Structure preserving model reduction for damped wave propagation on networks

Herbert Egger, Thomas Kugler

July 7, 2016

Damped wave propagation on network

$$
\begin{array}{rlrl}
\partial_{t} p^{e}+\partial_{x} \sigma^{e} & =0, & & \text { on } e \in \mathcal{E}, t>0, \\
\partial_{t} \sigma^{e}+\partial_{x} p^{e}+d^{e} \sigma^{e}=0, & & \text { on } e \in \mathcal{E}, t>0,
\end{array}
$$

with coupling conditions

$$
\begin{aligned}
p^{e}(v) & =p^{e^{\prime}}(v), & & \text { for all } e, e^{\prime} \in \mathcal{E}(v), v \in \mathcal{V}_{0}, t>0 \\
\sum_{e \in \mathcal{E}(v)} n^{e}(v) \sigma^{e}(v) & =0, & & \text { for all } v \in \mathcal{V}_{0}, t>0
\end{aligned}
$$

boundary conditions for the pressure

$$
p^{e}(v)=u^{e}, \quad \text { for } v \in \mathcal{V}_{\partial}, e \in \mathcal{E}(v), t>0
$$

+ initial conditions.

Galerkin discretization

$$
\begin{array}{llll}
\left(\partial_{t} p_{h}(t), q_{h}\right)_{\mathcal{E}}+\left(\partial_{x}^{\prime} \sigma_{h}(t), q_{h}\right)_{\mathcal{E}} & & =0, & q_{h} \in Q_{h}, \\
\left(\partial_{t} \sigma_{h}(t), v_{h}\right)_{\mathcal{E}}-\left(p_{h}(t), \partial_{x}^{\prime} v_{h}\right)_{\mathcal{E}}+\left(d \sigma_{h}(t), v_{h}\right)_{\mathcal{E}} & =\left(n u, v_{h}\right)_{\mathcal{v}_{\partial}}, & & v_{h} \in V_{h},
\end{array}
$$

Properties:

1. conservation of mass
2. energy dissipation
3. \exists ! steady state
4. exp. convergence if $u=0$
$\left(\mathrm{A} 1_{h}\right) Q_{h}=\partial_{x}^{\prime} V_{h}$
$\left(\mathrm{A} 2_{h}\right)\left\{v: \partial_{x}^{\prime} v=0\right\} \subset V_{h}$
$\left(\mathrm{A3}_{h}\right) 1 \in Q_{h}$

Algebraic input-output systems

$$
\begin{aligned}
M_{1} \dot{x}_{1}+G x_{2} & =0, \\
M_{2} \dot{x}_{2}-G^{\top} x_{1}+D x_{2} & =B_{2} u, \\
y & =B_{2}^{\top} x_{2} .
\end{aligned}
$$

Let V_{1}, V_{2} be projection matrices and $\widehat{M}_{i}=V_{i}^{\top} M_{i} V_{i}$,
$\widehat{G}=V_{1}^{\top} G V_{2}, \widehat{D}=V_{2}^{\top} D V_{2}, \widehat{B}_{2}=V_{2}^{\top} B$. Then the Galerkin projection reads

$$
\begin{aligned}
\widehat{M}_{1} \dot{z}_{1}+\widehat{G} z_{2} & =0 \\
\widehat{M}_{2} \dot{z}_{2}-\widehat{G}^{\top} z_{1}+\widehat{D} z_{2} & =\widehat{B}_{2} u, \\
y & =\widehat{B}_{2}^{\top} z_{2}
\end{aligned}
$$

Structure preserving model reduction

$$
P D E \xrightarrow{\left(A 1_{h}\right)-\left(A 3_{h}\right)} G D_{h}
$$

Structure preserving model reduction

$$
P D E \xrightarrow{\left(A 1_{h}\right)-\left(A 3_{h}\right)} G D_{h} \xrightarrow{\left(A 1_{H}\right)-\left(A 3_{H}\right)} G D_{H}
$$

(A1 $\left.{ }_{H}\right) Q_{H}=\partial_{x}^{\prime} V_{H}$
$\left(\mathrm{A} \mathrm{H}_{H}\right)\left\{v: \partial_{x}^{\prime} v=0\right\} \subset V_{H}$
($\left.\mathrm{A}_{H}\right) 1 \in Q_{H}$
(A1') $\mathcal{R}\left(M_{1} V_{1}\right)=\mathcal{R}\left(G V_{2}\right)$
(A2') $\mathcal{N}(G) \subset \mathcal{R}\left(V_{2}\right)$
(A3') $o_{1} \in \mathcal{R}\left(V_{2}\right)$

