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The LBB constant or inf-sup constant: Definition

@ Q bounded domain in R? (d > 1). No regularity assumptions.

The inf-sup constant of Q2

/divvq
B(Q) = inf sup
qger2@) very@? vl llqll,
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The LBB constant or inf-sup constant: Definition

@ Q bounded domain in R? (d > 1). No regularity assumptions.

The inf-sup constant of Q2

/divvq
B(Q)= inf sup L
gez@ verg@e vl llall,

@ [2(Q) space of square integrable functions g on . Norm ||q/| 0
@ H'(Q) Sobolev space of v € L2(Q2) with gradient Vv € L?(Q)
@ [2(Q) subspace of g € L2(Q) with [,g=0.

e H} () closure in H'(Q) of C3(S2) (zero trace on 9Q)

(Semi-)Norm [u| . = [[Vu|| , €quivalent to norm lull H1()
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The LBB constant or inf-sup constant: Definition

@ Q bounded domain in R? (d > 1). No regularity assumptions.

The inf-sup constant of Q2

/divvq
B(Q)= inf sup L
gez@ verg@e vl llall,

@ [2(Q) space of square integrable functions g on . Norm ||q/| 0

@ H'(Q) Sobolev space of v € L2(Q2) with gradient Vv € L?(Q)

@ [2(Q) subspace of g € L2(Q) with [,g=0.

e H} () closure in H'(Q) of C3(S2) (zero trace on 9Q)
(Semi-)Norm |u| | = [|Vul| S equivalent to norm ||u]| Hi(Q

e 0<B(2) <.

)
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The LBB constant or inf-sup constant: Definition

@ Q bounded domain in R? (d > 1). No regularity assumptions.

The inf-sup constant of Q2

/divvq
B(Q)= inf sup L
gez@ verg@e vl llall,

L2(R) space of square integrable functions g on Q. Norm [/g| 0
H'(£2) Sobolev space of v € L2(Q) with gradient Vv € L2(Q)?
L2(2) subspace of g € L2(Q) with [, g =0.

Hg (€2) closure in H'(2) of C(Q2) (zero trace on 9)
(Semi-)Norm |u| | = [|Vul| S equivalent to norm ||u]| Hi(Q
0<B(Q) <1.

B () is invariant with respect to translations, rotations, dilations.

)

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains Strobl, 05/07/2016

3/

49



The LBB constant or inf-sup constant: Definition

@ Q bounded domain in R? (d > 1). No regularity assumptions.

The inf-sup constant of Q2

/divvq
B(Q)= inf sup L
gez@ verg@e vl llall,

@ [2(Q) space of square integrable functions g on . Norm ||q/| 0

@ H'(Q) Sobolev space of v € L2(Q2) with gradient Vv € L?(Q)

@ [2(Q) subspace of g € L2(Q) with [,g=0.

e H} () closure in H'(Q) of C3(S2) (zero trace on 9Q)
(Semi-)Norm |u| | = [|Vul| S equivalent to norm ||u]| Hi(Q

e 0<B(Q)<1.
e B(Q) is invariant with respect to translations, rotations, dilations.

o We will often talk about| o(Q2) = B()? |instead of B(Q).

)
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Main motivation: LBB condition and the Stokes system

The inf-sup condition or LBB condition

B(R2) >0
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Main motivation: LBB condition and the Stokes system

The inf-sup condition or LBB condition

B(Q2)>0

Classical:
This is true for bounded Lipschitz domains.
Not true for domains with outward cusps.
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Main motivation: LBB condition and the Stokes system

The inf-sup condition or LBB condition

B(Q2)>0

Now known [Acosta et al, 2006—2016]: For bounded domains, this is
basically equivalent to 2 being a John domain.
(More general than Lipschitz ).

Figure: Not a John domain: Outward cusp, 3(€2) = 0 [Friedrichs 1937]
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Main motivation: LBB condition and the Stokes system

The inf-sup condition or LBB condition

B(2)>0

The complete Stokes system

Find u € H}(Q)9, p € L3(Q):

—Au+Vp=t in Q
divu=g in Q

Theorem

The mapping (u,p) — (f,9) : HI(Q)9 x L2(Q) — H'(Q)? x L3(R)
is an isomorphism if and only if () > 0.

| \

Proved (more or less) by L. Cattabriga (1961) for smooth domains
Standard reference:

V. Girault, A. Raviart: Finite Element Methods for Navier-Stokes Equations,
Springer 1986
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The LBB condition

LBB

From Wikipedia, the free encyclopedia

LBB may stand for:

o Lactobacillus delbrueckii subsp. bulgaricus, a bacterium used in the production of yogurt.
o Lubbock Preston Smith International Airport, the IATA code

o Little Brown Bird - birdwatchers acronym for indistinct or unknown small dark bird

¢ Liberty Bible dataBase (.Ibb file extension)

s Ladyzhenskaya-Babuska-Brezzi conditions for stability in mixed finite element analysis
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The LBB condition

Since ~1980, the inf-sup condition for the divergence is often called LBB
condition, after

@ Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions

@ Babuska [Babugka 1971-73]

@ Brezzi [Brezzi 1974]
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The LBB condition

Since ~1980, the inf-sup condition for the divergence is often called LBB
condition, after

@ Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions

@ Babuska [Babugka 1971-73]

@ Brezzi [Brezzi 1974]

Discrete LBB condition

Let Xy C X = H} ()9 and My C M = L2(R2) be sequences of closed subspaces.

