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Physical framework

By the Lorentz law the density of the magnetic force is given by
F = J× B, where J is the current density and B is the magnetic
induction.

Linear isotropic media: B = µH (the scalar function µ being
the magnetic permeability).

Eddy current or static approximation: J = curlH.

If curlH = λH (λ a scalar function) the magnetic force vanishes:

F = curlH× µH = λH× µH = 0 .
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Force-free fields

Fields satisfying curlH = λH are called force-free fields. If λ
is a constant they are called linear force-free fields; in
particular, the eigenvectors of the curl operator (defined on a
suitable domain) are linear force-free fields.

In fluid dynamics, force-free fields are called Beltrami fields, and a
Beltrami field u that is divergence-free and tangential to the
boundary is a steady solution of the Euler equations for

incompressible inviscid flows (with pressure given by p = − |u|2
2 ).
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Linear force-free fields

Some interesting physical examples and remarks:

Arnold–Beltrami-Childress fields (a well-known example of
chaotic flows) are linear force-free fields:

u(x , y , z)
= (C sin kz + B cos ky ,A sin kx + C cos kz ,B sin ky + A cos kx);

linear force-free fields are the asymptotic configurations (they
are the only resistive magnetohydrostatic force-free fields that
remain force-free as time changes) [Jette (1970)];

a field which is divergence-free and tangential to the boundary
(e.g., the magnetic field) and which maximizes the helicity
with fixed energy is a linear force-free field [Woltjer (1958)].
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The helicity of a vector field

Let us explain better this last result.

The helicity of a vector field v, a concept introduced by Woltjer
(1958) and named by Moffatt (1969), is given by

H(v) =
1

4π

∫
Ω

∫
Ω
v(x)× v(y) · x− y

|x− y|3
dx dy .

It is a “measure of the extent to which the field lines wrap and coil
around one another” [Cantarella et al. (2000a), Cantarella et al.
(2001)].

Helicity is particularly interesting for divergence-free vector fields
that are tangential to the boundary (“closed” or “confined” vector
fields).

A. Valli Helicity and Biot–Savart
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The helicity of a vector field (cont’d)

Focusing on the physical meaning, “it is widely recognized that the
key property of turbulence that is most conducive to dynamo
action is its helicity” [Moffatt (2016)]. [Dynamo action is the
physical mechanism through which a rotating, convecting, and
electrically conducting fluid is able to maintain a magnetic field.]

Summing up:

linear force-free fields are important physical objects in fluid
dynamics, turbulence, electromagnetism and plasma physics

the maximum of the helicity with fixed energy is realized by a
linear force-free field tangential to the boundary.
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Basic notations

We assume that Ω is a bounded domain in R3, with Lipschitz
boundary ∂Ω.

The unit outward normal vector on ∂Ω will be denoted by n.

We define

H(curl ; Ω) = {w ∈ (L2(Ω))3 |curlw ∈ (L2(Ω))3} ,

endowed with the norm

‖w‖curl ;Ω = {‖w‖2
0,Ω + ‖curlw‖2

0,Ω}1/2 .
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Homological tools

We also recall some geometrical results (see, e.g., Cantarella et al.
(2002); see also Benedetti et al. (2012)).

Suppose that the first Betti number of Ω is not zero, say, g > 0;
then the first Betti number of ∂Ω is equal to 2g and it is possible
to consider 2g non-bounding cycles on ∂Ω, {γj}gj=1 ∪ {γ′j}

g
j=1, that

are (representative of) the generators of the first homology group
of ∂Ω.

