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Abstract—Self-organizing protocols and algorithms require
knowledge of the underlying topology of the network. The
topology can be represented by a graph or an adjacency matrix.
In most practical cases, establishing the topology prior to a
deployment is not possible because the exact placement of nodes
and the existence of a reliable link between any two individual
nodes cannot guaranteed. Therefore, this task has to be carried
out after deployment. If the network is stand-alone and certain
aspects are fixed (such as the identity of the base station, the
size of the network, etc.), the task is achievable. If, however,
the network has to interact with other systems – such as
Unmanned Aerial Vehicles (UAVs) or mobile robots – whose
operation is affected by environmental factors, the task can be
difficult to achieve. In this paper we propose a dynamic topology
construction algorithm, assuming that the network is a part of
a joint deployment and does not have a fixed based station.

I. INTRODUCTION

On February 18, 2021 NASA successfully landed a rover
and a small robotic helicopter (UAV) on Mars at a location
believed to have astro-biological relevance. The duo are tasked
to determine whether the planet was habitable and life thrived
on it in the past. An essential component of their assignment
is the search for biosignatures within accessible geological
materials [8]. The joint deployment is intended to fulfill
complementary objectives. The rover is equipped with several
advanced instruments for taking and analyzing samples, but its
scope is limited due to its limited movement. The UAV hovers
above the rover or nearby, thus surveying a wider region in a
short time; its activities, nevertheless, are limited on account
of its limited energy reserve. Currently, the UAV occasionally
leaves the rover to make short flights.

The joint deployment can achieve a higher degree of spatio-
temporal sensing if it includes intelligent wireless sensor
networks (WSN). The nodes on the ground can save the rover
from traveling long distances and the UAV, from making long
flights. This type of deployment can have several applications
here on earth as well, monitoring remote, dangerous, inaccessi-
ble, or extensive places [7], [24], [13]. At the Energy Lab (TU
Dresden, Germany), we investigate the practical usefulness of
such deployments and the type of communication protocols
and algorithms they require.

In a joint deployment, a well-coordinated communication is
indispensable to mitigate Cross Technology Interference (CTI)
and to minimize the flight time of the UAVs [22]. However,

This work has been partially funded by the Free State of Saxony under
TG70 Research Funding program (Grant nummber: 100369691).

Jianjun Wen and Waltenegus Dargie are with the Faculty of Computer
Science, Technische Universität Dresden, 01062 Dresden, Germany (e-mail:
{ jianjun.wen, waltenegus.dargie}@tu-dresden.de)

determining the precise topology of the ground network – a
prerequisite for establishing efficient routes and gateways –
prior to the actual deployment may not be possible due to
the difficulty of determining the precise physical placement of
individual nodes. Consequently, the topology of the network
and the gateway nodes with which the UAVs communicate
should be determined after deployment, in a dynamic fashion.

In this paper we propose an algorithm for dynamically
constructing the topology of a randomly deployed network.
The algorithm enables a flying UAV to identify one or more
ground nodes with which it conveniently interacts. Taking
these nodes as a reference, the remaining nodes propagate
and aggregate neighborhood information based on which a
binary adjacency matrix signifying the underlying topology
of the network is generated. Once the adjacency matrix is
established, the UAV identifies cluster heads and associates
child nodes to them. This is done according to the relative
significance and distribution – both of which are determined
from the adjacency matrix – of the nodes. The key aspects of
the algorithm are that it is distributed and scalable.

The rest of this paper is organized as follows: In Section II,
we establish the background of this work. In Section III,
we present our concept. In Section IV, we discuss the im-
plementation details and our evaluation based on a field
deployment. In Section V, we review state-of-the-art and,
finally, in Section VI, we give concluding remark and outline
future work.

II. BACKGROUND

In [3], we proposed a model to quantify the relative signif-
icance of nodes in a wireless sensor network. The measure of
significance takes into consideration the degree of connectivity
of the nodes as well as the relative significance of their
neighbors. The input for our model is a binary adjacency
matrix encoding the physical topology of the network – 1
signifying the existence of a direct link and 0, the absence
of a direct link. Hence, given an adjacency matrix M, the
normalized adjacency matrix H is given as:

H =
M

n− 1
(1)

where n is the number of nodes in the network. The normal-
ized number of single- as well as multihop links the nodes
establish with their peers can be expressed as:

T =

∞∑
k=1

(pH)
k
= (pH) (I− pH)

−1 (2)
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Others: other neighbours w/o siblings

src Forward list NeighborsFlag Hop Parent Forward list: list of nodes whose neighbour info are embedded 

src Sibling list OthersFlag Hop Parent
header payload

update message: 
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Fig. 1: A sample schedule of ADJM protocol in a two hop network with 5 nodes. A schedule consists of multiple rounds and
each round contains specific number of slots. The number of slots in a round is embedded in the schedule parameter part,
in the header of the message. And the slot length is a fixed parameter and is determined according to the applications. For
simplicity, we ignore the schedule parameter in graph.

the last round; at the other hand, it synchronizes the time for
communication.