Define
/divvq
inf  sup L

acmy vex |vI_ [ql,

Bn =
The uniform discrete inf-sup condition
Bn(Q) > B >0 VN

is also simply called Babuska-Brezzi condition or LBB condition.

Application
Stability and convergence of finite element methods for the Stokes system.
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Why is it important to know the value of B(2) ?

The Stokes system of incompressible fluid dynamics for u € H} (Q)?,
peL5(Q)

—Au+Vp=f in Q
divu=0 in Q

has the variational form

(Vu,Vv) —(divv,p) = (v,f) VveH(Q)
=0

(divu,q) VgeL3(Q)

Pressure Stability for the Stokes problem

ul, < Il _,
T
B(Q2)

Also: Error reduction factor for iterative algorithms such as Uzawa.

ol < s ],
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@ History of this circle of ideas
@ Review of basic properties
© Approximation problems

@ Corner domains
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Time frame: Cosserat EVP

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris

1924 L. Lichtenstein: a boundary integral equation method
1967 V. Maz’'ya — S. Mikhlin: “On the Cosserat spectrum...”
1973 S. Mikhlin: “The spectrum of an operator pencil...”

1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
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Time frame: Cosserat EVP, Inf-Sup

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris

1924 L. Lichtenstein: a boundary integral equation method
1967 V. Maz’'ya — S. Mikhlin: “On the Cosserat spectrum...”
1971 |. Babuska — A.K. Aziz: Foundations of FEM

1973 S. Mikhlin: “The spectrum of an operator pencil...”
1974 F. Brezzi: “...saddle point problems...”

1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
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Time frame: Cosserat EVP, Inf-Sup, Related Inequalities

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris

1909 A. Korn: Korn’s inequality

1924 L. Lichtenstein: a boundary integral equation method

1937 K. Friedrichs: “On certain inequalities. ..”

1967 V. Maz’'ya — S. Mikhlin: “On the Cosserat spectrum...”

1971 |. Babuska — A.K. Aziz: Foundations of FEM

1973 S. Mikhlin: “The spectrum of an operator pencil...”

1974 F. Brezzi: “...saddle point problems...”

1983 C.0. Horgan — L.E. Payne: “On Inequalities of Korn, Friedrichs and

1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
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Time frame: Cosserat EVP, Inf-Sup, Related Inequalities

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris

1909 A. Korn: Korn’s inequality

1924 L. Lichtenstein: a boundary integral equation method

1937 K. Friedrichs: “On certain inequalities. ..”

1967 V. Maz’'ya — S. Mikhlin: “On the Cosserat spectrum...”

1971 |. Babuska — A.K. Aziz: Foundations of FEM

1973 S. Mikhlin: “The spectrum of an operator pencil...”

1974 F. Brezzi: “...saddle point problems...”

1979 M.E. Bogovskii: an integral operator for solving divu = g
1983 C.0. Horgan — L.E. Payne: “On Inequalities of Korn, Friedrichs and
1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
1997 M. Crouzeix: “On the convergence of Uzawa’s algorithm”

1990-1998 W. Velte: “ On optimal constants in some inequalities”
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Time frame: Cosserat EVP, Inf-Sup, Related Inequalities, 21st Century

1898-1901
1909

1924

1937

1967

1971

1973

1974

1979

1983
1993-1999
1997
1990-1998
1994-2000
1999-2009
2000-2004
2006-
2006-
2000-2016

E.&F. Cosserat: 9 papers in CR Acad Sci Paris

A. Korn: Korn’s inequality

L. Lichtenstein: a boundary integral equation method

K. Friedrichs: “On certain inequalities. ..”

V. Maz’'ya — S. Mikhlin: “On the Cosserat spectrum...”

|. Babuska — A.K. Aziz: Foundations of FEM

S. Mikhlin: “The spectrum of an operator pencil...”

F. Brezzi: “...saddle point problems...”

M.E. Bogovskii: an integral operator for solving divu = g

C.0. Horgan — L.E. Payne: “On Inequalities of Korn, Friedrichs and
A. Kozhevnikov: Cosserat EV distribution, 100 years of history

M. Crouzeix: “On the convergence of Uzawa’s algorithm”

W. Velte: “ On optimal constants in some inequalities”

E. Chizhonkov — M. Olshanskii: “On the optimal constant in the inf-
G. Stoyan: discrete inequalities

S. Zsuppan: conformal mappings

C. Simader — W. v. Wahl — S. Weyers: L9, unbounded domains

G. Acosta — R.G. Duran — M.A. Muschietti: John domains

C. Bernardi, M. Co., M. Dauge, V. Girault . . .
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Approximation of the LBB constant on corner domains Strobl, 05/07/2016 8/49



The inf-sup Constant: Known Values

1
BallinR?: o(Q) = p [Ellipsoids in 3D: E.&F. Cosserat 1898] J
In 2D:

X2 2 B
Elllpse?+?<1,a<b: G(Q):m J
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The inf-sup Constant: Known Values