They are such that {γj}gj=1 are (representative of) the generators

of the first homology group of Ω (the tangent vector on γj is
denoted by tj), while {γ′j}

g
j=1 are (representative of) the generators

of the first homology group of Ω′ = B \ Ω, being B an open ball
containing Ω (the tangent vector on γ′j is denoted by t′j).
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Homological tools (cont’d)

It is also known that

in Ω there exist g ‘cutting’ surfaces {Σj}gj=1, that are
connected orientable Lipschitz surfaces satisfying Σj ⊂ Ω and
∂Σj ⊂ ∂Ω, such that every curl-free vector in Ω has a global
potential in the ‘cut’ domain Ω0 := Ω \

⋃g
j=1 Σj ; each surface

Σj satisfies ∂Σj = γ′j , ‘cuts’ the corresponding cycle γj and
does not intersect the other cycles γi for i 6= j ;

in Ω′ there exist g ‘cutting’ surfaces {Σ′
j}

g
j=1, that are

connected orientable Lipschitz surfaces satisfying Σ′
j ⊂ Ω′ and

∂Σ′
j ⊂ ∂Ω, such that every curl-free vector in Ω′ has a global

potential in the ‘cut’ domain (Ω′)0 := Ω′ \
⋃g

j=1 Σ′
j ; each

surface Σ′
j satisfies ∂Σ′

j = γj , ‘cuts’ the corresponding cycle
γ′j , and does not intersect the other cycles γ′i for i 6= j .
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Homological tools (cont’d)

[Looking back at the literature on this topic, where some
misunderstanding appears, it is interesting to make clear that:

the statement concerning the ‘cutting’ surfaces Σj does not
mean that the ‘cut’ domain Ω0 is simply-connected nor that it
is homologically trivial: an example in this sense is furnished
by Ω = Q \ K , where Q is a cube and K is the trefoil knot.]
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The trefoil knot and its Seifert surface
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The space of harmonic fields

We need to introduce the space of harmonic Neumann vector fields

H(m) = {ρ ∈ (L2(Ω))3 |curlρ = 0 in Ω,
divρ = 0 in Ω,ρ · n = 0 on ∂Ω} .

This space has dimension g , and a basis for it is given by
{
ρj
}g
j=1

,

where ρj satisfies
∮
γk
ρj · tk = δjk (see, e.g., Alonso Rodŕıguez et

al. (2018)).

A similar result holds also for the space of harmonic Neumann
vector fields defined in Ω′ with normal component equal to zero on
∂Ω′ = ∂B ∪ ∂Ω, whose basis functions are denoted by ρ′i ,
i = 1, . . . , g .
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The Biot–Savart operator

A. Valli Helicity and Biot–Savart



Introduction and physical remarks
Geometrical preliminaries

The Biot–Savart operator
Variational theory

Helicity

Helicity and the Biot–Savart operator

The Biot–Savart operator is defined by means of the gradient of
the Newtonian kernel.

In the following we furnish a variational characterization of its
orthogonal projection over the space of divergence-free vector fields
that are tangential to the boundary, opening the way to devise
efficient finite element numerical approximation schemes.

Since this projected Biot–Savart operator is shown to be compact,
its spectrum is discrete, and there is an eigenvalue with maximum
absolute value. The computation of this eigenvalue furnishes a
simple characterization of the helicity of a bounded domain,
without restriction on its topological shape.
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The Biot–Savart operator

Let us consider the Hilbert space

V = {v ∈ (L2(Ω))3 |div v = 0 in Ω, v · n = 0 on ∂Ω} .

The Biot–Savart operator BS is defined in V as

BS(v)(x) =
1

4π

∫
Ω
v(y)× x− y

|x− y|3
dy . (1)

Since v · n = 0 on ∂Ω and div v = 0 in Ω, the vector field

ṽ =

{
v in Ω

0 in R3 \ Ω

satisfies div ṽ = 0 in R3, and BS(v) can be rewritten as

BS(v)(x) =
1

4π

∫
R3

ṽ(y)× x− y

|x− y|3
dy .
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The Biot–Savart operator (cont’d)

It is well-known that BS(v) ∈ (H1(R3))3 and satisfies in R3 the
relations curlBS(v) = ṽ and divBS(v) = 0. Hence we have
BS(v) ∈ (H1(Ω))3 and{

curlBS(v) = v in Ω
divBS(v) = 0 in Ω .

Let us introduce the scalar function φv ∈ H1(Ω), solution to the
Neumann problem

∆φv = 0 in Ω
gradφv · n = BS(v) · n on ∂Ω∫

Ω φv = 0 ,

whose existence is guaranteed by the fact that∫
∂Ω

BS(v) · n =

∫
Ω
divBS(v) = 0 .