When a node received the first message from other node in
a new schedule, it learns the schedule parameters (the number
of slots in a round, the slot length ect.), the current round
and slot number, the hop counter. Then it sets its temporal
parent as the node id of the incoming packet and its own hop
counter as parent’s hop plus one. These two information will
be embedded in the following transmissions and will not be
changed in the schedule. As shown in Fig. 1, in round 0, slot
0, node B, C and D received the first message from A and set
A as their parent, in round 0, slot 1, node E received its first
message from C then it sets C as its parent and its hop counter
to 2 (C’s hop counter is 1). Once the node learned the schedule
parameters and its temporal parent and hop counter, it joins
the schedule and follows the ADJM transmission policy.

In the remaining of the schedule, when a node received a
message from any other neighboring node, it checks the sender
id if it is first learned or not. If the id is new, the node firstly
stores it in a temporal neighbor set and then set a ’update’
flag in its internal state machine. When the next transmission
slot arrived and the state machine is set to ’update’, the node
prepares the updating message and broadcasts to neighboring
nodes. As in the example, in round 0, node B learns parent
node id in slot 0 and a new neighbor in slot 1. And then in
slot 2 (a randomly selected slot for transmission), it sends its
neighborhood information with parent A and neighbor C. The
field ’parent’ in the message can help the ’parent’ to learn
other nodes indirectly, such as in round 0, node A learns three
neighbors with two receptions (the node C is inferred from
B’s message).

The update/discovery process continues until the phase
transition criteria is met, i.e. during last N slots, no new
information is got from others or receiving reporting messages.
Then the nodes start to report their neighborhood information
to the initiator, such as node D in round 1, slot 2. During report
phase, node can merge other nodes’ reporting messages with
its own. For example, in round 2, slot 2, node C forwards node

E’s reporting message with its own report (the merged message
is labeled in red). The merge operation can reduce the number
of transmissions since multiple forwarding messages and the
node own report message can be merged in one transmission.
The report message of a node can be forwarded not only by
its temporal parent, but also by the node whose hop counter
is less than that of incoming packet. When a node received a
packet with F and(or) R flag, it first checks the hop counter
to determine to forward it or not and if yes, the packet will be
stored temporally till next transmission. An ADJM schedule
is finished when all nodes reported their neighbor information
to the initiator.

During the information sharing and reporting, multiple
nodes could choose the same slot and transmit quasi-
simultaneously, for example, in round 0, slot 1, node C and D
transmit concurrently. Other neighboring nodes in receiving
mode can successfully receive one of the messages from
concurrent transmitters due to the capture effect [13], [14].
And a reception succeeds at a node only when the strongest
signal is at least 3 dB higher than the sum of others and all
transmitters must transmit their packet within 160 μs [9], [13],
[12]

In the remaining part of this section, we will discuss the
key mechanisms of ADJM in details.

C. Timing

Since receptions in ADJM rely on capture effect, concurrent
transmissions should be well synchronized. To this end, we
exploit the high resolution timer capture functionality which
can record the timestamps of the interruption of start-of-frame
delimiter (SFD) to synchronize nodes with their temporal
parent. Please note that in ADJM, nodes are not synchronized
before their first reception in a schedule. By recording the first
SFD timestamp, tsync, a node can estimate the transmission
time of the incoming packet (t

′
tx) from the temporal parent:

t
′
tx = tsync −Δ

Fig. 1: A simple network topology consisting of five nodes.

p is a probability term expressing the quality of the one-
hop wireless link. Given T, the relative significance of the
individual nodes can be computed as follows:

r = uT (3)

where u is a column vector of n unit elements and r[i]
encodes the relative significance of node i in the network.
Thus quantifying the relative significance of nodes enables to
identify strategic nodes which are critical to disseminate and
aggregate data.

In [4], we proposed a self-organizing clustering algorithm
which dynamically identifies cluster heads based on their
relative significance and their relative hop-distance. Moreover,
the algorithm associates child nodes with the cluster heads,
taking into account their relative distance from the cluster
heads. The algorithm is useful to coordinate and manage joint
deployments because it enables a UAV to directly interact with
the cluster heads. Nevertheless, both the algorithm and the
metrics it relies on (Equation 3) presuppose the existence of a
binary adjacency matrix. In Section III, we shall demonstrate
how the binary adjacency matrix can be established in a
dynamic fashion following a deployment.

