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The LBB constant or inf-sup constant: Definition

Ω bounded domain in Rd (d ≥ 1 ). No regularity assumptions.

The inf-sup constant of Ω

β (Ω) = inf
q∈L2◦(Ω)

sup
v∈H1

0 (Ω)d

∫
Ω

divv q

|v |
1
‖q‖

0

L2(Ω) space of square integrable functions q on Ω . Norm ‖q‖
0

H1(Ω) Sobolev space of v ∈ L2(Ω) with gradient ∇v ∈ L2(Ω)d

L2
◦(Ω) subspace of q ∈ L2(Ω) with

∫
Ω q = 0 .

H1
0 (Ω) closure in H1(Ω) of C∞

0 (Ω) (zero trace on ∂ Ω)
(Semi-)Norm |u|

1
= ‖∇u‖

0
equivalent to norm ‖u‖

H1(Ω)

• 0≤ β (Ω)≤ 1.
• β (Ω) is invariant with respect to translations, rotations, dilations.

• We will often talk about σ(Ω) = β (Ω)2 instead of β (Ω).
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Main motivation: LBB condition and the Stokes system

The inf-sup condition or LBB condition

β (Ω) > 0

The complete Stokes system

Find u ∈ H1
0 (Ω)d , p ∈ L2

◦(Ω):

−∆u + ∇p = f in Ω

divu = g in Ω

Theorem

The mapping (u,p) 7→ (f,g) : H1
0 (Ω)d ×L2

◦(Ω)→ H−1(Ω)d ×L2
◦(Ω)

is an isomorphism if and only if β (Ω) > 0 .

Proved (more or less) by L. Cattabriga (1961) for smooth domains
Standard reference:
V. Girault, A. Raviart: Finite Element Methods for Navier-Stokes Equations,
Springer 1986
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Main motivation: LBB condition and the Stokes system

The inf-sup condition or LBB condition

β (Ω) > 0

Now known [Acosta et al, 2006–2016]: For bounded domains, this is
basically equivalent to Ω being a John domain.
(More general than Lipschitz Digression: John domains ).

Ω

Figure: Not a John domain: Outward cusp, β (Ω) = 0 [Friedrichs 1937]
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The LBB condition

Since ∼1980, the inf-sup condition for the divergence is often called LBB
condition, after

Ladyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions

Babuška [Babuška 1971-73]

Brezzi [Brezzi 1974]

Discrete LBB condition

Let XN ⊂ X = H1
0 (Ω)d and MN ⊂M = L2

◦(Ω) be sequences of closed subspaces.
Define

βN = inf
q∈MN

sup
v∈XN

∫
Ω

divv q

|v |
1
‖q‖

0

The uniform discrete inf-sup condition

βN (Ω)≥ β∗ > 0 ∀N

is also simply called Babuška-Brezzi condition or LBB condition.

Application

Stability and convergence of finite element methods for the Stokes system.
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Why is it important to know the value of β (Ω) ?

The Stokes system of incompressible fluid dynamics for u ∈ H1
0 (Ω)d ,

p ∈ L2
◦(Ω)

−∆u + ∇p = f in Ω

divu = 0 in Ω

has the variational form

〈∇u,∇v〉−〈divv ,p〉= 〈v , f〉 ∀v ∈ H1
0 (Ω)d

〈divu,q〉 = 0 ∀q ∈ L2
◦(Ω)

Pressure Stability for the Stokes problem

|u|
1
≤ |f|−1

‖p‖
0
≤ 1

β (Ω)
|f|−1

Also: Error reduction factor for iterative algorithms such as Uzawa.
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Outline

1 History of this circle of ideas
2 Review of basic properties
3 Approximation problems
4 Corner domains
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Time frame: Cosserat EVP

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris

1924 L. Lichtenstein: a boundary integral equation method

1967 V. Maz’ya – S. Mikhlin: “On the Cosserat spectrum. . . ”

1973 S. Mikhlin: “The spectrum of an operator pencil. . . ”

1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
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Time frame: Cosserat EVP, Inf-Sup
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1967 V. Maz’ya – S. Mikhlin: “On the Cosserat spectrum. . . ”
1971 I. Babuška – A.K. Aziz: Foundations of FEM
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Time frame: Cosserat EVP, Inf-Sup, Related Inequalities

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris
1909 A. Korn: Korn’s inequality
1924 L. Lichtenstein: a boundary integral equation method
1937 K. Friedrichs: “On certain inequalities. . . ”
1967 V. Maz’ya – S. Mikhlin: “On the Cosserat spectrum. . . ”
1971 I. Babuška – A.K. Aziz: Foundations of FEM
1973 S. Mikhlin: “The spectrum of an operator pencil. . . ”
1974 F. Brezzi: “...saddle point problems...”

