# A discrete Korn's inequality and related finite elements

Qingguo Hong

Duisburg-Essen University, Essen, Germany Joint work with Yong-ju Lee

AANMPDE-9-16, Strobl, Austria, 2016. 7. 7

# Outline



- 2 Korn's Inequalities for Piecewise  $H^1$  Functions
- Improved Korn's Inequalities
- 4 Finite Elements Satisfying Korn's Inequality
- 5 Finite Elements Guided by the Korn's Inequality
- 6 Concluding Remarks

- 2 Korn's Inequalities for Piecewise  $H^1$  Functions
- Improved Korn's Inequalities
- 4 Finite Elements Satisfying Korn's Inequality
- 6 Finite Elements Guided by the Korn's Inequality
- 6 Concluding Remarks

# Kernel of the Strain Tensor

Let  $\Omega \subset R^d$  (d = 2, 3) be bounded connected open and polyhedral, and  $RM(\Omega)$  be the space of rigid motions on  $\Omega$  defined by  $RM(\Omega) = \{ \mathbf{a} + \mathbf{A}\mathbf{x} : \mathbf{a} \in R^d \text{ and } \mathbf{A} \in R^{d \times d} \text{ is anti-symetric} \}$ . Define  $\varepsilon(\mathbf{u}) = \frac{\nabla \mathbf{u} + \nabla \mathbf{u}^T}{2}$  as the strain tensor, then for  $\mathbf{u} \in H^1(\Omega)^d$ ,

 $\boldsymbol{\varepsilon}(\boldsymbol{u}) = 0 \iff \boldsymbol{u} \in \boldsymbol{R}M(\Omega).$ 

For any  $\boldsymbol{u} \in H^1(\Omega)^d$ , we have the following three inequalities:  $\|oldsymbol{u}\|_{H^1(\Omega)}\lesssim \|oldsymbol{arepsilon}(oldsymbol{u})\|_0+\|Qoldsymbol{u}\|_0,$ where  $Q \boldsymbol{u} = \boldsymbol{u} - \frac{1}{|\Omega|} \int_{\Omega} \boldsymbol{u} dx$ .  $\|\boldsymbol{u}\|_{H^1(\Omega)} \lesssim \|\boldsymbol{\varepsilon}(\boldsymbol{u})\|_0 + \sup_{\boldsymbol{m} \in \boldsymbol{RM}_{2}(\Omega)} \int_{\partial \Omega} \boldsymbol{u} \cdot \boldsymbol{m} ds,$ where  $\mathbf{RM}_0(\Omega) = \{\mathbf{m} \in \mathbf{RM}(\Omega) : \|\mathbf{m}\|_{L^2(\partial\Omega)} = 1, \int_{\partial\Omega} \mathbf{m} ds = 0\}.$  $\|\boldsymbol{u}\|_{H^1(\Omega)} \lesssim \|\boldsymbol{\varepsilon}(\boldsymbol{u})\|_0 + |\int_{\Omega} \nabla \times \boldsymbol{u} dx|.$ 

Hence the first Korn's inequality reads

 $egin{aligned} & \|oldsymbol{u}\|_{H^1(\Omega)} \lesssim \|oldsymbol{arepsilon}(oldsymbol{u})\|_0, & orall oldsymbol{u} \in H^1_0(\Omega)^d. \end{aligned}$ 

And the second Korn's ineqality reads

$$\|oldsymbol{u}\|_{H^1(\Omega)}\lesssim \|oldsymbol{arepsilon}(oldsymbol{u})\|_0, \ \ orall oldsymbol{u}\in H^1(\Omega)^d, \ |\int_\Omega 
abla imes oldsymbol{u} dx|=0.$$

#### Korn's Inequalities for H<sup>1</sup> Functions

- 2 Korn's Inequalities for Piecewise  $H^1$  Functions
- Improved Korn's Inequalities
- 4 Finite Elements Satisfying Korn's Inequality
- 5 Finite Elements Guided by the Korn's Inequality
- 6 Concluding Remarks

