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Introduction

Introduction and Motivation

m We consider the 3 dimensional elastic wave equation given by:
pOiu = pAu+ (A + p)graddivu + pf, (x,t) e R* x [0, T],
u(x,0) = uo inR?
deu(x,0) =vo in R,

where we assume that the Lame parameter A > 0 and p > 0.

m We want to construct a stable numerical method, which couples the
interior and exterior problem for a non-convex domain.
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Problem

Transmission Conditions between Interior and Exterior Space

m Problem in interior space:

pOFu~ = pAu~ + (A + p)graddivu™ + pf, (x,t) € Q x [0, T],
u (x,0) =wo inQ,
Oru” (x,0) =w in Q.

m Problem in exterior space:

pdzu" = pAut + (N + p)graddive®,  (x,t) € Q" x [0, T],
ut(x,0)=0 in Q"
0 (x,0)=0 in QF,

where QT =R*\ Q.
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Problem

Transmission Conditions between Interior and Exterior Space

m Transmission conditions:

- - + o+
YuT =T,
T u =T ut,

where v~ and 7" represent the interior and exterior traces in the boundary

Iand T~ and T denote the stress operator for the interior and exterior
case, respectively.

m The stress operator is given by

Tu=o(u)-n=(u2e(u) + AV -u)-n.
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Calderén Operator

Background

In order to construct the Calderén operator, we need the
m potential layers,
m boundary integrals
m fundamental solution (see, e.g., [Costabel (2004)]) of the elastic wave
equation:

_ _ 1 > [ XjXk _ x| o XXk B x|
G, £) = 4mp|x|3 (t ( |x|? o (t Cp ik |x]2 o\t Cs
‘ (3]2:‘(: jk) (9 (t ‘:|> ’ (t |§|)) )7
P s

A+2 . . .
= t 2 = % and djx is the Kronecker symbol, § is the Dirac

Cp = , Cs =
p

distribution and 6 the Heaviside function,
m transmission conditions.
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Calderén Operator

Construction of the Calderén Operator

Start with the Calderén operator B(s) for the Laplace transformed case.
We have to take the transmission conditions into account:
1/) = _[[fyu]] on ra
1
o= ;[[Tu]] onT,

where [yu] =y u—~Tvand [Tu] = T~ u— T u are the jumps in the
boundary traces.

If we have a closer look at the single layer and double layer potentials, we
observe the following jump relations,

[S(s)6] = 0,
SITS()61 = 6,
b0l =,

[TD(s)y] = 0.
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Calderén Operator

Construction of the Calderén Operator

Similar, we introduce the averages:

J(s)o = {{15(s)}} = 77 S(s)e
K(s)¢ = {{TS(s)o}},
KT (s)y = {{nD(s)¥}},
)

W(s)y = —{{TD(s)¢}} = —T*D(s)y.

Finally, we formulate the representation theorem:

u = s5(s) %[[Tu]] +D(s) [vu] -
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Calderén Operator

Construction of the Calderén Operator

In order to construct our Calderén operator, we introduce the corresponding
boundary integral operators in the Laplace domain (in a similar way as in
[Kielhorn and Schanz (2008)]):

J)o:) = [ 6=y, )0()dr.
K($)0() = [ (T6(x = y.9) ol
KT (000 = T [ G(x = y.9)o(y)er,.
W(s)6(x) = =T [ (T6(x = y,5) ly)dr, for x .

Then the Calderén operator B(s) (see, e.g., [Banjai,Lubich and Sayas (2015)])
is given by
J(s)  K'(s)
Bs) = (° ,
—K(s) TW(s) o @
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blem Calderén Operator

Positivity Results for the Calderén Operator

There exists > 0 such that the Calderén operator B(s) satisfies

we{(3)20(2),

> Res frz min (1, 1s%) (1017, 3, + 1912, )

for Res > 0 and for all ¢ € H™2 () and ¢ € H2(I).
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Calderén Operator

Positivity Results for the Calderén Operator

Proof:
We consider:

e< ( ”E[Iu”ﬁ]) («¥n)),

= Re %T u,y u>r+Re< ¥ u,—lTJr >

~ Re (%/FT uey udyr> ~Re (%/rrﬂ,wudyr).
re((7) o0 (7)),

. 1
2 Res()\Hgd'VUHiZ(Hv\r) + PHUHiz(Rs\r) + M||E5(U)||i2(n§3\r)3>
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Calderén Operator