1983 C.O. Horgan – L.E. Payne: “On Inequalities of Korn, Friedrichs and Babuška-Aziz”
1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
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1979 M.E. Bogovskiı̆: an integral operator for solving divu = q
1983 C.O. Horgan – L.E. Payne: “On Inequalities of Korn, Friedrichs and Babuška-Aziz”
1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
1997 M. Crouzeix: “On the convergence of Uzawa’s algorithm”
1990-1998 W. Velte: “ On optimal constants in some inequalities”
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Time frame: Cosserat EVP, Inf-Sup, Related Inequalities, 21st Century

1898-1901 E.&F. Cosserat: 9 papers in CR Acad Sci Paris
1909 A. Korn: Korn’s inequality
1924 L. Lichtenstein: a boundary integral equation method
1937 K. Friedrichs: “On certain inequalities. . . ”
1967 V. Maz’ya – S. Mikhlin: “On the Cosserat spectrum. . . ”
1971 I. Babuška – A.K. Aziz: Foundations of FEM
1973 S. Mikhlin: “The spectrum of an operator pencil. . . ”
1974 F. Brezzi: “...saddle point problems...”
1979 M.E. Bogovskiı̆: an integral operator for solving divu = q
1983 C.O. Horgan – L.E. Payne: “On Inequalities of Korn, Friedrichs and Babuška-Aziz”
1993-1999 A. Kozhevnikov: Cosserat EV distribution, 100 years of history
1997 M. Crouzeix: “On the convergence of Uzawa’s algorithm”
1990-1998 W. Velte: “ On optimal constants in some inequalities”
1994-2000 E. Chizhonkov – M. Olshanskiı̆: “On the optimal constant in the inf-sup condition”
1999-2009 G. Stoyan: discrete inequalities
2000-2004 S. Zsuppán: conformal mappings
2006- C. Simader – W. v. Wahl – S. Weyers: Lq , unbounded domains
2006- G. Acosta – R.G. Durán – M.A. Muschietti: John domains
2000-2016 C. Bernardi, M. Co., M. Dauge, V. Girault . . .
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The inf-sup Constant: Known Values

Ball in Rd : σ(Ω) =
1
d

[Ellipsoids in 3D: E.&F. Cosserat 1898]

In 2D:

Ellipse
x2

a2 +
y2

b2 < 1, a < b: σ(Ω) =
a2

a2 + b2

Some other simple 2D domains, for example:

Annulus a < r < 1: σ(Ω) =
1
2
− 1

2

√
1−a2

1 + a2

1
log1/a

[Chizhonkov-Olshanskii 2000]
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The inf-sup Constant: Known Values, Example

An example from [Zsuppán 2004] “Epitrochoid”
Conformal mapping gm,c : Ω = {z ∈ C | |z|< 1}→ Ωm,c

gm,c(z) =
z− c

m zm

1 + c
m

[Zsuppán 2004]

For 0 < c < 1 and m ∈ N odd: β (Ωm,c)2 = 1
2 (1− m+1

2m c)

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Showing:

Ωm,c for c = 0.8
m = 7 and m = 27

Observation: Non-convergence

As m→ ∞: gm,c(z)→ z

Ωm,c →Ω , but

β (Ωm,c)2→ 1
2 −

c
4 6=

1
2 = β (Ω)2
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Unknown Values

Optimality

Known: β (Ω)≤ 1√
2

for any bounded domain.
Hence: For d = 2, the ball is optimal: β is maximal.
Unknown: For d ≥ 3, is the ball optimal? β (Ω)≤ 1√

d
?

The square Ω = (0,1)× (0,1) =: �⊂ R2

β (�) is still unknown !

Current Conjecture

σ(�) =
1
2
− 1

π
≈ 0.18169... (→ β (�) =

√
1
2
− 1

π
≈ 0.42625)
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Unknown Values : Most of them !