## Notations

Let  $T_h$  be a shape-regular partition of  $\Omega$  into simplexes  $\{K\}$ . We further denote by  $E_h^I$  the set of all interior edges (faces) of  $\mathcal{T}_h$  and by  $E_h^B$  the set of all boundary edges (faces). For any edge (or face F) e (or F)  $\in E_h^I$  and generally  $e = \partial K_1 \cap \partial K_2$ , and vector **v**, the jump

$$[\mathbf{v}]_e = \mathbf{v}|_{\partial K_1 \cap e} - \mathbf{v}|_{\partial K_2 \cap e}.$$

When  $e \in E_h^B$  then the above quantity is defined as

$$[\mathbf{v}]_e = \mathbf{v}|_e.$$

The same definition can be done for a face  $F = \partial K_1 \cap \partial K_2$ .

# Piecewise $H^1$ Space

The space  $H^1(\Omega, \mathcal{T}_h)^d$  is defined by

$$H^1(\Omega,\mathcal{T}_h)^d = \{ \boldsymbol{u} \in L^2(\Omega)^d : \boldsymbol{u}|_{\mathcal{K}} \in H^1(\mathcal{K})^d, \forall \mathcal{K} \in \mathcal{T}_h \},$$

and the seminorm  $|\cdot|_{H^1(\Omega,\mathcal{T}_h)}$  is given by

$$|\boldsymbol{u}|_{H^1(\Omega,\mathcal{T}_h)} = \big(\sum_{K\in\mathcal{T}_h} |\boldsymbol{u}|_{H^1(K)}^2\big)^{1/2}$$

We also use the notation  $\varepsilon_h(\boldsymbol{u})$  to denote the matrix function defined by

$$arepsilon_h(oldsymbol{u})|_K = arepsilon(oldsymbol{u}|_K) \ \ orall K \in \mathcal{T}_h.$$

A Korn's Inequalities for Piecewise  $H^1$  Functions

Let 
$$\Phi(\boldsymbol{u})$$
 be  $\|Q\boldsymbol{u}\|_0$ ,  $\sup_{\boldsymbol{m}\in\boldsymbol{RM}_0(\Omega)}\int_{\partial\Omega}\boldsymbol{u}\cdot\boldsymbol{m}ds$  or  $|\sum_{K\in\mathcal{T}_h}\int_K \nabla\times\boldsymbol{u}dx|$ .

Theorem (C. Brenner 2003) For any  $\mathbf{u} \in H^1(\Omega, \mathcal{T}_h)^2$ , the following inequality holds :

$$\begin{aligned} |\boldsymbol{u}|^{2}_{H^{1}(\Omega,\mathcal{T}_{h})} & \lesssim \|\varepsilon_{h}(\boldsymbol{u})\|^{2}_{0} + \Phi^{2}(\boldsymbol{u}) \\ & + \sum_{e \in E_{h}^{I}} (diam \ e)^{-1} \Big( \|\pi_{1}([\boldsymbol{u}]_{e} \cdot \boldsymbol{n}_{e})\|^{2}_{0,e} + \|\pi_{1}([\boldsymbol{u}]_{e} \cdot \boldsymbol{t}_{e})\|^{2}_{0,e}, \end{aligned}$$

where  $\pi_1$  is the  $L^2$  projection to  $\mathcal{P}^1(e)$ ,  $\mathbf{n}_e$  is the normal unit to e and  $\mathbf{t}_e$  is the tangential to e.

A similar result as the above theorem for d = 3 is also there.

