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Überarbeitung fürs Wintersemester 2023/2024. Ich freue mich über Emails mit Kommenta-
ren und Verbesserungswünschen.





Inhaltsverzeichnis

1 Mengen, Relationen, Abbildungen 13
1.1 Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Beschreibung von Mengen durch Eigenschaften . . . . . . . . . . . 14
1.1.2 Mengentheoretische Operationen und Bezeichnungen . . . . . . . . 14
1.1.3 Rechenregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1.2.1 Äquivalenzrelationen . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Graphen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Abbildungen (Funktionen) . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Spezielle Eigenschaften von Funktionen . . . . . . . . . . . . . . . 20
1.2.5 Komposition von Abbildungen . . . . . . . . . . . . . . . . . . . . 20
1.2.6 Umkehrabbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.7 Operationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Organisatorisches

Für die Student:innen

• Übungen!

• Aktive Teilnahme.

• Zusammenarbeit zur Lösungsfindung: empfohlen.

• Aufschreiben: jeder selbst!

• Gegenseitige Kontrolle: gerne in kleinen Gruppen.

• In der Vorlesung: mitschreiben (Empfehlung).

Zum Skript

• Blau markiert: Kommentare, Hervorhebungen, Literaturverweise.

• Rot markiert: nachträglich geändert oder hinzugefügt, bzw. Hyperlink.

• Kursiv gedruckt: Begriff wird definiert, oder sonst herausgehoben.

• Grün markiert (ab Kapitel 8): die komplexen/unitären Varianten der Aussagen.

• Das Symbol □ markiert das Ende eines Beweises und das Symbol △ markiert das
Ende eines Beispiels.

• Bemerkungen dienen zum Vertiefen und vernetzen, und können gelegentlich übersprungen
werden.

• Die Übungen ersetzen nicht die Übungen in den Tutorien, sondern sind zum Ver-
tiefen und Vernetzen des Stoffes gedacht.
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Kapitel 1

Mengen, Relationen, Abbildungen

Die Mengenlehre ist die Basis der modernen Mathematik. Nahezu alle Teilgebiete der
Mathematik lassen sich in der Sprache der Mengenlehre formalisieren. Um die Mengen-
lehre streng formal aufzubauen, benötigt man Begriffe aus der Prädikatenlogik (auch
Logik erster Stufe genannt). Dies ist nicht Gegenstand dieser Vorlesung. Da aber die
Grundbegriffe der Mengenlehre (wie Mengen, Relationen, und Abbildungen) für die li-
neare Algebra und für das Mathematikstudium allgemein praktisch sind, beginnen wir
die Vorlesung mit einer kurzen informellen Einführung. Auf potentielle Probleme mit
der naiven Mengenlehre und die Notwendigkeit eines streng formalen Aufbaus der Men-
genlehre kommen wir ebenfalls kurz zu sprechen. Mehr dazu erfährt man aber erst in
anderen Vorlesungen (wie z.B. [2]).

1.1 Mengen

Mengen bestehen aus Elementen. Schreibweise:

e ∈M e ist Element der Menge M

e ∉M e ist nicht Element der Menge M

Eine Menge kann beschrieben werden, indem man alle Elemente der Menge angibt. Zum
Beispiel bedeutet die Schreibweise

M = {5, 7, 11}
dass M die Menge ist, die genau die Elemente 5, 7 und 11 hat. Mengen selbst können
auch Element anderer Mengen sein: beispielsweise ist {1, {2, 3}} die Menge mit genau den
Elementen 1 und {2, 3}. Sonderfall: die Menge {} ohne Elemente heißt leere Menge und
wird mit ∅ bezeichnet. Mit der Pünktchen-Methode kann man auch unendliche Mengen
angeben:

N ∶= {0, 1, 2, 3, . . . } Die Menge der natürlichen Zahlen

N+ ∶= {1, 2, 3, . . . } Die Menge der positiven natürlichen Zahlen

Z ∶= {0, 1,−1, 2,−2, 3,−3, . . . } Die Menge der ganzen Zahlen
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1 Mengen, Relationen, Abbildungen

Weitere besondere Mengen, die in dieser Vorlesung von Bedeutung sind:

Q ∶= Menge der rationalen Zahlen

R ∶= Menge der reellen Zahlen

C ∶= Menge der komplexen Zahlen

Gleichheit von Mengen: Zwei Mengen A,B sind gleich, wenn sie genau die gleichen
Elemente enthalten. Wir schreiben dann A = B.

1.1.1 Beschreibung von Mengen durch Eigenschaften

Der Ausdruck

{x ∈ N ∣ ∃y ∈ N ∶
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

es existiert ein y

x = 3y + 1}

bezeichnet die Menge aller natürlichen Zahlen, für die ein y ∈ N existiert, so dass x =
3y+1. Also alle natürlichen Zahlen, die bei Division durch 3 den Rest 1 lassen. Allgemein
verwenden wir Ausdrücke der Gestalt

{x ∈M ∣ x hat Eigenschaft E}

für eine Eigenschaft E.

1.1.2 Mengentheoretische Operationen und Bezeichnungen

Die Enthaltenseinsbeziehung (Inklusion)
1
:

A ⊆ B A ist Teilmenge von B

d.h., jedes Element von A ist auch Element von B

A ⊂ B A ist echte Teilmenge von B:

A ⊆ B und A ≠ B

Der Unterschied von A ⊆ B und A ⊂ B ist also, dass es in letzterem Fall ein Element
x ∈ B gibt mit x ∉ A. Zum Beispiel:

N+ ⊂ N ⊂ Z

Durchschnitt (Schnitt):

A ∩B ∶= {x ∣ x ∈ A und x ∈ B}
1
In manchen Gebieten der Mathematik, z.B. in der Analysis, wird für ⊆ meist ⊂ verwendet; für ⊂
wird dann z.B. ⊊ verwendet. Die Meinungen gehen hier unversöhnlich auseinander. Über kurz oder
lang werden Ihnen noch andere terminologische Konflikte in der Literatur begegnen, es ist also gut,
sich bereits früh daran zu gewöhnen. Innerhalb dieser Vorlesung aber werde ich mich um Konsistenz
bemühen.
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1.1 Mengen

Man sagt, dass A und B disjunkt sind falls A ∩B = ∅.

Vereinigung :
A ∪B ∶= {x ∣ x ∈ A oder x ∈ B}

Verallgemeinerung: sei I eine Menge und für jedes i ∈ I sei Mi eine Menge. Dann
definieren wir

⋂
i∈I

Mi ∶= {x ∣ x ∈Mi für alle i ∈ I}

⋃
i∈I

Mi ∶= {x ∣ x ∈Mi für ein i ∈ I}

Beispiel 1.1.1. Für i ∈ N sei Mi ∶= {1, 2, . . . , n}; also M0 = ∅, M1 = {0}, M2 = {0, 1},
M3 = {0, 1, 2}, und so weiter. Dann ist

⋃
i∈N

Mi = N

⋂
i∈N

Mi = ∅. △

Differenz :
A \B ∶= {x ∣ x ∈ A und x ∉ B}

Komplement : falls klar ist, dass wir Teilmengen einer Menge M betrachten, und A ⊆

M , dann steht A fürM\A, das Komplement von A (inM). Die Komplementmenge hängt
also auch von M ab; da aber M oft aus dem Kontext klar ist, fließt diese Information
nicht in die Notation ein.

Potenzmenge:
P(A) ∶= {B ∣ B ⊆ A}

Kartesisches Produkt :

A ×B ∶= {(a, b) ∣ a ∈ A und b ∈ B}

Was ist ein Paar (a, b)? Es gelte (a, b) = (a′, b′) genau dann wenn a = a
′

und b = b
′
. Die

Reihenfolge ist wichtig! Es gilt: (1, 2) ≠ (2, 1) aber {1, 2} = {2, 1}.
Als Mengen fassen wir das Paar (a, b) daher (zum Beispiel) als {{a}, {a, b}} auf.

Verallgemeinerung: n-Tupel (a1, . . . , an). Das Element ai, für i ∈ {1, . . . , n}, wird der
i-te Eintrag des Tupels genannt.

A1 ×⋯×An ∶= {(a1, . . . , an) ∣ ∀i ∈ {1, . . . , n} gilt ai ∈ Ai}

Hier steht “∀i ∈M” für: “für alle i ∈M”.
Analog: “∃i ∈M” steht für “es gibt (mindestens) ein i ∈M”.

Weitere Abkürzung:
A
n
∶= A ×⋯×A

Beispiel: R3
.
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1.1.3 Rechenregeln

Es gibt folgende Rechenregeln für Mengenoperationen:

A ∩A = A Schnitt ist idempotent

A ∪A = A Vereinigung ist idempotent

A ∩B = B ∩A Schnitt ist kommutativ

A ∪B = B ∪A Vereinigung ist kommutativ

A ∩ (B ∩ C) = (A ∩B) ∩ C Schnitte sind assoziativ

A ∪ (B ∪ C) = (A ∪B) ∪ C Vereinigungen sind assoziativ

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) Schnitt ist distributiv über Vereinigung

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Vereinigung ist distributiv über Schnitt

Diese Rechenregeln können besonders einfach mit sogenannten Venndiagrammen ver-
deutlicht werden.

A B A B

L C

Für die Regel A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) beispielsweise sieht man, dass die
Ausdrücke auf beiden Seiten dieselbe farbige Fläche im Diagramm rechts beschreiben.

1.1.4 Kardinalitäten

∣A∣ bezeichnet die Anzahl der Elemente (die Mächtigkeit) einer Menge A.

∣∅∣ = 0 ∣{∅}∣ = 1 ∣{2, 4, 4}∣ = 2

Es gilt folgendes.

∣P(A)∣ = 2
∣A∣

∣A ×B∣ = ∣A∣ ⋅ ∣B∣
∣A ∪B∣ = ∣A∣ + ∣B∣ − ∣A ∩B∣

1.1.5 Das Russellsche Paradoxon

M ∶= {x ∣ x ∉ x}
Gilt M ∈M? Gilt M ∉M?

Notwendigkeit einer streng formalen, axiomatischen Mengenlehre.
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1.2 Relationen

1.1.6 Zermelo-Fraenkel Mengenlehre

ZF: weitverbreitete axiomatische Mengenlehre.

1. Leere Menge: Es gibt eine leere Menge.

2. Extensionalität: Wenn zwei Mengen die gleichen Elemente haben, dann sind sie
gleich.

3. Paarmenge: Für alle Mengen A und B gibt es eine Menge {A,B} mit der Eigen-
schaft dass C ∈ {A,B} genau dann wenn C = A oder C = B.

4. Vereinigung: Für alle Mengen M existiert die Menge ⋃M , die gleich der Vereini-
gung aller Mengen in M ist, soll heissen,

⋃M ∶= {x ∣ es gibt ein e ∈M so dass x ∈ e}.

5. Unendliche Mengen: Es gibt eine Menge M , die die leere Menge und die Menge
{e} für jedes e ∈M enthält.

6. Potenzmengen: Für jede Menge M gibt es eine Menge, die genau alle Teilmengen
von M enthält.

7. Ersetzungsschema: Informell: Bilder von Mengen unter definierbaren Funktionen
sind selbst wieder Mengen; eine Formalisierung des Funktionsbegriffs folgt in Ka-
pitel 1.2.3. Für eine formale Definition des Begriffs definierbar verweisen wir auf
die Vorlesung Einführung in die mathematische Logik [2].

8. Fundierung: Jede Menge M ≠ ∅ enthält ein e, so dass e ∩M = ∅. Insbesondere:
Mengen enthalten sich nicht selbst.

1.2 Relationen

Eine (zweistellige, oder binäre) Relation R zwischen A und B ist eine Teilmenge von
A ×B. Schreibweise: statt (a, b) ∈ R auch R(a, b).
Bemerkung 1.2.1. Praktische Visualisierungen:

• Falls A ∩ B = ∅: Darstellung durch Graphen (siehe Abschnitt 1.2.2), mit Kante
zwischen a und b falls (a, b) ∈ R.

• Spezialfall A = B: man spricht von einer Relation auf A. Darstellung durch gerich-
tete Graphen (siehe Abschnitt 1.2.2): Pfeil von a nach b falls (a, b) ∈ R.

Eine Relation R ⊆ A
2

heißt

• reflexiv wenn für alle a ∈ A gilt: (a, a) ∈ R.

• symmetrisch wenn für alle a, b ∈ A gilt: falls (a, b) ∈ R, dann auch (b, a) ∈ R.
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• antisymmetrisch wenn für alle a, b ∈ A gilt: falls (a, b) ∈ R und (b, a) ∈ R, dann
ist a = b.

• transitiv wenn für alle a, b, c ∈ A mit (a, b) ∈ R und (b, c) ∈ R auch gilt (a, c) ∈ R.

Beispiele: ‘<’ ist eine binäre Relation auf N, und ist transitiv, aber nicht reflexiv und
nicht symmetrisch. Die binäre Relation ≤ auf N, definiert durch n ≤ m falls n < m oder
n = m, ist ebenfalls transitiv, zusätzlich reflexiv, und antisymmetrisch.

1.2.1 Äquivalenzrelationen

Eine Relation R ⊆ A
2

ist eine Äquivalenzrelation (auf A) falls R reflexiv, symmetrisch,
und transitiv ist. Motivation: Verallgemeinerung von Gleichheit. Klassenbildung.

[x]R ∶= {y ∈ A ∣ R(y, x)}
heißt die Äquivalenzklasse von x bezüglich R. Wir schreiben A/R für die Menge aller
Äquivalenzklassen von A bezüglich R, die Faktormenge von A nach R.

Lemma 1.2.2.
2

Sei R eine Äquivalenzrelation auf einer Menge A. Dann sind zwei
Elemente aus A genau dann äquivalent, wenn sie die gleiche Aquivalenzklasse haben:

R(x, y) gilt genau dann wenn [x]R = [y]R

Beweis. Seien x, y ∈ A so dass R(x, y). Zeigen zuerst [x]R ⊆ [y]R. Sei z ∈ [x]R,
d.h. R(z, x). Wegen R(x, y) und Transitivität folgt R(z, y), also z ∈ [y]R. Zur Inklusion
[y]R ⊆ [x]R: wir haben R(y, x) mit Symmetrie, und verwenden das soeben bewiesene.

Umgekehrt: nehme an, dass [x]R = [y]R. Da y ∈ [y]R wegen Reflexivität gilt also
y ∈ [x]R, und damit R(x, y).

Definition 1.2.3 (Partition). Eine Partition einer Menge A ist eine Menge P nicht
leerer Teilmengen von A die paarweise disjunkt sind und deren Vereinigung gleich A ist.

Man nennt die Elemente von P die Klassen der Partition P.

Proposition 1.2.4 (Äquivalenz und Partition).
3

Die Faktormenge A/R einer Äqui-
valenzrelation R auf einer Menge A ist stets eine Partition. Umgekehrt gilt: ist P eine
Partition von A, dann ist RP ∶= ⋃Ai∈P Ai×Ai eine Äquivalenzrelation. Es gilt R = RA/R
und A/RP = P.

Übung 1. Beweisen Sie Proposition 1.2.4.

2
Ein Lemma (altgriechisch für ,,das Angenommene”; Mehrzahl Lemmata) ist eine Hilfsaussage, die
praktisch ist in Beweisen von anderen Aussagen. Das konkret vorliegende Lemma zum Beispiel ist
beim Beweis von Proposition 1.2.4 weiter unten hilfreich.

3
Eine Proposition bezeichnet in der Mathematik wie das Wort Satz eine wahre Aussage, allerdings eine,
die vielleicht weniger bedeutend ist, und meist keinen Namen trägt. Die Unterteilung in Satz, Propo-
sition, und Lemma ist bisweilen nicht eindeutig und hängt auch von den Vorlieben der Autor:innen
ab.
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1.2 Relationen

v1

v4

v2

v3

Abbildung 1.1: Eine Illustration des gerichteten Graphen G mit Knotenmenge
{v1, v2, v3, v4} und Kantenmenge {(v1, v4), (v4, v2), (v2, v1), (v4, v3)}).

1.2.2 Graphen

Ein (ungerichteter) Graph ist ein geordnetes Paar G = (V,E) bestehend aus einer Menge
V von Knoten und einer Menge E von zwei-elementigen Teilmengen von V , den Kanten
des Graphen G.

Ein gerichteter Graph ist ein geordnetes Paar (V,A) bestehend aus einer Menge V
von Knoten und einer zweistelligen Relation A ⊆ V

2
auf V , den Kanten des gerichteten

Graphen. Graphen können wie in Abbildung 1.1 illustriert werden.

Jeder ungerichtete Graph G = (V,E) kann als gerichteter Graph (V,A) aufgefasst
werden: wir setzen A = {(a, b) ∣ {a, b} ∈ E}. Die Kantenrelation A ist dann eine sym-
metrische Relation im Sinne von Abschnitt 1.2. Aus (V,A) gewinnen wir G = (V,E)
zurück durch E = {{a, b} ∣ (a, b) ∈ A}.

1.2.3 Abbildungen (Funktionen)

Schreibweise für Funktion f von einer Menge A (Definitionsbereich) in eine Menge B
(Wertebereich):

f ∶A→ B

Jedem x ∈ A wird genau ein Element aus B zugeordnet, das mit f(x) bezeichnet wird.
Formal ist eine Funktion ein Paar bestehend aus

1. einer Relation Gf ⊆ A ×B — dem Graph der Funktion, und

2. dem Wertebereich B,

mit folgenden Eigenschaften:

1. f ist überall auf A definiert: d.h., für alle a ∈ A gibt es ein b ∈ B mit (a, b) ∈ Gf .

2. Eindeutigkeit: für alle a ∈ A und für alle b, b
′
∈ B mit (a, b) ∈ Gf und (a, b′) ∈ Gf

gilt b = b
′
.

Schreibweise: b = f(a) falls (a, b) ∈ Gf . Nennen f(a) das Bild von a unter f , und a ein
Urbild von f(a) unter f . Weitere häufige Schreibweise: x↦ f(x).
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1.2.4 Spezielle Eigenschaften von Funktionen

• f ∶A→ B heißt surjektiv falls für alle b ∈ B ein a ∈ A existiert mit (a, b) ∈ Gf . In
anderen Worten, jedes b ∈ B hat (mindestens) ein Urbild unter f .

• f ∶A → B heißt injektiv falls für alle a, a
′
∈ A und b ∈ B gilt: falls f(a) = f(a′)

dann auch a = a
′
. In anderen Worten, jedes b ∈ B hat höchstens ein Urbild.

• f ∶A → B heißt genau dann bijektiv wenn f injektiv und surjektiv ist. In anderen
Worten, zu jedem b ∈ B gibt es genau einen Pfeil.

Weitere Bezeichnungen. Sei f ∶A → B und A
′
⊆ A. Dann definieren wir das Bild

von A
′

unter f als
f[A′] ∶= {f(a) ∣ a ∈ A′} .

Die Abbildung g∶A′ → B definiert durch f ↦ f(a) heißt Einschränkung von f auf A
′
,

und wird mit f∣A′ bezeichnet.
Für B

′
⊆ B definieren wir die Urbildmenge von B

′
unter f als

f
−1[B′] ∶= {a ∈ A∶ f(a) ∈ B′}

Der Kern von f ist die folgende Äquivalenzrelation auf A

{(a, a′) ∈ A2 ∣ f(a) = f(a′)}. (1.1)

Beispiel 1.2.5. Wir untersuchen einige Beispiele von konkreten Funktionen auf die Ei-
genschaften injektiv, surjektiv, und bijektiv.

• f ∶Z→ N ∶ x↦ x
2

ist weder injektiv noch surjektiv.

• Die Additionsfunktion R×R→ R ∶ (x, y)↦ x+y ist nicht injektiv, aber surjektiv.

• id∶A→ A ∶ x↦ x heißt die identische Funktion oder Identität auf A (ist bijektiv).
Bezeichnung häufig idA.

• Für das direkte Produkt A×B heißen π1∶A×B → A ∶ (a, b)↦ a und π2∶A×B →
B ∶ (a, b)↦ b Projektionen auf ersten beziehungsweise zweiten Faktor. △

1.2.5 Komposition von Abbildungen

Seien f ∶A → B und g∶B → C Funktionen. Dann bezeichnet g ◦ f die Komposition
(Hintereinanderausführung) von f und g, nämlich die Abbildung von A nach C die
definiert wird durch (g ◦ f)(x) ∶= g(f(x)) für alle x ∈ A.

1.2.6 Umkehrabbildung

Wenn f ∶A→ B eine Funktion ist, dann definiert (Gf)−1 ∶= {(b, a) ∣ (a, b) ∈ Gf} genau
dann eine Funktion von B nach A wenn f bijektiv ist. Falls f zumindest injektiv ist,
dann definiert (Gf)−1

eine Funktion von f[A] nach A. Diese Funktion wird dann die

Umkehrfunktion von f genannt, und mit f
−1

bezeichnet. Falls f ∶A → B bijektiv ist,
dann gilt f

−1 ◦ f = idA und f ◦ f−1
= idB.

20



1.2 Relationen

1.2.7 Operationen

Eine n-stellige Operation auf einer Menge A ist eine Abbildung f ∶An → A.

Beispiel 1.2.6. Die Addition und Multiplikation von natürlichen Zahlen sind 2-stellige
Operationen auf N. △

Beispiel 1.2.7. Für alle Mengen A sind Schnitt und Vereinigung zweistellige Operationen
auf P(A). △

1.2.8 Gleichmächtige Mengen

Mengen A,B heissen gleichmächtig (Schreibweise ∣A∣ = ∣B∣) falls es eine bijektive Ab-
bildung f ∶A→ B gibt.

Schreibweise:

• ∣A∣ ≤ ∣B∣ gdw es eine injektive Abbildung f ∶A→ B gibt.

• ∣A∣ < ∣B∣ falls ∣A∣ ≤ ∣B∣ und nicht gilt ∣A∣ = ∣B∣.

Beispiel 1.2.8. Die Mengen N, Z, N×N, Q sind gleichmächtig (sie sind abzählbar unend-
lich). △

Satz 1.2.9 (Cantor).
4

Für jede Menge A gilt ∣A∣ < ∣P(A)∣.

Beweis. Ein Widerspruchsbeweis. Angenommen, es gäbe eine Bijektion f ∶A → P(A).
Sei

U ∶= {x ∈ A ∣ x ∉ f(x)}

U ⊆ A, U ∈ P(A). Da f bijektiv ist, existiert u ∈ A so dass f(u) = U . Entweder u ∈ U
oder u ∉ U .

Wäre u ∈ U , so u ∈ f(u), also u ∉ U nach Def. von U , Widerspruch.

Wäre u ∉ U , so u ∉ f(u), also u ∈ U nach Def. von U , Widerspruch.

Satz 1.2.10 (Bernstein-Schröder). Für alle Mengen A,B gilt: wenn ∣A∣ ≤ ∣B∣ und
∣B∣ ≤ ∣A∣, dann ∣A∣ = ∣B∣.

Beweis. Es genügt, den Fall zu betrachten, dass A ⊆ B und dass f die identische
Abbildung ist. Definiere C ∶= {gn(x) ∣ n ∈ N, x ∈ B \A}. Es gilt B \ C ⊆ A da
g

0(B \A) = B \A. Siehe Abbildung.

4
Ein Satz in der Mathematik ist eine wahre Aussage, die von großer Bedeutung ist, und häufig nach
ihrer Entdecker:in benannt wird. Das Wort ,Theorem’ bezeichnet besonders herausstehende Sätze,
und wird im Deutschen sehr sparsam verwendet, deutlich seltener jedenfalls als das englische Wort
‘theorem’, was eher dem deutschen Wort ‘Satz’ entspricht.
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B
A

g[B]

g[A]

Sei h∶B → A gegeben durch

h(x) ∶= {g(x) falls x ∈ C

x falls x ∈ B \ C.
Die Abbildung h ist injektiv:

• Falls h(x) = h(y) ∈ C, dann g(x) = g(y),
also x = y ∈ C wegen der Injektivität von g.

• Falls h(x) = h(y) ∈ B \ C dann gilt x = h(x) = h(y) = y.

Die Abbildung h ist auch surjektiv: für jedes x ∈ A ∩ C
gibt es ein y ∈ C mit x = g(y) und für jedes x ∈ A \ C gilt x = h(x).

1.2.9 Das Auswahlaxiom

Sei g∶A→ B eine Surjektion. Falls A und B endlich sind, so gibt es auch eine Injektion
f von B nach A: denn für jedes b ∈ B gibt es ein a ∈ A so dass g(a) = b, und wir
definieren f(b) ∶= a. Wenn A und B unendlich sind, so stellt sich die Frage, ob eine
solche Funktion f überhaupt existiert.

Das Auswahlaxiom (AC für englisch Axiom of choice) impliziert, dass solche Funk-
tionen existieren (es entspricht aber der mathematischen Praxis, das Auswahlaxiom an-
zunehmen). Es gibt viele äquivalente Formulierungen des Auswahlaxioms; eine ist die
folgende.

(AC) Falls g∶A→ B eine Surjektion ist, so gibt es auch eine Injektion f ∶B → A so dass
g ◦ f = idB.

Tatsächlich ist bekannt, dass man in ZF die Existenz solcher Funktionen im allgemei-
nen nicht zeigen kann!

1.2.10 Die natürlichen Zahlen

Der Aufbau der natürlichen Zahlen als Mengen:

0 ∶= ∅

1 ∶= {0} = {∅}
2 ∶= {0, 1} = {∅, {∅}}
3 ∶= {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
⋯

n + 1 ∶= {0, 1, . . . , n} = {n} ∪ n
Für n ∈ N ist also n + 1 die Menge, die n und alle Elemente von n enthält.
Vorteil dieser Definition: für alle natürlichen Zahlen m und n gilt:

m < n⇔ m ⊂ n

⇔ m ∈ n
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Bemerkung 1.2.11. ‘<’ und ‘≤’ sind (zweistellige) Relationen auf N:

{(n,m) ∈ N2 ∣ n ≤ m}

Die Relation ≤ auf N ist eine Wohlordnung : jede Teilmenge T von N besitzt ein
kleinstes Element. Das heißt, für jedes T ⊆ N gibt es ein x ∈ T so dass für alle y ∈ T
gilt x ≤ y.

Beispiel 1.2.12. Die folgenden Ordnungen sind keine Wohlordnungen:

• Die bekannte Ordnung ≤ der ganzen Zahlen Z.

• Die bekannte Ordnung der nicht-negativen rationalen Zahlen

Q+0 ∶= {x ∈ Q ∣ x ≥ 0}. △

Addition und Multiplikation

Die Addition ist induktiv definiert: für alle n,m ∈ N

n + 0 ∶= n

n + (m + 1) ∶= (n +m) + 1

Die Multiplikation ist induktiv definiert mit Hilfe der Addition: n,m ∈ N

n ⋅ 0 ∶= 0

n ⋅m
+
∶= n ⋅m + n

Wir definieren auf N die Teilbarkeitsrelation: für a, b ∈ N gelte a∣b (sprich: a teilt b)
genau dann wenn es ein k ∈ N gibt mit a ⋅ k = b. Eine Zahl p ∈ N heißt Primzahl (oder
prim), wenn sie größer als 1 ist und nur durch 1 und sich selbst teilbar ist.

1.2.11 Restklassen modulo n

Sei n ∈ N+ = {1, 2, 3, . . . } und x, y ∈ Z. Dann ist x ein Teiler von y falls ein z ∈ Z
existiert so dass y = xz. Schreiben x ≡ y mod n falls n ein Teiler von y − x. Dadurch
wird eine Äquivalenzrelation definiert, nämlich {(x, y) ∣ x ≡ y mod n}. Menge der
Äquivalenzklassen: Z/n (die Restklassen modulo n; auch mit Z/(mod n) oder Z/nZ
bezeichnet). Jedes Element y ∈ [x] wird Repräsentant von [x] genannt. Rechnen mit
Restklassen ist repräsentantenweise möglich:

• Addition: [x] + [y] ∶= [x + y]

• Multiplikation: [x] ⋅ [y] ∶= [x ⋅ y]

Achtung: man muss beweisen, dass dies “wohldefiniert” ist, d.h., nicht von der Auswahl
der Repräsentanten abhängt.
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1.3 Beweisprinzipien

Was ist ein Beweis? Es gibt ein Gebiet der Mathematik, das sich damit beschäftigt: die
Beweistheorie. 1930er Jahre: Axiomensysteme und Beweiskalküle, mit denen sich alle
wahren mathematischen Aussagen herleiten lassen. Doch das sprengt den Rahmen der
Vorlesung.

1.3.1 Logische Konnektoren

Für systematische und formale Definition verweisen wir auf eine Logikvorlesung, wie
z.B. [2].

A, B, C, etc. stehen im folgenden für mathematische Aussagen, die entweder wahr (1)
oder falsch (0) sind; man spricht hier auch von aussagenlogischen Variablen.

• Schreiben A∧B für die Aussage A und B (‘Konjunktion’). Die Aussage A∧B ist
genau dann wahr, wenn sowohl A als auch B wahr sind.

• Schreiben A∨B für die Aussage A oder B (‘Disjunktion’). Die Aussage A∨B ist
genau dann wahr, wenn A oder B wahr ist (was den Fall einschließt, dass sowohl
A als auch B war sind).

• Schreiben ¬A für die Aussage nicht A (‘Negation’). Die Aussage ¬A ist genau
dann wahr, wenn A nicht wahr ist.

Bemerkung 1.3.1. Die Aussage ¬(A∧B) ist genau dann wahr, wenn ¬A∨¬B wahr ist.
Die Aussage ¬(A ∨B) ist genau dann wahr, wenn ¬A ∧ ¬B wahr ist.

1.3.2 Abkürzungen

Wir schreiben A⇒ B als Abkürzung für ¬A ∨B (‘Implikation’ ).

Bemerkung 1.3.2. A⇒ B gilt genau dann, wenn ¬B ⇒ ¬A gilt (‘Kontraposition’ ).

Bemerkung 1.3.3. A ⇒ B gilt genau dann, wenn A ∧ ¬B falsch ist (‘Widerspruchsbe-
weis’ ).

Bemerkung 1.3.4. Falls A gilt, und B ⇒ A gilt, so gilt auch B.

Wir schreiben A⇔ B als Abkürzung für (A⇒ B) ∧ (B ⇒ A) (‘Äquivalenz ’).

Um zu zeigen, dass die Aussagen A1, A2, . . . , An äquivalent sind (d.h., Ai ⇔ Aj für
alle i, j ∈ {1, . . . , n}), genügt es, zu zeigen, dass

A1 ⇒ A2 ∧A2 ⇒ A3 ∧ ⋅ ⋅ ⋅ ∧An−1 ⇒ An ∧An⇒ A1

Gute Wahl der Reihenfolge kann Arbeit sparen!
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1.3 Beweisprinzipien

1.3.3 Aussagenlogik

Ein aussagenlogischer Ausdruck ist ein Ausdruck, der aus aussagenlogischen Variablen,
∧, ∨, ¬, und Klammern aufgebaut ist, wie zum Beispiel A∧(B∨¬C). Eine Tautologie ist
ein aussagenlogischer Ausdruck, der wahr ist für alle Belegungen der aussagenlogischen
Variablen mit wahr oder falsch.

Beispiel 1.3.5. Die folgenden aussagenlogischen Aussagen sind Tautologien:

• A ∨ ¬A.

• ¬(A ∧B)⇔ (¬A ∨ ¬B) (siehe Bemerkung 1.3.1)

• ¬(A ∨B)⇔ (¬A ∧ ¬B) (siehe Bemerkung 1.3.1)

• (A⇒ B)⇔ (¬B ⇒ ¬A) (siehe Bemerkung 1.3.2).

• A⇒ B⇔ ¬(A ∧ ¬B) (siehe Bemerkung 1.3.3).

• (A ∧ (A⇒ B))⇒ B (siehe Bemerkung 1.3.4). △

1.3.4 Mengengleichheit

Um zu zeigen, dass zwei Mengen A und B gleich sind, genügt es zu zeigen, dass

A ⊆ B und B ⊆ A .

Bei endlichen Mengen reicht zu zeigen:

A ⊆ B und ∣A∣ = ∣B∣ .

1.3.5 Vollständige Induktion

Es seien A0, A1, A2, . . . Aussagen. Wir wollen zeigen, dass Ai für alle i ∈ N gilt.
Dazu genügt es zu zeigen:

1. Induktionsanfang : es gilt A0.

2. Induktionsschritt : für jedes n ≥ 0 gilt: wenn An gilt (Induktionsvoraussetzung),
dann auch An+1 (Induktionsbehauptung).

Dann gilt Ai für jedes i ∈ N (Induktionsschluss).

Beispiel 1.3.6. Aussage An:

n

∑
i=1

i = 1 +⋯+ n =
n(n + 1)

2

Induktionsanfang n = 1.
1

∑
i=1

i = 1 =
1(1 + 1)

2
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Induktionsschritt: es gelte An, zu zeigen ist An+1.

n+1

∑
i=1

i =
n

∑
i=1

i + (n + 1)

=
n(n + 1)

2
+

2

2
(n + 1) (Induktionsvoraussetzung)

=
n

2 + n + 2n + 2

2

=
(n + 1)(n + 2)

2
△

Bemerkung 1.3.7. Es gibt einen Zusammenhang zwischen dem Prinzip der vollständigen
Induktion mit der Aussage, dass N eine Wohlordnung ist. Dazu betrachten wir die Menge

S ∶= {i ∈ N ∣ Ai gilt nicht}.

Angenommen, es stimmt nicht, dass A0, A1, A2, . . . gelten. Dann ist S ≠ ∅ und besitzt
daher ein kleinstes Element. Das heißt, es gibt ein i ∈ N, so dass A0, A1, . . . , Ai−1 al-
lesamt gelten, aber Ai gilt nicht. Die ist eine Situation, die wir im Induktionsschluss
ausschliessen.

26



Kapitel 2

Gruppen, Körper, Vektorräume

Bekannteste Beispiele für Körper: Q, R und Cmit Addition und Multiplikation. Die Defi-
nition von Körpern besteht im Wesentlichen aus einer Axiomatisierung der Rechenregeln
von Addition und Multiplikation. Motivationen für diese Abstraktion:

• Es gibt eine große Vielfalt an interessanten Körpern. Jede Definition und jeden
Satz, den wir allgemein für Körper einführen beziehungsweise beweisen, können
wir später auf alle möglichen Körper anwenden.

• Ein angemessener Grad an Abstraktion ist per se eine Errungenschaft, da die
Abstraktion dann den Blick lenkt auf das Wesentliche, was wir für den Aufbau der
linearen Algebras benötigen.

Jeder Körper ist insbesondere eine Gruppe; wir starten daher mit einem kurzen Abschnitt
zu Gruppen.

2.1 Gruppen

Eine Menge G zusammen mit einer 2-stelligen Operation m∶G2
→ G heißt Gruppe, wenn

folgende Axiome erfüllt sind. Wir schreiben m(x, y) = x ◦ y der Einfachheit halber.

1. Assoziativitätsgesetz : für alle x, y, z ∈ G:

x ◦ (y ◦ z) = (x ◦ y) ◦ z

2. Existenz eines neutralen Elements: es gibt ein e ∈ G, so dass für alle x ∈ G gilt:
x ◦ e = x und e ◦ x = x.

3. Existenz inverser Elemente: zu jedem x ∈ G gibt es ein y ∈ G, so dass x ◦ y = e
und y ◦ x = e. Schreiben x

−1
für y.

Eine Gruppe heißt abelsch, wenn die Operation ◦ zusätzlich das Kommutativitätsgesetz
erfüllt:

für alle x, y gilt x ◦ y = y ◦ x.
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2 Gruppen, Körper, Vektorräume

Bemerkung 2.1.1. Die genaue Bezeichnung für die Gruppenoperation, das neutrale Ele-
ment, und das Inverse von x ist nicht von Bedeutung. Weitere Varianten sind: ⋅, 1, und
x
−1

, oder +, 0, −x.

Beispiel 2.1.2. (Z,+), (Q,+), (R;+), (Q \ {0}, ⋅). △

2.1.1 Erste Folgerungen

Lemma 2.1.3. Das neutrale Element e einer Gruppe ist eindeutig bestimmt.

Beweis. Seien e, e
′
zwei neutrale Elemente. Dann ist e◦e′ = e (weil e neutrales Element)

und e ◦ e′ = e′ (weil e
′

neutrales Element). Also e = e
′
.

Lemma 2.1.4. Das inverse Element x
−1

von x ist in einer Gruppe eindeutig festgelegt.

Beweis. Für Gruppenelemente y1, y2 mit

x ◦ y1 = y1 ◦ x = e Voraussetzung 1

x ◦ y2 = y2 ◦ x = e Voraussetzung 2

folgt

y1 = y1 ◦ e (e neutrales Element)
= y1 ◦ (x ◦ y2) (Voraussetzung 1)

= (y1 ◦ x) ◦ y2 (Assoziativität)

= e ◦ y2 (Voraussetzung 2)

= y2 (e neutrales Element)

Folgerung: (x−1)−1
= x.

Übung 2. Ein links-inverses Element zu x bezüglich einer 2-stelligen Operation ◦ mit
neutralem Element e ist ein Element y, so dass y ◦ x = e. Zeigen Sie, dass man das
dritte Gruppenaxiom zur Existenz inverser Element abschwächen kann zur Existenz von
Linksinversen. In anderen Worten: falls (G,◦) das Assoziativitätsgesetz erfüllt, es ein
neutrales Element gibt, und zu jedem x ∈ G ein linksinverses Element in G gibt, dann
ist (G,◦) bereits eine Gruppe.

2.1.2 Beispiel: die symmetrische Gruppe

Sei X eine Menge. Schreiben Sym(X) für die Menge aller Permutationen von X, d.h., Bi-
jektionen zwischen X und X. Dann ist (Sym(X),◦) eine Gruppe, wobei ◦ die Kompositi-
on von Abbildungen ist. Das neutrale Element ist die Identität idX , und zu x ∈ Sym(X)
ist die Umkehrabbildung x

−1
das inverse Element.
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2.2 Körper

2.1.3 Untergruppen

Sei (G,◦) eine Gruppe, U ⊂ G eine Teilmenge so dass

• e ∈ U ;

• für alle u ∈ U gilt u
−1
∈ U ;

• für alle u, v ∈ U gilt u ◦ v ∈ U .

Dann heißt (U,◦) (genauer: (U,◦∣U×U)) eine Untergruppe von (G,◦).
Beispiel 2.1.5. Beispiele zu Untergruppen.

• {e} ist stets Untergruppe.

• (Z,+) ist Untergruppe von (Q,+).

• (Q \ {0}, ⋅) ist Untergruppe von (R \ {0}, ⋅). △

Anmerkung: Jede Gruppe G ist eine Untergruppe von Sym(G) (Beweis kommt später
im Studium).

2.2 Körper

Ein Körper (englisch field ; französisch corps) ist eine Menge K zusammen mit zwei
binären Operationen

+∶K ×K → K Addition

⋅ ∶K ×K → K Multiplikation

die folgende Axiome erfüllen:

1. (K,+) ist eine abelsche Gruppe mit neutralem Element 0 (Nullelement), und in-
versem Element −x zu jedem x ∈ K.

2. Für (K, ⋅) gilt: Multiplikation ist assoziativ, kommutativ, es existiert ein neutrales
Element 1 (Eins-element), und für alle x ∈ K \ {0} existiert ein inverses Element
x
−1

.

3. 0 ≠ 1.

4. Distributivgesetz : für alle x, y, z ∈ K gilt

x ⋅ (y + z) = x ⋅ y + x ⋅ z.

Häufig wird eine mathematische Struktur und die entsprechende Grundmenge mit
dem gleichen Buchstaben bezeichnet, aber in einer anderen Schriftart. Etwa K für einen
Körper und K für die Grundmenge. Häufig wird aber auch das gleiche Symbol für
Grundmenge und Körper verwendet. Beispielsweise steht R sowohl für die Menge der
reellen Zahlen als auch für den Körper der reellen Zahlen.
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2 Gruppen, Körper, Vektorräume

Beispiel 2.2.1. R = (R,+, ⋅). △

Beispiel 2.2.2. Q = (Q,+, ⋅). △

Kein Beispiel: (Z,+, ⋅). (Warum?)

Bemerkung 2.2.3. In einem Körper K ∶= (K,+, ⋅) gilt für alle x, y ∈ K:

• 0 ⋅ x = 0 = x ⋅ 0. Denn 0 ⋅ x = (0 + 0) ⋅ x = 0 ⋅ x + 0 ⋅ x, also 0 = 0 ⋅ x.

• (−x) ⋅ y = −(x ⋅ y) = x ⋅ (−y). Denn 0 = 0 ⋅ y = (x+ (−x))y = x ⋅ y + (−x) ⋅ y, also
(−x) ⋅ y = −(x ⋅ y). Die Gleichung −(x ⋅ y) = x ⋅ (−y) folgt analog.

• x ⋅ y = 0⇔ x = 0 oder y = 0.

2.2.1 Der Körper mit zwei Elementen

Die Menge {0, 1} mit folgender Addition und Multiplikation ist ein Körper:

+ 0 1

0 0 1
1 1 0

⋅ 0 1

0 0 0
1 0 1

‘Rechnen modulo 2’

• Nullelement ist 0.

• Eins-element ist 1.

• Inverse Elemente bzgl + sind −0 = 0 und −1 = 1.

• Inverses Element von 1 bezüglich ⋅ ist 1
−1
= 1.

Bezeichnung für diesen Körper: GF(2) = ({0, 1};+, ⋅) oder F2.

2.2.2 Weitere endliche Körper

Sei p eine Primzahl. Dann ist (Z/p,+, ⋅) ein Körper (mit Addition und Multiplikation
wie in Abschnitt 1.2.11).

Bemerkung 2.2.4. (Z/n,+, ⋅) ist im allgemeinen kein Körper (aber ein Ring ; Definiti-
on 4.2.1).

Bemerkung 2.2.5. Für jede Primzahlpotenz p
m

gibt es einen Körper GF(pm) mit p
m

Elementen.
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2.2 Körper

2.2.3 Der Körper der komplexen Zahlen

Die Gleichung x
2
= −1 hat keine reelle Lösung. Imaginäre Zahlen: Zahlen, deren Quadrat

eine nicht-positive reelle Zahl ist. Mit i bezeichnen wir die imaginäre Zahl mit i ⋅ i = −1.
Komplexe Zahlen können in der Form a + b ⋅ i mit a, b ∈ R dargestellt werden. Hierbei
heißt a der Realteil und b der Imaginärteil.

Formale Definition. Formal definieren wir die komplexen Zahlen mit Hilfe von R2
:

• Addition:

(ab) + (cd) ∶= (a + cb + d)

• Multiplikation:

(ab) ⋅ (
c
d) ∶= (ac − bdad + bc)

Schreibweise: schreiben a statt (a
0
) für alle a ∈ R, und schreiben i statt (0

1
). Dann gilt

i ⋅ i = (0
1) ⋅ (

0
1) = (−1

0 ) = −1

Die Menge

C ∶= {a + b ⋅ i ∣ a, b ∈ R}
bildet zusammen mit der obigen Addition und Multiplikation den Körper der komplexen
Zahlen.

Nullelement ist 0, denn (0
0
) + (a

b
) = (a

b
).

Eins-element ist 1, denn (1
0
) ⋅ (a

b
) = (a

b
).

Geometrische Interpretation. (Komplexe) Gaußsche Zahlenebene: z = a + bi ent-

spricht dem Punkt (a
b
) ∈ R2

der Ebene.

Geometrische Interpretation der Multiplikation:

• Multiplikation mit −1:

(−1
0 ) ⋅ (ab) = (−a−b)

• Multiplikation mit i:

(0
1) ⋅ (

a
b) = (−ba )

• Multiplikation mit −i:

( 0
−1) ⋅ (

a
b) = ( b

−a)

31



2 Gruppen, Körper, Vektorräume

2.2.4 Weitere Begriffsbildungen

Die Charakteristik char(K) eines Körpers K ist die kleinste Zahl n ∈ N+, so dass

1 +⋯+ 1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
n mal

= 0.

Falls eine solche Zahl nicht existiert, so ist char(K) ∶= 0.

Bemerkung 2.2.6. Algebraische Strukturen, die alle Eigenschaften eines Körpers besit-
zen, außer dass die Multiplikation notwendigerweise kommutativ ist, heissen Schiefkörper.
Der Begriff der Charakteristik ist auch für Schiefkörper definiert. Der Satz von Wedder-
burn besagt, dass jeder Schiefkörper mit endlich vielen Elementen bereits ein Körper ist.
Ein Beispiel für einen Schiefkörper der Charakteristik 0, der kein Körper ist, sind die
Quaternionen.

2.3 Vektorräume

Vektorräume sind das zentrale Thema der linearen Algebra. Sei K ein Körper mit Eins-
element 1. Die Elemente von K werden Skalare genannt. Ein Vektorraum über dem
Körper K (kurz, ein K-Vektorraum) ist eine Menge V zusammen mit zwei Abbildungen

V
2
→ V ∶ (u, v)↦ u + v

(der Addition) und

K × V → V ∶ (λ, u)↦ λu

(der skalaren Multiplikation) so dass folgende Axiome erfüllt sind:

1. (V,+) ist abelsche Gruppe mit Nullelement 0;

2. Für alle λ, µ ∈ K und v ∈ V gilt (λµ)v = λ(µv);

3. Für alle v ∈ V gilt 1v = v.

4. Für alle u, v ∈ V und für alle λ ∈ K gilt

λ(u + v) = λu + λv

5. Für alle v ∈ V und für alle λ, µ ∈ K gilt

(λ + µ)v = λv + µv

Die Elemente von V heißen Vektoren. Wir definieren also zuerst Vektorräume, und dann
Vektoren, nicht anders herum.
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2.3 Vektorräume

2.3.1 Beispiele

Der Vektorraum Kn

Sei K ein Körper und n ∈ N+. Die Menge Kn aller n-Tupel (a1, . . . , an) von Elementen
a1, . . . , an ∈ K bildet einen Vektorraum über K wenn Addition und skalare Multiplika-
tion wie folgt definiert werden:

⎛
⎜⎜
⎝

a1

⋮
an

⎞
⎟⎟
⎠
+

⎛
⎜⎜
⎝

b1
⋮
bn

⎞
⎟⎟
⎠
∶=

⎛
⎜⎜
⎝

a1 + b1
⋮

an + bn

⎞
⎟⎟
⎠

und für λ ∈ K

λ
⎛
⎜⎜
⎝

a1

⋮
an

⎞
⎟⎟
⎠
∶=

⎛
⎜⎜
⎝

λ ⋅ a1

⋮
λ ⋅ an

⎞
⎟⎟
⎠
.

Der Nullvektor ist 0 ∶= (0, . . . , 0).
Wichtige Spezialfälle: R = R1

, R2
, R3

.

Vektorräume durch Körpererweiterungen

Sei K ein Körper. Eine Teilmenge U ⊆ K heißt Teilkörper (Unterkörper) wenn gilt

1. 0, 1 ∈ U ;

2. Für alle a, b ∈ U ist a + b ∈ U ;

3. Für alle a ∈ U ist −a ∈ U ;

4. Für alle a, b ∈ U ist a ⋅ b ∈ U ;

5. Für alle a ∈ U \ {0} ist a
−1
∈ U .

Dann ist U zusammen mit der Einschränkung der Addition und Multiplikation auf U
2

und dem gleichen Null- und Eins-element selbst ein Körper.

Schreibweise:

U ≤ K

Beispiele:

Q ≤ R ≤ C

Sei K ≤ K
′
. Dann ist K

′
ein Vektorraum über K:

• Addition in K
′

schon vorhanden;

• Multiplikation von u ∈ K mit Skalar λ ∈ K ⊆ K
′
:

λu ∶= λ ⋅ u.
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2 Gruppen, Körper, Vektorräume

Beispiele:

• R ist ein Q-Vektorraum.

• C ist ein R-Vektorraum.

• R ist ein R-Vektorraum.

Funktionenräume

Sei K ein Körper und X eine beliebige Menge. Dann bildet die Menge

KX ∶= {f ∣ f ∶X → K}

aller Abbildungen von X in K einen K-Vektorraum mit folgenden Operationen:

• Addition f + g:

(f + g)(x) ∶= f(x) + g(x)

• Multiplikation mit Skalar λ ∈ K:

(λf)(x) ∶= λ ⋅ f(x)

Nullvektor ist die Nullfunktion

0∶X → K ∶ x↦ 0

Potenzmenge als F2-Vektorraum

Die Potenzmenge P(A) einer beliebigen Menge A wird zu einem Vektorraum über F2

(siehe Abschnitt 1.1.2), mit folgenden Operationen, für X,Y ∈ P(A):

• Addition X + Y ∶= (X ∪ Y ) \ (X ∩ Y ) (Symmetrische Differenz )

• Skalare Multiplikation 0 ⋅X ∶= ∅ und 1 ⋅X ∶= X.

Nullvektor ist 0 ∶= ∅. Das additiv Inverse von X ∈ P(X) ist X selbst, denn

X +X = ∅ = 0.

2.3.2 Erste Folgerungen

Lemma 2.3.1. In einem K-Vektorraum V gilt für alle u ∈ V :

1. 0u = 0

2. (−1)u = −u.
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Beweis. Zu Teil 1.

0 = 0u + (−(0u)) (Vektorraumgesetz 1)

= (0 + 0)u + (−(0u)) (Körpergesetz)

= (0u + 0u) + (−(0u)) (Vektorraumgesetz 5)

= 0u (Vektorraumgesetz 1)

Zu Teil 2.

0 = 0u (Teil 1)

= (1 − 1)u (Körpergesetz)

= 1u + (−1)u (Vektorraumgesetz 5)

= u + (−1)u (Vektorraumgesetz 3)

Wegen der Eindeutigkeit des inversen Elements (Lemma 2.1.4) folgt (−1)u = −u.

Lemma 2.3.2. Für alle λ ∈ K und u ∈ V gilt λu = 0 genau dann, wenn λ = 0 oder
u = 0.

Übung 3. Beweisen Sie Lemma 2.3.2.

2.3.3 Untervektorräume

Sei V ein K-Vektorraum.

Definition 2.3.3. Eine Teilmenge U ⊆ V heißt Untervektorraum von V , wenn gilt

• 0 ∈ U .

