
VOL. XX, NO. XX, XXXX XXXX

XXXX XXX

Estimation of Motion Statistics from Statistics of Received Power in
Low-Power IoT Sensing Nodes

Waltenegus Dargie, Senior Member, IEEE
Faculty of Computer Science, Techniche Universität Dresden, 01062 Dresden, Germany

Manuscript received July 7, 2024; revised September 23, 2024.

Abstract—Low-power IoT sensing nodes can be embedded into various physical environments to monitor vital parameters.
Some of these environments impose rough and extreme operation conditions, severely limiting the performance of these
nodes. Modeling these environments is vital to make the nodes adaptive. In this paper, we propose a model to estimate the
complex motion of nodes deployed on the surface of different water bodies. The model relies on received power statistics
only. Experiment results confirm that the model is reliable, achieving an estimation accuracy of 93%.

Index Terms—3D water motion, IMU, IoT, MS estimation, received power, RSSI, wireless sensor networks

I. INTRODUCTION

Low-power and wireless IoT sensing nodes can be deployed in
various physical environments to monitor vital parameters [1]. Some
of the deployment environments are not amenable to stable and reliable
operations, subjecting the nodes to strong motion, thereby significantly
interfering with their operation. Modelling these environments and
their effects on the sensing nodes is vital to achieve different objectives,
including transmission power adaptation, developing path loss models,
and estimation of performance and operation lifetime. Moreover,
associating environmental aspects with performance can be useful
for assessing the authenticity of the origin of data.

The aim of this paper is to achieve this goal. We deployed low-
power IoT sensing nodes on the surface of different water bodies to
monitor water quality. The performance of these nodes, particularly,
the quality of the wireless links they established, was considerably
affected by the motion of water. Each of these nodes integrated two
types of low-power radios operating in different frequency bands (2.4
GHz and 868 MHz) and supporting different transmission ranges
(100 m vs 4 Km) as well as transmission rates (250 kbps vs. 40 kbps).
Because of their inherent characteristics, the water bodies exhibited
different motion patterns and affected the quality of the wireless
links differently. In order to investigate the effect of motion on the
link quality, we integrated inertial sensors (3D accelerometers and
3D gyroscopes) with the sensing nodes. As the first contribution of
this paper, we propose a statistical model to express the 3D motion
of the water surfaces in terms of a one-dimensional link quality
metric, the RSSI. The model is at once accurate and efficient. It
achieves an estimation accuracy exceeding on average 93%. This is
rather remarkable considering the fact that the model relies on an
unreliable link quality metric and its computational cost is modest,
requiring no matrix inversion. As a second contribution of the paper,
through extensive field deployments and experiments, we validate
the reliability of our model.

The remaining part of the paper is organized as follows. In Section II
we review papers which are related to our work. In Section III, we
briefly describe the deployment scenarios wherein we conducted
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extensive experiments. In Section IV, we present our model and
derive the model parameters using MS estimation. In Section V
we evaluate our model and present quantitative results. Finally, in
Section VI, we provide concluding remarks and outline future work.

II. RELATED WORK

Modeling the motion of the surface of water is useful for a
wide range of applications [2], [3]. In the context of maritime and
cellular communications (5G networks) various path loss and water
motion models have been proposed to characterise near sea-surface
wireless channels. Some of these models build on Pierson–Moskowitz
spectrum [4], [5], a condition in which water waves attain equilibrium
with a steadily blowing wind. In [6], a model is proposed to estimate
the maximum wave-height occurring between two communicating
wireless sensor nodes deployed on the surface of an ocean. The
maximum wave-height statistics are used to determine the probability
of LoS blockage. In [7] a “fluctuating” 2-ray fading model, first
proposed by Romero et al. [8], is employed to account for random
amplitude variations of sea waves. In [9], a 3-ray path loss model is
proposed to account for reflection from sea surface and refraction
caused by evaporation duct. In [10] a model characterizing seawater-
to-air optical channels is proposed. The model takes into consideration
pitching angle (modelled by Beckmann distribution), attenuation
(Beer-Lambert) and underwater turbulence (Lognormal. The above
models aim to estimate received power statistics in deployments
involving rough water surfaces; our approach complements them by
addressing the inverse problem, i.e., estimating motion statistics from
received power statistics.