1
BallinR?: o(Q) = p [Ellipsoids in 3D: E.&F. Cosserat 1898] J
In 2D:

X2 2 B
Elllpse?+?<1,a<b: G(Q):m J

Some other simple 2D domains, for example:

Annulus a<r<1: G(Q):E_E

[Chizhonkov-Olshanskii 2000]
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The inf-sup Constant: Known Values, Example

An example from [Zsuppan 2004] “Epitrochoid”
Conformal mapping gmc: Q={z€C||z| <1} = Qmc

_cm
Z—nZ

Ime(2) =

T+2

m

[Zsuppan 2004]
Foro<c<landmeNodd:  B(Qmc)®=3(1— % c)

Qmecforc=0.8
m=7and m=27

v
Observation: Non-convergence

Asm— oo gme(z) =z

0.8

0.6

04r

0.2

Qme — Q, but
B(me) > 3 —§#3 =B(@)? |

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains



Martin Costabel (Rennes) Approximation of the LBB constant on corner domains



Unknown Values : Most of them !

Known: B(Q) < % for any bounded domain.

Hence:  For d = 2, the ball is optimal:  is maximal.
Unknown: For d > 3, is the ball optimal? (Q2) < ﬁ ?
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Unknown Values : Most of them !

Known: B(Q) < % for any bounded domain.

Hence:  For d =2, the ball is optimal: 8 is maximal.
Unknown: For d > 3, is the ball optimal? (Q2) < ﬁ ?

The square Q = (0,1) x (0,1) =: 0 Cc R?

B(0) is still unknown !

Current Conjecture

11 1 1
o(0) =5~ - ~0.18169.. (= B(0) =1/~ —~042625)
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Basic properties of the inf-sup constant: The sup is always attained

Def: J(g)= sup -——= (=|Vqg| ,, dualnorm)

Lemma: sup = max

g)= Sw@a) _ Lo
lw(a)l,

where w(q) € H} ()9 is the solution w of the vector Dirichlet problem

Aw = Vq, or in variational form
(Vw,Vv) = (divv,q) Vve H(Q)

We write
w(q)=A""Vq

Strobl, 05/07/2016

12/49

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains



Back to Stokes

Recall the Stokes system of incompressible fluid dynamics for u € H(Q2)°,
peLi(Q)

—Au+Vp=f in Q
divu=0 in Q

Definition

The Schur complement operator . for the Stokes system is

S =dvA'V: 125 H A Y2

7 is a bounded positive selfadjoint operator in L2(2).
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inf-sup constant and Schur complement

Observation

Define

Then

Proof: —A: H{(Q) — H™'(Q) is the Riesz isometry. For g € L2():
(#q,q9) = (dvA~'Vq,q)
=(-A"'Vq,Vq)
2
=|Val_,
=J(g)?

o(Q)= inf (749.9)
ez (9:9)

= B2y
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Schur complement and Cosserat eigenvalue problem

A well known lemma

Let A: X — Y and B: Y — X be linear operators. Then

Sp(AB)\{0} = Sp(BA) \ {0}
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Schur complement and Cosserat eigenvalue problem

A well known lemma

Let A: X — Y and B: Y — X be linear operators. Then
Sp(AB)\ {0} = Sp(BA)\ {0} .

Recall . =divA~'V.
Corollary
The eigenvalue problem for the Schur complement of the Stokes system

Sp=op inl3(Q)
is, for o £ 0, equivalent to the eigenvalue problem
A7'Vdivu=ocu in H}(Q)°

which is the same as

cAu=Vdivu inH}(Q)°.

This is the Cosserat eigenvalue problem [E.&F. Cosserat, 1898]
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A general approximation result: Upper Semicontinuity

Theorem [BCDG 2016]

Let Xy C X = H}(R)? and My C M = L2(Q2) be sequences of closed
subspaces.
If (Mn)n is asymptotically dense in M, then

limsup By < B(Q)

N—so0

Proof: Recall the definition of J(g) and define similarly
(divv,q)

Jn(g) = sup , sothat B(Q2) = inf Ja) and By = inf In(an)
vexe v, a<h ]|, aw<hh || qu|

Now for g € M given, choose gy € My so that gy — g in LE(Q). Then one has

By < In(an) < Jav)  J(a)
lanlly — llanlly — llall,

Now assume that S — Be. Then fe < ﬁ'((’—cl’) for any g € M and, taking the inf,
finally B.. < B(Q).

\
0
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A simple case where convergence holds

In general, one can have | By < B(Q2)| or |Bn>B(Q)].
No general criterion known.
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A simple case where convergence holds
In general, one can have | By < B(Q2)| or |Bn>B(Q)].

No general criterion known.

If Xy =A"'VMy, then By>B(Q).

Thus, if one knows a basis (g )nen of L2(Q) for which the Dirichlet problem
for w, € HY(Q)?
Aw,=Vq,

can be solved exactly, setting
My =span{q1,...,qn}, Xn=span{wi,...,wn}
leads to

iim By = B(%).

N—soo
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A simple case where convergence holds
In general, one can have | By < B(Q2)| or |Bn>B(Q)].

No general criterion known.

If Xy =A"'VMy, then By>B(Q).