A. Valli Helicity and Biot–Savart
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The projected Biot–Savart operator

The modified (projected) Biot–Savart operator is defined in V as
follows:

B̂S(v) = BS(v)− gradφv . (2)

Clearly, B̂S(v) is the (L2(Ω))3-orthogonal projection of BS(v) over
V , and satisfies 

curl B̂S(v) = v in Ω

div B̂S(v) = 0 in Ω

B̂S(v) · n = 0 on ∂Ω .

(3)

A. Valli Helicity and Biot–Savart
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Vanishing line integrals

Another important property of both standard and projected
Biot–Savart fields is the following:

Proposition

It holds∮
γj

BS(v) · tj = 0 and

∮
γj

B̂S(v) · tj = 0 ∀ j = 1, . . . g .

A. Valli Helicity and Biot–Savart
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Vanishing line integrals (cont’d)

Proof. Let us recall that BS(v) is indeed defined in R3, hence we
can apply the Stokes theorem on the surface Σ′

j ⊂ Ω′, which
satisfies ∂Σ′

j = γj . We have∮
γj

BS(v) · tj =

∫
Σ′

j

curlBS(v) · n = 0 ,

as curlBS(v) = ṽ in R3, hence curlBS(v) = 0 in Ω′. The same

result holds for B̂S(v), as it differs from BS(v) by gradφv. 2
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A characterization of the projected Biot–Savart operator

In conclusion, the projected Biot–Savart field B̂S(v) satisfies
curl B̂S(v) = v in Ω

div B̂S(v) = 0 in Ω

B̂S(v) · n = 0 on ∂Ω∮
γj
B̂S(v) · tj = 0 ∀ j = 1, . . . g .

(4)

It is well-known that this problem has a unique solution (and here
we will prove this result by showing that problem (4) is equivalent
to a well-posed saddle-point variational problem).

A consequence is that the projected Biot–Savart operator is
completely characterized as the solution operator to problem (4).

A. Valli Helicity and Biot–Savart
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Function spaces

Let us introduce some function spaces that will be useful in the
sequel:

X = {w ∈ H(curl ; Ω) | curlw · n = 0 on ∂Ω} ,

Z = {w ∈ X |
∮
γj
w · tj = 0 for j = 1, . . . , g} ,

H = gradH1(Ω) .

Note that V = H⊥.

A. Valli Helicity and Biot–Savart



Introduction and physical remarks
Geometrical preliminaries

The Biot–Savart operator
Variational theory

Helicity

A variational formulation

A suitable variational formulation of problem (4) is the following
constrained least-square formulation.

For v ∈ V , the couple (B̂S(v), 0) is the solution (u,q) ∈ Z ×H of
the problem∫

Ω curlu · curlw +
∫

Ω q ·w =
∫

Ω v · curlw∫
Ω u · p = 0

(5)

for each (w,p) ∈ Z ×H.

We will see that this problem has a unique solution. For the
moment let us show that problem (4) and (5) are equivalent.

A. Valli Helicity and Biot–Savart
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Equivalence of strong and variational problems

Proposition

The couple (B̂S(v), 0) is a solution to (5).

Proof. The first equation in (5) is clearly satisfied. From the first

equation in (4) it follows at once that B̂S(v) ∈ H(curl ; Ω) and

that curl B̂S(v) · n = 0 on ∂Ω. From the last equation in (4) it

follows that B̂S(v) ∈ Z. Finally, due to the second and third

equations in (4) B̂S(v) is orthogonal to H, namely, the second
equation in (5) is satisfied. 2
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Equivalence of strong and variational problems (cont’d)

Before coming to the reciprocal result we need some preliminary
results. The following lemma is proved in Alonso Rodŕıguez et al.
(2018).

Lemma (orthogonality)

Assume that ϑ, ϕ ∈ H1(Ω) and 1 ≤ k , i ≤ g . Then∫
∂Ω gradϕ · (n× gradϑ) = 0 ,

∫
∂Ω gradϕ · (n× ρ′i ) = 0∫

∂Ω ρk · (n× gradϑ) = 0 ,
∫
∂Ω ρk · (n× ρ

′
i ) = δki .