2 Korn's Inequalities for Piecewise  $H^1$  Functions

#### 3 Improved Korn's Inequalities

- 4 Finite Elements Satisfying Korn's Inequality
- 5 Finite Elements Guided by the Korn's Inequality
- 6 Concluding Remarks

# A More Look Into $RM(\Omega)$

Lemma (H. and Lee 2015) For any edge  $e \subset K$  (d = 2), Then for any  $\boldsymbol{u} \in \boldsymbol{R}M(\Omega)$ ,

$$oldsymbol{u} \cdot oldsymbol{t}_e|_e = (oldsymbol{a} + oldsymbol{A} oldsymbol{x}) \cdot oldsymbol{t}_e|_e = oldsymbol{constant}.$$

For any face  $F \subset K$  (d = 3), let  $c_F$  be the barycenter of F. Then for any  $u \in RM(\Omega)$ , the following holds true that

$$oldsymbol{u} imes oldsymbol{n}_{\scriptscriptstyle F}|_{\scriptscriptstyle F} = (oldsymbol{a} + oldsymbol{A} oldsymbol{x}) imes oldsymbol{n}_{\scriptscriptstyle F}|_{\scriptscriptstyle F} = oldsymbol{a} imes oldsymbol{n}_{\scriptscriptstyle F} + oldsymbol{g}(oldsymbol{x} - oldsymbol{c}_{\scriptscriptstyle F}),$$

where g is a constant and  $(\mathbf{x} - \mathbf{c}_{\mathbf{F}}) \cdot \mathbf{n}_{\mathbf{F}} = 0$ . Therefore,

$$\dim (\boldsymbol{a} + \boldsymbol{A}\boldsymbol{x}) \times \boldsymbol{n}_{_{\!F}}|_{_{\!F}} = 3$$

# Improved Korn's Inequalities

Theorem (H. and Lee 2015) For any  $\boldsymbol{u} \in H^1(\Omega, \mathcal{T}_h)^2$ , the following inequality holds:

$$\begin{aligned} |\boldsymbol{u}|^2_{H^1(\Omega,\mathcal{T}_h)} &\lesssim \|\boldsymbol{\varepsilon}_h(\boldsymbol{u})\|^2_0 + \Phi^2(\boldsymbol{u}) \\ &+ \sum_{e \in E'_h} (diam \ e)^{-1} \Big( \|\pi_1([\boldsymbol{u}]_e \cdot \boldsymbol{n}_e)\|^2_{0,e} + \|\pi_0([\boldsymbol{u}]_e \cdot \boldsymbol{t}_e)\|^2_{0,e}, \end{aligned}$$

where  $\pi_0$  is the  $L^2$  projection to  $\mathcal{P}^0(e)$ . For any  $\mathbf{u} \in H^1(\Omega, \mathcal{T}_h)^3$ , the following inequality holds:

$$\begin{aligned} |\boldsymbol{u}|_{H^1(\Omega,\mathcal{T}_h)}^2 &\lesssim \|\boldsymbol{\varepsilon}_h(\boldsymbol{u})\|_0^2 + \Phi^2(\boldsymbol{u}) \\ &+ \sum_{F \in E_h^I} (diam \ F)^{-1} \Big( \|\pi_1([\boldsymbol{u}]_F \cdot \boldsymbol{n}_F)\|_{0,F}^2 + \|\pi_r([\boldsymbol{u}]_F \times \boldsymbol{n}_F)\|_{0,F}^2, \end{aligned}$$

where  $\pi_r$  is the  $L^2$  projection onto  $\mathbf{RT}^0(F) = \mathcal{P}^0(F) + \mathcal{P}^0(F)\mathbf{x}$ .

# Improved Korn's Inequalities

Corollary (H. and Lee 2015) For any  $\mathbf{u} \in H^1(\Omega, \mathcal{T}_h)^2$ , for any  $e \in E_h^l$ , provided that  $\int_e [\mathbf{u}]_e \cdot \mathbf{n}_e q ds = 0 \ \forall q \in \mathcal{P}^1(e) \text{ and } \int_e [\mathbf{u}]_e \cdot \mathbf{t}_e ds = 0$ , then the following inequality holds:

$$\|oldsymbol{u}\|^2_{H^1(\Omega,\mathcal{T}_h)} \qquad \lesssim \|oldsymbol{arepsilon}_h(oldsymbol{u})\|^2_0 + \Phi^2(oldsymbol{u}).$$

