An Enriched Discontinuous Galerkin Method for Resolving Eddy Current Singularities by P-Refinement

Raffael Casagrande

ETH Zürich

raffael.casagrande@sam.math.ethz.ch

July 5, 2016

2D, Time-harmonic, Scalar Eddy Current Problem

$$-\Delta u + i\sigma u = 0 \qquad \text{in } \Omega \qquad \text{(1a)}$$

$$u = 1 \qquad \text{on } \Gamma_D \qquad \text{(1b)}$$

$$\operatorname{grad} u \cdot \mathbf{n} = 0 \qquad \text{on } \Gamma_N \qquad \text{(1c)}$$

$$\sigma > 0$$

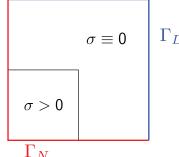


Figure: Domain Ω

2D, Time-harmonic, Scalar Eddy Current Problem

$$-\Delta u + i\sigma u = 0 \qquad \text{in } \Omega \tag{1a}$$

$$u = 1$$
 on Γ_D (1b)

$$\operatorname{grad} u \cdot \mathbf{n} = 0$$
 on Γ_N (1c)

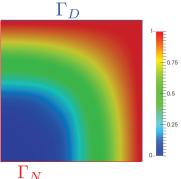


Figure: Reference Solution *u*

2D, Time-harmonic, Scalar Eddy Current Problem

$$-\Delta u + i\sigma u = 0 \qquad \text{in } \Omega \tag{1a}$$

$$u = 1$$
 on Γ_D (1b)

$$\operatorname{grad} u \cdot \mathbf{n} = 0$$
 on Γ_N (1c)

[Dauge et al, 2014]: leading singularity is $r^2 \log r$

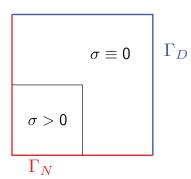


Figure: Domain Ω

• Global h, p - FEM yield suboptimal rate of convergence

3 / 16

- Global h, p FEM yield suboptimal rate of convergence
- Refine mesh towards singularity
- hp-FEM

- Global h, p FEM yield suboptimal rate of convergence
- Refine mesh towards singularity
- hp-FEM
- Enrich approximation space:
 - Multiply with smooth Cutoff [Strang and Fix, 1973]
 - Partition of Unity (PUM) [Babuška and Melenk, 1997]
 - Auxiliary mapping [Hae-Soo and Babuska, 1992]
 - Discontinuous Galerkin (DG)

- Global h, p FEM yield suboptimal rate of convergence
- Refine mesh towards singularity
- hp-FEM
- Enrich approximation space:
 - Multiply with smooth Cutoff [Strang and Fix, 1973]
 - Partition of Unity (PUM) [Babuška and Melenk, 1997]
 - Auxiliary mapping [Hae-Soo and Babuska, 1992]
 - Discontinuous Galerkin (DG)

Goal:

No Mesh refinement, easy implementation, exponential convergence, efficient.

Standard FEM: Find $u_h \subset V_h \subset H^1(\Omega)$ s.t.

$$a(u_h, v_h) = \ell(v_h)$$

for all $v_h \in V_h$.

where

$$a(w, v) := \int_{\Omega} \mathbf{grad} w \cdot \overline{\mathbf{grad} v} + i \sigma w \overline{v} d\mathbf{x}$$

Céa's Lemma

$$||u - u_h||_{H^1(\Omega)} \le C \min_{v \in V_L} ||u - v||_{H^1(\Omega)}$$

Approximation space V_h

$$V_h := \mathcal{P}_p(\mathcal{T}_h) \oplus \left\{ \left. \chi(r) \, \mathfrak{s}_1^{k,0/1}(r, heta) \, \right| \, k = 1...p - 1
ight\}$$

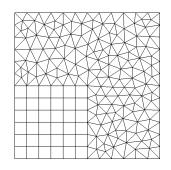


Figure: Triangulation \mathcal{T}_h

Approximation space V_h

$$V_h := \mathcal{P}_p(\mathcal{T}_h) \oplus \left\{ \left. \chi(r) \, \mathfrak{s}_1^{k,0/1}(r,\theta) \right| \, k = 1...p - 1 \right\}$$

