# Approximation of the LBB constant on corner domains

## Martin Costabel

Collaboration with Monique Dauge, Michel Crouzeix, Christine Bernardi, Vivette Girault, Yvon Lafranche

IRMAR, Université de Rennes 1

### AANMPDE(JS)-9-16 Strobl, 4-8 July 2016



# Publications

- M. DAUGE, C. BERNARDI, M. COSTABEL, V. GIRAULT On Friedrichs constant and Horgan-Payne angle for LBB condition Monogr. Mat. Garcia Galdeano, 39 (2014), 87–100.
- M. Costabel, M. Dauge
  - *On the inequalities of Babuška–Aziz, Friedrichs and Horgan–Payne* Arch. Rational Mech. Anal. 217(3) (2015), 873–898.
- M. COSTABEL, M. CROUZEIX, M. DAUGE, Y. LAFRANCHE *The inf-sup constant for the divergence on corner domains* Numer. Methods Partial Differential Equations 31(2) (2015), 439–458.
  - M. COSTABEL

*Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms.* arXiv:1507.08464, to appear in Operator Theory, Advances and Applications

C. BERNARDI, M. COSTABEL, M. DAUGE, V. GIRAULT Continuity properties of the inf-sup constant for the divergence SIAM J. Math. Anal., 48 (2016), pp. 1250–1271.

# The LBB constant or inf-sup constant: Definition

# • $\Omega$ bounded domain in $\mathbb{R}^d$ ( $d \ge 1$ ). No regularity assumptions.



- $H^1(\Omega)$  Sobolev space of  $v \in L^2(\Omega)$  with gradient  $abla v \in L^2(\Omega)^d$
- $L^2_{\circ}(\Omega)$  subspace of  $q\in L^2(\Omega)$  with  $\int_\Omega q=0$  .
- $H_0^1(\Omega)$  closure in  $H^1(\Omega)$  of  $C_0^{\infty}(\Omega)$  (zero trace on  $\partial \Omega$ ) (Semi-)Norm  $|u|_{\mathcal{H}} = ||\nabla u||_{\mathcal{H}}$  equivalent to norm  $||u||_{\mathcal{H}^1(\Omega)}$
- $0 \leq \beta(\Omega) \leq 1.$
- $\beta(\Omega)$  is invariant with respect to translations, rotations, dilations.
- We will often talk about  $\sigma(\Omega) = \beta(\Omega)^2$  instead of  $\beta(\Omega)$ .

The inf-sup constant of 
$$\Omega$$
  
$$\beta(\Omega) = \inf_{q \in L^{2}_{0}(\Omega)} \sup_{\mathbf{v} \in H^{1}_{0}(\Omega)^{d}} \frac{\int_{\Omega} \operatorname{div} \mathbf{v} \ q}{|\mathbf{v}|_{1} \|q\|_{0}}$$

- $L^{2}(\Omega)$  space of square integrable functions q on  $\Omega$ . Norm  $\|q\|_{\Omega}$
- $H^1(\Omega)$  Sobolev space of  $v \in L^2(\Omega)$  with gradient  $\nabla v \in L^2(\Omega)^d$
- $L^2_{\circ}(\Omega)$  subspace of  $q \in L^2(\Omega)$  with  $\int_{\Omega} q = 0$ .
- $H_0^1(\Omega)$  closure in  $H^1(\Omega)$  of  $C_0^{\infty}(\Omega)$  (zero trace on  $\partial\Omega$ ) (Semi-)Norm  $|u|_1 = ||\nabla u||_0$  equivalent to norm  $||u||_{H^1(\Omega)}$
- $\beta(\Omega)$  is invariant with respect to translations, rotations, dilations

• We will often talk about  $\sigma(\Omega) = \beta(\Omega)^2$  instead of  $\beta(\Omega)$ .

The inf-sup constant of 
$$\Omega$$
  
$$\beta(\Omega) = \inf_{\substack{q \in L^{2}_{o}(\Omega) \ \mathbf{v} \in H^{1}_{0}(\Omega)^{d}}} \frac{\int_{\Omega} \operatorname{div} \mathbf{v} \ q}{|\mathbf{v}|_{1} \|q\|_{0}}$$

- $L^{2}(\Omega)$  space of square integrable functions q on  $\Omega$ . Norm  $\|q\|_{\Omega}$
- $H^1(\Omega)$  Sobolev space of  $v \in L^2(\Omega)$  with gradient  $\nabla v \in L^2(\Omega)^d$
- $L^2_{\circ}(\Omega)$  subspace of  $q \in L^2(\Omega)$  with  $\int_{\Omega} q = 0$ .
- $H_0^1(\Omega)$  closure in  $H^1(\Omega)$  of  $C_0^{\infty}(\Omega)$  (zero trace on  $\partial\Omega$ ) (Semi-)Norm  $|u|_1 = \|\nabla u\|_0$  equivalent to norm  $\|u\|_{H^1(\Omega)}$
- $0 \leq \beta(\Omega) \leq 1$ .
- $\beta(\Omega)$  is invariant with respect to translations, rotations, dilations.
- We will often talk about  $\sigma(\Omega) = \beta(\Omega)^2$  instead of  $\beta(\Omega)$ .

The inf-sup constant of 
$$\Omega$$
  
$$\beta(\Omega) = \inf_{\substack{q \in L^2_{\circ}(\Omega) \\ \mathbf{v} \in H^1_0(\Omega)^d}} \frac{\int_{\Omega} \operatorname{div} \mathbf{v} \ q}{|\mathbf{v}|_1 ||q||_0}$$

- $L^{2}(\Omega)$  space of square integrable functions q on  $\Omega$ . Norm  $\|q\|_{\Omega}$
- $H^1(\Omega)$  Sobolev space of  $v \in L^2(\Omega)$  with gradient  $\nabla v \in L^2(\Omega)^d$
- $L^2_{\circ}(\Omega)$  subspace of  $q \in L^2(\Omega)$  with  $\int_{\Omega} q = 0$ .
- $H_0^1(\Omega)$  closure in  $H^1(\Omega)$  of  $C_0^{\infty}(\Omega)$  (zero trace on  $\partial\Omega$ ) (Semi-)Norm  $|u|_1 = ||\nabla u||_0$  equivalent to norm  $||u||_{H^1(\Omega)}$
- $0 \leq \beta(\Omega) \leq 1$ .
- $\beta(\Omega)$  is invariant with respect to translations, rotations, dilations.

• We will often talk about  $|\sigma(\Omega) = \beta(\Omega)^2$  instead of  $\beta(\Omega)$ .

The inf-sup constant of 
$$\Omega$$
  
$$\beta(\Omega) = \inf_{\substack{q \in L^2_{o}(\Omega) \\ \mathbf{v} \in H^1_0(\Omega)^d}} \sup_{\substack{\boldsymbol{v} \in H^1_0(\Omega)^d \\ |\mathbf{v}|_1 \|q\|_0}} \int_{\Omega} div \, \mathbf{v} \, q$$

- $L^2(\Omega)$  space of square integrable functions q on  $\Omega$ . Norm  $\|q\|_{\Omega}$
- $H^1(\Omega)$  Sobolev space of  $v \in L^2(\Omega)$  with gradient  $\nabla v \in L^2(\Omega)^d$
- $L^2_{\circ}(\Omega)$  subspace of  $q \in L^2(\Omega)$  with  $\int_{\Omega} q = 0$ .
- $H_0^1(\Omega)$  closure in  $H^1(\Omega)$  of  $C_0^{\infty}(\Omega)$  (zero trace on  $\partial\Omega$ ) (Semi-)Norm  $|u|_1 = ||\nabla u||_0$  equivalent to norm  $||u||_{H^1(\Omega)}$
- $0 \leq \beta(\Omega) \leq 1$ .
- $\beta(\Omega)$  is invariant with respect to translations, rotations, dilations.
- We will often talk about  $\sigma(\Omega) = \beta(\Omega)^2$  instead of  $\beta(\Omega)$ .

# Main motivation: LBB condition and the Stokes system



Theorem

The mapping  $(u, \rho) \mapsto (f, g) : H^1_0(\Omega)^d \times L^2_0(\Omega) \to H^{-1}(\Omega)^d \times L^2_0(\Omega)$ is an isomorphism if and only if  $\beta(\Omega) > 0$ .

Proved (more or less) by L. Cattabriga (1961) for smooth domains Standard reference:

V. Girault, A. Raviart: Finite Element Methods for Navier-Stokes Equations,

# Main motivation: LBB condition and the Stokes system

## The inf-sup condition or LBB condition

 $\beta(\Omega) > 0$ 

Classical: This is true for bounded Lipschitz domains. Not true for domains with outward cusps.

Find  $\boldsymbol{u} \in H^1_0(\Omega)^d$ ,  $\boldsymbol{\rho} \in L^2_0(\Omega)$ :

 $\Delta u + \nabla p = \mathbf{1}$  in  $\Omega$ div u = g in  $\Omega$ 

#### Theorem

The mapping  $(\boldsymbol{\mu}, \boldsymbol{p}) \mapsto (\mathbf{f}, \boldsymbol{g}) : H^1_0(\Omega)^d \times L^2_0(\Omega) \to H^{-1}(\Omega)^d \times L^2_0(\Omega)$ is an isomorphism if and only if  $\beta(\Omega) > 0$ .

# Main motivation: LBB condition and the Stokes system

### The inf-sup condition or LBB condition

# $\beta(\Omega) > 0$

Now known [Acosta et al, 2006–2016]: For bounded domains, this is basically equivalent to  $\Omega$  being a John domain.