III. CONCEPT

Consider Fig. 1 where we have five sensor nodes. A solid
line represents the existence of a direct wireless link between
two nodes. If a UAV is tasked to interact with this network, its
best gateways are node A and C. We may establish this fact
by simply inspecting the network. When the network’s size
is appreciably large and the topology is complex, however,
visual inspection does not yield an objective ranking of the
nodes’ significance in the network. The adjacency matrix in
Equation 4 expresses the physical topology of the network.
Applying Equation 3 on the adjacency matrix results in a
quantitative rank of the nodes (refer to Tab. I).

1 2 3
Node ID A, C B D, E

TABLE I: Rank of nodes

M =



A B C D E

A 0 1 1 1 0
B 1 0 1 0 0
C 1 1 0 0 1
D 1 0 0 0 0
E 0 0 1 0 0

 (4)

In most practical cases, the actual topology of the network
cannot be known prior to deployment. This is because some
of the nodes may not be placed or function as intended
and the transmission path of some of the nodes may be
blocked by nearby physical objects. Therefore, the topology
of the network should be determined dynamically, through
local interaction. We combine four complementary features
to achieve this goal:
• Random packet transmission.
• In-network data aggregation.
• Implicit time synchronization.
• Collision tolerant medium access.

A. Random Packet Transmission

In the beginning, the ground nodes do not have information
about their neighbors or the size of the network. The process
of establishing the topology of the network begins with one
of the ground nodes taking the initiation. This node may or
may not become a gateway eventually. To complete the task as
swiftly as possible, we enable a random and collision tolerant
interaction.

The process is carried out in two phases. In the first phase,
the discovery phase, nodes exchange discovery packets and
update their own local list of neighbors. In the second phase,
the report phase, nodes propagate packets towards the initiator,
informing it what they know about their neighbors. In order
to ensure an efficient message dissemination, we define the
following flags: Start (S), Update (U), Forward (F), and Report
(R). Besides, the header of a packet contains the hop count, the
source ID, and the parent ID. Its payload contains a partially
completed adjacency matrix based on the knowledge of the
node up to that time point (nodes update this matrix whenever
they receive packets from their neighbors).

The discovery phase runs for k rounds. In each round there
are exactly N slots, where N is a global parameter determined
by the size of the network. In each round a node may transmit a
packet only once. Which slot it chooses to transmit a packet is
determined by a discrete random variable x ∈W, 1 ≤ x ≤ N .
If a node has multiple packets to transmit, it has to do so in
multiple rounds.

The discovery phase begins with the initiator broadcasting a
discovery request in slot 0. This packet is flagged S; its hop-
count is 0 and it contains no payload. This is illustrated in
Fig. 2 where node A, the initiator, broadcasts in slot 0. All
nodes receiving this packet for the first time list this node as
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Fig. 1: A sample schedule of ADJM protocol in a two hop network with 5 nodes. A schedule consists of multiple rounds and
each round contains specific number of slots. The number of slots in a round is embedded in the schedule parameter part,
in the header of the message. And the slot length is a fixed parameter and is determined according to the applications. For
simplicity, we ignore the schedule parameter in graph.

the last round; at the other hand, it synchronizes the time for
communication.

When a node received the first message from other node in
a new schedule, it learns the schedule parameters (the number
of slots in a round, the slot length ect.), the current round
and slot number, the hop counter. Then it sets its temporal
parent as the node id of the incoming packet and its own hop
counter as parent’s hop plus one. These two information will
be embedded in the following transmissions and will not be
changed in the schedule. As shown in Fig. 1, in round 0, slot
0, node B, C and D received the first message from A and set
A as their parent, in round 0, slot 1, node E received its first
message from C then it sets C as its parent and its hop counter
to 2 (C’s hop counter is 1). Once the node learned the schedule
parameters and its temporal parent and hop counter, it joins
the schedule and follows the ADJM transmission policy.

In the remaining of the schedule, when a node received a
message from any other neighboring node, it checks the sender
id if it is first learned or not. If the id is new, the node firstly
stores it in a temporal neighbor set and then set a ’update’
flag in its internal state machine. When the next transmission
slot arrived and the state machine is set to ’update’, the node
prepares the updating message and broadcasts to neighboring
nodes. As in the example, in round 0, node B learns parent
node id in slot 0 and a new neighbor in slot 1. And then in
slot 2 (a randomly selected slot for transmission), it sends its
neighborhood information with parent A and neighbor C. The
field ’parent’ in the message can help the ’parent’ to learn
other nodes indirectly, such as in round 0, node A learns three
neighbors with two receptions (the node C is inferred from
B’s message).