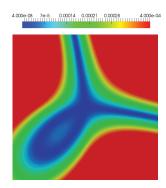


Figure: Singularity $\mathfrak{s}_1^{k,0}$

Approximation space V_h

$$V_h := \mathcal{P}_p(\mathcal{T}_h) \oplus \left\{ \left. \chi(r) \, \mathfrak{s}_1^{k,0/1}(r,\theta) \right| \, k = 1...p - 1
ight\}$$

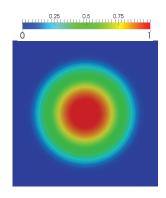


Figure: Smooth cutoff χ

Approximation space V_h

$$V_h := \mathcal{P}_p(\mathcal{T}_h) \oplus \left\{ \left. \chi(r) \, \mathfrak{s}_1^{k,0/1}(r,\theta) \right| \, k = 1...p - 1 \right\}$$

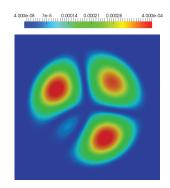
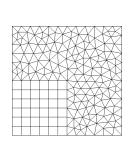
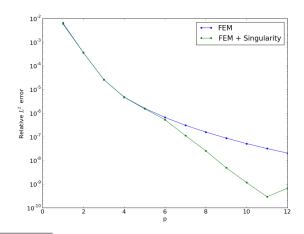


Figure: $\chi \cdot \mathfrak{s}_1^{k,0}$

p-Convergence¹

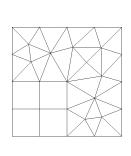


$$\sigma = 32$$

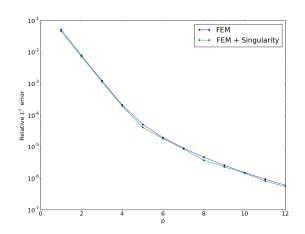


¹w.r.t. reference solution on extremely fine mesh

p-Convergence¹

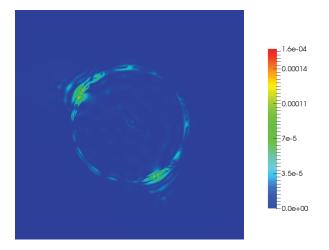


$$\sigma = 32$$

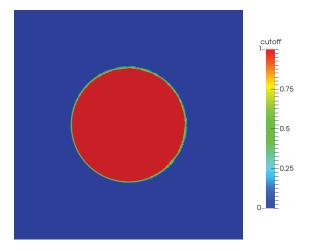


¹w.r.t. reference solution on extremely fine mesh

Pointwise error $|u - u^h|$, p = 10



Pointwise error $|u - u^h|$, p = 10



Nonsymmetric Interior Penalty (NIP):

Find $u_h \subset V_h \subset H^2(\mathcal{T}_h)$ s.t.

$$a^{\mathsf{nip}}(u_h, v_h) = \ell^{\mathsf{nip}}(v_h)$$
 for all $v_h \in V_h$. (2)

where

$$\begin{split} a^{\mathsf{nip}}(w,v) &:= a(w,v) - \sum_{F \in \mathcal{F}_h^i} \int_F \{\!\!\{ \mathbf{grad}_h w \}\!\!\} \cdot \mathbf{n}_F [\![\overline{v}]\!] \\ &+ \sum_{F \in \mathcal{F}_h^i} [\![w]\!] \{\!\!\{ \overline{\mathbf{grad}_h v} \}\!\!\} \cdot \mathbf{n}_F + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F [\![w]\!] [\![\overline{v}]\!] \end{split}$$

Nonsymmetric Interior Penalty (NIP):

Find $u_h \subset V_h \subset H^2(\mathcal{T}_h)$ s.t.

$$a^{\mathsf{nip}}(u_h, v_h) = \ell^{\mathsf{nip}}(v_h)$$
 for all $v_h \in V_h$. (2)

where

$$\begin{split} a^{\mathsf{nip}}(w,v) &:= a(w,v) - \sum_{F \in \mathcal{F}_h^i} \int_F \{\!\!\{ \mathbf{grad}_h w \}\!\!\} \cdot \mathbf{n}_F [\![\overline{v}]\!] \\ &+ \sum_{F \in \mathcal{F}_h^i} [\![w]\!] \{\!\!\{ \overline{\mathbf{grad}_h v} \}\!\!\} \cdot \mathbf{n}_F + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F [\![w]\!] [\![\overline{v}]\!] \end{split}$$

$$\Rightarrow a^{\mathsf{nip}}(w, w) = a(w, w) + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F \llbracket w \rrbracket^2$$