Eltner et al. [11] propose a model based on structure-from-motion
(a process of estimating the 3D structure of a scene from a set of 2D
images) and multi-media photogrammetry to estimate surface flow
velocity and water discharge in rivers. The model relies on images
taken by a UAV and an additional static camera. Though the authors
report an impressive accuracy reaching 96%, the model also suffers
from a high estimation variance. A work closer to ours is the one
propose by Amaechi et al. [12]. In this work, the authors endeavour
to model the motion of different marine structures – dynamic loading
and offloading buoys (Catenary Anchor Leg Moorings) and ocean
monitoring buoys. The model relies on two Ultra-High Definition
underwater cameras and an underwater motion sensor. The latter



XXXX VOL. XX, NO. XX, XXXX

Fig. 1. The deployment of IoT sensing nodes on the surface of
different water bodies (lake, North Biscayne Bay, Miami South Beach,
and Crandon Beach).

consists of a 10-axis IMU integrating an accelerometer, a gyroscope, an
angle measurement, a magnetometer, and a barometer. These systems
were connected to an external system via an underwater Bluetooth. The
data collected from these sensors are fused together and transformed
into three linear equations to characterise the motion of the marine
structure: (1) wave frequency versus period, (2) surge response, and
(3) heave response. Unfortunately, the authors do not discuss the
accuracy as well as the complexity of their model. The preceding
approaches complex sensing setups, large-scale deployments, and/or
advanced signal processing which incur appreciable communication
and processing cost. By contrast, our approach is lightweight, at
first requiring acceleration and received power statistics. Once the
model parameters are determined, it relies only on the statistics of
the received power to estimate the motion of the surface of water
on which low-power IoT sensing nodes are deployed.

III. BACKGROUND

Between 1 June and 31 August 2023, we deployed networks of
low-power IoT nodes on the surfaces of different water bodies: A
small lake on the main campus of Florida International University
(FIU), North Biscayne Bay in South Florida, Miami South Beach,
and Crandon Beach, Miami. Some of the deployments took place
at the time when the State of Florida was significantly affected by
Hurricane Idalia, a Category 4 hurricane.1 Fig. 1 displays a snapshot
of our prototypes and deployments. The bodies of water have different
characteristics as well as temporal and seasonal motion patterns. The
nodes established multi-hop networks through peer-to-peer neighbour
discovery and periodically exchanged packets. Locally, the nodes
stored the 3D acceleration they experienced along with timestamps.
Likewise, when nodes received a packet, they stored the received
power (RSSI) and other link quality metrics along with timestamps.

Fig. 2 shows the change in the received power and the associated
change in the linear acceleration (the acceleration along the x- and
z-axes are shown) for one of our transmitters. The two low-power
radios – CC1200 and CC2538 – integrated into our sensing platform
calculated the RSSI as follows: within the bandwidth of each 2
MHz channel (IEEE 802.15.4), the received power corresponding
to 8 successive symbols is averaged. Ideally, the mapping from a
received power in decibels to an RSSI value is linear, with an accuracy
of ± 6 dBm. As can be seen in Fig. 2, the received power appears to
have experienced both localized and gradual changes. This reflects
the underlying reality. For at the time the measurements were taken,
the transmitter node was experiencing translational motion as well as
localized oscillations due to a strong north-east wind causing strong

1https://www.weather.gov/tae/HurricaneIdalia2023.
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Fig. 2. The relationship between the change in the received power
and the linear acceleration a transmitting node experienced on the
surface of the Atlantic Ocean. Deployment: Crandon Beach. Radio:
CC2538 System-on-Chip.

waves on the Atlantic Ocean. Since the underlying cause of these
changes was natural, we expected their distributions to be normal.
As can be seen in the figure, the plots of their histograms suggest
that they can, indeed, be regarded as normally distributed.