Related inequalities
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Basic properties of the inf-sup constant: The sup is always attained

Def: J(q) = sup
v∈H1

0 (Ω)d

〈
divv ,q

〉
|v |

1

(= |∇q|−1
, dual norm )

Lemma: sup = max

J(q) =

〈
divw(q),q

〉
|w(q)|

1

= |w(q)|
1

where w(q) ∈ H1
0 (Ω)d is the solution w of the vector Dirichlet problem

∆w = ∇q, or in variational form

〈∇w ,∇v〉= 〈divv ,q〉 ∀v ∈ H1
0 (Ω)d

We write
w(q) = ∆−1

∇q
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Back to Stokes

Recall the Stokes system of incompressible fluid dynamics for u ∈ H1
0 (Ω)d ,

p ∈ L2
◦(Ω)

−∆u + ∇p = f in Ω

divu = 0 in Ω

Definition

The Schur complement operator S for the Stokes system is

S = div∆−1
∇ : L2

◦
∇→ H−1 ∆−1

→ H1
0

div→ L2
◦

S is a bounded positive selfadjoint operator in L2
◦(Ω).
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inf-sup constant and Schur complement

Observation

Define
σ(Ω) = min Sp(S )

Then
σ(Ω) = β (Ω)2

Proof: −∆ : H1
0 (Ω)→ H−1(Ω) is the Riesz isometry. For q ∈ L2

◦(Ω):〈
S q,q

〉
=
〈

div∆−1
∇q,q

〉
=
〈
−∆−1

∇q,∇q
〉

= |∇q|
2

−1

= J(q)2

σ(Ω) = inf
q∈L2◦(Ω)

〈
S q,q

〉〈
q,q
〉 = β (Ω)2
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Schur complement and Cosserat eigenvalue problem

A well known lemma

Let A : X → Y and B : Y → X be linear operators. Then

Sp(AB)\{0} ≡ Sp(BA)\{0} .

Recall S = div∆−1∇.

Corollary

The eigenvalue problem for the Schur complement of the Stokes system

S p = σp in L2
◦(Ω)

is, for σ 6= 0, equivalent to the eigenvalue problem

∆−1
∇divu = σu in H1

0 (Ω)d

which is the same as

σ∆u = ∇divu in H1
0 (Ω)d .

This is the Cosserat eigenvalue problem [E.&F. Cosserat, 1898]
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A general approximation result: Upper Semicontinuity

Theorem [BCDG 2016]

Let XN ⊂ X = H1
0 (Ω)d and MN ⊂M = L2

◦(Ω) be sequences of closed
subspaces.
If (MN)N is asymptotically dense in M, then

limsup
N→∞

βN ≤ β (Ω)

Proof: Recall the definition of J(q) and define similarly

JN(q) = sup
v∈XN

〈
divv ,q

〉
|v |

1

, so that β (Ω) = inf
q∈M

J(q)

‖q‖
0

and βN = inf
qN∈MN

JN (qN )

‖qN‖ 0

Now for q ∈M given, choose qN ∈MN so that qN → q in L2
◦(Ω). Then one has

βN ≤
JN(qN )

‖qN‖ 0

≤ J(qN)

‖qN‖ 0

→ J(q)

‖q‖
0

Now assume that βN → β∞. Then β∞ ≤ J(q)

‖q‖
0

for any q ∈M and, taking the inf,

finally β∞ ≤ β (Ω).
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A simple case where convergence holds

In general, one can have βN ≤ β (Ω) or βN ≥ β (Ω) .
No general criterion known.

Exception

If XN = ∆−1
∇MN , then βN ≥ β (Ω) .

Thus, if one knows a basis (qn)n∈N of L2
◦(Ω) for which the Dirichlet problem

for wn ∈ H1
0 (Ω)d

∆wn = ∇qn

can be solved exactly, setting

MN = span{q1, . . . ,qN} , XN = span{w1, . . . ,wN}

leads to
lim

N→∞
βN = β (Ω) .