Positivity Results for the Calderén Operator

In order to finish this estimate, we consider H¢HH7 in and \|1/)|| separately
91 5 . = 5 Tl
H™2(n) s H™2(r)
1 .
= ||7 [(2u€(u) + A(div(u))!) n] ”H‘E(r

| |2 [div (2pe(u) + A(div(u))]) [[Z2(e3\r)

= Gilpl ||5U\|22(R3\r)

= C2|5|2||U‘|i2(nze3\r)-

10123, = Il

HE(r)

= ||U|r"\|H%(r)

a0l
2 . 2

< GlsPlSdivulli@ne- W @
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Calderén Operator

Positivity Results for the Calderén Operator

Thus, we get
2 2
61 -5, + 01
. 1 .
< C2|5|2HUHi2(1R3\r) + C1|5|2Hgd'V“Hz2(R3\r)
- 1, 1
< C1|5|2H§d'VU||i2(R3\r) + C2|5\2||U|\i2(1ka3\r) + ﬂ||§5(u)\|iz(m3\r)3

1 1. 1
< plsf ma (1, i ) (1150wl + lulaeonep + 3@l anen ).
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Calderén Operator

Positivity Results for the Calderén Operator

With the constant (3 from Lemma 1 we have

,
2t as(-,t)) (¢> , >
/e <<w(-,t) BO) ) (1))
~ v _2t —1 2 -1 2
25 [ e ¥ (105601 g+ 10500 )
for any T > 0 and for all ¢ € C*([0, T], H™ %) and all 1) € C3([0, T], H2) with

Here, cr = min(T 1, T73).
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Space Discretization

First Order System

We take a look at the first order system and apply a similar approach as
[Banjai,Lubich and Sayas (2015)] for the acoustic wave equation, but we have
to extend our system in the following way:

pu=uV -V + AVw + pf,
V =2e(u) = Vu+ (Vu)"

w=V-u,

B(d:) (i) = % <_vai )\wl)n) '

In addition, the time-dependent Calderén operator B(0;) reads as:

AN Yyu
B(2) (2/)) 2 (78{10(u)n>
1 vy
2 \ =07 (u2e(u) + A(V - u)l))n
1 Yu
=3 (oo T s
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Space Discretization

Weak Formulation

We go over to the weak formulation of our first-order system and start with the
following background by using integration by parts and Green's formula: With
e*(u) := 1V - (u+uT), we obtain

(V-V,2)= %(v. v,z)— %(V,VU) n %@v,yz)r,
(Vw,x) = —%(w,v -x) + %(Vw,x) + %<’yw,’yx>r,
2(e(u), Z2) = (Vu+ (Vu)T,2) = %(VU, Z+z7)— %(u,s*(Z)) + %(’yu,y(z +2Z7))

Due to the symmetric properties, that V = VT and w = w7, it can be easily
calculated that the following relation holds:

1 1
u5<7u,7V>r = 5<¢man>r

1 1
)\§<7u,'yw>r = §<¢,7)\wn>r.
Further on, we should keep in mind that:

Y =u, o
¢ =—y(pV + Aw)n. A &
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Space Discretization

Weak Formulation

Thus, we get
i, u) = — (v w)+u (V-V,u)— A 2@, V- u)+)\ (Vw, u)
+ §<’Y(MV + dw)n, yu) +p(f, ),
=3 (¢7w)
WV, V) =nj (Vu v)- (u,v~V>+u§<wmv>r

M,) = = A3 (1, Vo) 4 A (V- u,) + A (y,70)

< (i) B9 (i) >r =§<¢,’yu>r - 5<¢,'mVn>r - %<¢,7>\wn>r.
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Space Discretization

Weak Formulation

Thus, we get
pli,u) =— (VVu)—i—,u (V-V,u)— /\ (wV u)—i—)\ (Vw, u)

+ §<’Y(MV + Aw)n, yu) +p(f, u),

=3 (¢7w)

1 1 1 1
.U(Vviv) Z/L*(VU, V) —n f(u,V~V)+/JJ§<’YU,’YV>|—

AMw,w) =— 1( Vw)—i—)\ (V- u,w )—i—)\%<'yu,’yw>r7

< (i) B9 (i) >r =§<¢,’yu>r - 5<¢,'mVn>r - %<¢,7>\wn>r.
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Space Discretization