- Descriptor system: $E \dot{x}+A x=B u, \quad y=B^{\top} x$
- Use Laplace-trafo: $\quad s E \tilde{x}+A \tilde{x}=B \tilde{u}, \quad \tilde{y}=B^{\top} \tilde{x}$
- Input-output relation: $\tilde{y}=B^{\top}(s E+A)^{-1} B \tilde{u}$
- Transfer function: $H(s):=B^{\top}(s E+A)^{-1} B=\sum_{l=0}^{\infty} m_{l}\left(s-s_{0}\right)^{\prime}$, with moments m_{l} defined by $m_{l}=B^{\top} r_{l}$ and the recursion

$$
r_{0}=(s E+A)^{-1} B, \quad r_{I}=-(s E+A)^{-1} r_{I-1}
$$

Reduction method: moment matching (2)

V projection matrix, then

- Reduced descriptor system:

$$
\widehat{E} \dot{z}+\widehat{A} z=\widehat{B} u, \quad y=\widehat{B}^{\top} z
$$

- Reduced transfer function:

$$
\widehat{H}(s):=\sum_{l=0}^{\infty} \widehat{m}_{l}\left(s-s_{0}\right)^{\prime}
$$

Lemma (moment matching)

Let $\mathbb{K}_{L}:=\operatorname{span}\left\{r_{0}, \ldots, r_{L-1}\right\} \subset \mathcal{R}(V)$, then $m_{l}=\widehat{m}_{l}$, for $I=0, \ldots, 2 L-1$.

Remark

Let $\tilde{V}=\binom{V_{1}}{V_{2}}$ basis of \mathbb{K}_{L}, then $V:=\left(\begin{array}{cc}V_{1} & 0 \\ 0 & V_{2}\end{array}\right)$ fulfills assumption of the lemma.

Construction of projection matrices

- Construct subspaces $\mathbb{V}_{1}, \mathbb{V}_{2}$; then compute orthonormal matrices V_{1}, V_{2}, such that $\mathcal{R}\left(V_{i}\right)=\mathbb{V}_{i}$.
- Splitting: $\mathbb{V}_{1}=\mathbb{W}_{1}+\mathbb{Z}_{1}$ and $\mathbb{V}_{2}=\mathbb{W}_{2}+\mathbb{Z}_{2}$
- Choose $\mathbb{W}_{i}:=\left(\mathbb{K}_{L}\right)_{i}, \mathbb{Z}_{1}:=\left\{o_{1}\right\}$ and $\mathbb{Z}_{2}=\left\{o_{2}\right\}+\mathcal{N}(G)$, where $o_{2}=M_{2}^{-1} G^{\top}\left(G M_{2}^{-1} G^{\top}\right)^{-1} M_{1} o_{1}$.

Lemma

Let $s_{0}>0$. Then $M_{1} \mathbb{W}_{1}=G \mathbb{W}_{2}$.

Lemma

Let $s_{0}>0$. Then $\mathbb{V}_{1}, \mathbb{V}_{2}$
satisfy $\left(A 1^{\prime \prime}\right)-\left(A 3^{\prime \prime}\right)$.
(A1") $M_{1} \mathbb{V}_{1}=G \mathbb{V}_{2}$
$\left(A 2^{\prime \prime}\right) \mathcal{N}(G) \subset \mathbb{V}_{2}$
(A3") $o_{1} \in \mathbb{V}_{2}$

- $a=1$; number of moments=4; movie1
- $a=1$; number of moments=8; movie2
- $a=0.1$; number of moments=8; movie3
- Dimension of truth approximation pressure space is 420 .
- Dimension of 8 moments pressure space is 28 .
- Dimension of 4 moments pressure space is 16 .

Thank you for your attention!

Appendix

The Krylov sequences are defined by

$$
\begin{aligned}
& s_{0} M_{1} x_{1}^{0}+G x_{2}^{0}=0 \\
& s_{0} M_{2} x_{2}^{0}-G^{\top} x_{1}^{0}+D x_{2}^{0}=B
\end{aligned}
$$

and

$$
\begin{array}{ll}
s_{0} M_{1} x_{1}^{\prime} & +G x_{2}^{\prime}=M_{1} x_{1}^{I-1} \\
s_{0} M_{2} x_{2}^{\prime}-G^{\top} x_{1}^{\prime}+D x_{2}^{\prime}=M_{2} x_{2}^{I-1}
\end{array}
$$

Hence \mathbb{W}_{1} and \mathbb{W}_{2} satisfy $\left(A 1^{\prime}\right)$ for $s_{0}>0$. For $s_{0}=0$ one needs to add x_{2}^{L} to satsfy the condition.

