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Introduction

2D, Time-harmonic, Scalar Eddy Current Problem

−∆u + iσu = 0 in Ω (1a)

u = 1 on ΓD (1b)

gradu · n = 0 on ΓN (1c)

[Dauge et al, 2014]: leading singularity is

r2 log r

Figure: Domain Ω
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Introduction

Approximate PDE’s with singular behavior

Global h, p - FEM yield suboptimal rate of convergence

Refine mesh towards singularity

hp-FEM

Enrich approximation space:

Multiply with smooth Cutoff [Strang and Fix, 1973]
Partition of Unity (PUM) [Babuška and Melenk, 1997]
Auxiliary mapping [Hae-Soo and Babuska, 1992]
Discontinuous Galerkin (DG)

Goal:

No Mesh refinement, easy implementation, exponential convergence,
efficient.
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Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

Standard FEM: Find uh ⊂ Vh ⊂ H1(Ω) s.t.

a(uh, vh) = `(vh) for all vh ∈ Vh.

where

a(w , v) :=

∫
Ω
gradw · gradv + iσwvdx

Céa’s Lemma

‖u − uh‖H1(Ω) ≤ C min
v∈Vh

‖u − v‖H1(Ω)
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Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

Approximation space Vh

Vh := Pp(Th)⊕
{
χ(r) s

k,0/1
1 (r , θ)

∣∣∣ k = 1...p − 1
}

Increase p ⇒ exponential
convergence.

Figure: Triangulation Th
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k,0/1
1 (r , θ)

∣∣∣ k = 1...p − 1
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convergence.
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Raffael Casagrande (ETH Zürich) Enriched DG for resolving Singularities July 5, 2016 5 / 16



Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

Approximation space Vh

Vh := Pp(Th)⊕
{
χ(r) s

k,0/1
1 (r , θ)

∣∣∣ k = 1...p − 1
}

Increase p ⇒ exponential
convergence.

Figure: Smooth cutoff χ
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Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

Approximation space Vh

Vh := Pp(Th)⊕
{
χ(r) s

k,0/1
1 (r , θ)

∣∣∣ k = 1...p − 1
}

Increase p ⇒ exponential
convergence.

Figure: χ · sk,01
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Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

p-Convergence1

σ = 32

1w.r.t. reference solution on extremely fine mesh
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Raffael Casagrande (ETH Zürich) Enriched DG for resolving Singularities July 5, 2016 6 / 16



Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

Pointwise error |u − uh|, p = 10
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Nonsymmetric Interior Penalty (NIP):
Find uh ⊂ Vh ⊂ H2(Th) s.t.

anip(uh, vh) = `nip(vh) for all vh ∈ Vh. (2)

where

anip(w , v) := a(w , v)−
∑
F∈F i

h

∫
F
{{gradhw}} · nF JvK

+
∑
F∈F i

h

JwK
{{
gradhv

}}
· nF +

∑
F∈F i

h

η

hF

∫
F

JwK JvK

⇒ anip(w ,w) = a(w ,w) +
∑
F∈F i

h

η

hF

∫
F

JwK2 η=1
=: ‖w‖2

ip

η > 0 ensures coercivity
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Theorem (Strang 2)

Assume u ∈ H2(Th) and let uh ∈ Vh ⊂ H2(Th) be the Nonsymmetric
Interior Penalty solution. Then

‖u − uh‖ip ≤ (1 + CCtr−1) min
vh∈Vh

‖u − vh‖ip,∗

where C is independent of Vh and

‖w‖2
ip,∗ := ‖w‖2

ip +
∑
T∈Th

hT ‖gradw‖2
L2(∂T )2

Corollary (cf. [Rivière, Wheeler and Girault, 1999])

If Vh = Pp(Th), Th is simplical, shape regular and u sufficiently smooth:

Ctr−1 ≤ C p

minvh∈Vh
‖u − vh‖ip,∗ ≤ C hp

pp−1/2 ‖u‖Hp+1(Ω)
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space Vh

In practice u is not sufficiently smooth.

Split

Vh = Pp(Th,r )⊕ Pp(Th,c)⊕ Sp(Th,c)

Sp(Th,c) =

{
s
k,0/1
1

∣∣∣
Th,c

∣∣∣∣ k = 1 . . . p − 1

}
Expect exponential convergence as p →∞
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Raffael Casagrande (ETH Zürich) Enriched DG for resolving Singularities July 5, 2016 10 / 16
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Enriched Discontinuous Galerkin

Approximation space Vh
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

p-Convergence2

σ = 32

2w.r.t. reference solution on extremely fine mesh
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Quadrature

Quadrature

Question: How to calculate
∫
K sp−1,0

1 (x) · Pp(x) dx where

sk,01 (x(r , θ)) ≈ rk+2 (log r cos(k + 2)θ − θ sin(k + 2)θ)

Analytic formula

Feasible for h-refinement [Strang and Fix, 1973]
Nightmare for arbitrary high-order p

hp-Quadrature
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Quadrature

hp-Quadrature

Input: # refinement levels N, integrand f ∈ Cm(K )

Refine towards singularity N times

Quadrature order on level i : N(1+max(m−1,1))
i − 1

Evaluate quadrature rule Qhp(f )

Analysis:∣∣∣∣∫
K
f − Qhp(f )

∣∣∣∣ ≤ C2−mN m ≥ 1

Observation:
Enriched FEM/DG methods absolutely need very
accurate quadrature.

Figure: hp-quadrature
rule for N = 4, s = 2
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Quadrature

Summary

Enrich approximation space
Less dofs than hp-FEM
Explicit formula of singularity needed
Singular coefficient directly available

polynomials + singularity × cutoff gives exponential convergence for
p � 1

Error at cutoff function
Same problem for Partition of Unity (PUM) expected

Remedy: Discontinuous Galerkin
No Cutoff function

(non-)symmetric interior penalty (nip/sip) work in practice but no
thorough mathematical theory available

Ctr−1 for singular functions ?
Approximation result for enriched Vh ?

Efficient and accurate (numerical) quadrature is a must

Linear Dependency
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Quadrature
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Quadrature

Thank you for you attention.

Raffael Casagrande (ETH Zürich) Enriched DG for resolving Singularities July 5, 2016 16 / 16


	Introduction
	Multiply with smooth Cutoff
	Enriched Discontinuous Galerkin
	Quadrature