• Für alle u, v ∈ U ist u + v ∈ U .

• Für alle u ∈ U und λ ∈ K ist λu ∈ U .

Schreibweise:
U ≤ V

R2

U

Beispiel 2.3.4. Sei V der R-Vektorraum R2
aus Abschnitt 2.3.1.

Dann ist jede Gerade durch den Ursprung (0, 0),
also jede Teilmenge von V der Gestalt {(x, y) ∈ V ∣ λ1x + λ2y = 0},
für ein λ1, λ2 ∈ R, ein Untervektorraum von V . △

Lemma 2.3.5. Sei U ⊆ V . Dann gilt U ≤ V genau dann, wenn

• U nichtleer ist, und

• U zusammen mit der Addition (wie in V ) und der skalaren Multiplikation (wie in
V ) selbst ein K-Vektorraum ist.
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2 Gruppen, Körper, Vektorräume

Beweis. Wenn U ≤ V , dann gilt 0 ∈ U , also U ≠ ∅. Ausserdem ist für alle u ∈ U auch
−u ∈ U , da −u = (−1)⋅u ∈ U nach Lemma 2.3.1 und Voraussetzung. Die Einschränkung
von ◦ auf U

2
und von ⋅ auf K×U liefert somit Funktionen von U

2
→ U beziehungsweise

K × U → U , und es gelten alle Vektorraumaxiome.
Umgekehrt sei U ≠ ∅ so, dass (U,+∣U2 , ⋅∣K×U) ein Vektorraum ist. Sei u ∈ U . Dann

gilt 0 = 0⋅u ∈ U . Weiterhin sind mit u, v ∈ U und λ ∈ K auch u+v ∈ U und λu ∈ U .

Bemerkung 2.3.6. Der Schnitt von Untervektorräumen eines Vektorraumes ist wieder
ein Vektorraum:

U1, U2 ≤ V ⇒ U1 ∩ U2 ≤ V

Dies gilt nicht für Vereinigung! Betrachte dazu V = R2
, u = (1, 0), und v = (0, 1).

Dann sind Ru ∶= {λu ∣ λ ∈ R} und Rv Untervektorräume von V . Aber:

(1, 1) = u + v ∉ Ru ∪ Rv

2.4 Basen und Dimension

2.4.1 Linearkombinationen

Sei V ein K-Vektorraum. Seien v1, . . . , vn ∈ V Vektoren und λ1, . . . , λn ∈ K Skalare.
Dann heißt

n

∑
i=1

λivi ∶= λ1v1 +⋯+ λnvn

eine Linearkombination von v1, . . . , vn. Die Menge aller Linearkombinationen von Vek-
toren aus S ⊆ V wird mit ⟨S⟩ bezeichnet, und die lineare Hülle (oder auch: (linearer)
Abschluss, (linearer) Spann, (lineares) Erzeugnis) von S genannt:

⟨S⟩ ∶= {λ1v1 + ⋅ ⋅ ⋅ + λnvn ∣ v1, . . . , vn ∈ S, λ1, . . . , λn ∈ K,n ∈ N}

S darf auch unendlich sein! Legen fest ⟨∅⟩ = 0.

Vereinbaren außerdem: ⟨v1, . . . , vn⟩ steht für ⟨{v1, . . . , vn}⟩.

Bemerkung 2.4.1. Die Abbildung

P(V )→ P(V ) ∶W ↦ ⟨W ⟩

ist ein Hüllenoperator, d.h., es gelten für alle X,Y ⊆ V :

• X ⊆ ⟨X⟩.

• X ⊆ Y ⇒ ⟨X⟩ ⊆ ⟨Y ⟩.

• ⟨⟨X⟩⟩ = ⟨X⟩.

Proposition 2.4.2. ⟨v1, . . . , vn⟩ ist ein Untervektorraum von V , und zwar der kleinste
Untervektorraum von V , der v1, . . . , vn enthählt.
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2.4 Basen und Dimension

Beweis. Sei U ∶= ⟨v1, . . . , vn⟩.

1. 0 = 0 ⋅ v1 +⋯+ 0 ⋅ vn ∈ U .

2. Seien u, v ∈ U , d.h., u = λ1v1 + ⋯ + λnvn und v = µ1v1 + ⋯ + µnvn. Dann ist
u + v = (λ1 + µ1)v1 +⋯(λn + µn)vn ∈ U .

3. Seien u ∈ U , λ ∈ K, u = λ1v1+⋯+λnvn. Dann ist λu = (λλ1)v1+⋯+(λλn)vn ∈ U .

Also gilt U ≤ V . Ist v1, . . . , vn ∈ W für Untervektorraum W ≤ V , so gehören auch alle
Linearkombinationen von v1, . . . , vn zu W , also ⟨v1, . . . , vn⟩ ≤W . Daher ist ⟨v1, . . . , vn⟩
der kleinste Untervektorraum von V , der v1, . . . , vn enthält.

Man nennt U = ⟨v1, . . . , vn⟩ auch den von v1, . . . , vn erzeugten (aufgespannten) Vek-
torraum. Die Menge {v1, . . . , vn} heißt dann Erzeugendensystem von U .

2.4.2 Lineare Unabhängigkeit

Ein n-Tupel (v1, . . . , vn) ∈ V n
heißt linear unabhängig falls gilt

λ1v1 +⋯+ λnvn = 0⇒ λ1 =⋯ = λn = 0 .

Ansonsten: (v1, . . . , vn) linear abhängig. Eine Menge U = {v1, . . . , vn} ⊆ V heißt linear
unabhängig wenn jedes n-Tupel (v1, . . . , vn) mit paarweise verschiedenen Elementen aus
U linear unabhängig ist. Ansonsten: U heißt linear abhängig.

Bemerkung 2.4.3. Ein einzelner Vektor v ∈ V ist genau dann linear abhängig, wenn
v = 0. Ein Tupel (v1, . . . , vn) ist genau dann linear abhängig, wenn mindestens ein
Vektor vi Linearkombination der anderen ist:

vi =∑
j≠i

λjvj .

Bemerkung 2.4.4. Jede Obermenge einer linear abhängigen Menge ist linear abhängig.
Jede Teilmenge einer linear unabhängigen Menge ist linear unabhängig.

Beispiel 2.4.5. In V = R2
(als R-Vektorraum):

• v1 = (1
0
) und v2 = (0

1
) sind linear unabhängig: denn λ1v1 + λ2v2 = (λ1

λ2
) = 0 genau

dann wenn λ1 = λ2 = 0.

• v1 = (1
2
) und v2 = (2

4
) sind linear abhängig, denn v2 = 2v1.

• v1 = (1
2
) und v2 = ( π

2π
) sind linear abhängig (aber in R2

aufgefasst alsQ-Vektorraum
sind v1 und v2 linear unabhängig, da π ∉ Q).

• Je drei Vektoren v1, v2, v3 ∈ R
2

sind linear abhängig.

λ1(
a1

b1
) + λ2(

a2

b2
) + λ3(

a3

b3
) = (0

0) = 0.
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2 Gruppen, Körper, Vektorräume

Anders geschrieben,

a1λ1 + a2λ2 + a3λ3 = 0

und b1λ1 + b2λ2 + b3λ3 = 0

hat für alle a1, a2, a3, b1, b2, b3 ∈ R nichttriviale (d.h., von (0, 0, 0) verschiedene)
Lösung für λ1, λ2, λ3. △

2.4.3 Basen

Eine Teilmenge B ⊆ V heißt Basis von V wenn

1. B linear unabhängig, und

2. ⟨B⟩ = V .

Für Basis B = {v1, . . . , vn}, vi paarweise verschieden, nennen wir B = (v1, . . . , vn) ge-
ordnete Basis (oder auch kurz Basis).

Satz 2.4.6 (Eindeutigkeit der Koordinaten). Ist B = (v1, . . . , vn) geordnete Basis von
V , so gibt es für jeden Vektor u ∈ V genau ein n-Tupel (λ1, . . . , λn) ∈ Kn, so dass

u = λ1v1 +⋯+ λnvn

D.h., jedes Element u lässt sich eindeutig als Linearkombination von Basiselementen
beschreiben. Das n-Tupel (λ1, . . . , λn) heißt Koordinatenvektor von u bezüglich B. Die
Abbildung

ϕB∶K
n
→ V ∶ (λ1, . . . , λn)↦ λ1v1 +⋯+ λnvn

ist bijektiv und heißt kanonischer Basisisomorphismus.
1

Beweis von Satz 2.4.6. Da B eine Basis ist, gilt insbesondere ⟨B⟩ = V und jedes u ∈ V
lässt sich schreiben als u = λ1v1 +⋯+ λnvn. Wenn nun gilt

λ1v1 +⋯+ λnvn = λ
′
1v1 +⋯+ λ

′
nvn

so folgt

(λ1 − λ
′
1)v1 +⋯+ (λn − λ′n)vn = 0 .

Da v1, . . . , vn linear unabhängig sind, so folgt λ1−λ
′
1 = 0, . . . , λn−λ

′
n = 0, also λ1 = λ

′
1,

. . . , λn = λ
′
n.

Beispiel 2.4.7. 1. Betrachten B ∶= {e1, e2} mit e1 ∶= (1
0
) und e2 ∶= (0

1
) ist Basis für

R2
. Zum Beispiel u = (8

3
) ∈ R2

kann geschrieben werden als u = 8 ⋅ e1 + 3 ⋅ e2. Die

Abbildung ϕB ist die Identität auf K2
.

1
Der Begriff ‘Isomorphismus’ wird für Vektorräume in Abschnitt 3.1 eingeführt werden).
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2. Die beiden Vektoren v1 = (1
0
), v2 = (1

1
) bilden ebenfalls eine Basis für R2

. Haben

(8
3
) = 5 ⋅ v1 + 3 ⋅ v2. △

Bemerkung 2.4.8. Für beliebigen Körper K ist

e1 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
, e2 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
1
⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
, . . . , en ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

Basis des K-Vektorraums Kn. Das n-Tupel (e1, . . . , en) heißt Standardbasis von Kn.

Satz 2.4.9 (Charakterisierungssatz für Basen). Sei V ein K-Vektorraum und B ⊆ V .

• (Ergänzung) B ist genau dann Basis von V , wenn B eine maximale linear un-
abhängige Menge ist (d.h., jede echte Obermenge von B ist linear abhängig).

• (Auswahl) B ist genau dann Basis von V , wenn B ein minimales Erzeugenden-
system von V ist (d.h., keine echte Teilmenge von B erzeugt V ).

Beweis. Ergänzung: ‘⇒’ Sei B Basis. Angenommen es gibt ein v ∈ V \ B mit B ∪ {v}
linear unabhängig. Da ⟨B⟩ = V gibt es λ1, . . . , λn ∈ K und v1, . . . , vn ∈ B mit v =
λ1v1 +⋯+ λnvn, im Widerspruch zur linearen Unabhängigkeit von B ∪ {v}.

‘⇐’ Sei B maximale linear unabhängige Menge. Wäre B keine Basis, so gäbe es ein
v ∈ V mit v ∉ ⟨B⟩. Behauptung: Dann wäre B

′ ∶= B ∪ {v} linear unabhängig (im
Widerspruch zur Maximalität von B).

Wäre B
′

linear abhängig, so gäbe es λ0, λ1, . . . , λn ∈ K und v1, . . . , vn ∈ B so dass
λ0v + λ1v1 + ⋯ + λnbn = 0, aber (λ0, λ1, . . . , λn) ≠ (0, 0, . . . , 0). Falls λ0 = 0 so sind
b1, . . . , bn linear abhängig, Widerspruch. Falls λ0 ≠ 0 so ist v = λ

−1
0 (−λ1b1−⋯−λnbn) ∈

⟨B⟩ im Widerspruch zu v ∉ ⟨B⟩.

Übung 4. Beweisen Sie den zweiten Teil von Satz 2.4.9.

Satz 2.4.10 (Satz über die Existenz von Basen). Jeder Vektorraum hat eine Basis.

Beweis für endlich erzeugte Vektorräume. Angenommen V = ⟨v1, . . . , vn⟩. Falls die Men-
ge M = {v1, . . . , vn} linear unabhängig ist, dann ist {v1, . . . , vn} eine Basis. Ansons-
ten lässt sich ein Element v ∈ M schreiben als Linearkombination der anderen. Sei
M

′ ∶= M \ {v}. Es gilt ⟨M ′⟩ = V . Starte das Verfahren mit der kleineren Menge M
′

anstatt von M von vorne. Nach endlich vielen Schritten muss das Verfahren abbrechen,
und wir haben eine Basis gefunden.

Der Beweis für unendlich dimensionale Vektorräume erfordert das Auswahlaxiom (vie-
le Beweise verwenden hier das Zornsche Lemma, welches äquivalent ist zum Auswahl-
axiom) was wir uns für’s nächste Semester aufheben (Abschnitt 5.1).
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2.4.4 Austauschsatz

Bemerkung: Sei K endlicher Körper, ∣K∣ = q ∈ N. Hat ein K-Vektorraum V eine Basis
mit n Elementen, so folgt aus Satz 2.4.6 (Eindeutigkeit der Koordinaten) dass ∣V ∣ = qn.
Also hat jede Basis von V genau n Elemente.

Lemma 2.4.11 (Austauschlemma). Sei B = (v1, . . . , vn) eine Basis eines Vektorraums
V und w = λ1v1 +⋯ + λnvn ∈ V \ {0} beliebig, und sei λj ≠ 0 für ein j ∈ {1, . . . , n}.

Dann ist B
′
= (v1, . . . , vj−1, w, vj+1, . . . , vn) ebenfalls eine Basis.

‘Austausch’ von vj gegen w.

Beweis. 1ter Teil: B
′

ist Erzeugendensystem von V .

vj = λ
−1
j w − λ

−1
j ∑

i≠j

λivi

also B ⊆ ⟨B′⟩ und

V = ⟨B⟩ ⊆ ⟨⟨B′⟩⟩ = ⟨B′⟩ ⊆ V

also V = ⟨B′⟩.
2ter Teil: B

′
ist linear unabhängig. Ansonsten gäbe es nichttriviale Linearkombination

µ1v1 +⋯+ µjw +⋯+ µnvn = 0

Falls µj = 0 dann sind v1, . . . , vn linear abhängig, Widerspruch zur Annahme dass B
Basis. Also µj ≠ 0:

w = (−µ−1
j µ1)v1 +⋯+ (−µ−1

j µj−1)vj−1 + 0 ⋅ vj + (−µ−1
j µj+1)vj+1 +⋯+ (−µ−1

j µn)vn

Andererseits
w = λ1v1 +⋯+ λjvj +⋯+ λnvn

Für die geordnete Basis (v1, . . . , vn) ergibt sich mit Satz 2.4.6 (Eindeutigkeit der Koor-
dinaten) dass λj = 0, Widerspruch.

Beispiel 2.4.12. V = R3
hat die folgende Basis:

v1 =

⎛
⎜⎜
⎝

0
1
1

⎞
⎟⎟
⎠
, v2 =

⎛
⎜⎜
⎝

1
0
1

⎞
⎟⎟
⎠
, v3 =

⎛
⎜⎜
⎝

1
1
0

⎞
⎟⎟
⎠

Sei w ∶= v2 − v1 =

⎛
⎜⎜
⎝

1
−1
0

⎞
⎟⎟
⎠

. Nach Austauschlemma sind (w, v2, v3), (v1, w, v3) Basen (nicht

aber (v1, v2, w)). △

Übung 5. Zeigen Sie die Behauptungen in Beispiel 2.4.12.
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Satz 2.4.13 (Austauschsatz von Steinitz). Es sei B = {v1, . . . , vn} eine Basis eines
K-Vektorraums V , und C = {w1, . . . , wm} sei beliebige Menge linear unabhängiger Vek-
toren. Dann gilt

(a) ∣C∣ ≤ ∣B∣, d.h., m ≤ n:
‘Jede linear unabhängige Menge besteht aus höchstens n Elementen’.

(b) Durch Hinzunahme von n−m geeignet gewählten Vektoren aus B kann man C zu
einer Basis von V ergänzen.

Beweis. Beweis von (a) und (b) durch Induktion über m.
Induktionsanfang m = 1: w1 ≠ 0, d.h., V hat mindestens ein Element ungleich 0.

Also muss auch gelten ∣B∣ ≥ 1 = m. Aussage (b) folgt direkt aus dem Austauschlemma,
Lemma 2.4.11.

Induktionsschritt m > 1: Die Aussagen (a) und (b) seien richtig für m−1 (Induktions-
voraussetzung). Zu zeigen: (a) und (b) gelten auch für m. Sei C

′ ∶= {w1, . . . , wm−1} ⊂ C
(ist linear unabhängig). Nach Induktionsvoraussetzung gelten

(a′) m − 1 ≤ n, und

(b′) es gibt vm, . . . , vn ∈ B so dass B
′ ∶= {w1, . . . , wm−1, vm, . . . , vn} Basis von V .

(a) gilt für m:
1. Fall: n > m − 1. Dann ist n ≥ m, fertig.
2. Fall: n ≤ m − 1 (also n = m − 1). Nach (b′) ist {w1, . . . , wm−1} Basis von V , also ist
{w1, . . . , wm−1, wm} linear abhängig, Widerspruch zur Voraussetzung.

(b) gilt für m: B
′

Basis. wm ∈ ⟨B′⟩.
wm = λ1w1 +⋯λm−1wm−1 + λmvm +⋯+ λnvn

Wäre λi = 0 für alle i ≥ m, so wäre wm = ∑m−1
i=1 λiwi im Widerspruch zur linearen

Unabhängigkeit von C = {w1, . . . , wm}. Also gibt es j ∈ {m, . . . , n} mit λj ≠ 0. Nach
Austauschlemma (Lemma 2.4.11) ist

{w1, . . . , wm−1, vm, . . . , vj−1, wm, vj+1, . . . , vn}
Basis von V , also ist (b) erfüllt. Nach Induktion gelten (a) und (b) für alle m ∈ N.

Bemerkung 2.4.14. Sei V ein K-Vektorraum mit Basis {v1, . . . , vn}.

1. Alle Basen von V haben gleiche Mächtigkeit (nämlich n).
Beweis: B1, B2 Basen. Dann gilt nach Satz 2.4.13 (1) ∣B1∣ ≤ ∣B2∣ und analog
∣B2∣ ≤ ∣B1∣.

2. Jede linear unabhängige Menge C mit n Elementen ist eine Basis.
Beweis: Nach Satz 2.4.13 (2), denn für m = n gibt es nichts zu ergänzen.

3. Ist U ≤ V Untervektorraum, so hat jede Basis von U höchstens n Elemente und
kann stets zu einer Basis von V ergänzt werden.
Beweis: Basis von U ist linear unabhängige Menge C ⊆ V , kann nach Satz 2.4.13
(2) ergänzt werden.
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2.4.5 Dimension

Dimension: “Die Anzahl der Freiheitsgrade in einem mathematischen Raum”

Definition 2.4.15. Sei V ein K-Vektorraum und B = {v1, . . . , vn} eine Basis. Dann
nennt man n die Dimension von V .

dimK V ∶= n

Falls aus dem Kontext klar ist, welches der zu Grunde liegende Körper ist, oder der
Körper keine Rolle spielt, so schreiben wir auch dimV anstatt dimK V . Für V = {0}
ist dimV = 0 (B = ∅). Falls keine endliche Basis existiert, schreiben wir dimV = ∞.
Definition 2.4.15 hängt wegen Satz 2.4.13 nicht von der Auswahl der Basis ab.

Bemerkung 2.4.16. Seien U1 ≤ U2 ≤ V Untervektorräume. Dann gilt

dimU1 ≤ dimU2

sowie
dimU1 = dimU2 ⇔ U1 = U2

(siehe Bemerkung 2.4.14 (3)).

Definition 2.4.17. Sind U1, U2 ≤ V Untervektorräume von V , so heißt

U1 + U2 ∶= {u + v ∣ u ∈ U1, v ∈ U2}

die Summe von U1 und U2. Gilt zusätzlich U1 ∩ U2 = {0}, so schreibt man

U1 ⊕ U2

und spricht von der direkten Summe. Falls U1 ⊕ U2 = V , so heißt U2 Komplement von
U1 (in V ). Wir sagen auch, U1 und U2 sind komplementär.

Satz 2.4.18. Seien U1, U2 ≤ V . Dann gilt: U1 + U2 ≤ V . Mehr noch: U1 + U2 ist der
kleinste Untervektorraum von V , der U1 und U2 enthält, d.h.,

U1 + U2 = ⟨U1 ∪ U2⟩

Beweis. U1 + U2 ⊆ ⟨U1 ∪ U2⟩: klar.
U1 ⊆ U1 + U2, U2 ⊆ U1 + U2: klar.
Nach Proposition 2.4.2 ist ⟨U1 ∪ U2⟩ der kleinste Untervektorraum von V , der U1 ∪ U2

enthält. Also reicht es zu zeigen, dass U1 + U2 ein Untervektorraum ist:

0 + 0 = 0 ∈ U1 + U2

(u1 + u2) + (v1 + v2) = (u1 + v1) + (u2 + v2) ∈ U1 + U2

λ(u1 + u2) = (λu1) + (λu2) ∈ U1 + U2

Beispiele mit Zeichnung an der Tafel: Wie hängt die Dimension von Durchschnitt
und Summe von den Dimensionen der einzelnen Teile ab? Betrachten Vereinigung und
Schnitt von Gerade U1 und Ebene U2 im R3

. Jeweils zwei Fälle:
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• Gerade liegt in der Ebene, U1 ≤ U2.
dim(U1 ∩ U2) = 1.
dim(U1 + U2) = 2.

• Gerade liegt nicht in der Ebene.
dim(U1 ∩ U2) = 0.
dim(U1 + U2) = 3.

Satz 2.4.19 (Dimensionssatz). Sind U1, U2 ≤ V endlichdimensional, so gilt

dim(U1 + U2) = dim(U1) + dim(U2) − dim(U1 ∩ U2) .

Speziell gilt also
dim(U1 ⊕ U2) = dim(U1) + dim(U2) .

Bemerkung:
dim(U1 ∩ U2) ≤ min{dimU1,dimU2}

da U1 ∩ U2 ≤ U1 und U1 ∩ U2 ≤ U2 (Abschnitt 2.3.3).

Beweis von Satz 2.4.19. Sei U0 ∶= U1 ∩ U2 und B = (v1, . . . , vm) Basis von U0. Dann
kann B zu einer Basis

B1 = (v1, . . . , vm, w1, . . . , wr)
von U1 und zu Basis

B2 = (v1, . . . , vm, u1, . . . , us)
von U2 ergänzt werden (Folgerung von Satz 2.4.13 da U0 ≤ U1 und U0 ≤ U2).

Behauptung:
(v1, . . . , vm, w1, . . . , wr, u1, . . . , us)

ist Basis von U1 + U2. Denn
⟨B1 ∪B2⟩ = U1 + U2

und v1, . . . , vm, w1, . . . , wr, u1, . . . , us sind linear unabhängig: sei

λv1 +⋯+ λmvm + µ1w1 +⋯µrwr + γ1u1 +⋯+ γsus = 0

Es folgt

γ1u1 +⋯+ γsusÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
∈U1

= −(λ1v1 +⋯+ λmvm + µ1w1 +⋯+ µrwrÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈U2

) ∈ U1 ∩ U2 (2.1)

Also gibt es Darstellung durch Basis B:

γ1u1 +⋯+ γsus = α1v1 +⋯+ αmvm

Da B2 = (v1, . . . , vm, u1, . . . , us) linear unabhängig erhalten wir

γ1 =⋯ = γs = α1 =⋯ = αm = 0
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2 Gruppen, Körper, Vektorräume

Also folgt aus (2.1) dass

λ1v1 +⋯+ λmvm + µ1w1 +⋯+ µrwr = 0

Da B1 = (v1, . . . , vm, µ1, . . . , µr) linear unabhängig gilt

λ1 =⋯ = λm = µ1 =⋯ = µr = 0 .

Damit ist lineare Unabhängigkeit von (v1, . . . , vm, w1, . . . , wr, u1, . . . , us) bewiesen.

Übung 6. Nach Satz 2.4.19 gilt dim(U1+U2) = dim(U1)+dim(U2)−dim(U1∩U2). Was
halten Sie von folgender Aussage:

dim(U1 + U2 + U3)
?
= dim(U1) + dim(U2) + dim(U3)
− dim(U1 ∩ U2) − dim(U1 ∩ U3) − dim(U2 ∩ U3)
+ dim(U1 ∩ U2 ∩ U3)

Satz 2.4.20 (Charakterisierungssatz für direkte Summen). Seien U1, U2 ≤ V . Dann gilt
genau dann V = U1⊕U2, wenn sich jeder Vektor v ∈ V eindeutig als Summe v = v1+v2

mit v1 ∈ U1 und v2 ∈ U2 darstellen lässt.

Beweis. Zuerst die Rückrichtung: Haben V = U1+U2. Ist u ∈ U1∩U2, so ist u+ (−u) =
0 = 0 + 0. Also folgt aus Eindeutigkeit u = 0, d.h., U1 ∩ U2 = {0}.

Hinrichtung: Da V = U1 ⊕ U2 lässt sich jedes v ∈ V als Summe v1 + v2 darstellen.
Eindeutigkeit: ist v = v1 + v2 = v

′
1 + v

′
2 mit v1, v

′
1 ∈ U1 und v2, v

′
2 ∈ U2, so folgt

u1 − v
′
1 = v

′
2 − v2 =∶ u

also

u ∈ U1 ∩ U2 = {0}

Also v1 − v
′
1 = 0 und daher v1 = v

′
1, und v2 − v

′
2 = 0 und daher v2 = v

′
2.

Direkte Summen mit mehreren Summanden:

U1 ⊕ U2 ⊕ U3 ∶= (U1 ⊕ U2)⊕ U3

Man darf die Klammern weglassen:

(U1 ⊕ U2)⊕ U3 = U1 ⊕ (U2 ⊕ U3)

Zunächst gilt U1 + (U2 + U3) = U1 + (U2 + U3). Weiterhin gilt

(a) U1 ∩ U2 = {0}
und (b) (U1 + U2) ∩ U3 = {0}
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genau dann wenn

(c) U1 ∩ (U2 ⊕ U3) = {0}
und (d) U2 ∩ U3 = {0} .

Davon die Hinrichtung: U2 ∩ U3 ⊆ (U1 + U2) ∩ U3 = {0} wegen (b), also gilt (d). Sei
v ∈ U1 ∩ (U2 ⊕ U3). Dann gilt v = u2 + u3 für u2 ∈ U2 und u3 ∈ U3. Also v − u2 = u3 ∈

(U1 + U2) ∩ U3 = {0} wegen (b). Ausserdem v = u2 ∈ U1 ∩ U2 = {0}, daher v = 0, also
(c). Rückrichtung ähnlich.

Analoges gilt für beliebig viele Summanden.

Satz 2.4.21 (Zerlegungssatz). Sei V ein K-Vektorraum, n = dimV , und {v1, . . . , vn}
eine Basis von V . Dann ist

V = U1 ⊕⋯⊕ Un

für Ui ∶= ⟨ui⟩ = Kvi.

Beispiel 2.4.22. Rn = Re1 ⊕⋯⊕ Ren. △

Folgerung: Jeder Untervektorraum eines endlichdimensionalen Vektorraums V hat ein
Komplement.

Beweis von Satz 2.4.21.

V = U1 +⋯+ Un = ⟨u1, . . . un⟩

Es bleibt zu zeigen: (U1 +⋯+ Ui) ∩ Ui+1 = {0} für i ∈ {1, . . . , n − 1}.

Übung 7. Vervollständigen Sie den Beweis von Satz 2.4.21.
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Kapitel 3

Lineare Abbildungen,
Gleichungssysteme, Matrizen

3.1 Lineare Abbildungen I

Lineare Abbildungen sind die wesentlichen strukturerhaltende Abbildung für Vektorräume.

Definition 3.1.1 (Lineare Abbildung). Es seien V und W Vektorräume über einem
Körper K. Eine Funktion f ∶V →W heißt lineare Abbildung oder (Vektorraum-) Homo-
morphismus wenn gilt

• für alle v, v
′
∈ V :

f(v + v′) = f(v) + f(v′) (Verträglichkeit mit der Addition)

• für alle v ∈ V und λ ∈ K:

f(λv) = λf(v) (Verträglichkeit mit der skalaren Multiplikation)

Insbesondere folgt für λ = 0, dass f(0) = 0. Wir sprechen von einem Isomorphismus
wenn f zusätzlich bijektiv ist. Weitere Bezeichnungen für den Spezialfall V =W :

• eine lineare Abbildung f ∶V → V heißt Endomorphismus (von V );

• ein Isomorphismus f ∶V → V heißt Automorphismus (von V ).

Zwei Vektorräume V und W heißen isomorph wenn ein Isomorphismus f ∶V →W exis-
tiert. Es handelt sich also bei isomorphen V und W bis auf Umbenennung der Elemente
um den gleichen Vektorraum.

Bemerkung 3.1.2. Wenn f ∶V →W ein Isomorphismus ist, dann auch f
−1∶W → V : seien

u, v ∈W und λ ∈ K. Wegen der Surjektivität von f gibt es u
′
, v
′
∈ V mit f(u′) = u und

f(v′) = v. Dann gilt

f
−1(u + v) = f−1(f(u′) + f(v′)) = f−1(f(u′ + v′)) = u′ + v′ = f−1(u) + f−1(v),

f
−1(λf(u)) = f−1(f(λu)) = λu.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Proposition 3.1.3. Die Komposition linearer Abbildungen ist wieder linear: wenn f ∶V1 →

V2 und g∶V2 → V3 linear sind, dann ist auch g ◦ f ∶V1 → V3 linear.

Beweis. Für alle v, v
′
∈ V1 und λ ∈ K gilt

g(f(λv)) = g(λf(v)) = λg(f(v))
g(f(v + v′)) = g(f(v) + f(v′)) = g(f(v)) + g(f(v′)).

3.2 Matrizen

Beispiel einer 2 × 3-Matrix über R:

(5 −3 0
1 2.5 π

)

Formal:

Definition 3.2.1 (Matrizen). Sei K ein Körper. Eine m × n-Matrix mit Einträgen aus
K ist ein Element des mn-dimensionalen Vektorraums Kmn über K. Schreiben Km×n für
die Menge aller (m × n)-Matrizen.

Falls B ∈ Km×n, so geben wir B häufig in folgender Schreibweise an:

B =

⎛
⎜⎜
⎝

b11 ⋯ b1n
. . . . . . . . .
bm1 ⋯ bmn

⎞
⎟⎟
⎠

Insbesondere dürfen wir für λ ∈ K und m × n-Matrizen M,N schreiben: λM und
M +N , und 0 steht für die Matrix in Km×n, deren Einträge allesamt 0 sind.

Motivationen: Matrizen dienen der kompakten Beschreibung von z.B.

• linearen Abbildungen;

• linearen Gleichungssystemen;

• (gerichteten und ungerichteten) Graphen, und vielem anderen mehr.

Beschreibung linearer Abbildungen

Sei B eine (m × n)-Matrix über K. Dann beschreibt B die lineare Abbildung

fB∶K
n
→ Km ∶ x↦ Bx

wobei

Bx ∶=
n

∑
i=1

xi
⎛
⎜⎜
⎝

b1i
. . .
bmi

⎞
⎟⎟
⎠
.
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3.2 Matrizen

Beispiel 3.2.2. Für B = (1 0
0 1

) ist fB = idR2 :

Bx = x1 (
1
0
) + x2 (

0
1
) = (x1

x2
) = x. △

Beschreibung linearer Gleichungssysteme

b11x1 +⋯+ b1nxn = z1

⋯ =⋯

bm1x1 +⋯+ bmnxn = zm

Übersichtlichere Schreibweise für das lineare Gleichungssystem:

⎛
⎜⎜
⎝

b11 ⋯ b1n
. . . . . . . . .
bm1 ⋯ bmn

⎞
⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
B

⎛
⎜⎜
⎝

x1

⋯
xn

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

z1

. . .
zm

⎞
⎟⎟
⎠

mit Hilfe der Koeffizientenmatrix B. Kurzschreibweise: Bx = z.

Beschreibung von Graphen

Sei G = (V,A) ein gerichteter Graph mit Knotenmenge V = {v1, . . . , vn}. Dann ist
die Adjazenzmatrix von G die Matrix B ∈ {0, 1}n×n mit bi,j = 1 falls {vi, vj} ∈ E
und bi,j = 0 sonst. Der gerichtete Graph aus Abbildung 1.1 hat beispielsweise folgende
Adjazenzmatrix:

B =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 0 0
0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Die Adjazentmatrix eines ungerichteten Graphen ist definiert als die Adjazenzmatrix des
zugehörigen symmetrischen Graphen (siehe Abschnitt 1.2.2).

3.2.1 Matrizenmultiplikation

Seien A ∈ Kr×m und B ∈ Km×n.
Dann lassen sich die Funktionen fB∶K

n
→ Km ∶ z ↦ Bz und fA∶K

m
→ Kr ∶ z ↦ Az

komponieren: sei fAB ∶= fA ◦ fB.

Beobachtung: es gibt ein C ∈ Kn×r mit fC = fAB. Schreiben: “C = AB”.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

. =i

j

i

j

A B A B

Definition 3.2.3. Das Produkt AB zweier Matrizen A ∈ Kr×m und B ∈ Km
′×n

ist
genau dann definiert, wenn m = m

′
und zwar durch

AB ∶= (
m

∑
k=1

aikbkj)
i=1,...,r, j=1,...,n

∈ Kr×n

für A = (aij)i=1,...,r,j=1,...,m und B = (bij)i=1,...,m′,j=1,...,n.

Proposition 3.2.4. Für die Matrizenmultiplikation gelten:

1. Assoziativitätsgesetz
(AB)C = A(BC)

2. Die Einheitsmatrizen

En ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
∈ Kn×n

sind Eins-elemente für die Multiplikation: Für A ∈ Km×n gilt

EmA = A und AEn = A

3. Distributivgesetze

A(B + C) = AB +AC
(B + C)A = BA + CA

4. Verträglichkeit mit der Skalarmultiplikation: für λ ∈ K gilt

(λA)B = λ(AB) = A(λB) (3.1)

Übung 8. Beweisen Sie Proposition 3.2.4.
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3.2 Matrizen

Definition 3.2.5. Die i-te Zeile der Einheitsmatrix hat die Gestalt

ei = (0, . . . , 0, 1ÍÑÏ
i

, 0, . . . , 0) ∈ Kn

und wird Einheitsvektor genannt.

Beispiel 3.2.6. Matrizenmultiplikation in Kn×n ist nicht kommutativ.

(0 1
0 0

) (1 1
0 0

) = (0 0
0 0

) (3.2)

(1 1
0 0

) (0 1
0 0

) = (0 1
0 0

) △

Die Menge Kn×n mit Addition und der eben definierten Multiplikation ist für n ≥ 2
nicht einmal ein Schiefkörper, da es Matrizen ungleich 0 gibt, die kein multiplikatives
Inverses haben, wie Beispiel 3.2.6 (3.2) ebenfalls zeigt.

Definition 3.2.7. Eine Matrix A ∈ Km×n heißt invertierbar (oder regulär oder nicht-
singulär) wenn m = n (quadratische Matrix) und eine Matrix B ∈ Kn×n existiert, so
dass

AB = BA = En .

Die Matrix B ist durch A eindeutig bestimmt (Lemma 2.1.4!) und wird mit A
−1

bezeich-
net.

Bezeichnung:

GL(n,K) ∶= {A ∈ Kn×n ∣ A invertierbar}

(englisch: “general linear group”)

Eigenschaften.

1. Für A,B ∈ Kn×n gilt

AB = En⇔ BA = En⇔ B = A
−1
⇔ A = B

−1

2. Ist A invertierbar, so auch A
−1

und es gilt (A−1)−1
= A.

3. Sind A,B ∈ Kn×n invertierbare Matrizen, so ist auch AB invertierbar und es gilt

(AB)−1
= B

−1
A
−1

(3.3)

4. GL(n,K) ist bezüglich der Matrizenmultiplikation eine Gruppe.

5. Für λ ∈ K \ {0} gilt (λA)−1
= λ

−1
A
−1

. Denn: λ
−1
A
−1(λA) = λ−1

λA
−1
A = En.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Beispiel 3.2.8. Eine Matrix A ∈ Kn×n der Gestalt

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1 0
λ2

⋱
0 λn

⎞
⎟⎟⎟⎟⎟⎟
⎠

für λ1, . . . , λn ∈ K heißt Diagonalmatrix. Eine Diagonalmatrix ist genau dann invertier-
bar, wenn λ1, . . . , λn ≠ 0, und in diesem Fall gilt

A
−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

λ
−1
1 0

λ
−1
2

⋱
0 λ

−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

△

Übung 9. Wie berechnet sich das Produkt von Diagonalmatrizen?

Übung 10. Sei D ∈ Kn×n eine Diagonalmatrix, so dass DA = AD für alle A ∈ Kn×n.
Dann gilt D = λEn für ein λ ∈ K (diese Matrizen werden auch Skalarmatrizen genannt).

Übung 11. Zeigen Sie: Falls B ∈ Kn×n so, dass BA = AB für alle A ∈ Kn×n, dann gilt
B = λEn für ein λ ∈ K. Hinweis: Betrachte die Matrix Eij , die eine 1 an der Stelle i, j
hat, und sonst Null ist. Was bedeutet EijB = BEij?

Übung 12. Sei A ∈ Kn×n. Dann gilt genau dann Ax = 0 für alle x ∈ Rn, wenn A = 0.

3.2.2 Rang

Sei A = (aij) ∈ Km×n.

s1 . . . sn

⎛
⎜
⎝

⎞
⎟
⎠

a11 . . . a1n z1

. . . . . . . . .
am1 . . . amn zm

Zeilen von A sind Elemente aus Kn und die Spalten von A sind Elemente aus Km!

Definition 3.2.9 (Rang). Die maximale Zahl linear unabhängiger Spalten von A (in
Km) heißt Spaltenrang von A. Die maximale Zahl linear unabhängiger Zeilen von A (in
Kn) heißt Zeilenrang von A.

Bemerkung 3.2.10. Seien s1, . . . , sn die Spalten von A. Dann

Spaltenrang von A = dimK ⟨s1, . . . , sn⟩ .

Seien z1, . . . , zm die Zeilen von A. Dann

Zeilenrang von A = dimK ⟨z1, . . . , zm⟩ .
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Satz 3.2.11. Dann

Zeilenrang von A = Spaltenrang von A

Definieren rg(A) ∶= Zeilenrang von A = Spaltenrang von A.

Beweis. Eine Spalte heiße linear überflüssig wenn sie Linearkombination der anderen
Spalten ist. Analog für Zeilen. Weglassen einer linear überflüssigen Spalte ändert den
Spaltenrang nicht.

Behauptung. Weglassen einer linear überflüssigen Spalte ändert auch den Zeilenrang
nicht! Sei etwa letzte Spalte sn linear überflüssig, d.h.,

vn = λ1s1 +⋯+ λn−1sn−1

also ain = λ1ai1 +⋯+ λn−1ai,n−1 für i ∈ {1, . . . , n}. Durch Weglassen der n-ten Spalte

entstehe aus A die Matrix A
′

mit Zeilen z
′
1, . . . , z

′
m. Dann gilt

α1z
′
1 +⋯+ αmz

′
m = 0⇔ α1z1 +⋯+ αmzm = 0

Rückrichtung hierbei klar. Hinrichtung: für die letzte Komponente gilt

α1a1n +⋯+ αmamn = α1 (
n−1

∑
k=1

λka1k) +⋯+ αm (
n−1

∑
k=1

λkamk)

=

n−1

∑
k=1

λk(α1a1k +⋯+ αmamk) = 0

Analog ändert das Weglassen einer linear überflüssigen Zeile nicht den Spaltenrang.
Durch sukzessives Weglassen von linear überflüssigen Zeilen und Spalten gelangt man

zu einer m
′ ×n′-Matrix A

′
∈ Km

′×n′
ohne linear überflüssige Zeilen oder Spalten, mit m

′

Zeilen in Kn
′

und n
′

Spalten in Km
′

:

Zeilenrang(A) = Zeilenrang(A′) = m′
≤ dim(Kn

′

) = n′

Spaltenrang(A) = Spaltenrang(A′) = n′ ≤ dim(Km
′

) = m′

Also m
′
= n

′
.

Beispiel 3.2.12. Der Rang der Nullmatrix 0 (alle Einträge 0) ist Null: rg(0) = 0. △

Bemerkung 3.2.13. Der Beweis von Satz 3.2.11 zum Rang ein Matrix A ist leider nicht
komplett algorithmisch: denn es ist bis zu dieser Stelle der Vorlesung (noch) nicht klar,
wie man (effizient!) berechnet, ob eine Spalte beziehungsweise eine Zeile von A linear
überflüssig ist. Die nächsten beiden Abschnitte werden dieses Problem lösen.
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3.2.3 Zeilenumformungen

Sei A ∈ Km×n. Die folgenden Umformungen von A heißen elementare Zeilenumformun-
gen (manchmal auch (elementare) Zeilentransformationen):

(1) Vertauschung zweier Zeilen;

(2) Multiplikation einer Zeile mit einem Skalar λ ∈ K \ {0};

(3) Addition des λ-fachen (λ ∈ K) einer Zeile zu einer anderen Zeile.

Analog: elementare Spaltenumformungen.

Bemerkung 3.2.14. Mit (1) lassen sich die Zeilen beliebig permutieren (Satz 4.1.1).

Bemerkung 3.2.15. Jede elementare Zeilenumformung lässt sich wieder mit einer elemen-
taren Zeilenumformung rückgängig machen.

Beispiel 3.2.16. In diesem Beispiel werden die einzelnen Zeilentransformationen durch
Pfeile angedeutet, die unten beschriftet sind mit einem der genannten drei Typen (1),
(2), oder (3) der Transformation, und oben beschriftet sind mit einer Beschreibung der
Transformation; zum Beispiel steht z2 + z1 ↝ z2 für die Transformation, die die zweite
Zeile durch die Summe der ersten beiden Zeilen ersetzt.

⎛
⎜⎜
⎝

1 2 3
3 2 1
1 1 1

⎞
⎟⎟
⎠

z2+z1↝z2
−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 2 3
4 4 4
1 1 1

⎞
⎟⎟
⎠

z2−4z3↝z2
−−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 2 3
0 0 0
1 1 1

⎞
⎟⎟
⎠

Vorteil der letzten Darstellung: Zeilenrang (nämlich 2) sofort ablesbar. △

Lemma 3.2.17. Elementare Umformungen ändern den Rang einer Matrix nicht.

Beweis. ⟨z1, . . . , zn⟩ bleibt bei elementaren Zeilenumformungen erhalten:

• ⟨z1, z2⟩ = ⟨λz2, z1⟩

• für λ ∈ K \ {0} gilt: ⟨z⟩ = ⟨λz⟩

• ⟨z1, z2 + λz1⟩ = ⟨z1, z2⟩

Bemerkung 3.2.18. Jede Zeilenumformung einer Matrix A lässt sich beschreiben als Ma-
trizenmultiplikation TA von A mit einer geeigneten Matrix T :

1. λzi ↝ zi (Multiplikation der Zeile zi mit λ): Wähle

T ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ 1

λ
1 ⋱ ⋮

⋮ ⋱ ⋱ 0
0 ⋯ ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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2. zi↭ zj (Vertauschung von Zeile zi und zj): Wähle

T ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
0 ⋯ 1
⋮ ⋮
1 ⋯ 0

1
⋱

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3. zi + λzj ↝ zi (Addition der Zeile zi mit dem λ-fachen der Zeile zj):

T ∶=

j

⎛
⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟
⎠

1
⋱ λ i

⋱
1

Diese Matrizen T werden auch Elementarmatrizen genannt.

Bemerkung 3.2.19. Offensichtlich ist jede Elementarmatrix invertierbar, und die inverse
Matrix ist ebenfalls eine Elementarmatrix:

• Falls T die Elementarmatrix ist von λzi ↝ zi, dann ist T
−1

die Elementarmatrix
von 1

λ
zi ↝ zi;

• Falls T die Elementarmatrix ist von zi↭ zj , dann ist T
−1
= T ;

• Falls T die Elementarmatrix ist von zi+λzj ↝ zi, dann ist T
−1

die Elementarmatrix
von zi − λzj ↝ zi.

Bemerkung 3.2.20. Analog lassen sich elementare Spaltenumformungen durch Multipli-
kation mit Elementarmatrizen von rechts beschreiben.

3.2.4 Algorithmus zur Umwandlung einer Matrix in Stufenform

In diesem Abschnitt stellen wir eine Prozedur zur Rangbestimmung vor. Es handelt sich
um das Kernstück des Gaußschen Algorithmus zur Lösung von linearen Gleichungssys-
temen.

Idee: Erzeugen mit Hilfe von elementaren Zeilenumformungen eine Matrix, deren
Rang direkt sichtbar ist.
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Definition 3.2.21. A ∈ Km×n ist in (oberer) Stufenform, falls A von der Gestalt

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 a1j1 ⋯ a1j2 ⋯ a1j3 ⋯ a1jr ⋯ a1n

0 ⋯ 0 ⋯ 0 a2j2 . . . a2j3 ⋯ ⋮
⋮ ⋯ 0 ⋯ 0 ⋱ ⋮
⋮ ⋱ arjr ⋯ arn
0 ⋯ ⋯ 0 ⋯ 0
⋮ ⋮
0 ⋯ ⋯ 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.4)

mit 0 < j1 < j2 <⋯ < jr ≤ n und a1j1 , . . . , arjr ∈ K \ {0}.

Bemerkung 3.2.22. Für A ∈ Km×n von der Form (3.4), so gilt rg(A) = r (gleich der
Anzahl der Stufen). Grund: die ersten r Zeilen sind linear unabhängig, denn λ1z1+⋯+
λrzr = 0 impliziert

λ1 ⋅ a1j1 + λ2 ⋅ 0 +⋯+ λr ⋅ 0 = 0 (⇒ λ1 = 0) (j1-te Spalte)

λ2 ⋅ a2j2 +⋯+ ⋅λr ⋅ 0 = 0 (⇒ λ2 = 0) (j2-te Spalte)

usw.

Also ji = 0 für alle i ∈ {1, . . . , r}, und rg(A) = r.
Beispiel 3.2.23. Betrachten A ∈ Q3×4

wie folgt.

⎛
⎜⎜
⎝

0 1 2 3
0 2 4 8
1 3 5 1

⎞
⎟⎟
⎠

z1↭z3
−−−−→

(1)

⎛
⎜⎜
⎝

1 3 5 1
0 2 4 8
0 1 2 3

⎞
⎟⎟
⎠

z3−
1
2
z2↝z3

−−−−−−−−→
(3)

⎛
⎜⎜
⎝

1 3 5 1
0 2 4 8
0 0 0 −1

⎞
⎟⎟
⎠

Stufenform, rg(A) = 3. △

Allgemein: induktiver Algorithmus zur Überführung einer Matrix in Stufenform mit
Hilfe von elementaren Zeilenumformungen. Hat die Matrix A ∈ Km×n die Gestalt

1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 a1j1 ⋯ ∗
⋮ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0 ak−1jk−1

∗
⋮
∗

⋯ ∗
beliebig ⋮
⋯ ∗

0
ak,jk
⋮

am,jk

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.5)

mit a1j1 , . . . , ak−1,jk−1 ≠ 0 und k größtmöglich. Falls Stufenform noch nicht erreicht ist,
so lässt sich weiter wie folgt verfahren:

1ter Fall: ak,jk = 0. Vertauschen der k-ten Zeile mit einer Zeile, für die ai,jk ≠ 0
(i > k) (die gibt es, da Stufenform noch nicht erreicht und k größtmöglich gewählt).
Damit o.B.d.A. 2ter Fall.
1
Sterne in Matrizen stehen für beliebige Einträge.
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2ter Fall: ak,jk ≠ 0. Von jeder Zeile zl (l > k) subtrahiere man (al,jka
−1
k,jk)zk.

Dies ergibt Matrix der Gestalt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 a1j1 ∗ . . . ∗
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ak−1jk−1 ∗
0 ⋯ ⋯ ⋯ ⋯ 0 ak,jk

∗

0 B
′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Der Algorithmus endet, wenn B
′
= 0 oder wenn keine Zeilen mehr vorhanden sind.

Bemerkung 3.2.24. Im Verfahren wurden keine elementaren Zeilenumformungen vom
Typ (2) verwendet (Multiplikation einer Zeile mit einem Skalar).

3.2.5 Bestimmung von Dimension und Basen

Seien u1, . . . , um ∈ Kn. Bestimmung von d ∶= dim ⟨u1, . . . , um⟩: Sei

A ∶=
⎛
⎜⎜
⎝

−u1−
⋮

−um−

⎞
⎟⎟
⎠
∈ Km×n

Dann gilt d = rg(A) und d ist durch Umformen von A in Zeilen-Stufenform bestimm-
bar. Siehe Lemma 3.2.17 (elementare Zeilenumformungen ändern den Rang nicht) und
Beobachtung am Ende von Abschnitt 3.2.3 (Ablesen des Rangs in der Stufenform).

Bestimmung einer Basis von V ∶= ⟨u1, . . . , um⟩: Umformen von

A =

⎛
⎜⎜
⎝

−u1−
⋮

−um−

⎞
⎟⎟
⎠
∈ Km×n

in Stufenform B ∈ Km×n. Die vom Nullvektor verschiedenen Zeilen von B bilden eine
Basis von V . Denn: falls

⎛
⎜⎜
⎝

−z1−
⋮

−zm−

⎞
⎟⎟
⎠
↝

⎛
⎜⎜
⎝

−u1−
⋮

−um−

⎞
⎟⎟
⎠

durch elementare Zeilenumformung, so ist ⟨z1, . . . , zm⟩ = ⟨u1, . . . , um⟩ (siehe Beweis von
Satz 3.2.17, “Elementare Umformungen ändern den Rang einer Matrix nicht”).