The update/discovery process continues until the phase
transition criteria is met, i.e. during last N slots, no new
information is got from others or receiving reporting messages.
Then the nodes start to report their neighborhood information
to the initiator, such as node D in round 1, slot 2. During report
phase, node can merge other nodes’ reporting messages with
its own. For example, in round 2, slot 2, node C forwards node

E’s reporting message with its own report (the merged message
is labeled in red). The merge operation can reduce the number
of transmissions since multiple forwarding messages and the
node own report message can be merged in one transmission.
The report message of a node can be forwarded not only by
its temporal parent, but also by the node whose hop counter
is less than that of incoming packet. When a node received a
packet with F and(or) R flag, it first checks the hop counter
to determine to forward it or not and if yes, the packet will be
stored temporally till next transmission. An ADJM schedule
is finished when all nodes reported their neighbor information
to the initiator.

During the information sharing and reporting, multiple
nodes could choose the same slot and transmit quasi-
simultaneously, for example, in round 0, slot 1, node C and D
transmit concurrently. Other neighboring nodes in receiving
mode can successfully receive one of the messages from
concurrent transmitters due to the capture effect [13], [14].
And a reception succeeds at a node only when the strongest
signal is at least 3 dB higher than the sum of others and all
transmitters must transmit their packet within 160 μs [9], [13],
[12]

In the remaining part of this section, we will discuss the
key mechanisms of ADJM in details.

C. Timing

Since receptions in ADJM rely on capture effect, concurrent
transmissions should be well synchronized. To this end, we
exploit the high resolution timer capture functionality which
can record the timestamps of the interruption of start-of-frame
delimiter (SFD) to synchronize nodes with their temporal
parent. Please note that in ADJM, nodes are not synchronized
before their first reception in a schedule. By recording the first
SFD timestamp, tsync, a node can estimate the transmission
time of the incoming packet (t

′
tx) from the temporal parent:

t
′
tx = tsync −Δ

Fig. 2: A topology discovery process for the topology depicted in Fig. 1. Dark boxes signify transmitted packets and light
boxes signify received packets.

their parent node. Meanwhile, all neighbor nodes randomly
choose a whole number between 1 and N as the value of x.
If x = 1, this corresponds to slot 1 and they are eligible to
transmit in slot 1, otherwise, they wait until the value of x
matches the slot number. More than one nodes may pick the
same value for x, thereby transmitting packets at the same
time and causing a collision. In the next subsection, we will
discuss how we resolve this concern.

A node eligible to transmit in slot 1 raises the flag U, sets
the hop-count to 1, fills its parent ID and broadcasts the packet,
so that both the initiator and the nodes farther away from the
initiator discover it (refer to Fig. 2, slot 1). The update process
continues likewise, nodes locally updating their neighbor list
every time they receive new packets and increasing the hop
count of the packets they rebroadcast. They also keep track of
the slot sequence. The discovery phase for a given node comes
to an end when the node does not receive any new packets for
successive N slots (an entire round). Thereafter, it begins the
reporting phase during which time it broadcasts a partially
completed adjacency matrix encoding the neighbors of the
nodes and those of its neighbors. Child nodes receiving report
packets from their parents implicitly receive acknowledgment
that they are recognized by their parent nodes, other than that
they don’t rebroadcast these packets.

B. In-Network Data Aggregation

The adjacency matrix can be constructed in one of the
following ways: (1) Either nodes propagate lists containing
information about their neighbors towards the initiator, so that
the latter reconstructs the adjacency matrix by filtering and
aggregating these lists or (2) the process can be carried out
gradually, nodes constructing a partially completed adjacency
matrix based on their local view of neighborhood and passing
this matrix to their neighbors. From a communication point of
view, the former is simpler, as intermediate nodes need only
to relay the packets they receive from their neighbors towards
the initiator. This, however, results in a significant amount
of duplicate packets being retransmitted. From a computation

point of view, the whole process overwhelms the initiator,
thereby resulting in a disproportionate amount of energy being
consumed by the initiator. Our model is based on (2). Hence,
each node sets up an adjacency matrix based on its local
information and forwards this information to its neighbors.