Weak Formulation

Thus, we get
1
p(i,u) = +/1§(V~V,u) /\ (wV u)—i—)\ (Vw, u)
1
+ 51V + 2w)n, yup +p(f, v),
=3 (¢7w)
-1 1 1
v, zV) = =15 (U, V- V) 4 pz (e, V),

AMw,w) =— 1( Vw)—i—)\ (V- u,w )—i—)\%<'yu,’yw>r7

< (i) B9 (i) >r =§<¢,’yu>r - 5<¢,'mVn>r - %<¢,7>\wn>r.
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Space Discretization

Weak Formulation

Thus, we get
1
p(i,u) = 2(w V- u)—i—)\ (Vw, u)

1
+ 51V + 2w)n, yup +p(f, v),

=3 (¢7w)
1 1
wmVv,3V) = +u*<w,7V>r

Mo, w) = — 1( Vw)—i—/\ (V- u,w)+ Az <'yu,’yw>|_7

< (i) B9 (i) >r =§<¢,’yu>r - 5<¢,'mVn>r - §<¢,7>\wn>r.

_—
UNIVERSITAT f
TUBINGEN

Sarah Eberle University of Tiibingen, Germany

Boundary Integral Representation for the Elastic Wave Equation



Space Discretization

Weak Formulation

Thus, we get
. 1
p(U, U) = +)‘§(VW U)
1
+ 51V + 2w)n, yup +p(f, v),
=3 (6m)
1 1
wVv,5V) = +pz (yuV),
1 1

Mw,w) = — )\E(u, Vw) + )\§<'yu, VW) s

< (i) B9 (i) >r =%<¢,’yu>r - %<¢,'mVn>r - %<¢,7>\wn>r.
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Space Discretization

Weak Formulation

Thus, we get
p(u, u) =
1
+ 51V 2w)n, yu) +p(f, u),
— 3 (o)
1 1
wVv,5V) = +pz (yuV),
1

ANw,w) = + A5 (U@

< (i) B9 (i) >r :%<¢’ Yu)r = %<¢,'mVn>r - %<¢,7>\wn>r.
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Space Discretization

Weak Formulation

Thus, we get
p(u, u) =
+o(f, u),
w(Vv, %V) = + /t%huwwr
AMw,w) = + )\%<'yu, VW) s

< (i) B(@) (i) >r - - %@)W“V”%— - %<¢,7>\wn>r.
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Space Discretization

Weak Formulation

Thus, we get
p(u, u) =
+p(f, u),
-1
. 1
AMw,w) = + )\5 (yu, ),

1
) <1/), A//\wn>r.

(e (2),
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Space Discretization

Weak Formulation

Thus, we get

p(u, u) =

+o(f, v),

-1

(&) o?),
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Space Discretization

Field Energy

By adding the four Equations, we finally arrive at

d 1 1 1
% (Pl + g Vi = 33 lelle ) + ( (§) 500 (5) )

= p(f, U)Lz(Q)'

For p >0, x>0 and A > 0, which is valid for common materials, and the
positivity of the Calderén operator B(9:) from Lemma 2 this provides, that the
field energy

E—P ullZ,@ + 15 HVHL2(93+/\ [wliZ, @

satisfies for t > 0

.
£+ fer [ (10700018, 3, +1070(. 01y ) ) o < EECO)
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Space Discretization

FEM-BEM Formulation

pMois = —uD TV + ADw — Cop + pMof,
M;V = Du — C19,
Mzd) = —5TU — Cllp,

B <$) B (uclTSOluAcrw) :
Here, we have
Mo = (b, b7), M1 = %(b}’,b,-"),Mz = (B, %),
Dli = —%(b,y,Vb,V) + %(v b)Y, bY),
Dlji = *%(b}”,Vb,-”) + %(V B, bY),

1 [ U 1 v 14 ~ 1 \ w
Colii = =5 (b, vbi" )y Calyy = (b7 vb ), Caliy = 5 (b7 vby™ m) e e P
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Time Discretization

Time Discretization via Leapfrog-Convolution Quadrature

Our time-discretization is based on [Banjai,Lubich and Sayas (2015)]:
M;V™F2 = MV + %AtDu" - %Atclw",

1 _ 1 —
Mow"™ 2 = Mpw" — 5AtDTu" — S ACig",

pMou™1! = Mou" — uAtDTV ™3 + AAtDw"™ 2 + AtMgf™ 2 + AtCoop" 2,

1 1

MVl = M Vite 5AtDu"+1 - EAtclqp"“,
1 - 1 .