(More general than Lipschitz Digression: John domains).



Figure: Not a John domain: Outward cusp,  $\beta(\Omega) = 0$  [Friedrichs 1937]

### The inf-sup condition or LBB condition

 $\beta(\Omega) > 0$ 

### The complete Stokes system

Find  $\boldsymbol{u} \in H_0^1(\Omega)^d$ ,  $p \in L^2_{\circ}(\Omega)$ :

 $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \mathbf{f} \qquad \text{in } \Omega$  $\operatorname{div} \boldsymbol{u} = \boldsymbol{g} \qquad \text{in } \Omega$ 

#### Theorem

The mapping  $(\boldsymbol{u}, p) \mapsto (\mathbf{f}, g) : H_0^1(\Omega)^d \times L^2_\circ(\Omega) \to H^{-1}(\Omega)^d \times L^2_\circ(\Omega)$ is an isomorphism if and only if  $\beta(\Omega) > 0$ .

Proved (more or less) by L. Cattabriga (1961) for smooth domains Standard reference:

V. Girault, A. Raviart: Finite Element Methods for Navier-Stokes Equations, Springer 1986

# LBB

From Wikipedia, the free encyclopedia

LBB may stand for:

- Lactobacillus delbrueckii subsp. bulgaricus, a bacterium used in the production of yogurt.
- Lubbock Preston Smith International Airport, the IATA code
- · Little Brown Bird birdwatchers acronym for indistinct or unknown small dark bird
- Liberty Bible dataBase (.lbb file extension)
- Ladyzhenskaya-Babuska-Brezzi conditions for stability in mixed finite element analysis

Since ~1980, the inf-sup condition for the divergence is often called LBB condition, after

- Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions
- Babuška [Babuška 1971-73]
- Brezzi
   [Brezzi 1974]

Since  ${\sim}1980,$  the inf-sup condition for the divergence is often called LBB condition, after

- Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions
- Babuška [Babuška 1971-73]
- Brezzi [Brezzi 1974]

Let  $X_N \subset X = H^1_0(\Omega)^d$  and  $M_N \subset M = L^2_c(\Omega)$  be sequences of closed subspaces. Define

$$\beta_{N} = \inf_{\substack{q \in M_{N} \mid v \in X_{N}}} \sup_{\substack{I \mid Q \mid \\ q \in M_{N} \mid v \in X_{N}}} \frac{\int_{\Omega} \operatorname{div} v \cdot q}{|v|_{q} ||q||_{0}}$$

The uniform discrete inf-sup condition

$$eta_N(\Omega) \geq eta_* > 0 \qquad orall N$$

is also simply called Babuška-Brezzi condition or LBB condition.

Since  ${\sim}1980,$  the inf-sup condition for the divergence is often called LBB condition, after

- Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions
- Babuška [Babuška 1971-73]
- Brezzi [Brezzi 1974]

### Discrete LBB condition

Let  $X_N \subset X = H_0^1(\Omega)^d$  and  $M_N \subset M = L_{\circ}^2(\Omega)$  be sequences of closed subspaces. Define

$$\beta_{N} = \inf_{q \in M_{N}} \sup_{\boldsymbol{v} \in X_{N}} \frac{\int_{\Omega} \operatorname{div} \boldsymbol{v} \, q}{|\boldsymbol{v}|_{1} \, ||\boldsymbol{q}||_{0}}$$

The uniform discrete inf-sup condition

$$eta_{N}(\Omega) \geq eta_{*} > 0 \qquad orall N$$

is also simply called Babuška-Brezzi condition or LBB condition.

#### Application

Stability and convergence of finite element methods for the Stokes system.

# Why is it important to know the value of $\beta(\Omega)$ ?

The Stokes system of incompressible fluid dynamics for  $\boldsymbol{u} \in H^1_0(\Omega)^d$ ,  $\boldsymbol{p} \in L^2_{\circ}(\Omega)$ 

$$-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \mathbf{f} \qquad \text{in } \Omega$$
$$\operatorname{div} \boldsymbol{u} = 0 \qquad \text{in } \Omega$$

has the variational form

$$egin{aligned} &\langle 
abla oldsymbol{u}, 
abla oldsymbol{v} 
angle &= \langle oldsymbol{v}, oldsymbol{f} 
angle & orall oldsymbol{v} \in H^1_0(\Omega)^d \ &\langle \operatorname{div} oldsymbol{u}, oldsymbol{q} 
angle &= 0 & orall oldsymbol{q} \in L^2_\circ(\Omega) \end{aligned}$$

Pressure Stability for the Stokes problem

$$egin{aligned} & \left\|m{u}
ight\|_1 \leq \left\|m{f}
ight\|_{-1} \ & \left\|m{
ho}
ight\|_0 \leq rac{1}{m{eta}(\Omega)}\left\|m{f}
ight\|_{-1} \end{aligned}$$

Also: Error reduction factor for iterative algorithms such as Uzawa.

# Outline

- History of this circle of ideas
- Review of basic properties
- Approximation problems
- Corner domains

### Time frame: Cosserat EVP

- 1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris
- 1924 L. Lichtenstein: a boundary integral equation method
- 1967 V. Maz'ya S. Mikhlin: "On the Cosserat spectrum..."
- 1973 S. Mikhlin: "The spectrum of an operator pencil..."

### 1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history

| 1898-1901 E.&F. Cosser | at: 9 papers in CR Acad Sci Paris |
|------------------------|-----------------------------------|
|------------------------|-----------------------------------|

- 1924 L. Lichtenstein: a boundary integral equation method
- 1967 V. Maz'ya S. Mikhlin: "On the Cosserat spectrum..."
- 1971 I. Babuška A.K. Aziz: Foundations of FEM
- 1973 S. Mikhlin: "The spectrum of an operator pencil..."
- 1974 F. Brezzi: "...saddle point problems..."

1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history

| 1898-1901 | E.&F. Cosserat: 9 papers in CR Acad Sci Paris                      |
|-----------|--------------------------------------------------------------------|
| 1909      | A. Korn: Korn's inequality                                         |
| 1924      | L. Lichtenstein: a boundary integral equation method               |
| 1937      | K. Friedrichs: "On certain inequalities"                           |
| 1967      | V. Maz'ya – S. Mikhlin: "On the Cosserat spectrum"                 |
| 1971      | I. Babuška – A.K. Aziz: Foundations of FEM                         |
| 1973      | S. Mikhlin: "The spectrum of an operator pencil"                   |
| 1974      | F. Brezzi: "saddle point problems"                                 |
| 1983      | C.O. Horgan – L.E. Payne: "On Inequalities of Korn, Friedrichs and |
| 1000 1000 | A Kamba willing a Open such EV distribution 400 we are of bistom.  |

1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history

| 1898-1901 | E.&F. Cosserat: 9 papers in CR Acad Sci Paris                      |
|-----------|--------------------------------------------------------------------|
| 1909      | A. Korn: Korn's inequality                                         |
| 1924      | L. Lichtenstein: a boundary integral equation method               |
| 1937      | K. Friedrichs: "On certain inequalities"                           |
| 1967      | V. Maz'ya – S. Mikhlin: "On the Cosserat spectrum"                 |
| 1971      | I. Babuška – A.K. Aziz: Foundations of FEM                         |
| 1973      | S. Mikhlin: "The spectrum of an operator pencil"                   |
| 1974      | F. Brezzi: "saddle point problems"                                 |
| 1979      | M.E. Bogovskiĭ: an integral operator for solving div $u = q$       |
| 1983      | C.O. Horgan - L.E. Payne: "On Inequalities of Korn, Friedrichs and |
| 1993-1999 | A. Kozhevnikov: Cosserat EV distribution, 100 years of history     |
| 1997      | M. Crouzeix: "On the convergence of Uzawa's algorithm"             |
| 1990-1998 | W. Velte: " On optimal constants in some inequalities"             |
|           |                                                                    |

| 1898-1901<br>1909 | E.&F. Cosserat: 9 papers in CR Acad Sci Paris<br>A. Korn: Korn's inequality |
|-------------------|-----------------------------------------------------------------------------|
| 1924              | L. Lichtenstein: a boundary integral equation method                        |
| 1937              | K. Friedrichs: "On certain inequalities"                                    |
| 1967              | V. Maz'ya – S. Mikhlin: "On the Cosserat spectrum"                          |
| 1971              | I. Babuška – A.K. Aziz: Foundations of FEM                                  |
| 1973              | S. Mikhlin: "The spectrum of an operator pencil"                            |
| 1974              | F. Brezzi: "saddle point problems"                                          |
| 1979              | M.E. Bogovskiĭ: an integral operator for solving div $u = q$                |
| 1983              | C.O. Horgan - L.E. Payne: "On Inequalities of Korn, Friedrichs and          |
| 1993-1999         | A. Kozhevnikov: Cosserat EV distribution, 100 years of history              |
| 1997              | M. Crouzeix: "On the convergence of Uzawa's algorithm"                      |
| 1990-1998         | W. Velte: "On optimal constants in some inequalities"                       |
| 1994-2000         | E. Chizhonkov – M. Olshanskii: "On the optimal constant in the inf-         |
| 1999-2009         | G. Stoyan: discrete inequalities                                            |
| 2000-2004         | S. Zsuppán: conformal mappings                                              |
| 2006-             | C. Simader – W. v. Wahl – S. Weyers: L <sup>q</sup> , unbounded domains     |
| 2006-             | G. Acosta – R.G. Durán – M.A. Muschietti: John domains                      |
| 2000-2016         | C. Bernardi, M. Co., M. Dauge, V. Girault                                   |

