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Abstract

This talk considers a model for in vitro tumour evolution, in
which the tumour is large and has been unable to grow
blood vessels. Three formulations of the model will be
presented, along with three finite element schemes. These
include both fitted and unfitted sharp interface schemes,
and a diffuse interface scheme. Some analytical results will
be introduced. The results of a number of simulations will
also be presented.
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The model

The model

Au=1 on Q(t),
u=aV on I'(t),
V=Q—-Vu-n on I'(t).

o]

Figure: Curve I'(t), with interior Q, both in Q.
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Formulations

Formulation 1

Au=1 on Q(t)
YWVu-n+u=aV on I(t)
V=Q—-Vu-n+pk on I(t)
Formulation 2
The model
Au=1 on Q(t)
Au=1 on Q(t), Vu~n+£:Q on F(¢)
u=aV on I(t), o
V=Q-Vu-n on I(t). v="148k on I (¢)
(0%
Formulation 3
Au=1 on Q(t)
Vu-n—&—ﬂ:Q on I(t)
(0%
V=Q—-Vu -n+pk on I(t)
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All formulations in one

aV
g = —

fu =

v
1
— or =
oY

f=Q—Vu-n o f:=

The model

Au=1 on Q(t)
Vu-n+pu=g on I'(t)
V=Ff+0k on I'(t)
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Parametric FEM form

Von € {¢ € C(Q4,R) : ¢ is linear on each element }

Vuh~V¢>hdv+u/ upppds + ¢hdv—/gh¢hds:0
Q A Qp s

Vpn € {p € C(I', R : pis linear on each element }

dt

X xp
/ hih-phds-i-ﬁ VrX,:H_l-VrphdS— fh~phdS=0
j r r

h

Details found in, among others, [Dziuk, 1990] and [Deckelnick et al, 2005].
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Parametric numerical analysis results

maxu < maxu < g
Qur r )

1A By + [IVulZoqy + ullfaq) < C J

IVl < € J IVu-nlffeciry < € J lu — upllFp gy < Ch J

T +1 n
Xl — x B
/0 Hd—HLZ(F) dt + 5

up ||(VFX")||%2(r)

S
0<n<

g
< ¢ [l at + 2w

More results to come...
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Parametric mesh properties

Volume (harmonic extension)

{Au:O, on Q

u=Vn, onl

Surface (tangential w) [Elliott et al 1, 2016]

M = M(wl + (1 — w)NNT)
for w € (0,1].

[Elliott et al 2, 2016]

Uses the DeTurck trick and harmonic map heat flow on a reference mesh
to achieve good mesh properties, given an initial mesh velocity.
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Parametric simulations

u_solution

E 1.0e-06
. EiO‘ 1
E-O 2

-2.2e-01

Q=05 8=005and o =107° At t =0,2,4,6, and 8.
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Parametric simulations

0@©@8M

3.0e-06
Q@=1.0,3=005and « = 1075, At t =0,0.7,1.4,2.1, and 2.8.
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Parametric simulations
u_solution
1.5e-03

00888

Q= 105 0.1 and a=10"3. At t =0,0.7,1.4,2.1, and 2.8.

w‘ =
i k\w
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Introduction

m Boundary nodes. J

m Interior simplices. )

Th:={ € Qp | p is inside or intersects Iy } J

Ny :={p € {nodes} | p € u for some p € Ty, , and p is outside ', } J

More info in [Barrett et al, 1987] and [Dziuk et al, 2013].
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Unfitted FEM form

Vpn € {p € C(I'},R?) | pis linear on each element }

Xt — X 1
/rhd—thphds + B . (VrX,;H- -Vrph)ds

h

= (Q—Vuh-nh)phds
h

n
h

Yo € Wy :={¢ € C(Q,R) | ¢ is linear on each element }

1 1
VupVopdx + — / upppdx = opdx + —/ aVhopdx
Th Y IN Th Y IN,
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Unfitted simulations

u_solution
U Oe+00

nnn... 23901

Q =05, 3=0.05and a =107% At t=0,6,12,18,24 and 30.
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Unfitted simulations

@=10, =005and a=0.1. At t=0,1,2,3,4 and 5.

u_solution
9.4e-02

o
N

S
N

PP -

-6.2e-01

Joe Eyles (University of Sussex) Tumour evolution j-eyles@sussex.ac.uk 19 /



Phase field approach
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Introduction to the phase field

Figure: The phase field Q. Here Q is a fixed domain that contains I(t).

(=% 5= vyl J
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Phase field FEM form

Only possible for f = =, u = é and g = Q.

Vpn € {p€ C(QR):|pl <1and pis linear on each element }
n+l  n
/ “h . Ph (Ph n+1 dX _ ,6/ VSDZ+1 V(ph Z+1)dX
Qs t

B n+1 n+1 / 1
- - dx + — [ Z(pp — 0" )dx >0
2 Qsoh (on — 5 )X+46 ﬁha(ph @ )dx >

Von € {pe C(An,R):pis linear on each element }
/ ¢VupVopdx +/ 6ﬂ¢h dx :/ dQ¢p dx —/ Copdx
Qp Q, @ Qp Q
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Phase field numerical analysis results

T (Pn—l-l _QDZ ” 5
[ 1 e s ivalt < c |
0 t

.
/o IV (@t — oh)l72 dt < CAt J

2 2 2
— - - <
= s+ [|u = w32 ) < ch J

@ maxour U < maxr u < aQ, J

e max;ui < C

More results to come...

Joe Eyles (University of Sussex) Tumour evolution j.eyles@sussex.ac.uk 23 /28



Phase field simulations

Q=10 =01land a=0.1. Att=0,4,8,10,12,14,16 and 18.
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Phase field simulations

/

=0.1and a =1.0. At t =0,12,24,36,48,60,72 and 84.
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o A simple model for tissue growth

o Methods to preserve parametric mesh properties
during the evolution of 2

o An explanation of a simple unfitted method and the
problem relating to self intersection of [

o A brief introduction to the phase field, including the
limitations imposed upon the model
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Questions?

j.eyles@sussex.ac.uk
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