Mzw"+1 — M2wn+% _ EAtDTu'hLl + 5AtC1’lpn+1,

1

l:B(at) (i) :| nt3 _
CoTam 3

1 ] = 1 = o ntl
uCi ™ (v"+5 - aAfo‘clw"*2> +AE] (w”z - aArzmz*cw"*z)
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Stability Analysis

Guideline for Stability Analysis

The background for our stability analysis for the full discretization is the
stability of the spatial semidiscretization, where we showed estimates for the
field energy, mechanical energy and boundary functions. We adopt these for
the full discretization:

m Start with the perturbed problem.

m Take a look at the discrete field energy and its bounds.

m Apply similar approach for the discrete mechanical energy.

m Give the bounds for the boundary function.

L]

Finally, present the error bound for the full discretization.
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Stability Analysis

Setting of the Stability Analysis

We take a look at the perturbed discrete scheme
n+l n 1 n 1 n 1 n
VT2 = V" 4 EAtDu - EAtCyzp + EAtg ,

1 _ 1 ~ 1
W™ =W 5AtDTu" — SAC19" + S A",

pu" = pu" — ADTV™E £ AAtDw™ 2 + AtMof™ 2 + AtCoop™ 2,
1 1 1
Vn+1 — Vn+% + EAtDu"+1 _ EAtcl,l’anrl + EAtgn,-

1 — 1 = 1
Wt — oty 5AtDTu”+1 + Emclw"“ + EAthn’

1 1
CoTa™ 3 4+
1 P 1 - 1 P 1 1
per” (VR - aaem et ) ol (o CaaeCpt ) womd )
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Stability Analysis

Discrete Field Energy

The discrete energy is given by

n 1 n 1 1 n+3 n—3 n+3 n—3
£ = pylut b (GuOV R+ ) xR R ).

The discrete energy is bounded at t = nAt by

n o, t . j+1 2 2 2
E <C<E —I—EAtE’O\f’ 2|° +|g'|° + W]
=

+ max(t?, t )AtZ( N2t E 2 4 |(08) 200 T P ))

where C is independent of h, At, and n.
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Stability Analysis

Second-Order Formulation

Differentiating the first and last equation of the perturbed first order system
and eliminating V and w yields the second order formulation

pii = — D" (Du — Cy2p) + AD(D"u — C19) — Cop + pf — uD" g — AD"h,

b\ _ CoTu b
B() (¢> - (uClT(Du — C19) 0+ ACT(DTu— (‘:ﬂp)) + (c’r +CiTg+ (‘:{h) :

1 n+1 n
We go over to the discrete mechanical energy. Let 0"tz = &4,
fn — 3

~ etc. and @2 = L™ +u"), 9

"R a(r ).

T
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Stability Analysis C

Discrete Mechanical Field Energy

The discrete mechanical energy

B+t = iR 4 it - i kBTt — Gt
is bounded at t = (n+ 3)At by
H™ 32 §C<H% o % ; |pf — uDg’ + ADTH|?
+ max(£?, t°) Z (\(a?‘)zpf + (022 (6 + puCiTg + Ac‘lThf)|2) )
=1
where C is independent on h, as well as At and n.
Sy 2
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n Stability Analysis Outl

Error Bound for the Full Discretization

Assume that the initial values and the inhomogenity of the wave equation have their
support in ). Let the initial values for the semi-discretization be chosen as

u,,(O) = P,,u(O), V,,(O) =Py V(O), wh(O) = P;,UJ(O), where Py, denotes the
Lp-orthogonal projection onto the finite element space. If the solution of the wave
equation is sufficiently smooth, then the error of the FEM and BEM with leapfrog and
convolution quadrature full discretization under the CFL condition and the stability
parameter o is bounded at t = nAt by

n 1 n n
pllug = u(®lla@) + SHIVE = V(Dllp@p + Allw” = w(t)lL, @)

N

1+ j+
AtZ A R [P LA ON
< C(r)(h +A),
where the constant C(t) grows at most polynomially with t.
o
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Outlook

Conclusion and Outlook

m We have constructed a stable coupling of the interior and exterior problem
for the elastic wave equation.

m The main result was the positivity of the Calderén operator, which was the
basis to prove the stability and to find error bounds for the full
discretization.

m Next step will be the implementation and numerical tests.

Thanks for your attention!
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