IV. MODEL

In the subsequent discussions we represent random variables with
boldface letters and simple values the random variables take, with
plane letters. Assuming the existence of a one-to-one relationship
between the change in the acceleration (a) and the change in
the received power (r), the conditional pdf, 𝑓𝑎 |𝑟 (𝑎 |𝑟) provides the
complete statistics of the parameters we wish to estimate. The marginal
statistics in Fig. 2 suggest that the conditional pdf is jointly normal.
The two-dimensional statistics, for instance, should have the following
form:2

𝑓𝑎𝑥 ,𝑎𝑧 |𝑟 (𝑎𝑥 , 𝑎𝑧 |𝑟) = 𝐷 𝑒𝑥𝑝

{
−
(

1
2(1−𝜌2)

)
(𝑋 − 2𝜌𝐶 + 𝑍)

}
(1)

where:

𝑋 =
(𝑎𝑥 − 𝐸 [a𝑥 |𝑟 ] )2

𝜎2
𝑥

𝐶 =
(𝑎𝑥 − 𝐸 [a𝑥 |𝑟 ] ) (𝑎𝑧 − 𝐸 [a𝑧 |𝑟 ] )

𝜎𝑥𝜎𝑧

𝑍 =
(𝑎𝑧 − 𝐸 [a𝑧 |𝑟 ] )2

𝜎2
𝑧

𝐷 =
1

2𝜋𝜎𝑥𝜎𝑧

√︁
1 − 𝜌2

and 𝜌, |𝜌 | < 1, is the correlation coefficient of a𝑥 and a𝑧 . The
variances in Equation 1 are the errors we introduce in our estimation
of a𝑥 and a𝑧 in terms of r.

2In order to make the subsequent steps comprehensible, our focus will be on
estimating the 2D acceleration only, but one can easily extend the approach to a
third-dimension as well.
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The one-to-one assumption enables us to deduce the nature of the
relationship between the variables from their cumulative distribution
functions. If we suppose 0 ≤ r ≤ 𝑅 and 0 ≤ a ≤ 𝐴, then, ∀𝑎 𝑗 , 0 ≤
𝑎 𝑗 ≤ 𝐴, there is a corresponding 𝑟𝑖 , 0 ≤ 𝑟𝑖 ≤ 𝑅, such that 𝐹𝑎 (𝑎 𝑗) =
𝐹𝑟 (𝑟𝑖), from which we have: 𝑎 𝑗 = 𝐹−1

𝑎 (𝐹𝑟 (𝑟𝑖)). When 𝐹𝑎 (𝑎) and
𝐹𝑟 (𝑟) have similar forms, then this implies that the random variables
are linearly related [13], in which case, the parameters of Equation 1
can best be determined using Minimum Mean Square estimation.
Thus, the error we introduce in expressing the motion (acceleration)
a node experiences during transmission is expressed as follows:

e𝑥 = a𝑥 − 𝜌𝑥r, (2)

e𝑧 = a𝑧 − 𝜌𝑧r

In order to determine the optimal 𝜌𝑥 and 𝜌𝑧 which minimise the
estimation error, we differentiate the mean square errors with respect
to these coefficients and set the results to zero:

𝑑

𝑑𝜌𝑥

𝐸
{
e2
𝑥

}
=

𝑑

𝑑𝜌𝑥

𝐸
{
(a𝑥 − 𝜌𝑥r)2}

= 𝐸 {(a𝑥 − 𝜌𝑥r) r} = 0 (3)

This leads to the following expression:

𝜌𝑥 =
𝐸 [a𝑥r]
𝐸 [r2] (4)

Similar steps lead to:

𝜌𝑧 =
𝐸 [a𝑧r]
𝐸 [r2] (5)

With 𝜌𝑥 and 𝜌𝑧 in place, we can determine the conditional means
in Equation 1:

𝐸 [a𝑥 |𝑟] =
𝐸 [a𝑥r]
𝐸 [r2] 𝑟 (6)

𝐸 [a𝑧 |𝑟] =
𝐸 [a𝑧r]
𝐸 [r2] 𝑟

One of the most interesting aspects of the MS estimation is that the
error is orthogonal to the observation, i.e., to r [13], [14] (ref. also
to Equation 3). Hence, expressing the MS error in terms of 𝜌𝑥 and
𝜌𝑧 yields:

𝐸
[
e2
𝑥

]
= 𝑅𝑥𝑥 −

𝑅2
𝑥𝑟

𝑅𝑟𝑟

(7)

where 𝑅𝑥𝑥 = 𝐸 [a𝑥a𝑥]; 𝑅𝑥𝑟 = 𝐸 [a𝑥r]; and 𝑅𝑟𝑟 = 𝐸 [rr]. Similarly,

𝐸
[
e2
𝑧

]
= 𝑅𝑧𝑧 −

𝑅2
𝑧𝑟

𝑅𝑟𝑟

(8)