Proof: One has now JN(q) = J(q) for q ∈MN .
In other words, this is a Galerkin eigenvalue approximation of the exact Schur
complement operator S . In general cases, ∆−1 will have to be approximated, too.
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Example: The rectangle

[M. Gaultier, M. Lezaun 1996] Let Ω = (0,a)× (0,b). Then

qkm(x ,y) = cos(κx) cos(µy) , κ = kπ

a , µ = mπ

b , k ,m ≥ 0,k + m > 0

defines an orthogonal basis of L2
◦(Ω). The Schur complement operator

S = div∆−1∇ = ∂x ∆−1∂x + ∂y ∆−1∂y can be computed analytically by
solving 1D Dirichlet problems on (0,a) and (0,b)

S qkm =−κ
2 cosκx (∂

2
y −κ

2)−1[cos µy ]−µ
2 cos µy (∂

2
x −µ

2)−1[cosκx ]
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The rectangle: First 4 Cosserat eigenvalues, Gaultier-Lezaun method
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Algorithm for computing the discrete LBB constant

Cosserat eigenvalue problem

Find u ∈ H1
0 (Ω)d \{0}, σ ∈ C such that

σ∆u−∇divu = 0 .

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find u ∈ H1
0 (Ω)d , p ∈ L2

◦(Ω)\{0}, σ ∈ C:

−∆u + ∇p = 0 in Ω

divu = σp in Ω

Variational form: Find u ∈ X , p ∈M, σ ∈ C:

〈∇u,∇v〉−〈divv ,p〉= 0 ∀v ∈ X

〈divu,q〉 = σ〈p,q〉 ∀q ∈M

Galerkin discretization: X y XN , M y MN =⇒ minσ = β 2
N
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Remarks on Two Stokes eigenvalue problems

Stokes eigenvalue problem, first kind

Find u ∈ H1
0 (Ω)d , p ∈ L2

◦(Ω), σ ∈ C:

−∆u + ∇p = σu in Ω

divu = 0 in Ω

Stokes eigenvalue problem, second kind

Find u ∈ H1
0 (Ω)d , p ∈ L2

◦(Ω), σ ∈ C:

−∆u + ∇p = 0 in Ω

divu = σp in Ω

1st kind: Appears in dynamic problems (time stepping, Laplace transform)
Elliptic eigenvalue problem, compact resolvent,
Known conditions for convergence of numerical algorithms
(discrete LBB condition...)

2nd kind: Provides the (continuous and discrete) inf-sup constant:
β 2

N = minσXN ,MN

Not an elliptic eigenvalue problem
Not covered by any general theory of numerical approximation of
eigenvalue problems

• Both eigenvalue problems are discretized with the same code!
• Standard code available: Stokes + matrix eigenvalue problem
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A general approximation result: Convergence
We now assume two conditions for the function spaces, with some s
satisfying 0 < s < 1

2
1 An inverse inequality for MN

∀q ∈MN : ‖q‖
s
≤ ηN,s ‖q‖ 0

2 An approximation property for XN

∀u ∈ H1+s(Ω)∩H1
0 (Ω) : inf

v∈XN
|u−v |

1
≤ εN,s ‖u‖ 1+s

Theorem [BCDG 2016]

Let Ω have H1+s regularity for the Dirichlet problem for some 0 < s < 1
2 ,

with an estimate
‖∆−1‖

H−1+s→H1+s ≤ Cs

and let conditions 1 and 2 be satisfied. Then

βN ≥ β (Ω)−CsηN,sεN,s .

In particular, if ηN,sεN,s→ 0 and MN is asymptotically dense, then

lim
N→∞

βN = β (Ω) .
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A general approximation result: Convergence

Proof. For q ∈MN , let w = ∆−1∇q and wN = ∆−1
N ∇q. Then

|w −wN | 1 = inf
v∈XN

|w −v |
1

hence
J(q)−JN(q) = |w |

1
−|wN | 1 ≤ |w −wN | 1

≤ εN,s‖w‖ 1+s

≤ CsεN,s‖∇q‖−1+s
≤ CsεN,s‖q‖ s

≤ ηN,sCsεN,s‖q‖ 0

For ‖q‖
0

= 1:

β (Ω)≤ J(q) = JN(q) + (J(q)−JN(q))

≤ JN(q) + ηN,sCsεN,s

Minimizing over q ∈MN gives the result

β (Ω)≤ βN + ηN,sCsεN,s .
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Consequences for finite element approximations

A. h version of the FEM
Let XN and MN be conforming finite element spaces defined on
quasi-regular meshes with meshwidths hXN and hMN . Direct and inverse
estimates are well known:

ηN,s = C h−s
MN

; εN,s = C hs
XN

(any s ∈ (0, 1
2 ))

Corollary, h version

If lim
N→∞

hXN

hMN

= 0, then lim
N→∞

βN = β (Ω).

