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2D, Time-harmonic, Scalar Eddy Current Problem

—Au+iocu=0 in Q (1a)
u=1 onlp (1b) o
gradu-n=0 on Ty (1c)
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[Dauge et al, 2014]: leading singularity is og>0
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Approximate PDE's with singular behavior

@ Global h, p - FEM yield suboptimal rate of convergence
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Approximate PDE's with singular behavior

Global h, p - FEM yield suboptimal rate of convergence
Refine mesh towards singularity

hp-FEM

Enrich approximation space:

Multiply with smooth Cutoff [Strang and Fix, 1973]
Partition of Unity (PUM) [Babuska and Melenk, 1997]
Auxiliary mapping [Hae-Soo and Babuska, 1992]
Discontinuous Galerkin (DG)
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Approximate PDE's with singular behavior

Global h, p - FEM yield suboptimal rate of convergence
Refine mesh towards singularity

hp-FEM

Enrich approximation space:

Multiply with smooth Cutoff [Strang and Fix, 1973]
Partition of Unity (PUM) [Babuska and Melenk, 1997]
Auxiliary mapping [Hae-Soo and Babuska, 1992]
Discontinuous Galerkin (DG)

Goal:

No Mesh refinement, easy implementation, exponential convergence,
efficient.
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Multiply with smooth Cutoff [Strang and Fix, 1973]

Standard FEM: Find v, C V}, C HY(Q) s.t.

a(up, vp) = £(vp) for all v, € V.

where

a(w,v) = / gradw - gradv + iowvdx
Q
Céa’s Lemma

lu = unll o) < C min lu = vl
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Multiply with smooth Cutoff [Strang and Fix, 1973]

Approximation space V},

Vi i= Po(Tn)e{ x(n) s (r,0)| k = 1..p — 1}

Increase p = exponential
convergence.

Figure: Triangulation 7
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Multiply with smooth Cutoff [Strang and Fix, 1973]
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Approximation space V},

Vi = Pp(Th)® {X(r)sk 0/:l(r,b?) k=1.p— 1}

Increase p = exponential
convergence.

Figure: Singularity sf’o

Raffael Casagrande (ETH Ziirich) Enriched DG for resolving Singularities July 5, 2016 5/ 16



Multiply with smooth Cutoff [Strang and Fix, 1973]
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Approximation space V,

Vi i= Po(TR){ x(r) s (r,0)| k = 1..p — 1}

Increase p = exponential
convergence.

Figure: Smooth cutoff x
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Multiply with smooth Cutoff [Strang and Fix, 1973]
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Approximation space V},

Vi i= Po(TR){ x(r) s (r,0)| k = 1..p — 1}

Increase p = exponential
convergence.

Figure: x - sf’o
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Multiply with smoot

Multiply with smooth Cutoff [Strang and Fix, 1973]

p-Convergence!
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lw.r.t. reference solution on extremely fine mesh
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Multiply with smooth Cutoff

Multiply with smooth Cutoff [Strang and Fix, 1973]

, p=10

Pointwise error |u — u”
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Multiply with smooth Cutoff [Strang and Fix, 1973]

Pointwise error |u — u|, p =10
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Nonsymmetric Interior Penalty (NIP):
Find up, C Vi C H?(Th) sit.

a"ip(uh, Vh) = gnip(vh)
where

a"P(w,v) :=a

FeF}

FeF}

for all v, € V.

(w,v) Z /{{grad,,w}L ne [v]

£ Wl {eradyv) net 3 L / [w] [¥]

FeF}
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a"ip(uh, Vh) = gnip(vh)

for all v, € V.
where

a"P(w, v) = a(w, v) / {grad,w} - ng [V]

FeF}
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FeF} FeF}
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FeF}
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Nonsymmetric Interior Penalty (NIP):
Find up, C Vi C H?(Th) sit.

a"ip(uh, Vh) = gnip(vh)
where

a"P(w,v) :=a

FeF}

FeF}

for all v, € V.

(w,v) Z /{{grad,,w}L ne [v]

£ Wl {eradyv) net 3 L / [w] [¥]

FeF}

= a"P(w, w) = a(w, w) + Z /[[]]2”1 wl?