For any  $\mathbf{u} \in H^1(\Omega, \mathcal{T}_h)^3$ , for any  $F \in E'_h$ , provided that  $\int_F [\mathbf{u}]_F \cdot \mathbf{n}_F q dA = 0 \ \forall q \in \mathcal{P}^1(F)$  and  $\int_F ([\mathbf{u}]_e \times \mathbf{n}_F) \cdot \mathbf{r} dA = 0 \ \forall \mathbf{r} \in \mathbf{RT}^0(F)$ , then the following inequality holds:

$$\|\boldsymbol{u}\|_{H^1(\Omega,\mathcal{T}_h)}^2 \lesssim \|\boldsymbol{\varepsilon}_h(\boldsymbol{u})\|_0^2 + \Phi^2(\boldsymbol{u}).$$

- 2 Korn's Inequalities for Piecewise  $H^1$  Functions
- Improved Korn's Inequalities
- 4 Finite Elements Satisfying Korn's Inequality
- 5 Finite Elements Guided by the Korn's Inequality
- 6 Concluding Remarks

#### 2D case

**Example 1**. [Xie, Xu, Xue 2008; Mardal, Tai, Winther 2002] Degrees of Freedom (DOF):  $(\mathbf{v} \cdot \mathbf{n}_e, \mu)_e, \forall \mu \in \mathcal{P}^1(e), (\mathbf{v} \cdot \mathbf{t}_e, 1)_e$ .

$$\boldsymbol{V}(K) = \boldsymbol{\mathcal{P}}^1(K) + \boldsymbol{curl}\left(b_K \mathcal{P}^1(K)\right);$$

 $\boldsymbol{V}(K) = \{ \boldsymbol{v} \in \boldsymbol{\mathcal{P}}^{3}(K) : div \, \boldsymbol{v} \in \boldsymbol{\mathcal{P}}^{0}(K), \, (\boldsymbol{v} \cdot \boldsymbol{n}_{e})|_{e} \in \boldsymbol{\mathcal{P}}^{1}(e), \forall e \in \partial K \}.$ Define

$$\boldsymbol{N}^{k-1}(K) = \boldsymbol{\mathcal{P}}^{k-2}(K) + \{ \boldsymbol{v} \in \boldsymbol{\mathcal{P}}^{k-1}(K) : \boldsymbol{v} \cdot \boldsymbol{x} = 0 \}.$$

$$\begin{array}{ll} Q_{e}^{k-1}({\cal K}) &=& \left\{q\in {\cal P}^{k-1}({\cal K}): (q,b_{{\cal K}}b_{e}w)_{{\cal K}}=0, \ w\in {\cal P}^{k-2}({\cal K})\right\};\\ && Q^{k-1}({\cal K})=\sum_{e}b_{e}Q_{e}^{k-1}({\cal K}) \end{array}$$

**Example 2**.[Guzmán, Neilan 2011] Degrees of Freedom (DOF):  $(\mathbf{v}, \rho)$ ,  $\forall \rho \in \mathbf{N}^{k-1}(K)$ ,  $(\mathbf{v} \cdot \mathbf{n}_e, \mu)_e, \forall \mu \in \mathcal{P}^k(e), (\mathbf{v} \cdot \mathbf{t}_e, \mathbf{s})_e, \forall \mathbf{s} \in \mathcal{P}^{k-1}(e)$ .  $\mathbf{V}(K) = \mathcal{P}^k(K) + curl(b_K Q^{k-1}(K)).$ 

## 3D case

**Example 3**. [Xie, Xu, Xue 2008] Degrees of Freedom (DOF):  $(\mathbf{v} \cdot \mathbf{n}_F, \mu)_F, \forall \mu \in \mathcal{P}^1(F), (\mathbf{v} \times \mathbf{n}_F, \mathbf{r})_F, \forall \mathbf{r} \in \mathbf{RT}^0(F);$  $\mathbf{V}(K) = \mathcal{P}^1(K) + \mathbf{curl} (b_K \mathcal{P}^1(K)).$ 