A. Valli Helicity and Biot–Savart
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Equivalence of strong and variational problems (cont’d)

Then we are in a condition to prove:

Proposition

Let (u,q) be a solution to (5). Then q = 0 and u is a solution to
(4).

Proof. Since H ⊂ Z, we can choose w = q in the first equation
of (5) and from curlq = 0 we find at once q = 0.
The fourth equation in (4) comes from u ∈ Z, and the second
equation in (5) gives divu = 0 in Ω and u · n = 0 on ∂Ω.
Knowing q = 0, the first equation implies curl (curlu− v) = 0 in
Ω. Moreover, integrating by parts we also find for each w ∈ Z∫

∂Ω
(curlu− v) · n×w = 0 .

A. Valli Helicity and Biot–Savart
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Equivalence of strong and variational problems (cont’d)

Since curlu− v is curl-free, it is well-known that it can be written
as

curlu− v = gradϕ+

g∑
k=1

βkρk .

Moreover, we recall from Buffa (2001), Hiptmair et al. (2012) that
the tangential trace of w ∈ X can be written on ∂Ω as

n×w = n× gradϑ+

g∑
j=1

ζj n× ρj +

g∑
i=1

ηi n× ρ′i ,

for ϑ ∈ H1(Ω), where ζj =
∮
γj
w · tj . Knowing that w ∈ Z, this

representation formula reduces to

n×w = n× gradϑ+

g∑
i=1

ηi n× ρ′i .
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Equivalence of strong and variational problems (cont’d)

Thus from the orthogonality lemma we easily obtain

0 =

∫
∂Ω

(curlu− v) · (n×w) =

g∑
k=1

βkηk .

Since ηk are arbitrary, it follows that βk = 0 for k = 1, . . . , g . As a
consequence, we can write curlu− v = gradϕ in Ω.
Since u ∈ Z, it follows curlu ∈ V and thus gradϕ ∈ V = H⊥.
Hence we conclude that gradϕ = 0 and curlu = v in Ω. 2
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Existence and uniqueness

The existence and uniqueness theory for problem (5) is based on
classical results for saddle-point problems.

Let us start by introducing the Hilbert space

H0(div ; Ω) = {v ∈ (L2(Ω))3 |div v ∈ L2(Ω), v · n = 0 on ∂Ω} .

The well-posedness of problem (5) is a consequence of the
following lemmas, that are adapted from Alonso Rodŕıguez et al.
(2018).
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Existence and uniqueness (cont’d)

Lemma (Friedrichs)

Let the Hilbert space X ∩ H0(div ; Ω) be endowed with the norm

‖w‖? := {‖w‖2
0,Ω + ‖divw‖2

0,Ω + ‖curlw‖2
0,Ω}1/2 .

In X ∩ H0(div ; Ω) the seminorm

‖|w‖| :=
{
‖curlw‖2

0,Ω + ‖divw‖2
0,Ω +

g∑
j=1

∣∣∣ ∮
γj

w · tj
∣∣∣2}1/2

is indeed a norm equivalent to the norm ‖w‖?.
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Existence and uniqueness (cont’d)

Proof. Take j with 1 ≤ j ≤ g . Since
∮
γj
w · tj can be written as∮

γj
w · tj =

∫
∂Ω(w× n) · ρ′j (see Alonso Rodŕıguez et al. (2018)), it

follows that
∣∣∣∮γj w · tj ∣∣∣ ≤ C2‖w‖curl ;Ω, thus ‖|w‖|2 ≤ C‖w‖2

?.