B. p version of the FEM
Let XN and MN be finite element spaces of degrees pXN and pMN on fixed
meshes. The known direct and inverse estimates are

ηN,s = C (pMN )2s ; εN,s = C (pXN )−s .

Corollary, p version

If lim
N→∞

p2
MN

pXN

= 0, then lim
N→∞

βN = β (Ω).
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Are these conditions necessary?

A. h version: Yes, sort of

Theorem [BCDG2016]

(iii) Given a polygon Ω, there exists β0 > 0 such that for arbitrary
β∞ ∈ (0,β0) one can construct a finite element method with hXN = hMN for
which

lim
N→∞

βN = β∞

Exemple: Scott-Vogelius P4-Pdc
3 elements on “near-singular meshes”
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Are these conditions necessary?

B. p version: Probably not
Numerical observations:

1 pXN ∼ pMN + k : No convergence
(Known [Bernardi-Maday 1999]: βN ∼ p−1/2→ 0)

2 pXN ∼ k ·pMN , k > 1 : Probably convergence
(Known [Bernardi-Maday 1999]: inf-sup stable)

Conjecture for the p version

As soon as the method is inf-sup stable, lim
N→∞

βN = β (Ω)
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Rectangle: Convergence of first 13 eigenvalues, p version

Rectangle, aspect ratio 0.4
First 13 Cosserat eigenvalues, (Qk ,Qk−1) “Taylor-Hood”
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Rectangle: Convergence of first 16 eigenvalues, p version

Rectangle, aspect ratio 0.4
First 13 Cosserat eigenvalues, (Qk ,Qk−3)
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Are these conditions necessary?

B. p version: Probably not
Numerical observations:

1 pXN ∼ pMN + k : No convergence
(Known [Bernardi-Maday]: βN ∼ p−1/2→ 0)

2 pXN ∼ k ·pMN , k > 1 : Probably convergence
(Known [Bernardi-Maday]: inf-sup stable)

Conjecture for the p version

As soon as the method is inf-sup stable, lim
N→∞

βN = β (Ω)

And the convergence rates ?

Let us look at the rectangle again...
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.25
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# dof

a = 0.25

calc extr err ord
0.047864495
0.047813740
0.047762043 0.050601250 0.002839206 1.233
0.047731711 0.047688648 0.000043063 1.661
0.047721678 0.047716719 0.000004959 1.653
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.5
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 0.62
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The rectangle: Convergence of 1st Cosserat eigenvalue, a = 1
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First Cosserat eigenfunction on rectangles : a=0.10
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First Cosserat eigenfunction on rectangles : a=0.10
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First Cosserat eigenfunction on rectangles : a=0.20
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First Cosserat eigenfunction on rectangles : a=0.30
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First Cosserat eigenfunction on rectangles : a=0.40
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First Cosserat eigenfunction on rectangles : a=0.50
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First Cosserat eigenfunction on rectangles : a=0.60
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First Cosserat eigenfunction on rectangles : a=0.70
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First Cosserat eigenfunction on rectangles : a=0.80
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First Cosserat eigenfunction on rectangles : a=0.90
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First Cosserat eigenfunction on rectangles : a=1.00
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Corner singularities by Kondrat’ev’s method

For σ 6∈ {0, 1
2 ,1}, the operator Aσ =−σ∆ + ∇div is elliptic.

If Ω⊂ R2 has a corner of opening ω , one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions u of the form rλ φ(θ) in a sector. → q ∼ rλ−1φ(θ)
Characteristic equation (Lamé system, known!) for a corner of opening ω :

(∗) (1−2σ)ω
sinλω

λω
=−+sinω.

Theorem [Kondrat’ev 1967]

For σ ∈ [0,1]\{0, 1
2 ,1}, Aσ : H1

0 (Ω)→ H−1(Ω) is Fredholm iff the equation
(∗) has no solution on the line Reλ = 0.

Result :

(∗) has roots on the line Reλ = 0 iff |1−2σ |ω ≤ |sinω|
If |1−2σ |ω > |sinω|, there is a real root λ ∈ (0,1)

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains Strobl, 05/07/2016 46 / 49



Corner singularities by Kondrat’ev’s method

For σ 6∈ {0, 1
2 ,1}, the operator Aσ =−σ∆ + ∇div is elliptic.