Rechnungen in beliebigen endlichdimensionalen Vektorräumen:
Sei nun V ein beliebiger n-dimensionaler K-Vektorraum. Das Rechnen in V lässt sich
auf das Rechnen mit Koordinatenvektoren bzgl. einer Basis zurückführen (Grundlage:
Satz 2.4.6).
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Wiederholung: Sei V ein K-Vektorraum mit geordneter Basis B = (v1, . . . , vn). Dann ist

ϕB∶K
n
→ V ∶ (λ1, . . . , λn)↦ λ1v1 +⋯+ λnvn

ein Isomorphismus, d.h., eine bijektive Abbildung mit den Eigenschaften

• ϕ(z1 + z2) = ϕ(z1) + ϕ(z2);

• ϕ(λz) = λϕ(z).

D.h., Kn und V sind “im Prinzip” der gleiche Vektorraum (Vergleiche: Satz 2.4.6).

Gegeben: w1, . . . , wm ∈ V .
Gesucht: Basis von ⟨w1, . . . , wm⟩.
Ansatz: Für i ∈ {1, . . . ,m} gibt es ui = (λi1, . . . , λin) ∈ Kn so dass wi = ϕB(ui). Also:

w1 = λ11v1 +⋯+ λ1nvn

⋮

wm = λm1v1 +⋯+ λmnvn

Setzen

A ∶=
⎛
⎜⎜
⎝

λ11 ⋯ λ1n

⋮ ⋮
λm1 ⋯ λmn

⎞
⎟⎟
⎠

Dann gelten

dimV ⟨w1, . . . , wm⟩ = dimKn⟨u1, . . . , um⟩ = rg(A) (3.6)

und

⟨w1, . . . , wm⟩ = ϕB(⟨u1, . . . , um⟩) . (3.7)

Insbesondere: (b1, . . . , bs) ist genau dann Basis von ⟨u1, . . . , um⟩, wenn (ϕ(b1), . . . , ϕ(bs))
Basis von ⟨w1, . . . , wm⟩ ist.

3.2.6 Invertierbarkeitskriterium

Wir lernen nun ein wichtiges notwendiges und hinreichendes Kriterium für die Invertier-
barkeit von Matrizen kennen.

Satz 3.2.25. Eine Matrix A ∈ Kn×n ist genau dann invertierbar, wenn rg(A) = n.

Beweis. “⇒”: Sei A invertierbar. Wir müssen zeigen, dass die Spalten v1, . . . , vn von A
linear unabhängig sind. Wir nehmen an, dass λ1v1 +⋯+ λnvn = 0, also dass

A
⎛
⎜⎜
⎝

λ1

⋮
λn

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

0
⋮
0

⎞
⎟⎟
⎠
= 0.
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Dann gilt

A
−1
A

⎛
⎜⎜
⎝

λ1

⋮
λn

⎞
⎟⎟
⎠
= 0.

Da A
−1
A = En erhalten wir

⎛
⎜⎜
⎝

λ1

⋮
λn

⎞
⎟⎟
⎠
= 0 and daher λ1 = ⋯ = λn = 0. Also ist der

Spaltenrang von A gleich n.

“⇐”: Sei rg(A) = n. Dann sind Spalten v1, . . . , vn von A linear unabhängig, also eine
Basis von Kn, und ⟨v1, . . . , vn⟩ = Kn. Also gibt es Linearkombinationen

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
= e1 = b11v1 +⋯+ bn1vn

⋮

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1

⎞
⎟⎟⎟⎟⎟⎟
⎠
= en = b1nv1 +⋯+ bnnvn

Also ist

A
⎛
⎜⎜
⎝

b11 ⋯ b1n
⋮ ⋮
bn1 ⋯ bnn

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

∣ ∣
b11v1 +⋯+ bn1vn ⋯ b1nv1 +⋯+ bnnvn

∣ ∣

⎞
⎟⎟
⎠
= En

und haben damit das Inverse

A
−1
=

⎛
⎜⎜
⎝

b11 ⋯ b1n
⋮ ⋮
bn1 ⋯ bnn

⎞
⎟⎟
⎠

zu A gefunden.

3.2.7 Konstruktion der inversen Matrix

Es gelte AB = C für drei Matrizen A,B,C ∈ Kn×n. Überführt man A und C durch
die gleichen elementaren Zeilenumformungen in Matrizen A

′
und C

′
, dann gilt auch

A
′
B = C

′
. Denn: eine elementare Zeilenumformung entspricht Multiplikation von links

mit einer Elementarmatrix T , und damit:

AB = C ⇒ T (AB) = TC
⇒ (TA)B = TC (nach Proposition 3.2.4).
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Folgerung:

AA
−1
= En

↝ ↝

EnA
−1
= A

−1

Das bedeutet: erhält man En durch elementare Zeilenumformungen aus einer Matrix A,
so verwandeln die gleichen Zeilenumformungen die Matrix En in die Matrix A

−1
.

Beispiel 3.2.26.

A =

⎛
⎜⎜
⎝

1 0 −2
0 1 0
1 0 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠
= E3

z3 − z1 ↝ z3 ∶
⎛
⎜⎜
⎝

1 0 −2
0 1 0
0 0 2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0 0
0 1 0
−1 0 1

⎞
⎟⎟
⎠

2
−1
z3 ↝ z3 ∶

⎛
⎜⎜
⎝

1 0 −2
0 1 0
0 0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0 0
0 1 0

−2
−1

0 2
−1

⎞
⎟⎟
⎠

z1 − (−2)z3 ↝ z1 ∶
⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 0 1
0 1 0

−2
−1

0 2
−1

⎞
⎟⎟
⎠
= A

−1
△

Zur Konstruktion von A
−1

benötigen wir also einen Algorithmus, der A durch Zeile-
numformungen in En überführt.

1. Teil: Umformung von A mit Algorithmus in Zeilen-Stufenform (Abschnitt 3.2.4).
Gibt es weniger als n Stufen, so ist rg(A) ≤ n − 1, und A ist nicht invertierbar (siehe
Abschnitt 3.2.5). Ansonsten hat A die Form

⎛
⎜⎜⎜⎜⎜⎜
⎝

a11 ∗ ⋯ ∗
0 a22 ⋱ ⋮
⋮ ⋱ ⋱ ∗
0 ⋯ 0 ann

⎞
⎟⎟⎟⎟⎟⎟
⎠

wobei alle aii ∈ K \ {0}.

2. Teil, 1. Schritt: Alle Diagonalelemente zu 1:
Multiplikation von zi mit a

−1
ii für i ∈ {1, . . . , n}:

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 ∗ ⋯ ∗
0 1 ⋱ ⋮
⋮ ⋱ ⋱ ∗
0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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2. Schritt: Alle Elemente ∗ zu Null machen: Für j = 2, 3, . . . , n (der Reihe nach)
Bearbeitung der Spalte j: Von Zeile zi mit i ∈ {1, . . . , j − 1} wird aijzj abgezogen
(ersetze zi durch zi − aijzj). Dies ergibt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0 ∗ ⋯ ∗
0 1 ⋱ ⋮ ⋮ ⋮
⋮ ⋱ ⋱ 0 ⋮ ⋮
⋮ 0 1 ∗ ⋮
⋮ 0 1 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ∗
0 ⋯ ⋯ 0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

und führt schließlich zu En.

Satz 3.2.27. Sei A ∈ Kn×n. Die folgenden Aussagen sind äquivalent:

1. A ist invertierbar (A
−1

existiert)

2. rg(A) = n

3. Die Spalten von A sind linear unabhängig

4. Die Zeilen von A sind linear unabhängig

5. A kann durch elementare Zeilenumformungen in En umgewandelt werden

6. detA ≠ 0 (kommt später in Abschnitt 4.1, Satz 4.1.9)

Beweis. (1)⇔ (2): Satz 3.2.25.
(2)⇔ (3)⇔ (4): Satz 3.2.11.
(1)⇔ (5): Abschnitt 3.2.7.

3.3 Lineare Gleichungssysteme

3.3.1 Definitionen

Ist A ∈ Km×n, b =
⎛
⎜⎜
⎝

b1
⋮
bm

⎞
⎟⎟
⎠
∈ Km so heißt

a11x1 +⋯+ a1nxn = b1

⋮

am1x1 +⋯+ amnxn = bm

kurz

Ax = b für x =
⎛
⎜⎜
⎝

x1

⋮
xn

⎞
⎟⎟
⎠
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lineares Gleichungssystem (LGS) (mit m Gleichungen und n Unbekannten x1, . . . , xn
und Koeffizienten aus K).

• b ≠ 0: inhomogenes LGS

• b = 0: homogenes LGS

Ax = 0 ist das zu Ax = b gehörige homogene Gleichungssystem.

Lös(A, b) ∶= {x ∈ Kn ∣ Ax = b}
heißt Lösungsmenge des LGS Ax = b.

3.3.2 Lösbarkeitskriterium

Sei A ∈ Km×n. Dann heißt Ax = b lösbar falls Lös(A, b) ≠ ∅.

Bemerkung 3.3.1. Seien s1, . . . , sn ∈ K
m

die Spalten von A. Dann gilt

fA(x) = Ax = x1s1 +⋯+ xnsn.

Also ist Ax = b genau dann lösbar, wenn b ∈ ⟨s1, . . . , sn⟩.

Es gibt drei Möglichkeiten:

1. Ax = b ist nicht lösbar: Lös(A, b) = ∅.
Zum Beispiel x1 + x2 = 1, x1 + x2 = 2.

2. Ax = b ist eindeutig lösbar: ∣Lös(A, b)∣ = 1.
Zum Beispiel x1 + x2 = 1, x2 = 2.

3. Ax = b hat mehrere Lösungen: ∣Lös(A, b)∣ > 1.
Zum Beispiel x1 + x2 = 1, 2x1 + 2x2 = 2.

Proposition 3.3.2. Ein LGS Ax = b ist genau dann lösbar, wenn

rg(A) = rg(A∣b).

Dabei bezeichne A∣b die Matrix

⎛
⎜⎜
⎝

a11 ⋯ a1n b1
⋮ ⋮ ⋮

am1 ⋯ amn bm

⎞
⎟⎟
⎠

Beweis. Schreiben s1, . . . , sn für die Spalten von A.

Ax = b lösbar

⇔ b ∈ ⟨s1, . . . , sn⟩ (Bemerkung 3.3.1)

⇔ ⟨s1, . . . , sn⟩ = ⟨s1, . . . , sn, b⟩ (siehe Abschnitt 2.4.1)

⇔ dim⟨s1, . . . , sn⟩ = dim⟨s1, . . . , sn, b⟩ (siehe Abschnitt 2.4.5)

⇔ rg(A) = rg(A∣b) (siehe Abschnitt 3.2.2).
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Bemerkung 3.3.3. rg(A) = m ist hinreichende (aber nicht notwendige) Bedingung für
Lösbarkeit (denn rg(A) ≤ rg(A∣b) ≤ m).

Satz 3.3.4. Sei v0 eine Lösung des LGS Ax = b (d.h., Av0 = b). Dann gilt

Lös(A, b) = v0 + Lös(A,0) ∶= {v0 + v ∣ v ∈ Lös(A,0)}

“Allgemeine Lösung des inhomogenen LGS

= spezielle Lösung des inhomogenen LGS

+ allgemeine Lösung des zugehörigen homogenen LGS.”

Beweis. Sei v ∈ Lös(A,0). Nach Distributivitätsgesetz gilt

A(v0 + v) = Av0 +Av = b + 0 = b

D.h., v0 + v ∈ Lös(A, b).
Umgekehrt: Sei w ∈ Lös(A, b). Dann ist v ∶= w − v0 ∈ Lös(A,0), denn

Av = A(w − v0) = Aw −Av0 = b − b = 0 .

Also w = v0 + v ∈ v0 + Lös(A,0).

Beispiel 3.3.5. K = R, m = 1, n = 2.

2x1 + 4x2 = 12

‘Ax = b’:

A = (2 4) ∈ R2
, x = (x1

x2
), b = (1 2) ∈ R2

v0 = (4
1
) ist spezielle Lösung.

Lös(A,0) = {(x1

x2
) ∣ 2x1 + 4x2 = 0}

= {(−2λ
λ ) ∣ λ ∈ R} =∶ R(−2λ

λ )

ist Gerade x2 = −
1
2
x1. Zeichnung!

Menge aller Lösungen:

Lös(A, b) = v0 + Lös(A,0) = {(4 − 2λ
1 + λ ) ∣ λ ∈ R}

ist Gerade x2 = −
1
2
x1 + 3. Zeichnung! △

63



3 Lineare Abbildungen, Gleichungssysteme, Matrizen

3.3.3 Bild und Kern

Sei A ∈ Km×n. Definieren Kern und Bild von A. Entspricht Kern und Bild der Abbildung

fA∶K
n
→ Km ∶ x↦ Ax

Bild von A (ist das Bild von fA; vergleiche Abschnitt 1.2.4):

BildA ∶= {Ax ∣ x ∈ Kn} = ⟨s1, . . . , sn⟩ ≤ Km

wobei s1, . . . , sn die Spalten von A. Also:

rg(A) = dim(BildA).

Kern von A (ist der Kern von fA, allerdings etwas anders definiert als in (1.1) in Ab-
schnitt 1.2.4):

KernA ∶= {x ∈ Kn ∣ Ax = 0} = Lös(A,0). (3.8)

Einfach nachzurechnen: KernA ist Untervektorraum von Kn.

Satz 3.3.6. Es gilt

dim(KernA) + dim(BildA) = n ‘Dimensionsformel’

rg(A) = n − d ‘Rangformel’

wobei d ∶= dim(KernA) der Defekt von A.

Beweis: später für lineare Abbildungen, Satz 3.4.15.

Seien A ∈ Km×n und b ∈ Km. Ist v0 ∈ K
n

spezielle Lösung von Ax = b und ist (v1, . . . , vd)
Basis von Lös(A,0), so ist

Lös(A, b) = {v0 + λ1v1 +⋯+ λdvd ∣ λ1, . . . , λd ∈ K}.

Das bedeutet, dass d = n−rg(A) nach Satz 3.3.6 die Anzahl der frei wählbaren Parameter
(λ1, . . . , λd) ist für allgemeine Lösung x = v0 + λ1v1 +⋯+ λdvd ∈ K

n
.

Korollar 3.3.7.
2

Seien A ∈ Km×n und b ∈ Km so, dass das LGS Ax = b lösbar.
Dann ist Ax = b genau dann eindeutig lösbar, wenn rg(A) = n.

Beweis.

Ax = b ist eindeutig lösbar ⇔ ∣Lös(A, b)∣ = 1

⇔ Lös(A,0) = {0} (Satz 3.3.4)
⇔ dim(KernA) = 0

⇔ n = n − dim(KernA) = rg(A) (Satz 3.3.6)
2
Ein Korollar bezeichnet in der Mathematik eine wahre Aussage von Interesse, die sich unmittelbar,
oder mit vergleichsweise geringem Aufwand, aus einer (meist direkt davor) bewiesenen Aussage ergibt.
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Bemerkung 3.3.8. Eindeutigkeit der Lösung hängt nur von A ab (nicht von b).

Bemerkung 3.3.9. Für n = m und rg(A) = n ist A
−1
b die (eindeutig bestimmte) Lösung

von Ax = b.

Bemerkung 3.3.10. Für n > m (mehr Unbekannte als Gleichungen) gilt: wenn lösbar,
dann nie eindeutig (weil rg(A) ≤ m < n).

Bemerkung 3.3.11. Für n < m: alle 3 Fälle sind möglich (siehe Abschnitt 3.3.2). Wegen
rg(A) ≤ n < m (insbesondere: Zeilenrang(A) ≤ n) sind einige der Zeilen Linearkombi-
nationen der anderen (also linear überflüssig, falls LGS lösbar).

3.3.4 Der Gaußsche Algorithmus

Wie löst man ein lineares Gleichungssystem Ax = b? Prinzip: Ax = b wird durch Zei-
lenumformungen in ein gleichwertiges LGS A

′
x = b

′
umgewandelt, d.h., Lös(A, b) =

Lös(A′, b′), so dass Lösbarkeit von A
′
x = b

′
leicht entscheidbar ist.

Wir verwenden den Algorithmus aus Abschnitt 3.2.4 mit der erweiterten Koeffizien-
tenmatrix (A∣b). Umformung von (A∣b) diesem Algorithmus ergibt Matrix (A′∣b′) in
Stufenform.

(A′∣b′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 a
′
1j1 ⋯ a

′
1j2 ⋯ a

′
1j3 ⋯ a

′
1jr ⋯ a

′
1n b

′
1

0 ⋯ 0 ⋯ 0 a
′
2j2 . . . a

′
2j3 ⋯ ⋮ b

′
2

⋮ ⋯ 0 ⋯ 0 ⋱ ⋮ ⋮
⋮ ⋱ a

′
rjr ⋯ a

′
rn b

′
r

0 ⋯ ⋯ 0 ⋯ 0 b
′
r+1

⋮ ⋮ ⋮
0 ⋯ ⋯ 0 ⋯ 0 b

′
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

für 1 ≤ j1 <⋯ < jr ≤ n und mit a
′
1j1 ≠ 0, . . . , a

′
rjr ≠ 0.

Merke: r = rg(A).
1. Fall: b

′
r+1, . . . , b

′
n nicht alle 0. Dann ist rg(A∣b) > r = rg(A), und nach Propositi-

on 3.3.2 ist Ax = b nicht lösbar.

2. Fall: b
′
r+1, . . . , b

′
n = 0. Dann ist Ax = b lösbar nach Proposition 3.3.2 (und eindeutig

lösbar falls r = n, Korollar 3.3.7).

Lemma 3.3.12. Lös(A, b) = Lös(A′, b′).

Beweis. Elementare Zeilenumformungen ändern nichts (vergleiche Abschnitt 3.2.7):

Ax = b
↝ ↝

(elementare Zeilenumformung)

A
′
x = b

′
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Lösung von A
′
x = b

′
einfach berechenbar:

a
′
rjrxjr + a

′
rjr+1xjr+1 +⋯+ a

′
rnxn = b

′
r

Auflösen nach xjr (‘an Stufe’):

xjr = (a′rjr)
−1(b′r − a′rjr+1xjr+1 −⋯− a

′
rnxn)

Zeile Nr. i:
a
′
ijixji + a

′
iji+1xji+1 +⋯a

′
inxn = b

′
i

auflösen nach xji , bereits berechnete xk für k > ji einsetzen. Schließlich: die restlichen
xji , . . . , xji1−1 als freie Parameter wählen.

Beispiel 3.3.13. LGS Ax = b:

x3 + 3x4 + 3x5 = 2

x1 + 2x2 + x3 + 4x4 + 3x5 = 3

x1 + 2x2 + 2x3 + 7x4 + 6x5 = 5

2x1 + 4x2 + x3 + 5x4 + 3x5 = 4

Erweiterte Koeffizientenmatrix (A∣b):

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1 3 3 2
1 2 1 4 3 3
1 2 2 7 6 5
2 4 1 5 3 4

⎞
⎟⎟⎟⎟⎟⎟
⎠

Umformung zu Stufenform: z1 ↭ z2 (Stufenelement muss ungleich Null sein):
“Pivotelement” (für numerische Berechnungen in Q ist Wahl wichtig).

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 2 1 4 3 3
0 0 1 3 3 2
1 2 2 7 6 5
2 4 1 5 3 4

⎞
⎟⎟⎟⎟⎟⎟
⎠

z3 − z1 ↭ z3 und z4 − 2z1 ↝ z4 (1. Spalte unterhalb von Stufe alles zu 0):

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 2 1 4 3 3
0 0 1 3 3 2
0 0 1 3 3 2
0 0 −1 −3 −3 −2

⎞
⎟⎟⎟⎟⎟⎟
⎠

z3 − z2 ↝ z3 und z4 − (−z2)↝ z4 (3. Spalte unterhalb von Stufe alles zu 0).

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 2 1 4 3 3
0 0 1 3 3 2
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠
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Stufenform (A′∣b′) erreicht. Wegen rg(A) = 2 = rg(A∣b) ist LGS lösbar (Propositi-
on 3.3.2).

Lösungen berechnen. Haben freie Parameter λ1, λ2, λ3 ∈ K.
x5 = λ3

x4 = λ2

x3 = 2 − 3λ2 − 3λ3 (aus dritter Zeile x3 + 3x4 + 3x5 = 2)
x2 = λ1

x1 = 3 − 2λ1 − (2 − 3λ2 − 3λ3) − 4λ2 − 3λ3) = 1 − 2λ1 − λ2.

Es gilt also:

Lös(A, b) = {

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 −1 0
1 0 0
0 −3 −3
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜
⎝

λ1

λ2

λ3

⎞
⎟⎟
⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
2
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∣ λ1, λ2, λ3 ∈ K
3}. △

Bemerkung 3.3.14. Mit dem gaußschen Algorithmus
3

lassen sich folgende Probleme
lösen:

1. Enscheiden, ob ein LGS (Abschnitt 3.3.4) eine Lösung besitzt;

2. Bestimmung von KernA (Abschnitt 3.3.5);

3. Bestimmung von BildA (Abschnitt 3.3.6);

4. Den Rang einer Matrix berechnen (Abschnitt 3.2.3);

5. dim ⟨z1, . . . , zm⟩ berechnen (Abschnitt 3.2.5);

6. Basis von ⟨z1, . . . , zm⟩ ausrechnen (Abschnitt 3.2.5);

7. Bestimmung der Determinante von A (später in Abschnitt 4.1).

3.3.5 Bestimmung des Kerns

Sei A
′

die Zeilen-Stufenform von einer Matrix A ∈ Km×n. Dann gilt

KernA = Lös(A,0) = Lös(A′,0).
Im Beispiel (aus Abschnitt 3.3.4):

A
′
=

x1 λ1 x3 λ2 λ3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 2 1 4 3 0
0 0 1 3 3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3
Das Verfahren war schon vor Gauß in Europa und unabhängig in China bekannt.
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Lösungen des homogenen Systems A
′
x = 0 haben die Form

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2λ1 − λ2

λ1

−3λ2 − 3λ3

λ2

λ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

für λ1, λ2, λ3 ∈ K.

Wegen dim KernA = n − rg(A) = 5 − 2 = 3 (Satz 3.3.6) müssen für Basis von KernA
drei linear unabhängige Lösungen gefunden werden. Diese erhält man, wenn man für
(λ1, λ2, λ3) eine Basis von K3

einsetzt, zum Beispiel die Einheitsvektoren e1 = (1, 0, 0),
e2 = (0, 1, 0), e3 = (0, 0, 1). Also:

w1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, w2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
0
−3
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, w3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
−3
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ist Basis von KernA.

3.3.6 Bestimmung des Bilds

Für gegebene Matrix A ∈ Km×n und b ∈ Km wollen wir wissen, ob b ∈ BildA. Es seien
s1, . . . , sn Spalten von A ∈ Km×n. Dann: BildA = ⟨s1, . . . , sn⟩ (siehe Abschnitt 3.3.3).
Ein Vektor b ∈ Km ist also genau dann im Bild von A, wenn Ax = b eine Lösung besitzt.

Ziel: Berechnung einer Basis von BildA ⊆ Km. Idee: Auch hierfür kann das Verfahren
aus Abschnitt 3.2.5 (Umformung in Stufenform) verwendet werden.

Definition 3.3.15. Sei

A =

⎛
⎜⎜
⎝

a11 ⋯ a1n

⋮ ⋮
am1 ⋯ amn

⎞
⎟⎟
⎠
∈ Km×n .

Die Matrix

A
⊤
∶=

⎛
⎜⎜
⎝

a11 ⋯ am1

⋮ ⋮
a1n ⋯ amn

⎞
⎟⎟
⎠
∈ Kn×m

heißt transponierte Matrix von A (Zeilen und Spalten vertauscht).
Entspricht Spiegelung an der Diagonalen: (�).

Beispiel 3.3.16.

(1 2 3
4 5 6

)
⊤

=

⎛
⎜⎜
⎝

1 4
2 5
3 6

⎞
⎟⎟
⎠
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(Zeilenvektor)
⊤

= (Spaltenvektor):

(1 2)⊤ = (1
2
) △

Bemerkung 3.3.17. Zu Rechnungen mit der Transposition.

• Offenbar: (A⊤)⊤ = A.

• (AB)⊤ = B⊤A⊤. Denn

(AB)⊤ =
⎛
⎜
⎝

n

∑
j=1

aijbjk
⎞
⎟
⎠
ki

=

⎛
⎜
⎝
∑
j=1

bjkaij
⎞
⎟
⎠
ki

= B
⊤
A
⊤

• Ist A ∈ Kn×n invertierbar, so gilt (A−1)⊤ = (A⊤)−1
. Denn:

A
⊤
⋅ (A−1)⊤ = (A−1

A)⊤ = E⊤ = E

Beispiel 3.3.18. Beispiel 3.3.13 aus Abschnitt 3.3.4:

A ∶=

s1 s2 s3 s4 s5

⎛
⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟
⎠

0 0 1 3 3
1 2 1 4 3
1 2 2 7 6
2 4 1 5 3

Spalten von A als Zeilen der Matrix

A
⊤
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0 1 1 2 s1

0 2 2 4 s2

1 1 2 1 s3

3 4 7 5 s4

3 3 6 3 s5

Auf Zeilen-Stufenform bringen:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 2 1
3 4 7 5
3 3 6 3
0 1 1 2
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 2 1
0 1 1 2
0 0 0 0
0 1 1 2
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 2 1
0 1 1 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Basis von BildA:
⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
2
1

⎞
⎟⎟⎟⎟⎟⎟
⎠
,

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
1
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

69



3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Wegen BildA = rg(A) = 2 (Abschnitt 3.3.4) braucht man nur zwei linear unabhängige
Spalten von A zu finden, z.B.

s1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
1
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

und s5 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

3
3
6
3

⎞
⎟⎟⎟⎟⎟⎟
⎠
. △

Übung 13. Sei a ∈ Kn×1
(ein Spaltenvektor). Was ist die Dimension der Matrix a

⊤
a?

Was ist die Dimension der Matrix aa
⊤

?

Eine Matrix heißt symmetrisch, wenn A
⊤
= A. Zum Beispiel sind Adjazentmatrizen

von ungerichteten Graphen stets symmetrisch (siehe Abschnitt 3.2).

Übung 14. Zeigen Sie: für alle A ∈ Kn×n ist A
⊤
A symmetrisch.

3.3.7 Unlösbarkeitskriterium

Wenn Ax = b für A ∈ Km×n und b ∈ Km eine Lösung hat, kann man das einfach durch
Angabe einer Lösung in Kn beweisen. Gibt es auch einfache Beweise dafür, dass Ax = b
keine Lösung hat? Etwas einfacheres, als den Gaußschen Algorithmus durchzuführen?

Satz 3.3.19 (Dualität). Sei A ∈ Km×n und b ∈ Km. Dann ist das LGS Ax = b genau
dann unlösbar, wenn das (‘duale’) System

(A∣b)⊤y = (0∣−1)⊤ (3.9)

lösbar ist.

Beweis. Seien z1, . . . , zm die Zeilen von (A∣b). Angenommen, (A∣b)⊤y = (0∣−1)⊤ hat ei-
ne Lösung y ∈ K

m
. Das bedeutet, y1z1+⋯+ymzm = (0∣−1). Also (0∣−1) ∈ ⟨z1, . . . , zm⟩.

Das bedeutet, man kann die Zeile (0∣ − 1) = (0 ⋯ 0 1) mit elementaren Zeilenum-
formungen aus Ax = b herleiten. Diese Zeile entspricht der unerfüllbaren Gleichung
0x1 +⋯+ 0xn = −1. Dann ist auch Ax = b unerfüllbar.

Die andere Richtung in Satz 3.3.19 ist etwas schwieriger zu zeigen, allerdings nicht viel,
wenn man die Stufenform kennt. Wir überführen mit Hilfe von elementaren Zeilenum-
formungen die Matrix (A∣b) in eine Matrix (C∣d) in Stufenform. Wenn nun (A∣b) un-
erfüllbar ist, dann auch (C∣d), und r ∶= rg(C) < rg(C∣d) nach Satz 3.2.11. Es gilt dann
insbesondere zr+1 = (0∣dr+1) mit dr+1 ∈ K\{0}. Ersetze zr+1 durch −d−1

r+1zr+1 = (0∣−1).
Da diese Zeile durch elementare Zeilenumformungen aus (A∣b) hervorgegangen ist, ist

also (0∣ − 1) ∈ ⟨z1, . . . , zm⟩. Daher ist das System (A∣b)⊤y = (0∣ − 1)⊤ lösbar.

3.4 Lineare Abbildungen II

Lineare Abbildungen waren bereits Gegenstand von Abschnitt 3.1. In diesem frühen
Abschnitt jedoch haben uns die Werkzeuge gefehlt, um wirklich interessante Aussagen
über lineare Abbildungen formulieren zu können. Dies ist jetzt anders, weshalb wir dieses
Thema hier nochmal aufgreifen.
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3.4.1 Beispiele

1. Die identische Abbildung idV ∶V → V ist linear (ein Endomorphismus).

2. Die Nullabbildung V → V ∶ v ↦ 0 ist stets linear.

3. Allgemeiner: für λ ∈ K ist x↦ λx linear.

4. Die Abbildung f ∶C→ C ∶ z ↦ i ⋅ z ist linear (betrachten C als R-Vektorraum).

f ∶R2
→ R2

∶ (xy)↦ (−yx )

Geometrische Interpretation: Drehung um 90 Grad.

Es gilt z.B. f(v + v′) = f(v) + f(v′) und f(2u) = 2f(u).

Wichtiges Beispiel:

Proposition 3.4.1. Sei A ∈ Km×n. Dann ist

fA∶K
n
→ Km ∶ x↦ Ax

eine lineare Abbildung.

Beispiel 3.4.2. n = m = 2, A = (0 −1
1 0

):

fA∶(
x
y)↦ (0 −1

1 0
) (xy) = (−yx ) △

Beispiel 3.4.3. n = 3, m = 2, A = (1 1 0
0 1 2

),

fA
⎛
⎜⎜
⎝

x1

x2

x3

⎞
⎟⎟
⎠
= ( x1 + x2

x2 + 2x3
)

fA(e1) = (1
0) fA(e2) = (1

1) fA(e3) = (0
2) △

Übung 15. Es sei K ein Körper. Beweisen Sie, dass eine Abbildung f ∶K→ K genau dann
linear ist, wenn es ein λ ∈ K gibt, so dass für alle v ∈ K gilt, dass f(v) = λv.
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3.4.2 Beschreibung linearer Abbildungen

Im gesamten Abschnitt stehen V und W für zwei K-Vektorräume. Weiterhin seien
v1, . . . , vn ∈ V und f ∶V →W eine lineare Abbildung. Dann gilt:

f[⟨{v1, . . . , vn}⟩] = ⟨{f(v1), . . . , f(vn)}⟩ (3.10)

Denn:
f(λ1v1 + ⋅ ⋅ ⋅ + λnvn) = λ1f(v1) +⋯+ λnf(vn)

Insbesondere:

f[V ] ≤W (Proposition 2.4.2) (3.11)

Satz 3.4.4. Sei (v1, . . . , vn) eine Basis von V . Dann gibt es zu jedem n-Tupel (w1, . . . , wn) ∈
W

n
genau eine lineare Abbildung f ∶V →W mit vi ↦ wi für alle i ∈ {1, . . . , n}.

Damit ist jede lineare Abbildung f eindeutig festgelegt, wenn man die Bilder f(vi)
einer Basis kennt. Die Bilder der Basiselemente sind beliebig wählbar.

Beweis von Satz 3.4.4. Jedes v ∈ V lässt sich eindeutig schreiben als v = λ1v1 + ⋯ +
λnvn ∈ V (Satz 2.4.6). Wir definieren dann (wohldefiniert!)

f(v) ∶= λ1w1 +⋯+ λnwn

Diese Abbildung ist linear, und f(vi) = wi für alle i ∈ {1, . . . , n}. Um die Eindeutigkeit
dieser Abbildung nachzuweisen, sei f

′
eine beliebige lineare Abbildung mit f(vi) = wi

für alle i ∈ {1, . . . , n}. Dann gilt

f
′(v) = f ′(λ1v1 +⋯+ λnvn)

= λ1(f(v1) +⋯+ λn(f(vn))
= λ1(w1) +⋯+ λn(wn) = f(v)

und damit f
′
= f .

3.4.3 Kern, Bild, Rang, Defekt

Sei f ∶V →W lineare Abbildung. Dann definieren wir

• Kern f ∶= {v ∈ V ∣ f(v) = 0}.

• Bild f = f[V ] ∶= {f(v) ∣ v ∈ V } (siehe Abschnitt 1.2.3).

• rg f ∶= dim(Bild f) (Definition sinnvoll wegen Bild f ≤W , siehe (3.11))

• dfkt f ∶= dim(Kern f) der Defekt von f .

Bemerkung 3.4.5. Begriffe für Matrizen A stimmen mit denen für die zugehörige lineare
Abbildung fA∶x↦ Ax überein (siehe Abschnitt 3.3.3):
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• KernA = Kern fA;

• BildA = Bild fA;

• rgA = rg fA.

Satz 3.4.6. Sei f ∶V →W eine lineare Abbildung. Dann:

1. f injektiv ⇔ Kern f = {0};

2. Falls W endlich dimensional, so gilt

f surjektiv ⇔ Bild f =W ⇔ dim Bild f = dimW ;

3. Falls dimV = dimW = n <∞, so gilt f injektiv ⇔ f surjektiv ⇔ f bijektiv
(also Isomorphismus)

Beweis. Zu 1.

f(v) = f(v′)⇔ f(v) − f(v′) = 0

⇔ f(v − v′) = 0

⇔ v − v
′
∈ Kern f

Zu 2. Siehe Abschnitt 2.4.5.
Zu 3. (Gilt nur in endlich dimensionalen Vektorräumen.)

f injektiv ⇔ Kern f = {0}
⇔ dim Kern f = 0

⇔ dim Bild f = n − 0 = n (nach Dimensionsformel, Satz 3.3.6)

⇔ Bild f =W (siehe 2.)

⇔ f surjektiv (nach Definition).

Satz 3.4.7. Sei f ∶V → W eine lineare Abbildung, und v1, . . . , vn eine Basis von V .
Dann:

1. f ist genau dann injektiv wenn f(v1), . . . , f(vn) linear unabhängig;

2. f ist genau dann surjektiv wenn ⟨f(v1), . . . , f(vn)⟩ =W ;

3. f ist genau dann Isomorphismus wenn {f(v1), . . . , f(vn)} eine Basis ist von W .

Beweis. 1, ‘⇒’: Sei f injektiv und λ1f(v1)+⋯+λnf(vn) = 0. (Z.z.: λ1 =⋯ = λn = 0).
Dann:

λ1f(v1) +⋯+ λnf(vn) = 0

⇒ f(λ1v1 +⋯+ λnvn) = 0 (Linearität von f)

⇒ λ1v1 +⋯+ λnvn ∈ Kern f

⇒ λ1v1 +⋯+ λnvn = 0 (Satz 3.4.6 (1.), da f injektiv)

⇒ λ1 =⋯ = λn = 0 (da v1, . . . , vn linear unabhängig)
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‘⇐’: Seien f(v1), . . . , f(vn) linear unabhängig und v = λ1v1 +⋯+ λnvn ∈ V . Dann:

f(v) = 0

⇒ v ∈ Kern f

⇒ f(v) = λ1f(v1) +⋯+ λnf(vn) = 0

⇒ λ1 =⋯ = λn = 0 (da v1, . . . , vn linear unabhängig).

Also ist v = 0 und f ist injektiv nach Satz 3.4.6 (1.).

2. f ist nach Definition genau dann surjektiv wenn Bild f = W . Man rechnet leicht
nach dass Bild f ≤ W . Da ⟨f(v1), . . . , f(vn)⟩ der kleinste Untervektorraum von W der
f(v1), . . . , f(vn) enthält, ist f genau dann surjektiv wenn W = ⟨f(v1), . . . , f(vn)⟩.

3. Direkt aus 1. und 2.

Satz 3.4.8 (Fundamentalsatz für endlich dimensionale Vektorräume). Je zwei K-Vektor-
räume, die von n Elementen erzeugt werden, sind isomorph. Insbesondere ist jeder n-
dimensionale K-Vektorraum V isomorph zu Kn, geschrieben V ≃ Kn.

Im Prinzip könnte man sich also beim Studium von endlichdimensionalen Vektorräumen
auf Kn beschränken; das wäre aber unpraktisch, da viele Vektorräume ganz anders ange-
geben sind. Trotzdem ist es eine wichtige Einsicht, dass Rechnen mit Koordinaten (nach
Wahl einer Basis!) möglich ist.

Beweis. Sei (v1, . . . , vn) eine Basis von V , und (w1, . . . , wn) eine Basis vonW (Satz 2.4.10:
Basen existieren). Nach Satz 3.4.4 gibt es eine lineare Abbildung f mit f ∶ vi ↦ wi, und
f ist Isomorphismus gemäß Satz 3.4.6.

Sei B = (v1, . . . , vn) Basis von K-Vektorraum V , und (e1, . . . , en) die kanonische Basis
von Kn. Nach Satz 3.4.4 gibt es einen eindeutig bestimmten Isomorphismus

ϕB∶K
n
→ V mit ϕB(ei) = vi

Dieser heißt der kanonische Basisisomorphismus. Beschreibt den Zusammenhang zwi-
schen Vektoren und ihren Koordinatenvektoren

⎛
⎜⎜
⎝

λ1

⋮
λn

⎞
⎟⎟
⎠
↦ λ1v1 +⋯+ λnvn

Aussagen über V in gleichwertige Aussagen über Elemente von Kn umwandeln.

Beispiel: Bereits in Abschnitt 3.2.5.

(u1, . . . , un) Basis von Kn⇔ (ϕB(u1), . . . , ϕB(un)) Basis von V

(w1, . . . , wn) Basis von V ⇔ (ϕ−1
B (w1), . . . , ϕ−1

B (wn)) Basis von Kn
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3.4.4 Faktorräume

Sei V ein K-Vektorraum, und U ≤ V Untervektorraum. Für v ∈ V heißt

v + U ∶= {v + u ∣ u ∈ U}

Nebenklasse von v bezüglich U . Das Element v heißt Repräsentant von v+U . Die Menge
der Nebenklassen

V /U ∶= {v + U ∣ v ∈ V }
heißt Faktorraum von V nach U . Wie wir sehen werden, ist der Faktorraum auch wieder
ein K-Vektorraum.

Bemerkung 3.4.9. Es gilt

w ∈ v + U ⇔ (w = v + u für ein u ∈ U)
⇔ (v − w = u

′
für ein u

′
∈ U)

⇔ v − w ∈ U

⇔ v ∈ w + U

⇔ v + U = w + U (3.12)

Das heißt, jedes Element einer Nebenklasse ist Repräsentant dieser Nebenklasse. Durch

v ∼ w ∶⇔ u + U = w + U

ist eine Äquivalenzrelation definiert (siehe Abschnitt 1.2.1), die Äquivalenzklassen sind
gerade die Nebenklassen:

[v]∼ = v + U
Abschnitt 1.2.1 besagt, dass V /U = V /∼ eine Zerlegung von V in disjunkte Nebenklassen
ist. Bild malen!

Übung 16. Beweisen Sie die Behauptungen in Bemerkung 3.4.9.

Beispiel 3.4.10. V ∶= R2
, U ≤ V sei die Gerade durch 0 mit Richtungsvektor v. Durch

jeden Punkt p ∈ R2
gibt es genau eine Gerade g

′
parallel zu g:

[p] ∶= g′ = p + Rv = p + U

Die Gerade g
′
hängt nicht von der Auswahl des Repräsentanten ab: g

′
= [p] = [q] genau

dann, wenn p und p
′

auf der gleichen Geraden g
′

parallel zu g liegen. Der Faktorraum
V /U ist die Schar der zu g parallelen Gerade p + U . △

Auf der Menge der Geraden lässt sich folgende Vektorraumstruktur definieren:

[p] + [q] ∶= [p + q]
λ[p] ∶= [λp]

Das funktioniert, weil die Gerade [p+q] nur von den Geraden [p] und [q] abhängt, aber
nicht von der konkreten Wahl der Repräsentanten p, q ∈ R2

.
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Satz 3.4.11. Sei V ein K-Vektorraum und U ≤ V . Dann ist V /U zusammen mit den
folgenden Operationen ein K-Vektorraum (der Faktorraum):

• Addition:

(v + U) + (w + U) ∶= (v + w) + U

• Multiplikation mit Skalar λ ∈ K:

λ ⋅ (v + U) ∶= (λv) + U

Dabei ist

• Nullvektor 0V /U = 0V + U = U

• additives inverses Element −(v + U) = (−v) + U .

Siehe Abbildung rechts.

natU

V U

V/U

0

0+U

Beweisskizze: + und Multiplikation mit Skalar
sind wohldefiniert: die Definition hängt nicht
von der Wahl der Repräsentanten ab.

Zu zeigen: wenn v + U = v
′ + U , w + U = w

′ + U ,
dann (v′ + w′) + U = (v + w) + U .
Nach (3.12) gilt v

′
∈ v + U und w

′
∈ w + U . Also

v
′
+ w

′
∈ (v + U) + (w + U)
= v + w + U + U

= (v + w) + U.

Und mit (3.12) gilt (v′ + w′) + U = (v + w) + U .

Analog für skalare Multiplikation.

Die Vektorrauaxiome übertragen sich damit von den Axiomen für die Repräsentanten
v ∈ V auf die Nebenklassen v + U ∈ V /U .

Proposition 3.4.12. Die Abbildung natU ∶V → V /U gegeben durch v ↦ v + U ist eine
lineare Abbildung, mit Kern(natU) = U , und heißt natürliche Homomorphismus.

Beweis. Linearität folgt aus Definition von V /U .

Kern(natU) = {v ∈ V ∣ natU(v) = 0V /U}
= {v ∈ V ∣ v + U = U}
= {v ∈ V ∣ v ∈ U}
= U
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Satz 3.4.13 (Homomorphiesatz). Es sei f ∶V →W eine lineare Abbildung (Homomor-
phismus) und U ∶= Kern f . Dann gilt

Bild f ≃ V /U

Ein Isomorphismus ist gegeben durch

h∶V /U → Bild f ∶ (v + U)↦ f(v)

Beweis. Achtung! Definition darf nicht vom Repräsentanten abhängen.

• h ist wohldefiniert: Seien u, v
′
∈ V beliebig so dass v + U = v

′ + U . Zu zeigen ist,
dass f(v) = f(v′). Es gilt v

′
∈ v + U und daher gibt es ein u ∈ U mit v

′
= v + u.

Da u ∈ U = Kern f gilt dann

f(v′) = f(v + u) = f(v) + f(u) = f(v) + 0 = f(v)

• h ist linear:

h((v + U) + (w + U)) = h((v + w) + U)
=

Def.
f(v + w) = f(v) + f(w)

= h(v + U) + h(w + U)

• Multiplikation mit Skalar: analog.

• h ist surjektiv: Nach Definition gilt für beliebiges f(v) ∈ Bild f

h(v + UV ) = f(v) ∈ Bildh .

• h ist injektiv: Nach Satz 3.4.6 genau dann, wenn Kernh = {0}.

h(v + U) = 0⇔ f(v) = 0

⇔ v ∈ Kern f = U

⇔ v + U = U = 0V /U

Also: homomorphe Bilder entsprechen Faktorräumen V /U , gegeben durch Unterräume
U von V . Siehe Abbildung.
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natU

V U

V/U

0

0+U

Homom. f

Isom. h

W

Wie lässt sich eine Basis eines Faktorraums finden?

Lemma 3.4.14. Sei U ≤ V mit Basis (v1, . . . , vd) und (v1, . . . , vd, vd+1, . . . , vd+r) (ergänzte)
Basis von V . Dann ist (vd+1 + U, . . . , vd+r + U) Basis von V /U .

(Siehe Abschnitt 2.4.4 zum Austauschsatz von Steinitz.)

Folgerungen:

V /U ≃ ⟨vd+1, . . . , vd+r⟩ (gleiche Dimension und Satz 3.4.8)
V = U ⊕ ⟨vd+1, . . . , vd+r⟩

Beweis. Basis: 1) Erzeugendensystem: Sei v ∈ V beliebig. Da (v1, . . . , vd) Basis lässt
sich v schreiben als v = λ1v1 +⋯+ λnvn. Dann:

v + U = natU(v) =
n

∑
i=1

λi natU(vi)

= 0V /U +
n

∑
i=d+1

λi natU(vi) (weil vi ∈ U = Kern(natU) für i ≤ d)

= λd+1(vd+1 + U) +⋯+ λd+r(vd+r + U)

2) Lineare Unabhängigkeit: Sei ∑n
i=d+1 λi(vi + U) = 0V /U = U . Da

n

∑
i=d+1

λi(vi + U) =
n

∑
i=d+1

λi natU(vi) = natU (
n

∑
i=d+1

λivi)
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gilt also:

natU(
n

∑
i=d+1

λivi) = 0V /U

⇒

n

∑
i=d+1

λivi ∈ Kern(natU) = U

⇒

n

∑
i=d+1

λivi = λ1v1 +⋯+ λdvd für geeignete λ1, . . . , λd ∈ K

⇒ (
n

∑
i=d+1

λivi) − λ1v1 −⋯− λdvd = 0

⇒ λ1 =⋯ = λd = λd+1 =⋯ = λn = 0 (v1, . . . , vn linear unabhängig).

Satz 3.4.15 (Dimensionssatz). Sei U ≤ V endlichdimensional. Dann gilt

dimV /U = dimV − dimU

(Dimension verhält sich wie Logarithmus log(a/b) = log(a) − log(b).)
Sei f ∶V →W lineare Abbildung. Dann gilt

dim(Bild f) = dimV − dim(Kern f) (3.13)

Beweis. Der erste Teil folgt mit r = dim(V /U), n = dimV , und d = dimU direkt aus
Lemma 3.4.14. Der zweite Teil folgt aus dem ersten Teil und dem Homomorphiesatz:
dim(Bild f) = dim(V /Kern f). Setze U ∶= Kern f .

Korollar 3.4.16. Seien f ∶U → V und g∶V → W lineare Abbildungen zwischen end-
lichdimensionalen Vektorräumen. Dann gilt

rg(g ◦ f) ≤ min(rg(g), rg(f)).

Beweis. Offensichtlich gilt: Bild(g ◦ f) ⊆ Bild(g). Also

rg(g ◦ f) = dim(Bild(g ◦ f)) ≤ dim(Bild(g)) = rg(g).

Auch gilt

rg(g ◦ f) = dim(Bild(g ◦ f))
= dimV − dim(Kern(g ◦ f)) (Dimensionsformel)

= dim(Bild(f)) + dim(Kern(f)) − dim(Kern(g ◦ f)) (Dimensionsformel)

≤ dim(Bild(f)) = rg(f) (Kern(f) ⊆ Kern(g ◦ f)).

Übung 17. Es sei f ∶V → W eine lineare Abbildung. Sei U ≤ V so, dass V /U isomorph
ist zu Bild(f). Zeigen Sie, dass dann U = Kern(f).4
4
Übungsaufgabe inspiriert von Student:innenfrage WS’23/24.
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3.4.5 Lineare Abbildungen und Matrizen

Jede Matrix A ∈ Km×n beschreibt eine lineare Abbildung, nämlich

fA∶K
n
→ Km ∶ x↦ Ax

Umgekehrt gilt: jede lineare Abbildung lässt sich durch eine Matrix beschreiben.

Sei f ∶V →W eine lineare Abbildung, wobei:

• V ein n-dimensionaler Vektorraum mit Basis B = (v1, . . . , vn), und

• W ein m-dimensionaler Vektorraum mit Basis C = (w1, . . . , wm).

Nach Satz 3.4.4 ist f eindeutig durch die Bilder der Basisvektoren festgelegt:

f(vj) = a1jw1 +⋯+ amjwm =

m

∑
i=1

aijwi

Das heißt, f wird eindeutig festgelegt durch die Matrix

A ∶=M
B
C (f) ∶=

⎛
⎜⎜
⎝

a11 ⋯ a1j ⋯ a1n

⋮ ⋮ ⋮
am1 ⋯ amj ⋯ amn

⎞
⎟⎟
⎠

(3.14)

die sogenannte Darstellungsmatrix.

Merkregel: Die Spalten der zu f gehörigen Darstellungsmatrix M
B
C (f)

sind die Koordinatenvektoren (bezüglich der Basis C von W ) der Bilder von
B (der Basisvektoren von V ) unter f ∶V →W .

Dabei gilt: Hat v ∈ V den Koordinatenvektor u =
⎛
⎜⎜
⎝

λ1

⋮
λn

⎞
⎟⎟
⎠

(bezüglich B), so hat f(v) den

Koordinatenvektor Au (bezüglich C) für A =M
B
C (f), d.h., die lineare Abbildung

fA∶K
n
→ Km ∶ u↦ Au

beschreibt die lineare Abbildung f in ihren Koordinatenvektoren:

V
f

−−−−→ W

↑ÈÈÈÈ
ϕB

↑ÈÈÈÈ
ϕC

Kn
A∶=MB

C (f)
−−−−−−−−→ Km
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Ein sogenanntes kommutatives Diagram. Konkret:

v = λ1v1 +⋯+ λnvn
f

−−−−→ f(v) = ϕC(Au)
↑ÈÈÈÈ
ϕB

↑ÈÈÈÈ
ϕC

u =
⎛
⎜⎜
⎝

λ1

⋮
λn

⎞
⎟⎟
⎠

fA
−−−−→ Au

Denn:

f(ϕB(u)) = f(v) =
n

∑
j=1

λjf(vj)

=

n

∑
j=1

λj

m

∑
i=1

aijwi

=

m

∑
i=1

⎛
⎜
⎝

n

∑
j=1

aijλj
⎞
⎟
⎠
wi = ϕC(Au)

Beispiel 3.4.17. V ∶= Kn, W ∶= Km. Standardbasen Bn ∶= (e1, . . . , en) von V und Bm
von W . Der kanonische Basisisomorphismus ϕBn∶K

n
→ Kn ∶ v ↦ v ist die identische

Abbildung, also ist jede lineare Abbildung

f ∶Kn → Km

darstellbar als
fA∶K

n
→ Km ∶ u↦ Au

mit A =M
Bn
Bm

(f). Hier: Spalten von A sind die Bilder der Einheitsvektoren.

