

An adaptive hp-XFEM method for a Hardy problem featuring an inverse square point potential

Robert Gruhlke¹, Kersten Schmidt¹, Sébastien Tordeux²

¹Technische Universität Berlin, Institut für Mathematik,

²Université de Pau et des Pays de l'Adour

Research Center MATHEON
Mathematics for key technologies

ightharpoonup For given parameter $\lambda \in \mathbb{R}$ and Lipschitz domain $\Omega \subset \mathbb{R}^d$ with $\partial \Omega = \Gamma_D \dot{\cup} \Gamma_N$, we seek for a solution framework of

- ightharpoonup Choose a variational ansatz, *i.e.* closed solution space $H^1_0(\Omega) \subset U \subset H^1(\Omega)$.
- ▷ For d = 2, then necessary u = 0 at $\mathbf{x} = \mathbf{0}$ and $\mathbf{0} \notin \Omega$
- ▶ Force $\mathbf{0} \in \Gamma_D$ and by DIRICHLET-lifting argument, consider the variational problem:

Find
$$u \in U = H^1_{\Gamma_D}(\Omega)$$
, s.t. $\int\limits_{\Omega} \nabla u \cdot \nabla v - \lambda \frac{uv}{|\mathbf{x}|^2} \, \mathrm{d}\mathbf{x} = \int\limits_{\Omega} fv \, \mathrm{d}\mathbf{x} + \int\limits_{\Gamma_N} hv \, \mathrm{d}S$,

i.e. $f \in (H^1_{\Gamma_D})^*$, $h \in H^{1/2}_{00}(\Gamma_N)$ with associated bilinearform $a_{\lambda} : U \times U \to \mathbb{R}$.

Robert Gruhlke, TU Berlin 2 / 2

Application:

- Quantum Cosmological models (via Wheeler-de-Witt equation)¹
- > Application in Linearization of Non-linear problems, e.g. combustion theory²

$$-\Delta u - \frac{\lambda}{|\mathbf{x}|^2} u = f, \quad \mathbf{0} \in \Gamma_D$$

Mathematical features:

- ho $\frac{1}{|\mathsf{x}|^2}
 otin L^p, p \in [1,\infty]$, but in $L^1_{\mathsf{loc}}(\Omega)$
- in general lack of compactness

$$U \not\hookrightarrow L^2(\Omega, \mathrm{d} \mathbf{x}/|\mathbf{x}|^2) = \{u|u/|.| \in L^2(\Omega)\}$$

 $source: \ http://www.pdl.cmu.edu/AstroDISC/DISC-Index.shtml\\$

Goals:

- ▷ Ensure (Non-)Existence (via explicit HARDY-inequalities)
- ▶ Analyse regularity (via KONDRAT'EV theory)
- > Numerical treatment (RAYLEIGH-quotient, a-posterior analysis, extended hp-AFEM)

Robert Gruhlke, TU Berlin 3 /

¹Berestycki, H., Esteban, M., *Existence and Bifurcation of Solutions for an Elliptic Degenerate Problem*, Journal of differential equations, 1997

²Gel'fand, Izrail Moiseevich, *Some problems in the theory of quasi-linear equations*, Uspekhi Matematicheskikh Nauk. 1959

- $ilde{\hspace{0.1cm}}$ Typical local situation: **arbitrary** strong singular behaviour depending on λ

Robert Gruhlke, TU Berlin 4 /

- Well-posedness of the boundary value problem
 - \bullet HARDY inequalities
 - Regularity in weighted spaces: Kondrat'ev and Babuška-Guo spaces
- Numerical Treatment
 - Rayleight quotient approximation
 - adaptive hp- and hp-extended FEM
 - generalized Duffy transformation

Conclusion and perspectives

Robert Gruhlke, TU Berlin 5 / 2

- Well-posedness of the boundary value problem
 - HARDY inequalities
 - Regularity in weighted spaces: Kondrat'ev and Babuška-Guo spaces
- Numerical Treatment
 - Rayleight quotient approximation
 - adaptive hp- and hp-extended FEM
 - generalized Duffy transformation

3 Conclusion and perspectives

Robert Gruhlke, TU Berlin 6 / 2

Questions:

- \triangleright Which properties of Ω and $\partial\Omega$ influence existence?
- \triangleright What is the maximal range of λ to find unique weak solution?