For example, the adjacency matrix node E constructs
(Fig. 1) looks like:

E =

[ C E

C 0 1
E 1 0

]
(5)

Since an adjacency matrix is binary in our context, a node
encodes it into two lists to compress it. The first list contains
the nodes’ id and the second list contains whole numbers
indicating the cells’ address containing 1s. For the above
example, the first list contains the IDs of nodes C and D1 and
the second list contains the numbers 1 and 4 because these
cells contain 1s. Any adjacency matrix can be represented
by these two lists, making the transmission and decoding of
the adjacency matrix straightforward. Likewise, the adjacency
matrix node C constructs resembles the following:

C =


A B C E

A 0 0 0 0
B 0 0 1 0
C 1 1 0 1
E 0 0 1 0

 (6)

Accordingly, the first list contains the IDs of nodes A, B, C,
and E (so that the adjacency matrix is a 4× 4 matrix) and the
second list contains the numbers: 7, 9, 10, 12, 15. Note that
even if B is the neighbor of A, C may not have this information
yet, which is why the adjacency matrix does not reflect their
neighborhood. Similarly, C may know that A is its neighbor
(because the propagation of the discovery packets always goes
from a parent to a child); this does not, however, necessarily
mean that A knows that C is its neighbor. A may have to wait

1Note that the size of the first list implicitly reveals the dimensions of
the adjacency matrix.
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for the report phase to discover this. Which is why c13 = 0
even though c31 = 1.

C. Implicit Time Synchronization

The condition to minimize and manage collision is a well-
synchronized concurrent transmission. Nodes implicitly syn-
chronize time by estimating the time at which a parent node
started the current transmission, because this time corresponds
to the beginning of a current slot the length of which is fixed.
From the time point a transmitter issues a send command to
the actual transmission of the packet a minimum of τm elapses.
This time is the time the node switches from a receiving
mode to a transmission mode, for the node’s default mode is a
receiving mode. At the receiver’s side, the first sign indicating
the reception of a packet is a hardware interrupt raised by
the receiver’s MCU following the successful detection of a
1 byte Start of Frame Delimiter (SFD) at the physical layer
(by the radio chip). A local time registers this time (ts).
Before the SFD, a 4 byte preamble must have been transmitted
to synchronize packet transmission between the transmitter
and the receiver. Hence, the beginning of the current slot is
estimated to be:

tcs = ts − (τm + τp) (7)

where τp is the time needed to transmit the preamble and
the SFD. Equation 7 neglects the propagation time of the
electromagnetic signal. Consequently, the beginning of the
next slot is simply:

tns = tcs + Ts (8)

where Ts is the duration of a single slot, which is a fixed
parameter. The transmission schedule of a particular node is
given as:

ttx = x tns (9)

In general, the transmission schedule for the round r + 1 is
given as:

tr+1
tx = trtx + Ts (N + 1− i+ x) (10)

where i is the current slot number.

D. Collision Tolerant Packet Detection

The random packet transmission strategy minimizes packet
collision but does not avoid it altogether. The larger the number
of slots in a round (N ), the smaller is the probability of
collision, but also the longer is the time needed to establish
the topology of the network (i.e., the adjacency matrix). We
exploit a phenomenon called “the capture effect” [18], [1], an
old concept in wireless communication, to reduce the impact
of packet collision. The idea is as follows: If two or more
nodes transmit packets concurrently, a collision may occur
at a particular receiver. The receiver may, however, be able
to successfully decode one of the packets, provided that two
conditions are fulfilled. In the context of the IEEE 802.15.4
[20], [10], [5] specification, these are:
• The time needed to transmit the preamble and the SFD

is ca. 160 µs. If, during this time another strong signal
arrives, the receiver may lock to this signal provided that:

• The signal’s power is at least 3 dB higher than the
superposition power of all the other surrounding signals
(which it considers as background noise).

The chance of two or more nodes transmitting at the same
time and their transmitted signals having the same power
level at a receiving node is small. These features make our
approach collision tolerant. In Fig. 2, concurrent transmission
is illustrated in round 0, slot 1; round 0 slot 2; and round 2
slot 1.