Beispiel zum Beispiel: f ∶R3
→ R2

:

⎛
⎜⎜
⎝

x
y
z

⎞
⎟⎟
⎠
↦ (x

y
)

(Projektion auf xy-Ebene) ist linear, zugehörige Matrix

A =M
B3

B2
(f) = (1 0 0

0 1 0
)

Spalten von A sind Bilder der Koordinatenvektoren, A = (f(e1)f(e2)f(e3)). △

Beispiel 3.4.18. Für die identitsche Abbildung idV ∶V → V gilt (nur eine Basis, B = C)

M
B
B (idV ) = En =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

Aber für B ≠ C entsteht nicht En! △
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Beispiel 3.4.19. Die Polynome

a0 + a1X + a2X
2
+ a3X

3

in einer Unbekannten X vom Grad höchstens drei mit reellen Koeffizienten bilden einen
R-Vektorraum. Was ist ein Polynom? Aus der Schule bekannt. Ein Ausdruck geformt
mit Hilfe von Variable, Skalaren, Addition, und Multiplikation.

V ∶= R(≤4)[X]

Addition und Multiplikation mit Skalar λ ∈ R wie üblich.
Basis ist z.B. B = (v0, v1, v2, v3) mit v0 = 1, v1 = X, v2 = X

2
, v3 = X

3
.

Kanonischer Basisisomorphismus:

ϕB∶

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0

a1

a2

a3

⎞
⎟⎟⎟⎟⎟⎟
⎠
↦ a0v0 + a1v1 + a2v2 + a3v3 = a0 + a1X + x2X

2
+ a3X

3

Das heißt ϕB(ei) = vi−1 für i ∈ {1, . . . , 4}. Das Differenzieren

diff∶R(≤4)[X]→ R(≤4)[X]

ist lineare Abbildung mit Matrix

A =M
B
B (diff) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

a0 + a1X + a2X
2 + a3X

3 diff
−−−−→ a1 + 2a2X + 3a3X

3
= ϕB(Au)

↑ÈÈÈÈ
ϕB

ÈÈÈÈ↓ϕ
−1
B

u =
⎛
⎜⎜
⎝

a0

⋮
a3

⎞
⎟⎟
⎠

fA
−−−−→ Au =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1

2a2

3a3

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

△

Proposition 3.4.20. Die Komposition von linearen Abbildungen entspricht dem Pro-
dukt der zugehörigen Matrizen: V1, V2, V3 seien K-Vektorräume mit Basen B1, B2, B3

und f1∶V1 → V2, f2∶V2 → V3 lineare Abbildungen.

V1
f1

−−−−→ V2
f2

−−−−→ V3

↑ÈÈÈÈ
ϕB1

↑ÈÈÈÈ
ϕB2

↑ÈÈÈÈ
ϕB3

Kn
fA1
−−−−→ Km

fA2
−−−−→ Kr
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Dann gilt

M
B1

B3
(f2 ◦ f1) =MB2

B3
(f2)MB1

B2
(f1)

(Funktionenkomposition) (Matrizenmultiplikation)

Folgerung für Inverse:

M
C
B (f−1) = (MB

C (f))−1

Bemerkung 3.4.21. Die linearen Abbildungen f ∶V →W bilden selbst einen Vektorraum,
Bezeichnung:

HomK(V,W )
Operationen komponentenweise:

(f + g)(v) ∶= f(v) + g(v)
(λf)(v) ∶= λ ⋅ f(v)

Falls dimV = n und dimW = m so gilt:

Hom(V,W ) ≅ Hom(Kn,Km) ≅ Km×n

3.4.6 Basiswechsel und Koordinatentransformation

Sei V ein K-Vektorraum, B = (v1, . . . , vn) eine Basis von V , und B
′
= (v′1, . . . , v′n) eine

andere Basis von V . Bei Basiswechsel B ↝ B
′
ändern sich die Koordinatenvektoren eines

Vektors v ∈ V : die Koordinatentransformation bei einem Basiswechsel wird beschrieben
durch die Transformationsmatrix

T ∶=M
B
B′(idV )

oder

S ∶=M
B
′

B (idV ) = T−1
.

Ist

x =
⎛
⎜⎜
⎝

x1

⋮
xn

⎞
⎟⎟
⎠
= ϕ

−1
B (v)

der Koordinatenvektor von v ∈ V bzgl. B, d.h., v = x1v1 +⋯+ xnvn und

x
′
=

⎛
⎜⎜⎜
⎝

x
′
1

⋮
x
′
n

⎞
⎟⎟⎟
⎠

der Koordinatenvektor bzgl. B
′
, d.h., v

′
= x1v

′
1 +⋯+ xnv

′
n, dann gilt

x
′
= Tx und x = Sx

′
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Kn

T

��

V
  

ϕB

>>

ϕB′

Kn

S

KK

Beispiel 3.4.22. V = R2
.

B ∶= (e1, e2), B′ ∶= (w1, w2), w1 ∶= (1
1
) , w2 ∶= (−1

0
) .

Dann: (siehe Merkregel, (3.14))

S = (1 −1
1 0

) =MB
′

B (idV )

T = S
−1
= ( 0 1

−1 1
) =MB

B′(idV )

Koordinatentransformation: Koordinatenvektor von v ∈ V

bzgl. Basis B = (e1, e2) bzgl. Basis B = (w1, w2)
x↦ Tx = S

−1
x

e1 = (1
0
)↦ ( 0 1

−1 1
) (1

0
) = ( 0

−1
)

e2 = (0
1
)↦ ( 0 1

−1 1
) (0

1
) = (1

1
) △

3.4.7 Transformationsformel für Matrizen einer linearen Abbildung

B1, B2: Basen eines K-Vektorraumes V .
C1, C2: Basen eines K-Vektorraumes W .
f ∶V →W lineare Abbildung.

Wie hängen A1 ∶=M
B1

C1
(f) und A2 ∶=M

B2

C2
(f) zusammen?

Wegen Proposition 3.4.20 und da

f = idW ◦f ◦ idV

gilt dass

M
B2

C2
(f) =MC1

C2
(idw) ◦MB1

C1
(f) ◦MB2

B1
(idw) (3.15)

A2 = S̃
−1
A1S (3.16)
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wobei S̃ ∶=M
C2

C1
(idW ) und S ∶=M

B2

B1
(idV ) Transformationsmatrizen (siehe Abschnitt 3.4.6).

Kn

T

��

Km
ϕC1

}}

T̃

��

V
  

ϕB1

>>

ϕB2

W//
f

Kn

S

KK

Km

S̃

KK

ϕC2

aa

Spezialfall: V =W , B1 = C1, B2 = C2. Hier gilt S = S̃ und damit

A2 = S
−1
A1S.

3.4.8 Äquivalenz von Matrizen

Es gibt verschiedene wichtige Äquivalenzrelationen auf der Menge der Matrizen.

Definition 3.4.23 (Äquivalenz). Eine Matrix A ∈ Km×n heißt äquivalent zu einer
Matrix B ∈ Km×n wenn es invertierbare Matrizen S ∈ Kn×n und T ∈ Km×m gibt so dass

B = T
−1
AS.

Als kommutatives Diagram:

Kn
fA

−−−−→ Km

ÈÈÈÈ↓fS
ÈÈÈÈ↓fT

Kn
fB

−−−−→ Km

Definition 3.4.24 (Zeilenäquivalenz). Eine Matrix A ∈ Km×n heißt zeilenäquivalent
(auch: links-äquivalent) zu einer Matrix B ∈ Km×n wenn es eine invertierbare Matrix
S ∈ Km×m gibt so dass

B = SA.

Spaltenäquivalenz ist analog definiert, wird aber hier nicht weiter betrachtet.

A und B sind genau dann zeilenäquivalent, wenn man B aus A durch elementare Zei-
lenoperationen gewinnen kann (dies folgt aus Satz 3.2.27); also ist jede Matrix äquivalent
zu einer in Stufenform (Abschnitt 3.2.4).

Definition 3.4.25 (Ähnlichkeit). Eine Matrix A ∈ Kn×n heißt ähnlich zu einer Matrix
B ∈ Kn×n wenn es eine invertierbare Matrix S ∈ Kn×n gibt so dass

B = S
−1
AS.

Bemerkung 3.4.26. Äquivalenz, Zeilenäquivalenz, und Ähnlichkeit sind Äquivalenzrelationen
(aufKm×n bzw. aufKn×n). (Vergleiche Abschnitt 1.2.1.) Ähnlichkeit impliziert Äquivalenz,
und Zeilenäquivalenz impliziert Äquivalenz. A ∼ B.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Übung 18. Beweisen Sie die Behauptungen in Bemerkung 3.4.26.

Satz 3.4.27 (Charakterisierung von Äquivalenz). Für A1, A2 ∈ K
m×n

sind die folgenden
Aussagen gleichbedeutend:

1. A1 und A2 sind äquivalent.

2. Es gibt eine lineare Abbildung f ∶Kn → Km, Basen B1, B2 von Kn, und Basen

C1, C2 von Km so dass A1 =M
B1

C1
(f) und A2 =M

B2

C2
(f).

3. rg(A1) = rg(A2).

4. Die Matrix A1 lässt sich durch elementare Zeilen und
(!)

Spaltenumformungen in
die Matrix A2 umwandeln.

Beweis. 1. ⇒ 2.: Sei A2 = S̃
−1
A1S. Wähle f ∶= fA1

. Wähle B1 ∶= (e1, . . . , en) und

C1 ∶= (e1, . . . , em) Standardbasen. Dann ist A1 = M
B1

C1
(fA1

). Für B2 ∶= B1S (neue

Basis von V = Kn) und C2 ∶= C1S̃ (neue Basis von W = Km) ist

M
B2

B1
(idV ) = S und M

C2

C1
(idW ) = S̃

also

A2 = S̃
−1
A1S =M

C1

C2
(idV )MB1

C1
(fA1

)MB2

B1
(idV )

=M
B2

C2
(fA1

) (siehe (3.15))

2.⇒ 3.:

rg(A1) = rg(f) = rg(A2) (Abschnitt 3.4.3)

3.⇒ 4.: Aus Zeilenstufenform A lässt sich durch elementare Spaltenumformungen die
Matrix

(Er 0
0 0

)

konstruieren, mit r = rg(A). Gilt sowohl für A1 als auch für A2 da rg(A1) = rg(A2).
4.⇒ 1.: Jede elementare Zeilenumformung einer Matrix A ist als Multiplikation TA mit
invertierbarer Matrix T beschreibbar (Abschnitt 3.2.3). Analog ist jede Spaltenumfor-
mung als Multiplikation AS mit invertierbarer Matrix S beschreibbar. Produkte inver-
tierbarer Matrizen sind invertierbar, also

A2 = TAS

für geeignete invertierbare Matrizen T und S.

Satz 3.4.28 (Charakterisierung von Ähnlichkeit). Die folgenden Aussagen sind äquivalent
für A1, A2 ∈ K

n×n
:
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1. A1 und A2 sind ähnlich: es existiert invertierbare Matrix S ∈ Kn×n mit A2 =

S
−1
A1S;

2. Es gibt Basis B von Kn so dass A2 =M
B
B (fA1

).

Beweis. (1)⇒ (2): Wähle für B ⊂ Kn die Spalten von S.

(2)⇒ (1): Falls B = (b1, . . . , bn), so wähle S ∶= (b1, . . . , bn) ∈ Kn×n.

3.4.9 Homogene Gleichungssysteme und Untervektorräume

Proposition 3.4.29. Sei V ein K-Vektorraum, und U ⊆ V . Dann sind äquivalent.

1. U ist ein Untervektorraum von V ;

2. U ist die Lösungsmenge eines homogenen linearen Gleichungssystems.

Beispiel 3.4.30. Es sei V = R4
. Betrachten

U = ⟨
⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
,

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
⟩.

Dann kann U beschrieben werden als

U = {λ1

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
+ λ2

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟
⎠
∣ λ1, λ2 ∈ K}

= {
⎛
⎜⎜⎜⎜⎜⎜
⎝

v1

v2

v3

v4

⎞
⎟⎟⎟⎟⎟⎟
⎠
∣ v1 = v2, v4 = 0}

= Lös((1 −1 0 0
0 0 0 1

) ,0) . △

Beweis von Proposition 3.4.29. Wir nehmen zunächst an, dass U = Lös(A,0) für A ∈

Km×n. Seien u, v ∈ U . Dann gilt Au = Av = 0, und damit gilt A(u + v) = Au +Av = 0.
Analog: nachrechnen, dass αu ∈ U für alle α ∈ K und u ∈ U .

Umgekehrt sei U ≤ V und (u1, . . . , um) eine Basis von U . Nach dem Satz von Steinitz
findet sich eine Basis B von V der Gestalt (u1, . . . , um, um+1, . . . , un). Definiere T ∶=

M
En
B (id), eine invertierbare Matrix, und seien X ∈ K(m,n)

und R ∈ K(n−m,n)
so dass
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T = (X
R
). Dann gilt

v ∈ U ⇔ v ∈ ⟨u1, . . . , um⟩
⇔ Tv ∈ ⟨Tu1, . . . , Tum⟩ = ⟨e1, . . . , em⟩
⇔ (Tv)m+1 = ⋅ ⋅ ⋅ = (Tv)n = 0

⇔ Rv = 0

⇔ v ∈ Lös(R,0).

3.4.10 Gleichungssysteme und affine Unterräume

Idee: die Lösungsmenge eines allgemeinen linearen Gleichungssystems ist ein “affiner
Unterraum”. Offiziell definieren wir affine Unterräume mit Hilfe von Untervektorräumen.

Definition 3.4.31. Sei V ein K-Vektorraum. Dann ist W ⊆ V ein affiner Unterraum
von V falls es einen Untervektorraum U ≤ V und ein w ∈W gibt, so dass

W = {w + u ∣ u ∈ U}.

Siehe Abbildung rechts. In anderen Worten:
die affinen Unterräume von V sind genau die Nebenklassen
von Untervektorräumen von V .

R2

U W

w

Die Dimension eines affinen Raumes
W = {w + u ∣ u ∈ U} ist definiert als die Dimension
des Untervektorraumes U .

Proposition 3.4.32. Sei V ein K-Vektorraum, und W ⊆ V . Dann sind äquivalent:

(1) W ist affiner Unterraum von V , oder W = ∅;

(2) W ist die Lösungsmenge eines linearen Gleichungssystems über V ;

(3) für alle w1, . . . , wl ∈W and α1, . . . , αl ∈ K mit α1 +⋯+ αl = 1 ist

α1w1 +⋯+ αlwl ∈W .

Abbildung 3.1 veranschaulicht den dritten Punkt in Proposition 3.4.32 anhand von
w, v ∈W ⊆ V = R2

und α1w + α2v ∈W für α1 = α2 =
1
2
.

Beweis. (2)⇒ (1): Sei Ax = b ein LGS. Falls Ax = b eine Lösung besitzt, so gilt nach
Abschnitt 3.3.2

Lös(A, b) = v0 + Lös(A,0).

Da Lös(A,0) ≤ V , ist die Lösungsmenge eines LGS also ein affiner Unterraum von V .
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R2

U W

w

v

Abbildung 3.1: Illustration einer Affinkombination von w und v in R2
.

(1) ⇒ (2): Falls W = ∅, so ist W Lösungsmenge des LGS 0 = 1. Ansonsten ist
W = {w + u ∣ u ∈ U} für U ≤ V . Nach Proposition 3.4.29 gibt es A ∈ Km×n mit
U = Lös(A,0). Dann ist

W = {w + u ∣ u ∈ Lös(A,0)}
= {w + u ∣ Au = 0}
= {w′ ∣ A(w′ − w) = 0} = Lös(A,Aw).

(1)⇒ (3): Falls W = ∅, so gilt (3) trivialerweise. Ansonsten ist W = {w+u ∣ u ∈ U}
für ein U ≤ V . Es seien w1, . . . , wl ∈W und α, . . . , αl ∈ K so dass α1 +⋯+αl = 1. Wir
schreiben ui für wi − w1. Dann gilt

∑
i

αiwi =∑
i

αi(w1 + ui) =∑
i

αi

Í ÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ
=1

w1 +∑
i

αiui ∈W.

(3) ⇒ (1): Falls W = ∅, so ist nichts zu zeigen. Falls W ≠ ∅, dann zeigen wir
zunächst, dass U ∶= {v − v′ ∣ v, v′ ∈W} ≤ V . Siehe Abbildung 3.2.

Seien u1, u2 ∈ U . Dann ist u1 = v1− v
′
1 und u2 = v2− v

′
2 für v1, v

′
1, v2, v

′
2 ∈W . Also ist

nach Annahme w ∶= v1 − v
′
1 + v2 ∈ W , und damit gilt u1 + u2 = w − v

′
2 ∈ U . Sei u ∈ U

und α ∈ K. Dann gibt es v, v
′
∈W mit v − v′ = u. Es gilt

αu = αv − αv
′
= αv − αv

′
+ v

′

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈W

−v
′
∈ U.

Wir zeigen nun, dass W = w + U = {w + u ∣ u ∈ U} für ein beliebiges w ∈ W . Sei
u ∈ U , also u = v − v′ für v, v

′
∈ W . Nach Annahme ist auch w + u = w + v − v′ ∈ W ,

da 1 + 1 − 1 = 1. Umgekehrt lässt sich jedes w
′
∈ W schreiben als w

′
= w + w′ − w und

ist damit in w + U .
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R2

U W

v

v’

v-v’

Abbildung 3.2: Illustration zum Beweis der Implikation (3)⇒ (1).

Definition 3.4.33. Sei V ein K-Vektorraum und M ⊆ V . Die affine Hülle ⟨M⟩Aff einer
Teilmenge M ⊆ V ist der kleinste affine Unterraum von V , der M enthält.

Ist ein Hüllenoperator (vgl. Abschnitt 2.4.1).

Proposition 3.4.34. Es gilt

⟨M⟩Aff = {α1w1 +⋯+ αnwn ∣ w1, . . . , wn ∈M,α1, . . . , αn ∈ K,∑
i

αi = 1}.

Beweis. Sicherlich ist

M ⊆M
′
∶= {α1w1 +⋯+ αnwn ∣ w1, . . . , wn ∈M,∑

i

αi = 1}.

Behauptung: M
′
ist affiner Unterraum von V . Seien α1, . . . , αl ∈ K mit α1, . . . , αl = 1

und w1, . . . , wl ∈M
′
mit wi = ∑li

j=1 αi,jwi,j für wi,j ∈M und ∑li
j=1 αi,j = 1 für alle i ≤ l.

Dann gilt

α1w1 + ⋅ ⋅ ⋅ + αlwl =
l

∑
i=1

αi

li

∑
j=1

αi,jwi,j ∈W
′

da ∑i αi∑j αi,j = ∑i αi = 1. Also ist M
′
nach Proposition 3.4.32 ((3)⇒ (1)) ein affiner

Unterraum von V . Da ⟨M⟩Aff der kleinste affine Unterraum von V ist, der M enthält,
folgt, dass ⟨M⟩Aff ⊆M

′
.

Umgekehrt sei w ∈M
′
. Dann gibt es w1, . . . , wn ∈M und α1, . . . , αn ∈ Kmit∑i αi = 1

so dass w = α1w1 +⋯ + αnwn. Wegen Proposition 3.4.32 ((1) ⇒ (3)) angewandt auf
⟨M⟩Aff ist w ∈ ⟨M⟩Aff .
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Kapitel 4

Determinanten, Polynome,
Diagonalisierbarkeit

4.1 Determinanten

Determinanten spielen eine Rolle bei

• Lösbarkeit von linearen Gleichungssystemen,

• der Frage, wie lineare Abbildungen das Volumen von Körpern verändern,

• und vielem mehr.

4.1.1 Permutationen

Eine bijektive Abbildung f ∶A→ A heißt auch Permutation von A.
Lateinisch ‘permutere’: vertauschen.
Oft ist A = {1, 2, . . . , n}. Definiere

Sn ∶= {σ ∣ σ eine Permutation auf {1, 2, . . . , n}}

Es gilt

∣Sn∣ = n! ∶= n ⋅ (n − 1)⋯2 ⋅ 1

Schreibweise für Permutationen:

( 1 2 ⋯ n
σ(1) σ(2) ⋯ σ(n))

(Zwei-Zeilen-Schreibweise)

Alternativ: Zyklenschreibweise (als Produkt disjunkter Zyklen):

σ = (a1a2 . . . ar)(b1b2 . . . bs)(. . . )⋯(. . . )
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falls σ die Elemente wie folgt abbildet (Bild malen!):

σ(ai) = ai+1(mod r), σ(bi) = bi+1(mod s), . . .

Zyklen der Länge 1, das heißt, “Fixpunkte” c mit σ(c) = c, werden häufig nicht mitge-
schrieben falls Grundmenge aus Kontext klar.

Beispiel.

(1 2 3 4 5 6 7 8
2 3 8 4 7 6 5 1

)

Zyklenschreibweise:
(1238)(57)

Schreibweise nicht eindeutig:

(57) = (75)
(1238)(57) = (57)(1238)

Bemerkungen.

• Sn ist bezüglich der Hintereinanderausführung ◦ (Kompositionsoperation) von Ab-
bildungen eine Gruppe, die (volle) symmetrische Gruppe auf A = {1, 2, . . . , n}.

• Eins-element: idA = (1)(2)(3)⋯(n).

• Inverses Element zu σ: die Umkehrabbildung von σ.
Beispiel: (a1 . . . as)−1

= (as . . . a1).

• Die Gruppe Sn ist nicht abelsch: Beispiel für n = 4:

(123) ◦ (124) = (13)(24)
(124) ◦ (123) = (14)(23)

Permutationen der Form τ = (ij) (zwei Elemente vertauschen) heißen Transpositionen.

Satz 4.1.1. Jede Permutation lässt sich als Komposition von Transpositionen darstellen.

Beweis. Jeder Zyklus (a1a2 . . . ar) ist darstellbar als

(a1a2) ◦ (a2a3) ◦⋯ ◦ (ar−1ar)

Proposition 4.1.2. Sei σ ∈ Sn und sind

σ = τ1τ2⋯τk

σ = τ
′
1τ
′
2⋯τ

′
k′

zwei Darstellungen als Produkt von Transpositionen, so gilt k = k
′

mod 2.
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Definieren das Signum von σ

sign(σ) ∶= (−1)k.

Also sign(σ) = 1 falls k gerade (σ ist gerade Permutation) und sign(σ) = −1 falls k
ungerade (σ ist ungerade Permutation). Proposition 4.1.2 zeigt, dass das Signum wohl-
definiert ist.

Um Proposition 4.1.2 zu beweisen, benötigen wir folgende Definition.

Definition 4.1.3. Sei σ ∈ Sn. Ein Fehlstand von σ ist ein Paar (i, j) mit 1 ≤ i < j ≤ n
und σ(i) > σ(j). Wir schreiben f(σ) für die Anzahl der Fehlstände von σ.

Proposition 4.1.2 folgt unmittelbar aus folgendem Lemma.

Lemma 4.1.4. Es gilt sign(σ) = (−1)f(σ).

Beweis. Sei σ = π ◦ τ für ein π ∈ Sn und eine Transposition τ ∈ Sn. Offenbar ist f(σ) =
f(π) + 1 oder f(σ) = f(π) − 1. Da f(id) = 0 folgt die Aussage nun aus Satz 4.1.1.

Bemerkungen.

• sign(σ1σ2) = sign(σ1) sign(σ2)

• sign(τ) = −1 für alle Transpositionen τ .

• Die geraden Permutationen (sign(σ) positiv) bilden eine Untergruppe von Sn, die
sogenannte alternierende Gruppe, geschrieben An.

• Ist ρ eine ungerade Permutation (sign(ρ) negativ) so gilt

Sn = An ∪ ρAn wobei τAn ∶= {ρ ◦ σ ∣ σ ∈ An}.

4.1.2 Determinantenfunktionen

Es gibt (mindestens) zwei grundverschiedene Möglichkeiten, Determinanten einzuführen:
Mit einer expliziten Formel, oder über ihre Eigenschaften. Wir wählen letzteren Zugang.

Definition 4.1.5. Sei K ein Körper und n ∈ N+. Eine Funktion

det∶Kn×n → K ∶ A↦ detA

heißt Determinantenfunktion wenn sie folgende Eigenschaften hat:

93



4 Determinanten, Polynome, Diagonalisierbarkeit

(D1) Linearität in jeder Zeile, d.h., für alle Zeilenvektoren z1, . . . , zn, z
′
i ∈ K

n
mit i ∈

{1, . . . , n} und λ ∈ K gilt

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi + z

′
i

⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
z
′
i

⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
λ ⋅ zi
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= λ ⋅ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

(D2) det ist alternierend, d.h., hat A zwei gleiche Zeilen, so ist detA = 0;

(D3) detEn = 1.

Gibt es solche Funktionen?

Beispiel 4.1.6. n = 2.

det (a1 b1
a2 b2

) ∶= a1b2 − a2b1 (4.1)

ist Determinantenfunktion (nachprüfen!). Geometrische Interpretation für K = R: Aus-
druck in (4.1) misst den ‘vorzeichenbehafteten’ Flächeninhalt des Parallelogramms P ,
das von den folgenden beiden Vektoren aufgespannt wird.

u1 = (a1

a2
) und u2 = (b1

b2
)

Siehe Abbildung 4.1: falls 0 < ∡(u1, u2) < 180
◦

so ist Flächeninhalt von P gleich

(a1 + b1)(a2 + b2) − 2F1 − 2F2 − 2F3

= a1a2 + a1b2 + b1a2 + b1b2 − 2b1a2 − a1a2 − b1b2
= a1b2 − a2b1.

Vorzeichen ist negativ falls 180
◦
< α = ∡(u1, u2) < 360

◦
. △

Bemerkung 4.1.7. Für n = 3 sind Determinanten als Volumina interpretierbar (siehe
Abschnitt 6.4.2).
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N

o an +U#
Tz
T

-

1 Iannbu
az

- -> 3

an o

Abbildung 4.1: Die Determinante misst den vorzeichenbehafteten Flächeninhalt eine
Parallelograms.

4.1.3 Eigeschaften von Determinantenfunktionen

Die folgende Proposition klärt das Verhalten einer Determinantenfunktion det∶Kn×n →
K bei elementaren Zeilenumformungen.

Proposition 4.1.8. Sei det∶Kn×n → K eine Determinantenfunktion.

1. zi ↭ zj für i ≠ j: Entsteht A
′

aus A ∈ Kn×n durch Vertauschen von zwei Zeilen,
so gilt

detA
′
= − detA

2. λzi ↝ zi: Entsteht A
′

aus A durch Multiplikation einer Zeile mit einem Skalar
λ ∈ K, so gilt:

detA
′
= λ ⋅ detA

3. λzi + zj ↝ zj für i ≠ j: Entsteht A
′

aus A durch Addition eines Vielfachen einer
Zeile zu einer anderen Zeile, so gilt:

detA
′
= detA

Das gleiche gilt auch für elementare Spaltenumformungen: folgt später.

Beweis. 2.: folgt direkt aus der Linearität (D1).
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3.:

detA
′
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi
⋮

zj + λzi
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(D1)
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi
⋮
zj
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ λ ⋅ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi
⋮
zi
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(D2)
= detA + 0

1.: Seien

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
zi
⋮
zj
⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

und A
′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
zj
⋮
zi
⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Betrachten

B ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
zi + zj
⋮
zj
⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, B
′
∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
zi + zj
⋮
zi
⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, und B
′′
∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
zi + zj
⋮

zi + zj
⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Dann ist

0
(D2)
= detB

′′ (D1)
= detB + detB

′ (∗)

Also

detA
(3)
= detB

(∗)
= − detB

′ (3)
= −detA

′
.

(D2) lässt sich verschärfen:

Satz 4.1.9. Für eine Determinantenfunktion det∶Kn×n → K gilt:

(D2’) rg(A) < n ⇔ detA = 0

Beweis. “⇒”: Wenn rg(A) < n dann ist eine Zeile Linearkombination der anderen.
O.B.d.A: zn = ∑n−1

i=1 λizi. Wegen der Linearitätsbedingung (D1) gilt:

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zn−1

zn

⎞
⎟⎟⎟⎟⎟⎟
⎠

(D1)
=

n−1

∑
i=1

λi det

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zn−1

zi

⎞
⎟⎟⎟⎟⎟⎟
⎠

(D2)
= 0

“⇐”: Wenn rg(A) = n dann kann A durch elementare Zeilenumformungen in En um-
geformt werden. Wäre detA = 0, so wäre auch detEn = 0 gemäß Proposition 4.1.8, im
Widerspruch zu (D3). Also detA ≠ 0.
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Rückführung auf En stets möglich bei rg(A) = n, also ist Determinante eindeutig
berechenbar. Wenn es sie überhaupt gibt!

Lemma 4.1.10. Es gibt höchstens eine Determinantenfunktion det∶Kn×n → K.

Beweis. Seien det, det
′
Determinantenfunktionen. Wegen Satz 4.1.9 gilt detA = det

′
A =

0 falls rgA < n. Sei also rgA = n. Nach Satz 3.2.27 erhalten wir En aus A durch
elementare Zeilenumformungen. Dabei ändert sich die Determinante gemäß Propositi-

on 4.1.8 für det und für det
′

auf die gleiche Weise. Weil detEn = det
′
En

(D3)
= 1, folgt

detA = det
′
A.

4.1.4 Die Leibnizsche Formel

Satz 4.1.11 (Die Leibnizsche Formel). Es gibt (genau) eine Determinantenfunktion

det∶Kn×n → K.

Für A = (aij) ∈ Kn×n gilt

det(A) = ∑
σ∈Sn

sign(σ)a1σ(1)⋯anσ(n) (4.2)

Verallgemeinerung vom Fall n = 2 aus Abschnitt 4.1.2.

Beweis. Wegen Lemma 4.1.10 muss nur gezeigt werden, dass die in (4.2) definierte Funk-
tion det die Eigenschaften (D1), (D2) und (D3) hat.

(D1) Seien

B ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi + λz

′
i

⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, A ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zi
⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

und A
′
∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
z
′
i

⋮
zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Dann gilt

detB = ∑
σ∈Sn

sign(σ)b1σ(1)⋯bi,σ(i)⋯bnσ(n)

= ∑
σ∈Sn

sign(σ)a1σ(1)⋯(ai,σ(i) + a′i,σ(i))⋯anσ(n)

= ∑
σ∈Sn

sign(σ)a1σ(1)⋯ai,σ(i)⋯anσ(n) + ∑
σ∈Sn

sign(σ)a1σ(1)⋯a
′
i,σ(i)⋯anσ(n)

= detA + detA
′

Analog:

det
⎛
⎜⎜
⎝

⋮
λzi
⋮

⎞
⎟⎟
⎠
= λ det

⎛
⎜⎜
⎝

⋮
zi
⋮

⎞
⎟⎟
⎠

97



4 Determinanten, Polynome, Diagonalisierbarkeit

(D2) Die Matrix A = (aij) habe zwei gleiche Zeilen, o.B.d.A. z1 = z2. Das heißt:

a1j = a2j für j ∈ {1, . . . , n}

Sei τ = (12) ∈ Sn (Transposition). Dann

detA = ∑
σ∈Sn

sign(σ)a1σ(1)⋯anσ(n)

= ∑
σ∈An

sign(σ)a1σ(1)⋯anσ(n) + ∑
σ′∈Anτ

sign(σ′)a1σ′(1)⋯anσ′(n)

= ∑
σ∈An

a1σ(1)⋯anσ(n) + ∑
σ∈An

−a1σ(2)a2σ(1)a3σ(3)⋯anσ(n)

= ∑
σ∈An

a1σ(1)⋯anσ(n) − ∑
σ∈An

a1σ(1)a2σ(2)⋯anσ(n)

= 0

Die zweite Gleichung gilt, da Sn = An ∪Anτ , die dritte, da στ(1) = σ(2), στ(2) =
σ(1), und στ(n) = σ(n) für alle n ∈ {3, . . . , n}, und die vierte, da a1j = a2j für
alle j ∈ {1, . . . , n}, und damit a1σ(2)a2σ(1) = a1σ(1)a2σ(2).

(D3)
detEn = ∑

σ∈Sn

sign(σ)δ1σ(1)⋯δnσ(n) = sign(id) ⋅ 1⋯1 = 1

wobei aij = δij = 1 für i = j und aij = δij = 0 sonst.

Neue Schreibweise: ∣A∣ ∶= detA,

»»»»»»»»»»»»

a11 . . . a1n

⋮ ⋮
an1 . . . ann

»»»»»»»»»»»»
∶= det

⎛
⎜⎜
⎝

a11 . . . a1n

⋮ ⋮
an1 . . . ann

⎞
⎟⎟
⎠
.

Übung 19. Beweisen Sie, dass für quadratische Matrizen A und B gilt

»»»»»»»»
A 0
∗ B

»»»»»»»»
= det(A) ⋅ det(B).

Beispiel 4.1.12. Betrachten n = 3 und A ∈ K3×3
. Es gibt 3! = 6 Permutationen σ ∈ Sn.

Die Leibnizformel ergibt:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

Schräglinien einzeichnen! Vorzeichen!
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Gerade Permutationen (Diagonalen):

+a11a22a33 +a12a23a31 +a13a21a32

σ = id σ = (123) σ = (132)

Ungerade Permutationen (Nebendiagonalen):

−a31a22a13 −a32a23a11 −a33a21a12

σ = (13) σ = (23) σ = (12)

Regel von Sarrus (gesprochen Sarrüs). △

4.1.5 Berechnung der Determinante

Wie berechnet man Determinanten? Die Leibnizsche Regel ist im allgemeinen zu aufwändig.
Idee: die Determinante einer Dreiecksmatrix ist das Produkt der Hauptdiagonalelemente.

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

a11 ∗ ⋯ ∗
0 a22 ⋱ ⋮
⋮ ⋱ ⋱ ∗
0 ⋯ 0 ann

⎞
⎟⎟⎟⎟⎟⎟
⎠
= a11a22⋯ann (4.3)

Folgt sofort aus Leibnizformel. Für σ ≠ id ist ein Faktor in a1σ(1) ⋅⋯ ⋅ anσ(n) gleich Null
(denn aij = 0 für i > j).

Diese Idee liefert ein Berechnungsverfahren!

• Umwandlung der Matrix in Stufenform. Dabei ändert sich Determinante gemäß
Proposition 4.1.8 in Abschnitt 4.1.3.

• Determinante der Stufenform ist Produkt der Hauptdiagonalelemente (wie oben
erklärt).

Beispiel 4.1.13.

»»»»»»»»»»»»

1 0 2
2 1 2
0 1 0

»»»»»»»»»»»»
=

»»»»»»»»»»»»

1 0 2
0 1 −2
0 1 0

»»»»»»»»»»»»
(z2 − 2z1 ↝ z2)

=

»»»»»»»»»»»»

1 0 2
0 1 −2
0 0 2

»»»»»»»»»»»»
(z3 − z2 ↝ z3)

= 1 ⋅ 1 ⋅ 2 = 2
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Alternative Rechnung:

»»»»»»»»»»»»

1 0 2
2 1 2
0 1 0

»»»»»»»»»»»»
=

»»»»»»»»»»»»

1 0 2
0 1 −2
0 1 0

»»»»»»»»»»»»
(z2 − 2z1 ↝ z2)

= −

»»»»»»»»»»»»

1 2 0
0 −2 1
0 0 1

»»»»»»»»»»»»
(s2 ↭ s3)

= −(1 ⋅ −2 ⋅ 1) = 2 △

Übung 20. Zeigen Sie, dass das skizzierte Verfahren zur Berechnung der Determinante
einer Matrix aus Kn×n über die Stufenform mit einer Anzahl an Rechenoperationen in
K auskommt, die beschränkt ist durch ein Polynom in n.

Es gibt viele Möglichkeiten, das Berechnen von Determinanten zu erleichtern.

Proposition 4.1.14. Sei A ∈ Kn×n. Dann gilt:

detA
⊤
= detA

Beweis. A = (aij), A⊤ = (bij), bij = aji.

detA
⊤
= ∑
σ∈Sn

sign(σ)b1σ(1) . . . bnσ(n)

= ∑
σ∈Sn

sign(σ)aσ(1)1 . . . aσ(n)n

= ∑
σ∈Sn

sign(σ)ak1σ−1(k1) . . . aknσ−1(kn) wobei ki ∶= σ(i)

= ∑
σ∈Sn

sign(σ)a1σ−1(1) . . . anσ−1(n) Umordnen: {1, . . . , n} = {k1, . . . , kn}

= ∑
σ′∈Sn

sign(σ′)a1σ′(1) . . . anσ′(n) denn sign(σ) = sign(σ−1)

= detA

Folgerung: Das Verhalten der Determinante bei elementaren Spaltenumformungen ist
das gleiche wie bei elementaren Zeilenumformungen (ersetze ‘Zeile’ durch ‘Spalte’ in
Proposition 4.1.8).

Satz 4.1.15. Seien A,B ∈ Kn×n. Dann gilt:

1. det(AB) = detA ⋅ detB

2. Für A ∈ GL(n,K) (invertierbare Matrizen, siehe Abschnitt 3.2.1) gilt

det(A−1) = (detA)−1
.
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Beweis. 1.: Falls rg(B) < n dann rg(AB) < n (siehe Korollar 3.4.16), und mit Satz 4.1.9

det(AB) = 0 = detA ⋅ detB.

Also muss (1) nur für invertierbares B bewiesen werden (rg(B) = n, detB ≠ 0). Sei
B ∈ GL(n,K) fest. Die Abbildung

f ∶Kn×n → K ∶ A↦ det(AB)

hat folgende Eigenschaften:

(D1) f ist linear in den Zeilen von A

(D2) Falls A zwei gleiche Zeilen hat, dann ist f(A) = 0:

rg(A) < 0⇒ rg(AB) < n (Korollar 3.4.16)

⇒ detAB = 0 wie oben für B statt A.

Weiterhin gilt

f(En) = det(EnB) = detB .

Damit erfüllt die Abbildung

f̃ ∶Kn×n ∶ A↦ (detB)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

≠0

−1
f(A)

alle drei Bedingungen (D1), (D2) und (D3) einer Determinantenfunktion. Wegen Ein-
deutigkeit der Determinantenfunktion (Lemma 4.1.10) folgt f̃(A) = detA, also

(detB)−1
det(AB) = detA

⇒ det(AB) = detA ⋅ detB .

2.:

1 = detEn = det(AA−1)
= detA ⋅ det(A−1) nach Teil 1.

Also det(A−1) = (detA)−1
.

Direktes Nachrechnen mit Leibnizformel ebenfalls möglich.

Weitere Rechenregeln. Wir definieren nun die Entwicklung einer Determinante nach
einer Zeile oder Spalte. Eine Matrix, die aus A ∈ Km×n durch wiederholtes Streichen von
beliebig vielen Zeilen und Spalten entsteht, heißt Untermatrix (oder Teilmatrix ) von A.
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Definition 4.1.16. Sei A ∈ Kn×n. Dann steht Aij ∈ K
(n−1)×(n−1)

für die Matrix, die
aus A durch Streichen der i-ten Zeile und j-ten Spalte entsteht.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1j

B1 ⋮ B2

ai1 ⋯ aij ⋯ ain
B3 ⋮ B4

anj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Aij = (B1 B2

B3 B4
)

Satz 4.1.17 (Entwicklungssatz). Es gilt

(∗)i Entwicklung nach der i-ten Zeile:

detA =

n

∑
j=1

(−1)i+jaij detAij

(∗∗)j Entwicklung nach der j-ten Spalte:

detA =

n

∑
i=1

(−1)i+jaij detAij

Zum Beweis. (∗)i:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
B1 ⋮ B2

0
0 ⋯ 0 aij 0 ⋯ 0

0
B3 ⋮ B4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(D1)
= (−1)i+j det

⎛
⎜⎜
⎝

aij 0 0
0 B1 B2

0 B3 B4

⎞
⎟⎟
⎠

= (−1)i+jaij detAij

folgt aus der Leibnizformel.
(∗∗)j : folgt aus (∗)j und Proposition 4.1.14: detA

⊤
= detA.

Beispiel 4.1.18. n = 3:

»»»»»»»»»»»»

1 2 1
1 4 0
3 0 0

»»»»»»»»»»»»
= ? Vorzeichen (−1)i+j ∶

⎛
⎜⎜
⎝

+ − +
− + −
+ − +

⎞
⎟⎟
⎠

Entwicklung nach 1. Zeile (∗)1:

+ 1 ⋅
»»»»»»»»
4 0
0 0

»»»»»»»»
− 2 ⋅

»»»»»»»»
1 0
3 0

»»»»»»»»
+ 1 ⋅

»»»»»»»»
1 4
3 0

»»»»»»»»
= 1 ⋅ 0 − 2 ⋅ 0 + 1 ⋅ (1 ⋅ 0 − 3 ⋅ 4) = −12
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Entwicklung nach 2. Spalte (∗∗)2:

− 2 ⋅
»»»»»»»»
1 0
3 0

»»»»»»»»
+ 4 ⋅

»»»»»»»»
1 3
1 0

»»»»»»»»
− 0 ⋅ ∣⋯∣

= − 2 ⋅ 0 + 4 ⋅ (1 ⋅ 0 − 1 ⋅ 3) − 0 = −12

Entwicklung nach 3. Zeile (∗)3:

+ 3 ⋅
»»»»»»»»
2 1
4 0

»»»»»»»»
− 0 ⋅ ∣⋯∣ + 0 ⋅ ∣⋯∣

= 3 ⋅ (2 ⋅ 0 − 4 ⋅ 1) = −12 △

Übung 21. Mit dem Entwicklungssatz läßt sich rekursive die Determinante einer Matrix
in Kn×n vollständig berechnen. Ist das entsprechende Verfahren polynomiell in dem
Sinn, dass die benötigte Anzahl der Rechenoperationen in K durch ein Polynom in n
beschränkt ist?

4.1.6 Die Determinante von linearen Abbildungen

Sei f ∶V → V eine lineare Abbildung, und A ∶=MB
B (f) die zugehörige Matrix (bezüglich

einer Basis B von V ; siehe Abschnitt 3.4.5).

Definition 4.1.19. det f ∶= detA.

Dies ist wohldefiniert, da für A1 = M
B
B (f), A2 = M

B
′

B′ (f) nach Satz 3.4.28 eine inver-

tierbare Matrix S ∈ Kn×n existiert mit A2 = S
−1
A1S. Also

detA2 = det(S−1
A1S)

= (detS)−1
detA1(detS) nach Satz 4.1.15

= detA1 da Multiplikation in K kommutativ.

Bemerkung 4.1.20. Wir halten fest: ähnliche Matrizen haben die gleiche Determinante.

Bemerkung 4.1.21. det f kann als Verzerrungsfaktor für Flächen (in R2) bzw. Volumina
(in Rn) der Abbildung f interpretiert werden (siehe auch späteren Abschnitt 6.4.2):

F
′
∶= (det f) ⋅ F

Beispiel 4.1.22. V = R2
, A ∶= (1 a

0 1
)

beschreibt Scherung in x Richtung mit Faktor a.
det(A) = 1, Flächeninhalt bleibt gleich.

R2
(a,1)

1

△
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4.1.7 Lösung linearer Gleichungssysteme mittels Determinanten

Lineares Gleichungssystem
Ax = b

mit A ∈ Km×n, b ∈ Km, x =
⎛
⎜⎜
⎝

x1

⋮
xn

⎞
⎟⎟
⎠

.

Spezialfall n = m:

Ax = b eindeutig lösbar

⇔ rg(A) = n nach Korollar 3.3.7

⇔ det(A) ≠ 0 nach Satz 4.1.9

‘Eisensteinkriterium’ (1844).
Wir wissen also insbesondere, dass Ax = b eine Lösung besitzt, falls det(A) ≠ 0.

Die Determinante kann aber sogar verwendet werden, um diese explizit auszurechnen!
Definieren dazu die Matrix

Aj(b) ∶=
⎛
⎜⎜
⎝

a11 ⋯ a1(j−1) b1 a1(j+1) ⋯ a1n

⋮ ⋮
an1 ⋯ an(j−1) bn an(j+1) ⋯ ann

⎞
⎟⎟
⎠

;

Aj(b) entsteht also aus A durch Ersetzung der j-ten Spalte durch b.

Satz 4.1.23 (Cramersche Regel). Sei A ∈ Kn×n mit det(A) ≠ 0. Dann berechnet sich
die eindeutige Lösung x von Ax = b wie folgt:

x =
1

detA

⎛
⎜⎜
⎝

det(A1(b))
⋮

det(An(b))

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

det(A1(b))/ det(A)
⋮

det(An(b))/ det(A)

⎞
⎟⎟
⎠
. (4.4)

Beispiel 4.1.24. Das lineare Gleichungssystem

2x1 + 3x2 = 1

x1 − 4x2 = 6

hat die eindeutige Lösung

x1 =

»»»»»»»»
1 3
6 −4

»»»»»»»»
»»»»»»»»
2 3
1 −4

»»»»»»»»

=
−22

−11
= 2

x2 =

»»»»»»»»
2 1
1 6

»»»»»»»»
»»»»»»»»
2 3
1 −4

»»»»»»»»

=
11

−11
= −1 △
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Beweis der Cramerschen Regel (4.4).

⎛
⎜⎜
⎝

a11

⋮
a1n

⎞
⎟⎟
⎠
x1 +⋯+

⎛
⎜⎜
⎝

an1

⋮
ann

⎞
⎟⎟
⎠
xn =

⎛
⎜⎜
⎝

b1
⋮
bn

⎞
⎟⎟
⎠

b nach links in die i-te Spalte bringen:

⎛
⎜⎜
⎝

a11

⋮
a1n

⎞
⎟⎟
⎠
x1 +⋯+

⎛
⎜⎜
⎝

xia1i − b1
⋮

xiani − bn

⎞
⎟⎟
⎠
+⋯+

⎛
⎜⎜
⎝

an1

⋮
ann

⎞
⎟⎟
⎠
xn = 0

Die Spalten sind also linear abhängig, und nach Satz 4.1.9 ist die Determinante gleich
Null: »»»»»»»»»»»»

a11 ⋯ xia1i − b1 ⋯ a1n

⋮ ⋮ ⋮
an1 ⋯ xiani − bn ⋯ ann

»»»»»»»»»»»»
= 0

Wegen der Linearitätsbedingung (D1):

xi

»»»»»»»»»»»»

a11 ⋯ a1i ⋯ a1n

⋮ ⋮ ⋮
an1 ⋯ ani ⋯ ann

»»»»»»»»»»»»
−

»»»»»»»»»»»»

a11 ⋯ b1 ⋯ a1n

⋮ ⋮ ⋮
an1 ⋯ bn ⋯ ann

»»»»»»»»»»»»
= 0

Also xi =
∣Ai(b)∣
∣A∣ .

Folgerung. Wenn A ∈ Qn×n und b ∈ Qn, und x ∈ Rn die eindeutige Lösung ist von
Ax = b, dann gilt x ∈ Qn.

Wie schnell sind die Algorithmen zum Lösen linearer Gleichungssysteme?
Man sieht leicht, dass die Überführung einer Matrix aus Km×n in Stufenform aus Ab-
schnitt 3.2.4 höchstens mn viele elementare Zeilenumformungen erfordert. Jede Zeile-
numformung benötigt eine lineare Anzahl an arithmetischen Operationen. Damit scheint
der gaußsche Algorithmus insgesamt besser zu sein als die Auswertung von (4.4). Wir
müssen allerdings bei der exakten Analyse vorsichtig sein, denn eine einzelne arithmeti-
sche Operation kann sehr viel Zeit erfordern, wenn die Zahlen sehr groß werden. Bei un-
geschickten Folgen von elementaren Zeilenumformungen zur Umwandlung in Stufenform
können tatsächlich extrem große Zahlen auftreten; wir betrachten dazu die folgenden
Beispiele.

Beispiel 4.1.25. Betrachte die Matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 ⋯ 0
1 2 0 ⋯ 0
1 1 2 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
1 1 ⋯ 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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4 Determinanten, Polynome, Diagonalisierbarkeit

Diese läßt sich mit dem Verfahren aus Abschnitt 3.2.4 wie folgt in Diagonalform bringen:
mit den elementaren Zeilenumformungen 2zi − z1 ↝ zi für i ∈ {2, . . . , n} erhalten wir

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 ⋯ 0
0 4 0 ⋯ 0
0 2 4 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 2 ⋯ 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Wir fahren fort mit 2zi − z2 ↝ zi für i ∈ {3, . . . , n} und erhalten

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0 ⋯ 0
0 4 0 0 ⋯ 0
0 0 8 0 ⋮
0 0 4 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 8 0
0 0 4 ⋯ 4 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

und so weiter, bis wir schließlich mit der Umformung 2zn−zn−1 ↝ zn die Diagonalmatrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 ⋯ 0

0 2
2

0 ⋯ 0

0 0 2
3 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Die Zahl 2
n

ist zwar groß, aber noch nicht extrem groß: sie kann noch ohne Probleme ab-
gespeichert und manipuliert werden. Es können aber auch noch sehr viel größere Zahlen
auftreten; betrachte dazu das nächste Beispiel. △

Beispiel 4.1.26. Betrachte die folgende Überführung einer Matrix in Stufenform. Sei
x ∈ Z eine Zahl, z.B. x = 2.

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −x 0
x 1 0
x x x + 1
x 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

zi−xz1↝zi
−−−−−−−→
i∈{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −x 0

0 x
2 + 1 0

0 x
2 + x x + 1

0 x
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

z3−z4↝z3
−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −x 0

0 x
2 + 1 0

0 x x

0 x
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

z2−xz3↝z2
−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −x 0

0 1 −x2

0 x x

0 x
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

z3−xz2↝z3
−−−−−−−−→
z4−x

2z2↝z4

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −x 0

0 1 −x2

0 0 x
3 + x

0 0 (x2)2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Wir bemerken, dass jede der 4 Zeilenumformungen natürlich ist in dem Sinn, dass sie,
angewandt auf eine Matrix der Gestalt

(A B
0 C

)
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4.1 Determinanten

mit A in Stufenform, den Betrag eines Eintrags der ersten Spalte von C kleiner macht.
Dieses Beispiel läßt sich verallgemeinern. Und zwar sei

A(1, x) ∶=
⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −x
x −1
x x
x 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

und A(i + 1, x) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
A(i, x) ⋮

0
x + 1

1
x 0 ⋯ 0 x
x 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Dann gibt es für jedes n ≥ 2 eine natürliche (im obigen Sinn) Umformung der Matrix

A(n, x) ∈ Z2n×n
in Stufenform, bei der der Eintrag rechts unten in der Stufenform x

2
n

ist (‘doppelt exponentiell’ [6]).