Answer via: generalized Rayleigh quotient

$$oldsymbol{\Lambda} = oldsymbol{\Lambda}(U) := \inf_{oldsymbol{v} \in U} rac{\int\limits_{\Omega} |
abla
u^2}{\int\limits_{\Omega} rac{u^2}{|\mathbf{x}|^2} \, \mathrm{d} \mathbf{x}}$$

▶ which yields an optimal HARDY type inequality with HARDY constant ∧

$$\int_{\Omega} |\nabla v|^2 \ge \Lambda \int_{\Omega} \frac{v^2}{|\mathbf{x}|^2}, \quad \forall v \in U.$$

Remark:

- \triangleright Λ may be **not** attained in $U \stackrel{\wedge}{=}$ lack of compactness).
- \rightarrow Λ may depend on the **whole** domain Ω .
- ▶ Above inequality may only can be improved by several **lower** order terms³

Robert Gruhlke, TU Berlin 7 /

 $^{^3}$ e.g. For $U=H^1_0(\Omega)$ overview in Functional inequalities: new perspectives and new applications by N. Ghoussoub and A. Moradifam

Definition

- ho A domain $\Omega \subset \mathbb{R}^2$ is admissable⁴ if it allows for $\Lambda(H_0^1(\Omega)) > 0$.
- ▶ A boundary segment $\Gamma_N \subset \partial \Omega$ is admissable if $\Lambda(H^1_{\Gamma_D}) > 0$ and optimal if $\Lambda(H^1_{\Gamma_D}) = \Lambda(H^1_0) > 0$.
- \triangleright If Γ_N admissable $\Rightarrow \Omega$ admissable.

Theorem (Existence and Uniqueness)

Let Γ_N be admissable, then for all $\lambda \in (-\infty, \Lambda)$ there exists a unique weak solution $u \in H^1_{\Gamma_D}(\Omega)$. The coercivity constant explodes for $\lambda \to \Lambda$.

- Question: Do such admissable sets exist? → Yes!
- Remark: (Non-Existence)
- \triangleright If $\lambda > \Lambda$ we do not even have ultra-weak solutions.
- \triangleright If $\lambda = \Lambda$ there are scenarios of well-posedness

Robert Gruhlke, TU Berlin 8 /

⁴Caldiroli, P. and Musina, R., *Stationary states for a two-dimensional singular Schrödinger equation*, Bollettino della Unione Matematica Italiana-B. 2001

Theorem (Hardy inequality on $H_{\Gamma_0}^1$)

Let $d \geq 2$ and $\mathbf{0}$ lies in the interior of Γ_D , then

1. Let Γ_D be smooth. Then there exists $C = C(\Gamma_0, \Omega, d) > 0$, such that

$$\frac{C}{\Omega} \int_{\Omega} u^2 d\mathbf{x} + \int_{\Omega} |\nabla u|^2 d\mathbf{x} \geq \frac{d^2}{4} \int_{\Omega} \frac{u^2}{|\mathbf{x}|^2} d\mathbf{x}, \quad \forall u \in H^1_{\Gamma_D}(\Omega).$$

2. Let Ω locally coincide with a cone $C_{\Sigma} = \{r\sigma | r > 0, \sigma \in \Sigma \subset \mathbb{S}^{d-1} \text{ Lipschitz}\}$, then there exists $C = C(\Gamma_0, \Omega, d) > 0$, such that

$$C\int\limits_{\Omega}u^2\,\mathrm{d}\mathbf{x}+\int\limits_{\Omega}|\nabla u|^2\,\mathrm{d}\mathbf{x}\geq\left(\frac{(d-2)^2}{4}+\Lambda_1(\Sigma)\right)\int\limits_{\Omega}\frac{u^2}{|\mathbf{x}|^2}\,\mathrm{d}\mathbf{x},\quad\forall u\in H^1_{\Gamma_D}(\Omega).$$

- ight. If d=2 for $\mathcal{C}_{\Sigma}=\mathcal{C}_{\omega}$, we find $\Lambda_1(\mathcal{C}_{\omega})=rac{\pi^2}{2}$.
- \triangleright With the help of Poincaré inequality we find (non-optimal) Hardy constants >0
- ightharpoonup One may obtain optimal HARDY constants ($\mathcal{C}=0$), $\mathit{e.g.}\ \Omega\subset\mathbb{R}^2_+$ and Γ_{N} optimal

Robert Gruhlke, TU Berlin 9 / 25

 \triangleright A usefull tool for HARDY constants (if the L^1 -trace is non-negative).