Algorithm 1: Transmission Policy
Input : received message: msg
Output: transmission state machine Statetx

1 Phase Update:
2 if msg.src not in LNS && my_id not in

msg.neighbor_set then
3 Statetx = Statetx + 1;
4 2else
5 if msg.src == parent_id && my_id not in

msg.neighbor_set then
6 Statetx = Statetx + 1;
7 end
8 if msg.parent == my_id && msg.src not in

LNS then
9 Statetx = Statetx + 1;

10 end
11 end
12 end
13 Phase Report:
14 if msg.hop < my_hop then
15 if I am not reported && my_id not in

msg.forward_list then
16 Statetx = Statetx + 1;
17 end
18 else if msg.hop > my_hop then
19 Statetx = Statetx + 1;
20 else
21 drop message;
22 end
23 end

IV. EVALUATION

We implemented the algorithm in Contiki-OS [6] on Zoler-
tia RE-Mote revision B motes3. For the purpose of evaluation,
we deployed the wireless sensor nodes on one of our faculty’s
corridor on both sides of which were many pillars (refer to
Fig. 3). The transmission power of each node was set to
-15 dBm (the maximum possible), but the dense concrete
walls of the corridor as well as the pillars produced a sig-
nificant amount of signal reflections and attentions. As we
shall demonstrate later, this means the wireless links were
not asymmetric. Nor did physical nearness correspond to the
existence of a direct or a reliable wireless link.

2LNS: Local Neighbor Set.
3https://zolertia.io/product/re-mote/
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Fig. 3: Deployment of a wireless sensor network along a
corridor.

TABLE II: Deployment parameters.

Parameters Value
Network size 8, 23
TX power -15
Slot length (Tslot) 10 ms
Slots in a round (nslot) 2, 4, 8
Schedule duration 30 s

A. Number of Slots in a Round

We first evaluated how the algorithm’s parameters affected
its performance, considering three aspects:
• The average time the algorithm needed to establish the

network’s topology.
• The success ratio signifying the number of times a node

successfully reported neighbor information to the initiator
before a schedule was terminated.

• The average number of concurrent transmissions within
a slot.

We evaluate these aspects first with a network of 8 nodes.
Fig. 4 displays the resulting plots based on 100 independent
experiments.

1) Completion Time: Fig. 4 (a) shows the average com-
pletion time for each node. The error bar shows the standard
deviation. As expected, the completion time increased as the
number of slots in a round increased. However, this relation-
ship was not proportional. For example, when the number of
slots in a round increased from 2 to 4, the completion time did
not double. The reason is that the more slots were available in

a round, the less was the probability of concurrent transmis-
sion, thereby increasing the probability of receiving a packet
successfully. Similarly, as the number of slots increased, the
chance of a node gathering neighbor information increased,
thus facilitating the update phase. Nevertheless, this parameter
should be adapted according to the density of the network.
Notice that the node which required the longest time (Node
5) to collect neighbor information was the initiator.

2) Success Ratio: The success ratio refers to the number
of times a node was able to successfully transmit a packet.
Fig. 4 (b) displays this for each sensor node when the number
of slots in a round was 2, 4, and 8, respectively. We observed
that when the number of slots was 2, the success ratio of three
nodes (node 2, 4, 6) was below 0.8. When we increased the
number to 4, the success ratio exceeded 0.9. When, however,
the number of slots increased to 8, there was no appreciable
increase in the success ratio.

3) Concurrent Transmission: Fig. 4 (c) shows the distribu-
tion of concurrent transmissions. As expected, when the num-
ber of slots increased, the number of concurrent transmission
reduced. For all the settings, over 70% of the slots experienced
a single transmission. The factors which contributed to this are
the following:
• The random selection of a transmission slot.
• The in-network strategy enabling nodes to learn and

disseminate information about their neighbors in single
slots.

• The concurrent transmissions occurred in the early stages
of the algorithm. The probability of receiving new packets
from unknown neighbors decreased over time (exponen-
tially, as can be seen in the figure).

B. Impact of Network size

To investigate the impact of network size on the establish-
ment of the network’s topology, we increased the number of
nodes to 23. In this case, however, we considered only two
slot sizes in a round, namely, 4 and 8.

As in the previous case, the time needed to construct
the topology of the network increased as we increased the
number of slots in a round. However, the increment was not
proportional once again. Whereas the network size was tripled
(8 vs. 23), the completion time increased only by 2.1 fold
in both settings (4 and 8) (as shown in Fig. 4 (a) and (d)).
By comparison, the success ratio deteriorated noticeably, as
can be seen in Fig. 4 (b) and (e). Obviously, as the network
size increased, concurrent transmission increased, and with it
the capture effect became less effective. When the network
consisted of 8 nodes and the number of slots in a round was
4, 25% of the time packet transmissions occurred with at least
2 concurrent transmissions, whereas concurrent transmission
increased to 45% when the network consisted of 23 nodes.

C. Activity of Nodes in Realtime

After evaluating the overall performance of our algorithm,
we analyzed the activities of individual nodes during self-
organization. The data trace for this section was obtained from
the experiments involving the 23 nodes, when the number of
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(c) Concurrent transmission in a slot (8 nodes)
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Fig. 4: Performance evaluation based on different schedule parameters for two different network sizes.