Es werden exponentiell viele Bits in n benötigt, um eine Zahl der Größenordnung x
2
n

abzuspeichern. Damit benötigt ein Verfahren, bei dem solche Zahlen erzeugt werden,
auch exponentiell viel Zeit. Man kann sich schnell davon überzeugen, dass es dann schon
für relativ kleine n zu astronomisch großen Rechenzeiten kommt. △

Das Verfahren zur Berechnung der eindeutigen Lösung eines Gleichungssystems aus
Abschnitt 4.1.7 mit Hilfe von Determinanten hat das Problem der zu großen Zahlen
nicht (insbesondere können die auftretenden Determinanten nie doppelt exponentiell
groß werden; siehe Lemma 4.1.28).

Die Umformung in Stufenform aus Beispiel 4.1.26 ist nicht die, die der gaußschen Al-
gorithmus vorgenommen hätte: beim Verfahren aus Abschnitt 3.2.4 wird im k-ten Schritt
von jeder Zeile zl mit l > k der Vektor (al,jka

−1
k,jk)zk subtrahiert (wir verwenden die Be-

zeichnungen aus Abschnitt 3.2.4). Mit Hilfe von Determinanten läßt sich zeigen, dass
die Laufzeit des gaußschen Algorithmus polynomiell in der Eingabegröße ist. Essentiell
dafür ist, dass alle auftretenden rationalen Zahlen stets gekürzt werden; dazu folgende
Definition.

Definition 4.1.27. Sei r = p/q ∈ Q, p, q ∈ Z teilerfremd, q > 0. Wir definieren

Groe(r) ∶= 1 + ⌈log2(∣p∣ + 1)⌉ + ⌈log2(q + 1)⌉ ∈ N.

Sei nun b ∈ Qn und A ∈ Qm×n. Dann definieren wir

Groe(b) ∶= 1 +Groe(b1) +⋯+Groe(bn)
Groe(A) ∶= mn +∑

i,j

Groe(aij).

Lemma 4.1.28. Sei A ∈ Qm×m. Dann ist Groe(detA) ≤ 2 Groe(A).

Beweis. Sei A = (pij/qij)i,j wobei pij , qij ∈ Z für alle i, j teilerfremd und qij > 0. Seien
ausserdem p, q ∈ Z mit p/q = detA so dass p und q teilerfremd und q > 0. Dann gilt

q ≤
n

∏
i,j=1

qij = 2
log2(∏n

i,j=1 qij) = 2
∑ni,j=1 log2 qij

< 2
Groe(A)−1

(4.5)
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4 Determinanten, Polynome, Diagonalisierbarkeit

und mit der Leibnizschen Formel

∣detA∣ ≤
n

∏
i,j=1

(∣pij∣ + 1) .

Damit haben wir

∣p∣ = ∣detA∣ ⋅ q ≤
n

∏
i,j=1

(∣pij∣ + 1)qij = 2
∏n
i,j=1 log2(∣pij∣+1)+log2 qij

< 2
Groe(A)−1

. (4.6)

Aus (4.5) und (4.6) folgt

Groe(detA) = 1 + ⌈log2(∣p∣ + 1)⌉ + ⌈log2(q + 1)⌉ < 2 Groe(A).

Proposition 4.1.29. Wenn Ax = b, mit A ∈ Qm×n und b ∈ Qm, eine Lösung hat, dann
auch eine der Größe höchstens 2(Groe(A) +Groe(b)).

Beweis. Wir können annehmen, dass die Zeilen von A linear unabhängig sind (denn da
Ax = b eine Lösung hat, können abhängige Zeilen entfernt werden ohne den Lösungsraum
zu verändern). Ausserdem können wir durch umsortieren der Spalten von A annehmen,
dass A von der Gestalt [A1 A2] ist für A1 mit det(A1) ≠ 0. Dann ist

(A
−1
1 b
0

)

eine Lösung von Ax = b, und die Größe dieser Lösung erfüllt nach Lemma 4.1.28 die
gewünschte Schranke.

Wir wollen nun nachweisen, dass der gaußsche Algorithmus polynomielle Laufzeit hat.
Es genügt nicht zu zeigen, dass die berechneten Lösungen polynomielle Größe haben,
sondern wir müssen dies auch von allen Zahlen nachweisen, die im Laufe der Berechnung
auftreten!

Falls M ∈ Km×n, i1, . . . , ik ∈ {1, . . . ,m}, und j1, . . . , jl ∈ {1, . . . , n}, dann schreiben

wir M
i1,...,ik
j1,...,jk

für die Untermatrix von M , die aus M durch Löschen aller Zeilen ausser
i1, . . . , ik und aller Spalten ausser j1, . . . , jl entsteht. Sei

Ak = (Bk Ck
0 Dk

)

die Matrix im k-ten Schritt des Verfahrens aus Abschnitt 3.2.4. Dann gilt für jeden
Eintrag dij von Dk offensichtlicherweise

dij =

det (Bk ∗
0 dij

)

det(Bk)
=

det ((Ak)1,...,k,k+i
1,...,k,k+j)

det ((Ak)1,...,k
1,...,k)

. (4.7)

108



4.1 Determinanten

Da Ak aus A durch Addition von Vielfachen der ersten k Zeilen zu anderen Zeilen
entstanden ist, gilt (4.7) bis auf das Vorzeichen auch für A anstatt Ak (wir erinnern an
Proposition 4.1.3 und Bemerkung 3.2.24), d.h.,

dij = ±
det (A1,...,k,k+i

1,...,k,k+j)

det (A1,...,k
1,...,k)

.

Also gilt Groe(dij) ≤ 4 Groe(M) nach Lemma 4.1.28. Auf ähnliche Weise läßt sich auch
für den zweiten Teil des gaußschen Algorithmus nachweisen, dass die auftretenden Zahlen
nicht zu groß werden [10].

4.1.8 Invertieren einer Matrix mittels Determinanten

Falls eine Matrix A ∈ Kn×n invertierbar ist, so lässt sich die Inverse elegant mit Hilfe
von Determinanten berechnen. Dazu verwenden wir wieder die Teilmatrizen Aij (Defini-
tion 4.1.16) und die Schreibweise Ai(b) aus Abschnitt 4.1.7. Zunächst eine Hilfsaussage,
die direkt aus dem Entwicklungssatz (Satz 4.1.17) folgt.

Lemma 4.1.30. Für A ∈ Kn×n und i, j ∈ {1, . . . , n} gilt det(Aj(ei)) = (−1)i+j det(Aij).

Definition 4.1.31. Für A ∈ Kn×n und i, j ∈ {1, . . . , n} heißt a
#
ij = (−1)i+j det(Aij) ein

Kofaktor von A. Die Transponierte der Kofaktormatrix (a#
ij)i,j∈{1,...,n} heiss die Adjunkte

oder Komplementärmatrix von A, und wird mit A
#

bezeichnet.

Beispiel 4.1.32. Falls A = (1 0
1 2

), dann ist a
#
21 = (−1)3

det(A12) = −1. △

Satz 4.1.33. Sei A ∈ Kn×n invertierbar. Dann gilt A
−1
=

A
#

detA
.

Anders geschrieben: es gilt

A
−1
∶=

1

detA

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

detA11 − detA21 . . . (−1)n+1
detAn1

−detA12 detA22 ⋮
⋮ ⋱ ⋮

(−1)n+1
detA1n ⋯ ⋯ (−1)2n

detAnn

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Falls A = (ai,j)i∈{1,...,m},j∈{1,...,n}, dann schreiben wir ai,∗ für die i-te Zeile von A, und
a∗,j für die j-te Spalte von A.
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Beweis. Wir zeigen A
#
A = detA ⋅ En. Tatsächlich gilt für i, j ∈ {1, . . . , n}, dass

(A#
A)ij = ∑

k∈{1,...,n}
(A#)ik ⋅ akj

= ∑
k∈{1,...,n}

(−1)i+k det(Aki) ⋅ akj

= ∑
k∈{1,...,n}

akj ⋅ det(Ai(ek)) (Lemma 4.1.30)

= det(a1∗, . . . , a(i−1)∗, aj∗, a(i+1)∗, . . . , an∗) (Linearität in der j-ten Spalte)

= δij ⋅ det(A) (det ist alternierend).

Beispiel 4.1.34. Die inverse Matrix von A = (1 0
1 2

) ist

A
−1
=

1

detA
( 2 0
−1 1

) = ( 1 0

−1
2

1
2

) . △

4.2 Polynomringe

Ein Polynom - was ist das?

x
2
+ 2x + 1

Ausführlich behandelt in: Vorlesung Algebra (AL10).
Trennung von Syntax und Semantik, Polynomen und Polynomfunktionen.

4.2.1 Ringe

Vieles (aber nicht alles) in dieser Vorlesung bleibt gültig, wenn man Körper durch Ringe
ersetzt.

Definition 4.2.1. Eine Menge R mit zwei binären Operationen, + (‘Addition’) und ⋅
(‘Multiplikation’), heißt Ring, falls gilt

1. (R,+) ist eine abelsche Gruppe: + ist assoziativ, es gibt ein neutrales Element und
inverse Elemente bezüglich +, und + ist kommutativ (siehe Abschnitt 2.1).

2. (R, ⋅) ist eine Halbgruppe, d.h., die Multiplikation ist assoziativ.

3. Es gelten die Distributivitätsgesetze (vergleiche mit Abschnitt 2.2!):

x ⋅ (y + z) = x ⋅ y + x ⋅ z
(y + z) ⋅ x = y ⋅ x + z ⋅ x

Ein Ring R heißt
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• Ring mit Eins falls es ein neutrales Element für die Multiplikation gibt. Falls es
so ein Element gibt, so ist es eindeutig (siehe Beweis von Lemma 2.1.3), und wird
mit 1 bezeichnet.

• kommutativer Ring falls die Multiplikation kommutativ ist.

Definition 4.2.2. Ein Element u ∈ R eines Rings R mit Eins heißt Einheit falls es ein
multiplikatives Inverses hat, d.h., falls es Element v ∈ R gibt, so dass vu = uv = 1.

Beispiel 4.2.3. (Z;+, ⋅): der Ring der ganzen Zahlen (kommutativ, mit Eins; die einzigen
Einheiten sind 1 und −1). △

Beispiel 4.2.4. (Zn,+, ⋅): der Restklassenring (siehe Abschnitt 1.2.11; kommutativ, mit
Eins; Körper falls n prim). △

Beispiel 4.2.5. (Kn×n,+, ⋅): der Matrizenring über K (nicht kommutativ, siehe Bei-
spiel 3.2.6; aber mit Eins En). △

Beispiel 4.2.6. Sei V ein Vektorraum. Dann ist

End(V ) ∶= {f ∶V → V ∣ f lineare Abbildung}

der Endomorphismenring, mit folgenden Operationen

(f1 + f2)(v) ∶= f1(v) + f2(v)
(f1 ⋅ f2)(v) ∶= f1(f2(v))

Das neutrale Element für die Addition ist der Endomorphismus, der ganz V auf 0 ab-
bildet, und für den wir 0 schreiben. △

Bemerkung 4.2.7. Die folgenden Definitionen dieser Vorlesung haben eine natürliche
Verallgemeinerung von Körpern auf Ringe:

• Matrizen,

• Determinanten,

• Das Analogon zu Vektorräumen über einem Körper ist der Begriff des Moduls
1

über einem Ring.

4.2.2 Polynome über K

Weitere wichtige Beispiele für Ringe sind Polynomringe. Polynome über R sind Ihnen
bereits aus der Schule bekannt; die Elemente eines solchen Ringes sind Polynome, mit
einer geeigneten Addition und Multiplikation. Tatsächlich lassen sich Polynome bereits
über einem Ring anstatt eines Körpers betrachten, und wir werden Polynome daher
gleich in dieser Allgemeinheit definieren.

1
Im Unterschied zu anderem sprachlichen Gebrauch wird Modul in diesem Kontext mit Betonung auf
dem o ausgesprochen.
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Sei R ein kommutativer Ring mit Eins (z.B. ein Körper). Eine Abbildung ϕ∶N → R
heißt auch Folge. Schreibweise: ϕ = (ai)i∈N = (a0, a1, . . . ) mit ai ∶= ϕ(i) ∈ K. Sei F
die Menge aller Folgen mit der Eigenschaft, dass ai = 0 für fast alle i ∈ N, d.h., mit
Ausnahme von endlich vielen. Auf F werden folgende Operationen definiert:

• Addition:
(ai)i∈N + (bi)i∈N ∶= (ai + bi)i∈N

• Multiplikation mit Skalar c ∈ R:

c ⋅ (ai)i∈N ∶= (c ⋅ ai)i∈N

Bemerkung 4.2.8. Falls R sogar ein Körper K ist, dann wird F zu einem K-Vektorraum.
Eine (unendliche!) Basis ist

(1, 0, 0, . . . ),
(0, 1, 0, . . . ),
(0, 0, 1, . . . ),
. . .

Es gilt F ≤ R
N

, d.h., F ist ein Untervektorraum vom Funktionsraum R
N

(siehe Ab-
schnitt 2.3.1).

Neue Bezeichnungen (X ein beliebiges Symbol):

alt neu

(1, 0, 0, . . . ) =∶ X
0

(0, 1, 0, . . . ) =∶ X
1

⋮ ⋮ ⋮

(0, 0, . . . , 0, 1, 0, . . . ) =∶ X
n

F =∶ R[X]
Es folgt:

(k, 0, 0, . . . ) = k ⋅ (1, 0, 0, . . . ) = k ⋅X0
=∶ k ⋅ 1 (= k ∈ R)

(0, k, 0, . . . ) = k ⋅ (0, 1, 0, . . . ) = k ⋅X1
=∶ k ⋅X

(0, . . . , 0, k, 0, . . . ) = k ⋅ (0, . . . , 0, 1, 0, . . . ) = k ⋅Xn

Bemerkung 4.2.9. Man kann R als Teilmenge von R[X] auffassen (und das werden wir

im Folgenden tun). Insbesondere steht dann 0 ∈ R für das Element (0, 0, . . . ) ∈ RN.

Haben also

(a0, a1, . . . , an, 0, 0, . . . ) = a0 + a1X + a2X
2
+⋯+ anX

n

und insbesondere
(0, 0, . . . ) = 0 + 0 ⋅X + 0 ⋅X

2
+ ⋅ ⋅ ⋅ = 0.

Die Elemente von R[X] heißen Polynome (über R) in der Unbestimmten X.
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4.2.3 Der Polynomring R[X]
In R[X] lässt sich eine Multiplikation wie folgt definieren:

• Für Basiselemente:

X
i
⋅X

j
∶= X

i+j

• Für Linearkombinationen gemäß dem Distributivgesetz:
für ϕ = a0 + a1X +⋯+ anX

n
und ψ = b0 + b1X +⋯+ bmX

m
gelte

ϕ ⋅ ψ = c0 + c1X +⋯+ cn+mX
n+m

mit ck = ∑k
i=0 akbk−i für k ∈ N.

Satz 4.2.10. (R[X],+, ⋅) ist ein kommutativer Ring mit Eins.

Die Eins 1 ist neutrales Element für die Multiplikation.
Bezeichnung: Polynomring über R in der Unbekannten X.

4.2.4 Der Grad eines Polynoms

Sei

ϕ = a0 + a1X + a2X
2
+⋯ ∈ R[X]

Definieren den Grad des Polynoms ϕ wie folgt:

grad(0) ∶= −∞
grad(ϕ) ∶= max(i ∈ N ∣ ai ≠ 0}

Dann gilt:

grad(ϕ + ψ) ≤ max(grad(ϕ), grad(ψ))
grad(ϕ ⋅ ψ) ≤ grad(ϕ) + grad(ψ) (4.8)

wobei max(a,−∞) = max(−∞, a) ∶= −∞, und −∞ + a = a + (∞) ∶= −∞ für alle
a ∈ N ∪ {−∞}. Falls R sogar ein Körper ist, gilt in (4.8) Gleicheit anstatt ≤.

4.2.5 Polynomfunktionen

Nun der bereits angekündigte wichtige Übergang von der Syntax zur Semantik.

Sei ϕ ∈ R[X] ein Polynom,

ϕ = a0 + a1X + a2X
2
+⋯+ anX

n
.

Sei S ein Ring mit R ⊆ S (z.B. S = R[X], siehe Bemerkung 4.2.9) und s ∈ S. Dann ist

ϕ
S(s) ∶= a0 + a1s + a2s

2
+⋯+ ans

n
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ein Element von S!
Auswertung von ϕ in S an der Stelle s. “Einsetzen” von s in ϕ.

Die Abbildung

ϕ
S
∶S → S ∶ r ↦ ϕ

S(s)
heißt die zu ϕ gehörige Polynomfunktion. In der Algebra allgemeiner: ‘Termfunktion’.

Wichtig: Unterschied

Polynom Polynomfunktion
(Syntax) (Semantik)

ϕ ϕ
S

Definition 4.2.11. Sei ϕ ∈ R[X] ein Polynom. Ein Element s ∈ S heißt Nullstelle von
ϕ in S falls ϕ

S(s) = 0. Für a ∈ R heißen die Nullstellen des Polynoms X
n − a (n-te)

Wurzeln von a.

Hier steht 0 für das Nullelement des Ringes S = Nullelement von R.

4.2.6 Der Auswertungshomomorphismus

Satz 4.2.12 (Auswertungssatz). Es sei S ein Ring und R ⊆ S ein kommutativer Ring
mit 1. Sei s ∈ S so dass s ⋅ r = r ⋅ s für alle r ∈ R. Dann gilt für alle ϕ,ψ ∈ R[X]:

(ϕ + ψ)S(s) = ϕS(s) + ψS(s)
(ϕ ⋅ ψ)S(s) = ϕR(s) ⋅ ψS(s)

Die Voraussetzungen sind z.B. gegeben, wenn S ebenfalls ein kommutativer Ring ist.
Algebraischer Hintergrund: die Abbildung

hs∶R[X]→ S ∶ ϕ↦ ϕ
S(s)

ist ein (Ring-) Homomorphismus.

Beispiel 4.2.13. Sei S ∶= K2×2
. Ist K ⊆ S? Eigentlich nicht. Aber schon mit ‘Trick’ über

Einbettung von K in S: ein Körperelement k ∈ K wird als Matrix

k ⋅ E2ÍÑÒÏ
Eins-element im Ring K2×2

= (k 0
0 k

)

interpretiert. Dann gilt K ⊆ S und für k ∈ K und A ∈ K2×2
gilt

k ⋅A ∶= (k ⋅ E2) ⋅A
= A ⋅ (k ⋅ E2) (3.1)

= A ⋅ k
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und damit ist Satz 4.2.12 anwendbar. Seien ϕ1 = (−2+X) und ϕ2 = (3+X). Dann ist

ϕ ∶= ϕ1ϕ2 = (−2 +X)(3 +X)
= −6 +X +X

2

Nullstellen von ϕ in K ∶ 2,−3.

Für z.B. A = (2 1
0 −3

) ∈ K2×2
= S ergibt sich:

ϕ
S
1 (A) = (−2 0

0 −2
) + (2 1

0 −3
) = (0 1

0 −5
)

ϕ
S
2 (A) = (3 0

0 3
) + (2 1

0 −3
) = (5 1

0 0
)

ϕ
S(A) = (−6 0

0 −6
) + (2 1

0 −3
) + (2 1

0 −3
)

2

= ⋅ ⋅ ⋅ = (0 0
0 0

)

Satz 4.2.12 (Auswertungssatz) ergibt

ϕ(A) = ϕ1(A) ⋅ ϕ2(A) = (0 1
0 −5

) ⋅ (5 1
0 0

) = 0

Nullstellen von ϕ in K2×2
: z.B. die Matrix A. △

Beispiel 4.2.14. Sei V ein K-Vektorraum. Dann ist End(V ) ein (nicht kommutativer)
Ring (Beispiel 4.2.6). Wir werden im Folgenden annehmen, dass K ⊆ End(V ) ist: das
Element λ ∈ K fassen wir auf als v ↦ λ idV . Also können wir Polynome ϕ ∈ K[X]
auswerten in End(V ). △

4.2.7 Polynomdivision

Teilbarkeitslehre für Polynome ähnlich wie für Zahlen (Vorlesung Algebra).

Definition 4.2.15. Seien ϕ,ψ ∈ K[X]. Dann heißt ϕ ein Vielfaches von ψ, und ψ ein
Teiler von ϕ (Schreibweise: ψ∣ϕ), falls es ein ϕ1 ∈ K[X] gibt mit ϕ = ϕ1ψ.

Polynomdivision: Division mit Rest.

Beispiel:

( X
5 +3X

4 +0 ⋅X3 +X2 +6X −6) ∶ (X2 +X − 1) = X3 + 2X
2 −X + 4

−( X
5 +X4 −X3)

0 +2X
4 −X3

−( 2X
4 +2X

3 −2X
2)

0 −X3
3X

2

−( −X3 −X2
X)

0 4X
2 +5X −6

−( 4X
2 +4X −4

0 X −2 ‘Rest’ ρ = X − 2
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Also:
ϕ

ψ
= ϕ1 +

ρ

ψ
, d.h.,

ϕ1ψ + ρ

wobei grad(ρ) < grad(ψ).

Lemma 4.2.16. Sei ϕ ∈ K[X] und k ∈ K. Dann ist k genau dann Nullstelle von ϕ,
wenn (X − k)∣ϕ.

Beweis. Sei ψ ∶= (X − k).
‘⇐’: ϕ = ϕ1 ⋅ ψ ergibt mit Satz 4.2.12

ϕ(k) = ϕ1(k)ψ(k) = ϕ1(k) ⋅ 0 = 0

‘⇒’: Polynomdivision liefert ϕ = ϕ1 ⋅(X−k)+ρ wobei grad(ρ) < grad(ψ) = 1. Wegen
ϕ(k) = 0 folgt ρ(k) = 0. Da grad(ρ) = 0 ist ρ ∈ K. Also ρ = 0, und damit ψ∣ϕ.

Definition 4.2.17. Die algebraische Vielfachheit einer Nullstelle k ist definiert als

max{m ∈ N ∶ (X − k)m∣ϕ}.

Eine mehrfache Nullstelle ist entsprechende eine Nullstelle mit algebraischer Viel-
fachheit größer als 1. Wie zeigt man, dass ein Polynom mehrfache Nullstellen hat?
Dafür ist das folgende Lemma oft praktisch. Die Ableitung eines Polynoms ϕ(X) =

a0 + a1X + a2X
2 +⋯+ anX

n
ist definiert als das Polynom

ϕ
′(X) ∶= a1 + 2a2X +⋯+ nanX

n−1
.

(Siehe auch Beispiel 3.4.19.)

Lemma 4.2.18. Ein Polynom ϕ ∈ K[X] hat genau dann λ ∈ K als mehrfache Null-
stelle, wenn λ sowohl eine Nullstelle von ϕ als auch von ϕ

′
ist.

Beweis. Wenn λ eine mehrfache Nullstelle von ϕ ist, dann gilt ϕ(X) = (1 −X)mψ(X)
mit m ≥ 2 (Lemma 4.2.16). Also ist

ϕ
′(X) = m(X − λ)m−1

ψ(X) + (X − λ)mψ′(X)

was ebenfalls λ als Nullstelle hat.

Umgekehrt: nehmen wir an, dass λ Nullstelle von sowohl ϕ als auch von ϕ
′

ist. Dann
können wir schreiben ϕ(X) = (X − λ)ψ(X), und ϕ

′(X) = ψ(X) + (X − λ)ψ′(X). Also
0 = ϕ

′(X)(λ) = ψ(λ) + (λ − λ)ψ′(λ) = ψ(λ) und damit ist λ Nullstelle von ψ. Also ist
λ mehrfache Nullstelle von ϕ.
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

Viele Anwendungen in der Physik, Stochastik, diskreten Mathematik, . . .

Definition 4.3.1. Sei V ein K-Vektorraum, und f ∶V → V ein Endomorphismus. (D.h.,
f ist eine lineare Abbildung, siehe Abschnitt 3.4.) Ein Element λ ∈ K heißt Eigenwert
(EW) von f , falls es einen Vektor v ≠ 0 gibt, so dass:

f(v) = λv (4.9)

Jeder Vektor v ≠ 0 mit dieser Eigenschaft heißt Eigenvektor von f zum Eigenwert λ.

Speziell: Eigenwert λ ∈ K und Eigenvektor u ∈ Kn×n einer Matrix A ∈ Kn×n: definiert
als EW und Eigenvektor von

fA∶K
n
→ Kn ∶ x↦ Ax ,

d.h.,

Au = λu mit u ≠ 0 .

Bemerkung 4.3.2. Der Nullvektor v = 0 erfüllt (4.9) trivialerweise, ist aber kein Eigen-
vektor. Der Eigenwert 0 tritt genau dann auf, wenn Kern(f) ≠ {0} (also genau dann,
wenn f nicht injektiv ist, bzw. wenn det(f) = 0; Satz 3.2.27).

Definition 4.3.3. Seien λ ∈ K und f ∶V → V .

Eigλ(f) ∶= Eigλ ∶= {v ∈ V ∣ f(v) = λv} (4.10)

heißt Eigenraum von f zum Eigenwert λ (im Englischen eigenspace).

Eigλ(f) ist Untervektorraum von V , denn

Eigλ(f) = {v ∈ V ∣ f(v) − λv = 0}
= {v ∈ V ∣ (f − λ id)(v) = 0}
= Kern(f − λ id) ≤ V.

Die Dimension von Eigλ heißt geometrische Vielfachheit von λ.
Spezialfall f = fA∶K

n
→ Kn ∶ x↦ Ax:

Eigλ(A) ∶= Eigλ(fA) = Kern(A − λEn)

Also:

dim(Eigλ(A)) = dim(Kern(A − λE))
= n − rg(A − λE)

ist die geometrische Vielfachheit von λ nach der Dimensionsformel (Satz 3.3.6).

117



4 Determinanten, Polynome, Diagonalisierbarkeit

Bemerkung 4.3.4. Seien V ein K-Vektorraum mit Basis B = (v1, . . . , vn), f ∶V → V ein
Endomorphismus, und A ∶=MB

B (f) Darstellungsmatrix von f (siehe Abschnitt 3.4.5).
Dann haben A und f die gleichen Eigenwerte, und Eigλ(f) ≃ Eigλ(A). Genauer: sei
ϕB∶K

n
→ V der kanonische Basisisomorphismus (Abschnitt 2.4.3). Dann gilt

Ax = λx⇔ ϕB(Ax) = ϕB(λx)
⇔ f(ϕB(x)) = λϕB(x)

Ist x der Koordinatenvektor von v bzgl. Basis B (das heißt, ϕB(x) = v) dann gilt:

v ist Eigenvektor von f zu EW λ

⇔ x ist Eigenvektor von A zu EW λ (4.11)

Beispiel 4.3.5. f ∶R2
→ R2 ∶ x↦ Ax lineare Abbildung mit Darstellungsmatrix

A = ( 3 −1
−1 3

) .

Was macht f?

e1 = (1
0)↦ Ae1 = ( 3

−1)

e2 = (0
1)↦ Ae2 = (−1

3 )

Experimentieren:

v1 = (1
1) Av1 = ( 3 − 1

−1 + 3) = 2v1

v2 = ( 1
−1) Av2 = ( 3 + 1

−1 − 3) = 4v2

λ1 = 2 Eigenwert, v1 = (1
1
) Eigenvektor.

λ2 = 4 Eigenwert, v1 = ( 1
−1

) Eigenvektor.
B ∶= (v1, v2) ist sogar Basis. Muss nicht immer sein!

Für beliebigen Vektor v ∈ R2

v = α1v1 + α2v2

folgt

f(v) = α1f(v1) + α2f(v2)
= 2α1v1 + 4α2v2
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Das heißt Streckung um Faktor 2 in Richtung v1, und um Faktor 4 in Richtung v2.

Das kann man aus der Darstellungsmatrix M
B
B (f) direkt ablesen:

M
B
B (f) = (2 0

0 4
)

Ist Diagonalmatrix (Beispiel 3.2.8) mit Eigenwerten auf der Diagonale. △

Diagonalmatrix erstrebenswert:

• nur n Werte (statt n
2
);

• alle Rechnungen (Inverse, Determinante, etc.) einfacher;

• Verhalten der Abbildung ablesbar;

• EW ablesbar.

4.3.1 Anwendung: Pagerank

Webseiten S ∶= {1, . . . , n}.
Links zwischen Seiten: Teilmenge L von S

2
.

Wichtigkeit 0 ≤ w(1), . . . , w(n) ∈ R (für Ranking).
Wie könnte sinnvolles Ranking funktionieren?

Idee. Eine Seite ist wichtig, wenn es viele Links von wichtigen Seiten auf diese Seite
gibt.

w(i) ∼ ∑
j∶(j,i)∈L

w(j)

Formal:

w(i) = λ̃
n

∑
j=1

ajiw(j)

wobei aij ∶= 1 falls (i, j) ∈ L und aij ∶= 0 sonst. Also

⎛
⎜⎜
⎝

w(1)
⋮

w(n)

⎞
⎟⎟
⎠
=∶ x = λ̃Ax für A = (aji)i,j=1,...,n

D.h., für Ranking wird gebraucht: ein positiver Eigenwert λ = 1/λ̃ und ein positiver
Eigenvektor x (alle Einträge positiv):

Ax = λx.
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Beispiel 4.3.6. (Turnier) Teams 1, 2, 3, 4.

A = (aij) =
⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Interpretation der Matrix:
aij = 1: Team i schlägt Team j, sonst aij = 0.

1 2

34

Eigenvektor

x ≈

⎛
⎜⎜⎜⎜⎜⎜
⎝

0.62
0.55
0.32
0.45

⎞
⎟⎟⎟⎟⎟⎟
⎠

zum Eigenwert ≈ 1, 39 (einziger positiver EW). △

4.3.2 Berechnung von Eigenwerten und das charakteristische Polynom

Sei A ∈ Kn×n bzw. f ∶V → V Endomorphismus mit A =M
B
B (f) (bezüglich Basis B).

Definition 4.3.7. Das charakteristische Polynom
2

von A, beziehungsweise von f , ist
das folgende Polynom aus K[X]:

χf(X) ∶= χA(X) ∶= det(XE −A) =

»»»»»»»»»»»»»»»»

X − a11 −a12 ⋯ −a1n

−a21 X − a22 ⋯ −a2n

⋮ ⋱ ⋮
−an1 −an2 . . . X − ann

»»»»»»»»»»»»»»»»

.

Bemerkung 4.3.8. Definition funktioniert auch, wenn statt Körper K nur ein Ring R
verwendet wird (Definition 4.2.1; A ∈ R

n×n
, χf ∈ R[X]).

Proposition 4.3.9. Ähnliche Matrizen haben dasselbe charakteristische Polynom.

Beweis. Für B = S
−1
AS gilt

det(XE −B) =det(XS−1
S − S

−1
AS)

=det(S−1(XE −A)S)
=detS

−1
⋅ det(XE −A) ⋅ detS

=det(XE −A) .
2
Manche Autor:innen definieren das charakteristische Polynom von A als det(A−λE). Unsere Definition
hat den Vorteil, dass der führende Eintrag des Polynoms stets 1 ist. Allerdings macht das keinen
großen Unterschied, da sich die eine Variante der Definition durch Multiplikation mit (−1)n aus der
anderen ergibt.
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Also ist χf(X) unabhängig von der Wahl der Basis B. Ansonsten wäre Definition 4.3.7
so gar nicht möglich.

Satz 4.3.10. Die Eigenwerte sind genau die Nullstellen des charakteristischen Poly-
noms, d.h.,

λ ∈ K ist EW von A ⇔ det(λE −A) = 0.

Beweis.

λ EW ⇔ ∃v ∈ Kn \ {0} ∶ v ∈ Kern(λE −A) (Definition 4.3.1)

⇔ det(λE −A) = 0 (Abschnitt 4.1.7)

Die zweite Gleichung folgt aus den Beobachtungen aus Abschnitt 4.1.7: ein homogenes
LGS Bx = 0 (stets lösbar!) hat genau dann eine eindeutige Lösung, wenn detB ≠ 0.

Beispiel 4.3.11. Betrachte

A =

⎛
⎜⎜
⎝

0 −1 1
−3 −2 3
−2 −2 3

⎞
⎟⎟
⎠
∈ R3×3

.

χA(λ) = det(XE −A) =
»»»»»»»»»»»»

X 1 −1
3 X + 2 −3
2 2 X − 3

»»»»»»»»»»»»
(Definition)

= X(X + 2)(X − 3) − 6 − 6 + 2(X + 2) + 6X − (X − 3)3 (Sarrus, Beispiel 4.1.12)

= X
3
− 3X

2
+ 2X

2
− 6X − 12 + 2X + 4 + 6X − 3X + 9 (Ausmultiplizieren)

= X
3
−X

2
−X + 1 (Vereinfachen)

= (X − 1)2(X + 1) (Faktorisieren)

Also: haben folgende Nullstellen

λ1 = 1 (algebraische Vielfachheit 2)

λ2 = −1 (algebraische Vielfachheit 1)

Geometische Vielfachheiten werden später ausgerechnet (Beispiel 4.3.21). △

Beispiel 4.3.12. V = R2

A = (cosα − sinα
sinα cosα

)

Charakteristisches Polynom:

χA(X) = cos
2
α − 2X cosα + sin

2
α

= X
2
− 2X cosα + 1

Eigenwerte: die Nullstellen von χA(X).
Fallunterscheidung:
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• α = 0.

χA(X) = X2
− 2X + 1 = (X − 1)2

Eigenwert 1, algebraische Vielfachheit 2.

• α = 180
◦
.

χA(X) = X2
+ 2X + 1 = (+1)2

Eigenwert -1, algebraische Vielfachheit 2.

• α ≠ 0 und α ≠ 180
◦
.

χA(X) = X2
− (2 cosα)X + 1

hat keine Nullstellen in R.
p, q-Formel: q = 1, p/2 = − cosα. Haben die Lösungen

− cosα ±
√

cos2 α − 1

mit cos
2
α − 1 < 0 für α ≠ {0

◦
, 180

◦}. △

Beispiel 4.3.13. Die Eigenwerte einer Dreiecksmatrix

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a11 ∗
a22

⋱
0 ann

⎞
⎟⎟⎟⎟⎟⎟
⎠

sind die Elemente der Hauptdiagonalen (algebraische Vielfachheit ist dabei schon berücksichtigt),
denn

χA(X) = det(XE −A)
= (X − a11)(X − a22)⋯(X − ann). △

Bemerkung 4.3.14. Für das charakteristische Polynom

χA(X) = det(XE −A)
= anX

n
+ an−1X

n−1
+⋯+ a1X + a0

einer Matrix A ∈ Kn×n gilt

1. a0 = det−A Setze X = 0

2. an = 1

3. an−1 = (−1)n−1(a11+⋯+ann) =∶ (−1)n−1
Spur(A) Summe der Hauptdiagonalen
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Beweis durch Auswerten der Leibnizschen Formel. Einzig der Summand

(X − a11)⋯(X − ann)
der Determinante für die Permutation id ∈ Sn ist relevant, da es nur dort n−1 Auftreten
von X geben kann (alle anderen Permutationen unterscheiden sich von id an mindes-
tens zwei Stellen, die entsprechenden Summanden haben also Grad höchstens n − 2).
Ausmultiplizieren dieses Summanden liefert Koeffizienten (−1)n−1

Spur(A) für X
n−1

.

Übung 22. Beweisen Sie: für A,B ∈ Kn×n gilt Spur(AB) = Spur(BA).
Übung 23. SeienA1, . . . , An ∈ K

n×n
und π ∈ Sn eine Permutation. Gilt Spur(A1, . . . , An) =

Spur(Aπ(1)⋯Aπ(n))?
Übung 24. Zeigen Sie: für quadratische Matrizen A und B und

M ∶= (A ∗
0 B

)

gilt χM = χA ⋅ χB.

Kommentare. (Erinnerung: Nullstellen ↭ Linearfaktoren, Lemma 4.2.16)
Sätze und Algorithmen zur Faktorisierung univariater Polynome ϕ ∈ K[X]:

• über K = C: jedes Polynom zerfällt in Linearfaktoren. Wenn man bereits eine
Nullstelle a kennt (numerische Verfahren), so führt man Polynomdivision durch
(X − a) durch und wendet das Verfahren rekursiv auf den Quotienten an.

• über K = R: faktorisieren in C, und beobachten, dass mit jeder komplexen Null-
stellen a + b ⋅ i, für a, b ∈ R, auch die konjugiert komplexe a − i ⋅ b eine Nullstelle
ist.

Also treten neben den Linearfaktoren auch Faktoren auf der Gestalt

((X − (a + b ⋅ i))(X − (a − b ⋅ i)) = X2
+ 2aÍÑÏ
∈R

X + (a2
+ b

2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈R

).

• über endlichen Körpern K = Fq: Berlekamp-Algorithmus [12].

• über K = Q: Lenstra-Lenstra-Lovász Algorithmus [8].

4.3.3 Diagonalmatrizen

Erinnern uns an Beispiel

A = ( 3 −1
−1 3

)

aus Abschnitt 4.3. Eigenvektoren bilden Basis B = {(1
1
), ( 1

−1
)},

und Darstellungsmatrix von fA diagonal:

M
B
B (fA) = (2 0

0 4
)

Wann ist das der Fall?
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Lemma 4.3.15. Sei V ein K-Vektorraum mit Basis B = (v1, . . . , vn), und f ∶V → V
ein Endomorphismus. Dann sind äquivalent:

1. Die Darstellungsmatrix von f bezüglich B ist Diagonalmatrix:

A ∶=M
B
B (f) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1 0
λ2

⋱
0 λn

⎞
⎟⎟⎟⎟⎟⎟
⎠

2. B ist Basis aus Eigenvektoren von f , genauer f(vi) = λivi für i ∈ {1, . . . , n}.

Beweis. (2)⇒ (1): klar (siehe Abschnitt 3.4.5: Merkregel!)
(1)⇒ (2): Offenbar Aei = λiei (i-te Spalte von A)
Also ist ei Eigenvektor von A zu EW λi.
Also ist vi = ϕB(ei) Eigenvektor von f zu EW λi (siehe (4.11)).
Das bedeutet, f(vi) = λivi.

Ziel im Folgenden: möglichst viele linear unabhängige Eigenvektoren finden.
Verschiedene Eigenwerte sichern lineare Unabhängigkeit!

Lemma 4.3.16. Seien v1, . . . , vr Eigenvektoren von f ∈ End(V ) zu verschiedenen Ei-
genwerten λ1, . . . , λr. Dann sind v1, . . . , vr linear unabhängig.

Beweis. Induktion über r. Für r = 1 ist v1 ≠ 0 linear unabhängig. Sei nun die Aussage
richtig für r = k ≥ 1; zu zeigen ist die Aussage für r = k + 1. Seien v1, . . . , vk, vk+1

Eigenvektoren zu EW λ1, . . . , λk, λk+1 (paarweise verschieden). O.B.d.A λk+1 ≠ 0 (sonst
andere Nummerierung). Sei

α1v1 +⋯+ αk+1vk+1 = 0 (4.12)

Dann gilt:

α1λk+1v1 +⋯+ αkλk+1vk + αk+1λk+1vk+1 = 0 (λk+1 ⋅ (4.12)) (4.13)

α1 λ1v1Í ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÏ
=f(v1)Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=f(α1v1)

+⋯+ αkλkvk + αk+1λk+1vk+1 = 0 (Anwenden von f auf (4.12)) (4.14)

α1(λ1 − λk+1)v1 +⋯+ αk(λk − λk+1)vk = 0 (Subtraktion (4.14) - (4.13)

Nach Induktionsvoraussetzung sind v1, . . . , vk linear unabhängig, also

α1(λ1 − λk+1) =⋯ = αk(λk − λk+1) = 0 .

Wegen λi ≠ λk+1 ist λi − λk+1 ≠ 0, für alle i ∈ {1, . . . , k}, und daher

α1 =⋯ = αk = 0
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Aus (4.12) folgt nun
αk+1 vk+1Í ÒÒÒÒÒÒÑÒÒÒÒÒÒÒÏ

≠0

= 0

also auch αk+1 = 0.

Definition 4.3.17. Sei V in K-Vektorraum, f ∈ End(V ), und A ∈ Kn×n.

• f heißt diagonalisierbar, wenn es eine Basis von V gibt, die aus Eigenvektoren von
f besteht (Motivation: Lemma 4.3.15);

• A heißt diagonalisierbar, wenn es eine invertierbare Matrix S ∈ GL(K, n) gibt, so
dass A

′ ∶= S
−1
AS eine Diagonalmatrix ist. In anderen Worten: A ist genau dann

diagonalisierbar, wenn A ähnlich ist zu einer Diagonalmatrix A
′
.

Bemerkung 4.3.18. Definition sinnvoll, denn für jede Basis B von V ist f genau dann
diagonalisierbar, wenn M

B
B (f) diagonalisierbar.

Satz 4.3.19 (Diagonalisierbarkeitskriterium). Es seien:

• V ein n-dimensionaler K-Vektorraum,

• f ∈ End(V ),

• A =M
B
B (f) Darstellungsmatrix von f bezüglich einer Basis B von V ,

• λ1, . . . , λr alle paarweise verschiedenen Eigenwerte von f (bzw. von A),

• n1, . . . , nr die zugehörigen geometrischen Vielfachheiten, ni = dim Kern(A−λiE),

• (v(i)1 , . . . , v
(i)
ni ) sei Basis des Eigenraums Eigλi(f) = Kern(f − λi id),

• m1, . . . ,mr die algebraischen Vielfachheiten von λ1, . . . , λr, das heißt,

mi = max{m ∈ N ∣ ∃ψ ∈ K[λ]∶χf(X) = (X − λi)mψ} .

Dann gilt

1. (v(1)1 , . . . , v
(1)
n1
, . . . , v

(r)
1 , . . . , v

(r)
nr ) ist linear unabhängig.

2. ni ≤ mi und ∑r
i=1 ni ≤ ∑r

i=1mi ≤ n.

3. Die folgenden Aussagen sind äquivalent:

a) f ist diagonalisierbar;

b) Es gibt eine Basis von Kn, die nur aus Eigenvektoren von A besteht.

c) A ist diagonalisierbar; in diesem Fall ist für jede Matrix S, deren Spalten
u1, . . . , un linear unabhängige Eigenvektoren von A sind, S

−1
AS eine Diago-

nalmatrix.
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d) Das charakteristische Polynom χA zerfällt in Linearfaktoren

χA(X) = (X − λ1)m1⋯(X − λr)mr

und ni = mi für i ∈ {1, . . . , r}.

e) ∑r
i=1 ni = n = dimV .

Bemerkung 4.3.20. Unmittelbare Folgerung aus (e)⇒ (a): Falls r = n, also wenn es n
verschiedene Eigenwerte gibt, dann ist f diagonalisierbar. Dies ist selbstverständlich nur
ein hinreichendes, nicht aber ein notwendiges Kriterium: denke an die Diagonalmatrix
E2, die nur einen Eigenwert hat.

Beweis. Zu 1.:

α
(1)
1 v

(1)
1 +⋯+ α

(1)
n1
v
(1)
n1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=∶w1∈Eigλ1

+⋯+ α
(r)
1 v

(r)
1 +⋯+ α

(r)
nr v

(r)
nrÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=∶wr∈Eigλr

= 0 (4.15)

Definiere S ∶= {i ∈ {1, . . . , r} ∣ wi ≠ 0}.

• 1. Fall: S ≠ ∅. Die Menge {wi ∣ i ∈ S} besteht aus Eigenvektoren zu paarweise
verschiedenen Eigenwerten. Nach Lemma 4.3.16 sind w1, . . . , wr linear unabhängig.
Dann gilt ∑i∈S wi ≠ 0, im Widerspruch zu (4.15) und der Definition von S.

• 2. Fall: S = ∅. Dann gilt für jedes i ∈ {1, . . . , n}

wi = α
(i)
1 v

(i)
1 +⋯+ α

(i)
ni v

(i)
n1
= 0

und daher α
(i)
1 =⋯ = α

(1)
ni = 0 da v

(i)
1 , . . . , v

(i)
ni Basis bilden.

Zu 2.: Die Basis (v(i)1 , . . . , v
(i)
ni ) von Eigλi lässt sich zu Basis B̃ ∶= (v(i)1 , . . . , v

(i)
ni , . . . , vn

(i))
von V ergänzen (Steinitz’scher Austauschsatz: Satz 2.4.13). Die Darstellungsmatrix hat
dann die Form

M ∶=M
B̃
B̃ (f) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λi ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λi

∗

0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Denn: die ersten ni Spalten sind die Koordinatenvektoren der Bilder von v
(i)
1 , . . . , v

(i)
ni

nach Merkregel, da f(v(i)j ) = λiv
(i)
j .

Also
χf = det(λE −M) = (X − λi)ni ⋅ Restpolynom

d.h., ni ≤ mi. Wegen

grad(ϕ ⋅ ψ) = grad(ϕ) + grad(ψ)
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folgt
r

∑
i=1

mi ≤ grad(χf) = n .

Zu 3.: Wir zeigen (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e)⇒ (a).

(a)⇒ (b): Da f diagonalisierbar, hat V eine Basis C = (w1, . . . , wn) aus Eigenvektoren
von f (Lemma 4.3.15). Die Koordinatenvektoren u1 = ϕ

−1
B (w1), . . . , un = ϕ−1

B (wn) bilden
Basis von Kn aus Eigenvektoren von A.

(b)⇒ (c): Sei u1, . . . , un eine Basis von Kn aus Eigenvektoren von A, und sei

S =
⎛
⎜⎜
⎝
u1 ⋯ un

⎞
⎟⎟
⎠
.

Dann gilt für eine Diagonalmatrix D =

⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠

, dass

SD =

⎛
⎜⎜
⎝
λ1u1 ⋯ λnun

⎞
⎟⎟
⎠

(Matrizenmultiplikation).

Also gilt

SD = AS =
⎛
⎜⎜
⎝
Au1 ⋯ Aun

⎞
⎟⎟
⎠

genau dann wenn Aui = λui für i = 1, . . . , n, d.h., genau dann, wenn die Spalten Eigen-
vektoren sind. Da (u1, . . . , un) Basis von Kn ist, folgt dass

rg(S) = n⇒ S ∈ GL(n,K)

und
SD = AS⇔ D = S

−1
AS.

Also (b)⇒ (c).
(c)⇒ (d): A und

D = S
−1
AS =∶

⎛
⎜⎜
⎝

d1 0
⋱

0 dn

⎞
⎟⎟
⎠

sind ähnlich, haben also das gleiche charakteristische Polynom (Proposition 4.3.9)

χA(X) = χD(X) = (X − d1)(X − d2)⋯(X − dn)
=∶ (X − λ1)m1⋯(X − λr)mr (zusammenfassen)
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d.h., zu λi gibt es genau mi verschiedene Indizes mit λi = dt1 = ⋯ = dtmi . Die zu-
gehörigen Spalten ut1 , . . . , utmi von A sind linear unabhängige (nach Voraussetzung)
Eigenvektoren von λi, d.h., mi ≤ ni. Daher ni = mi.

(d)⇒ (e): Mit (d) gilt n = grad(χf) = ∑imi = ∑i ni und daher (e).
(e) ⇒ (a): Wenn ∑i ni = n, dann bilden die Eigenvektoren in 1. eine Basis (wegen
n = dimV ).

4.3.4 Wie diagonalisiert man eine Matrix?

Sei A ∈ Kn×n. Bestimmung einer Basis aus Eigenvektoren.

• 1. Schritt: Bestimmung aller Eigenwerte von A (Verfahren aus Abschnitt 4.3.2).

• 2. Schritt: Zu jedem Eigenwert λ wird eine Basis des Eigenraums Eigλ(A) be-
stimmt.

• 3. Schritt: Ergeben alle Basen aus Schritt 2 insgesamt n Vektoren, so bilden diese
eine Basis von V aus Eigenvektoren und A ist diagonalisierbar, sonst nicht.
Nimmt man diese Eigenvektoren von A als Spalten einer Matrix S, so liefert diese
die Diagonalisierung S

−1
AS.

Beispiel 4.3.21. n = 3.

f ∶R3
→ R3

∶
⎛
⎜⎜
⎝

x
y
z

⎞
⎟⎟
⎠
↦

⎛
⎜⎜
⎝

−y + z
−3x − 2y + 3z
−2x − 2y + 3z

⎞
⎟⎟
⎠

lineare Abbildung f = fA ∶ u↦ Au mit

A =

⎛
⎜⎜
⎝

0 −1 1
−3 −2 3
−2 −2 3

⎞
⎟⎟
⎠
.

A =M
B
B (f) für B = (e1, e2, e3) Standardbasis von K3

.

Diagonalisierbar? D = S
−1
AS?

• 1. Schritt. Bestimmung der Eigenwerte.
Beispiel 4.3.11: Eigenwerte

– λ1 = 1 mit algebraischer Vielfachheit m1 = 2, und

– λ2 = −1 mit algebraischer Vielfachheit m2 = 1.

χA(X) = (X − 1)2(X + 1)

• 2. Schritt.
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– Bestimmung einer Basis von Eigλ1(A) = Kern(A−λ1E3) = Lös(A−λ1E3,0).

A − λ1E3 =

⎛
⎜⎜
⎝

−1 −1 1
−3 −3 3
−2 −2 2

⎞
⎟⎟
⎠

⇒ rg(A − λ1E3) = 1

⇒ dim(Kern(A − λ1E3)) = 3 − 1 = 2 ist geometrische Vielfachheit von λ1.

Gesucht: Lösungen des Gleichungssystems

(A − λ1E3)
⎛
⎜⎜
⎝

x1

x2

x3

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

0
0
0

⎞
⎟⎟
⎠

Im Allgemeinen mit dem Gaußschen Algorithmus (Abschnitt 3.3.4), hier auch
direkt klar:

⎛
⎜⎜
⎝

−1 −1 1 0
−3 −3 3 0
−2 −2 2 0

⎞
⎟⎟
⎠
↝

⎛
⎜⎜
⎝

−1 −1 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟
⎠

Rang 1, also dim(Lös) = 3 − 1 = 2
Lösung:

x3 = µ2 freier Parameter µ2 ∈ R
x2 = µ1 freier Parameter µ2 ∈ R
x1 = −µ1 + µ2

Basis für Lösungsraum: Einsetzen einer Basis für die Parameter (µ1
µ2
),

z.B. Einheitsvektoren.