# The inf-sup Constant: Known Values

Ball in  $\mathbb{R}^d$ :  $\sigma(\Omega) = \frac{1}{d}$  [Ellipsoids in 3D: E.&F. Cosserat 1898]

In 2D:

Ellipse 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$$
,  $a < b$ :  $\sigma(\Omega) = \frac{a^2}{a^2 + b^2}$ 

Some other simple 2D domains, for example

Annulus 
$$a < r < 1$$
:  $\sigma(\Omega) = rac{1}{2} - rac{1}{2} \sqrt{rac{1-a^2}{1+a^2}} rac{1}{\log 1/a}$ 

[Chizhonkov-Olshanskii 2000]

# The inf-sup Constant: Known Values

Ball in  $\mathbb{R}^d$ :  $\sigma(\Omega) = \frac{1}{d}$  [Ellipsoids in 3D: E.&F. Cosserat 1898]

In 2D:

Ellipse 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$$
,  $a < b$ :  $\sigma(\Omega) = \frac{a^2}{a^2 + b^2}$ 

Some other simple 2D domains, for example:

Annulus 
$$a < r < 1$$
:  $\sigma(\Omega) = \frac{1}{2} - \frac{1}{2}\sqrt{\frac{1-a^2}{1+a^2}\frac{1}{\log 1/a}}$   
[Chizhonkov-Olshanskii 2000]

# The inf-sup Constant: Known Values, Example

An example from [Zsuppán 2004] "Epitrochoid" Conformal mapping  $g_{m,c}: \Omega = \{z \in \mathbb{C} \mid |z| < 1\} \rightarrow \Omega_{m,c}$ 

$$g_{m,c}(z) = \frac{z - \frac{c}{m} z^m}{1 + \frac{c}{m}}$$

[Zsuppán 2004]

For 0 < c < 1 and  $m \in \mathbb{N}$  odd:  $\beta(\Omega_{m,c})^2 = \frac{1}{2}(1 - \frac{m+1}{2m}c)$ 



#### Showing:

 $\Omega_{m,c}$  for c = 0.8m = 7 and m = 27

Observation: Non-convergence

As 
$$m \to \infty$$
:  $g_{m,c}(z) \to z$ 

$$\Omega_{m,c} o \Omega$$
, but  
 $\beta(\Omega_{m,c})^2 o \frac{1}{2} - \frac{c}{4} \neq \frac{1}{2} = \beta(\Omega)^2$ 

#### Optimality

Known:  $\beta(\Omega) \leq \frac{1}{\sqrt{2}}$  for any bounded domain. Hence: For d = 2, the ball is optimal:  $\beta$  is maximal. Unknown: For  $d \geq 3$ , is the ball optimal?  $\beta(\Omega) \leq -\frac{1}{2}$ ?

The square  $\mathbb{R}^{2}$  is the square  $\mathbb{R}^{2}$ 

 $eta(\Box)$  is still unknown !!

Current Conjecture

 $\sigma(\Box) = rac{1}{2} - rac{1}{\pi} pprox 0.18169... \quad (
ightarrow eta(\Box) = \sqrt{rac{1}{2} - rac{1}{\pi}} pprox 0.42625)$ 

## Optimality

Known:  $\beta(\Omega) \le \frac{1}{\sqrt{2}}$  for any bounded domain. Hence: For d = 2, the ball is optimal:  $\beta$  is maximal. Unknown: For  $d \ge 3$ , is the ball optimal?  $\beta(\Omega) \le \frac{1}{\sqrt{d}}$ ?

# The square CORRECT CORRECT

 $eta(\Box)$  is still unknown !

#### Current Conjecture

 $\sigma(\Box) = \frac{1}{2} - \frac{1}{\pi} \approx 0.18169... \quad (\leftrightarrow \beta(\Box) = \sqrt{\frac{1}{2} - \frac{1}{\pi}} \approx 0.42625).$ 

Related inequalities

### Optimality

Known:  $\beta(\Omega) \le \frac{1}{\sqrt{2}}$  for any bounded domain. Hence: For d = 2, the ball is optimal:  $\beta$  is maximal.

Unknown: For  $d \ge 3$ , is the ball optimal?  $\beta(\Omega) \le \frac{1}{\sqrt{d}}$ ?

# The square $\Omega = (0,1) \times (0,1) =: \Box \subset \mathbb{R}^2$

 $\beta(\Box)$  is still unknown !

### **Current Conjecture**

$$\sigma(\Box) = \frac{1}{2} - \frac{1}{\pi} \approx 0.18169... \quad (\rightarrow \beta(\Box) = \sqrt{\frac{1}{2} - \frac{1}{\pi}} \approx 0.42625)$$

# Basic properties of the inf-sup constant: The sup is always attained

Def: 
$$J(q) = \sup_{\boldsymbol{v} \in H_0^1(\Omega)^d} \frac{\langle \operatorname{div} \boldsymbol{v}, q \rangle}{|\boldsymbol{v}|_1} \quad (= |\nabla q|_{-1}, \text{ dual norm })$$

Lemma: sup = max

$$J(q) = \frac{\left\langle \operatorname{div} \boldsymbol{w}(q), q \right\rangle}{\left| \boldsymbol{w}(q) \right|_{1}} = \left| \boldsymbol{w}(q) \right|_{1}$$

where  $\boldsymbol{w}(q) \in H_0^1(\Omega)^d$  is the solution  $\boldsymbol{w}$  of the vector Dirichlet problem  $\Delta \boldsymbol{w} = \nabla q$ , or in variational form

$$\langle \nabla \boldsymbol{w}, \nabla \boldsymbol{v} 
angle = \langle \operatorname{div} \boldsymbol{v}, \boldsymbol{q} 
angle \quad \forall \, \boldsymbol{v} \in H^1_0(\Omega)^d$$

We write

$$w(q) = \Delta^{-1} \nabla q$$

# Back to Stokes

Recall the Stokes system of incompressible fluid dynamics for  $\boldsymbol{u} \in H_0^1(\Omega)^d$ ,  $p \in L^2_{\circ}(\Omega)$ 

$$-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \mathbf{f} \qquad \text{in } \Omega$$
$$\operatorname{div} \boldsymbol{u} = 0 \qquad \text{in } \Omega$$

### Definition

The Schur complement operator  $\mathcal S$  for the Stokes system is

$$\mathscr{S} = \operatorname{div} \Delta^{-1} \nabla : \quad L^2_{\circ} \xrightarrow{\nabla} \boldsymbol{H}^{-1} \xrightarrow{\Delta^{-1}} \boldsymbol{H}^1_0 \xrightarrow{\operatorname{div}} L^2_{\circ}$$

 $\mathscr{S}$  is a bounded positive selfadjoint operator in  $L^2_{\circ}(\Omega)$ .

# inf-sup constant and Schur complement

| Observation |                                                        |
|-------------|--------------------------------------------------------|
| Define      |                                                        |
|             | $\sigma(\Omega) = \min \operatorname{Sp}(\mathscr{S})$ |
| Then        |                                                        |
|             | $\sigma(\Omega)=eta(\Omega)^2$                         |

**Proof**:  $-\Delta : H_0^1(\Omega) \to H^{-1}(\Omega)$  is the Riesz isometry. For  $q \in L^2_{\circ}(\Omega)$ :

$$\langle \mathscr{S}q,q \rangle = \langle \operatorname{div} \Delta^{-1} \nabla q,q \rangle$$
  
=  $\langle -\Delta^{-1} \nabla q, \nabla q \rangle$   
=  $|\nabla q|_{-1}^2$   
=  $J(q)^2$ 

$$\sigma(\Omega) = \inf_{q \in L^2_{c}(\Omega)} \frac{\langle \mathscr{S}q, q \rangle}{\langle q, q \rangle} = \beta(\Omega)^2$$

### A well known lemma

Let  $A : X \to Y$  and  $B : Y \to X$  be linear operators. Then

 $Sp(AB) \setminus \{0\} \equiv Sp(BA) \setminus \{0\}.$ 

Recall  $\mathscr{S} = \operatorname{div} \Delta^{-1} \nabla$ .

#### Corollary

The eigenvalue problem for the Schur complement of the Stokes system

 $\mathscr{I} p = \sigma p$  in  $L^2_o(\Omega)$ 

is, for  $\sigma \neq 0$ , equivalent to the eigenvalue problem

 $\Delta^{-1} 
abla \operatorname{div} oldsymbol{u} = \sigma oldsymbol{u} \quad ext{ in } H^1_0(\Omega)^c$ 

which is the same as

 $\sigma \Delta u = \nabla \operatorname{div} u$  in  $H_0^1(\Omega)^d$ 

### A well known lemma

Let  $A : X \to Y$  and  $B : Y \to X$  be linear operators. Then

 $Sp(AB) \setminus \{0\} \equiv Sp(BA) \setminus \{0\}.$ 

Recall  $\mathscr{S} = \operatorname{div} \Delta^{-1} \nabla$ .