Define

$$\begin{aligned} \boldsymbol{Q}_{F}^{k-1}(\boldsymbol{K}) &= \left\{ \boldsymbol{q} \times \boldsymbol{n}_{F} \in \boldsymbol{\mathcal{P}}^{k-1}(\boldsymbol{K}) \times \boldsymbol{n}_{F} : \\ (\boldsymbol{q} \times \boldsymbol{n}_{F}, b_{K} b_{F}(\boldsymbol{w} \times \boldsymbol{n}_{F}))_{K} = 0, \ \boldsymbol{w} \in \boldsymbol{\mathcal{P}}^{k-2}(\boldsymbol{K}) \right\}, \end{aligned}$$

 $\begin{aligned} \boldsymbol{Q}^{k-1}(\boldsymbol{K}) &= \sum_{F} b_{F} \boldsymbol{Q}_{F}^{k-1}(\boldsymbol{K}). \\ \boldsymbol{Example 4.} [\text{Guzmán, Neilan 2011}] \\ \text{Degrees of Freedom (DOF): } (\boldsymbol{v}, \rho), \ \forall \rho \in \boldsymbol{N}^{k-1}(\boldsymbol{K}), \\ (\boldsymbol{v} \cdot \boldsymbol{n}_{F}, \mu)_{F}, \forall \mu \in \mathcal{P}^{k}(F), (\boldsymbol{v} \times \boldsymbol{n}_{F}, \boldsymbol{r})_{F}, \forall \boldsymbol{r} \in \mathcal{P}^{k-1}(F); \\ \boldsymbol{V}(\boldsymbol{K}) &= \mathcal{P}^{k}(\boldsymbol{K}) + \boldsymbol{curl} \left( b_{K} \boldsymbol{Q}^{k-1}(\boldsymbol{K}) \right). \end{aligned}$ 

We should note that for Example 4 we need  $k \ge 2$ .

- 2 Korn's Inequalities for Piecewise  $H^1$  Functions
- Improved Korn's Inequalities
- 4 Finite Elements Satisfying Korn's Inequality
- 5 Finite Elements Guided by the Korn's Inequality
- 6 Concluding Remarks

A Remedy for k = 1

Define

$$\begin{aligned} \boldsymbol{Q}_F^*(K) &= \left\{ \boldsymbol{q} \times \boldsymbol{n}_F \in \boldsymbol{RM}(K) \times \boldsymbol{n}_F : \\ (\boldsymbol{q} \times \boldsymbol{n}_F, b_K b_F(\boldsymbol{w} \times \boldsymbol{n}_F))_K = 0, \ \boldsymbol{w} \in \boldsymbol{\mathcal{P}}^0(K) \right\}, \end{aligned}$$

$$\begin{aligned} \boldsymbol{Q}^{*}(\boldsymbol{K}) &= \sum_{F} b_{F} \boldsymbol{Q}_{F}^{*}(\boldsymbol{K}). \\ \boldsymbol{Example 5.} [\text{H. and Lee 2016}] \\ \text{Degrees of Freedom (DOF):} \\ (\boldsymbol{v} \cdot \boldsymbol{n}_{F}, \mu)_{F}, \forall \mu \in \mathcal{P}^{1}(F), (\boldsymbol{v} \times \boldsymbol{n}_{F}, \boldsymbol{r})_{F}, \forall \boldsymbol{r} \in \boldsymbol{RT}^{0}(F); \end{aligned}$$

$$\boldsymbol{V}^*(K) = \boldsymbol{\mathcal{P}}^1(K) + \boldsymbol{curl}\left(b_K \boldsymbol{Q}^*(K)\right).$$

Theorem (H. and Lee 2016) The element  $V^*(K)$  is unisolvent.