If Ω⊂ R2 has a corner of opening ω , one can therefore determine the
corner singularities via Kondrat’ev’s method of Mellin transformation:
Look for solutions u of the form rλ φ(θ) in a sector. → q ∼ rλ−1φ(θ)
Characteristic equation (Lamé system, known!) for a corner of opening ω :

(∗) (1−2σ)ω
sinλω

λω
=−+sinω.

Theorem [Kondrat’ev 1967]

For σ ∈ [0,1]\{0, 1
2 ,1}, Aσ : H1

0 (Ω)→ H−1(Ω) is Fredholm iff the equation
(∗) has no solution on the line Reλ = 0.

Result :

(∗) has roots on the line Reλ = 0 iff |1−2σ |ω ≤ |sinω|
If |1−2σ |ω > |sinω|, there is a real root λ ∈ (0,1)

Martin Costabel (Rennes) Approximation of the LBB constant on corner domains Strobl, 05/07/2016 46 / 49



Essential spectrum: Corners

Result [Co-Crouzeix-Dauge-Lafranche 2015]

Ω⊂ R2 piecewise smooth with corners of opening ωj .

Spess(S ) =
⋃

corners j

[ 1
2 −

|sinωj |
2ωj

, 1
2 +

|sinωj |
2ωj

]
∪ {1}

0 0.5 1 1.5 2
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0.8

0.9

1

!  en  " rd

#

Essential spectrum: σ vs. opening ω

Example : Rectangle, ω = π

2

Spess(S
∣∣∣
M

) = [ 1
2 −

1
π
, 1

2 + 1
π

]

≈ [0.181, 0.818]

Corollary: Square Ω = �

β (�)2 ≤ 1
2 −

1
π
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Approximation of the domain Ω [BCDG 2016]

Ω1 Ω2 Ω5

β (ΩN )≤ β (corner) <
√

1
2 = β (Ω) (disc)

=⇒ No convergence

Ω1 Ω2 Ω
Cusps 0 < y < x1+1/N :
β (ΩN ) = 0,→ triangle β (Ω) > 0
=⇒ No convergence

Ω4 Ω8 Ω16

Regular polygons,
0≤ β (Ω)−β (ΩN )≤ π

2N : Convergence

Inner approximation: Upper semicontinuity

ΩN ⊂ Ω with meas(Ω\ΩN)→ 0 =⇒ limsupβ (ΩN)≤ β (Ω)

Approximation in Lipschitz norm: Continuity

Let ΩN converge to Ω in Lipschitz norm, that is: FN : ΩN → Ω is a
bi-Lipschitz homeomorphism such that ‖∇(FN − Id)‖L∞ → 0.

Then lim
N→∞

β (ΩN) = β (Ω)
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Thank you for your attention!
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John domains

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let Ω⊂ Rd be a bounded John domain. Then β (Ω) > 0.
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John domains

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let Ω⊂ Rd be a bounded John domain. Then β (Ω) > 0.

Ω

Figure: Not a John domain: Outward cusp, β (Ω) = 0 [Friedrichs 1937]
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Definition of John Domain

Definition

A domain Ω⊂ Rd with a distinguished point x0 is called a John domain if it
satisfies the following “twisted cone” condition:
There exists a constant δ > 0 such that, for any y in Ω, there is a rectifiable
curve γ : [0, `]→ Ω parametrized by arclength such that

γ(0) = y , γ(`) = x0, and ∀t ∈ [0, `] : dist(γ(t),∂ Ω)≥ δ t .

Here dist(γ(t),∂ Ω) denotes the distance of γ(t) to the boundary ∂ Ω.

Example : Every weakly Lipschitz domain is a John domain.
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A John domain: Union of Lipschitz domains

San Juan de la Peña, Jaca 2013
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A John domain: Zigzag

Figure: A weakly Lipschitz domain: the self-similar zigzag
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John domains: Spirals

Figure: Weakly Lipschitz (left), John domain (right)
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Fractal John domains: Tree or Lung

•x0

back
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Related inequalities: Equivalent reformulations

inf-sup condition

inf
q∈L2◦(Ω)

sup
v∈H1

0 (Ω)d

〈
divv ,q

〉
|v |

1
‖q‖

0

≥ β > 0

Lions’ lemma [Lions 1958, Nečas 1965]

∀q ∈ L2
◦(Ω) : ‖q‖

0
≤ C |∇q|−1

; C = 1
β
< ∞

Babuška-Aziz inequality [B-A 1971, Bogovskiı̆1979]