### Corollary

The eigenvalue problem for the Schur complement of the Stokes system

$$\mathscr{S} p = \sigma p$$
 in  $L^2_{\circ}(\Omega)$ 

is, for  $\sigma \neq 0$ , equivalent to the eigenvalue problem

$$\Delta^{-1}\nabla \operatorname{div} \boldsymbol{u} = \boldsymbol{\sigma} \boldsymbol{u} \quad \text{in } H^1_0(\Omega)^d$$

which is the same as

$$\sigma \Delta \boldsymbol{u} = \nabla \operatorname{div} \boldsymbol{u}$$
 in  $H_0^1(\Omega)^d$ 

This is the Cosserat eigenvalue problem [E.&F. Cosserat, 1898]

#### Theorem [BCDG 2016]

Let  $X_N \subset X = H_0^1(\Omega)^d$  and  $M_N \subset M = L_{\circ}^2(\Omega)$  be sequences of closed subspaces.

If  $(M_N)_N$  is asymptotically dense in *M*, then

$$\limsup_{N\to\infty}\beta_N\leq\beta(\Omega)$$

**Proof:** Recall the definition of J(q) and define similarly

$$J_{N}(q) = \sup_{\boldsymbol{v} \in X_{N}} \frac{\left\langle \operatorname{div} \boldsymbol{v}, q \right\rangle}{\left| \boldsymbol{v} \right|_{1}}, \text{ so that } \beta(\Omega) = \inf_{q \in M} \frac{J(q)}{\left\| q \right\|_{0}} \text{ and } \beta_{N} = \inf_{q_{N} \in M_{N}} \frac{J_{N}(q_{N})}{\left\| q_{N} \right\|_{0}}$$

Now for  $q \in M$  given, choose  $q_N \in M_N$  so that  $q_N \to q$  in  $L^2_{\circ}(\Omega)$ . Then one has

$$\beta_{N} \leq \frac{J_{N}(q_{N})}{\left\|q_{N}\right\|_{0}} \leq \frac{J(q_{N})}{\left\|q_{N}\right\|_{0}} \rightarrow \frac{J(q)}{\left\|q\right\|_{0}}$$

Now assume that  $\beta_N \to \beta_\infty$ . Then  $\beta_\infty \leq \frac{J(q)}{\|q\|_0}$  for any  $q \in M$  and, taking the inf, finally  $\beta_\infty \leq \beta(\Omega)$ .

# A simple case where convergence holds

In general, one can have No general criterion known.

$$eta_{\mathsf{N}} \leq eta(\Omega)$$
 or

$$\beta_N \geq \beta(\Omega)$$
.

If 
$$X_N = \Delta^{-1} 
abla M_N$$
, then  $eta_N \ge eta(\Omega)$ .

Thus, if one knows a basis  $(q_n)_{n\in\mathbb{N}}$  of  $L^2_c(\Omega)$  for which the Dirichlet problem for  $w_n\in H^1_0(\Omega)^d$ 

 $\Delta w_n = \nabla q_n$ 

can be solved exactly, setting

```
M_N = \operatorname{span}\{q_1, \ldots, q_N\}, \quad X_N = \operatorname{span}\{w_1, \ldots, w_N\}
```

leads to

$$\lim_{N\to\infty}\beta_N=\beta(\Omega).$$

Proof: One has now  $J_N(q) = J(q)$  for  $q \in M_N$ .

In other words, this is a Galerkin eigenvalue approximation of the exact Schur

# A simple case where convergence holds

In general, one can have No general criterion known.

# Exception

If 
$$X_N = \Delta^{-1} \nabla M_N$$
, then  $\beta_N \ge \beta(\Omega)$ .

or

 $|\beta_N \geq \beta(\Omega)|.$ 

 $\beta_N \leq \beta(\Omega)$ 

Thus, if one knows a basis  $(q_n)_{n \in \mathbb{N}}$  of  $L^2_{\circ}(\Omega)$  for which the Dirichlet problem for  $\boldsymbol{w}_n \in H^1_0(\Omega)^d$ 

$$\Delta \boldsymbol{w}_n = \nabla q_n$$

can be solved exactly, setting

$$M_N = \operatorname{span}\{q_1, \ldots, q_N\}, \quad X_N = \operatorname{span}\{w_1, \ldots, w_N\}$$

leads to

$$\lim_{N\to\infty}\beta_N=\beta(\Omega).$$

Proof: One has now  $J_N(q) = J(q)$  for  $q \in M_N$ .

in other words, this is a Galerkin eigenvalue approximation of the exact Schur

# A simple case where convergence holds

In general, one can have No general criterion known.

# Exception

If 
$$X_N = \Delta^{-1} \nabla M_N$$
, then  $\beta_N \ge \beta(\Omega)$ .

or

 $|\beta_N \geq \beta(\Omega)|.$ 

 $\beta_N \leq \beta(\Omega)$ 

Thus, if one knows a basis  $(q_n)_{n \in \mathbb{N}}$  of  $L^2_{\circ}(\Omega)$  for which the Dirichlet problem for  $\boldsymbol{w}_n \in H^1_0(\Omega)^d$ 

$$\Delta \boldsymbol{w}_n = \nabla q_n$$

can be solved exactly, setting

$$M_N = \operatorname{span}\{q_1, \ldots, q_N\}, \quad X_N = \operatorname{span}\{w_1, \ldots, w_N\}$$

leads to

$$\lim_{N\to\infty}\beta_N=\beta(\Omega).$$

**Proof**: One has now  $J_N(q) = J(q)$  for  $q \in M_N$ .

### A simple case where convergence holds

In general, one can have No general criterion known.

#### Exception

If 
$$X_N = \Delta^{-1} \nabla M_N$$
, then  $\beta_N \ge \beta(\Omega)$ .

 $|\beta_N \leq \beta(\Omega)|$  or  $|\beta_N \geq \beta(\Omega)|$ .

Thus, if one knows a basis  $(q_n)_{n \in \mathbb{N}}$  of  $L^2_{\circ}(\Omega)$  for which the Dirichlet problem for  $\boldsymbol{w}_n \in H^1_0(\Omega)^d$ 

$$\Delta \boldsymbol{w}_n = \nabla q_n$$

can be solved exactly, setting

$$M_N = \operatorname{span}\{q_1, \ldots, q_N\}, \quad X_N = \operatorname{span}\{w_1, \ldots, w_N\}$$

leads to

$$\lim_{N\to\infty}\beta_N=\beta(\Omega).$$

Proof: One has now  $J_N(q) = J(q)$  for  $q \in M_N$ . In other words, this is a Galerkin eigenvalue approximation of the exact Schur complement operator  $\mathscr{S}$ . In general cases,  $\Delta^{-1}$  will have to be approximated, too. [M. Gaultier, M. Lezaun 1996] Let  $\Omega = (0, a) \times (0, b)$ . Then

 $q_{km}(x,y) = \cos(\kappa x)\cos(\mu y), \quad \kappa = \frac{k\pi}{a}, \mu = \frac{m\pi}{b}, k, m \ge 0, k+m > 0$ 

defines an orthogonal basis of  $L^2_{\circ}(\Omega)$ . The Schur complement operator  $\mathscr{S} = \operatorname{div} \Delta^{-1} \nabla = \partial_x \Delta^{-1} \partial_x + \partial_y \Delta^{-1} \partial_y$  can be computed analytically by solving 1D Dirichlet problems on (0, a) and (0, b)

 $\mathscr{S}q_{km} = -\kappa^2 \cos \kappa x (\partial_y^2 - \kappa^2)^{-1} [\cos \mu y] - \mu^2 \cos \mu y (\partial_x^2 - \mu^2)^{-1} [\cos \kappa x]$ 

[M. Gaultier, M. Lezaun 1996] Let  $\Omega = (0, a) \times (0, b)$ . Then

 $q_{km}(x,y) = \cos(\kappa x)\cos(\mu y), \quad \kappa = \frac{k\pi}{a}, \mu = \frac{m\pi}{b}, k, m \ge 0, k+m > 0$ 

defines an orthogonal basis of  $L^2_{\circ}(\Omega)$ . The Schur complement operator  $\mathscr{S} = \operatorname{div} \Delta^{-1} \nabla = \partial_x \Delta^{-1} \partial_x + \partial_y \Delta^{-1} \partial_y$  can be computed analytically by solving 1D Dirichlet problems on (0, a) and (0, b)

 $\mathscr{S}q_{km} = -\kappa^2 \cos \kappa x (\partial_y^2 - \kappa^2)^{-1} [\cos \mu y] - \mu^2 \cos \mu y (\partial_x^2 - \mu^2)^{-1} [\cos \kappa x]$ 

Numerical results. — We have performed a few numerical tests. Let K be a positive integer. We have computed an approximate value of the smallest eigenvalue  $\alpha_K$  of the matrix  $A_K$  by means of the power of Mises [2, pp. 226-227]. We stopped this calculation when the relative error was less than  $10^{-9}$ . We have ascertained that sequence  $\{\alpha_K\}_{K>0}$  converges quickly.

The above mentioned values of the constant  $P(\Omega)^{-1}$  have been rounded up to the 3-th decimal place.

