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Main framework

Variational problem: Ingredients

Ω polyhedron in R3 (or, sometimes, polygon in R2)
Polyhedron = 3D open set with piecewise flat boundary. Includes cracks.
Most of results valid for smooth domains do not hold for polyhedra.

V variational space for scalar functions or N-component vectors

H1
0 (Ω)N ⊂ V ⊂ H1(Ω)N

a 1st order V-coercive form, homogeneous with constant coefficients

a(u, v) =
∑
|α|=1

∑
|β|=1

N∑
i=1

N∑
j=1

∫
Ω

aα,βi,j ∂αui ∂
βvj dx

V-coercive means: ∃Ca > 0, γ ∈ R,

∀u ∈ V, a(u, v) + γ‖u‖2

L2(Ω) ≥ Ca‖u‖
2

H1(Ω)

Examples: ∆, div A∇, Lamé, general linear elasticity,...
Part of theory can be extended to variable coefficients.
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Continuous Problem P

Variational problem

P underlying second order operator: Pu = f with f = (f1, . . . , fN) and

fj = −
∑
|α|=1

∑
|β|=1

N∑
i=1

∂βaα,βi,j ∂αui .

For f ∈ L2(Ω), the variational problem is

P Find u ∈ V, ∀v ∈ V, a(u, v) = 〈f , v〉

We will write Pu = f (so that P contains zero natural conditions).

Question

How to design optimal Galerkin projection methods (e.g. FEM)

C Find un ∈ Vn, ∀v ∈ Vn, a(un, v) = 〈f , v〉
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Prototype

Take Ω as the interior of Fichera corner (cube minus smaller cube)

Solve the Laplace equation, i.e. with form a(u, v) =
∫

Ω
∇u · ∇v :

−∆u = f in Ω

Complete with “covering” boundary conditions, e.g.
Dirichlet on yellow faces and Neumann on blue faces
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Three typical zones: Regular, Edges, Corners
Let E be the set of the (open) edges
e of Ω (21 elements for Fichera)

E =
⋃

e∈E

e

Let C be the set of the corners c of
Ω (14 elements for Fichera)

C =
⋃

c∈C

c

Regular zone: Let Ω0 s.t. Ω0 ∩ (E ∪ C) = ∅.

Edge zone: Let ΩE s.t. ΩE ∩E 6= ∅ and ΩE ∩ C = ∅.
For any e ∈ E , denote Ωe such a domain if Ωe ∩E ⊂ e.

Corner zone: Let ΩC s.t. ΩC ∩ C 6= ∅.
For any c ∈ C , denote Ωc such a domain if Ωc ∩ C = c.
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Singularities and asymptotics

Assume f real analytic (convergence of Taylor Series around any x0 ∈ Ω).
What are the regularity properties of solution u ?

Regular zone Ω0.
Then u is real analytic in Ω0 (cv of TS around any x0 ∈ Ω0).

Edge zone Ωe for e ∈ E . Cylindrical coord. (r , θ, z) associated with e.
ω is the opening of e. Then u has a singular expansion in Ωe starting
as γe(z) r

π
2ω sin( π2ω θ) if Dirichlet-Neumann edge

γe(z) r
π
ω cos(πω θ) if Neumann-Neumann edge

Here the coefficient z 7→ γe(z) is an analytic function in e ∩ Ωe.
Exponents of higher order are `+ (k + 1

2 ) π
ω

[
or `+ k π

ω

]
with k , ` ∈ N.

Corner zone Ωc for c ∈ C . Polar coord. (ρ, ϕ) ∈ R+ × S2 associated
with c. Then u has a singular expansion in Ωc with terms of type

γc ρ
λc Φc(ϕ), λc > 0, Φc ∈ H1(Gc), γc ∈ R.

Here Gc = S2 ∩ Ωc . Functions Φc have singularities... at edges.
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Problematics

Singular expansions are difficult to handle in 3D:
1 Corner singularities contribute to edge singularities.
2 No canonical splitting between edges and corners.
3 Singularity spaces are infinite dimensional.
4 Corner singularities are not directly explicit.