FeF]
1n > 0 ensures coercivity
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Theorem (Strang 2)

Assume u € H?(T,) and let up € Vi, C H?*(T},) be the Nonsymmetric
Interior Penalty solution. Then

||U - u/‘l”ip S (1 + CCtrfl) V:,nei\r}h HU - Vh”ip,*

where C is independent of V), and

2 2 2
lwlig. == lIwlls, + D br llgradw|f2 o7y
TETh
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Theorem (Strang 2)

Assume u € H?(T,) and let up € Vi, C H?*(T},) be the Nonsymmetric
Interior Penalty solution. Then

||U - uh”ip S (1 + CCtrfl) V:,nei\r}h HU - Vh”ip,*

where C is independent of V), and

2 2 2
lwlig. == lIwlls, + D br llgradw|f2 o7y
TETh

Corollary (cf. [Riviere, Wheeler and Girault, 1999])

If Vb = Pp(Tn), Tn is simplical, shape regular and u sufficiently smooth:
e C, -1 <Cp

. hP
@ MiNy,ev, ”u - VhHip,* < CW ||u||HP+1(Q)
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V,
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V,

@ In practice u is not sufficiently smooth.
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V,

@ In practice u is not sufficiently smooth.
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V/,

@ In practice u is not sufficiently smooth.
o Split Th = Thc + Thr
o Vh= 73P(Th,r) D 73p(Th,C) D Sp(Th,C)
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V/,

@ In practice u is not sufficiently smooth.
o Split Th = Thc + Thr
o Vh — ,Pp('Th,r) 2] 73;3(777c) 2] Sp(’Th,c)
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V/,

@ In practice u is not sufficiently smooth.
o Split Th = Thc + Thr

© Viy=Pp(Thr) ® Pp(Th,c) ® Sp(Th,c) / \

oS,,(T,,,C):{sfo/l kzl...p—l} o

Th,c
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

Approximation space V/,

@ In practice u is not sufficiently smooth.

° Spllt 77'1 = 771,c + 77;,r

© Vi ="Pp(Th,r) ® Pp(Th,c) ®© Sp(Th,c)

o Sp(The) = {sf*o/l k= 1...p—1}
Th,c

@ Expect exponential convergence as p — oo
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Enriched Discontinuous Galerkin

Enriched Discontinuous Galerkin

p-Convergence?
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Enriched Discontinuous Galerkin

p-Convergence?
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Quadrature

Question: How to calculate [, 557 "%(x) - P,(x) dx where

s¥0(x(r, 0)) &~ rk*2 (log r cos(k + 2)0 — Osin(k + 2)0)

@ Analytic formula

o Feasible for h-refinement [Strang and Fix, 1973]
o Nightmare for arbitrary high-order p

@ hp-Quadrature
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hp-Quadrature

Input: # refinement levels N, integrand f € C™(K)

@ Refine towards singularity N times
N(1+max.(m—1,1)) _1

@ Quadrature order on level i: ;

e Evaluate quadrature rule Qnp(f)

Analysis:
’/ f—th(f)‘gCT'"N m>1
K

Observation:
Enriched FEM/DG methods absolutely need very
accurate quadrature.
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Figure: hp-quadrature
rule for N =4,s =2
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Summary
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Summary
@ Enrich approximation space
o Less dofs than hp-FEM

e Explicit formula of singularity needed
e Singular coefficient directly available
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@ polynomials 4 singularity x cutoff gives exponential convergence for
p>1
e Error at cutoff function
o Same problem for Partition of Unity (PUM) expected
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Summary

@ Enrich approximation space
o Less dofs than hp-FEM
e Explicit formula of singularity needed
e Singular coefficient directly available

@ polynomials 4 singularity x cutoff gives exponential convergence for
p>1
e Error at cutoff function
o Same problem for Partition of Unity (PUM) expected
@ Remedy: Discontinuous Galerkin
e No Cutoff function
@ (non-)symmetric interior penalty (nip/sip) work in practice but no
thorough mathematical theory available
o C;,—1 for singular functions ?
o Approximation result for enriched Vj, ?
e Efficient and accurate (numerical) quadrature is a must
@ Linear Dependency
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Thank you for you attention.
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