> $L = 1, \quad \ell = 1: P(\Omega)^{-1} = 0.226$   $L = 2, \quad \ell = 1: P(\Omega)^{-1} = 0.151$  $L = 4, \quad \ell = 1: P(\Omega)^{-1} = 0.047.$

[M. Gaultier, M. Lezaun 1996] Let  $\Omega = (0, a) \times (0, b)$ . Then

 $q_{km}(x,y) = \cos(\kappa x)\cos(\mu y), \quad \kappa = \frac{k\pi}{a}, \mu = \frac{m\pi}{b}, k, m \ge 0, k+m > 0$ 

defines an orthogonal basis of  $L^2_{\circ}(\Omega)$ . The Schur complement operator  $\mathscr{S} = \operatorname{div} \Delta^{-1} \nabla = \partial_x \Delta^{-1} \partial_x + \partial_y \Delta^{-1} \partial_y$  can be computed analytically by solving 1D Dirichlet problems on (0, a) and (0, b)

 $\mathscr{S}q_{km} = -\kappa^2 \cos \kappa x (\partial_y^2 - \kappa^2)^{-1} [\cos \mu y] - \mu^2 \cos \mu y (\partial_x^2 - \mu^2)^{-1} [\cos \kappa x]$ 

Numerical results. — We have performed a few numerical tests. Let K be a positive integer. We have computed an approximate value of the smallest eigenvalue  $\alpha_K$  of the matrix  $A_K$  by means of the power of Mises [2, pp. 226-227]. We stopped this calculation when the relative error was less than  $10^{-9}$ . We have ascertained that sequence  $\{\alpha_K\}_{K>0}$  converges quickly.

The above mentioned values of the constant  $P(\Omega)^{-1}$  have been rounded up to the 3-th decimal place.

$$\begin{split} L &= 1 \;, \quad \ell = 1 : P(\Omega)^{-1} = 0.226 \\ L &= 2 \;, \quad \ell = 1 : P(\Omega)^{-1} = 0.151 \\ L &= 4 \;, \quad \ell = 1 : P(\Omega)^{-1} = 0.047 \;. \end{split}$$

$$(L, \ell) = (a, b)$$
  

$$K = N$$
  

$$P(\Omega)^{-1} = \sigma(\Omega) = \beta(\Omega)^2$$



#### Cosserat eigenvalue problem

Find  $\boldsymbol{u} \in H^1_0(\Omega)^d \setminus \{0\}, \, \sigma \in \mathbb{C}$  such that

 $\sigma \Delta \boldsymbol{u} - \nabla \operatorname{div} \boldsymbol{u} = \mathbf{0} \, .$ 

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find  $\boldsymbol{u} \in H^1_0(\Omega)^d$ ,  $\boldsymbol{p} \in L^2_{\circ}(\Omega) \setminus \{0\}$ ,  $\boldsymbol{\sigma} \in \mathbb{C}$ :

 $\begin{aligned} -\Delta \pmb{u} + \nabla p &= 0 & \text{in } \Omega \\ \text{div } \pmb{u} &= \sigma p & \text{in } \Omega \end{aligned}$ 

Variational form: Find  $\boldsymbol{u} \in X$ ,  $\boldsymbol{p} \in M$ ,  $\boldsymbol{\sigma} \in \mathbb{C}$ :

 $(\nabla u, \nabla v) - (\operatorname{div} v, \rho) = 0$   $\forall v \in X$  $(\operatorname{div} u, q) = \sigma(p, q)$   $\forall q \in M$ 

Galerkin discretization:  $X \curvearrowright X_N, M \curvearrowright M_N \Longrightarrow$  min  $\sigma = eta$ 

#### Cosserat eigenvalue problem

Find  $\boldsymbol{u} \in H^1_0(\Omega)^d \setminus \{0\}, \, \sigma \in \mathbb{C}$  such that

 $\sigma \Delta \boldsymbol{u} - \nabla \operatorname{div} \boldsymbol{u} = \mathbf{0} \, .$ 

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find  $\boldsymbol{u} \in H^1_0(\Omega)^d$ ,  $\boldsymbol{p} \in L^2_{\circ}(\Omega) \setminus \{0\}$ ,  $\boldsymbol{\sigma} \in \mathbb{C}$ :

 $\begin{aligned} -\Delta \pmb{u} + \nabla p &= 0 & \text{in } \Omega \\ \text{div } \pmb{u} &= \sigma p & \text{in } \Omega \end{aligned}$ 

Variational form: Find  $\boldsymbol{u} \in X$ ,  $\boldsymbol{p} \in \boldsymbol{M}$ ,  $\boldsymbol{\sigma} \in \mathbb{C}$ :

$$\begin{array}{ll} \langle \nabla \boldsymbol{u}, \nabla \boldsymbol{v} \rangle - \langle \operatorname{div} \boldsymbol{v}, \boldsymbol{p} \rangle = 0 & \forall \, \boldsymbol{v} \in X \\ \langle \operatorname{div} \boldsymbol{u}, \boldsymbol{q} \rangle & = \sigma \langle \boldsymbol{p}, \boldsymbol{q} \rangle & \forall \, \boldsymbol{q} \in M \end{array}$$

Galerkin discretization:  $X \curvearrowright X_N$ ,  $M \curvearrowright M_N \implies \min \sigma = \beta_N^2$ 

## Remarks on Two Stokes eigenvalue problems

| Stokes eigenvalue problem, first kind                                                                                         |                            | Stokes eigenvalue problem, second kind                                                                                         |              |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Find $\boldsymbol{u} \in H^1_0(\Omega)^d$ , $\boldsymbol{p} \in L^2_\circ(\Omega)$ , $\boldsymbol{\sigma} \in \mathbb{C}$ :   |                            | Find $\boldsymbol{u} \in H^1_0(\Omega)^d$ , $\boldsymbol{\rho} \in L^2_\circ(\Omega)$ , $\boldsymbol{\sigma} \in \mathbb{C}$ : |              |  |
| $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{\sigma} \boldsymbol{u}$ $\operatorname{div} \boldsymbol{u} = 0$ | in $\Omega$<br>in $\Omega$ | $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{0}$ $\operatorname{div} \boldsymbol{u} = \sigma \boldsymbol{p}$  | in Ω<br>in Ω |  |

1st kind: • Appears in dynamic problems (time stepping, Laplace transform)

- Elliptic eigenvalue problem, compact resolvent,
- Known conditions for convergence of numerical algorithms (discrete LBB condition...)

#### 2nd kind:

- Provides the (continuous and discrete) inf-sup constant:

   *β*<sup>2</sup><sub>e</sub> = min σ<sub>Xe</sub> <sub>Me</sub>
  - Not an elliptic eigenvalue problem
  - Not covered by any general theory of numerical approximation of eigenvalue problems
  - Both eigenvalue problems are discretized with the same code!
     Standard code available: Stokes + matrix eigenvalue problem

| Stokes eigenvalue problem, first kind                                                                                       | Stokes eigenvalue problem, second kind                                                                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Find ${\pmb u}\in H^1_0(\Omega)^d, {\pmb p}\in L^2_\circ(\Omega), {\pmb \sigma}\in\mathbb{C}$ :                             | Find $\boldsymbol{u} \in H^1_0(\Omega)^d$ , $\boldsymbol{\rho} \in L^2_\circ(\Omega)$ , $\boldsymbol{\sigma} \in \mathbb{C}$ : |  |  |
| $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{\sigma} \boldsymbol{u} \qquad \text{in } \boldsymbol{\Omega}$ | $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = 0 \qquad \text{in } \Omega$                                                  |  |  |
| div $\boldsymbol{u}$ = 0 in $\Omega$                                                                                        | div $\boldsymbol{u} = \sigma p$ in $\Omega$                                                                                    |  |  |
|                                                                                                                             |                                                                                                                                |  |  |

1st kind: • Appears in dynamic problems (time stepping, Laplace transform)

- Elliptic eigenvalue problem, compact resolvent,
- Known conditions for convergence of numerical algorithms (discrete LBB condition...)

#### 2nd kind:

- Provides the (continuous and discrete) inf-sup constant:  $\beta_N^2 = \min \sigma_{X_N, M_N}$ 
  - Not an elliptic eigenvalue problem
  - Not covered by any general theory of numerical approximation of eigenvalue problems

Both eigenvalue problems are discretized with the same code!
 Standard code available: Stokes + matrix eigenvalue problem

| Stokes eigenvalue problem, first kind                                                                                       | Stokes eigenvalue problem, second kind                                                                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Find ${\pmb u}\in H^1_0(\Omega)^d, {\pmb p}\in L^2_\circ(\Omega), {\pmb \sigma}\in\mathbb{C}$ :                             | Find $\boldsymbol{u} \in H^1_0(\Omega)^d$ , $\boldsymbol{\rho} \in L^2_\circ(\Omega)$ , $\boldsymbol{\sigma} \in \mathbb{C}$ : |  |  |
| $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{\sigma} \boldsymbol{u} \qquad \text{in } \boldsymbol{\Omega}$ | $-\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = 0 \qquad \text{in } \Omega$                                                  |  |  |
| div $\boldsymbol{u}$ = 0 in $\Omega$                                                                                        | div $\boldsymbol{u} = \sigma p$ in $\Omega$                                                                                    |  |  |
|                                                                                                                             |                                                                                                                                |  |  |

1st kind: • Appears in dynamic problems (time stepping, Laplace transform)

- Elliptic eigenvalue problem, compact resolvent,
- Known conditions for convergence of numerical algorithms (discrete LBB condition...)

