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Kernel of the Strain Tensor

Let Q € RY (d = 2,3) be bounded connected open and
polyhedral, and RM(£2) be the space of rigid motions on 2 defined
by RM(Q) = {a+ Ax : a € RY and A € R¥*? is anti-symetric}.
Define e(u) = YULVUT 55 the strain tensor, then for u € H!(Q)?,

e(u) =0 <= u e RM(Q).



Korn's Inequalities for H* functions

For any u € H*(Q)9, we have the following three inequalities:
Ul S lle(u)llo + [ Qullo,

where Qu = u — ﬁ fQ udx.

Uy S lle(u)llo+  sup / u - mds,
meRM,(Q) /02

where RMo(Q) = {m € RM(Q) : ||m||2(9q) = 1, [, mds = 0}.

luley < lle()fo + | /Q V x udx].



Korn's Inequalities for H* functions

Hence the first Korn's inequality reads
lulie) S le(u)llo, Yu € Hy(R)7.

And the second Korn's ineqality reads

luliay < le(@)lo, Yu e HY(Q)?, | / V x udx| = 0.
Q



© Korn's Inequalities for Piecewise H! Functions
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Notations

Let T}, be a shape-regular partition of Q into simplexes {K}. We
further denote by E,g the set of all interior edges (faces) of 7} and
by EP the set of all boundary edges (faces).

For any edge (or face F) e (or F) € E/ and generally

e = 0K1 N 0K>, and vector v, the jump

[V]e = V’@Klﬂe - V‘aKgﬂe-
When e € E,’f then the above quantity is defined as
[v]e = vle.

The same defintion can be done for a face F = dK; N IKo.



Piecewise H' Space

The space H1(Q, 7,)9 is defined by
HY(Q,75) = {u e 12(Q)? : u|k € H}(K)9, VK € Th},
and the seminorm | - 11, 7;) is given by

e = (D |U|;2L/1(K))1/2

KeTh

We also use the notation 4(u) to denote the matrix function
defined by
5h(u)|K = 8(U|K) VK € Tp.
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A Korn's Inequalities for Piecewise H' Functions

Let ®(u) be [|[Qullo, sup  [yqu-mdsor| > [V x udx|.
meRM,(0) KeTh

Theorem (C. Brenner 2003)
For any u € H*(Q, T,)?,the following inequality holds :
wBagry S len)lE +0%(w)

+ Z (diam e) <]7r1([ll]e "e)

eGE’

+ lIm1([ule - te)llf e

where T is the L? projection to P(e), ne is the normal unit to e
and t. is the tangential to e.

A similar result as the above theorem for d = 3 is also there.
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A More Look Into RM(Q)

Lemma (H. and Lee 2015)
For any edge e C K (d = 2), Then for any u € RM(Q),

u-te|, = (a+ Ax)-t,| = constant.

For any face F C K (d = 3), let cg be the barycenter of F. Then
for any u € RM(Q), the following holds true that

uxng| = (a+Ax)xn.| =axn,+g(x—cF),
where g is a constant and (x — cg) - n. = 0. Therefore,

dim (a+ Ax) x n.|_=3.



Improved Korn's Inequalities

Theorem (H. and Lee 2015)
For any u € H*(Q,T,)?, the following inequality holds:
ulpry S len(w)g + &*(u)

+ Z diam e) ( |1 ([u]e -

eGE’

+ Imo([ule - te)ll5

where g is the L? projection to PO(e).
For any u € H*(Q,T,)3, the following inequality holds:

|ulfn o7y S len()lg + % (u)

+ 3" (diam F)fl(um([u]p -ng)|3 £ + 7 ([ulr x ne)l3 g,
FeE]

where 7, is the L projection onto RT°(F) = P°(F) + P°(F)x.
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Improved Korn's Inequalities

Corollary (H. and Lee 2015)

For any u € HY(Q, T,)?, for any e € EJ,
provided that [ [u]c - neqds = 0Vq € P(e) and [ [u]c - teds =0,
then the following inequality holds:

i@y < len(u)g+ *(u).