Thus, if one knows a basis (g )nen of L2(Q) for which the Dirichlet problem
for w, € HY(Q)?
Aw,=Vq,

can be solved exactly, setting
My =span{q1,...,qn}, Xn=span{wi,...,wn}
leads to

iim By = B(%).

N—soo

Proof: One has now Jn(q) = J(q) for g € M.
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A simple case where convergence holds

In general, one can have | By < B(2)| or | By =>B(Q).
No general criterion known.

If Xy =A"'VMy, then By>B(Q).

Thus, if one knows a basis (g )nen of L2(Q) for which the Dirichlet problem
for w, € HY(Q)?
Aw,=Vq,

can be solved exactly, setting

My =span{q1,...,qn}, Xn=span{wi,...,wn}

leads to

iim By = B(%).

N—soo
Proof: One has now Jn(q) = J(q) for g € M.

In other words, this is a Galerkin eigenvalue approximation of the exact Schur
complement operator .#. In general cases, A~ will have to be approximated, too.
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Example: The rectangle

[M. Gaultier, M. Lezaun 1996] Let Q = (0,a) x (0,b). Then

gkm(X,y) = cos(kx) cos(uy), k= %” s u="TF, k,m>0,k+m>0
defines an orthogonal basis of L2(2). The Schur complement operator
S =divA~'V = 9,A" "9+ d, A9, can be computed analytically by
solving 1D Dirichlet problems on (0, a) and (0, b)

S Qkm = —K>cos kx (9] — k%)~ '[cos py] — pPcos py (7 — u?) ' [cos kx]
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Example: The rectangle

[M. Gaultier, M. Lezaun 1996] Let Q = (0,a) x (0,b). Then
Qm(x,y) = cos(kx) cos(uy), K ="' u="F km>0k+m>0

defines an orthogonal basis of L2(2). The Schur complement operator
S =divA~'V = dy A~ "9y + dy A~ "9, can be computed analytically by
solving 1D Dirichlet problems on (0, a) and (0, b)

S Qum = —K>cos kx (97 — k%) ' [cos py] — u? cos py (97 — u®) " [cos kx]

Numerical results. — We have performed a few numerical tests. Let
K be a positive integer. We have computed an approximate value of the
smallest eigenvalue - of the matrix Ax by means of the power of Mises
[2, pp. 226-227]). We stopped this calculatioin when the relative error was
les§ than 10=°. We have ascertained that sequence {aK} K>o converges
quickly.

The above mentioned values of the constant P(Q2)~! have been rounded
up to the 3-th decimal place.

, £=1:P(Q)"1=0.226

L=1
L=2, £=1:P(Q)"!=0.151
L=4, £=1:P(Q)"1=0.047.
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Example: The rectangle

[M. Gaultier, M. Lezaun 1996] Let Q = (0,a) x (0,b). Then
Qm(x,y) = cos(kx) cos(uy), K ="' u="F km>0k+m>0

defines an orthogonal basis of L2(2). The Schur complement operator
S =divA~'V = dy A~ "9y + dy A~ "9, can be computed analytically by
solving 1D Dirichlet problems on (0, a) and (0, b)

S Qum = —K>cos kx (97 — k%) ' [cos py] — u? cos py (97 — u®) " [cos kx]

Numerical results. — We have performed a few numerical tests. Let
K be a positive integer. We have computed an approximate value of the
smallest eigenvalue - of the matrix Ax by means of the power of Mises
[2, pp. 226-227]). We stopped this calculatioin when the relative error was
less than 10~°. We have ascertained that sequence {aK} K>o converges
quickly.

The above mentioned values of the constant P(Q2)~! have been rounded

up to the 3-th decimal place. (L, E) _ (a7 b)
L=1, £=1:PQ)~1=0.22 K=N
L=2, £=1:P(@)!=0.151 P(Q)~" =0(Q) = B(Q)?
L=4, £=1:P(Q)"1=0.047.
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The rectangle: First 4 Cosserat eigenvalues, Gaultier-Lezaun method

0.25

0.2

eigenvalue ¢
o
&
T

e
T

0.05-

0 | I I I I I I I I
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

aspect ratio a
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Algorithm for computing the discrete LBB constant

Find u € H}()9\ {0}, o € C such that

cAu—Vdivu=0.

<

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find u € H} ()9, p € L2(Q)\ {0}, 0 € C:

—Au+Vp=0 in Q
divu=op in Q
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Algorithm for computing the discrete LBB constant

Find u € H}()9\ {0}, o € C such that

cAu—Vdivu=0.

The Cosserat eigenvalue problem is a Stokes eigenvalue problem
Find u € H} ()9, p € L2(Q)\ {0}, 0 € C:

| A

—Au+Vp=0 in Q
divu=op in Q

Variational form: Findu e X, pe M, o € C:

(Vu,Vv) —(divv,p) =0 VveX
(divu,q) =o(p,q YqeM

Galerkin discretization: X ~ Xy, M~ My — minoc = B,f,
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Remarks on Two Stokes eigenvalue problems

Stokes eigenvalue problem, first kind Stokes eigenvalue problem, second kind

Find u € H} ()%, p € L3(Q), o € C: Find u € H}(Q)%, pe L3(Q), o € C:

—Au+Vp=ocu in Q —Au+Vp=0 in Q
divu =0 in Q divu =op in Q
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Remarks on Two Stokes eigenvalue problems

Stokes eigenvalue problem, first kind Stokes eigenvalue problem, second kind

Find u € H} ()%, p € L3(Q), o € C: Find u € H}(Q)%, pe L3(Q), o € C:

—Au+Vp=ocu in Q —Au+Vp=0 in Q
divu =0 in Q divu =op in Q

1st kind: e Appears in dynamic problems (time stepping, Laplace transform)

o Elliptic eigenvalue problem, compact resolvent,

e Known conditions for convergence of numerical algorithms
(discrete LBB condition...)