Aim

Compute solution u with optimal efficiency.

Solution proposed by Babuška and Guo :
1 Find families of “countably normed spaces” to which sol. u belongs.
2 Use h-p finite element approximation
3 Obtain exponential convergence.

2D versus 3D

The program was performed by B&G in 2D (’90), but was pending in 3D.
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Countably normed spaces

Defined by a sequence of semi-norms for functions u set on Ω

u 7−→ |u|X` , ` ∈ N = {0, 1, . . . , }
Associate normed spaces:

1 Xk = {u : |u|X` <∞, 0 ≤ ` ≤ k} and ‖u‖Xk =
k

sup
`=0
|u|X`

2 X∞ = {u : |u|X` <∞, ∀` ∈ N}

3 X$ =
{

u ∈ X∞ : sup
`≥1

( 1
`!
|u|X`

)1/`
<∞

}
— analytic class

Example of Sobolev norms. If X` s-norm is Sobolev s-norm H`(Ω)

1 Xk = Hk (Ω),
2 X∞ = C∞(Ω)

3 X$ = H$(Ω) : if u ∈ H$(Ω), ∃Cu > 0, ∀` ≥ 1, |u|X` ≤ C`u `!

Similar, but distinct, definitions for right hand sides: f 7−→ |f |Y` , ` ∈ N
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Rationale of the analytic regularity

Remind that V is the variational space:

H1
0(Ω) ⊂ V ⊂ H1(Ω)

Find suitable families of semi-norms | · |Xm and | · |Ym such that

1 X1 is a subspace of H1

2 The embedding of X2 in H1 is compact
3 Real analytic functions f on Ω belong to Y$
4 The following analytic regularity holds

u ∈ V and Pu = f ∈ Y$ =⇒ u ∈ X$

We will see that, when Ω is a polygon or a polyhedron, it is possible to find
such families that are, moreover, suitable to prove the exponential
convergence of h-p FEM.
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2D first. Polygons, choosing weights

Remind

Ω polygon with corner set C = ∪c∈C {c}.
2nd order operator P (e.g. ∆)

Semi-norms | · |X` and | · |Y` are taken as weighted norms:

|u|X` =
∑
|α|=`

‖w` ∂αx u‖L2(Ω)
and |f |Y` =

∑
|α|=`−2

‖w` ∂αx f‖L2(Ω)

where w0(x), w1(x),. . . , w`(x), . . . family of weights of general type

w`(x) = r(x)γ(`), r(x) = dist(x ,C),

with a sequence ` 7→ γ(`) to be chosen.
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2D first. Homogeneous norms

Homogeneous norms: The Kondrat’ev spaces

Pick β ∈ R & set γ(`) = β + `

Semi-norms | · |X` and | · |Y` are the weighted norms:

|u|X` =
∑
|α|=`

‖r(x)β+|α| ∂αx u‖L2(Ω)

and

|f |Y` =
∑
|α|=`−2

‖r(x)β+` ∂αx f‖L2(Ω)
=

∑
|α|=`−2

‖r(x)β+2+|α| ∂αx f‖L2(Ω)

1 X1 is a subspace of H1 ⇐⇒ β ≤ −1
Because ‖u‖X1 ' ‖rβ u‖L2(Ω) + ‖rβ+1∇u‖L2(Ω).

2 The embedding of X2 in H1 is compact =⇒ β < −1

3 Real analytic functions f belong to Y$ =⇒ β > −3
Because constant functions c satisfy rβ+2c ∈ L2 iff β + 2 > −1.
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Good for Dirichlet. Bad for Neumann

The Kondrat’ev spaces are good for Dirichlet but bad for Neumann

For Dirichlet problem V = H1
0 (Ω). By virtue of angular Poincaré inequality

u ∈ V =⇒ r−1u ∈ L2(Ω).