Lemma

Let $\mathbf{x}_0, \dots, \mathbf{x}_m \in \overline{\Omega}$, $\Phi \in \mathcal{C}^2(\Omega \setminus \{\mathbf{x}_0, \dots, \mathbf{x}_m\})$ and $\Phi > 0$ in $\Omega \setminus \{\mathbf{x}_0, \dots, \mathbf{x}_m\}$ allowing for a L^1 -trace $\mathbf{n} \cdot \nabla \Phi / \Phi$ on Γ_N . Then for all $u \in H^1_{\Gamma_0}(\Omega)$

$$\int\limits_{\Omega} \left(|\nabla u|^2 + \frac{\Delta \Phi}{\Phi} u^2 \right) \, \mathrm{d} \textbf{x} = \int\limits_{\Omega} \Phi^2 \left| \nabla \left(\frac{u}{\Phi} \right) \right|^2 \, \mathrm{d} \textbf{x} + \int\limits_{\Gamma_N} u^2 \left[\frac{\textbf{n} \cdot \nabla \Phi}{\Phi} \right] \, \mathrm{d} \textbf{s},$$

In particular if $-\frac{\Delta \Phi}{\Phi} \geq C \frac{1}{|\mathbf{x}|^2}$, then

$$\int\limits_{\Omega} |\nabla u|^2 \geq C \int\limits_{\Omega} \frac{u^2}{|\mathbf{x}|^2} \, \mathrm{d}\mathbf{x} + \int\limits_{\Gamma_u} \left[\frac{\mathbf{n} \cdot \nabla \Phi}{\Phi} \right] u^2 \, \mathrm{d}s.$$

Remark: Also applies for $-\Delta + V(x)$ operators, enforcing $-\Delta \Phi/\Phi > CV(x)$

Robert Gruhlke, TU Berlin 10 / 25

Theorem (Existence of optimal boundaries)

Let up to rotation $\Omega \subset \mathbb{R}^2_+$ be smooth around the origin and $\Gamma_N \subset \partial \Omega$ with outer normal $\mathbf{n} \in S^1$.

- ▶ Let $\Gamma_N \subset \mathcal{E}_r^{a,b}$ be ellipsoid formed with $\mathbf{n} \in S^1_+$ (resp. $\mathbf{n} \in S^1_-$), then Γ_N is optimal if $b \leq a$ (resp. $a \leq b$).
- ▶ If $\Gamma_N \subset \mathcal{V}_{g_{\pm}}$ is valley-formed with $\mathbf{n} \in S^1_+$, then it conserves optimality with respect to Ω .
- ▶ The x_2 -axis is optimal for $x_2 > 0$.

Moreover any finite union of these is optimal.

only green segment is optimal, only red may not be optimal

Robert Gruhlke, TU Berlin 11 / 25

Storyline: for Ω locally conical and d=2

- $|D| > 1/|L|^2 \notin L^{\infty}(\Omega)$ is of same order as Δ , standard elliptic regularity theory does not apply
- \triangleright Regularity **depends on** λ , i.e. for $\lambda \to \Lambda$ we have $u \in H^{1+\epsilon}(\Omega)$ with $\epsilon \to 0$

Decomposition:

▶ With the help of Kondrat'ev spaces (following⁵) we find

$$u = u_{\text{reg}} + u_{\text{sing}}, \quad u_{\text{sing}}(r, \theta) = \sum_{n=1}^{N} c_n r^{\lambda_n} \Phi_n(\theta).$$

- (λ_n, Φ_n) are the first eigenpairs of the corresponding operator Pencil induced by **Mellin** transformation of $-\Delta \lambda/|\mathbf{x}|^2$
 - ► Example: $\lambda_n = \sqrt{\frac{\pi^2}{\omega^2} n^2 \lambda}$ for DD b.c., $\lambda_n = \sqrt{\frac{\pi^2}{4\omega^2} n^2 \lambda}$ for DN b.c.

Remark: We note a similarity to POISSON problem in polygonal domains, e.g. shifting

Robert Gruhlke, TU Berlin 12 / 25

⁵Kozlov, V. A. and Maz'ya, V. G. and Rossmann, J., *Elliptic boundary value problems in domains with point singularities*, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997

- Well-posedness of the boundary value problem
 - HARDY inequalities
 - Regularity in weighted spaces: Kondrat'ev and Babuška-Guo spaces
- Numerical Treatment
 - Rayleight quotient approximation
 - adaptive hp- and hp-extended FEM
 - generalized Duffy transformation

3 Conclusion and perspectives

Robert Gruhlke, TU Berlin

 \triangleright HARDY constant \land not known in general, but existence strongly depends on λ : \land ratio