#### 2nd kind:

- Provides the (continuous and discrete) inf-sup constant:  $\beta_N^2 = \min \sigma_{X_N, M_N}$ 
  - Not an elliptic eigenvalue problem
  - Not covered by any general theory of numerical approximation of eigenvalue problems
- Both eigenvalue problems are discretized with the same code!
- Standard code available: Stokes + matrix eigenvalue problem

### A general approximation result: Convergence

We now assume two conditions for the function spaces, with some *s* satisfying  $0 < s < \frac{1}{2}$ 

An inverse inequality for M<sub>N</sub>

 $\forall q \in M_N : \|q\|_s \leq \eta_{N,s} \|q\|_0$ 

An approximation property for X<sub>N</sub>

 $\forall \, \boldsymbol{u} \in H^{1+s}(\Omega) \cap H^1_0(\Omega) : \quad \inf_{\boldsymbol{v} \in X_N} \left\| \boldsymbol{u} - \boldsymbol{v} \right\|_1 \leq \varepsilon_{N,s} \left\| \boldsymbol{u} \right\|_{1+s}$ 

#### Theorem [BCDG 2016]

Let  $\Omega$  have  $H^{1+s}$  regularity for the Dirichlet problem for some  $0 < s < \frac{1}{2}$ , with an estimate

$$\|\Delta^{-1}\|_{H^{-1+s}\to H^{1+s}} \le C_s$$

and let conditions <a>
</a> and <a>
</a> be satisfied. Then

 $\beta_N \geq \beta(\Omega) - C_s \eta_{N,s} \varepsilon_{N,s}$ .

In particular, if  $\eta_{N,s} \varepsilon_{N,s} \rightarrow 0$  and  $M_N$  is asymptotically dense, then

 $\lim_{N\to\infty}\beta_N=\overline{\beta(\Omega)}.$ 

## A general approximation result: Convergence

Proof. For 
$$q \in M_N$$
, let  $\boldsymbol{w} = \Delta^{-1} \nabla q$  and  $\boldsymbol{w}_N = \Delta_N^{-1} \nabla q$ . Then

$$|\boldsymbol{w}-\boldsymbol{w}_N|_1 = \inf_{\boldsymbol{v}\in X_N} |\boldsymbol{w}-\boldsymbol{v}|_1$$

hence

$$\begin{split} J(q) - J_{N}(q) &= \left| \boldsymbol{w} \right|_{1} - \left| \boldsymbol{w}_{N} \right|_{1} \leq \left| \boldsymbol{w} - \boldsymbol{w}_{N} \right|_{1} \\ &\leq \varepsilon_{N,s} \left\| \boldsymbol{w} \right\|_{1+s} \\ &\leq C_{s} \varepsilon_{N,s} \left\| \nabla q \right\|_{-1+s} \leq C_{s} \varepsilon_{N,s} \left\| q \right\|_{s} \\ &\leq \eta_{N,s} C_{s} \varepsilon_{N,s} \left\| q \right\|_{0} \end{split}$$

For  $||q||_0 = 1$ :

$$egin{aligned} eta(\Omega) &\leq J(q) = J_{\mathcal{N}}(q) + (J(q) - J_{\mathcal{N}}(q)) \ &\leq J_{\mathcal{N}}(q) + \eta_{\mathcal{N},s}C_{s}arepsilon_{\mathcal{N},s} \end{aligned}$$

Minimizing over  $q \in M_N$  gives the result

$$\beta(\Omega) \leq \beta_N + \eta_{N,s} C_s \varepsilon_{N,s}$$
.

#### A. h version of the FEM

Let  $X_N$  and  $M_N$  be conforming finite element spaces defined on quasi-regular meshes with meshwidths  $h_{X_N}$  and  $h_{M_N}$ . Direct and inverse estimates are well known:

$$\eta_{N,s} = C h_{M_N}^{-s}$$
;  $\varepsilon_{N,s} = C h_{X_N}^s$  (any  $s \in (0, \frac{1}{2})$ )

Corollary, h version

If 
$$\lim_{N\to\infty} \frac{h_{X_N}}{h_{M_N}} = 0$$
, then  $\lim_{N\to\infty} \beta_N = \beta(\Omega)$ .

#### B. *p* version of the FEM

Let  $X_N$  and  $M_N$  be finite element spaces of degrees  $\rho_{X_N}$  and  $\rho_{M_N}$  on fixed meshes. The known direct and inverse estimates are

$$\eta_{N,s} = C\left(
ho_{M_N}
ight)^{2s}; \qquad arepsilon_{N,s} = C\left(
ho_{X_N}
ight)^{-s}$$

#### Corollary, piversion

 $\lim_{N \to \infty} \frac{p_{M_N}^2}{p_N} = 0, \text{ then } \lim_{N \to \infty} \beta_N = \beta(\Omega)$ 

### A. h version of the FEM

Let  $X_N$  and  $M_N$  be conforming finite element spaces defined on quasi-regular meshes with meshwidths  $h_{X_N}$  and  $h_{M_N}$ . Direct and inverse estimates are well known:

$$\eta_{N,s} = C \, h_{M_N}^{-s}$$
;  $\varepsilon_{N,s} = C \, h_{X_N}^s$  (any  $s \in (0, rac{1}{2})$ )

Corollary, h version

If 
$$\lim_{N\to\infty} \frac{h_{X_N}}{h_{M_N}} = 0$$
, then  $\lim_{N\to\infty} \beta_N = \beta(\Omega)$ .

### B. p version of the FEM

Let  $X_N$  and  $M_N$  be finite element spaces of degrees  $p_{X_N}$  and  $p_{M_N}$  on fixed meshes. The known direct and inverse estimates are

$$\eta_{N,s} = C(p_{M_N})^{2s}$$
;  $\varepsilon_{N,s} = C(p_{X_N})^{-s}$ .

#### Corollary, p version

If 
$$\lim_{N\to\infty} \frac{p_{M_N}^2}{p_{X_N}} = 0$$
, then  $\lim_{N\to\infty} \beta_N = \beta(\Omega)$ .

Martin Costabel (Rennes)

### A. h version: Yes, sort of

#### Theorem [BCDG2016]

(iii) Given a polygon  $\Omega$ , there exists  $\beta_0 > 0$  such that for arbitrary  $\beta_{\infty} \in (0, \beta_0)$  one can construct a finite element method with  $h_{X_N} = h_{M_N}$  for which

$$\lim_{N\to\infty}\beta_N=\beta_\infty$$

Exemple: Scott-Vogelius  $P_4$ - $P_3^{dc}$  elements on "near-singular meshes"





Numerical observations:

- $p_{X_N} \sim p_{M_N} + k$ : No convergence (Known [Bernardi-Maday 1999]:  $\beta_N \sim p^{-1/2} \rightarrow 0$ )
- P<sub>XN</sub> ~ k · p<sub>MN</sub>, k > 1 : Probably convergence (Known [Bernardi-Maday 1999]: inf-sup stable)

#### Conjecture for the *p* version

As soon as the method is inf-sup stable,  $\underset{N \rightarrow \infty}{\lim} \beta_N = \beta(\Omega)$ 

# Rectangle: Convergence of first 13 eigenvalues, p version

#### Rectangle, aspect ratio 0.4

First 13 Cosserat eigenvalues,  $(Q_k, Q_{k-1})$  "Taylor-Hood"



# Rectangle: Convergence of first 16 eigenvalues, p version

#### Rectangle, aspect ratio 0.4 First 13 Cosserat eigenvalues, $(Q_k, Q_{k-3})$



Martin Costabel (Rennes)

Numerical observations:

- $p_{X_N} \sim p_{M_N} + k$ : No convergence (Known [Bernardi-Maday]:  $\beta_N \sim p^{-1/2} \rightarrow 0$ )
- P<sub>XN</sub> ~ k · p<sub>MN</sub>, k > 1 : Probably convergence (Known [Bernardi-Maday]: inf-sup stable)

#### Conjecture for the *p* version

As soon as the method is inf-sup stable,  $\underset{N \rightarrow \infty}{\lim} \beta_N = \beta(\Omega)$ 

### And the convergence rates ?

Let us look at the rectangle again....

Numerical observations:

- $p_{X_N} \sim p_{M_N} + k$ : No convergence (Known [Bernardi-Maday]:  $\beta_N \sim p^{-1/2} \rightarrow 0$ )
- P<sub>XN</sub> ~ k · p<sub>MN</sub>, k > 1 : Probably convergence (Known [Bernardi-Maday]: inf-sup stable)

#### Conjecture for the *p* version

As soon as the method is inf-sup stable,  $\underset{N \rightarrow \infty}{\lim} \beta_N = \beta(\Omega)$ 

# And the convergence rates ?

Let us look at the rectangle again...

Numerical observations:

- $p_{X_N} \sim p_{M_N} + k$ : No convergence (Known [Bernardi-Maday]:  $\beta_N \sim p^{-1/2} \rightarrow 0$ )
- P<sub>XN</sub> ~ k · p<sub>MN</sub>, k > 1 : Probably convergence (Known [Bernardi-Maday]: inf-sup stable)

#### Conjecture for the *p* version

As soon as the method is inf-sup stable,  $\underset{N \rightarrow \infty}{\lim} \beta_N = \beta(\Omega)$ 

# And the convergence rates ?

Let us look at the rectangle again...