∀q ∈ L2
◦(Ω) ∃v ∈ H1

0 (Ω)d : divv = q and |v |
2

1
≤ C‖q‖

2

0
; C = 1

β 2 < ∞
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Related inequalities: Korn’s inequality

Linearized strain tensor e(u) = 1
2 (∇u + (∇u)>)

Korn’s second inequality

If ∇u− (∇u)> ∈ L2
◦(Ω), then

‖∇u‖
2

0
≤ K (Ω)‖e(u)‖

2

0

If the LBB condition is satisfied for Ω, Korn’s inequality follows:

∂i∂juk = ∂iejk + ∂jejk −∂k eij , e = e(u)

=⇒ |∇∇u|−1
∼ |∇e(u)|−1

=⇒‖∇u‖
0
∼ ‖e(u)‖

0

For Ω⊂ Rd , LBB implies Korn: K (Ω)≤ 1 + 2(d−1)

β (Ω)2 .
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LBB←→ Korn: Results

1 Any bounded domain Ω⊂ Rd : ( C(Ω) = β (Ω)−2)
LBB =⇒ Korn, K (Ω)≤ 1 + 2(d−1)C(Ω).

2 d = 2, Ω simply connected:
LBB⇐⇒ Korn, C(Ω)≤ K (Ω)≤ 1 + 2C(Ω)

3 d = 2, Ω simply connected, Lipschitz: K (Ω) = 2C(Ω)
For smooth domains:
C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and
Babuška-Aziz. ARMA 82 (1983), 165–179.
For Lipschitz domains: [Costabel-Dauge 201?]

4 d = 2, Ω = Br2 \Br1 (not simply connected): K (Ω) 6= 2C(Ω)
[Dafermos 1968 (Korn), Chizhonkov–Olshanskii 2000 (LBB)]
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LBB←→ Korn: Results

1 Any bounded domain Ω⊂ Rd :
LBB =⇒ Korn, K (Ω)≤ 1 + 2(d−1)C(Ω).

2 d = 2, Ω simply connected:
LBB⇐⇒ Korn, C(Ω)≤ K (Ω)≤ 1 + 2C(Ω)

3 d = 2, Ω simply connected, Lipschitz: K (Ω) = 2C(Ω)
For smooth domains:
C.O. HORGAN, L.E. PAYNE, On Inequalities of Korn, Friedrichs and
Babuška-Aziz. ARMA 82 (1983), 165–179.
For Lipschitz domains: [Costabel-Dauge 201?]

4 d = 2, Ω = Br2 \Br1 (not simply connected): K (Ω) 6= 2C(Ω)
[Dafermos 1968 (Korn), Chizhonkov–Olshanskii 2000 (LBB)]

Currently open problems:

1 Is Korn =⇒ LBB true for arbitrary domains?
2 What are the optimal bounds between Korn and LBB?
3 Is K (Ω) = 2C(Ω) true for arbitrary simply connected domains in R2?
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Relations: Friedrichs’ inequality for conjugate harmonic functions [Friedrichs 1937]

Friedrichs’ inequality [named by Horgan-Payne 1983]

There exists a constant Γ such that for any holomorphic f + ig ∈ L2
◦(Ω)

‖f‖
2

0
≤ Γ‖g‖

2

0

Theorem [Friedrichs 1937]

True for piecewise smooth domains Ω⊂ R2 with no outward cusps.

Definition: Γ(Ω) = infΓ.

Theorem

[Horgan–Payne 1983] Let Ω⊂ R2 be bounded, simply connected, and C2.
Then

1
β (Ω)2 = Γ(Ω) + 1 .

[Costabel-Dauge 2015] This is true for any bounded domain Ω⊂ R2.
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Relations: The Friedrichs-Velte inequality

Friedrichs-Velte inequality [Velte 1998]

Let Ω⊂ R3 be a bounded smooth domain. There exists a constant Γ1 such
that for any

f ∈ L2
◦(Ω), g ∈ L2(Ω)3 such that ∇f = curlg : ‖f‖

2

0
≤ Γ1‖g‖

2

0
.

Definition: Γ1(Ω) = infΓ1.

Theorem

[Velte 1998] Let Ω⊂ R3 be bounded, simply connected, and C2. Then

1
β (Ω)2 = Γ1(Ω) + 1 .

[Costabel 2015] This is true for any bounded domain Ω⊂ R3.

back
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