Exists b = b(Ω,P) > 0 (the smallest singularity exponent — for ∆,
b = minc∈C

π
ωc

) so that [Kondrat’ev, 1967]

? − 1− b < β < −1 =⇒
[
u ∈ V and Pu ∈ Y2 ⇒ u ∈ X2

]
With explicit notation: u ∈ V and rβ+2Pu ∈ L2 ⇒ rβ+|α|∂αu ∈ L2, |α| ≤ 2.

Note that ? implies that singularities belong to X` for any ` ∈ N.

For Neumann problem, independent pointwise values arise at each
corner. The constant function 1 6∈ X2 if β < −1 because w0 = rβ 6∈ L2(Ω).
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2D. A choice for all seasons: inhomogeneous norms

Take

? − 1− b < β < −1 and 0 γ(`) = max{0, `+ β}

so that

w`(x) = 1 if ` < −β and w`(x) = r(x)`+β if ` ≥ −β.

With 0 , condition 3 of embedding for analytical rhs is always satisfied.

Theorem [Mazya-Plamenevskii, 1984]

For Dirichlet, Neumann or mixed conditions, exists b = b(Ω,P) > 0 so that:
With ? β ∈ (−1− b,−1) and 0 w` = rmax{0,`+β}, then (∀m ≥ 2)

u ∈ V and Pu ∈ Ym =⇒ u ∈ Xm

Theorem [Babuška-Guo 1988, 1989, 1993]

There exists β ∈ (−2,−1) such that with the weights w` = rmax{0,`+β} :

u ∈ V and Pu ∈ Y$ =⇒ u ∈ X$
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3D: Corners, edges, distance functions and weights

Ω polyhedron in R3. Distance to singular points: x 7→ r(x)

Corner set C = ∪c∈C {c}, distance functions: rc to c, rC to C,

Edges e, set of edges E , distance functions: re to e.

Two ways of generating weights (using inhomogeneous norm choice)

1 A simple way: choose β ∈ R and use powers of r w` = rmax{0,`+β}

2 A finer tool: choose a multi-β, i.e. β = (βc, βe)

w` =
∏
c∈C

rmax{0,`+βc}
c ×

∏
e∈E

( re

rC

)max{0,`+βe}

Remarks :

e ∈ E ends with two corners c, c′ ∈ C .
Function re/rC is ' to re/rc near c, to re in the middle, to re/rc′ near c′

If βc ≡ βe ≡ β, then
∏

c∈C r`+βc
c ×

∏
e∈E

( re
rC

)`+βe ' r`+β .

Simple option does not allow to take advantage of anisotropy
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Finite regularity in polyhedral domains

Coercive variational formulation of operator P in V ⊂ H1(Ω)

Theorem B [Mazya-Rossmann 2003] Revisited [CoDaNi, 2012]

Exists optimal numbers bc(Ω,P) > − 1
2 and be(Ω,P) > 0 so that:

If β satisfies βc ∈ (−bc − 3
2 ,−1) and βe ∈ (−1− be,−1)

If the weights are w` =
∏
c∈C

rmax{0,`+βc}
c ×

∏
e∈E

( re

rC

)max{0,`+βe}

Then (∀m ≥ 2) u ∈ V and Pu ∈ Ym =⇒ u ∈ Xm

BUT

The 3D h-p FEM takes anisotropy into account.
It results in exponential convergence only if the additional regularity of
solutions along edges is used for designing meshes.
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Anisotropic weights

Weights w` providing isotropic semi-norms

|u|X` =
∑
|α|=`

‖w` ∂αx u‖L2(Ω)

have to be replaced by weights we,α depending on directions of derivation
in each edge e. Let e ∈ E and let Ve be a neighborhood of e. Near the
ends of e (that are corners) Ve is a conical neighborhood.