# The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.25



# The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.5



# The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.62



0.183910061

0.187710936

0.003800875

0.667

# The rectangle: Convergence of 1st Cosserat eigenvalue, a = 1



| calc        | extr        | err         | ord   | l |
|-------------|-------------|-------------|-------|---|
| 0.303075403 |             |             |       | l |
| 0.265273420 |             |             |       | l |
| 0.241665485 | 0.202400120 | 0.039265365 | 0.738 | l |
| 0.226676132 | 0.200606788 | 0.026069343 | 0.644 | l |
| 0.216753160 | 0.197318117 | 0.019435043 | 0.563 | l |
| 0.209836989 | 0.193928572 | 0.015908412 | 0.496 | l |
| 0.216753160 | 0.197318117 | 0.019435043 | 0.56  | 3 |





Martin Costabel (Rennes)





a = 0.30; c = 0.066473

a = 0.40; c = 0.10839





a = 0.50; c = 0.15043



a = 0.60; c = 0.1838



a = 0.70; c = 0.20251



a = 0.80; c = 0.21029



a = 0.90; c = 0.21359



a = 1.00; c = 0.21204

### First Cosserat eigenfunction on rectangles : a=1.00



For  $\sigma \notin \{0, \frac{1}{2}, 1\}$ , the operator  $A_{\sigma} = -\sigma\Delta + \nabla$  div is elliptic. If  $\Omega \subset \mathbb{R}^2$  has a corner of opening  $\omega$ , one can therefore determine the corner singularities via **Kondrat'ev**'s method of Mellin transformation: Look for solutions  $\boldsymbol{u}$  of the form  $r^{\lambda}\phi(\theta)$  in a sector.  $\rightarrow \boldsymbol{q} \sim r^{\lambda-1}\phi(\theta)$ Characteristic equation (Lamé system, known!) for a corner of opening  $\omega$ :

(\*) 
$$(1-2\sigma)\omega \frac{\sin \lambda \omega}{\lambda \omega} = \pm \sin \omega.$$

### Theorem [Kondrat'ev 1967]

For  $\sigma \in [0,1] \setminus \{0,\frac{1}{2},1\}$ ,  $A_{\sigma} : H_0^1(\Omega) \to \mathbf{H}^{-1}(\Omega)$  is Fredholm iff the equation (\*) has no solution on the line  $\operatorname{Re} \lambda = 0$ .

Result :

(\*) has roots on the line  ${
m Re}\,\lambda=0$  iff  $|1\!-\!2\sigma|\omega\!\leq\!|\sin\omega|$ 

• If  $|1-2\sigma|\omega > |\sin\omega|$ , there is a real root  $\lambda \in (0,1)$ .

For  $\sigma \notin \{0, \frac{1}{2}, 1\}$ , the operator  $A_{\sigma} = -\sigma\Delta + \nabla$  div is elliptic. If  $\Omega \subset \mathbb{R}^2$  has a corner of opening  $\omega$ , one can therefore determine the corner singularities via **Kondrat'ev**'s method of Mellin transformation: Look for solutions  $\boldsymbol{u}$  of the form  $r^{\lambda}\phi(\theta)$  in a sector.  $\rightarrow \boldsymbol{q} \sim r^{\lambda-1}\phi(\theta)$ Characteristic equation (Lamé system, known!) for a corner of opening  $\omega$ :

(\*) 
$$(1-2\sigma)\omega \frac{\sin \lambda \omega}{\lambda \omega} = \pm \sin \omega.$$

#### Theorem [Kondrat'ev 1967]

For  $\sigma \in [0,1] \setminus \{0,\frac{1}{2},1\}$ ,  $A_{\sigma} : H_0^1(\Omega) \to H^{-1}(\Omega)$  is Fredholm iff the equation (\*) has no solution on the line  $\text{Re } \lambda = 0$ .

Result :

- (\*) has roots on the line  $\operatorname{Re} \lambda = 0$  iff  $|1 2\sigma|\omega \le |\sin \omega|$
- If  $|1 2\sigma|\omega > |\sin \omega|$ , there is a real root  $\lambda \in (0, 1)$

### Essential spectrum: Corners

### Result [Co-Crouzeix-Dauge-Lafranche 2015]

 $\Omega \subset \mathbb{R}^2$  piecewise smooth with corners of opening  $\omega_j$ .

$$\operatorname{Sp}_{\operatorname{ess}}(\mathscr{S}) = \bigcup_{\operatorname{corners} j} \left[ \frac{1}{2} - \frac{|\sin \omega_j|}{2\omega_j}, \frac{1}{2} + \frac{|\sin \omega_j|}{2\omega_j} \right] \cup \{1\}$$



Essential spectrum:  $\sigma$  vs. opening  $\omega$ 

Martin Costabel (Rennes)

### Approximation of the domain $\Omega$ [BCDG 2016]



 $\Omega_N \subset \Omega$  with meas $(\Omega \setminus \Omega_N) \to 0 \implies \lim \sup \beta(\Omega_N) \le \beta(\Omega)$ 

Let  $\Omega_N$  converge to  $\Omega$  in Lipschitz norm, that is:  $\mathfrak{F}_N:\Omega_N o$ 

bi-Lipschitz homeomorphism such that  $\|
abla(\mathfrak{F}_N-\mathrm{Id})\|_{L^\infty} o 0.$ 

Then

# $\lim_{N\to\infty}\beta(\Omega_N)=\beta(\Omega)$

### Approximation of the domain $\Omega$ [BCDG 2016]



Inner approximation: Upper semicontinuity

 $\Omega_N \subset \Omega$  with  $\operatorname{meas}(\Omega \setminus \Omega_N) \to 0 \implies \limsup \beta(\Omega_N) \le \beta(\Omega)$ 

Let  $\Omega_N$  converge to  $\Omega$  in Lipschitz norm, that is:  $\mathfrak{F}_N : \Omega_N \to \Omega$  is a bi-Lipschitz homeomorphism such that  $\|\nabla(\mathfrak{F}_N - \mathrm{Id})\|_{\ell^{\infty}} \to 0$ .

Then

### Approximation of the domain $\Omega$ [BCDG 2016]



Inner approximation: Upper semicontinuity

 $\Omega_N \subset \Omega$  with  $\operatorname{meas}(\Omega \setminus \Omega_N) \to 0 \implies \limsup \beta(\Omega_N) \le \beta(\Omega)$ 

### Approximation in Lipschitz norm: Continuity

Let  $\Omega_N$  converge to  $\Omega$  in Lipschitz norm, that is:  $\mathfrak{F}_N : \Omega_N \to \Omega$  is a bi-Lipschitz homeomorphism such that  $\|\nabla(\mathfrak{F}_N - \mathrm{Id})\|_{L^{\infty}} \to 0$ .

Then

$$\lim_{N\to\infty}\beta(\Omega_N)=\beta(\Omega)$$

Martin Costabel (Rennes)

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let  $\Omega \subset \mathbb{R}^d$  be a bounded John domain. Then  $\beta(\Omega) > 0$ .

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let  $\Omega \subset \mathbb{R}^d$  be a bounded John domain. Then  $\beta(\Omega) > 0$ .



Figure: Not a John domain: Outward cusp,  $\beta(\Omega) = 0$  [Friedrichs 1937]

### Definition

A domain  $\Omega \subset \mathbb{R}^d$  with a distinguished point  $\mathbf{x}_0$  is called a John domain if it satisfies the following "twisted cone" condition:

There exists a constant  $\delta > 0$  such that, for any **y** in  $\Omega$ , there is a rectifiable curve  $\gamma$ :  $[0, \ell] \rightarrow \Omega$  parametrized by arclength such that

 $\gamma(0) = \mathbf{y}, \quad \gamma(\ell) = \mathbf{x}_0, \quad \text{and} \quad \forall t \in [0, \ell] : \quad \operatorname{dist}(\gamma(t), \partial \Omega) \ge \delta t.$ 

Here dist( $\gamma(t), \partial \Omega$ ) denotes the distance of  $\gamma(t)$  to the boundary  $\partial \Omega$ .

Example : Every weakly Lipschitz domain is a John domain.

### Definition

A domain  $\Omega \subset \mathbb{R}^d$  with a distinguished point  $\mathbf{x}_0$  is called a John domain if it satisfies the following "twisted cone" condition:

There exists a constant  $\delta > 0$  such that, for any **y** in  $\Omega$ , there is a rectifiable curve  $\gamma$ :  $[0, \ell] \rightarrow \Omega$  parametrized by arclength such that

 $\gamma(0) = \mathbf{y}, \quad \gamma(\ell) = \mathbf{x}_0, \quad \text{and} \quad \forall t \in [0, \ell] : \quad \operatorname{dist}(\gamma(t), \partial \Omega) \ge \delta t.$ 

Here dist( $\gamma(t), \partial \Omega$ ) denotes the distance of  $\gamma(t)$  to the boundary  $\partial \Omega$ .

Example : Every weakly Lipschitz domain is a John domain.

## A John domain: Union of Lipschitz domains



#### San Juan de la Peña, Jaca 2013

Martin Costabel (Rennes)

## A John domain: Zigzag



### Figure: A weakly Lipschitz domain: the self-similar zigzag



### Figure: Weakly Lipschitz (left), John domain (right)



✓ back

### Related inequalities: Equivalent reformulations

### inf-sup condition

$$\inf_{q \in L^{2}_{o}(\Omega)} \sup_{\boldsymbol{\nu} \in H^{1}_{0}(\Omega)^{d}} \frac{\left\langle \operatorname{div} \boldsymbol{\nu}, q \right\rangle}{\left| \boldsymbol{\nu} \right|_{1} \left\| q \right\|_{0}} \geq \beta > 0$$

Lions' lemma [Lions 1958, Nečas 1965]

$$\forall q \in L^2_{\circ}(\Omega) : \left\|q\right\|_0 \leq C \left|\nabla q\right|_{-1}; \qquad C = \frac{1}{\beta} < \infty$$

### Babuška-Aziz inequality [B-A 1971, Bogovskiĭ1979]

$$\forall q \in L^2_{\circ}(\Omega) \exists \mathbf{v} \in H^1_0(\Omega)^d : \operatorname{div} \mathbf{v} = q \text{ and } |\mathbf{v}|_1^2 \leq C ||q||_0^2; \ C = \frac{1}{\beta^2} < \infty$$

Linearized strain tensor  $e(u) = \frac{1}{2} (\nabla u + (\nabla u)^{\top})$ 

Korn's second inequality

If  $\nabla \boldsymbol{u} - (\nabla \boldsymbol{u})^{\top} \in L^2_{\circ}(\Omega)$ , then

 $\left\|\nabla \boldsymbol{u}\right\|_{0}^{2} \leq K(\Omega) \left\|\boldsymbol{e}(\boldsymbol{u})\right\|_{0}^{2}$ 

If the LBB condition is satisfied for  $\Omega$ , Korn's inequality follows:

$$\partial_i \partial_j u_k = \partial_i e_{jk} + \partial_j e_{jk} - \partial_k e_{ij}, \qquad \boldsymbol{e} = \boldsymbol{e}(\boldsymbol{u})$$
$$\Longrightarrow |\nabla \nabla \boldsymbol{u}|_{-1} \sim |\nabla \boldsymbol{e}(\boldsymbol{u})|_{-1} \Longrightarrow ||\nabla \boldsymbol{u}||_{0} \sim ||\boldsymbol{e}(\boldsymbol{u})||_{0}$$

For  $\Omega \subset \mathbb{R}^d$ , LBB implies Korn:  $K(\Omega) \leq 1 + \frac{2(d-1)}{\beta(\Omega)^2}$ .

