ‘fixed stress’ split iterative scheme,
represented by (1) and (2), is a contraction given by

2 |le(@u")|* + 72q (I Vop™ [ + ll60™|1* < g?l60™ 2,

where g = 5.
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ESTIMATES OF || p* — p/ ¥ [|2

uif(]KVp”*k,VB) +L(p"*,0) = (F5,0), V0 €6y,
F’é :NZ"’k — %div k=1,
LEMMA 1 [REPIN (2008)]
Foerh €0,Vy e HQ,div) := {y € L(%, R?) | divy € L*(R) }, and ¢ > 0, we have

k k k k
IP™ = 1B o= 1V =P e+ £ 11 = o I < Mo 9.,

where

MP(kavy <) 1=/ﬂf(1+ %)]K_ll'dl'rdl dx+/%lmq\ dx,

with residual functionals

k ko1
g = #Lf]KVpZ’ — Y, Teq:=F5— T%pz +divy,

and C = % represented with help of Friedrichs’ constants Cr and minimal eigenvalue of the

tensor K.
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COROLLARY 1

For Vp'* € ©,Vy € H(Q,div ), and ¢ > 0, we have

"% = piMI1P < My (", y,€) =

2
Ciq

Vi n,k
D >\]K+C}2:QQMP (ph 7y? C)
where Mp(pﬂ’k, Yy, C) is defined in LEMMA 1, v = Hi, and o = %, and M\k.

DA
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ESTIMATE OF [|u"* — u]¥||%
2p (e : (@) + A(div u™F, div o) = ;"k —avphK o), VoeV,.
LEMMA 2
For V(uZ’k,pZ’k) €EVx0O,VyeH(Q,div),( >0,andn € [%, +00), the estimate
k : 3 k _. , k
kil @™ —u®) P+ €ll div (@ — ) |2 =t — I

Vi Jk avi k
< Mu(py v, €) = max {1, 21 } 1M, (5, 3, €)
I

holds. Here, M, (p;:’k, y, ) is defined in COROLLARY 1, and o and ) are Biot
constant and bulk modulus, respectively.

SKETCH OF THE PROOF:

@ 2 (e(u™* —u") : (0)) + A(div (u* — u¥), div o) = —a(ptF - p div o),
@ by setting v = u™* — uZ’k, we obtain

k ; , Ky 2 , kg , k
2 le(u* — )2 4 Al div (@ — ) |2 = —a(p™ — pF, div (@ — ).
@ by applying Cauchy and Young inequality with > 0, we arrive at
K ; k k
2l IR+ (= ) div (@ — ) | < Folp — ptiP.
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COROLLARY 2

| div (™ — u"F) |> < M. (1,9, €)

For V(ul"*,p}*) € Vx ©,y € H(Q,div ), { > 0,and 7 € [5, +00), we have

2no¢2

M n’kz )
2(2”4')‘_%) P(ph Yy C)
where M, (p;f’k, Yy, ¢) is defined in COROLLARY 1, and « is the Biot constant,
and p and X are Lame coefficients.

DA™ 14723
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ESTIMATE OF || p — PZ’k I3

THEOREM 2 (ON GENERAL ESTIMATE FOR PRESSURE)

For V(uZ’k,pZ’k), (uy, ,p;: k=1 eV x ©,¢ >0, wehave

.k 2 Jk—1 Jk Jk—1
Ilp—prF I3 < My (0, pr et =y, 0)

k— k—
(ph 7y C)J’_Mp(uh 7uZ 17?;, 7PZ 17y7<)7

where Mp (p ., C) is defined in LEMMA 1 and

k=1 Jh—1 I3 k k=12
MP( h ,MZ ap}, 7172 >y7C) = L*f( FQ+ )<||0';: 70';11 ||

1—q Tn
DEp—
+ 57 (M) + Mu(p ")

LG + M) )

with Mu(p;:’ ) and M, (p)" k) defined in COROLLARY 1 AND 2, o™k = %(a div wk — Lpk

Friedrichs’ constant Crg, and eigenvalue Ak of tensor K. Parameters v = ;%f’ and o = T—Bn,

q= ﬁ, v*=2LandL = O‘—)\ a, ps, Ta depend on the problem data.

)

[=] = = =
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@ By applying the triangle inequality
nk 2 2 k2 k
Iy =py™ s < I p(ta) = p" I +lp" = p" I I
<Cmipll? <Mp(p " y.€) (femmat)

@ By using the AUXILIARY LEMMA

IhP" -

A

<(QFQ+

AUXILIARY LEMMA

Assume that
llo

holds. Then,

K < gPllo™

PR and [Vt -

n

IVG" =Pk < Z 2z llo™ = o™ 2

P HP" =P P | V- Pt Ik
,(g +0) [ V" —p"F) 1%

k k—12
R s

ky 12 (% k k—12
P < g jlo™ — o
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SKETCH OF THE PROOF II

@ By adding and deducting the disctretized approximations a;l’ L and cr;: ‘k, we
obtain

N~————

k k—12 k k=12 k k2 k=1 k=12
llo™* = o™ < oy ™ = o " Hllo™ — oy o™ T = o
explicitly known

@ By using the relation o™ = %(a div ™k — Lp™k), we obtained

K ; , k k k2
o™ — o 1P < 5 (0P div (" —u )P+ L[ — p |
< (M ("

5 W)+ LMy ().
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ESTIMATES OF || u —

THEOREM 3 (ON GENERAL ESTIMATE FOR DISPLACEMENT)
For V(uZ’k,pZ’k), (uy, ,pZ k= 1 eV x©,andy € H(®,div ), ¢ > 0, we have

k=1 Sk k=1
o — I < MG S p w0
k—1 k—1
i i ,]/:C):

= MU(V” # Y, C) +Mu(“h 7uh 7ph 7ph

where My (p;, ¥y, ¢) is defined in LEMMA 2 and

it 7 .
MG (A 0) = 1 A 7 (o - o

+ 71 (@ Mu(p ™) +Mu(p ™))

+ (M () + Mo ) )

= l(adiv wk — Lpnk),

with M, (p"’k) and M, (p}") defined in COROLLARY 1 AND 2, o
, and parameters A, u are the Lame coefficients, and « is the Biot

)d
with L = D‘—/\

where g = 51T +
contant.
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ESTIMATE OF |[(p — p u™)]|
hoo WUy

THEOREM 4

Forany(uh ,ph ) (unk 1,pzk 1)EV><G),yEH(Q,div) ¢>0,and
|[(P Py ,u—uh )|<MP(Ph 7Pnk !

n,k  nk—1
LA

7 7<)
+ MU (ph 7PZ i= 17 u:’k7 uZ,k_lv Y, C)v
where M’ and My; are define in THEOREMS 2 AND 3, respectively.
.

E DA™ 19/23
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CONCLUSIONS AND OUTLINE FOR THE FURTHER WORK

We have derived a posteriori error estimates for poroelastic Biot model
@ for iterative coupling, which are based on Ostrowski estimates and
functional error for static problems, and
@ for fully implicit coupling, which are based on a poteriori error
estimates for parabolic problems.

Outline for the further work:

@ numerical tests supporting the theoretical results,

@ testing sensitivity of the estimates with respect to different problem
parameters (effecting g),

@ derivation estimates for localized bulk modulus and Biot constant
(effecting q),

@ testing how initial data effects the contractive iterates.
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