The new space X is defined on each Ve with semi-norms∣∣u|Ve

∣∣
X` =

∑
|α|=`

‖we,α∂
α
x u‖L2(Ve)

where multi-indices α = (α⊥e , α
‖
e) correspond to tubular coordinates

x = (x⊥e , x
‖
e ), — perpendicular and parallel to e. Typically we take

we,α = rmax{0,βe+|α⊥
e |}

e

that is independent of derivatives ∂α
‖
e

x along e.
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Anisotropic weights (edges & corners)

To simplify exposition, assume that edges are parallel to coordinate axes.
The [inhomogeneous] anisotropic weights are

w wα =
∏
c∈C

rmax{0,βc+|α|}
c ×

∏
e∈E

( re

rC

)max{0,βe+|α⊥
e |}

Corresponding X` and Y` semi-norms are

|u|X` =
∑
|α|=`

‖wα ∂αx u‖L2(Ω)
and |f |Y` =

∑
|α|=`−2

‖wα ∂αx f‖L2(Ω)

Theorem A [CoDaNi, 2012]

Ω ⊂ R3 polyhedron and problem as in p.2.

With the same numbers bc(Ω,P) and be(Ω,P) as in Theorem B:

If β satisfies βc ∈ (−bc − 3
2 ,−1) and βe ∈ (−1− be,−1)

Choose the weights according to w

Then u ∈ V and Pu ∈ Y$ =⇒ u ∈ X$
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Meshes: Layers

Notations

Ω polyhedron in R3.

M = (Mp)p∈N family of meshes with the following nested structure

M0 = T0

M1 = L0 ∪ T1

Mp = L0 ∪ L1 ∪ . . . ∪ Lp−1 ∪ Tp, p ≥ 1

with the regular layers L` and the terminal layers Tp.

Any of these submeshes are formed of (mapped) hexahedral
elements K .

Any K ∈ L` satisfies K ∩ (E ∪ C) = ∅
Any K ∈ Tp satisfies K ∩ C = {c} or K ∩E 6= ∅ & K ∩E ⊂ e.
Both conditions can be satisfied for a same element.

Size conditions are imposed, subject to the position of each element.
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σ-meshes

σ ∈ (0, 1) is a parameter of the family M. One often takes σ = 1
2

Regular Zone: Ω0 s.t. Ω0 ∩ (E ∪ C) = ∅
Ω0 intersects a finite number of layers L`, ` ≤ L
Ω0 is disjoint from terminal layers Tp for p > L

Pure Edge Zone: Ωe s.t. Ωe ∩ C = ∅, Ωe ∩E 6= ∅ and ⊂ e.
In Ωe , all elements K are aligned with tubular coordinates (x⊥

e , x
‖
e ), i.e.

K = K⊥
e × K ‖

e

For K ∈ Tp, component K⊥
e has size O(σp) and K ‖

e size O(1)

For K ∈ L`, component K⊥
e has size O(σ`) and K ‖

e size O(1)
Moreover the distance re to the edge e is equivalent to σ` in K⊥

e

Corner zone: Ωc s.t. Ωc ∩ C = c. Splits into
Pure Corner Zone: Ωc,0 s.t. Ωc,0 ∩E = ∅
K ∈ Tp has size O(σp), and K ∈ L` has size O(σ`) & rc

∣∣
K
∼ σ`

Edge-Corner Zone: Ωc,e s.t. Ωc,e ∩E ⊂ e
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Pure Edge Zone [with anisotropy] DRAWN WITH FIG4TEX

T0 4 elem.
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Pure Edge Zone [with anisotropy] DRAWN WITH FIG4TEX

L0 3 elem.
T1 4 elem.
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Pure Edge Zone [with anisotropy] DRAWN WITH FIG4TEX

L0 3 elem.
L1 3 elem.
T2 4 elem.
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Pure Edge Zone [with anisotropy] DRAWN WITH FIG4TEX

L0 3 elem.
L1 3 elem.
L2 3 elem.
T3 4 elem.
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Pure Edge Zone [with anisotropy] DRAWN WITH FIG4TEX

L0 3 elem.
L1 3 elem.
L2 3 elem.
L3 3 elem.
T4 4 elem.