2nd kind: @ Provides the (continuous and discrete) inf-sup constant:

BI%I = minox,, my

o Not an elliptic eigenvalue problem

@ Not covered by any general theory of numerical approximation of
eigenvalue problems
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Remarks on Two Stokes eigenvalue problems

Stokes eigenvalue problem, first kind Stokes eigenvalue problem, second kind

Find u € H}(Q)?, p € L3(Q), o € C: Find u € H}(Q)%, pe L3(Q), o € C:

—Au+Vp=ocu in Q —Au+Vp=0 in Q
divu =0 in Q divu =op in Q

1st kind: e Appears in dynamic problems (time stepping, Laplace transform)

o Elliptic eigenvalue problem, compact resolvent,

e Known conditions for convergence of numerical algorithms
(discrete LBB condition...)

2nd kind: @ Provides the (continuous and discrete) inf-sup constant:

BI%I = minox,, my

o Not an elliptic eigenvalue problem

@ Not covered by any general theory of numerical approximation of
eigenvalue problems

e Both eigenvalue problems are discretized with the same code!
e Standard code available: Stokes + matrix eigenvalue problem J
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A general approximation result: Convergence
We now assume two conditions for the function spaces, with some s
satisfying 0 < s < %
@ Aninverse inequality for My

vageMy: gl <nwslal,
@ An approximation property for Xy
1+s 1 . :
Yue H'™(Q)NHy(Q) : Vlen)EN|u—V|1 gs,\,’s||u||1+

Theorem [BCDG 2016]

|

Let Q have H'tS regularity for the Dirichlet problem for some 0 < s < %
with an estimate

[l < Cs

H-1+s_ypHyl+s —

and let conditions @ and @ be satisfied. Then

Bn > ﬁ(Q) — CsTN,sEN,s -
In particular, if Ny sén,s — 0 and My is asymptotically dense, then

lim B =B(%).
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A general approximation result: Convergence

Proof. For g € My, let w=A""Vgand wy = A,'Vq. Then

_ — inf lw—
lw—wp|, |EnXN|w v,

v
hence
J(q) = In(q) = w|, —[wn|, <|w—wn]|,
<eéns|wl its
< CsensllVall < Csenslall
< Nn.sCsensllall
For lqll, = 1:

B(Q) < J(q) = In(q) +(J(q) — In(Q))
< JUn(g)+ NN,sCsén.s

Minimizing over g € My gives the result

ﬁ(Q) < ﬁN + nN,sCSEN,s .
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Consequences for finite element approximations

A. hversion of the FEM

Let Xy and My be conforming finite element spaces defined on
quasi-regular meshes with meshwidths hx, and hy,. Direct and inverse
estimates are well known:

fMns=Chy':  ens=Ch%, (anyse(0,3))

Corollary, h version

hxy

If lim

N—o By, St enN[)nm[BN ALY
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Consequences for finite element approximations

A. hversion of the FEM

Let Xy and My be conforming finite element spaces defined on
quasi-regular meshes with meshwidths hx, and hy,. Direct and inverse
estimates are well known:

fMns=Chy':  ens=Ch%, (anyse(0,3))

Corollary, h version

hyx,
If im -X% =0, then lim By = B(Q).
b en lim By =pB(Q)

B. p version of the FEM
Let Xy and My be finite element spaces of degrees px, and py,, on fixed
meshes. The known direct and inverse estimates are

Nn,s = Clpmy)* ens = C(pxy) .

Corollary, p version

If lim % =0, then lim By = B(Q).
N—yo0

N—reo Pxy
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Are these conditions necessary?

A. hversion: Yes, sort of

Theorem [BCDG2016]

(iii) Given a polygon €, there exists By > 0 such that for arbitrary
B € (0, Bo) one can construct a finite element method with hx, = hu,, for
which

lim = [Bhs
NH&BN B

Exemple: Scott-Vogelius P4—P§lc elements on “near-singular meshes”
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Are these conditions necessary?

B. p version: Probably not
Numerical observations:
@ px, ~ bumy + k : No convergence
(Known [Bernardi-Maday 1999]: By ~ p~ /2 — 0)
Q@ pxy ~ k- puy, k > 1: Probably convergence
(Known [Bernardi-Maday 1999]: inf-sup stable)

Conjecture for the p version

As soon as the method is inf-sup stable, I\Ilim Bn = B(Q)
o0
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Rectangle: Convergence of first 13 eigenvalues, p version

Rectangle, aspect ratio 0.4
First 13 Cosserat eigenvalues, (Qx, Qx—1) “Taylor-Hood”

Rectangle, aspect ration 0.4, 14 Cosserat eigenvalues, k/k—1
T T T T T

log, 4(F)
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Rectangle: Convergence of first 16 eigenvalues, p version

Rectangle, aspect ratio 0.4
First 13 Cosserat eigenvalues, (Qx, Qx—3)

Rectangle, aspect ration 0.4, 16 Cosserat eigenvalues, k/k-3

log, +(F)

-0.8|
-0.9} B
- 1 1 1 1
6 10 12 14 16
k=deg(u)
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Are these conditions necessary?