Nonsymmetric Interior Penalty (NIP):

Find $u_h \subset V_h \subset H^2(\mathcal{T}_h)$ s.t.

$$a^{\mathsf{nip}}(u_h, v_h) = \ell^{\mathsf{nip}}(v_h)$$
 for all $v_h \in V_h$. (2)

where

$$\begin{split} a^{\mathsf{nip}}(w,v) &:= a(w,v) - \sum_{F \in \mathcal{F}_h^i} \int_F \left\{ \left\{ \mathbf{grad}_h w \right\} \right\} \cdot \mathbf{n}_F \left[\left[\overline{v} \right] \right] \\ &+ \sum_{F \in \mathcal{F}_h^i} \left[\left[w \right] \right] \left\{ \left\{ \overline{\mathbf{grad}_h v} \right\} \right\} \cdot \mathbf{n}_F + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F \left[\left[w \right] \right] \left[\overline{v} \right] \right] \end{split}$$

$$\Rightarrow a^{\mathsf{nip}}(w,w) = a(w,w) + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F \llbracket w \rrbracket^2 \stackrel{\eta=1}{=:} \lVert w \rVert_{\mathsf{ip}}^2$$

Nonsymmetric Interior Penalty (NIP):

Find $u_h \subset V_h \subset H^2(\mathcal{T}_h)$ s.t.

$$a^{\mathsf{nip}}(u_h, v_h) = \ell^{\mathsf{nip}}(v_h)$$
 for all $v_h \in V_h$. (2)

where

$$\begin{split} a^{\mathsf{nip}}(w,v) &:= a(w,v) - \sum_{F \in \mathcal{F}_h^i} \int_F \left\{ \left\{ \mathbf{grad}_h w \right\} \right\} \cdot \mathbf{n}_F \left[\left[\overline{v} \right] \right] \\ &+ \sum_{F \in \mathcal{F}_h^i} \left[\left[w \right] \right] \left\{ \left\{ \overline{\mathbf{grad}_h v} \right\} \right\} \cdot \mathbf{n}_F + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F \left[\left[w \right] \right] \left[\overline{v} \right] \end{split}$$

$$\Rightarrow a^{\mathsf{nip}}(w,w) = a(w,w) + \sum_{F \in \mathcal{F}_h^i} \frac{\eta}{h_F} \int_F \llbracket w \rrbracket^2 \stackrel{\eta=1}{=:} \lVert w \rVert_{\mathsf{ip}}^2$$

 $\eta > 0$ ensures coercivity

Theorem (Strang 2)

Assume $u \in H^2(\mathcal{T}_h)$ and let $u_h \in V_h \subset H^2(\mathcal{T}_h)$ be the Nonsymmetric Interior Penalty solution. Then

$$||u - u_h||_{ip} \le (1 + CC_{tr^{-1}}) \min_{v_h \in V_h} ||u - v_h||_{ip,*}$$

where C is independent of V_h and

$$\|w\|_{ip,*}^2 := \|w\|_{ip}^2 + \sum_{T \in \mathcal{T}_h} h_T \|\mathbf{grad}w\|_{L^2(\partial T)^2}^2$$

Theorem (Strang 2)

Assume $u \in H^2(\mathcal{T}_h)$ and let $u_h \in V_h \subset H^2(\mathcal{T}_h)$ be the Nonsymmetric Interior Penalty solution. Then

$$||u - u_h||_{ip} \le (1 + CC_{tr^{-1}}) \min_{v_h \in V_h} ||u - v_h||_{ip,*}$$

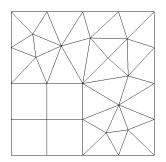
where C is independent of V_h and

$$\|w\|_{ip,*}^2 := \|w\|_{ip}^2 + \sum_{T \in \mathcal{T}_L} h_T \|\mathbf{grad}w\|_{L^2(\partial T)^2}^2$$

Corollary (cf. [Rivière, Wheeler and Girault, 1999])

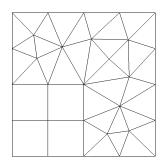
If $V_h = \mathcal{P}_p(\mathcal{T}_h)$, \mathcal{T}_h is simplical, shape regular and u sufficiently smooth:

- $C_{tr^{-1}} \le C p$
- $\min_{v_h \in V_h} \|u v_h\|_{ip,*} \le C \frac{h^p}{p^{p-1/2}} \|u\|_{H^{p+1}(\Omega)}$

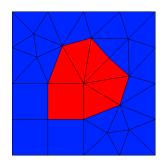


Approximation space V_h

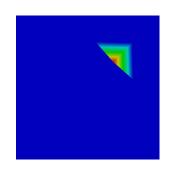
• In practice *u* is *not* sufficiently smooth.