Goal:

Approximate Λ

Problems:

- $ightharpoonup \operatorname{RAYLEIGH-quotient}$ minimization \Rightarrow upper bounds $\overline{\Lambda}_{\ell}$, $\ell=1,2,\ldots$
- \triangleright We need **lower bounds** $\underline{\Lambda} \leq \Lambda$ to ensure existence
 - but current two-sided bounds results rely on compactness arguments
- \triangleright Λ is not attained in general, *i.e.* minimization sequences may escape $H^1(\Omega)$
 - ▶ approximation (from above) may becomes arbitrary difficult task

Robert Gruhlke, TU Berlin 14 / 2

> **Decomposition** and analysis in **Babuška-Guo spaces** \mathcal{B}_{β}^{I} motivate for hp-AFEM space U_{hp} with geom. grading $0 < \sigma < 1$ and linear polynomial slope $\mu > 0$.⁶

ightharpoonup Advantage: If u belongs to $\mathcal{B}^2_{\beta}(\Omega) \Rightarrow$ exponential convergence, *i.e.*

$$\exists b = C(\sigma, \beta, \mu)(1 - \beta) > 0, \quad \text{s.t.} \quad \inf_{v \in U_{hp}} ||u - v||_{H^1(\Omega)} \le C e^{-b \text{dim}(U_{hp})^{1/3}}$$

▶ **Problem:** As $\lambda \to \Lambda$, then $\beta \to 1$ and therefore $b \to 0$.

Robert Gruhlke, TU Berlin 15 /

⁶e.g. Schwab, C., p- and hp-finite element methods: Theory and applications in solid and fluid mechanics, Oxford University Press. Oxford, UK, 1998

▶ Difficulty: CEA-Lemma yields

$$||u-u_{hp}||_{H^1(\Omega)} \leq \frac{C(\Lambda,\lambda)}{v_{hp}\in U_{hp}} ||u-v_{hp}||_{H^1(\Omega)}$$

and $C(\Lambda, \lambda) \to \infty$ as $\lambda \to \Lambda$ due to coercivity constant.

Robert Gruhlke, TU Berlin 16 / 2

- ▶ **left:** $\lambda \rightarrow \Lambda = 4$ dependence with $\mu = 1, \sigma = 0.5$,
- ho right: μ dependence with $\lambda=3.9, \sigma=0.5$ and other adaptive strategies

Robert Gruhlke, TU Berlin 17 / 2

ho Recall $u = u_{\text{sing}} + u_{\text{reg}}$ and $u_{\text{sing}} := \chi \sum_{i=1}^{I} u_i r^{\alpha_i} s(i; \theta)$ and set

$$X_{hp}:=\left\{u_{xhp}\in H^1_{\Gamma_0}(\Omega)\,|\,u_{xhp}=u_{hp}+\chi\sum_{i=1}^I a_i\phi_i^{\mathsf{XFEM}},u_{hp}\in U_{hp}
ight\}\subset H^1_{\Gamma_D}(\Omega).$$

- ightharpoonup Mesh must resolve the cutoff χ , and choose size of supp χ with care
- ▶ Enrichment yields systemmatrix of the form

$$\mathbb{A} = \left[\begin{array}{c|c} A & b \\ \hline b^T & s \end{array} \right]$$

- ightharpoonup Advantages: best approximation result now scales with $\inf_{v \in U_{hp}} ||u_{\text{reg}} v_{hp}||_{H^1(\Omega)}$
- ▶ **Feature:** for particular situations necessarily l > 1 to ensure $u_{reg} \in H^2$, in particular different from Poisson problem.

Robert Gruhlke, TU Berlin 18 / 25

- ▶ **left:** $\Lambda = 1$, exponential convergence rate dependends on $\lambda \to \Lambda$ and method
- ▶ **right:** Demonstration of increased convergence speed for different values of $\lambda = 0.9, 0.99 < \Lambda = 1$, with $\mu = 1, \sigma = 0.5$

Robert Gruhlke, TU Berlin 19 / 2

 \triangleright When (locally) assembling \mathbb{A} , need of accurate integration of $\int\limits_K rac{q(\mathbf{x})}{r^{\alpha}} \, \mathrm{d}\mathbf{x}$, $\mathbf{0} \in \overline{K}$, $\alpha < 2$

Definition (Generalized DUFFY transform⁷)