B. p version: Probably not
Numerical observations:
@ px, ~ bumy + k : No convergence
(Known [Bernardi-Maday]: By ~ p~ /2 — 0)
Q@ pxy ~ k- puy, k > 1: Probably convergence
(Known [Bernardi-Maday]: inf-sup stable)

Conjecture for the p version

As soon as the method is inf-sup stable, I\Ilim Bn = B(Q)
o0
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Are these conditions necessary?

B. p version: Probably not
Numerical observations:
@ px, ~ bumy + k : No convergence
(Known [Bernardi-Maday]: By ~ p~ /2 — 0)
Q@ pxy ~ k- puy, k > 1: Probably convergence
(Known [Bernardi-Maday]: inf-sup stable)

Conjecture for the p version

As soon as the method is inf-sup stable, I\Ilim Bn = B(Q)
o0

And the convergence rates ?
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Are these conditions necessary?

B. p version: Probably not
Numerical observations:
@ px, ~ bumy + k : No convergence
(Known [Bernardi-Maday]: By ~ p~ /2 — 0)
Q@ pxy ~ k- puy, k > 1: Probably convergence
(Known [Bernardi-Maday]: inf-sup stable)

Conjecture for the p version

As soon as the method is inf-sup stable, I\Ilim Bn = B(Q)
o0

And the convergence rates ?

Let us look at the rectangle again...
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.25

0.0479

a=025
T T

0.0479

0.0479

0.0478

0.0478 1

0.0478 1

0.0478

0.0478 1

0.0477

0.0477

L
0 200

L L L ! T
400 600 800 1000 1200 1400 1600 1800

calc extr err | ord |
0.047864495

0.047813740

0.047762043 | 0.050601250 | 0.002839206 | 1.233
0.047731711 | 0.047688648 | 0.000043063 | 1.661
0.047721678 | 0.047716719 | 0.000004959 | 1.653
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.5

a=050
0.157 T T

0.156 -

0.155

0.154

0.153|

0152

0151

L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800
# dof

calc extr err | ord |
0.155045590

0.153379211

0.151668328 | 0.217441888 | 0.065773559 | 0.572
0.150808779 | 0.149940934 | 0.000867845 | 1.165
0.150394460 | 0.150008906 | 0.000385553 | 1.064
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.62

a=062
T T

0.205

0.2

0.195

0.185
0

560 10‘00 15‘00 ZO‘OO#(M 25;00 3(;00 35;00 A(;OO 4500
calc extr err ord
0.209208446
0.203020937
0.196526729 | 0.334039166 | 0.137512437 | 0.452
0.192239043 | 0.183907261 | 0.008331782 | 0.845
0.189536554 | 0.184929274 | 0.004607279 | 0.769
0.187710936 | 0.183910061 | 0.003800875 | 0.667

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains

Strobl, 05/07/2016

32/49



The rectangle: Convergence of 1st Cosserat eigenvalue, a = 1

a=1.00
T T

0 560 10‘00 15‘00 20‘00 ot 25;00 3(;00 35;00 A(;OO 4500
calc extr err ord
0.303075403
0.265273420

0.241665485 | 0.202400120 | 0.039265365 | 0.738
0.226676132 | 0.200606788 | 0.026069343 | 0.644
0.216753160 | 0.197318117 | 0.019435043 | 0.563
0.209836989 | 0.193928572 | 0.015908412 | 0.496
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First Cosserat eigenfunction on rectangles : a=0.10

a=010; c=0.008122
0.1

0.05
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First Cosserat eigenfunction on rectangles

N
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First Cosserat eigenfunction on rectangles : a=0.20

a= 020; c=0.031377

0.4 05 0.6
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First Cosserat eigenfunction on rectangles : a=0.30

a= 030; c=0.066473

0.4 05 0.6
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First Cosserat eige [ n rectangles : a=0.40

a= 040; c=0.108393
0.4

0.35
03

02
0.15
0.1
0.05

0.4 0.5 0.6 07 0.8 0.9 1
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First Cosserat eigenfunction on rectangles : a=0.50

a= 050; c=015043
o
-
0.4

0.35

0.3

02
0.15
0.1

0.05 .
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First Cosserat eigenfunction on rectangles : a=0.60

a= 060; c=0.1838

0.6 » .