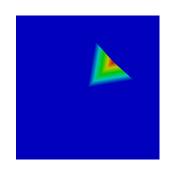
- In practice *u* is *not* sufficiently smooth.
- Split $T_h = T_{h,c} + T_{h,r}$



- In practice *u* is *not* sufficiently smooth.
- Split $\mathcal{T}_h = \mathcal{T}_{h,c} + \mathcal{T}_{h,r}$
- $V_h = \mathcal{P}_p(\mathcal{T}_{h,r}) \oplus \mathcal{P}_p(\mathcal{T}_{h,c}) \oplus \mathcal{S}_p(\mathcal{T}_{h,c})$

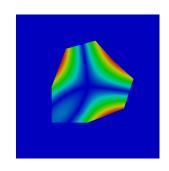


- In practice *u* is *not* sufficiently smooth.
- Split $\mathcal{T}_h = \mathcal{T}_{h,c} + \mathcal{T}_{h,r}$
- $V_h = \mathcal{P}_p(\mathcal{T}_{h,r}) \oplus \mathcal{P}_p(\mathcal{T}_{h,c}) \oplus \mathcal{S}_p(\mathcal{T}_{h,c})$



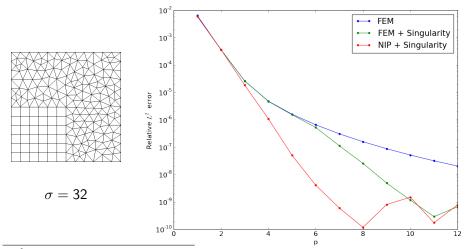
- In practice *u* is *not* sufficiently smooth.
- Split $\mathcal{T}_h = \mathcal{T}_{h,c} + \mathcal{T}_{h,r}$
- $V_h = \mathcal{P}_p(\mathcal{T}_{h,r}) \oplus \mathcal{P}_p(\mathcal{T}_{h,c}) \oplus \mathcal{S}_p(\mathcal{T}_{h,c})$

$$ullet \; \mathcal{S}_p(\mathcal{T}_{h,c}) = \left\{ \left. \mathfrak{s}_1^{k,0/1} \right|_{\mathcal{T}_{h,c}} \right| k = 1 \dots p-1
ight\}$$



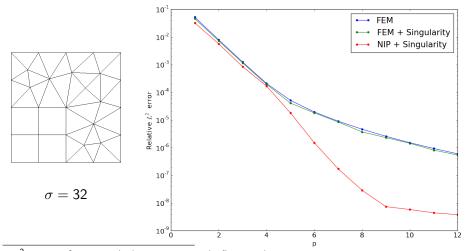
- In practice *u* is *not* sufficiently smooth.
- Split $\mathcal{T}_h = \mathcal{T}_{h,c} + \mathcal{T}_{h,r}$
- $V_h = \mathcal{P}_p(\mathcal{T}_{h,r}) \oplus \mathcal{P}_p(\mathcal{T}_{h,c}) \oplus \mathcal{S}_p(\mathcal{T}_{h,c})$
- $\bullet \;\; \mathcal{S}_p(\mathcal{T}_{h,c}) = \left\{ \left. \mathfrak{s}_1^{k,0/1} \right|_{\mathcal{T}_{h,c}} \right| k = 1 \dots p-1 \right\}$
- ullet Expect exponential convergence as $p o\infty$

p-Convergence²



²w.r.t. reference solution on extremely fine mesh

p-Convergence²



Quadrature

Question: How to calculate $\int_K \mathfrak{s}_1^{p-1,0}(\mathbf{x}) \cdot P_p(\mathbf{x}) d\mathbf{x}$ where

$$\mathfrak{s}_1^{k,0}(\mathbf{x}(r,\theta)) \approx r^{k+2} (\log r \cos(k+2)\theta - \theta \sin(k+2)\theta)$$

- Analytic formula
 - Feasible for h-refinement [Strang and Fix, 1973]
 - Nightmare for arbitrary high-order p
- hp-Quadrature

hp-Quadrature

Input: # refinement levels N, integrand $f \in C^m(\overline{K})$

- Refine towards singularity N times
- Quadrature order on level i: $\frac{N(1+\max(m-1,1))}{i}$
- Evaluate quadrature rule $Q_{hp}(f)$

Analysis:

$$\left| \int_{K} f - Q_{hp}(f) \right| \le C 2^{-mN} \qquad m \ge 1$$

Observation:

Enriched FEM/DG methods *absolutely* need very accurate quadrature.