(µ1

µ2
) = (1

0)⇒ u1 =

⎛
⎜⎜
⎝

x1

x2

x3

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

−1
1
0

⎞
⎟⎟
⎠

(µ1

µ2
) = (0

1)⇒ u2 =

⎛
⎜⎜
⎝

x1

x2

x3

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

1
0
1

⎞
⎟⎟
⎠

(u1, u2) ist Basis für Eigenraum Eigλ1(A).
– Bestimmung einer Basis von Eigλ2(A) = Kern(A−λ2E3) = Lös(A−λ2E3,0).

A − λ2E3 =

⎛
⎜⎜
⎝

1 −1 1
−3 −1 3
−2 −2 4

⎞
⎟⎟
⎠
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Gaußscher Algorithmus:

⎛
⎜⎜
⎝

1 −1 1 0
−3 −1 3 0
−2 −2 4 0

⎞
⎟⎟
⎠

2z1+z3↝z3
−−−−−−−−→

⎛
⎜⎜
⎝

1 −1 1 0
−3 −1 3 0
0 −4 6 0

⎞
⎟⎟
⎠

3z1+z2↝z2
−−−−−−−−→

⎛
⎜⎜
⎝

1 −1 1 0
0 −4 6 0
0 −4 6 0

⎞
⎟⎟
⎠

z3−z2↝z3
−−−−−−−→

⎛
⎜⎜
⎝

1 −1 1 0
0 −4 6 0
0 0 0 0

⎞
⎟⎟
⎠

Rang = 2, also dim(Lös) = 3 − 2 = 1.
Lösung:

x3 = µ freier Parameter µ ∈ R
x2 = 3/2µ

x1 = x2 − x3 = µ/2

Basis für Eigenraum Eigλ2(A): setze µ beliebig, z.B. µ = 2, erhalten

u3 =

⎛
⎜⎜
⎝

1
3
2

⎞
⎟⎟
⎠
.

• 3. Schritt. Die Basen von Eigλ1 und Eigλ2 ergeben zusammen 3 Vektoren, also

Basis von V = R3
. Also ist A diagonalisierbar. Die Matrix S ist gegeben durch

S =
⎛
⎜⎜
⎝
u1 u2 u3

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

−1 1 1
1 0 3
0 1 2

⎞
⎟⎟
⎠

S
−1
AS =

⎛
⎜⎜
⎝

λ1 0 0
0 λ1 0
0 0 λ2

⎞
⎟⎟
⎠

△

Übung 25. Ist

A = (0 −1
1 0

) ∈ R2×2

diagonalisierbar? Ist A in C2×2
diagonalisierbar?

Übung 26. Ist

A = (1 1
0 1

) ∈ R2×2

diagonalisierbar? Ist A in C2×2
diagonalisierbar?
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Übung 27. Stimmen Sie der folgenden Aussage zu: ‘die meisten Matrizen in C2×2
sind

diagonalisierbar’? Falls ja, warum?

Bemerkung 4.3.22. Diagonalisierbarkeit D = S
−1
AS ist nützlich auch für Berechnung

von Potenzen von A:

A = SDS
−1

A
2
= SDS

−1
SDS

−1
= SD

2
S
−1

⋮

A
m
= SD

m
S
−1

Weiterhin:

D =

⎛
⎜⎜
⎝

a1 0
⋱

0 an

⎞
⎟⎟
⎠
⇒ D

m
=

⎛
⎜⎜
⎝

(a1)m 0
⋱

0 (an)m
⎞
⎟⎟
⎠

leicht berechenbar.

4.3.5 Anwendung: Lineares Wachstum

Population: tm Löwenzahnpflanzen im Jahrm. Wir nehmen an, dass Löwenzahn einjährig
oder zweijährig ist (in seltenen Fällen ist er auch dreijährig, aber das vernachlässigen wir
hier – es liesse sich aber analog behandeln). Das Wachstum verhält sich entsprechend
der Gleichung

tm+1 = w1tm + w2tm−1 + w3 (4.16)

Konkret: Für t0 = 0, t1 = 1, w1 = w2 = 1, w3 = 0, d.h.,

tm+1 = tm + tm−1

erhält man die Fibonacci-Folge

0, 1, 1, 2, 3, 5, 8, . . .

Beschreibung von (4.16) als lineare Abbildung:

(tm+1

tm
)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
xm

= (w1 w2

1 0
) ( tm
tm−1

) + (w3

0 ) (4.17)

Setze x0 = (t1
t0
) = (1

0
) und xm+1 = Axm + b, d.h., xm+1 = f(xm) für lineare Abbildung

f ∶R2
→ R2

∶ x↦ Ax + b

Damit lässt sich xm aus Anfangszustand x0 berechnen:

xm = f(xm−1) = f2(xm−2) =⋯ = f
m(x0) = Amx0 + (Am−1

+⋯+A + E)b .
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Beachte: (Am−1 +⋯+A + E)(A − E) = Am − E (‘Teleskopsumme’).
Falls (A − E) invertierbar gilt also:

xm = A
m
x0 + (Am − E)(A − E)−1

b

Falls A diagonalisierbar: ∃S invertierbar mit S
−1
AS = D Diagonalmatrix, und

xm = SD
m
S
−1
x0 + (SDm

S
−1
− E)(A − E)−1

b (4.18)

Für D =

⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠

und ∣λ1∣, . . . , ∣λn∣ < 1 konvergiert

D
m
=

⎛
⎜⎜
⎝

λ
m
1 0

⋱
0 λ

m
n

⎞
⎟⎟
⎠

gegen 0 =
⎛
⎜⎜
⎝

0 ⋯ 0
⋮ ⋮
0 ⋯ 0

⎞
⎟⎟
⎠

und die Folge (xm)m∈N konvergiert gegen

−E(A − E)−1
b = (E −A)−1

b (“stabile Folge”)

Für Fibonacci-Folge:

A = (1 1
1 0

) , b = (0
0)

Charakteristisches Polynom:

X(X − 1) − 1 = X
2
−X − 1

Eigenwerte:

λ1 = (1 +
√

5)/2 ≈ 1, 6180339887 . . . mit Eigenvektor (λ1

1 )

λ2 = (1 −
√

5)/2 ≈ −0, 618 . . . mit Eigenvektor (λ2

1 )

λ1 > 1 (“Goldener Schnitt”), unbegrenztes Wachstum.

(λ1 λ2

1 1
) ( 1 −λ2

−1 λ1
) = (λ1 − λ2 0

0 λ1 − λ2
)

Aus (4.18) folgt

xm = (tm+1

tm
) = (λ1 λ2

1 1
)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
S

(λ
m
1 0
0 λ

m
2
)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
D

1

λ1 − λ2
( 1 −λ2

−1 λ1
)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
S−1

(1
0)

ÍÒÒÒÒÑÒÒÒÒ Ï
x0

=
1

λ1 − λ2
(λ

m+1
1 λ

m+1
2

λ
m
1 λ

m
2

) ( 1 −λ2

−1 λ1
)

Also
tmÍÑÏ

ganze Zahl

= (λm1 − λ
m
2 )

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
irrationale Zahlen!

/(λ1 − λ2)
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

4.3.6 Trigonalisierbarkeit

Und wenn A nicht diagonalisierbar?

Definition 4.3.23. Eine Matrix A ∈ Kn×n heißt trigonalisierbar, wenn sie zu einer
(oberen) Dreiecksmatrix D ähnlich ist, d.h., ∃S ∈ GL(n,K):

S
−1
AS = D =

⎛
⎜⎜
⎝

λ1 ∗
⋱

0 λn

⎞
⎟⎟
⎠

Für Trigonalisierbarkeit reicht ein Teil des Kriteriums für Diagonalisierbarkeit.

Satz 4.3.24. Eine Matrix A ∈ Kn×n ist genau dann trigonalisierbar, wenn das charak-
teristische Polynom χA in Linearfaktoren zerfällt, d.h., ∃λ1, . . . , λn ∈ K (müssen nicht
verschieden sein) so dass

χA(X) = (X − λ1)⋯(X − λn).

Bemerkung 4.3.25. Jede Matrix A ∈ Cn×n ist trigonalisierbar, da jedes Polynom über
dem Körper C der komplexen Zahlen in Linearfaktoren zerfällt (Fundamentalsatz der
Algebra oder Hauptsatz der Algebra, kommt später im Studium).

Beweis von Satz 4.3.24. “⇒”: Sei

S
−1
AS = D =

⎛
⎜⎜
⎝

λ1 ∗
⋱

0 λn

⎞
⎟⎟
⎠

Dann (Abschnitt 4.3.2)

χA = χD = (X − λ1)⋯(X − λn)

“⇐”: per Induktion über n.
Wir zeigen die Aussage für untere Dreiecksmatrix; dies ist äquivalent, da χA = χA⊤ .

Die Aussage ist sicher wahr für n = 1. Sei un+1 Eigenvektor von A zu Eigenwert
λn+1. Existiert, da χA in Linearfaktoren zerfällt. Ergänzen un+1 zu einer Basis B =

(u1, u2, . . . , un+1) von Kn+1
. Sei R die Matrix mit den Spalten u1, u2, . . . , un+1. Dann ist

M = R
−1
AR von der Gestalt

(M̃ 0
∗ λn+1

)

Es gilt
χA = χM = (X − λ1)χM̃ ,

also zerfällt auch χM̃ in Linearfaktoren. Dann ist M̃ nach Induktionsannahme trigo-
nalisierbar, d.h., es existiert eine invertierbare Matrix S̃ so dass (S̃)−1

M̃S̃ eine untere
Dreiecksmatrix. Definiere

S ∶= (S̃ 0
0 1

) ∈ Kn+1×n+1
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4 Determinanten, Polynome, Diagonalisierbarkeit

Da det(S) = det(S̃) ≠ 0 ist S invertierbar, und es gilt

S
−1
= ((S̃)

−1
0

0 1
)

Dann ist

S
−1
R
−1
ARS = S

−1 (M̃ 0
∗ λn+1

)S

= ((S̃)
−1
M̃S̃ 0
∗ λn+1

) =
⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1 0
λ2

⋱
∗ λn

⎞
⎟⎟⎟⎟⎟⎟
⎠

untere Dreiecksmatrix. Mit Q ∶= RS ist also Q
−1
AQ untere Dreiecksmatrix, d.h., A ist

trigonalisierbar.

Beispiel 4.3.26. Eine Matrix, die trigonalisierbar, aber nicht diagonalisierbar ist:

(1 1
0 1

)

Eigenwert λ1 = 1 mit algebraischer Vielfachheit 2, geometrische Vielfachheit ist

dim(Kern(A − λ1E)) = dim(Kern (0 1
0 0

))

= dim({(xy) ∣ y = 0}) = 1. △

4.3.7 Anwendung: Stochastische Matrizen

Der Inhalt dieses Abschnitts ist als Ausblick zu verstehen. Sei A ∈ Rn×n und s ∈ Rn.
Wann existiert

lim
m→∞

A
m
s ?

Spezialfall: sei s Eigenvektor von A zum Eigenwert 1, d.h.:

As = s “stationäre Verteilung” s

Eine Matrix A = (aij) ∈ Rn×n heißt

• zeilenstochastisch falls 0 ≤ aij ≤ 1 und Zeilensummen Eins betragen.

• spaltenstochastisch: analog.

• doppelt stochastisch: sowohl als auch.
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

• stochastisch: zeilen- oder spaltenstochastisch.

Beispiel 4.3.27. Betrachten das folgende Beispiel.

Fließband

Löbtau

1
1Mensa

äußere 
Neustadt

Tre 
Math

1/2
1/3

1/2

1/2
1/3

1/2

1/3

Beschreibung durch Matrix (‘Übergangsmatrix’):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1/3 1/2 0 0 0 äußere Neustadt
1/3 1/2 1/2 0 0 Mensa
1/3 0 1/2 0 0 Tre Math
0 0 0 0 1 Fließband
0 0 0 1 0 Löbtau

Wir zeichnen also genau dann einen gerichteten Pfeil von Knoten j nach Knoten i mit
der Beschriftung `, wenn in der i-ten Zeile und j-ten Spalte der Übergangsmatrix der
Eintrag ` > 0 steht. △

Lemma 4.3.28. Jede stochastische Matrix A ∈ Rn×n hat den Eigenwert 1.

Beweis. Betrachten e ∶= (1, . . . , 1)⊤ ∈ Rn. FallsA zeilenstochastisch ist, giltAe = e, d.h.,
e ist Eigenvektor von A zum Eigenwert 1. Der spaltenstochastische Fall geht analog.

Satz 4.3.29. Sei A ∈ Rn×n stochastisch, aperiodisch und irreduzibel, und s ∈ Rn. Dann
existiert limm↦∞A

m
s, ist unabhängig von s, und gleich dem Eigenvektor zum Eigenwert

1 von A.

Können den Grenzwert also berechnen, indem wir ein lineares Gleichungssystem lösen!

Reverse Engineering: was könnte hier ‘aperiodisch’ heissen? Und was ‘irreduzibel’?

Definition 4.3.30. Eine Matrix heißt irreduzibel wenn sie nicht geschrieben werden
kann in der Form

(M 0
P N

)

für quadratische Matrizen M und N .

↝ Dämpfungsfaktor bei Google PageRank.

↝ Weiterführende Frage: Wie schnell ist die Konvergenz?

Allgemeinerer Fall: A nicht mehr notwendigerweise stochastisch.

A heißt positiv falls für alle i, j ∈ {1, . . . , n} gilt aij > 0. Positive Vektoren: analog.

Satz 4.3.31 (Perron(-Frobenius), positiver Fall). Falls A ∈ Rn×n positiv und irreduzibel,
so so gibt es einen positiven (also insbesonderen reellen) Eigenwert λ der algebraischen
Vielfachheit 1 so dass alle anderen Eigenwerte betragsmäßig strikt kleiner sind, und und
einen positiven Eigenvektor zu λ.
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4 Determinanten, Polynome, Diagonalisierbarkeit

Anmerkungen.

• Wenn wir statt der Positivität von A nur fordern, dass A nicht-negativ ist, so kann
es andere Eigenvektoren geben, die betragsmässig größtmöglich sind: zum Beispiel
hat die Matrix

(0 1
1 0

)

die Eigenwerte 1 und −1.

• Ausserdem muss der maximale Eigenwert nicht die algebraische Vielfachheit 1
haben, kann auch 0 sein, und der entsprechende Eigenwert muss nicht positiv sein:
zum Beispiel hat

(0 1
0 0

)

den einzigen Eigenwert 0 der Vielfachheit 2 mit zugehörigem Eigenvektor (1
0
).

Was aber für den nicht-negativen Fall bleibt:

Satz 4.3.32 ((Perron-) Frobenius, nicht-negativer Fall). Falls A ∈ Rn×n nicht-negativ
und irreduzibel, so gibt es einen positiven (reellen) betragsmäßig größten Eigenwert λ mit
nicht-negativen Eigenvektor. Die Anzahl der betragsmäßig größten Eigenwerte ist genau
die Periodizität von A.

Zu diesem Satz sind verschiedene Beweise bekannt, die allerdings über den Stoff der
Vorlesung hinausgehen. Einer der Beweise verwendet den Fixpunktsatz von Brouwer.
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Kapitel 5

Dualität

Duale Räume in der linearen Algebra sind ein Beispiel für wichtiges Prinzip in der
Mathematik, das Dualitätsprinzip. Manche Aussagen in diesem Zusammenhang gelten
für beliebige Vektorräume, andere nur für endlich erzeugte. Wir behandeln also zunächst
nochmal Satz 2.4.10: jeder Vektorraum besitzt eine Basis. Wir haben bisher nur einen
Beweis für endlich erzeugte Vektorräume kennengelernt. Für den allgemeinen Fall müssen
wir etwas ausholen.

5.1 Das Zornsche Lemma

Sei A eine Menge. Eine Relation R ⊆ A
2

heißt

• Halbordnung auf A (oder partielle Ordnung) falls sie reflexiv, antisymmetrisch, und
transitiv ist (siehe Abschnitt 1.2);

• total falls für alle a, b ∈ A gilt, dass (a, b) ∈ R oder (b, a) ∈ R.

• lineare Ordnung (oder Totalordnung) auf A falls sie eine totale Halbordnung ist.

Beispiel 5.1.1. Die Ordnung ≤ der natürlichen Zahlen aus Abschnitt 1.2.10 ist eine
lineare Ordnung. △

Wir schreiben a < b falls a ≤ b und a ≠ b.

Definition 5.1.2. Sei ≤ eine Halbordnung auf einer Menge A. Ein Element a ∈ A heißt
minimal falls es kein b ∈ A gibt mit b < a. Eine Teilmenge B ⊆ A heißt Kette, wenn
die Einschränkung von ≤ auf B, also die Relation ≤ ∩B2

, eine lineare Ordnung von B
ist. Ein Element a ∈ A heißt untere Schranke von B ⊆ A, falls a ≤ b für alle b ∈ B gilt.
Eine untere Schranke von B, die in B liegt, heißt ein kleinstes Element von B. Analog
definiert man die Begriffe maximales Element, obere Schranke, und größtes Element.

Bemerkung 5.1.3. Besitzt eine Halbordnung ein kleinstes Element, so ist dieses eindeu-
tig bestimmt und auch minimal. In einer Totalordnung ist ein minimales Element auch
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5 Dualität

stets das kleinste Element. Jede endliche Halbordnung besitzt minimale und maxima-
le Elemente, und jede endliche lineare Ordnung besitzt ein kleinstes und ein größtes
Element.

Beispiel 5.1.4. Die Ordnung ≤ der natürlichen Zahlen N besitzt ein kleinstes Element 0,
aber kein größtes Element und auch keine maximalen Elemente. △

Beispiel 5.1.5. Die Menge der echten Untervektorräume von R3
, geordnet durch Inklusi-

on, ist eine Halbordnung, aber keine lineare Ordnung. Sie besitzt ein kleinestes Element,
nämlich {0}, kein größtes Element, aber mehrere maximale Elemente, nämlich alle 2-
dimensionalen Untervektorräume von R3

. △

Der folgende Satz hat axiomatischen Charakter: er ist (in ZF) äequivalent zum Aus-
wahlaxiom (siehe Abschnitt 1.2.9). Für einen Beweis des Satzes mit Hilfe des Auswahl-
axioms verweisen wir z.B. auf das Skript zur Logikeinführung an der TU Dresden [2].

Satz 5.1.6 (Zornsches Lemma). Sei A eine nicht-leere Menge und ≤ eine Halbordnung
auf A. Falls jede nicht-leere Kette eine obere Schranke in A besitzt, so hat A ein maxi-
males Element.

Wir verwenden diesen Satz, um Satz 2.4.10 in voller Allgemeinheit zu zeigen. Wir
zeigen eine etwas allgemeinere Aussage (eine schwächere Form des Basisergänzungssatzes
haben wir bereits in Satz 2.4.9 kennengelernt).

Satz 5.1.7 (Starker Basisergänzungssatz). Jede linear unabhängige Teilmenge A eines
Vektorraumes V ist in einer Basis von V enthalten.

Beweis. Sei U die Menge aller linear unabhängigen Teilmengen von V , die A enthalten,
geordnet durch Inklusion. Dann ist A ∈ U , also gilt U ≠ ∅.

Ist V eine nichtleere Kette in U , so ist auch W ∶= ⋃V linear unabhängig: denn wenn
v1, . . . , vn ∈W paarweise verschieden sind, so gibt es V1, . . . , Vn ∈ V mit vi ∈ Vi für alle
i ∈ {1, . . . , n}. Da V linear geordnet ist, besitzt {V1, . . . , Vn} ein größtes Element; ohne
Beschränkung der Allgemeinheit sei dies V1. Also sind v1, . . . , vn ∈ V1, und somit linear
unabhängig. Folglich ist W eine obere Schranke von V.

Nach dem Lemma von Zorn besitzt U ein maximales Element B. Das heißt, B ist eine
maximale linear unabhängige Teilmenge von V , nach Satz 2.4.9 also eine Basis.

5.2 Duale Räume

Seien V,W K-Vektorräume. Dann ist

HomK(V,W ) = {f ∣ f ∶V →W ist lineare Abbildung}

selbst ein K-Vektorraum (Bemerkung 3.4.21). Spezialfall W = K:

Definition 5.2.1. Eine lineare Abbildung f ∶V → K heißt auch Linearform von V , und

V
∗
∶= HomK(V,K)

heißt Dualraum von V .
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5.3 Duale Basen

Auf V
∗

sind wie folgt Vektorraumoperationen definiert:

• Addition: für f, g ∈ V
∗

und v ∈ V

(f + g)(v) ∶= f(v) + g(v).

• Multiplikation mit Skalar: für α ∈ K, f ∈ V
∗
, und v ∈ V

(αf)(v) ∶= αf(v).

Der Nullvektor von V
∗

ist die Nullabbildung:

0∶V → K ∶ v ↦ 0.

Beispiel 5.2.2. Ist V = Kn, so wird V
∗
= HomK(V,K) beschrieben durch K1×n

≃ Kn.
Wir können die Elemente von V als Spaltenvektoren und die Linearformen auf V als
Zeilenvektoren auffassen. △

Übung 28. Sei V der unendlichdimensionale Vektorraum RN mit komponentenweiser
Addition und Skalarmultiplikation (siehe Abschnitt 2.3.1). Definiere t∶V → V durch
t(a0, a1, a2, . . . ) ∶= (0, a0, a1, a2, . . . ). Zeige, dass t eine lineare Abbildung ist ohne Ei-
genvektoren.

5.3 Duale Basen

Sei B = (bi)i∈I eine Basis von V . Dann gibt es zu jedem i ∈ I genau ein b
∗
i ∈ V

∗
mit

b
∗
i (bj) = δij für alle j ∈ I. Hier ist δij , das Kroneckersymbol, wie folgt definiert

δij ∶= {1 ∈ K falls i = j

0 ∈ K sonst.
(5.1)

Offensichtlicherweise ist b
∗
i eine lineare Abbildung, und falls c

∗
∈ V

∗
so, dass c

∗(bj) = δij
für alle j ∈ I, dann gilt c

∗
= b

∗
i . Denn jedes v ∈ V lässt sich schreiben als λ1bi1+⋯+λnbin

für i1, . . . , in ∈ I, n ∈ N, λ1, . . . , λn ∈ K. Dann gilt

c
∗(v) = λ1c

∗(bi1) +⋯+ λnc
∗(bin)

= λi

= λ1b
∗
i (bi1) +⋯+ λnb

∗
i (bin) = b

∗
i (v).

Lemma 5.3.1. Ist B = (bi)i∈I eine Basis von V , dann ist B
∗ ∶= (b∗i )i∈I linear un-

abhängig. Ist I endlich, so ist B
∗

eine Basis von V
∗

.

Beweis. Es sei n ∈ N, λ1, . . . , λn ∈ K, und i1, . . . , in ∈ I beliebig. Wir definieren v
∗ ∶=

λ1b
∗
i1 + ⋯ + λnb

∗
in . Falls nun v

∗
= 0, dann gilt insbesondere v

∗(bij) = 0 für jedes j ∈

{1, . . . , n}. Da v
∗(bij) = λj folgt λj = 0 für alle j ∈ {1, . . . , n}.
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5 Dualität

Falls nun I endlich ist, dann lässt sich jedes Element f ∈ V
∗

schreiben als∑i∈I f(bi)b
∗
i :

denn für jedes j ∈ I gilt

(∑
i∈I

f(bi)b∗i ) (bj) =∑
i∈I

f(bi) b∗i (bj)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
δij

= f(bj).

Die Aussage folgt, da zwei lineare Funktionen genau dann gleich sind, wenn sie die
gleichen Werte auf der Basis B annehmen.

Die Basis B
∗

von V
∗

heißt die zu B duale Basis.

Korollar 5.3.2. Falls V endlichdimensional, so gilt V ≃ V
∗

.

Beweis. Folgt aus Lemma 5.3.1. Folgt ebenfalls aus dem Fundamentalsatz der endlichdi-
mensionalen Vektorräume (Satz 3.4.8). Ein konkreter Isomorphismus ist gegeben durch

ιB∶V → V
∗
∶
n

∑
i

λibi ↦
n

∑
i

λib
∗
i .

5.4 Die natürliche Isomorphie V ≅ V
∗∗

Der Bidualraum zu V ist definiert als

V
∗∗
∶= (V ∗)∗ = HomK(V ∗,K).

Falls V endlich-dimensional, so gilt V ≅ V
∗
≅ V

∗∗
nach Korollar 5.3.2. Wie wir gleich

sehen werden, sind die Vektorräume V und V
∗∗

auf besondere Weise (“natürlich”) iso-
morph.

Für beliebige Vektorräume V und v ∈ V sei

v
∗∗
∶V

∗
→ K

definiert durch v
∗∗(f) ∶= f(v).

Satz 5.4.1. Sei V ein Vektorraum. Die Abbildung

ϕ∶V → V
∗∗
∶ v ↦ v

∗∗

ist ein injektiver Homomorphismus. Falls V endlichdimensional ist, so ist ϕ ein Isomor-
phismus – der natürliche Isomorphismus zwischen V und V

∗∗
.

Bemerkung 5.4.2. Wenn V abzählbar unendlich aber nicht endlich erzeugt ist, wie zum
Beispiel V = F2[X], dann gilt

∣V ∗∗∣ ≥ ∣V ∗∣ (nach Satz 5.4.1)

≥ ∣2N∣ (da V unendliche Basis besitzt, Satz 2.4.10)

> ∣N∣ (nach Satz 1.2.9)

= ∣V ∣ (da V abzählbar).
Also kann ϕ nicht surjektiv sein (Satz 1.2.10).
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5.5 Annulatoren

Beweis von Satz 5.4.1. Zeigen zuerst, dass v
∗∗

linear für jedes v ∈ V ; d.h., v
∗∗
∈ V

∗∗
.

Seien dazu f, f
′
∈ V

∗
und λ ∈ K beliebig. Dann gilt

v
∗∗(f1 + λf2) = (f1 + λf2)(v) (Definition von v

∗∗
)

= f1(v) + λf2(v) (Rechnen in V
∗
)

= v
∗∗(f1) + λv∗∗(f2) (Definition von v

∗∗
).

Zeigen als nächstes, dass ϕ linear. Seien v1, v2 ∈ V und λ ∈ K. Sei f ∈ V
∗

beliebig.

ϕ(v1 + λv2)(f) = f(v1 + λv2) (Definition von ϕ)

= f(v1) + λf(v2) (Linearität von f)

= ϕ(v1)(f) + λϕ(v2)(f) (Definition von ϕ)

= (ϕ(v1) + λϕ(v2))(f)

Injektivität: Ist v ∈ V \ {0}, so ist ϕ(v) = v
∗∗

≠ 0. Dazu ergänzen wir v zu einer
Basis B von V und definieren f ∈ V

∗
durch f(u) ∶= 1 für alle u ∈ B. Dann gilt

v
∗∗(f) = f(v) = 1. Falls V endlichdimensional, so folgt Bijektivität aus Satz 3.4.6.

Bemerkung 5.4.3. Sei V endlichdimensional. Im Gegensatz zu den Isomorphismen zwi-
schen V und V

∗
, die von der Basis B abhängen, ist der Isomorphismus ϕ∶V → V

∗∗

natürlich (oder kanonisch), soll heissen, unabhängig von der Wahl einer Basis.

5.5 Annulatoren

Sei V endlichdimensional, S ⊆ V .

Definition 5.5.1. Der Annulator von S in V
∗

ist die Menge

S
0
∶= {f ∈ V ∗ ∣ f(s) = 0 für alle s ∈ S}.

Bemerkung 5.5.2. S
0
≤ V

∗
(direktes Nachrechnen der Definition).

Sei V ein endlichdimensionaler K-Vektorraum und U ≤ V ein Untervektorraum.

Proposition 5.5.3. Es gilt dimU + dimU
0
= dimV . Wenn (u1, . . . , uk) Basis von U

und (u1, . . . , uk, uk+1, . . . , un) Basis von V , dann ist (u∗k+1, . . . , u
∗
n) Basis von U

0
.

Beweis. (u∗k+1, . . . , u
∗
n) Basis von U

0
: zunächst gilt für v ∈ U und j ∈ {k + 1, . . . , n}

dass u
∗
j (v) = 0 und damit dass u

∗
j ∈ U

0
. Denn v = ∑k

i=1 αiui und damit ist u
∗
j (v) =

∑k
i=1 αiu

∗
j (ui) = 0. Lineare Unabhängigkeit und ⟨u∗k+1, . . . , u

∗
n⟩ = U

0
: nachrechnen wie

im Beweis von Lemma 5.3.1. Also: dimU + dimU
0
= k + (n − k) = n = dimV .

Bemerkung 5.5.4. Nach Satz (Satz 3.4.15) gilt dimV /U + dimU = dimV und damit

(V /U)∗ ≅ V /U ≅ U
0

(siehe Abschnitt 3.4.4).
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V
*= 200 V

*A

U --
- 400

- U9 -O
~0S -·O so ·

J

Y-
Abbildung 5.1: Illustration zu Dualraum und Annulator.

Betrachten nun S ⊆ V beliebig und S
00 ∶= (S0)0

⊆ V
∗∗
≅ V . Siehe Abbildung 5.1.

Proposition 5.5.5. Sei ϕ der natürliche Isomorphismus zwischen V und V
∗∗

. Dann
gilt S

00
= ϕ(S) genau dann wenn S ≤ V .

Beweis. Es gelte zunächst S
00
= ϕ(S). Mit der Bemerkung haben wir S

00
≤ V

∗∗
.

Also ist S = ϕ
−1(S00) ≤ ϕ−1(V ∗∗) = V .

Umgekehrt sei S ≤ V . Sei (u1, . . . , uk) Basis von S, und (u1, . . . , uk, uk+1, . . . , un) Basis
von V . Zeigen zuerst S

00
⊆ ϕ(S). Sei w = ∑n

i=1 αiϕ(ui) ∈ S
00

und sei j ≥ k + 1. Nach

Proposition 5.5.3 ist u
∗
j ∈ S

0
. Dann gilt

0 = w(u∗j ) (w ∈ S
00

und u
∗
j ∈ S

0
)

=

n

∑
i=1

αiϕ(ui)(u∗j ) (Definition von w)

=

n

∑
i=1

αiu
∗
j (ui) (Definition von ϕ)

= αj (Definition des Kroneckersymbols).

Also folgt

w =

k

∑
i=1

αiϕ(ui) ∈ ϕ(S).
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V V*= 5038

WinU =>(UU)
O

UntUz = (Un +4z) oS

-
&-Uz U -O O1 U2& ·d-

· O 49 +4
=(c (2) o

Abbildung 5.2: Illustration zu U
0
1 ∩ U

0
2 = (U1 ∪ U2)0

= (U1 + U2)0
.

ϕ(S) ⊆ S00
: Sei v ∈ S. Zu zeigen: ϕ(v) ∈ S00

. Sei f ∈ S
0
. Dann

ϕ(v)(f) = f(v) (Definition von ϕ)

= 0 (da v ∈ S und f ∈ S
0
).

5.6 Dualitätssatz der linearen Algebra

Seien V,W endlichdimensionale K-Vektorräume, und f ∶V →W eine lineare Abbildung.
Dann ist

f
∗
∶W

∗
→ V

∗
∶ g ↦ g ◦ f

eine lineare Abbildung, die zu f duale Abbildung.

Satz 5.6.1. Sei V ein endlichdimensionaler Vektorraum. Dann ist U ↦ U
0

eine bijek-
tive Abbildung von der Menge der Untervektorräume von V auf die Menge der Unter-
vektorräume von V

∗
. Dabei gelten:

1. {0}0
= V

∗

2. U1 ⊆ U2 ⇒ U
0
1 ⊇ U

0
2

3. (U1 ∩ U2)0
= U

0
1 + U

0
2 (siehe Definition 2.4.17)

4. (U1 ∪ U2)0
= (U1 + U2)0

= U
0
1 ∩ U

0
2
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5 Dualität

Für lineare Abbildung f ∶V →W gilt

5. Kern(f∗) = (Bild f)0

f
∗

genau dann injektiv wenn f surjektiv.

6. Bild(f∗) = (Kern f)0

f
∗

genau dann surjektiv wenn f injektiv.

7. rg(f∗) = rg(f)
f
∗

genau dann bijektiv, wenn f bijektiv.

Beweis. Zu 1: {0}0
= {f ∈ V ∗ ∣ f(0) = 0} = V ∗.

Zu 2: Sei f ∈ U
0
2 . Dann gilt für alle u ∈ U

0
2 , dass f(u) = 0. Wenn U1 ⊆ U2, dann gilt

auch für alle u ∈ U
0
1 , dass f(u) = 0. Also f ∈ U

0
1 .

3.-7.: Übung!

Korollar 5.6.2. Sei V endlichdimensionaler Vektorraum und S ⊆ V . Dann gilt

⟨S⟩ = ϕ−1(S00)

Beweis. Aus S ⊆ ⟨S⟩ folgt durch zweimaliges Anwenden von Satz 5.6.1 (2.) dass S
00
⊆

⟨S⟩00
. Da S

00
≤ V haben wir also

S
00
= ⟨S⟩00

= ϕ(⟨S⟩)

nach Proposition 5.5.5, und damit die Aussage des Korollars.

Übung 29. Satz 3.3.19 trägt den Namen Dualität. Diskutieren Sie, ob dieser Titel ge-
rechtfertigt ist. Wie sieht das duale System vom dualen System aus? Gibt es einen
Zusammenhang zur Dualität, wie sie in diesem Kapitel betrachtet wurde?

Bemerkung 5.6.3. Es gibt noch andere Kontexte in der Mathematik, in denen der Begriff
Dualität verwendet wird, z.B.

• Komplementbildung bezüglich der Teilmengen einer Menge A (Schnitt ist dann
dual zu Vereinigung, siehe Abschnitt 1.1.3)

• Negation in der Aussagenlogik (Konjunktion ist dann dual zur Disjunktion, der
Allquantor ist dual zum Existenzquantor, siehe Abschnitt 1.3.1).

• Eine ganz andere Form der Dualität kommt aus der Graphentheorie: dort ist der
Dualgraph eines ebenen Graphen G definiert als der Graph G

∗
, dessen Knoten die

Flächen von G sind, und in dem zwei Knoten mit einer Kante verbunden sind,
wenn sich entsprechenden Flächen in G eine Kante teilen. Hier läßt sich zeigen,
dass (G∗)∗ isomorph ist zu G

∗
. Siehe Abbildung 5.1.
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5.6 Dualitätssatz der linearen Algebra

G G* G** = G

Abbildung 5.3: Der Dualgraph G
∗

eines ebenen Graphen G, und der Dualgraph des

Dualgraphen (G∗)∗.
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Kapitel 6

Analytische Geometrie

Bisher: abstrakte K-Vektorräume V ; allerdings: V ≃ Kn.
Dieses Kapitel: Spezialisierung K = R und oft n = 2, 3 (↝ zusätzliche Eigenschaften).

6.1 Das Skalarprodukt

Nicht zu verwechseln mit “Produkt mit einem Skalar” (skalare Multiplikation).

6.1.1 Wiederholung und Bezeichnungen

Verschiedene Interpretationen der Paare (x1, x2) ∈ R2
:

• Punkte P (x1, x2) der euklidischen Ebene mit Koordinaten x1, x2 (bezüglich fest-
gelegtem Koordinatensystem)

• Translation der Ebene: (y1, y2)↦ (y1 + x1, y2 + x2).

• Zeilenvektoren (x1, x2) ∈ R1×2

• Spaltenvektoren (x1
x2
) ∈ R2×1

Entsprechende Verallgemeinerungen auf R3
, R4

, . . .

Interpretation als komplexe Zahle x1 + x2i: Spezialität von R2
≃ C.

• Darstellung eines Punktes durch ‘Ortsvektor’:
Pfeil von Punkt P (0, 0) zu Punkt P (x1, x2).

R2
P(x1,x2 )

0 x1

x2
x

• Darstellung von Translation durch ‘freien Vektor’ (x1, x2):
beschreibt Pfeil

−−→
RS von Punkt R nach Punkt S. RS

QR

QSQ

R

S
Addition: Komposition von Translationen.

Aneinandersetzen der Pfeile:
−−→
QR +

−−→
RS =

−−→
QS.
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6 Analytische Geometrie

6.1.2 Länge (Norm) eines Vektors

x⃗ =
⎛
⎜⎜
⎝

x1

⋮
xn

⎞
⎟⎟
⎠
∈ Rn×1

Länge (oder Norm) von x⃗:

∥x⃗∥∶=
√
x2

1 +⋯+ x2
n

n = 2: Pythagoras!
Abstand zweier Punkte: Seien P ∶ x⃗ = (x1, x2) und Q ∶ y⃗ = (y1, y2) zwei Punkte in R2

,
dann gilt

∥−−→PQ∥= ∥y⃗ − x⃗∥=
√
(y1 − x1)2 + (y2 − x2)2

6.1.3 Das Skalarprodukt

Seien x⃗, y⃗ ∈ Rn. Betrachten x⃗, y⃗ als Elemente von Rn×1
.

x⃗ ∗ y⃗ ∶= (x⃗)⊤y⃗ = (x1, . . . , xn)
⎛
⎜⎜
⎝

y1

⋮
yn

⎞
⎟⎟
⎠
= x1y1 +⋯+ xnyn

heißt inneres oder Skalarprodukt (andere Schreibweise: ⟨x⃗, y⃗⟩). Was für eine Abbildung
ist ∗?

∗∶Rn × Rn → R ∶ (x⃗, y⃗)↦ x⃗ ∗ y⃗

1. ∗ ist bilinear, d.h., für alle v⃗ ∈ Rn sind die Abbildungen fv⃗∶R
n
→ R ∶ x⃗↦ x⃗∗v⃗ und

die Abbildung fv⃗∶R
n
→ R ∶ x⃗ ↦ v⃗ ∗ x⃗ lineare Abbildungen (siehe Abschnitt 3.4).

Sind eh die gleiche Abbildung.

2. ∗ ist symmetrisch (d.h., kommutativ):

x⃗ ∗ y⃗ = y⃗ ∗ x⃗

3. ∗ ist positiv definit, d.h.,

x⃗ ≠ 0⇒ x⃗ ∗ x⃗ > 0

x⃗ = 0⇒ 0 ∗ 0 = 0 (folgt bereits aus Bilinearität).

Allgemein ist ein Skalarprodukt eines R-Vektorraumes V eine bilineare, symmetrische,
und positiv definite Abbildung von V

2
nach R. Deswegen spricht man im Fall vom oben

eingeführten Skalarprodukt ∗ des Rn auch vom üblichen oder Standard-Skalarprodukt.
Dies ist nur das nächstliegende Skalarprodukt; z.B. ist für jede invertierbare n×n-Matrix
A auch (x⃗, y⃗)↦ Ax⃗ ∗Ay⃗ ein Skalarprodukt.

Definition 6.1.1. Ein euklidischer Vektorraum ist ein R-Vektorraum V zusammen mit
einem Skalarprodukt auf V .

148



6.1 Das Skalarprodukt

Beispiel 6.1.2. Der R-Vektorraum aller stetigen reellen Funktionen auf dem Interval
[−π,+π] ist euklidisch mit Skalarprodukt

g ∗ h ∶=
1
π ∫

+π

−π
g(t)h(t)dt. △

6.1.4 Die Ungleichung von Cauchy-Schwarz

Ist V ein euklidischer Vektorraum mit Skalarprodukt ∗, und x⃗ ∈ V , so versteht man
unter der Norm von x die reelle Zahl ∣∣x⃗∣∣ ∶=

√
x⃗ ∗ x⃗ ≥ 0.

Satz 6.1.3. Es sei V ein euklidischer Vektorraum mit Skalarprodukt ∗. Dann gilt

x⃗ ∗ y⃗ ≤ ∥x⃗∥⋅∥y⃗∥

Äquivalent dazu ist:
(x⃗ ∗ y⃗)(y⃗ ∗ x⃗) ≤ (x⃗ ∗ x⃗)(y⃗ ∗ y⃗)

(Rückrichtung durch Wurzelziehen, da ∥x⃗∥,∥y⃗∥≥ 0.)

Beweis. Falls y⃗ = 0 ist die Aussage trivial. Sei nun y⃗ ≠ 0. Setzen α ∶= x⃗∗y⃗
∣∣y∣∣2 . Nun gilt

0 ≤ (x⃗ − αy⃗) ∗ (x⃗ − αy⃗) = x⃗ ∗ x⃗ − 2α(x⃗ ∗ y⃗) + α2(y⃗ ∗ y⃗)

= ∥x⃗∥2
−2

(x⃗ ∗ y⃗)2

∥y⃗∥2
+

(x⃗ ∗ y⃗)2

∥y⃗∥2

= ∥x⃗∥2
−
(x⃗ ∗ y⃗)2

∥y⃗∥2
.

Damit ist (x⃗ ∗ y⃗)2
≤ ∥x⃗∥2∥y⃗∥2

.

Bemerkung 6.1.4. Falls y⃗ ein positives Vielfaches von x⃗, also wenn y⃗ = λx⃗ für ein λ ∈ R≥0,
dann gilt sogar Gleichheit: denn

x⃗ ∗ λx⃗ = λ ⋅ ∣∣x⃗ ∗ x⃗∣∣ = λ ⋅ ∣∣x⃗∣∣ ⋅ ∣∣x⃗∣∣ = ∣∣x⃗∣∣ ⋅ ∣∣λx⃗∣∣.

6.1.5 Die Dreiecksungleichung

Es sei V ein euklidischer Vektorraum. Dann gilt

∥x⃗ + y⃗∥≤ ∥x⃗∥+∥y⃗∥

y
x

x+y
Beweis.

∥x⃗ + y⃗∥2
= (x⃗ + y⃗) ∗ (x⃗ + y⃗)
= x⃗ ∗ x⃗ + 2(x⃗ ∗ y⃗) + y⃗ ∗ y⃗ Bilinearität

≤ ∥x⃗∥2
+2∥x⃗∥⋅∥y⃗∥+∥y⃗∥2

Cauchy-Schwarz (Satz 6.1.3)

= (∥x⃗∥+∥y⃗∥)2

Da Norm nicht-negativ kann man Wurzel ziehen und erhält das gewünschte.
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6 Analytische Geometrie

6.1.6 Geometrische Interpretation des Skalarproduktes im R2

Es gilt für n = 2:

x⃗ ∗ y⃗ = ∥x⃗∥⋅∥y⃗∥⋅ cosϕ (6.1)

wobei ϕ = ∡(x⃗, y⃗) Winkel zwischen x⃗ und y⃗ (im Bogenmaß).

0
||x|| cos 𝜑 

x

y𝜑Produkt wird negativ, falls π
2
< ϕ < 3π

2
. (stumpfe Winkel)

Produkt wird Null, falls ϕ = π
2

oder ϕ = 3π
2

.
Produkt wird positiv, falls −π

2
< ϕ < π

2
. (spitze Winkel)

Projektion von Vektor x⃗ auf Gerade g mit Richtung y⃗ hat Länge

∥x⃗∥⋅ cosϕ =
x⃗ ∗ y⃗

∥y⃗∥

Projektion von Vektor x⃗ auf g ist also (genaueres zu Projektionen: siehe Abschnitt 6.2.4):

x⃗ ∗ y⃗

∥y⃗∥2
y⃗.

Bemerkung 6.1.5. Die Gleichung (6.1) kann als Definition für den Winkel ϕ zwischen
x⃗, y⃗ ∈ Rn \ {0} benutzt werden.

Spezialfall: x⃗ ⊥ y⃗ ∶⇔ ∡(x⃗, y⃗) = {π/2,−π/2} ⇔ x⃗ ∗ y⃗ = 0 (Orthogonalität)

6.2 Geradendarstellungen

Geraden im Rn können auf verschiedene Arten dargestellt werden.

6.2.1 Parameterdarstellung

Die Parameterdarstellung einer Geraden g im Rn (durch den Punkt u⃗ und mit dem
Richtungsvektor v⃗):

g = u⃗ + Rv⃗ = {u⃗ + λv⃗ ∣ λ ∈ R}

0

u

vg
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6.2 Geradendarstellungen

In Koordinatendarstellung:

x1 = u1 + λv1

⋮

xn = un + λvn

Alternativ: Statt mit Richtungsvektor v⃗ kann die Gerade g auch mit einem weiteren
Punkt w⃗ auf g dargestellt werden (v⃗ = w⃗ − u⃗).

6.2.2 Hessesche Normalform

Sei g Gerade in R2
. Sei u⃗ ∈ g, und n⃗ Normalenvektor von g: n⃗ ⊥ g (soll heissen n⃗ ⊥ v⃗

für Richtungsvektor v⃗ von g). Wir fordern zusätzlich ∥n⃗∥= 1 (n⃗ ist Normaleneinheits-
vektor). Dann gilt:

x⃗ ∈ g⇔ (x⃗ − u⃗) ⊥ n⃗ (⇐ nur für n = 2!)

⇔ n⃗ ∗ (x⃗ − u⃗) = 0

⇔ n⃗ ∗ x⃗ = n⃗ ∗ u⃗

Die Hessesche Normalform einer Geraden g ∈ R2
:

n⃗ ∗ x⃗ = d

für d ∶= n⃗ ∗ u⃗ (hängt nicht von der Wahl von u⃗ ∈ g ab!).

Für n⃗ = (n1

n2
) ergibt sich:

n1x1 + n2x2 = d

mit n
2
1 + n

2
2 = 1 (wegen ∥n⃗∥= 1; ‘Normierung’).

Dabei ist d der vorzeichenbehaftete Abstand der Geraden g zum Nullpunkt:

d = n⃗ ∗ u⃗ = ∥n⃗∥⋅∥u⃗∥⋅ cosϕ = ∥u⃗∥⋅ cosϕ

Positiv falls −90
◦
< ϕ < 90

◦
, negativ falls 90

◦
< ϕ < 270

◦
.

0

u

ng

n

xd

𝜑Rechtfertigung des Begriffes Abstand :

• für alle x⃗ ∈ g gilt
d ≤ ∣∣x⃗∣∣

denn d = n⃗ ∗ x⃗ ≤ ∥n⃗∥⋅∥x⃗∥= ∥x⃗∥ nach Cauchy-Schwarz (Satz 6.1.3).

• Es gibt ein x⃗0 ∈ g mit ∣d∣ = ∥x⃗0∥: siehe Abschnitt 6.2.5.
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6 Analytische Geometrie

6.2.3 Koordinatendarstellung

Gerade g im R2
: für (a1, a2) ≠ (0, 0)

g = {(x1

x2
) ∈ R2 ∣ a1x1 + a2x2 = a0} = Lös((a1, a2), a0)

Lösungsmenge eines linearen Gleichungssystems der Form a1x1 + a2x2 = a0.

Zugehörige Hessesche Normalform:

a1√
a2

1 + a
2
2Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=∶n1

x1 +
a2√

a2
1 + a

2
2Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=∶n2

x2 =
a0√

a2
1 + a

2
2Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=∶d

es gilt n
2
1 + n

2
2 = 1.

Parameterdarstellung im Fall a2 ≠ 0 ist z.B.

(x1

x2
) = ( 0

a0
a2

) + λ( 1
−a1
a2

)

Setze x1 = λ, dann x2 = (a0 − a1λ)/a2. Analog für a1 ≠ 0.

6.2.4 (Orthogonale) Projektionen

Sei g eine Gerade in R2
mit Richtungsvektor v⃗. Die (orthogonale) Projektion eines Punk-

tes q⃗ ∈ R2
auf g ist p⃗ ∈ g mit (q⃗ − p⃗) ⊥ v⃗, das heißt (q⃗ − p⃗) ∗ v⃗ = 0.

Existiert stets, und ist eindeutig. Bild!

Berechnung aus Hessescher Normalform.

Gegeben: g = {x⃗ ∈ R2 ∣ n⃗ ∗ x⃗ = d} und q⃗ ∈ R2
.

Gesucht: Projektion p⃗ von q⃗ auf Gerade g.

Antwort: p⃗ = q⃗ + λ0 ⋅ n⃗ für λ0 = d − n⃗ ∗ q⃗.
Beweis:

(q⃗ − p⃗) ∗ v⃗ = (q⃗ − q⃗ − λ0n⃗) ∗ v⃗ = 0

n⃗ ∗ p⃗ = n⃗ ∗ (q⃗ + λ0n⃗)
= n⃗ ∗ q⃗ + λ0∥n⃗∥2

= n⃗ ∗ q⃗ + d − n⃗ ∗ q⃗ = d

(Existenz gezeigt.)

Berechnung aus Parameterform.

Gegeben: g = u⃗ + Rv⃗ und q⃗ ∈ Rn.

Gesucht: Projektion p⃗ von q⃗ auf Gerade g.
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6.2 Geradendarstellungen

Antwort:

p⃗ = u⃗ + λ1v⃗ mit λ1 =
(q⃗ − u⃗) ∗ v⃗

∥v⃗∥2
(6.2)

Beweis: (q⃗ − p⃗) ⊥ v⃗ und p⃗ ∈ g. Das heißt, (q⃗ − p⃗) ∗ v⃗ = 0 und ∃λ1 ∶ p⃗ = u⃗ + λ1v⃗.
Einsetzen ergibt

(q⃗ − u⃗ − λ1v⃗) ∗ v⃗ = 0

⇒ (q⃗ − u⃗) ∗ v⃗ − λ1(v⃗ ∗ v⃗) = 0

⇒ λ1 =
(q⃗ − u⃗) ∗ v⃗

∥v⃗∥2
.

(Eindeutigkeit gezeigt.)

6.2.5 Zusammenhang Projektionen mit Hessescher Normalform

Es sei g eine Gerade im R2
und p⃗0 die Projektion von 0 auf g. Dann ist p⃗0 ⊥ v⃗, also ist

n⃗ ∶= p⃗0
∥p⃗0∥ Normaleneinheitsvektor von g. Das bedeutet, dass

n⃗ ∗ x⃗ = d

mit d ∶= n⃗ ∗ p⃗0 die Hessesche Normalform von g ist.