05
0.4
0.3
0.2

0.1
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First Cosserat eigenfunction on rectangles : a=0.70

a= 070; c=0.20251
0.7 pm
-

0.6
05
0.4
0.3
0.2

01

0.2 0.3 0.4 0.5 0.6
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First Cosserat eigenfunction on rectangles : a=

a= 080; c=0.21029
0.8. -

07!
06!
05!
0.4
03!
02
01!

o] 01 02 03 04 05 0.6 07 08 0.8 1
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First Cosserat eigenfunction on rectangles : a=0.90

a=080; c=021359
0.9' -

08
0.7
06
0.53
0.4
03
0.23

0.1

0 | & -
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.8 1
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First Cosserat eigenfunction on rectangles : a=1.00

0.9

0.8

07

0.6

05

0.4

0.3

02

0.1

o
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02 0.4 0.6 0.8
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First Cosserat eigenfunction on rectangles : a

stabel (Rennes)

a=1.00; c=021204

Approximation of the LBB constant on corner domains
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Corner singularities by Kondrat’ev’s method

For o ¢ {0,1.1}, the operator A; = —o A+ Vdiv is elliptic.

If Q C R? has a corner of opening w, one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions u of the form r*¢(8) in a sector. — g ~ r*~1¢(8)
Characteristic equation (Lamé system, known!) for a corner of opening w:

(%) (1-20)w '/1 =tsinw.

Theorem [Kondrat’'ev 1967]

For o € [0,1]\{0, 3,1}, As : H}(Q) — H™'(Q) is Fredholm iff the equation
(*) has no solution on the line Re A = 0.
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Corner singularities by Kondrat’ev’s method

For o ¢ {0,1.1}, the operator A; = —o A+ Vdiv is elliptic.

If Q C R? has a corner of opening w, one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions u of the form r*¢(8) in a sector. — g ~ r*~1¢(8)
Characteristic equation (Lamé system, known!) for a corner of opening w:

(%) (1-20)w '/1 =tsinw.

Theorem [Kondrat’'ev 1967]

For o € [0,1]\{0, 3,1}, As : H}(Q) — H™'(Q) is Fredholm iff the equation
(*) has no solution on the line Re A = 0.

Result :
@ (x) has roots on the line ReA = 0iff |1 — 20 |w < |sino|
@ If |1 —20]|w > |sinw|, there is a real root A € (0,1)
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Essential spectrum: Corners

Result [Co-Crouzeix-Dauge-Lafranche 2015]

Q C R? piecewise smooth with corners of opening ;.
Spes )= U [3— a4+ Tt U {1}

corners j

! Example : Rectangle, o = %
0.9
0.8
0.7 Spess( ‘ ) 5 ﬁa § ]
o0 ~ [0.181 ,0.818]

005 v

0.4
03 Corollary: Square Q =0
02 2_1_1
04 BO)Y <z-3 |

% 05 1 15 2

o en nrd

Essential spectrum: o vs. opening @
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Approximation of the domain €2 [BCDG 2016]

B(22n) < B(corner) < % = B(R) (disc)
— No convergence

Cusps 0 < y < x'+1/N:
M B(Qn) =0, — triangle B(2) >0

— No convergence

Regular polygons,
0 < B(Q) — B(Qw) < 55 Convergence

&N &
HRK &
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Approximation of the domain €2 [BCDG 2016]

® ® ®
o/ o/ 3
& () (=)

Inner approximation: Upper semicontinuity

B(22n) < B(corner) < % = B(R) (disc)
— No convergence

Cusps 0 < y < x+1/N:
B(Qn) =0, — triangle B(Q) >0
== No convergence

Regular polygons,
0 < B(Q) — B(Qw) < 55 Convergence

Qn C Q with meas(2\ Qn) = 0 = limsupB(Q2n) < B(R)
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Approximation of the domain €2 [BCDG 2016]

® ® ®
o/ o/ 3
& () (=)

Inner approximation: Upper semicontinuity

B(22n) < B(corner) < % = B(R) (disc)
— No convergence

Cusps 0 < y < x+1/N:
B(Qn) =0, — triangle B(Q) >0
== No convergence

Regular polygons,
0 < B(Q) — B(Qw) < 55 Convergence

Qn C Q with meas(2\ Qn) = 0 = limsupB(Q2n) < B(R)

Approximation in Lipschitz norm: Continuity

Let Qn converge to Q2 in Lipschitz norm, that is: §n : Qn — Qis a
bi-Lipschitz homeomorphism such that ||V(Fn — Id)||;~ — O.

Then lim B(Qn) = B(9)
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Thank you for your attention!
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Thank you for your attention!
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Theorem [Acosta-Duran-Muschietti 2006], [Duran 2012]

Let Q c RY be a bounded John domain. Then 3(Q) > 0.
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Theorem [Acosta-Duran-Muschietti 2006], [Duran 2012]

Let Q c RY be a bounded John domain. Then 3(Q) > 0.

Figure: Not a John domain: Outward cusp, 3(€2) = 0 [Friedrichs 1937]

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains Strobl, 05/07/2016 50/ 49



Definition of John Domain

Definition

A domain Q C R with a distinguished point xg is called a John domain if it
satisfies the following “twisted cone” condition:

There exists a constant § > 0 such that, for any y in Q, there is a rectifiable
curve v: [0,¢] — Q parametrized by arclength such that

Y(0)=y, y(¢)=x0, and Vte[0,£]: dist(y(t),dQ)>4t.

Here dist(y(t),d2) denotes the distance of ¥(t) to the boundary 9S2.