# 3p + 4
20/33

https://perso.univ-rennes1.fr/yvon.lafranche/fig4tex/index.html


Singularities Analytic regularity Meshes and FE spaces Convergence

NB: Edge Zone without anisotropy DRAWN WITH FIG4TEX

T0 8 elem.
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NB: Edge Zone without anisotropy DRAWN WITH FIG4TEX

L0 6 elem.
T1 16 elem.
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NB: Edge Zone without anisotropy DRAWN WITH FIG4TEX

L0 6 elem.
L1 12 elem.
T2 32 elem.
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NB: Edge Zone without anisotropy DRAWN WITH FIG4TEX

L0 6 elem.
L1 12 elem.
L2 24 elem.
T3 64 elem.
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NB: Edge Zone without anisotropy DRAWN WITH FIG4TEX

L0 6 elem.
L1 12 elem.
L2 24 elem.
L3 48 elem.
T4 128 elem.

# > 6 · 2p
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Pure Corner Zone DRAWN WITH FIG4TEX

T0 8 elem.
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Pure Corner Zone DRAWN WITH FIG4TEX

L0 7 elem.
T1 8 elem.
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Pure Corner Zone DRAWN WITH FIG4TEX

L0 7 elem.
L1 7 elem.
T2 8 elem.
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Pure Corner Zone DRAWN WITH FIG4TEX

L0 7 elem.
L1 7 elem.
L2 7 elem.
T3 8 elem.
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Pure Corner Zone DRAWN WITH FIG4TEX

L0 7 elem.
L1 7 elem.
L2 7 elem.
L3 7 elem.
T4 8 elem.

# 7p + 8
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Corner Edge Zone (one edge) DRAWN WITH FIG4TEX

T0 8 elem.
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Corner Edge Zone (one edge) DRAWN WITH FIG4TEX

L0 6 elem.
T1 12 elem.
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Corner Edge Zone (one edge) DRAWN WITH FIG4TEX

L0 6 elem.
L1 9 elem.
T2 16 elem.
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Corner Edge Zone (one edge) DRAWN WITH FIG4TEX

L0 6 elem.
L1 9 elem.
L2 12 elem.
T3 20 elem.

23/33

https://perso.univ-rennes1.fr/yvon.lafranche/fig4tex/index.html


Singularities Analytic regularity Meshes and FE spaces Convergence

Corner Edge Zone (one edge) DRAWN WITH FIG4TEX

L0 6 elem.
L1 9 elem.
L2 12 elem.
L3 15 elem.
T4 24 elem.

3
2 p(p + 3) + 4p + 8
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Corner Edge Zone (two edges) DRAWN WITH FIG4TEX

T0 8 elem.
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Corner Edge Zone (two edges) DRAWN WITH FIG4TEX

L0 5 elem.
T1 16 elem.
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Corner Edge Zone (two edges) DRAWN WITH FIG4TEX

L0 5 elem.
L1 11 elem.
T2 24 elem.
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Corner Edge Zone (two edges) DRAWN WITH FIG4TEX

L0 5 elem.
L1 11 elem.
L2 17 elem.
T3 32 elem.
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Corner Edge Zone (two edges) DRAWN WITH FIG4TEX

L0 5 elem.
L1 11 elem.
L2 17 elem.
L3 23 elem.
T4 40 elem.

3p2 + 10p + 8
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Finite element spaces

With a mesh family M = (Mp)p≥1 on polyhedron Ω at hands,
we introduce for any p ≥ 1 a discrete space Vp.