The other inequality is proved by contradiction. We suppose that
for all n ∈ N there exists vn ∈ X ∩ H0(div ; Ω) such that
‖vn‖? > n ‖|vn‖|. Let un = vn/‖vn‖?. It follows that ‖un‖? = 1
and

‖curlun‖2
0,Ω + ‖divun‖2

0,Ω +

g∑
j=1

∣∣∣∣∣
∮
γj

un · tj

∣∣∣∣∣
2

<
1

n2
∀ n ∈ N. (6)
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Existence and uniqueness (cont’d)

The space X ∩ H0(div ; Ω) is compactly imbedded in L2(Ω)3;
hence, since the sequence {un}n∈N is bounded in X ∩ H0(div ; Ω),
there exists a subsequence of un (for simplicity, still denoted by un)
and a vector field u ∈ X ∩ H0(div ; Ω) such that un → u in
L2(Ω)3. Thus from (6) we obtain that

‖un − um‖2
? ≤ C

{
‖un − um‖2

0,Ω + ‖divun‖2
0,Ω + ‖divum‖2

0,Ω

+ ‖curlun‖2
0,Ω + ‖curlum‖2

0,Ω

}
.

Then {un}n∈N is a Cauchy sequence in the complete space
X ∩ H0(div ; Ω), which implies that un → u in X ∩ H0(div ; Ω)
with ‖u‖? = 1.
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Existence and uniqueness (cont’d)

From (6) we obtain that curlu = 0 in Ω, divu = 0 in Ω, and that∮
γj
u · tj = 0 for each j = 1, . . . , g . Therefore u ∈ H(m), say,

u =
∑g

k=1 αkρk . In particular, we have

0 =

∮
γj

u · tj =

g∑
k=1

αk

∫
γj

ρk · tj = αj .

In conclusion, we have found u = 0 in Ω and a contradiction is
produced. 2
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Existence and uniqueness (cont’d)

Lemma (ellipticity in the kernel)

There exists α > 0 such that∫
Ω
|curlw|2 ≥ α‖w‖2

curl ;Ω ∀ w ∈ Z ∩H⊥ ,

being

H⊥ =

{
w ∈ (L2(Ω))3

∣∣ ∫
Ω
w · q = 0 for all q ∈H

}
.

Proof. We have already seen that H⊥ = V , hence
Z ∩H⊥ = Z ∩V . Then the ellipticity in the kernel Z ∩V follows
from Friedrichs lemma. 2
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Existence and uniqueness (cont’d)

Lemma (inf–sup condition)

There exists β > 0 such that

sup
w∈Z\{0}

∣∣∫
Ω w · p

∣∣
‖w‖curl ,Ω

≥ β ‖p‖0,Ω , ∀ p ∈ H.

Proof. The inf–sup condition follows by taking w = p ∈H ⊂ Z
(thus curlw = 0 in Ω). 2

By virtue of the ellipticity in the kernel and the inf–sup condition,
problem (5) is a well-posed problem, as the Babuška–Brezzi
conditions for saddle-point problems are satisfied.
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The projected Biot–Savart operator revisited

We have thus characterized the projected Biot–Savart operator B̂S
in the following way.

Theorem

Let T : V → Z ∩ V be the solution operator Tv = u, where
(u,q) ∈ Z ×H is the solution to problem (5) (thus u ∈ Z ∩ V ,

q = 0). Then T is the projected Biot–Savart operator B̂S .

This characterization opens the way to efficient finite element
numerical approximations. Since the projected Biot–Savart
operator is self-adjoint and compact in V (see, e.g., Cantarella et
al. (2001)), its spectrum is discrete and can be efficiently
approximated (this has been done for the operator T in Alonso
Rodŕıguez et al. (2018) by means of edge finite elements).
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Back to the helicity

Let us go back to the helicity of a vector field v ∈ (L2(Ω))3 defined
as

H(v) =
1

4π

∫
Ω

∫
Ω

(
v(x)× v(y)

)
· x− y

|x− y|3
dx dy .

This can be clearly rewritten as

H(v) =

∫
Ω
v · BS(v) .

If the vector field v satisfies the additional assumption v ∈ V , an
easy consequence of the fact that V = H⊥ is that

H(v) =

∫
Ω
v · B̂S(v) . (7)
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Back to the helicity (cont’d)

Remark

For a vector field v ∈ V ∩H(m)⊥ the helicity could be defined as

H(v) =

∫
Ω
v · A ,

where curlA = v, namely, A is a vector potential of v (see Moffatt
(1969)). In fact, for any other vector field A] with curlA] = v it
holds curl (A− A]) = 0 in Ω, thus (A− A]) ∈H⊕H(m).
Therefore v is orthogonal to A− A], and the helicity turns out to
be the same for any vector potential of v.
However, this is not the case if v belongs to V but not to H(m)⊥.
Since the most interesting physical cases are associated to a vector
field v ∈ V (for instance, an inviscid incompressible flow, or the
magnetic field), we refer to definition (7). �
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The helicity of a domain