Es gilt ∣d∣ = ∣n⃗ ∗ p⃗0∣ = ∣ p⃗0
∥p⃗0∥ ∗ p⃗0∣ = ∥p0∥ und damit ist p0 wirklich der Punkt auf g,

der nächstmöglich an 0 liegt – daher also die Bezeichnung von ∣d∣ als der Abstand von
g zum Ursprung (siehe Abschnitt 6.2.2).

Wenn g in Parameterdarstellung gegeben ist durch g = u⃗ + Rv⃗, so können wir mit
(6.2) die Hessesche Normalform von g bestimmen, indem wir p⃗0 ausrechnen wie folgt:

p⃗0 = u⃗ +
−u⃗ ∗ v⃗

∥v⃗∥2
v⃗

6.2.6 Abstand Punkt-Gerade

Es sei g ⊆ R2
eine Gerade, gegeben über die Hessesche Normalform n⃗ ∗ x⃗ = d. Der

(vorzeichenbehaftete) Abstand dq⃗ ∈ R zwischen q⃗ ∈ R2
und der Geraden g ist

dq⃗ ∶= n⃗ ∗ q⃗ − d

und es gilt

• ∥q⃗ − p⃗∥ = ∣dq⃗∣ für p⃗ ∶= q⃗ − dq⃗ ⋅ n⃗ (der Projektion von q⃗ auf g)

∥q⃗ − p⃗∥= ∥q⃗ − q⃗ + dq⃗ ⋅ n⃗∥= ∣dq⃗∣

• für alle x⃗ ∈ g gilt dq⃗ ≤ ∥q⃗ − x⃗∥, denn wegen Cauchy-Schwarz gilt

dq⃗ = d − n⃗ ∗ q⃗ = n⃗ ∗ x⃗ − n⃗ ∗ q⃗ = n⃗ ∗ (x⃗ − q⃗) ≤ ∥n⃗∥⋅∥x⃗ − q⃗∥= ∥x⃗ − q⃗∥ .
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6 Analytische Geometrie

• dp⃗ = 0 falls q⃗ ∈ g.
dp⃗ > 0 falls n⃗ und (q⃗− u⃗) spitzen Winkel bilden, für ein (äquivalent: für alle) u⃗ ∈ g
dp⃗ < 0 falls n⃗ und (q⃗ − u⃗) stumpfen Winkel bilden. Bild!

Übung 30. Zeigen Sie: drei Punkte u, v, w ∈ Rn liegen genau dann auf einer Geraden,
wenn es a, b, c ∈ R gibt, die nicht alle gleich Null sind, so dass au + bv + cw = 0 und
a + b + c = 0.

6.3 Ebenendarstellungen

6.3.1 Parameterdarstellung

Darstellung durch Punkt u⃗ und zwei linear unabhängige Richtungsvektoren v⃗, w⃗:

E ∶= u⃗ + ⟨v⃗, w⃗⟩ (Abschnitt 2.4.1)

= u⃗ + Rv⃗ + Rw⃗

u
v

w

0

x⃗ ∈ E falls es λ, µ ∈ R gibt mit u⃗ + λv⃗ + µw⃗.

Koordinatenweise:

x1 = u1 + λv1 + µw1

⋮

xn = un + λvn + µwn

6.3.2 Hessesche Normalform einer Ebene im R3

Analog zu Abschnitt 6.2.2 (Geraden im R2
).

E = u⃗ + Rv⃗ + Rw⃗

Sei n⃗ normierter Normalenvektor von E, d.h., ∥n⃗∥= 1, n⃗ ⊥ v⃗, n⃗ ⊥ w⃗.

x⃗ ∈ E ⇔ (x⃗ − u⃗) ⊥ n⃗

⇔ n⃗ ∗ (x⃗ − u⃗) = 0 (Hessesche Normalform von E)

Anders geschrieben:
E = {x⃗ ∣ n⃗ ∗ x⃗ = d}

mit d ∶= n⃗ ∗ u⃗ (der vorzeichenbehaftete Abstand zwischen Nullpunkt und E).

Allgemein (analog zu Abschnitt 6.2.6): Für Punkt Q, mit q⃗ =
−→
0Q, ist

n⃗ ∗ (q⃗ − u⃗)
der vorzeichenbehaftete Abstand von Q zur Ebene E.
Also: wenn dieser Ausdruck Null wird, liegt q⃗ auf der Ebene.
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6.3 Ebenendarstellungen

6.3.3 Koordinatendarstellung

Koordinatendarstellung einer Ebene E im R3
:

E = {
⎛
⎜⎜
⎝

x1

x2

x3

⎞
⎟⎟
⎠
∈ R3 ∣ a1x1 + a2x2 + a3x3 = d} = Lös((a1, a2, a3), d)

Von Koordinatendarstellung in Hessesche Normalform: definiere

a⃗ ∶=
⎛
⎜⎜
⎝

a1

a2

a3

⎞
⎟⎟
⎠

und n⃗ ∶=
a⃗

∥a⃗∥ .

Es gilt
E = {x⃗ ∣ n⃗ ∗ x⃗ = d}.

6.3.4 Orthogonalprojektion von Punkt auf Ebene

Gegeben: Punkt q⃗ ∈ R3
, Ebene

E = u⃗ + Rv⃗ + Rw⃗.

Gesucht: Orthogonalprojektion p⃗ von q⃗ auf E, d.h.,

1. p⃗ ∈ E, d.h., es gibt λ0 und µ0 mit p⃗ = u⃗ + λ0v⃗ + µ0w⃗

2. v⃗ ∗ (q⃗ − p⃗) = 0 und w⃗ ∗ (q⃗ − p⃗) = 0.

Einsetzen von 1. in 2. ergibt Gleichungssystem für λ0 und µ0:

λ0(v⃗ ∗ v⃗) + µ0(v⃗ ∗ w⃗) = v⃗ ∗ (q⃗ − u⃗)
λ0(w⃗ ∗ v⃗) + µ0(w⃗ ∗ w⃗) = w⃗ ∗ (q⃗ − u⃗)

Lösung mit Cramerscher Regel (Abschnitt 4.1.7):

λ0 =

»»»»»»»»
v⃗ ∗ (q⃗ − u⃗) v⃗ ∗ w⃗
w⃗ ∗ (q⃗ − u⃗) w⃗ ∗ w⃗

»»»»»»»»
»»»»»»»»
v⃗ ∗ v⃗ v⃗ ∗ w⃗
w⃗ ∗ v⃗ w⃗ ∗ w⃗

»»»»»»»»

µ0 =

»»»»»»»»
v⃗ ∗ v⃗ v⃗ ∗ (q⃗ − u⃗)
w⃗ ∗ v⃗ w⃗ ∗ (q⃗ − u⃗)

»»»»»»»»
»»»»»»»»
v⃗ ∗ v⃗ v⃗ ∗ w⃗
w⃗ ∗ v⃗ w⃗ ∗ w⃗

»»»»»»»»
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6 Analytische Geometrie

Dann ist der gesuchte Vektor p⃗:

p⃗ = u⃗ + λ0v⃗ + µ0w⃗

Ist E in Hessescher Normalform gegeben,

E = {x⃗ ∈ R3 ∣ n⃗ ∗ (x⃗ − u⃗) = 0}

so lässt sich die Projektion p⃗ von q⃗ auf E wie folgt berechnen:
q⃗ − p⃗ hat gleiche Richtung wie n⃗.

p⃗ = q⃗ + (p⃗ − q⃗)
= q⃗ + (d − n⃗ ∗ q⃗)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
vorzeichenbehaftete Länge von p⃗−q⃗

⋅n⃗

6.4 Das äußere Produkt (Vektorprodukt)

Anwendungen in Mathematik, Physik und Informatik, z.B.:

• Berechnung des Drehmoments, oder der Lorenzkraft
(bewegte Ladung im magnetischen Feld)

• Abstandsformel windschiefer Geraden

• Algorithmische Geometrie

Ausgangsidee: Wollen von zwei Richtungsvektoren, die eine Ebene im R3
definieren,

möglichst bequem an einen Normelenvektor der Ebene kommen.

Das äußere Produkt oder Vektorprodukt

×∶R3
× R3

→ R3
∶ (a⃗, b⃗)↦ a⃗ × b⃗

wird durch folgende Eigenschaften (eindeutig!) definiert:

1. e⃗1 × e⃗2 = e⃗3

2. e⃗2 × e⃗3 = e⃗1

3. e⃗3 × e⃗1 = e⃗2

4. × ist bilinear (siehe Abschnitt 6.1.3)

5. × ist schiefsymmetrisch, d.h., a⃗ × b⃗ = − b⃗ × a⃗.
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6.4 Das äußere Produkt (Vektorprodukt)

Bemerkung: e⃗i × e⃗i = 0 folgt aus Schiefsymmetrie für a⃗ = b⃗.

Seien a⃗, b⃗ ∈ R3
,

a⃗ =
⎛
⎜⎜
⎝

a1

a2

a3

⎞
⎟⎟
⎠
= a1e⃗1 + a2e⃗2 + a3e⃗3 b⃗ =

⎛
⎜⎜
⎝

b1
b2
b3

⎞
⎟⎟
⎠
= b1e⃗1 + b2e⃗2 + b3e⃗3

dann gilt

a⃗ × b⃗ =
⎛
⎜⎜
⎝

a2b3 − a3b2
−a1b3 + a3b1
a1b2 − a2b1

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

»»»»»»»»
a2 b2
a3 b3

»»»»»»»»

−
»»»»»»»»
a1 b1
a3 b3

»»»»»»»»
»»»»»»»»
a1 b1
a2 b2

»»»»»»»»

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.3)

Nachrechnen: Ausdruck in (6.3) erfüllt alle Bedingungen der Definition des Vektorpro-
duktes; wir haben also inbesondere die Existenz eines Vektorproduktes bewiesen. Zur
Eindeutigkeit: Aus der Bilinearität von × erhählt man

a⃗ × b⃗ = (a1e⃗1 + a2e⃗2 + a3e⃗3) × b⃗
= a1(e⃗1 × b⃗) + a2(e⃗2 × b⃗) + a3(e⃗3 × b⃗) (Bilinearität)

= a1(b1(e⃗1 × e⃗1) + b2(e⃗1 × e⃗2) + b3(e⃗1 × e⃗3))
+ a2(b1(e⃗2 × e⃗1) + b2(e⃗2 × e⃗2) + b3(e⃗2 × e⃗3))
+ a3(b1(e⃗3 × e⃗1) + b2(e⃗3 × e⃗2) + b3(e⃗3 × e⃗3)) (Bilinearität)

= a1(b2e⃗3 − b3e⃗2) + a2(−b1e⃗3 + b3e⃗1) + a3(b1e⃗2 − b2e⃗1) (1., 2., 3., und 5.)

= (a2b3 − a3b2)e⃗1 + (a1b3 − a3b1)e⃗2 + (−a1b2 + a2b1)e⃗3 (Zusammenfassen)

6.4.1 Beziehungen zwischen Vektorprodukt und Skalarprodukt

Vektorprodukt weder kommutativ noch assoziativ.

1. Der Grassmannsche Entwicklungssatz :

(a⃗ × b⃗) × c⃗ = (a⃗ ∗ c⃗) ⋅ b⃗ − (b⃗ ∗ c⃗) ⋅ a⃗

2. Das Spatprodukt (a⃗ × b⃗) ∗ c⃗ erfüllt

(a⃗ × b⃗) ∗ c⃗ =
»»»»»»»»»»»»

a1 b1 c1

a2 b2 c2

a3 b3 c3

»»»»»»»»»»»»
Aus unserem Wissen über Determinanten lassen sich nun viele Eigenschaften für
das Spatprodukt herleiten, z.B. (a⃗ × b⃗) ∗ c⃗ = (b⃗ × c⃗) ∗ a⃗ = (c⃗ × a⃗) ∗ b⃗
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6 Analytische Geometrie

3. Die Lagrangesche Identität :

(a⃗ × b⃗) ∗ (c⃗ × d⃗) = (a⃗ ∗ c⃗) ⋅ (b⃗ ∗ d⃗) − (a⃗ ∗ d⃗) ⋅ (b⃗ ∗ c⃗)

Beweis: ausrechnen mit Hilfe von (6.3).

Beweis. Für Grassmann:

(a⃗ × b⃗) × c⃗ =
⎛
⎜⎜
⎝

a2b3 − a3b2
−a1b3 + a3b1
a1b2 − a2b1

⎞
⎟⎟
⎠
× c⃗

=

⎛
⎜⎜
⎝

(−a1b3 + a3b1)c3 − (a1b2 − a2b1)c2

−(a2b3 − a3b2)c3 + (a1b2 − a2b1)c1

(a2b3 − a3b2)c2 − (−a1b3 + a3b1)c1

⎞
⎟⎟
⎠

=

⎛
⎜⎜
⎝

−a1b3c3 + a3b1c3 − a1b2c2 + a2b1c2

−a2b3c3 + a3b2c3 + a1b2c1 − a2b1c1

(a2b3c2 − a3b2c2 + a1b3c1 − a3b1c1

⎞
⎟⎟
⎠

=

⎛
⎜⎜
⎝

a1b1c1 + a2b2c1 + a3b3c1

a1b1c2 + a2b2c2 + a3b3c2

a1b1c3 + a2b2c3 + a3b3c3

⎞
⎟⎟
⎠
−

⎛
⎜⎜
⎝

a1b1c1 + a1b2c2 + a1b3c3

a2b1c1 + a2b2c2 + a2b3c3

a3b1c1 + a3b2c2 + a3b3c3

⎞
⎟⎟
⎠

= (a⃗ ∗ c⃗) ⋅ b⃗ − (b⃗ ∗ c⃗) ⋅ a⃗

Für das Spatprodukt:

(a⃗ × b⃗) ∗ c⃗ =
⎛
⎜⎜
⎝

a2b3 − a3b2
−a1b3 + a3b1
a1b2 − a2b1

⎞
⎟⎟
⎠
∗ c⃗

= a2b3c1 − a3b2c1 − a1b3c2 + a3b1c2 + a1b2c3 − a2b1c3 =

»»»»»»»»»»»»

a1 b1 c1

a2 b2 c2

a3 b3 c3

»»»»»»»»»»»»
Für Lagrange:

(a⃗ × b⃗) ∗ (c⃗ × d⃗) = ((c⃗ × d⃗) × a) ∗ b⃗ (Gleichheit fürs Spatprodukt)

= ((c⃗ ∗ a⃗)d⃗ − (d⃗ ∗ a⃗)c⃗) ∗ b⃗ (Grassmann)

= (a⃗ ∗ c⃗) ⋅ (b⃗ ∗ d⃗) − (a⃗ ∗ d⃗) ⋅ (b⃗ ∗ c⃗) (Rechnen mit Skalarprodukt)

6.4.2 Geometrische Interpretation des Vektorproduktes

Seien a⃗, b⃗ ∈ R3
. Dann gilt

• (a⃗ × b⃗) ⊥ a⃗ und (a⃗ × b⃗) ⊥ b⃗

• ∥a⃗ × b⃗∥ = ∥a⃗∥⋅∥b⃗∥⋅∣ sinϕ∣ ist der Flächeninhalt des von den Vektoren a⃗ und b⃗
aufgespannten Parallelogramms.
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6.4 Das äußere Produkt (Vektorprodukt)

Beweis. Rechnen zunächst nach, dass (a⃗ × b⃗) ∗ a⃗ = 0.
Setze c⃗ ∶= a⃗ im Spatprodukt aus Punkt 3 in Abschnitt 6.4.1: erhalten

(a⃗ × b⃗) ∗ a⃗ =
»»»»»»»»»»»»

a1 b1 a1

a2 b2 a2

a3 b3 a3

»»»»»»»»»»»»
= 0

Der Flächeninhalt des von a⃗ und b⃗ aufgespannten Parallelograms mit Höhe h ist ∥a⃗∥h,
wobei h = ∥b⃗∥∣sinϕ∣ mit ϕ ∶= ∡(a⃗, b⃗). Nach der Lagrangeschen Identität gilt

(a⃗ × b⃗) ∗ (a⃗ × b⃗) = ∥a⃗∥2∥b⃗∥2
−(a⃗ ∗ b⃗)2

= ∥a⃗∥2∥b⃗∥2
−∥a⃗∥2∥b⃗∥2(cosϕ)2

= ∥a⃗∥2∥b⃗∥2 (1 − cos
2
ϕ)

= ∥a⃗∥2∥b⃗∥2
sin

2
ϕ.

Das Spatprodukt

(a⃗ × b⃗) ∗ c⃗ =
»»»»»»»»»»»»

a1 b1 c1

a2 b2 c2

a3 b3 c3

»»»»»»»»»»»»

ist das vorzeichenbehaftete Volumen des von a⃗, b⃗, c⃗ aufgespannten Spats (Form der Kris-
talle im Kalkspat; auch Parallelepiped).

• Vorzeichen positiv, falls a⃗, b⃗, c⃗ “Rechtssystem”
(sonst “Linkssystem”, linke Hand Regel).

• (a⃗× b⃗)∗ c⃗ = ∥a⃗× b⃗∥⋅∥c⃗∥⋅∣cosϕ∣; hier ist ∥c⃗∥⋅∣cosϕ∣ die Höhe des Spats und ∥a⃗× b⃗∥
der Flächeninhalt der von a⃗ und b⃗ aufgespannten Grundfläche des Spats.

6.4.3 Anwendung: Abstand zweier Geraden

Seien g1, g2 Geraden in R3
, gegeben als

g1 = u⃗1 + Rv⃗1

g2 = u⃗2 + Rv⃗2

Das Vektorprodukt v⃗3 ∶= v⃗1 × v⃗2 ist genau dann 0, wenn v⃗1 und v⃗2 Vielfache vonein-
ander sind, d.h., wenn g1 und g2 parallel sind. Ansonsten steht v⃗3 senkrecht auf v⃗1 und
v⃗2. Sei E1 die Ebene durch u⃗1 mit Normalenvektor v⃗3. Alle Punkte von g2 haben den
gleichen Abstand zu E1. Es genügt also, den Abstand von u⃗2 zu E1 zu berechnen – und
das geht wie in Abschnitt 6.3.4.
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6.5 Orthogonale lineare Abbildungen

Eine lineare Abbildung f ∶Rn → Rn heißt orthogonal falls für alle x⃗, y⃗ ∈ Rn gilt: x⃗ ∗ y⃗ =
f(x⃗) ∗ f(y⃗). Die Abbildung f erhält das Skalarprodukt. Eine Matrix A ∈ Rn×n heißt

orthogonal falls A
⊤
= A

−1
(insbesondere: A ist invertierbar).

1

AT

A-1
A

Gleichheit falls
A symmetrisch

Gleichheit falls
A orthogonal

Gleichheit falls
A eine Involution, A2=E

Proposition 6.5.1. Falls A eine orthogonale Matrix ist, dann ist x ↦ Ax eine ortho-
gonale lineare Abbildung.

Beweis. Falls A
⊤
A = En, dann gilt für alle x⃗, y⃗ ∈ Rn

x⃗ ∗ y⃗ = x⃗
⊤
y⃗ = x⃗

⊤(A⊤A)y⃗ = (Ax⃗)⊤(Ay⃗) = f(x⃗) ∗ f(y⃗).

Bemerkung 6.5.2. Es gilt sogar die Umkehrung: falls eine lineare Abbildung f orthogonal
ist, und A =M

B
B (f) für die Standardbasis B = (e1, . . . , en) von Rn, so ist A orthogonal

(Satz 8.3.5).

Eigenschaften von orthogonalen Abbildungen:

Proposition 6.5.3. Sei f ∶Rn → Rn orthogonal. Dann gilt für alle x⃗, y⃗ ∈ Rn:

1. ∥x⃗∥= ∥f(x⃗)∥.

2. x⃗ ⊥ y⃗⇔ f(x⃗) ⊥ f(y⃗).

3. ∣det f∣ = 1.

Beweis. 1 und 2 folgen direkt aus der Definition von Orthogonalität (f erhält das Ska-
larprodukt, also auch Rechtwinkligkeit und Norm). Zu 3:

det(f) = det(A) = det(A⊤) (Proposition 4.1.14)

= det(A−1) (Proposition 6.5.1)

= det(A)−1
= det(f)−1

(Satz 4.1.15)

Also muss gelten ∣detA∣ = 1.

1
In Abschnitt 8.3.2 werden wir diese Begriffe noch etwas allgemeiner definieren.
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6.5 Orthogonale lineare Abbildungen

6.5.1 Die Gruppen O(n), SO(n)
• Das Produkt orthogonaler Matrizen ist orthogonal.

• Die inverse Matrix einer orthogonalen Matrix ist wieder orthogonal.

Also bildet O(n) ∶= {M ∈ Rn×n ∣ M orthogonal} bezüglich der Matrizenmultiplikation
eine Gruppe (eine Untergruppe von GL(n,R), Abschnitt 3.2.1).

SO(n) ∶= {M ∈ O(n) ∣ detM = 1}
ist eine Untergruppe von O(n), die spezielle orthogonale Gruppe.
Verwenden det(A ⋅B) = det(A) ⋅ det(B)

6.5.2 Die orthogonale Gruppe O(2)
f ∶R2

→ R2 ∶ x⃗↦ Ax⃗ durch Bilder f(e1), f(e2) (Spalten von A) eindeutig festgelegt.

forthogonal⇔ ∥f(e1)∥= 1 = ∥f(e2)∥ und f(e1) ⊥ f(e2)

Wählt man f(e1) beliebig mit ∥f(e1)∥= 1, so gibt es nur 2 Möglichkeiten für f(e2):
• Drehung um Winkel α = ∡(e⃗1, f(e⃗1)) = ∡(e⃗2, f(e⃗2)).

M
B
B (f) = (cosα − sinα

sinα cosα
) =∶ D(α)

R2

0 e1

f(e2)
e2 f(e1)

• Spiegelung an Gerade g.

M
B
B (f) = (cosα sinα

sinα − cosα
) =∶ S(α)

0
e1

f(e2)

e2

f(e1)

g

Also:

O(2) = {D(α) ∣ 0 ≤ α ≤ 2π}
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Drehungen

∪ {S(α) ∣ 0 ≤ α ≤ 2π}
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Spieglungen

Wegen detD(α) = 1 und detS(α)) = −1 folgt

SO(2) = {D(α) ∣ 0 ≤ α ≤ 2π} (Menge aller Drehungen).

Berechnung des Drehwinkels α. Sei M = (a11 a12

a21 a22
) ∈ SO(2). Dann ist

M = (a −b
b a

)
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und es gilt

cosα = a11 = a.

Berechnung der Spiegelungsachse g. Für b = 0 ist

• α ∈ {0, π}, da sinα = b,

• a = 1, da cos 0 = cosπ = 1, und

• g = R ⋅ (1
0
) = R ⋅ e⃗1.

Also nehmen wir im folgenden an, dass b ≠ 0.

Ansatz ohne Winkel:

x⃗ ∈ g⇔Mx⃗ = x⃗

Sprich: x⃗ ist Eigenvektor von M zum Eigenwert 1.

Lineares Gleichungssystem:

ax1 + bx2 = x1

bx1 − ax2 = x2

gesucht ist nichttriviale Lösung. Probieren zunächst x1 = 1.
Wir erhalten a+ bx2 = 1 und damit x2 = (1− a)/b (wie bereits erwähnt ist b ≠ 0). Also:

g = R ⋅ ( 1
(1 − a)/b)

Falls g keinen Punkt der Form ( 1
x2
) enthält, so gilt g = R ⋅ (0

1
) = R ⋅ e⃗2.

6.5.3 Die orthogonale Gruppe O(3)
f ∶R2

→ R3 ∶ x⃗ ↦ Ax⃗ durch Bilder f(e1), f(e2), f(e3) (Spalten von A) eindeutig fest-
gelegt. Zwei Möglichkeiten: sind im Rechtssystem (detA = 1) oder im Linkssystem
(detA = −1).

0
e1

e3

e2

Rechte Hand

Zeigefinger

Mittelfinger

0
e1

e3

e2

Daumen
f(e1)

f(e3)

f(e2)

f(e1)

f(e3)

f(e2)

Linke Hand
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6.5 Orthogonale lineare Abbildungen

Bemerkung: Jede Drehung A ∈ SO(3) lässt sich als Hintereinanderausführungen von
Drehungen um die Koordinatenachsen eindeutig beschreiben.

A = D1(α) ◦D2(β) ◦D3(γ)

(α, β, γ: Eulersche Winkel.)

Anwendung: Satellitenjustierung.
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Kapitel 7

Normalformen von Matrizen

7.1 Klassifikation und Normalformen

7.1.1 Was heißt ‘klassifizieren’?

Nicht exakt definierbar – es hängt davon ab, was man erreichen will.

Ausgangssituation:

• Menge M .
Z.B. Kn×n, Hom(V,W ), . . .

• Äquivalenzrelation E ⊆M ×M (Abschnitt 1.2.1).
Z.B. Ähnlichkeit von Matrizen, Äquivalenz von Matrizen (im engeren Sinne), . . .

Klassifikation heißt

• Festlegen einer Äquivalenzrelation

• Gutes Verständnis der Faktormenge M/E und der Zuordnung M ↦M/E.
Insbesondere: wann sind zwei Element äquivalent.

A: Klassifikation durch charakteristische Daten

Beispiel. M : Menge aller Geraden in R2
.

(g1, g2) ∈ E ∶⇔ g1∥g2 (Parallelität)

Charakteristisches Datum: Anstiegswinkel α.
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7 Normalformen von Matrizen

f ∶M →

“Daten”ÌÐÎ
D

g ↦ α α Anstiegswinkel von g

Es gilt E(g1, g2)⇔ f(g1) = f(g2)⇔ [g1]E = [g2]E d.h.,

E = Kern f ∶= {(x, y) ∈M ∣ f(x) = f(y)} (7.1)

Kern einer Abbildung im Sinne von (1.1). Ist formal verschieden vom Kern einer linearen
Abbildung. Aber es gibt natürlich einen Zusammenhang, siehe Übung 31.

Übung 31. Es sei f ∶A→ B eine lineare Abbildung, und E ∶= {(x, y) ∈M ∣ f(x) = f(y)}
der Kern von f im Sinne von (7.1), und sei Kern(f) der Kern von f im Sinne der linearen
Algebra (Definition 3.8). Zeigen Sie:

• für alle a ∈ A gilt genau dann a ∈ Kern(f), wenn E(a, 0).

• für alle a, b ∈ A gilt E(a, b) genau dann, wenn a − b ∈ Kern(f).

B: Klassifikation durch Repräsentanten

Auswahl eines Repräsentanten aus jeder Äquivalenzklasse aus M/E:
Gesucht: N ⊆M so dass jede Äquivalenzklasse genau einen Repräsentanten in N hat.

D.h.,
N →M/E ∶ m↦ [m]E

ist bijektiv.
Elemente aus N heißen auch Normalformen.

Beispiel. M ist Menge aller Geraden in R2
und E ist Parallelität.

N : Menge der Geraden durch 0.

Typische Anforderungen:

• Für gegebene m1,m2 ∈M , entscheide ob (m1,m2) ∈ E.

• Zu jedem m ∈M finde Normalform, d.h., finde n ∈ N mit (m,n) ∈ E.

Erstes Problem lässt sich auf zweites zurückführen!

7.1.2 Äquivalenz

Wiederholung: Seien A,B ∈ Kn×m.

A ∼ B ∶⇔ A und B sind äquivalent (im engeren Sinne)

d.h., es gibt invertierbare Matrizen S ∈ Kn×n und T ∈ Km×m so dass

B = TAS .
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Eine Äquivalenzrelation.

Klassifikation durch charakteristische Daten: A ∼ B ⇔ rg(A) = rg(B) (Satz 3.4.27,
Charakterisierung von Äquivalenz, Abschnitt 3.4.8).

Klassifikation durch Repräsentanten: als Normalform für die Äquivalenzklasse aller Ma-
trizen inKm×n vom Rang r kann man folgende Matrix wählen (siehe Beweis von Satz 3.4.27):

(Er 0
0 0

) ∈ Km×n

7.1.3 Zeilenäquivalenz

Wiederholung Definition 3.4.24:A,B ∈ Kn×m heissen zeilenäquivalent (oder linksäquivalent)
falls es eine invertierbare Matrix S gibt so dass B = SA.

• Zeilenäquivalenz definiert eine Äquivalenzrelation auf Kn×m.

• Falls A und B zeilenäquivalent sind, dann auch äquivalent. (Zeilenäquivalenz liefert
feinere Unterscheidung als Äquivalenz.)

Motivation: Wenn die erweiterten Koeffizientenmatrizen von zwei Gleichungssyste-
men zeilenäquivalent sind, dann haben sie den gleichen Lösungsraum (Lemma 3.3.12).

Jede Matrix ist zeilenäquivalent zu einer Matrix in Stufenform (Definition 3.2.21); aber
offensichtlich gibt es zeilenäquivalente Matrizen mit derselben Stufenform: beispielsweise

(1 1
0 0

) 2z1↝z1
−−−−−→

(2)
(2 2
0 0

)
1
2
z1↝z1

−−−−−→
(2)

(1 1
0 0

) .

Definition 7.1.1. Eine Matrix A ∈ Km×n ist in reduzierter Stufenform, falls

• A in Stufenform ist,

• der führende (linkeste) Eintrag jeder Zeile, der nicht 0 ist, ist 1, und

• jede Spalte, die eine 1 enthält, in allen anderen Einträgen 0 ist.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 1 a1j1 0 ⋯ 0 ⋯ 0 ⋯ a1n

0 ⋯ 0 ⋯ 0 1 . . . a2j3 ⋯ ⋮
⋮ ⋯ 0 ⋯ 0 ⋱ ⋮
⋮ ⋱ 1 ⋯ arn
0 ⋯ ⋯ 0 ⋯ 0
⋮ ⋮
0 ⋯ ⋯ 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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7 Normalformen von Matrizen

Satz 7.1.2. Jede Matrix A ∈ Km×n lässt sich durch elementare Zeilenumformungen in
eine eindeutige Matrix N in reduzierter Stufenform überführen; N ist zeilenäquivalent
zu A.

Beweis. Wir wissen bereits, dass sich A durch elementare Zeilenumformungen in eine
Matrix in Stufenform (Abschnitt 3.2.4) überführen lässt. Es ist leicht zu sehen, dass sich
jede Matrix in Stufenform durch elementare Zeilenumformungen weiter in eine Matrix
N in reduzierter Stufenform umformen lässt: zum Beispiel

(1 2
0 3

)
1
3
z2↝z2

−−−−−→
(2)

(1 2
0 1

) z1−2z2↝z1
−−−−−−−−→

(3)
(1 0
0 1

)

Elementare Zeilenumformungen lässen sich durch Multiplikation von links mit inver-
tierbaren Elementarmatrizen beschreiben. Da das Produkt von invertierbaren Matrizen
ebenfalls invertierbar ist (3.3), gibt es also eine invertierbare Matrix S mit SA = N .

Zur Eindeutigkeit: seien A und B zeilenäquivalente Matrizen in reduzierter Stufen-
form. Angenommen A ≠ B; wir wollen dies zum Widerspruch führen. Sei i ∈ {1, . . . , n}
minimal, so dass sich A und B in der i-ten Spalte unterscheiden. Sei A

′
(bzw. B

′
) die

Matrix, die aus der i-ten Spalte von A (bzw. B) und allen Spalten mit kleinerem Index
besteht, deren Einträge nur einmal 1 und sonst nur 0 sind. Dann ist A

′
notwendigerweise

von der Gestalt

A
′
= (Ek r

0 0
) oder A

′
=

⎛
⎜⎜
⎝

Ek 0
0 1
0 0

⎞
⎟⎟
⎠
.

Analog ist B
′

von der Gestalt

B
′
= (Ek s

0 0
) oder B

′
=

⎛
⎜⎜
⎝

Ek 0
0 1
0 0

⎞
⎟⎟
⎠

für ein k ∈ {1, . . . , n} und r, s ∈ K
k
. Die Matrizen A

′
und B

′
sind zeilenäquivalent, da A

′

aus A und B
′
aus B durch Wegstreichen von Spalten entsteht und sich Zeilenäquivalenz

dadurch nicht ändert. Wenn also A
′

von der zweiten Gestalt ist, so ist auch B
′

von der
zweiten Gestalt, was nicht sein kann, da sich A und B per Annahme in der i-ten Spalte
unterscheiden.

Beide Matrizen können aufgefasst werden als erweiterte Matrizen eines linearen Glei-
chungssystems (wie in Abschnitt 3.3.4). Das Gleichungssystem für A

′
ist

(Ek
0
) x̄ = (r

0
) ,

also von der Gestalt

x1 = r1, . . . , xk = rk, 0 = 0, . . . , 0 = 0,

hat also die eindeutige Lösung r. Analog hat das System für B
′

die eindeutige Lösung
s. Da beide Systeme zeilenäquivalent sind, gilt r = s, wieder ein Widerspruch.
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Äquivalenzbegriff Normalform

Äquivalenz Abschnitt 7.1.2

Zeilenäquivalenz Reduzierte Stufenform, Abschnitt 7.1.3

Ähnlichkeit Frobenius-Normalform (Satz 7.2.31), Abschnitt 7.1.4

Abbildung 7.1: Übersicht zu Normalformen von Matrizen.

Korollar 7.1.3. A ∈ Kn×n ist genau dann invertierbar, wenn sich A schreiben lässt als
Produkt von Elementarmatrizen.

Beweis. Offensichtlich ist jede Elementarmatrix invertierbar (Bemerkung 3.2.19), und
das Produkt von invertierbaren Matrizen ist ebenfalls invertierbar (3.3).

Sei umgekehrt A invertierbar. Dann lässt sich A nach Satz 7.1.2 durch elementare
Zeilenumformungen in eine Matrix N in reduzierter Stufenform überführen. Diese hat
den gleichen Rang wie A (Lemma 3.2.17), nämlich n; also ist N von der Gestalt En.
Die Zeilenumformungen lassen sich beschreiben durch ein Produkt S = S1S2⋯Sk von
Elementarmatrizen. Die Matrix S ist invertierbar und es gilt SA = N = En, also ist
A = S

−1
= S

−1
k ⋯S

−1
2 S

−1
1 ein Produkt von Elementarmatrizen.

7.1.4 Ähnlichkeit

Wiederholung: A ≈ A
′ ∶⇔ A und A

′
sind ähnlich, d.h., es gibt invertierbare Matrix S

mit

A
′
= S

−1
AS.

Eine Äquivalenzrelation. Ist feiner als Zeilenäquivalenz (und Äquivalenz).

Motivation: Ähnliche Matrizen beschreiben die gleiche lineare Abbildung! (Satz 3.4.28)

Fragen:

• wie entscheiden wir, ob zwei Matrizen ähnlich sind?

• was ist möglichst einfache/schöne/praktische Normalform?

Bemerkung 7.1.4. Falls A diagonalisierbar: die Diagonalmatrix als NF (Satz 4.3.19; ein-
deutig bis auf Reihenfolge der Eigenwerte). Aber nicht jede Matrix ist diagonalisierbar.

Bemerkung 7.1.5. Falls K = C: jede Matrix trigonalisierbar (Abschnitt 4.3.6). Allerdings:
wenig Kontrolle über die Einträge der Dreiecksmatrix oberhalb der Diagonalen.

7.2 Die Frobenius-Normalform

Müssen ein wenig ausholen . . .
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7 Normalformen von Matrizen

7.2.1 Das Charakteristische Polynom II

K[X]: der Polynomring, siehe Abschnitt 4.2.

Wiederholung: das charakteristische Polynom χA(X) von A = (aij)i,j≤n ∈ Kn×n:

χA(X) ∶=

»»»»»»»»»»»»»»»»

X − a11 −a12 ⋯ −a1n

−a21 X − a22 −a2n

⋮ ⋱
−an1 −an2 X − ann

»»»»»»»»»»»»»»»»
aus Abschnitt 4.3.2 (Kapitel zur Berechnung von Eigenwerten). Das folgende Beispiel
zeigt, dass jedes Polynom das charakteristische Polynom einer Matrix ist.

Beispiel 7.2.1. Sei ϕ(X) das Polynom X
n+αn−1X

n−1+⋯+α1X +α0 ∈ K[X], und sei

Zϕ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 −α0

1 0 0 −α1

0 1 0 −α2

⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 ⋱ 1 0 −αn−2

0 0 ⋯ 0 1 −αn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Dann ist ϕ das charakteristische Polynom von Zϕ. Berechnen dazu

χZϕ(X) =

»»»»»»»»»»»»»»»»»»»»

X 0 ⋯ 0 α0

−1 X 0 α1

0 −1 ⋱ 0 α2

⋮ ⋱ ⋱
0 ⋯ 0 −1 X + αn−1

»»»»»»»»»»»»»»»»»»»»
wie folgt: Addition des X-fachen der zweiten Zeile zur ersten und anschließendes Ver-
tauschen der ersten beiden Zeilen liefert

χZϕ(X) = −

»»»»»»»»»»»»»»»»»»»»»»»»»

−1 X 0 . . . 0 α1

0 X
2

0 . . . 0 α0 +Xα1

0 −1 X 0 α2

⋱ ⋱ ⋱ ⋮
⋮ ⋱ −1 X αn−2

0 ⋯ 0 −1 X + αn−1

»»»»»»»»»»»»»»»»»»»»»»»»»

.

Addition des X
2
-fachen der dritten Zeile zur zweiten und anschließendes Vertauschen

der zweiten und dritten Zeile liefert

χZϕ(X) =

»»»»»»»»»»»»»»»»»»»»»»»»»

−1 X 0 0 α1

0 −1 X 0 α2

0 0 X
3

0 α0 +Xα1 +X
2
α2

0 0 −1 X
⋮ ⋱ ⋱ αn−2

0 ⋯ 0 −1 X + αn−1

»»»»»»»»»»»»»»»»»»»»»»»»»

.
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Durch Wiederholung erhalten wir schließlich

χZϕ(X) = (−1)n−1

»»»»»»»»»»»»»»»»»»»»»»»»»

−1 X 0 0 α1

0 −1 X 0 α2

⋱ ⋱ ⋱ ⋮
⋱ ⋱ X αn−2

⋮ ⋱ −1 X + αn−1

0 ⋯ 0 α0 +Xα1 +X
2
α2 +⋯+ αn−1X

n−1 +Xn

»»»»»»»»»»»»»»»»»»»»»»»»»
= ϕ(X). △

Übung 32. Geben sie einen alternativen Beweis von χZϕ(X) = ϕ(X) durch Entwicklung

nach der letzten Spalte (unter Verwendung von (4.3) und Übung 19).

Die Matrix Zϕ aus Beispiel 7.2.1 wird in diesem Abschnitt und auch später im Ab-
schnitt 7.3.5 eine besondere Rolle spielen (siehe Beweis von Satz 7.2.12, Lemma 7.2.28,
Theorem 7.2.29, Theorem 7.2.31), und hat einen Namen verdient.

Definition 7.2.2 (Begleitmatrix). Für ϕ ∈ K[X] heißt die Matrix Zϕ aus Beispiel 7.2.1
auch Begleitmatrix von ϕ.

Beispiel 7.2.3. Die Begleitmatrix von ϕ = (α +X) ist (−α). △

Beispiel 7.2.4. Die Begleitmatrix von X
3 − 1 ist

⎛
⎜⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟⎟
⎠
. △

Das folgende Beispiel zeigt, dass das charakteristische Polynom χA im allgemeinen
nicht verrät, ob A diagonalisierbar ist.

Beispiel 7.2.5.

A ∶= (1 0
0 1

) und B ∶= (1 1
0 1

)

haben das gleiche charakteristische Polynom

χA(X) = χB(X) = (X − 1)2
,

aber nur die erste Matrix ist diagonalisierbar (Übung 26). △

7.2.2 Das Minimalpolynom

Ziel: Polynom für A, welches verrät, ob A diagonalisierbar.

Definition 7.2.6. Eine Teilmenge I eines kommutatives Ringes R heißt Ideal, wenn gilt

ϕ,ψ ∈ I ⇒ ϕ + ψ ∈ I
ϕ ∈ I, ψ ∈ R⇒ ϕ ⋅ ψ ∈ I
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7 Normalformen von Matrizen

Beispiel 7.2.7. Sei V ein K-Vektorraum. Wir können Polynome ϕ ∈ K[X] auswerten in
End(V ) (siehe Beispiel 4.2.14). Sei f ∈ End(V ). Betrachten

If ∶= {ϕ ∈ K[X] ∣ ϕ(f)
ÍÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ

Auswerten von f

= 0
ÍÑÏ

∈End(V )

}

Dann ist If ein Ideal, und heißt das Ideal von f . △

Bemerkung 7.2.8. Für jedes f ∈ End(V ) gilt If ≠ {0}. Denn: für dim(V ) = n ist

dim(End(V )) = n
2
. Daher sind 1, f, f

2
, f

3
, . . . , f

n
2

linear abhängig. Es gibt also eine
nicht-triviale Linearkombination von 0, d.h., es gibt α0, . . . , αn2 ∈ K, die nicht alle 0
sind, so dass

α0 + α1f + α2f
2
+⋯+ αn2f

n
2

= 0.

Dann ist αn2X
n
2

+⋯+ α1X + α0 ein Polynom in If \ {0}.

Der folgende Satz ist eine besondere Eigenschaft des Polynomrings K[X].

Satz 7.2.9. Jedes Ideal I ⊆ K[X] mit I ≠ {0} enthält ein eindeutiges Polynom ϕ mit
folgenden Eigenschaften:

• ϕ ist normiert, d.h., ϕ = X
d +⋯ wobei d = grad(ϕ);

• Für jedes ψ ∈ I existiert ψq ∈ K[X] so dass ψ = ϕ ⋅ ψq.

ϕ heißt Minimalpolynom von I, im Falle von If auch Minimalpolynom µf von f .

Beweis. Existenz: Sei d minimaler Grad eines Polynoms aus I, und ϕ ∈ I vom Grad d
und normiert. Für beliebiges ψ ∈ I dividieren wir durch ϕ mit Rest (Abschnitt 4.2.7):

ψ = ϕ ⋅ ψq + ψr

wobei ψr = 0 oder grad(ψr) < d. Falls ψr ≠ 0, dann wäre

ψr = ψ
ÍÑÏ
∈I

− ϕ
ÍÑÏ
∈I

⋅ ψqÍÑÏ
∈K[X]

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈I

∈ I

ein Widerspruch zur Minimalität von d.

Eindeutigkeit: Falls ϕ
′

ein anderes Polynom ist mit diesen Eigenschaften, dann teilen
sich ϕ und ϕ

′
gegenseitig, was impliziert dass grad(ϕ) = grad(ϕ′). Sei ψ ∈ K[X] mit

ϕ = ϕ
′ ⋅ψ. Dann ist ψ vom Grad 0. Da ϕ und ϕ

′
normiert sind, gilt ψ = 1 und ϕ = ϕ

′
.

Bemerkung 7.2.10. Der Grad des Minimalpolynoms ist höchstens n
2
: dies folgt unmittel-

bar aus Bemerkung 7.2.8. Wir werden später sehen, dass If \{0} sogar ein Polynom vom
Grad höchstens n enthält (dies folgt aus dem Satz von Cayley-Hamilton, Satz 7.2.12).
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f !
Matrizen / Endomorphismen

"

Ideale

Polynome

charakteristisches 
Polynom #f

Minimal-
Polynom $f

!f

Begleit-
matrix Z"

Definition 7.2.11. Sei A ∈ Kn×n und f ∶= fA die lineare Abbildung x↦ Ax. Schreiben

• IA für If .

• µA für µf .

Was ist der Zusammenhang zwischen Minimalpolynom von f und dem charakteris-
tischen Polynom χf von f? Zunächst beweisen wir den folgenden wichtigen Satz. Wir
erinnern uns: Polynome aus K[X] können ausgewertet werden im Matrizenring Kn×n

(Beispiel 4.2.13).

Satz 7.2.12 (Cayley-Hamilton). Sei A ∈ Kn×n. Dann gilt

χ
Kn×n
A (A) = 0 ∈ Kn×n

Also gilt für f ∶= fA
χf ∈ If und µf ∣χf .

‘Jede Matrix erfüllt ihr eigenes charakteristisches Polynom.’

Bemerkung 7.2.13. Es folgt insbesondere, dass der Grad des Minimalpolynoms höchstens
n ist, da der Grad des charakteristischen Polynoms offensichtlich höchstens n ist. Das
verbessert die quadratische Schranke aus Bemerkung 7.2.8.

Bemerkung 7.2.14. Satz 7.2.12 hat die folgende Variante für lineare Abbildungen: sei V
ein n-dimensionaler K-Vektorraum, und f ∈ End(V ). Dann gilt

χ
EndV
f (f) = 0

wobei 0∶V → V ∶ v ↦ 0 die Nullabbildung.
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7 Normalformen von Matrizen

Was ist faul an folgender Rechnung?

?? χ
Kn×n
A (A) = det(AEn −A) = det(0) = 0 ¿¿

Beweis von Satz 7.2.12. Zu zeigen: für alle v ∈ V gilt χf(f)(v) = 0. Falls v = 0 ist die
Aussage klar, da χf(f) eine lineare Abbildung ist.

Zwischenschritt: zeigen, dass es ein U ≤ V gibt mit

(a) v ∈ U

(b) U ist (f -) invariant, d.h., ∀u ∈ U ∶ f(u) ∈ U .

(c) Für die Einschränkung g ∶= f∣U ∶U → U (ergibt Sinn wegen (b)) gilt

(χEndV
g (f))(v) = 0.

Seien dazu

u1 ∶= v

u2 ∶= f(u1)
u3 ∶= f(u2) = f2(v)

ui+1 ∶= f(ui) = f i(v)
. . .

Es gibt maximal n = dimV viele linear unabhängige Vektoren, also gibt es ein m ∈

{1, . . . , n} so dass

u1, . . . , um linear unabhängig

u1, . . . , um, um+1 linear abhängig

(hier verwenden wir, dass u1 = v ≠ 0). Das bedeutet, es gibt α1, . . . , αm ∈ K mit

um+1 = α1u1 +⋯+ αmum (7.2)

Sei U ∶= ⟨u1, . . . , um⟩.
Randbemerkung: falls m = n dann ist U = V und g = f und (c) impliziert die Aussage.

• U erfüllt (a). v = u1 ∈ U .

• U erfüllt (b). Sei u ∈ U , u = ∑m
i=1 βiui. Dann

f(u) f linear
=

m

∑
i=1

βif(ui) =
m

∑
i=1

βiui+1 ∈ U

weil um+1 ∈ U wegen (7.2).

174



7.2 Die Frobenius-Normalform

• Bestimmung von χg. Definieren B
′ ∶= (u1, . . . , um) (Basis von U).

M
′
∶=M

B
′

B′ (g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 α1

1 0 ⋯ 0 α2

0 1 ⋯ 0 α3

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 αm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Merkregel! (3.14)

denn: g = f∣U , d.h.,

g(ui) = f(ui) = ui+1 für i < m,

und g(um) = um+1 = α1u1 +⋯+ αmum.

Die Matrix M
′

ist exakt die Begleitmatrix Zϕ des Polynoms

ϕ = X
m
−αmX

m−1
−⋯− α2X − α1.

Also (siehe Beispiel 7.2.1)

χg(X) = χM ′(X) = det(XE −M ′) = ϕ. (7.3)

• g erfüllt (c):

(χg(f))(v)
= f

m(v) − αmfm−1(v) −⋯− α2f(v) − α1v (7.3)
= um+1 − αmum −⋯− α2u2 − α1u1 (Def. von u1, . . . , um+1)

= 0 (7.2)

Wir zeigen nun χf(f)(v) = 0.

Sei B = (u1, . . . , um, wm+1, . . . , wn) Ergänzung von B
′

zu Basis von V (existiert nach

Austauschsatz von Steinitz, Satz 2.4.13). Dann hat M
B
B (f) die Form

M ∶=M
B
B (f) = (M

′ ∗
0 M

′′)

wobei M
′
∈ Kn×n =MB

′

B′ (g) wie eben. Denn für i ≤ m ist f(ui) ∈ U und daher

f(ui) =
m

∑
j=1

ajuj + 0 ⋅ wm+1 +⋯+ 0 ⋅ wn .

Also

χf = χM = χM ′ ⋅ χM ′′ (Übung 24)

= χg ⋅ χM ′′ = χM ′′ ⋅ χg (Polynommultiplikation ist kommutativ).
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Einsetzen von f (Auswerten in EndV ):

χ
EndV
f (f)(v) = ((χM ′′χg)(f))(v) (siehe oben)

= (χM ′′(f) ◦ χg(f))(v) (Satz 4.2.12)

= χM ′′(f)(χg(f)(v)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=0

) (Def. Multiplikation in EndV )

= χM ′′(f)(0) (wegen (c))

= 0 (denn χM ′′(f) ist lineare Abbildung).

Beispiel 7.2.15. Das Minimalpolynom von f = idV ist µf(X) = (X−1), also verschieden
vom charakteristischen Polynom χf = (X − 1)n für n = dimV . △

Beispiel 7.2.16. Eine Abbildung f ∈ End(V ) heißt Involution falls f
2
= idV . Den Fall

f ∈ {idV ,− idV } haben wir bereits im vorigen Beispiel behandelt. Ansonsten ist das
Minimalpolynom von f

µf(X) = X2
− 1 .

Für Eigenwerte λ einer Involution gilt λ
2
= 1: Nullstellen von µf(X)!

Behauptung: f ist diagonalisierbar, d.h., es gibt eine Basis von V aus Eigenvektoren von
f (Lemma 4.3.15 und Definition 4.3.17). Es gilt sogar

V = Kern(f − idV )⊕Kern(f + idV ).

Denn:

• Kern(f − idV ) und Kern(f + idV ) sind Eigenräume der Eigenwerte 1 und −1.

• Kern(f − idV ) ∩ Kern(f + idV ) = {0}: falls v ∈ Kern(f − idV ) ∩ Kern(f + idV ),
dann gilt −v = f(v) = v, also v = 0.

• Kern(f − idV ) +Kern(f + idV ) = V : jedes v ∈ V kann geschrieben werden als

v =
v − f(v)

2Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
∈Kern(f+idV )

+
v + f(v)

2Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
∈Kern(f−idV )

Denn: (f − idV )(v + f(v)) = f(v + f(v)) − v − f(v) = f(v) + v − f(v) = 0, also
v + f(v) ∈ Kern(f − idV ).
Analog: v − f(v) ∈ Kern(f + idV ). △

Das Minimalpolynom gibt uns das meiste von dem, was wir typischerweise vom cha-
rakteristischen Polynom bekommen.