TX RX

Fig. 5: A real trace of the activities of nodes during self-organization. Network size: 23. Node 15 was the initiator.

slots in a round was 4. The result is shown in Fig. 5. The
time line is represented in terms of slots. Node 15 initiated
the process of self-organization which lasted 176 slots.

Firstly, we analyze the temporal characteristics of the con-
current transmissions. In the previous subsection we claimed
that intensive concurrent transmissions occurred in the early
stages of self-organization. Fig. 6 confirms this claim. As
shown in the figure, most of the dense concurrent transmis-
sions occurred in the first 25 slots during which nodes discov-

ered new neighbors and were busy sharing this knowledge.
As time went by, the frequency of discovering new neighbors
decreased and nodes had little to share.

Fig. 7 shows the durations nodes spent in the two phases
(discovery and report). We observed that most of the nodes
completed the update phase within 65 slots (15 nodes out
of 23). Only 4 of the nodes required more than 100 slots
for the update phase (node 6, 14, 16 and 21). By looking at
the activities of these nodes in Fig. 5, one can discover that
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Fig. 6: Concurrent transmissions across the time line.
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Fig. 7: Comparison of nodes’ activities in the update and report
phases.
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Fig. 9: The adjacency matrix generated after the completion
of self-organization for the network of 23 nodes. The shaded
area signify a direct connection.

between slot 40 and 100, these four nodes rarely obtained
new information from their neighbors, even though they kept
receiving packets. As a result, the update phase was extended.

Fig. 8 displays the number of slots the nodes utilized for
each activities during self-organization. It can be seen that they
spent much of the time listening (discovering). Idle time in
this context signifies the time during which the nodes neither
received nor transmitted packets because they had no new
information to share. Idle slots slow down the process of
establishing the topology of the network. We aim to minimize
this effect in our future work.

At last, by merging the partially completed adjacency ma-
trices from its neighbors, the initiator established the complete
topology of the network as shown in Fig. 9. A shaded block
in the figure represents the existence of a direct link between
two nodes.

V. RELATED WORK

Self-organization is an essential aspect of any intelligent
network. Often it is realized as a cross-layer feature involving
the MAC and the routing layers, but also as a separate feature,
independent of any communication protocol. Regardless of
how it is implemented, it requires peer-to-peer communication,
neighbor discovery, and in-network data aggregation. In this
section, we briefly review two aspects of self-organization and
how they have been addressed in the past.

A. Concurrent Transmissions

Chaos [17] is an all-to-all communication protocol which
supports in-network processing. The communication and data
processing activities are organized in synchronized slots. To
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ensure concurrent transmissions, Chaos fixes the execution
time in terms of MCU clock cycles, between the reception
interrupt and the next transmission. During interaction, nodes
should know other participants and maintain a determined
flag set (one bit for a node). All in-network processing and
communication progress depend on these flags.

Crystal [15] is a data-collection strategy for supporting an
aperiodic communication. The sink node starts an epoch by
flooding the network with a synchronization request. When the
synchronization phase is completed, nodes begin interacting
with one another in a sequence of paired slots, one for
transmission and another for acknowledgment. If nodes have
data packets to transmit, they will flood concurrently in a trans-
mission slot and wait for acknowledgments in the consecutive
slot. Nodes without packets to transmit can receive one of
the data packets in the transmission slot taking advantage of
the “capture effect”. When a node receives a data packet, it
will broadcast an acknowledgment packet in the next slot. An
epoch is terminated in a distributed manner, if a node does
not receive packets for a number of consecutive slots.

Mixer [12] is another communication protocol based on
synchronous transmission. It exploits random linear network
coding (RLNC) [14] to maximize the utility of packets in data
dissemination. Nodes combine multiple packets they received
from their neighbors using RLNC and transmit them syn-
chronously. Receiving nodes can decode the original messages
by receiving sufficient coding vectors. Unlike Chaos and its
variants which can only share information in a static network,
Mixer accommodates even mobile nodes. Likewise, Codecast
[19] combines network coding with synchronous transmission
to achieve many-to-many data sharing.

B. Topology Construction
The dynamic topology construction is vital to structure

(cluster) the network and to optimally configure routing proto-
cols. A3 (a tree) [23] is a topology construction protocol which
is based on a growing-tree technique. After deployment, a pre-
defined node initiates a neighbor-discovery phase by sending
a hello message to all the nodes within its communication
range. The nodes reply to this packet by acknowledging the
transmitter as their parent node. After a short period of time,
the initial sender broadcasts a sorted list of nodes whose
parent recognition packets have been successfully received.
This process will be propagated down-ward until all nodes
are connected in the tree.