Simple option, based on (mapped) polynomial spaces of partial
degree p: Qp(K ) = Qp(K1)⊗Qp(K2)⊗Qp(K3){

VDG
p = {v ∈ L2, ∀K ∈Mp, v

∣∣
K ∈ Qp(K )} DG version

Vp = {v ∈ V, ∀K ∈Mp, v
∣∣
K ∈ Qp(K )} conforming version

More elaborate option, based on an anisotropic distribution of
polynomial degrees Qp(K )(K ) = Qp⊥(K⊥)⊗Qp‖(K ‖),
with function p : Mp 3 K 7→ (p⊥, p‖) ∈ {0, . . . , p}2{
VDG

p = {v ∈ L2, ∀K ∈Mp, v
∣∣
K ∈ Qp(K )(K )} DG version

Vp = {v ∈ V, ∀K ∈Mp, v
∣∣
K ∈ Qp(K )(K )} conforming version

Principle:
p⊥ increases from 0 to p when the layer index ` decreases from p to 0
p‖ increases from 0 to p when the distance rc

∣∣
K

increases...
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Finite element spaces: # of DOF

# elements in L` : O(`+ 1), ` = 0, . . . , p − 1
# elements in Tp : O(p + 1)

Isotropy of degrees
Dimension of Qp : (p + 1)3

Dimension of Vp (with prefactor):

O
( p∑
`=0

(`+ 1)(p + 1)3
)

= O(
p5

2
)

Anisotropy of degrees
Dimension of Qp : (p⊥ + 1)2(p‖ + 1)
Dimension of Vp : less than dimVp, but greater than

O
( p∑
`=0

(`+ 1)(p + 1− `)3
)

= O(
p5

20
)

Conclusion: Degree anisotropy provides us with a smaller prefactor.
But the power of p is unchanged.
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Outline
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Factorial estimates

1 Λ̂ reference interval (−1, 1) and πp
0 orthogonal projection on Qp(Λ̂).

The fundamental p-version estimate is

‖u − πp
0u‖

2

L2(Λ̂)
≤ (p + 1− k)!

(p + 1 + k)!
‖u(k)‖

2

L2(Λ̂)
0 ≤ k ≤ p + 1

2 Let Op = L0 ∪ L1 ∪ . . . ∪ Lp−1. Exists C = C(M):

‖u − Πp
1u‖

2

X1(Op)
≤ C(M)

(p − k)!

(p + k)!
|u|

2

Xk (Op)
1 ≤ k ≤ p + 1

‖·‖2
X1(Op)

is the broken norm
∑

K∈Op
‖·‖2

X1(K )

Key: The weights wα are [equivalent to] constants on each K ∈ Op.

3 If u ∈ X$, then by definition |u|Xk (Op)
≤ Ck

u(k!) . Hence

‖u − Πp
1u‖

2

X1(Op)
≤ C2k (k!)2 (p − k)!

(p + k)!
1 ≤ k ≤ p + 1
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Exponential estimate

By Stirling’s formula n! ' nne−n
√

2πn there exists δ > 0 such that

C2k (k!)2 (p − k)!

(p + k)!
≤ δ2k (p − k)p−k kk kk

(p + k)p+k =
(p − k

p + k

)p−k( δk
p + k

)2k
.

Choosing k = p/(δ + 1), we obtain

C2k (k!)2 (p − k)!

(p + k)!
≤
( δk

(δ + 2)k

)p−k( δk
(δ + 2)k

)2k
=
( δ

δ + 2

)p(1+ 1
δ+1 )

.

With b := − log
(

δ
δ+2

)(1+ 1
δ+1 )/2

we have proved, for ` = 0, 1

Lemma

‖u − Πp
1u‖X1(Op)

≤ C e−bp with b > 0 independent of p.

Note that p = 5
√

N with N = #DOF.
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On the way

We have [almost] obtained elementwise H1 estimates for a best
approximation of u in VDG

p : It remains to estimate in terminal layers Tp.
1 If enough Dirichlet conditions are imposed, one can take

homogeneous weights in X$, and it suffices to use the zero
interpolant in Tp.