# A Remedy for linear CR element in 2D

It is well known that the linear CR element does not satisfy Korn's inequality [S. Falk 1991]. Noting that  $\frac{1}{|e_{ij}|} \int_{e_{ij}} \lambda_i \lambda_j ds = 1/6$ , we define a function  $d_K = \lambda_i \lambda_j + \lambda_j \lambda_k + \lambda_k \lambda_i - \frac{1}{6}$ . We define the enriched CR element on element K by

$$ECR(K) = \mathcal{P}^1(K) + VEC(K)$$

where VEC(K) is spanned by the following functions

$$\boldsymbol{\psi}_{ij} = d_{\mathcal{K}}(\lambda_i - \lambda_j) \boldsymbol{n}_{ij}, \quad \boldsymbol{\psi}_{jk} = d_{\mathcal{K}}(\lambda_j - \lambda_k) \boldsymbol{n}_{jk}, \quad \boldsymbol{\psi}_{ki} = d_{\mathcal{K}}(\lambda_k - \lambda_i) \boldsymbol{n}_{ki}.$$

The degree of freedom are defined as following

$$\int_{e} \mathbf{v} ds$$
 and  $\int_{e} \mathbf{v} \cdot \mathbf{n} q ds, \forall q \in \mathcal{P}^{1}(e)/R.$ 

A Remedy for linear CR element in 2D

Theorem (H. and Lee 2016)

The element ECR(K) is unisolvent.

#### Proof.

Firstly, for any  $\mathbf{v}_1 \in \mathbf{VEC}(K)$ , we have  $\int_e \mathbf{v}_1 ds = 0 \ \forall e \in \partial K$  since  $\int_e d_K q ds = 0, \forall q \in \mathcal{P}^1(e)$ . Next, we set  $\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1$ , where  $\mathbf{v}_0 \in \mathcal{P}^1(K)$  and  $\mathbf{v}_1 \in \mathbf{VEC}(K)$ . From  $\int_e \mathbf{v} ds = 0$  and the above inclusion, we obtain that  $\mathbf{v}_0 = 0$ . Now for  $\mathbf{v}_1 = c_1 \psi_{ij} + c_2 \psi_{jk} + c_3 \psi_{ki}$ . From

 $\int_{e} \mathbf{v} \cdot \mathbf{n} q ds, \forall q \in \mathcal{P}^{1}(e)/R$ , we have the following linear system:

$$-2c_1 + c_2 \mathbf{n}_{jk} \cdot \mathbf{n}_{ij} + c_3 \mathbf{n}_{ki} \cdot \mathbf{n}_{ij} = 0,$$
  

$$c_1 \mathbf{n}_{jk} \cdot \mathbf{n}_{ij} - 2c_2 + c_3 \mathbf{n}_{ki} \cdot \mathbf{n}_{jk} = 0,$$
  

$$c_1 \mathbf{n}_{ij} \cdot \mathbf{n}_{ki} + c_2 \mathbf{n}_{jk} \cdot \mathbf{n}_{ki} - 2c_3 = 0.$$

Since  $|\mathbf{n}_{ij} \cdot \mathbf{n}_{ki}| + |\mathbf{n}_{jk} \cdot \mathbf{n}_{ki}| < 2$ , then the coefficient matrix of the unknowns  $c_1, c_2, c_3$  is diagonal dominated, which implies  $c_1, c_2, c_3 = 0$ .

- 2 Korn's Inequalities for Piecewise  $H^1$  Functions
- Improved Korn's Inequalities
- 4 Finite Elements Satisfying Korn's Inequality
- 5 Finite Elements Guided by the Korn's Inequality

#### 6 Concluding Remarks

# Concluding Remarks and Future Work

We presented

- A discrete Korn's inequality which shows the relation to the definition of DOF for finite elements,
- Construction of some finite elements satisfying the Korn's inequality.
- Future work will address
  - a necessary condition for piecewise *H*<sup>1</sup> functions to satisfy classic Korn's inequality,
  - Remedy for linear CR element in 3D,
  - Applications to elasticity and Stokes problems.

# Thank you for your attention!