In [16], the authors proposed an expanded Borel Cayley
graphs topology construction (EBTC) algorithm to generate a
collision avoidance communication topology. In the beginning,
an initial sender broadcasts a “hello” message to its logical
neighbors. To avoid collision, each logical neighbor replies
with a response message with their own neighbor lists in
a fixed order, which is determined by the power index in
the connection. After receiving response messages, the initial
sender broadcasts a connection request containing an updated
logical neighbor list. This process is repeated until all nodes
found at least two logical neighbors.

In RPL routing protocol [9], the topology construction
process is initiated by the root node which broadcasts a

message whose rank increases as it propagated upward in
the network (away from the root node). When other nodes
receive this message, they calculate their ranks based on their
relative position in the topology and then forward the message
upward. Thus, the propagation of the message builds upwards
connections since each node learns about its parent(s) from the
message it receives. To construct the downwards connection
graph, each node in the network sends unicast advertisement
messages to its parents.

In [11], the authors propose an active neighbor discovery
protocol to build 1-hop neighbor tables at different transmis-
sion power levels. A node first broadcasts neighbor discovery
messages (NDM) with its own neighbor list at a specific power
level and waits for neighbor reply messages (NRM) for a
period of time. The sender ID of NRM will be added to its
1-hop neighbor list at the power level. The NDM and NRM
information exchange is supposed to use TDMA protocol.

In [2], Chou et al. propose a distributed dead-end free
topology maintenance protocol (DFTM). Initially, a randomly
selected node is nominated as initiator and starts broadcasting
a message to discover neighbors. Subsequently, the initiator
transits into a receiving mode for a period time to receive
replies from active neighbor nodes. It adds all the replied
neighbor nodes to the active neighbor set and then select the
ones which fulfill the specific criteria as the next initiators. The
selected nodes continue the neighbor discovery phase until all
nodes are discovered in the network.

In [21], the authors proposed a low-latency, energy-efficient
neighbor discovery protocol. The neighbor discovery process
is organized in time slots. In each slot, a node is in one of the
three states, namely, transmit, listen or sleep. The transition
to a state is probabilistic. If a node is in a transmit state in
a slot, it transmits a message in which its ID is embedded,
while other nodes which are in the listen state in the same
slot can successfully receive the message and add the sender’s
ID into their neighbor list. The discovery process continues
till no new neighbors are discovered.

Our approach complements existing work in three differ-
ent ways. Firstly, the decision to transmit a packet depends
not merely on the last reception round but on the previous
receptions in a round. Secondly, concurrent transmissions are
randomized into different slots to leverage the “capture ef-
fect” without compromising on packet transmission reliability.
Thirdly, and, most importantly, our approach does not rely on
a global knowledge such as the network size and topology.

VI. CONCLUSION

In this paper we proposed an algorithm to dynamically
construct the topology of a wireless sensor network. Our
algorithm does not assume the existence of a dedicated base
station nor does it assume that the size of the network is known
prior to deployment.

We represent the topology of a network with a binary
adjacency matrix. This matrix is gradually completed as nodes
propagate knowledge of their neighbors towards an initiator.
To facilitate this process, we introduced four aspects: (1)
random packet transmission, (2) implicit time synchronization,
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(3) concurrent transmission and the “capture effect”, and (4)
in-network processing.

We implemented the algorithm in a Contiki environment
and tested its performance with networks consisting of 8 and
23 nodes, respectively. In each case 100 independent exper-
iments were conducted to collect adequate statistics. Evalua-
tion results indicate that, regardless of the network size, the
number of concurrent transmissions decreases exponentially
in time, clearly indicating that the algorithm is scalable. For
the network of 23 nodes, the algorithm was able to establish
the complete adjacency matrix in 176 time slots. However, as
the network size increased, concurrent transmission increased,
and with it, the capture effect became less successful. When
the network consisted of 8 nodes and the number of slots in a
round was 4, 25% of the time packet transmissions occurred
with at least 2 concurrent transmissions. When the network
consisted of 23 nodes, concurrent transmission increased to
45%.

Our future plan is to enlarge the network size and to carry
out field deployments. Our current deployments were limited
by the underlying wireless local area network we established
to collect statistical data from each sensor node. The range of
the wireless router was limited, thereby limiting the size of
the wireless sensor network. Work is in progress to address
this concern. We are also working to integrate multiple UAVs
with the wireless sensor network.
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