The helicity of a domain Ω is defined by

HΩ = sup
v∈V,‖v‖L2(Ω)=1

|H(v)| . (8)

As a consequence of the fact that the projected Biot–Savart
operator B̂S is self-adjoint and compact, the helicity of Ω can be
represented as

HΩ = |λΩ
max| ,

where λΩ
max is the eigenvalue of B̂S in Ω of maximum absolute

value.
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The helicity of a domain (cont’d)

The proof of this result follows a well-known argument. Since it is
self-adjoint, the projected Biot–Savart operator has a complete
system of eigenfunctions {ωk}∞k=1, which are orthonormal in V
(or, equivalently, in (L2(Ω)3). Associated to these eigenfunctions
there is a sequence of (real) eigenvalues {λk}∞k=1. Therefore,
writing v =

∑∞
k=1 vkωk , it follows that ‖v‖2

L2(Ω) =
∑∞

k=1 v
2
k and

H(v) =
∞∑

k,j=1

∫
Ω
vkωk ·vj B̂S(ωj) =

∞∑
k,j=1

∫
Ω
vkωk ·vjλjωj =

∞∑
k=1

v2
kλk .
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The helicity of a domain (cont’d)

Moreover, for ‖v‖L2(Ω) = 1, we have

|H(v)| =

∣∣∣∣∣
∞∑
k=1

v2
kλk

∣∣∣∣∣ ≤ |λΩ
max|

∞∑
k=1

v2
k = |λΩ

max| ,

and also, being ωmax the eigenfunction associated to λΩ
max,

|H(ωmax)| =

∣∣∣∣∫
Ω
ωmax · B̂S(ωmax)

∣∣∣∣ = |λΩ
max|

∫
Ω
|ωmax|2 = |λΩ

max| ,

hence HΩ = |λΩ
max|.
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Explicit value of the helicity

The domains for which the eigenvalue of maximum absolute value
of the projected Biot–Savart operator is known are quite a few: to
our knowledge, only the ball and the spherical shell (see Cantarella
et al. (2000a)).

We remind that for the ball of radius b the result is
|λmax| ≈ b

4.49341 (the approximation is due to the fact that the
correct denominator is the first positive solution of the equation
x = tan x , that approximately is 4.49341).
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Numerical calculation of the helicity

Due to this lack of explicit results, it is important that an efficient
approximation method for the computation of the eigenvalues is
available.

In Alonso Rodŕıguez et al. (2018) edge finite elements are used for
the approximation of the spectrum of the operator T, for any type
of bounded domains Ω.
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The “isoperimetric” problem

A geometrical question now arises:

for which bounded domain the helicity is the maximum among
all the bounded domains with the same volume?

This is an open problem. We have not a theoretical answer, but we
can present some numerical computations.
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The “isoperimetric” problem (cont’d)

If Ω is a torus of radii r1 = 1 and r2 = 0.5 one has
|λmax| ≈ 1

4.89561 ≈ 0.20426. The helicity of a ball B having
the same volume of this torus is HB ≈ 0.23505, a larger value.

If Ω is a perforated cylinder (topologically, a torus) with
rectangular cross section given by [0.005, 1]× [−0.5, 0.5] one
has HΩ ≈ 0.20175, while for the ball B with the same volume
it holds HB ≈ 0.20219, a larger but very close value.

If Ω is a torus of radii r1 = 0.505 and r2 = 0.5 one has
HΩ ≈ 0.19073, a larger value than that of the helicity of the
ball B with the same volume, given by HB ≈ 0.18718.
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The “isoperimetric” problem (cont’d)

This goes in the direction of confirming a conjecture in Cantarella
et al. (2000b), who suggested that the domain with maximum
helicity among all the domains with the same volume is not the
sphere, but a sort of “extreme solid torus, in which the hole has
been shrunk to a point”.
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