Finally, the conditional covariance is given as:

𝐶𝑥,𝑧 |𝑟 = 𝐸

[(
a𝑥 −

(
𝑅𝑥𝑟

𝑅𝑟𝑟

)
r
) (

a𝑧 −
(
𝑅𝑧𝑟

𝑅𝑟𝑟

)
r
)
|r = 𝑟

]
(9)

Once again, taking advantage of the orthogonality principle, we
ignore the term r(𝑡) = 𝑟 in Equation 9 (the error is orthogonal to
the data). What remains is the expansion of the error terms, which
yields,

𝐶𝑥,𝑧 |𝑟 = 𝑅𝑥𝑧 −
𝑅𝑥𝑟𝑅𝑧𝑟

𝑅𝑟𝑟

(10)

This completes the specification of the conditional density function.
Fig. 3 shows the conditional pdf of the acceleration a transmitting
node experienced in South Beach, Miami, Florida.

Fig. 3. The conditional pdfs of the 2D acceleration transmitting nodes
experienced while communicating. TOP: Miami Crandon Beach. BOT-
TOM: Miami South Beach.

V. EVALUATION

In order to evaluate the accuracy of our model, we measured
(using IMU) as well as estimated (using Equation 6) the change in
the acceleration a transmitting node experienced at Miami Crandon
Beach and Miami South Beach. For each location-radio pair we
performed 5 experiments over a period of 3 months, each experiment
lasting about 30 minutes. Then we evaluated the statistics of the two
quantities. Fig. 4 compares the histograms of these two quantities.
The estimation error statistics are given in Fig. 5. The mean square
error statistics were influenced mainly by the motion of water. For
the pattern as well as the magnitude of the waves influenced signal
propagation and reception, as was discussed in Section II. The water
waves at Crandon Beach were short but fast moving, whereas the
waves at Miami South Beach were long and large, making them more
predictable, as they exhibited a stronger autocorrelation. The average
root mean square error, taking into account all the experiments we
conducted, was about 7%.

The estimation accuracy our model achieved is either comparable
or slightly better than the accuracy reported in Section II. What is
appreciable about our models is that it does not require an extra
channel, hardware component, or complex setup. The RSSI is a by-
product; extracted from data packets. The IMU data we collected were
used for training and test purposes. Both these phases are relevant,
but typically, the water characteristics change slowly overtime; and
updating the model statistics take place at a much longer time interval
than the typical duration required to collect representative statistics.
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Fig. 4. The histograms of the measured (blue) vs. estimated (red)
linear acceleration the wireless sensor nodes experienced on the
surface of the Atlantic Ocean. TOP: Miami Crandon Beach. BOTTOM:
Miami South Beach.
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Fig. 5. The histograms of the mean square estimation error for Fig. 4.
TOP: Miami Crandon Beach. BOTTOM: Miami South Beach.

The model’s accuracy can be greatly improved by using orthogonal
or circular antennae, so that the change in the received power can
be modelled as a 3-dimensional phenomena which better reflects
the 3-dimensional motion of the underlying water surface. Another
source of error which does not belong to the model is synchronisation
error. In establishing the model parameters, our model presupposes
that the inertial measurement unit at the transmitter and the receiver
radio are time-synchronised. Due to clock drifts in both systems,
however, achieving a more perfect synchronisation requires a more
complex and cost-intensive setup than was supported in the present
case. Addressing these and similar concerns will be the focus of our
future research.

VI. CONCLUSION

In this paper we proposed a model to predict the motion
(acceleration) a low-power IoT sensing node experiences when
deployed on the surface of different water bodies. We relied on a
one-dimensional metric, the RSSI, to estimate the acceleration. The
model achieves an estimation accuracy exceeding 93%. Compared
to competitive approaches, our model does not require a complex
setup or an advanced signal processing. The model’s accuracy can
be improved by employing orthogonal or circular antennae. A more
accurate time synchronisation can also reduce the error arising from
low-level clock drifts. Addressing these issues will be the focus of
our future research.
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