Let $\rho > 0$, then the generalized Duffy transform \mathcal{D}_{ρ} is defined as

$$\mathcal{D}_{
ho}\colon\hat{\mathcal{K}} o\hat{\mathcal{T}},\quad\hat{\mathbf{x}}=(\hat{x},\hat{y})\mapsto\mathcal{D}_{
ho}(\hat{x},\hat{y})=(\hat{x}^{
ho},\hat{x}^{
ho}\hat{y}).$$

- ▶ **Advantage:** $\int_{\mathcal{K}} \frac{q(\mathbf{x})}{r^{\alpha}} d\mathbf{x} = \sum_{i=1}^{2} \int_{\hat{\mathcal{K}}} F_{i}(\hat{\mathbf{x}}^{\rho}, \hat{\mathbf{y}}) \hat{\mathbf{x}}^{2\rho 1 \alpha\rho} d\hat{\mathbf{x}}, \text{ with smooth function } F_{i}, i = 1, 2.$
- Duffy-Gauß-Jacobi/Legendre integration after own choice of ρ yields fast approximation

Robert Gruhlke, TU Berlin 20 / :

⁷Mousavi, S.E. and Sukumar, N., *Generalized Duffy transformation for integrating vertex singularities*, Computational Mechanics, 45(2-3), 2010

- ightharpoonup left: Comparison for lpha=1.8 on $K=\hat{K}$, with geometric Gauss quadrature
- ▶ right: typical structure of Duffy points

Robert Gruhlke, TU Berlin 21 / 2

A-posteriori challenges and open questions

- ightharpoonup Current state of explicit and implicit residual error estimators not suitable for full range of $\lambda \in (-\infty, \Lambda)$
 - $u/|\mathbf{x}|^2 \notin L^2(\Omega)$, $a_{\lambda}|_K(.,.)$ is not positive on interior functions if $\lambda > 0$
 - ▶ Need of Interpolation operator $I: U \rightarrow U_{hp}$, s.t.

$$\left\|\frac{v-I_{v}}{|\cdot|}\right\|_{L^{2}(K)}\leq Ch_{K}^{\alpha}||v||_{H^{1}(\omega_{K})},$$

- \triangleright For $\lambda < 0$ implicit estimators yield results, but standard proofs will not work
- \triangleright Hierachical estimator⁸ successfull applied for low-order approximation and $\lambda < 0$
- others, e.g. gradient recovery, mixed formulations based on hypercircle method not yet analysed

Figure : implicit estimator, with $\lambda < 0$

Robert Gruhlke, TU Berlin 22 / 2

⁸Li, H. and Ovall, J. S., *A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential*, Numerische Mathematik, 128(4), 2014

- Well-posedness of the boundary value problem
 - HARDY inequalities
 - Regularity in weighted spaces: Kondrat'ev and Babuška-Guo spaces
- Numerical Treatment
 - Rayleight quotient approximation
 - adaptive hp- and hp-extended FEM
 - generalized Duffy transformation

Conclusion and perspectives

Robert Gruhlke, TU Berlin 23 / 2

▶ We analysed equation involving a inverse square potential

$$-\Delta - \frac{\lambda}{|\mathbf{x}|^2}$$

- ▶ Well-posedness and Non-Existence with the help of HARDY constants extended on non-zero trace spaces $H^1_{\Gamma_D}(\Omega)$
- ▶ We illustrated features of this type of equation, i.e. strong singularities, best approximation issues (related to coercivity)
- ▶ We were able to accurate approximate via extended *hp*-AFEM.
- ▶ Accurate assembling based on Duffy transform.

Open problems:

- \triangleright Singular behaviour for non-conical behaviour of Ω . \rightarrow Clear since 06.07.2016
- \triangleright Finding rigorous a-posteriori analysis, in particular for $\lambda > 0$.
- ▶ Extend regularity analysis to the multi-polar case and adapt the numerical tools.

Robert Gruhlke, TU Berlin 24 / 25

Thank you for your attention

Main references:

Gruhlke, R., Analysis and Numerics of a Hardy problem in two dimension featuring an inverse square point potential, master thesis, 2016

Gruhlke, R. and Schmidt, K., An apdative hp-XFEM method for a Hardy problem featuring an inverse square point potential, In preparation, 2016

Concepts Development Team, Webpage of Numerical C++ Library Concepts 2, http://www.concepts.math.ethz.ch, 2016

Cazacu, C.-M., Hardy Inequalities, Control and Numerics of Singular PDEs, Phd thesis, 2012

Robert Gruhlke, TU Berlin 25 / 25