For any u € HY(Q, T3)3, for any F € E/,

provided that [;[u]f - npqdA =0 Vq € P(F) and
Je([ule x ng) - rdA=0Vr € RT°(F), then the following
inequality holds:

ulfn @7y < llen(u)l§ + ®*(u).
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2D case
Example 1. [Xie, Xu, Xue 2008; Mardal, Tai, Winther 2002]
Degrees of Freedom (DOF): (v - ne, p)e, Vie € PL(e), (v - te,1)e.

V(K) = P(K) + curl (bxP*(K)) ;
V(K) = {v e P3(K) : divv € P°(K), (v-n.)|. € P'(e),Ve € OK}.
Define
N<Y(K) = P*2(K) + {ve P*"}(K) : v-x = 0}.

Q-Y(K) = {q € P*Y(K) : (g, brbew)x =0, w € Pk_2(K)} ;
QK H(K) =D beQET(K)

Example 2.[Guzman, Neilan 2011]

Degrees of Freedom (DOF): (v, p), Vp € N¥71(K),

(V- ne, p1)e, Vi € PX(e), (v - te, 5)e, Vs € PK1(e).
V(K) = P*(K) + curl (bKQkfl(K)) .
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3D case
Example 3. [Xie, Xu, Xue 2008]
Degrees of Freedom (DOF):
(v-ng,p)r,Yu € PYF),(v x ng,r)g,Vr € RT°(F);

V(K) = PY(K) + curl (bk P}(K)).
Define
QHK) = {q x np € P*"YHK) x ng :
(@ x ng, bxbe(w x np))k =0, w e PH(K)} ,
Q" (K) = X r brQE H(K).
Example 4.[Guzman, Neilan 2011]

Degrees of Freedom (DOF): (v, p), Vp € Nk_l(K
(V ' nF,,U/)F,VM € Pk(F), (V X ng, I’)F7Vr c 'Pk_l F)'

(
V(K) = P*(K) + curl (bK Qk_l(K)) .

We should note that for Example 4 we need k > 2.
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A Remedy for k =1

Define

Qr(K) = {gxnre RM(K) X ng:
(q X ng, beF(W X nF))K =0, we PO(K)} ,
Q*(K) = Y. brQE(K).
Example 5.[H. and Lee 2016]

Degrees of Freedom (DOF):
(v-ng,w)r,Yu € PYF), (v x ng, r)g,Vr € RTO(F);

V*(K) = PYK) + curl (bx Q*(K)).

Theorem (H. and Lee 2016)

The element V*(K) is unisolvent.
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A Remedy for linear CR element in 2D

It is well known that the linear CR element does not satisfy Korn's
inequality [S. Falk 1991].
Noting that - [, AiAjds = 1/6, we define a function

ij ij

dic = Aidj + XAk + A — g
We define the enriched CR element on element K by

ECR(K) = PY(K) + VEC(K)
where VEC(K) is spanned by the following functions
Vi =dx(Ni = A)njg, Y= dk(N — M)k, i = d(Ak — i)

The degree of freedom are defined as following

/vds and / v - nqds,¥q € Pl(e)/R.
e

Je
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A Remedy for linear CR element in 2D

Theorem (H. and Lee 2016)
The element ECR(K) is unisolvent.

Proof.

Firstly, for any v; € VEC(K), we have [ vids =0 Ve € 0K since
[, dkqds = 0,Yq € P1(e).

Next, we set v = vg + vi, where vy € P}(K) and v; € VEC(K).

From fe vds = 0 and the above inclusion, we obtain that vy = 0.

Now for v = c11,b,-j + c21pjk + c31;. From

[.v - nqds,Vq € P'(e)/R, we have the following linear system:

—2c1 + CoNj - Njj + C3N; - Njj = 0,
CiNji - Njj — 2¢r + c3ny - nj. = 0,

C1Njj - Ngj + CoNj - Ny — 2c3 = 0.

Since |njj - nii| + |njc - ngj| < 2, then the coefficient matrix of the
unknowns ci, ¢, c3 is diagonal dominated, which
impliescy, ¢, c3 = 0.
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Concluding Remarks and Future Work

We presented

@ A discrete Korn's inequality which shows the relation to the
definition of DOF for finite elements,

@ Construction of some finite elements satisfying the Korn's
inequality.
Future work will address

@ a necessary condition for piecewise H! functions to satisfy
classic Korn's inequality,

@ Remedy for linear CR element in 3D,

@ Applications to elasticity and Stokes problems.
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Thank you for your attention!
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