• Any bounded domain  $\Omega \subset \mathbb{R}^d$ : (  $C(\Omega) = \beta(\Omega)^{-2}$ ) LBB  $\Longrightarrow$  Korn,  $K(\Omega) \leq 1 + 2(d-1)C(\Omega)$ .

**2**  $d = 2, \Omega$  simply connected:

LBB  $\iff$  Korn,  $C(\Omega) \leq K(\Omega) \leq 1 + 2C(\Omega)$ 

 d = 2, Ω simply connected, Lipschitz: K(Ω) = 2 C(Ω) For smooth domains:
 C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and Babuška-Aziz. ARMA 82 (1983), 165–179.
 For Lipschitz domains: [Costabel-Dauge 201?]

 $d = 2, \Omega = B_{R} \setminus B_{R}$  (not simply connected):  $K(\Omega) \neq 2 C(\Omega)$ [Datermos 1968 (Korr), Chizhenkov–Olshanski 2000 (LBB)] • Any bounded domain  $\Omega \subset \mathbb{R}^d$ : (  $C(\Omega) = \beta(\Omega)^{-2}$ ) LBB  $\Longrightarrow$  Korn,  $K(\Omega) \leq 1 + 2(d-1)C(\Omega)$ .

**2**  $d = 2, \Omega$  simply connected:

LBB  $\iff$  Korn,  $C(\Omega) \leq K(\Omega) \leq 1 + 2C(\Omega)$ 

 d = 2, Ω simply connected, Lipschitz: K(Ω) = 2 C(Ω) For smooth domains:
 C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and Babuška-Aziz. ARMA 82 (1983), 165–179.
 For Lipschitz domains: [Costabel-Dauge 201?]

•  $d = 2, \Omega = B_{r_2} \setminus \overline{B}_{r_1}$  (not simply connected):  $K(\Omega) \neq 2C(\Omega)$ [Dafermos 1968 (Korn), Chizhonkov–Olshanskii 2000 (LBB)] Any bounded domain Ω ⊂ ℝ<sup>d</sup>: LBB ⇒ Korn, K(Ω) ≤ 1+2(d-1)C(Ω).
d = 2, Ω simply connected: LBB ⇔ Korn, C(Ω) ≤ K(Ω) ≤ 1+2C(Ω)
d = 2, Ω simply connected, Lipschitz: K(Ω) = 2C(Ω) For smooth domains: C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and Babuška-Aziz. ARMA 82 (1983), 165–179. For Lipschitz domains: [Costabel-Dauge 201?]

•  $d = 2, \Omega = B_{r_2} \setminus \overline{B}_{r_1}$  (not simply connected):  $K(\Omega) \neq 2 C(\Omega)$ [Dafermos 1968 (Korn), Chizhonkov–Olshanskii 2000 (LBB)]

### Currently open problems:

- What are the optimal bounds between Korn and LBB?
- Solution Is  $K(\Omega) = 2 C(\Omega)$  true for arbitrary simply connected domains in  $\mathbb{R}^2$ ?

### Friedrichs' inequality [named by Horgan-Payne 1983]

There exists a constant  $\Gamma$  such that for any holomorphic  $f + ig \in L^2_{\circ}(\Omega)$ 

 $\left\|f\right\|_{0}^{2} \leq \Gamma \left\|g\right\|_{0}^{2}$ 

### Theorem [Friedrichs 1937]

True for piecewise smooth domains  $\Omega \subset \mathbb{R}^2$  with no outward cusps.

Definition:  $\Gamma(\Omega) = \inf \Gamma$ .

#### Theorem

[Horgan–Payne 1983] Let  $\Omega \subset \mathbb{R}^2$  be bounded, simply connected, and  $C^2$ . Then

$$\frac{1}{\beta(\Omega)^2} = \Gamma(\Omega) + 1.$$

[Costabel-Dauge 2015] This is true for any bounded domain  $\Omega \subset \mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^3$  be a bounded smooth domain. There exists a constant  $\Gamma_1$  such that for any

 $f \in L^2_{\circ}(\Omega), \boldsymbol{g} \in L^2(\Omega)^3$  such that  $\nabla f = \operatorname{curl} \boldsymbol{g} : \|f\|_0^2 \leq \Gamma_1 \|\boldsymbol{g}\|_0^2$ .

Definition:  $\Gamma_1(\Omega) = \inf \Gamma_1$ .

#### Theorem

[Velte 1998] Let  $\Omega \subset \mathbb{R}^3$  be bounded, simply connected, and  $C^2$ . Then

 $\frac{1}{\beta(\Omega)^2} = \Gamma_1(\Omega) + 1.$ 

[Costabel 2015] This is true for any bounded domain  $\Omega \subset \mathbb{R}^3$ .

Let  $\Omega \subset \mathbb{R}^3$  be a bounded smooth domain. There exists a constant  $\Gamma_1$  such that for any

 $f \in L^2_{\circ}(\Omega), \boldsymbol{g} \in L^2(\Omega)^3$  such that  $\nabla f = \operatorname{curl} \boldsymbol{g} : \|f\|_0^2 \leq \Gamma_1 \|\boldsymbol{g}\|_0^2$ .

Definition:  $\Gamma_1(\Omega) = \inf \Gamma_1$ .

#### Theorem

[Velte 1998] Let  $\Omega \subset \mathbb{R}^3$  be bounded, simply connected, and  $C^2$ . Then

 $\frac{1}{\beta(\Omega)^2} = \Gamma_1(\Omega) + 1.$ 

[Costabel 2015] This is true for any bounded domain  $\Omega \subset \mathbb{R}^3$ .

Let  $\Omega \subset \mathbb{R}^3$  be a bounded smooth domain. There exists a constant  $\Gamma_1$  such that for any

 $f \in L^2_{\circ}(\Omega), \boldsymbol{g} \in L^2(\Omega)^3$  such that  $\nabla f = \operatorname{curl} \boldsymbol{g} : \|f\|_0^2 \leq \Gamma_1 \|\boldsymbol{g}\|_0^2$ .

Definition:  $\Gamma_1(\Omega) = \inf \Gamma_1$ .

#### Theorem

[Velte 1998] Let  $\Omega \subset \mathbb{R}^3$  be bounded, simply connected, and  $C^2$ . Then

 $\frac{1}{\beta(\Omega)^2} = \Gamma_1(\Omega) + 1.$ 

[Costabel 2015] This is true for any bounded domain  $\Omega \subset \mathbb{R}^3$ .

Let  $\Omega \subset \mathbb{R}^3$  be a bounded smooth domain. There exists a constant  $\Gamma_1$  such that for any

 $f \in L^2_{\circ}(\Omega), \boldsymbol{g} \in L^2(\Omega)^3$  such that  $\nabla f = \operatorname{curl} \boldsymbol{g} : \|f\|_0^2 \leq \Gamma_1 \|\boldsymbol{g}\|_0^2$ .

Definition:  $\Gamma_1(\Omega) = \inf \Gamma_1$ .

#### Theorem

[Velte 1998] Let  $\Omega \subset \mathbb{R}^3$  be bounded, simply connected, and  $C^2$ . Then

 $\frac{1}{\beta(\Omega)^2} = \Gamma_1(\Omega) + 1.$ 

[Costabel 2015] This is true for any bounded domain  $\Omega \subset \mathbb{R}^3$ .

Let  $\Omega \subset \mathbb{R}^3$  be a bounded smooth domain. There exists a constant  $\Gamma_1$  such that for any

 $f \in L^2_{\circ}(\Omega), \boldsymbol{g} \in L^2(\Omega)^3$  such that  $\nabla f = \operatorname{curl} \boldsymbol{g} : \|f\|_0^2 \leq \Gamma_1 \|\boldsymbol{g}\|_0^2$ .

Definition:  $\Gamma_1(\Omega) = \inf \Gamma_1$ .

#### Theorem

[Velte 1998] Let  $\Omega \subset \mathbb{R}^3$  be bounded, simply connected, and  $C^2$ . Then

 $\frac{1}{\beta(\Omega)^2} = \Gamma_1(\Omega) + 1.$ 

[Costabel 2015] This is true for any bounded domain  $\Omega \subset \mathbb{R}^3$ .