Figure: hp-quadrature rule for N = 4, s = 2

- Enrich approximation space
 - Less dofs than hp-FEM
 - Explicit formula of singularity needed
 - Singular coefficient directly available

- Enrich approximation space
 - Less dofs than hp-FEM
 - Explicit formula of singularity needed
 - Singular coefficient directly available
- \bullet polynomials + singularity \times cutoff gives exponential convergence for $p\gg 1$
 - Error at cutoff function
 - Same problem for Partition of Unity (PUM) expected

- Enrich approximation space
 - Less dofs than hp-FEM
 - Explicit formula of singularity needed
 - Singular coefficient directly available
- ullet polynomials + singularity imes cutoff gives exponential convergence for $p\gg 1$
 - Error at cutoff function
 - Same problem for Partition of Unity (PUM) expected
- Remedy: Discontinuous Galerkin
 - No Cutoff function

- Enrich approximation space
 - Less dofs than hp-FEM
 - Explicit formula of singularity needed
 - Singular coefficient directly available
- ullet polynomials + singularity imes cutoff gives exponential convergence for $p\gg 1$
 - Error at cutoff function
 - Same problem for Partition of Unity (PUM) expected
- Remedy: Discontinuous Galerkin
 - No Cutoff function
- (non-)symmetric interior penalty (nip/sip) work in practice but no thorough mathematical theory available
 - $C_{tr^{-1}}$ for singular functions ?
 - Approximation result for enriched V_h ?

- Enrich approximation space
 - Less dofs than hp-FEM
 - Explicit formula of singularity needed
 - Singular coefficient directly available
- ullet polynomials + singularity imes cutoff gives exponential convergence for $p\gg 1$
 - Error at cutoff function
 - Same problem for Partition of Unity (PUM) expected
- Remedy: Discontinuous Galerkin
 - No Cutoff function
- (non-)symmetric interior penalty (nip/sip) work in practice but no thorough mathematical theory available
 - $C_{tr^{-1}}$ for singular functions ?
 - Approximation result for enriched V_h ?
- Efficient and accurate (numerical) quadrature is a must

- Enrich approximation space
 - Less dofs than hp-FEM
 - Explicit formula of singularity needed
 - Singular coefficient directly available
- ullet polynomials + singularity imes cutoff gives exponential convergence for $p\gg 1$
 - Error at cutoff function
 - Same problem for Partition of Unity (PUM) expected
- Remedy: Discontinuous Galerkin
 - No Cutoff function
- (non-)symmetric interior penalty (nip/sip) work in practice but no thorough mathematical theory available
 - $C_{tr^{-1}}$ for singular functions ?
 - Approximation result for enriched V_h ?
- Efficient and accurate (numerical) quadrature is a must
- Linear Dependency

References

Gilbert Strang, George J Fix (1973).

An analysis of the finite element method (Vol 212).

Englewood Cliffs. NJ: Prentice-hall.

Ivo Babuška, Jens M. Melenk (1997).

The partition of unity method.

International journal for numerical methods in engineering, 40(4), 727 – 758.

Oh Hae-Soo, Ivo Babuška (1992).

The p-version of the finite element method for the elliptic boundary value problems with interfaces.

Computer methods in appliec mechanics and engineering 92(2), 211 - 231.

Monique Dauge, Patrick Dular, Laurent Krähenbühl, Victor Péron, Ronan Perrussel, Clair Poignard.

Corner asymptotics of the magnetic potential in the eddy-current model.

Mathematical Methods in the Applied Sciences 37(13), 1924 – 1955.

Béatrice Rivière, Mary F Wheeler, Vivette Girault (1999).

Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I.

Computational Geosciences 3(3-4), 337 - 360.

Thank you for you attention.