Strobl, 05/07/2016 51/49
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Definition of John Domain

Definition

A domain Q C R with a distinguished point xg is called a John domain if it
satisfies the following “twisted cone” condition:

There exists a constant § > 0 such that, for any y in Q, there is a rectifiable
curve v: [0,¢] — Q parametrized by arclength such that

Y(0)=y, y(¢)=x0, and Vte[0,£]: dist(y(t),dQ)>4t.

Here dist(y(t),d2) denotes the distance of ¥(t) to the boundary 9S2.

Example : Every weakly Lipschitz domain is a John domain.
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hn domain: Union of Lipschitz domains

San Juan de la Pefa, Jaca 2013
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A John domain: Zigzag

Figure: A weakly Lipschitz domain: the self-similar zigzag
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John domains: Spirals

Figure: Weakly Lipschitz (left), John domain (right)
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Fractal John

: Tree or Lung
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Fractal John

: Tree or Lung
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Related inequalities: Equivalent reformulations

divv,
inf sup u >pB>0
gez@) very@y vl lall,

<

Lions’ lemma [Lions 1958, Necas 1965]

vaeLi(Q) : llall,<ClVal i C=jg<e

Babuska-Aziz inequality [B-A 1971, Bogovskii1979]

vaeL2(Q)Ive Hy(Q)? : dvv=gand |v|> < Cllgl; i C=fz <

v
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Related inequalities: Korn’s inequality

Linearized strain tensor e(u) = 3 (Vu+(Vu)")

Korn’s second inequality

If Vu— (Vu) T € L2(Q), then

IVul|2 < K(Q)le(w)]|

If the LBB condition is satisfied for 2, Korn’s inequality follows:
8,-8,-uk = 8,-e,-k —+ 8,-e,-k — 8ke;,-, e= e(u)

= |VVu|_ ~|Ve(u)| _, = [[Vull, ~ lle(u)ll ,

For Q C RY, LBB implies Korn: K() < 1+ QB(E’Y;)‘Q. J
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LBB +— Korn: Results

@ Any bounded domain Q ¢ R?: (- C(Q) = B(Q)?)
LBB = Korn, K(Q2) <1+2(d—1)C().
Q@ d =2, Q simply connected:
LBB < Korn, C(Q) < K(Q2) <142C(Q)
@ d =2, Q simply connected, Lipschitz: K(2) =2C(Q)
For smooth domains:
C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and
Babuska-Aziz. ARMA 82 (1983), 165-179.
For Lipschitz domains: [Costabel-Dauge 201?]
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LBB +— Korn: Results

@ Any bounded domain Q C R?: ( C(Q) = B(R)73)
LBB = Korn, K(Q2) <1+2(d—1)C().
Q@ d =2, Q simply connected:
LBB < Korn, C(Q) < K(Q2) <142C(Q)
@ d =2, Q simply connected, Lipschitz: K(2) =2C(Q)
For smooth domains:
C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and
Babuska-Aziz. ARMA 82 (1983), 165-179.
For Lipschitz domains: [Costabel-Dauge 201?]
Q@ d=2,Q=8,\ B, (notsimply connected): K(2) #2C(Q)
[Dafermos 1968 (Korn), Chizhonkov—Olshanskii 2000 (LBB)]
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LBB +— Korn: Results

@ Any bounded domain Q C R¢:
LBB = Korn, K(Q2) <1+2(d—1)C().
Q@ d =2, Q simply connected:
LBB <= Korn, C(Q2) < K(Q2) <1+4+2C(Q)
@ d =2, Q simply connected, Lipschitz: K(2) =2C(Q)
For smooth domains:
C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and
Babuska-Aziz. ARMA 82 (1983), 165-179.
For Lipschitz domains: [Costabel-Dauge 201?]
Q d=2,Q=8,\ B, (notsimply connected): K(2) #2C(Q)
[Dafermos 1968 (Korn), Chizhonkov—Olshanskii 2000 (LBB)]

Currently open problems:
@ Is Korn = LBB true for arbitrary domains?
@ What are the optimal bounds between Korn and LBB?
Q Is K(Q) = 2C(Q) true for arbitrary simply connected domains in R??
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Relations: Friedrichs’ inequality for conjugate harmonic functions [Friedrichs 1937]

Friedrichs’ inequality [named by Horgan-Payne 1983]

There exists a constant " such that for any holomorphic f + ig € L2(£)

2 2
1712 <rllgl

Theorem [Friedrichs 1937]

True for piecewise smooth domains Q  R? with no outward cusps.

Definition: I'(Q2) = infl".

[Horgan—Payne 1983] Let Q C R? be bounded, simply connected, and C?.
Then

[Costabel-Dauge 2015] This is true for any bounded domain Q C R?.
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Relations: The Friedrichs-Velte inequality

Friedrichs-Velte inequality [Velte 1998]

Let Q  R® be a bounded smooth domain. There exists a constant [y such
that for any

fe 12(Q), g € L3(Q)° such that Vi =curlg :  ||f]|> <T+|lg]|".

Definition: '1(Q) =infly.
Theorem
[Velte 1998] Let Q C R® be bounded, simply connected, and C?. Then

7[5(;2)2 = 11(Q) +1.

[Costabel 2015] This is true for any bounded domain Q C RS.
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