2 If not, one has to define a special Q1 quasi-interpolant in K ∈ Tp.

Then, to end the task there are two options

1 Construct a suitable DG (Discontinuous Galerkin) method for the
discretization of problem Pu = f in VDG

p

2 Convert elementwise H1 estimates in full H1-estimates by suitable
patchwise lifting of traces, so that to keep the exponential best
approximation. Then apply Céa Lemma and obtain exponential
convergence of Galerkin projections.
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Discontinuous Galerkin

DG with Interior Penalty for scalar P = ∆

Mesh Mp ∈M and Fp set of faces F of elements K ∈Mp.

nK outward normal for K ∈Mp

{w}
∣∣
F = 1

2 (w
∣∣
K + w

∣∣
K ′) average of vector w on F = K ∩ K ′

[w ]
∣∣
F = w

∣∣
K nK + w

∣∣
K ′nK ′ jump of scalar w on F = K ∩ K ′

Set α
∣∣
F =

(maxK ′,K ′′ p⊥K )2

minK ′,K ′′ h⊥K
on F = K ′ ∩ K ′′, with h⊥K the smallest size of K

For u, v ∈ VDG
p

aDG(u, v) = a(u, v)−
∫
Fp

{∇u} · [v ] + θ

∫
Fp

{∇v} · [u] + γ

∫
Fp

α [u] · [v ]

D Find uDG
p ∈ VDG

p , ∀v ∈ VDG
p , aDG(uDG

p , v) = 〈f , v〉
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Discontinuous Galerkin: Exponential convergence

Theorem [Schötzau–Schwab–Wihler]

Let f ∈ Y$ (space associated with anisotropic weights with exponents
βe, βc < −1, cf Theorem A). For θ = ±1 and γ > 0 large enough, uDG

p
converges exponentially to u

‖u − uDG
p ‖H1(Ω)

≤ Ce−bp, b > 0, independent from p

D. SCHÖTZAU, C. SCHWAB, AND T. P. WIHLER, hp-dGFEM for second-order
elliptic problems in polyhedra I: Stability on geometric meshes, SIAM J.
Numer. Anal., 51 (2013) 1610–1633

, hp-DGFEM for second order elliptic problems in polyhedra II:
Exponential convergence, SIAM J. Numer. Anal., 51 (2013) 2005–2035

, hp-dGFEM for second-order mixed elliptic problems in polyhedra,
Math. Comp., 85 (2016) 1051–1083
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Conforming Approximation: Exponential convergence

Discrete problems

C Find up ∈ Vp, ∀v ∈ Vp, a(up, v) = 〈f , v〉

Theorem [Schötzau–Schwab]

Let f ∈ Y$ (space associated with anisotropic weights with exponents
βe, βc < −1, cf Theorem A). Then up converges exponentially to u

‖u − up‖H1(Ω)
≤ Ce−bp, b > 0, independent from p

D. SCHÖTZAU AND C. SCHWAB, Exponential convergence for hp-version and
spectral finite element methods for elliptic problems in polyhedra, Math.
Models Methods Appl. Sci., 25 (2015) 1617–1661

, Exponential convergence of hp-FEM for elliptic problems in polyhedra:
Mixed boundary conditions and anisotropic polynomial degrees, SAM Report,
ETH Zürich, 2016-05 (2016) 32/33
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Conclusion

30 years ago, the roots of the h–p method in 1D

W. GUI AND I. BABUŠKA, The h, p and h-p versions of the finite element
method in 1 dimension. I. The error analysis of the p-version, Numer. Math.,
49 (1986) 577–612.

, The h, p and h-p versions of the finite element method in 1 dimension.
II. The error analysis of the h- and h-p versions, Numer. Math., 49 (1986)
613–657.

, The h, p and h-p versions of the finite element method in 1 dimension.
III. The adaptive h-p version, Numer. Math., 49 (1986) 659–683.

Today, the h–p analysis is essentially achieved in 3D

Essentially?

1 Generalization to elliptic systems with variable coefficients
2 Maxwell

1 needs coercivity and technical skills
2 needs new ideas?
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