Proposition 7.2.17. Sei V endlichdimensional und f ∈ End(V ). Dann gelten:

• λ ∈ K ist genau dann Eigenwert von f , wenn µf(λ) = 0.

• f ist genau dann invertierbar wenn µf(0) ≠ 0.
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7.2 Die Frobenius-Normalform

Beweis. Es sei
µf = X

d
+ αd−1X

d−1
+⋯+ α1X + α0

Teil 1: Sei λ ∈ K ein EW von f , und v ∈ V \ {0} ein zugehöriger Eigenvektor,
f(v) = λv. Dann gilt wegen f

i(v) = λiv

0 = µf(f)(v) = (fd + αd−1f
d−1

+⋯+ α1f + α0 idV )(v)
= λ

d
v + αd−1λ

d−1
v +⋯+ α1λv + α0v = µf(λ)v

also µf(λ) = 0 da v ≠ 0. Umgekehrt, falls µf(λ) = 0, dann ist χf(λ) = 0 (Lemma 4.2.16),
da µf ∣χf nach dem Satz von Cayley-Hamilton (Satz 7.2.12). Also ist λ ein Eigenwert
von f (Satz 4.3.10).

Teil 2: Wenn µf(0) = α0 ≠ 0, dann können wir µf(f) = 0 umschreiben zu

1 = f(fd−1
+ αd−1f

d−2
+⋯+ α1)/−α0

also gilt

f
−1
=
−1
α0

(fd−1
+ αd−1f

d−2
+⋯+ α1 idV ) .

Umgekehrt, wenn µf(0) = 0, dann ist 0 ein Eigenwert nach Teil 1. Also gibt es ein
v ∈ V \ {0} mit f(v) = 0, und f ist nicht injektiv, damit nicht invertierbar.

Teil 1 von Proposition 7.2.17 in Kombination mit Satz 4.3.10 ergibt direkt die folgende
Aussage.

Korollar 7.2.18. Für V endlichdimensional und f ∈ End(V ) haben χf und µf dieselben
Nullstellen.

In anderen Worten: die Polynome χf und µf haben dieselben Faktoren der Gestalt
(X − λ), für λ ∈ K (Lemma 4.2.16). Diese Aussage werden wir später auf Faktoren
allgemeinerer Gestalt erweitern (Lemma 7.2.37).

Im Gegensatz zum charakteristischen Polynom kann die Berechnung des Minimalpoly-
noms von A aufwendig sein. Allerdings hilft der Satz von Cayley-Hamilton (Satz 7.2.12),
da man nicht mehr alle Polynome testen muss, sondern nur noch die Teiler von χA. Wir
demonstrieren das in den Beweisen der folgenden Propositionen.

Proposition 7.2.19. Die Begleitmatrix eines normierten Polynoms ϕ ∈ K[X] hat das
Minimalpolynom ϕ, d.h., µZϕ = ϕ.

Beweis. Sei ϕ = X
n+αn−1X

n−1+⋯+α1X+α0. Wir kennen bereits das charakteristische
Polynom von Zϕ, es gilt nämlich χZϕ = ϕ (Beispiel 7.2.1). Da µZϕ normiert ist und χZϕ
teilt (Satz 7.2.12), genügt es zu zeigen, dass der Grad von µZϕ gleich n ist. Offenbar gilt
für

Zϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 −α0

1 0 ⋯ 0 −α1

0 1 ⋯ 0 −α2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 −αn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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dass

Zϕe1 = e2

Zϕe2 = e3 = Z
3
ϕe1

⋮ ⋮

Zϕen−1 = en = Z
n−1
ϕ e1.

Angenommen, es gäbe in IZϕ ein normiertes Polynom

ψ = X
m
+ βm−1X

m−1
+⋯+ β1X + β0

vom Grad m < n, dann wäre also

0 = ψ(Zϕ)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈Kn×n

e1 = Z
m
ϕ e1 + βm−1Z

m−1
ϕ e1 +⋯+ β1Zϕe1 + β0e1

= em+1 + βm−1em +⋯+ β1e2 + β0e1.

und damit wären die Basisvektoren e1, . . . , em+1 linear abhängig, ein Widerspruch.

Proposition 7.2.20. Das Minimalpolynom von

A ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1 1 0
0 λ2 ⋱

⋱ 1
0 λn

⎞
⎟⎟⎟⎟⎟⎟
⎠

ist
µA(X) = (X − λ1)⋯(X − λn) = χA(X) .

Beweis. Es ist klar (siehe (4.3)), dass

χA(X) = (X − λ1)⋯(X − λn).
Da µA ein Teiler ist von χA, genügt es zu zeigen, dass für jedes i ∈ {1, . . . , n} das
Polynom ϕi(X) ∶= χA(X)/(X − λi) nicht in If liegt. Für i = n berechnen wir

(A − λ1En)(A − λ2En)⋯(A − λn−1En)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0
0 λ2−λ1 1
0 0 λ3−λ1

⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1−λ2 1 0
0 0 1
0 0 λ3−λ2

⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠
⋯

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱
λn−2−λn−1 1 0

0 0 1
0 0 λn−λn−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1
0 0 ∗
0 0 ∗

⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠
⋯

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱
λn−2−λn−1 1 0

0 0 1
0 0 λn−λn−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=⋯ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 1
0 0 . . . 0 ∗
⋮ ⋮ ⋮ ∗
0 0 ⋯ 0 ∗

⎞
⎟⎟⎟⎟⎟⎟
⎠
≠ 0
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7.2 Die Frobenius-Normalform

Die Aussage folgt für alle i ∈ {1, . . . , n} durch Umsortierung der Faktoren von ϕi(X).

Übung 33. Sei A = (A 0
0 B

). Zeigen Sie, dass µA = kgV(µB, µC).

Übung 34. Sei A ∈ Kn×n. Zeigen Sie, dass µA = µA⊤ .

Übung 35. Was ist das Minimalpolynom der Nullabbildung 0? Was ist das Minimalpo-
lynom der identischen Abbildung?

Übung 36. Sei f ∈ End(V ) so, dass µf ein konstantes Polynom ist. Zeigen Sie, dass dann
V = {0}.

7.2.3 Minimalpolynom und Diagonalisierbarkeit

Wiederholung (Abschnitt 4.3.4): Wie entscheiden wir, ob eine Matrix A ∈ Kn×n diago-
nalisierbar ist?

1. Berechne die Eigenwerte von A.

2. Berechne die zugehörigen Eigenräume.

3. Entscheide, ob man eine Basis aus Eigenvektoren finden kann.

Insbesondere: wenn χA = (X − λ1)⋯(X − λn) für paarweise verschiedene λ1, . . . , λn,
dann ist A diagonalisierbar (Bemerkung 4.3.20). Wenn wir hier das charakteristische
Polynom durch das Minimalpolynom ersetzen, erhalten wir sogar ein hinreichendes und
notwendiges Kriterium für Diagonalisierbarkeit!

Satz 7.2.21 (Minimalpolynom and Diagonalisierbarkeit). Sei A ∈ Kn×n und seien
λ1, . . . , λk die paarweise verschiedenen Eigenwerte von A. Dann sind äquivalent:

(1) A ist diagonalisierbar;

(2) (A − λ1En)⋯(A − λkEn) = 0;

(3) µA(X) = (X − λ1)⋯(X − λk).

Beweis. (1)⇒ (2). Definiere ϕ(X) ∶= (X−λ1)⋯(X−λk) ∈ K[X] und ϕi = ϕ/(X−λi).
Es ist zu zeigen, dass ϕ(A) = 0. Sei v ∈ Kn beliebig. Wir zeigen, dass ϕ(A)v = 0. Da A
per Annahme diagonalisierbar ist, gibt es nach Satz 4.3.19 (3c) eine Basis von Kn aus
Eigenvektoren von A. Also kann man v schreiben als Summe u1+⋯+uk (falls v = 0 ist
k = 0) wobei für alle i ∈ {1, . . . , k} der Vektor ui ein Eigenvektor zum Eigenwert λi ist.

ϕ(A)v = ϕ(A)(u1 +⋯+ uk)
= ϕ(A)u1 +⋯+ ϕ(A)uk
= ϕ1(X − λ1)(A)u1 +⋯+ ϕk(X − λk)(A)uk
= ϕ1(A − λ1En)u1 +⋯+ ϕk(A − λkEn)uk
= ϕ1(A)(Au1 − λku1) +⋯+ ϕk(A)(Auk − λkuk) = 0 +⋯+ 0 = 0.
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(2)⇒ (3): Nach (2) ist ϕ ∈ IA und damit µA∣ϕ. Umgekehrt gilt ϕ∣µA: zeigen dazu,
dass jeder Faktor (X − λi) von ϕ ein Teiler von µA ist. Dafür genügt es zu zeigen,
dass λi eine Nullstelle ist von µA (Lemma 4.2.16). Satz 4.3.10 impliziert, dass λi eine
Nullstelle ist von χA, also auch eine von µA nach Korollar 7.2.18. Da sowohl µA also
auch ϕ normiert sind, muss also gelten µA = ϕ.

(3)⇒ (1): Beweis per Induktion nach n. Für n = 1 = k ist A sicher diagonalisierbar.
Sei nun n > 1, und sei die Aussage richtig für alle m < n.

Behauptung: für f ∶= fA und V ∶= Kn sind Kern(f − λ1 idV ) und Bild(f − λ1 idV )
komplementär, d.h. (Definition 2.4.17)

Kern(f − λ1 idV )⊕ Bild(f − λ1 idV ) = V.

Wegen der Dimensionsformel dim Bild+ dim Kern = n (3.3.6) genügt es zu zeigen, dass

Kern(f − λ1 idV ) + Bild(f − λ1 idV ) = V .

Dividieren (X − λ2)⋯(X − λk) mit Rest durch (X − λ1), und erhalten ϕ,ψ ∈ K[X],
grad(ψ) < 1, so dass

(X − λ2)⋯(X − λk) = ϕ(X − λ1) + ψ.

Da grad(ψ) < 1, ist ψ ein Körperelement; weiterhin ist ψ ≠ 0, da (X − λ1) für i ∈
{2, . . . , k} kein Teiler von (X − λi) ist. Setzen f ein, stellen um, und erhalten

(f − λ2 idV )⋯(f − λm idV ) − (f − λ1 idV )ϕ(f) = ψ idV . (7.4)

Sei nun v ∈ V beliebig. Dann folgt aus (7.4), dass

ψ idV (v) = (f − λ2 idV )⋯(f − λm idV )(v)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=∶v1

− (f − λ1 idV )ϕ(f)(v)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=∶v2

.

Also ψ ⋅ v = v1 + v2. Wir haben (f − λ1 idV )(v1) = 0, da µf(f) = 0 nach Satz 7.2.12.
Also v1 ∈ Kern(f − λ1 idV ). Ausserdem haben wir

v2 = (f − λ1 idV )ϕ(f)(v) ∈ Bild(f − λ1 idV ).

Weil 1
ψ
v1 +

1
ψ
v2 = v, folgt die Behauptung.

Da dim(Kern(f − λ1 idV )) > 0, gilt dim(Bild(f − λ1 id)) < n. Wenden Induktionsvor-
aussetzung an auf U ∶= Bild(f − λ1 id) ≤ V . Da f(U) ⊆ U , ist die Einschränkung fU
von f auf U aus End(U). Ferner ist χfU ein Teiler von µf . Also zerfällt χfU in paarweise
verschiedene Linearfaktoren, und fU ist diagonalisierbar nach Induktionsvoraussetzung.

Sei v1, . . . , vm eine Basis von U aus Eigenwerten von fU , und sei vm+1, . . . , vn eine Basis
von Kern(f−λ1 id) = Eigλ1(f). Da U∩Kern(f−λ1 id) = {0}, ist v1, . . . , vm, vm+1, . . . , vn
eine Basis von V aus Eigenvektoren von f . Die Aussage folgt nun aus dem ersten Dia-
gonalisierbarkeitskriterium (Satz 4.3.19).

Und was, wenn f nicht diagonalisierbar ist?
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7.2.4 Zyklische Unterräume

Sei V ein endlichdimensionaler K-Vektorraum. Die folgende Definition extrahiert wich-
tige Ideen aus dem Beweis des Satzes von Cayley-Hamilton (Satz 7.2.12).

Definition 7.2.22. Sei f ∈ End(V ). Dann heißt S ≤ V invariant unter f (oder f -
invariant) falls

f(S) ⊆ S .
Bemerkung 7.2.23. f∣S ∈ End(S).
Bemerkung 7.2.24. Für alle v ∈ V gilt

⟨v⟩ ist f -invariant ⇔ (v ist Eigenvektor von f oder v = 0)
⇔ f(v) ∈ ⟨v⟩.

Bemerkung 7.2.25. Die Eigenräume von f (Definition 4.3.3) sind invariant.

Beispiel 7.2.26. Wir betrachten wieder das folgende System (Beispiel 4.3.27).

Fließband

Löbtau

1
1Mensa

äußere 
Neustadt

Tre 
Math

1/2
1/3

1/2

1/2
1/3

1/2

1/3

Beschreibung durch Matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1/3 1/2 0 0 0 äußere Neustadt
1/3 1/2 1/2 0 0 Mensa
1/3 0 1/2 0 0 Tre Math
0 0 0 0 1 Fließband
0 0 0 1 0 Löbtau

Dann ist ⟨(0.3, 0.4, 0.3, 0, 0)⟩ invariant. Weiterhin ist ⟨(0, 0, 0, 0.5, 0.5)⟩ invariant. △

Ziel dieses Abschnittes: Dekomposition

V = S1 ⊕⋯⊕ Sk

für invariante Si ≤ V , so dass die Matrixdarstellung von fi ∶= f∣Si durch µfi(X) ein-
deutig bestimmt.

Definition 7.2.27. Für v ∈ S \ {0}, definiere

Zv ∶= ⟨v, f(v), f2(v), . . . ⟩

der (von v erzeugte) zyklische Unterraum von V .
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0 1 2 … k-1
1 1 1 1

!0 !1 !2

Abbildung 7.2: Illustration der Matrix in (7.5). Zur Erklärung der Bedeutung der Illus-
trationen siehe Beispiel 4.3.27.

Da dim(V ) = n existiert k ∈ {1, . . . , n} mit

f
k(v) ∈ ⟨v, f(v), f2

, . . . , f
k−1(v)⟩ .

Lemma 7.2.28. Sei v ∈ V \ {0}, und sei k ∈ N kleinstmöglich, so dass f
k(v) ∈

⟨v, f(v), f2
, . . . , f

k−1(v)⟩. Dann ist Zv invariant unter f , und

B = (v, f(v), . . . , fk−1(v))

ist Basis für Zv. Ausserdem gilt (siehe Bild 7.2)

M
B
B (f∣Zv) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 α0

1 0 ⋯ 0 α1

0 1 ⋯ 0 α2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 αk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Zϕ (7.5)

wobei

f
k(v) = α0v + α1f(v) +⋯+ αk−1f

k−1(v)
und ϕ(X) = Xk

− αk−1X
k−1

−⋯− α1X − α0.

Beweis. Die Vektoren v, f(v), . . . , fk−1(v) sind linear unabhängig, da k kleinstmöglich
gewählt. Zu zeigen ist, dass

⟨B⟩ = Zv = ⟨v, f(v), f2(v), . . . ⟩.

Sei m ∈ N beliebig. Zeigen per Induktion nach m, dass f
m(v) ∈ ⟨B⟩. Falls m < k, dann

v
m(v) ∈ B. Angenommen f

m−1(v) = β0v + β1f(v) +⋯+ βk−1f
k−1(v). Dann ist

f
m(v) = β0f(v) + β1f

2(v) +⋯+ βk−1 f
k(v)

ÍÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈⟨B⟩

∈ ⟨B⟩ .

Sei nun u ∈ Zv beliebig. Dann gilt

u = γ0 vÍÑÏ
∈⟨B⟩

+γ1 f(v)ÍÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
∈⟨B⟩

+⋯+ γk−1 f
k−1(v)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈⟨B⟩

∈ ⟨B⟩
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Die Matrixdarstellung von f∣Zv bezüglich B ist

(f(v) f(f(v)) ⋯ f(fk−2(v)) f(fk−1(v)))

= (v f(v) ⋯ f
k−2(v) f

k−1(v))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 α0

1 0 ⋯ 0 α1

0 1 ⋯ 0 α2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 αk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(Merkregel, (3.14)! Spalten sind Koordinaten der Bilder der Einheitsvektoren.)

Satz 7.2.29 (Zerlegung in zyklische Unterräume). Sei V n-dimensional und f ∈ End(V ).
Dann gibt es v1, . . . , vk ∈ V so dass

V = Zv1 ⊕⋯⊕ Zvk

und V hat eine Basis B so dass

M
B
B (f) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Zϕ1
0 ⋯ 0

0 Zϕ2

⋮ ⋱
0 Zϕk

⎞
⎟⎟⎟⎟⎟⎟
⎠
.

für normierte ϕ1, . . . , ϕk ∈ K[X].

Beweis. Per Induktion nach n. Sei v ∈ V so, dass m = dimZv größtmöglich. Falls m = n
ist nichts zu zeigen. Betrachte g∶V → Km definiert durch

g(u) ∶=
⎛
⎜⎜⎜⎜⎜⎜
⎝

h(u)
h(f(u))

⋮
h(fm−1(u))

⎞
⎟⎟⎟⎟⎟⎟
⎠

wobei h∶V → K Linearform mit h(v) = ⋯ = h(fm−2(v)) = 0 und h(fm−1(v)) = 1.
(v, . . . , f

m−1(v) sind linear unabhängig.)

Behauptung 1: g∣Zv ∶Zv → Km ist Isomorphismus. Die Darstellungsmatrix dieser Ab-

bildung bezüglich der Basis B = (v1, f(v), . . . , fm−1(v)) von Zv und der Standardbasis
von Km ist

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 1

⋮ . .
.

1 ∗

0 . .
.
. .
.
⋮

1 ∗ ⋯ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

also offensichtlich invertierbar.
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Behauptung 2: Kern(g) ist f -invariant. Sei u ∈ Kern(g), also

g(u) =
⎛
⎜⎜⎜⎜⎜⎜
⎝

h(u)
h(f(u))

⋮
h(fm−1(u))

⎞
⎟⎟⎟⎟⎟⎟
⎠
= 0 .

Dann ist

g(f(u)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h(f(u))
h(f2(u))

⋮
h(fm−1(u))
h(fm(u))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0

h(fm(u))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Da f
m(u) ∈ ⟨u, f(u), . . . , fm−1(u)⟩ für alle u ist h(fm(u)) = 0. Also f(u) ∈ Kern(g)

wie behauptet.

Behauptung 3: V = Zv ⊕ Kern(g). Es gilt Zv ∩ Kern(f) = {0} da g∣Zv injektiv.
Ausserdem

dimZv + dim Kern(g) = dim Bild(g) + dim Kern(g) = dim(V )

also V = Zv +Kern(g).
Wenden nun die Induktionsvoraussetzung an auf die Einschränkung von f auf Kern(g),
und der Satz folgt aus Lemma 7.2.28.

Beispiel 7.2.30. Die Darstellung von f aus Satz 7.2.29 ist nicht eindeutig: die Matrix

A ∶= (0 1
1 0

) = ZX2−1

ist bereits von der Form in Satz 7.2.29. Auf der anderen Seite gilt für die Basis B =

(e2, e1) von R2
, dass

M
B
B (fA) = (1 0

0 −1
) = (ZX−1 0

0 ZX+1
) . △

7.2.5 Die Frobenius-Normalform

Die Frobenius-Normalform (bisweilen auch rationale Normalform) liefert eine Klassifi-
kation von quadratischen Matrizen bis auf Ähnlichkeit.

Satz 7.2.31 (Frobenius-Normalform). Sei V n-dimensional und f ∈ End(V ). Dann hat
V eine Basis B so dass

M
B
B (f) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Zϕ1
0 ⋯ 0

0 Zϕ2

⋮ ⋱
0 Zϕk

⎞
⎟⎟⎟⎟⎟⎟
⎠
.
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7.2 Die Frobenius-Normalform

mit der Eigenschaft dass ϕi∣ϕi−1 für alle i ∈ {2, . . . , k}; die Polynome ϕ1, . . . , ϕk sind
hierbei eindeutig, und ϕ1 = µ(f).

Die Polynome ϕ1, . . . , ϕk heißen auch Ähnlichkeitsinvarianten (denn ähnliche Matrizen
haben die gleichen Ähnlichkeitsinvarianten), und die Untermatrizen Zϕ1

, . . . , Zϕk die
Kästchen der Frobenius-Normalform.

Beweis. Wie im Beweis der Zyklendekomposition (Satz 7.2.29) wählen wir v1 ∈ V so,
dass m = dimZv1 größtmöglich.

1
Mit dieser Wahl gilt

f
m(v1) = α0v1 + α1f(v1) +⋯+ αm−1f

m−1(v1) (7.6)

für α0, . . . , αk−1 ∈ K. Sei

ϕ1(X) ∶= Xm
− αm−1X

m−1
−⋯−α1X − α0

Behauptung 1: ϕ1(f) = 0, d.h., ϕ1(f)(u) = 0 für alle u ∈ V . Für u = v1 stimmt das
wegen (7.6). Für u = f(v1) haben wir

f
m(f(v1)) − αm−1f

m−1(f(v1)) −⋯− α1f(f(v)) − α0f(v1)
= f(fm(v1) − αm−1f

m−1(v1) −⋯− α1f(v1) − α0v1)
= f(0) = 0

Analog für u = f
2(v1), . . . , u = fm−1(v1), und die Aussage folgt für u ∈ Zv1 .

Aus der Zyklendekomposition (Satz 7.2.29) folgt, dass V = Zv1 ⊕W . Sei nun u ∈W .
Da m größtmöglich, gilt

f
m(v1 + u) = γm−1f

m−1(v1 + u) +⋯+ γ0(v1 + u)
= γm−1f

m−1(v1) +⋯+ γ0(v1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
∈Zv1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

=fm(v1)

+ γm−1f
m−1(w) +⋯+ γ0(u)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

∈WÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=fm(u)

.

Also gilt insbesondere

γm−1f
m−1(v1) +⋯+ γ0(v1) = fm(v1) = αm−1f

m−1(v1) +⋯+ α0(v1)
und da v1, f(v1), . . . , fm−1(v1) linear unabhängig, gilt αi = γi für i ∈ {0, . . . ,m − 1}.
Also

ϕ1(f)(u) = ϕ1(f)(v1) + ϕ1(f)(u)
= ϕ1(f)(v1 + u) (Linearität von ϕ1(f))
= f

m(v1 + u) − αm−1f
m−1(v1 + u) − α0(v1 + u) (Definition von ϕ1)

= γm−1f
m−1(v1 + u) +⋯+ γ0(v1 + u) (Definition von γ0, . . . , γm−1)

− αm−1f
m−1(v1 + u) − α0(v1 + u)

= 0 (da αi = γi).
1
Es ist nicht unmittelbar klar, wie dieser Schritt algorithmisch durchgeführt werden kann. Ein effizientes
Verfahren zur Berechnung der Frobenius-Normalform wird in Abschnitt 7.3.6 vorgestellt.
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Behauptung 2: ϕ1 = µf (und ist damit eindeutig). Wir wissen bereits, dass ϕ1(f) = 0,

also µf ∣ϕ1. Auf der anderen Seite sind v1, f(v1), . . . , fm−1(v1) linear unabhängig, also
grad(µf) ≥ m. Da ϕ1 und µf normiert gilt ϕ1 = µf .

Wählen nun v2 ∈W und ϕ2(X) auf die gleiche Art wie v1 und ϕ1(X).
Behauptung 3: ϕ2 teilt ϕ1. Da gradϕ2 ≤ gradϕ1 können wir schreiben

ϕ1 = ψqϕ2 + ψr

für ψq, ψr ∈ K[X] mit gradψr < l ∶= gradϕ2 (Polynomdivision).

0 = ϕ1(f)(v2) (Nach Behauptung 1.)

= ψq(f)(ϕ2(f)(v2)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=0

) + ψr(f)(v2)

= ψr(f)(v2)
= β0v2 + β1f(v2) +⋯+ βl−1f

l−1(v2) für β0, . . . , βl−1 ∈ K.

Da v2, f(v2), . . . , f l−1(v2) linear unabhängig, gilt β0 = β1 =⋯ = βl−1 = 0.
Also ψr = 0 und ψ2 teilt ψ1.

Behauptung 4: ϕ2 ist eindeutig. Obwohl Zv1 das nicht ist!

Es sei v
′
1 so, dass

Zv′1 ⊕W
′
= V = Zv1 ⊕W .

Wir wissen bereits, dass es Basen B,B
′

von V gibt, so dass

M
B
B (f) = (Zϕ1

0
0 A

) und M
B
′

B′ (f) = (Zϕ1
0

0 A
′) .

Es genügt daher zu zeigen, dass µA = µA′ .
Sei ψ ∈ K[X]. Es gibt invertierbare Matrix T ∈ Kn×n mit

T
−1 (Zϕ1

0
0 A

)T = (Zϕ1
0

0 A
′) .

Also

(ψ(Zϕ1
) 0

0 ψ(A′)) = ψ (Zϕ1
0

0 A
′)

= ψ(T−1 (Zϕ1
0

0 A
)T ) = T−1 (ψ(Zϕ1

) 0
0 ψ(A))T.

Insbesondere haben die Matrizen ψ(A) und ψ(A′) den gleichen Rang. Es folgt aus dem
zweiten Teil von Proposition 7.2.17, dass ψ(A) = 0⇔ ψ(A′) = 0. Da ψ beliebig gewählt
war, haben A und A

′
also das gleiche Minimalpolynom.
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Bemerkung 7.2.32. Falls K ⊆ K′ und A ∈ Kn×n ⊆ (K′)n×n, so spielt es für die Frobenius-
Normalform keine Rolle, ob wir bezüglich K oder bezüglich K′ rechnen. Wenn wir bei-
spielsweise starten mit einer Matrix mit rationalen Einträgen, dann sind die Koeffizienten
von ϕ1(X), . . . , ϕk(X) und damit der Frobenius-Normalform (die wie bereits erwähnt
auch rationale Normalform genannt wird) ebenfalls rational.

Beispiel 7.2.33. Das Minimalpolynom beschreibt eine lineare Abbildung nicht eindeutig.
Betrachten dazu die Matrizen

A ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

und B ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Es ist χA(X) = X
4
= χB(X) und µA(X) = X = µB(X) aber A und B haben nicht

die gleiche Frobenius-Normalform: B hat die Ähnlichkeitsinvarianten ϕ1 = ϕ2 = X
2
,

während p1 = X
2
, p2 = X, p3 = X die für A sind. △

Übung 37. Geben Sie eine Diagonalmatrix an, die nicht in Frobenius-Normalform ist.

Übung 38. Bestimmen Sie alle Kn×n-Matrizen, bei denen die Frobenius-Normalform aus
n Kästchen besteht.

Übung 39. Zeigen Sie, dass die Frobenius Normalform einer Diagonalmatrix D mit paar-
weise verschiedenen Diagonaleinträgen gleich der Begleitmatrix von χA ist.

Übung 40. Was ist die Frobenius-Normalform von
⎛
⎜⎜
⎝

1 0 0
0 0 −1
0 1 −1

⎞
⎟⎟
⎠

?

Übung 41. Ist die Basis B aus der Frobenius-Normalform ebenfalls eindeutig, oder sind
nur die Ähnlichkeitsinvarianten eindeutig?

Übung 42. Ist jede Matrix A ∈ Kn×n ähnlich zu einer Matrix, die höchstens 2n − 1
Einträge hat, die ungleich 0 sind? Beweisen Sie oder finden Sie ein Gegenbeispiel.

Korollar 7.2.34. Für M ∈ Kn×n sind die folgenden Aussagen äquivalent.

1. Die Frobenius-Normalform von M hat nur ein Kästchen, d.h., ist von der Gestalt
M = ZµM ;

2. µM = χM .

Beweis. 1⇒ 2: Sei ϕ ∶= µM . Dann gilt

χM = χZϕ (Voraussetzung)

= ϕ (Proposition 7.2.1)

= µM .

2⇒ 1: Wenn die Frobenius-Normalform neben µM noch eine weitere Ähnlichkeitsinvariante
ψ besitzt, denn ist ϕψ ein Teiler von χM . Da grad(ψ) > 0 folgt, dass µM ≠ χM .
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Bemerkung 7.2.35. Das Produkt ϕ1⋯ϕk der Ähnlichkeitsinvarianten von f ∈ End(V ) ist
gleich dem charakteristischen Polynom χf : dies folgt direkt aus der Frobenius-Normalform
und der Beobachtung dass χ(Zϕ) = ϕ (Beispiel 7.2.1).

Übung 43. Beweisen Sie den Satz von Cayley-Hamilton (Satz 7.2.12) aus der Frobenius-
Normalform.

Zwei Polynome heißen teilerfremd, wenn sie nur konstante gemeinsame Teiler haben.

Beispiel 7.2.36. Seien ϕ,ψ ∈ K[X] teilerfremd, und

A ∶= (Zϕ 0
0 Zψ

) .

Dann hat A die Frobenius-Normalform Zϕψ. Da χA = ϕψ, genügt es nach Korollar 7.2.34
zu zeigen, dass µA = χA. Nach dem Satz von Cayley Hamilton ist µA ein Teiler von
χA = ϕψ. Umgekehrt wird µA von sowohl ϕ als auch ψ geteilt. Denn

0 = µA(A) = (µA(Zϕ) 0
0 µA(Zψ)

)

bedeutet, dass 0 = µA(Zϕ) und 0 = µA(Zψ). Also wird µA von µZϕ = ϕ und von µZψ = ψ
geteilt. Da ϕ und ψ teilerfremd sind, wird µA von ϕψ geteilt. △

Ein Polynom ϕ ∈ K[X] heißt irreduzibel falls es nicht geschrieben werden kann als
Produkt von Polynomen kleineren Grades.

Lemma 7.2.37. Sei V endlichdimensional und f ∈ End(V ). Dann haben χf und µf
dieselben irreduziblen Faktoren.

Beweis. Nach dem Satz von Cayley-Hamilton (Satz 7.2.12) gilt µf ∣χf . Sei also ψ ein
irreduzibler Faktor von χf . Nach Bemerkung 7.2.35 ist χf = ϕ1⋯ϕk, wobei ϕ1, . . . , ϕi
die Ähnlichkeitsinvarianten von f in der Frobenius-Normalform. Da ψ irreduzibel ist,
gibt es ein i ∈ N so dass ψ∣ϕi. In der Frobenius-Normalform gilt ϕi∣ϕ1 und ϕ1 = µf .
Also ψ∣µf .

Wir haben bereits die Existenz und Eindeutigkeit der Frobenius-Normalform bewiesen
(Satz 7.2.31), aber bisher noch keinen Algorithmus kennengelernt, um diese Normalform
zu berechnen. Tatsächlich gibt es sogar einen Algorithmus, der dies in polynomieller Zeit
leistet, wie wir in Abschnitt 7.3.5 sehen werden.

7.2.6 Die Jordan-Weierstrass Normalform

Genau wie die Frobenius-Normalform klassizifiziert die Jordan-Weierstrass Normalform
2

Matrizen bis auf Ähnlichkeit. Sie teilt viele Vorzüge von Diagonalmatrizen, und tatsächlich
ist die Jordan-Normalform einer diagonalisierbaren Matrix eine Diagonalmatrix (im Ge-
gesatz zur Frobenius-Normalform, siehe Beispiel 7.2.30). Allerdings existiert die Jordan-
Weierstrass Normalform nur für trigonalisierbare Matrizen, also wenn das charakteris-
tische Polynom in Linearfaktoren zerfällt (siehe Abschnitt 4.3.6). Laut Gerd Fischer [5]

2
Häufig auch nur jordansche Normalform genannt, aber etwa zeitgleich von Weierstrass entdeckt.
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handelt es sich hier um das ‘wohl schwierigste Theorem der elementaren linearen Alge-
bra’. Zunächst betrachten wir allerdings eine Vorstufe, die sogenannte Jordan-Chevalley-
Zerlegung. Dafür benötigen wir den folgenden wichtigen Begriff.

Definition 7.2.38. Man nennt f ∈ End(V ) nilpotent falls f
k
= 0 für ein k ∈ N. Analog

dazu heißt A ∈ Kn×n nilpotent falls A
k
= 0 für ein k ∈ N.

Intuitiv kann man nilpotente Matrizen als solche betrachten, die “besonders schlimm
nicht diagonalisierbar” sind.

Satz 7.2.39. Sei V ein n-dimensionaler K-Vektorraum und f ∈ End(V ). Dann sind
äquivalent:

1. f ist nilpotent.

2. µf = X
d

für ein d ∈ {1, . . . , n}.

3. χf = X
n

.

4. Es gibt eine Basis B von V , so dass

M
B
B (f) =

⎛
⎜⎜
⎝

0 ∗
⋱

0 0

⎞
⎟⎟
⎠
. (7.7)

Beweis. Falls f nilpotent ist, dann gibt es ein k ∈ N mit X
k
∈ If (das Ideal von f ,

definiert in Beispiel 7.2.7). Also ist µf = X
d

mit 1 ≤ d ≤ n (siehe Bemerkung 7.2.13).
Die Implikation 2. ⇒ 3. folgt aus dem Lemma, dass µf und χf dieselben irreduziblen
Faktoren haben (Lemma 7.2.37), denn nach Annahme ist X ist der einzige irreduzible
Faktor von µf , und χf ist vom Grad n. Die Implikation 3. ⇒ 4. folgt aus unserem
Trigonalisierungskriterium (Satz 4.3.24): wenn χf = X

n
, dann ist f trigonalisierbar. Da

alle Eigenwerte 0 sind, hat die Dreiecksform auf der Diagonalen nur Einträge 0, und ist
daher von der gewünschten Gestalt (7.7). Die Implikation 4.⇒ 1. folgt aus Übung 44.

Bemerkung 7.2.40. Eine Matrix in der Gestalt von (7.7) zeichnet sich dadurch aus, dass
der zugehörige gerichtete Graph (wie etwa in Beispiel 4.3.27) keine gerichteten Kreise
hat.

Übung 44. Zeigen Sie, dass eine Matrix der Gestalt (7.7) nilpotent ist.

Satz 7.2.41 (Jordan-Chevalley-Zerlegung). Sei A ∈ Kn×n so, dass χA in Linearfaktoren
zerfällt. Dann ist A = D +N , wobei

• D diagonalisierbar,

• N nilpotent, und

• DN = ND;
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7 Normalformen von Matrizen

hierbei sind D und N eindeutig.

Dieser Satz wird bisweilen auch Hauptraumzerlegung genannt, nach einem wichtigen
Begriff, der für den Beweis des Satzes benötigt wird: der Begriff eines Hauptraumes
(Im Englischen: generalised eigenspace. Vergleiche mit der Definition eines Eigenraumes
(Definition 4.3.3).

Definition 7.2.42. Sei V ein n-dimensionaler Vektorraum und f ∈ End(V ). Sei λ ein
Eigenwert von f und m ∈ N. Dann heißt

Hauλ,m(f) ∶= Kern ((f − λ idV )m)

der m-te Hauptraum vom f zum Eigenwert λ.

Beispiel 7.2.43. Falls V ein n-dimensionaler Vektorraum und f ∈ End(V ) nilpotent,
dann gilt Hauλ,n(f) = V . △

Beweis des Satzes von der Hauptraumzerlegung, Satz 7.2.41. Es sei

χA(X) = (X − λ1)m1⋯(X − λk)mr

für λ1, . . . , λr paarweise verschieden. (Falls m1 =⋯ = mr = 1, so ist A diagonalisierbar
(Bemerkung 4.3.20), und die Aussage stimmt mit N = 0.)

Sei f ∶= fA und Vi ∶= Hauλi,ri(f). Dann gilt (und daher rührt der Name ‘Hauptraum-
zerlegung’):

V = V1 ⊕⋯⊕ Vr. (7.8)

Um das zu sehen, schreiben wir

V = Kern (χf(f)) (Satz 7.2.12)

= Kern ((f − λ1 idV )m1 ⊕⋯⊕ (f − λk idV )mr).

Es genügt also zu zeigen, dass falls ϕ,ψ ∈ K[X] teilerfremd sind, sich der Kern der
linearen Abbildung (ϕψ)(f) wie folgt schreiben läßt:

Kern ((ϕψ)(f)) = Kern (ϕ(f))⊕Kern (ψ(f)) (7.9)

Denn ϕ ∶= (X − λ1)m1 ist teilerfremd zu ψ ∶=∏i∈{2,...,k}(X − λi)mi , also

Kern(ϕ(f))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=V1

⊕Kern(ψ(f)),

und die Aussage folgt per vollständiger Induktion.
Wir zeigen zunächst, dass

U ∶= Kern (ϕ(f)) ∩Kern (ψ(f)) = {0}.
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7.2 Die Frobenius-Normalform

Der Untervektorraum U ist f -invariant, denn falls v ∈ U , dann gilt ϕ(f)(v) = 0, und
damit

ϕ(f)(f(v)) = f ϕ(f)(v)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

0

= 0,

also f(v) ∈ Kern (ϕ(f)). Analog zeigt man, dass f(U) ⊆ Kern (ψ(f)). Also f(U) ⊆ U .
Dann gilt ϕ(f∣U) = 0 und ψ(f∣U) = 0; das Minimalpolynom von f∣U teilt also sowohl
ϕ als auch ψ, ist also nach Annahme konstant. Das ist nur dann möglich, wenn U = {0}
(Übung 36).

Es sei W ∶= Kern ((ϕψ)(f)). Offenbar gilt Kern (ϕ(f)) ⊆ W und Kern (ψ(f)) ⊆ W .
Um Aussage (7.9) zu zeigen, genügt es also zu zeigen, dass

dim Kern ((ϕψ)(f))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=W

= dim Kern (ϕ(f)) + dim Kern (ψ(f)). (7.10)

Analog zur f -Invarianz von U zeigt man die f -Invarianz von W . Es gilt

Bild(ψ(f∣W )) ⊆ Kern(ϕ(f∣W )). (7.11)

Denn falls u ∈ Bild(ψ(f∣W )), so gibt es v ∈W mit ψ(f∣W (v)) = u. Da v ∈W , gilt

ϕ(f∣W )(u) = ϕψ(f∣W )(v) = 0,

also u ∈ Kern(φ(f∣W )).
Weiterhin gilt

Kern(ϕ(f∣W )) = Kern(ϕ(f)) (7.12)

Trivialerweise ist Kern(ϕ(f∣W )) ⊆ Kern(ϕ(f)). Umgekehrt, falls u ∈ Kern(ϕ(f)), dann
ist u ∈W , also in Kern(ϕ(f∣W )).

dimW = dim Kern(ϕ(f∣W )) + dim Bild(ϕ(f∣W )) (Dimensionsformel, Satz 3.3.6)

≤ dim Kern(ϕ(f∣W )) + dim Kern(ψ(f∣W )) (7.11)

= dim Kern(ϕ(f)) + dim Kern(ψ(f)) (7.12).

Es gilt sogar Gleichheit, da Kern(ϕ(f)) ⊆W und Kern(ϕ(f)) ⊆W , und Kern(ϕ(f))∩
Kern(ϕ(f)) = {0}. Damit haben wir (7.10), und in Folge (7.9) und (7.8) bewiesen.

Wir definieren nun fD, fN ∈ End(V ) durch

(fD)∣Vi ∶=λi idVi
(fN)∣Vi ∶=(f − λi id)∣Vi

für alle i ∈ {1, . . . , r}. Sei B eine Basis von V zusammengesetzt aus den Basen für
V1, . . . , Vr; definieren D ∶= MB

B (fD) und N ∶= MB
B (fN). Offensichtlich ist f = fD + fN

und A = D +N . Ausserdem ist D in Diagonalform, und daher DN = ND.
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1 2 3 … k
1 1 1 1

𝜆 𝜆 𝜆 𝜆

Abbildung 7.3: Illustration eines Jordankästchens der Größe k zum Eigenwert λ ∈ K
aus Beispiel 7.2.44. Zur Erklärung der Bedeutung der Illustrationen siehe
Beispiel 4.3.27.

Wir zeigen nun, dass N nilpotent ist. Sei v ∈ V ; wir zeigen, dass N
n(v) = 0. Das ist

trivial für v = 0. Ansonsten liegt v nach (7.8) in Vi = Kern ((f −λi idV )mi) für genau ein
i ∈ {1, . . . , r}. Es gilt also 0 = (f−λi idV )mi(v) = (fN)mi(v), und damit auchN

n(v) = 0.
Eindeutigkeit: Siehe Peter Petersen, Linear Algebra [9], Übung 14 in Abschnitt 2.8, oder
Gerd Fischer, Lineare Algebra [5], ‘Zusatz’ in Abschnitt 4.6.3 (Normalformen werden in
Albrecht Beutelspacher, Lineare Algebra [1] nicht behandelt).

Beispiel 7.2.44. Betrachte

Jn(λ) ∶=
⎛
⎜⎜⎜⎜⎜⎜
⎝

λ 0 ⋯ 0
0 λ
⋮ ⋱
0 λ

⎞
⎟⎟⎟⎟⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=D

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 ⋯ 0
0 0 ⋱
⋮ ⋱ 1
0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=N

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ 1 . . . 0
0 λ ⋱
⋮ ⋱ 1
0 λ

⎞
⎟⎟⎟⎟⎟⎟
⎠

Siehe Abbildung 7.3. Dann ist µJn(λ)(X) = (X − λ)n = χJn(λ)(X) (Proposition 7.2.20).
Also ist Z(X−λ)n ähnlich zu Jn(λ). △

Die Matrix Jn(λ) aus Beispiel 7.2.44 heißt Jordankästchen der Größe n zum Eigenwert
λ ∈ K. Diese Matrizen sind die Bausteine für die Jordan-Normalform. Spezialfall n = 1:

J1(λ) = (λ) ∈ K1×1

Satz 7.2.45 (Jordan-Weierstrass Normalform). Sei A ∈ Kn×n und das charakteristische
Polynom zerfalle in Linearfaktoren:

χA(X) = (λ1 −X)m1⋯(λr −X)mr

λ1, . . . , λr: Eigenwerte von A.
m1, . . . ,mr: algebraische Vielfachheiten.
n1, . . . , nr: geometrische Vielfachheiten.
Dann existiert eine zu A ähnliche Matrix J der Gestalt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Js(1,1)(λ1) 0
⋱

Js(1,n1)(λ1)
⋱

Js(r,1)(λr)
⋱

0 Js(r,nr)(λr)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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7.2 Die Frobenius-Normalform

Zu jedem Eigenwert λi, i ∈ {1, . . . , r}, gibt es ni Jordankästchen Js(i,1)(λi), . . . , Js(i,ni)(λi),
deren Länge sich zu mi aufsummiert, d.h., ∑j∈{1,...,ni} s(i, j) = mi. Die Gesamtanzahl

der Jordankästchen ist demnach t ∶= ∑i∈{1,...,r} ni.

Die Matrix J heißt auch jordansche Normalform und ist bis auf die Reihenfolge
der Jordankästchen eindeutig. Diese kann eindeutig gemacht werden durch Festlegung
s(i, 1) ≥ s(i, 2) ≥ ⋯ ≥ s(i, ni) für jedes i ∈ {1, . . . , r} und λ1 < λ2 < ⋯ < λr (im Falle
von K = R, ansonsten fixiere beliebig Ordnung auf K).

Bemerkung 7.2.46. Aus der jordanschen Normalform lassen sich sofort ablesen:

• die Eigenwerte: die Hauptdiagonalelemente.

• die algebraische Vielfachheit von EW λi:
die Anzahl mi der λi auf der Hauptdiagonale.

• die geometrische Vielfachheit von EW λi:
die Anzahl ni der Jordankästchen zum EW λi.

• das charakteristische Polynom in faktorisierter Form, nämlich∏i∈{1,...,r}(X−λi)
mi .

• das Minimalpolynom in faktorisierter Form, nämlich ∏i∈{1,...,r}(X − λi)s(i,1).

↝ Klassifikation durch charakteristische Daten: brauchen blos die Werte

λ1, . . . , λr, n1, . . . , nr, s(1, 1), . . . , s(r, nr)

Beweis von Satz 7.2.45. Sei f ∶= fA ∈ End(V ). Wie im Beweis von Satz 7.2.41 schreiben
wir f = fD + fN für fD diagonalisierbar und fN nilpotent. Dann zerlegen wir V in
Eigenräume für fD:

V = Kern(fD − λ1 id)⊕⋯⊕Kern(fD − λk id)

Die Eigenräume sind auch fN -invariant: sei v so, dass (fD − λ1 id)(v) = 0. Dann ist

(fD − λ1 id)(fNv) = (fDfN − λ1 id fN)(v)
= fN (fD − λ1 id)(v)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=0

= 0.

Nach Satz 7.2.31 existiert eine Basis B, so dass

M
B
B (fN) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Zϕ1
0 ⋯ 0

0 Zϕ2

⋮ ⋱
0 Zϕk

⎞
⎟⎟⎟⎟⎟⎟
⎠
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die Frobenius Normform von fN ist. Die Ähnlichkeitsinvarianten ϕ1, . . . , ϕk sind alle von
der Gestalt X

k
, für ein k ≤ n, da f

n
N = 0, also sehen die Blöcke der FNF so aus:

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0
1 0 ⋱
⋮ ⋱ ⋱ 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Sei B
′
die geordnete Basis, die man aus B durch Umdrehen der Reihenfolge erhält. Dann

ist J ∶= M
B
′

B′ (fA) = M
B
′

B′ (fN) +MB
′

B′ (fD) die jordansche Normalform von A. Es bleibt
zu zeigen, dass die Anzahl der Jordankästchen zum Eigenwert λi genau die geometrische
Vielfachheit von λi ist, also ni = dim(Kern(A − λiEn)). Zum einen sind zwei Spalten
von J linear unabhängig, wenn sie in unterschiedlichen Jordankästchen liegen. Zum
anderen gilt für die jeweils erste Spalte s jedes Jordankästchens zum Eigenwert λi, dass
(A − λiEn)s = 0, und damit folgt die Behauptung.

7.2.7 Beispiele

Beispiele zur Berechnung der Frobenius-Normalform, und, falls möglich, der jordanschen
Normalform (letzteres kann abhängen vom Körper, in dem wir rechnen).

Beispiel 7.2.47.

A =

⎛
⎜⎜
⎝

1 0 1
0 1 0
1 0 1

⎞
⎟⎟
⎠

Für Frobenius-Normalform: suchen v1 ∈ V so, dass dimZv1 größtmöglich.

Wähle v1 ∶=
⎛
⎜⎜
⎝

1
0
0

⎞
⎟⎟
⎠

, erhalten Av1 =

⎛
⎜⎜
⎝

1
0
1

⎞
⎟⎟
⎠

und A
2
v1 =

⎛
⎜⎜
⎝

2
0
2

⎞
⎟⎟
⎠
= 2Av1. Dann ist dimZv1 = 2.

Geht noch besser: Wähle v1 ∶=
⎛
⎜⎜
⎝

2
1
0

⎞
⎟⎟
⎠

, erhalten

Av1 =

⎛
⎜⎜
⎝

2
1
2

⎞
⎟⎟
⎠

und A
2
v1 =

⎛
⎜⎜
⎝

4
1
4

⎞
⎟⎟
⎠

allesamt linear unabhängig, und damit ist Zv1 = V von größtmöglicher Dimension. Haben

A
3
v1 = (8, 1, 8) = (12, 3, 12) − (4, 2, 4) = 3A

2
v1 − 2 ⋅Av1 + 0 ⋅ v1 .

Mit Basis B = (v1, Av1, A
2
v1) ist

M
B
B (fA) = Zϕ1
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7.2 Die Frobenius-Normalform

für ϕ1(X) = X3 − 3X
2 + 2X = µA(X). Die Frobenius-Normalform von A ist also

M
B
B (fA) =

⎛
⎜⎜
⎝

0 0 0
1 0 −2
0 1 3

⎞
⎟⎟
⎠
.

Zur Berechnung der jordanschen Normalform. Wir bestimmen zunächst das charakteris-
tische Polynom.

χA(X) = det(A −XE3) = (1 −X)3
− (1 −X) = −X3

+ 3X
2
− 2X

= −X(X2
− 3X + 2) = −X(X − 1)(X + 2)

Wir haben also drei verschiedene Eigenwerte bei dimV = 3, und damit eine Basis aus
Eigenvektoren. Also ist A diagonalisierbar (siehe Bemerkung 4.3.20). Sei S eine Matrix,
deren Spalten aus Eigenvektoren von A zu den verschiedenen Eigenwerten besteht, also
etwa

S =
⎛
⎜⎜
⎝

1 1 −1
0 0 0
−1 0 3

⎞
⎟⎟
⎠
.

Dann gilt

⎛
⎜⎜
⎝

1 0 1
0 1 0
1 0 1

⎞
⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=A

⎛
⎜⎜
⎝

1 1 −1
0 0 0
−1 0 3

⎞
⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=S

=

⎛
⎜⎜
⎝

0 1 2
0 0 0
0 1 2

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

1 1 −1
0 0 0
−1 0 3

⎞
⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=S

⎛
⎜⎜
⎝

0 0 0
0 1 0
0 0 −2

⎞
⎟⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=∶D

also S
−1
AS = D und damit ist A ähnlich zu einer Diagonalmatrix. △

Beispiel 7.2.48. Die Matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ist nicht diagonalisierbar, aber bereits in Jordan-Normalform.
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21

3

5

4

6

1

2

2

2

1

2

1

Zwei Eigenwerte:

• λ1 = 2, algebraische Vielfachheit 4, geometrische Vielfachheit 2.

• λ2 = 0, algebraische Vielfachheit 2, geometrische Vielfachheit 1.

Das charakteristisches Polynom ist χA(X) = (2 −X)4
X

2
. △

Beispiel 7.2.49.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0 0 0
1 0 1 1 1 0
1 −1 3 1 0 −1
0 0 0 2 0 0
1 −4 2 2 4 0
0 2 −1 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ R6×6

1. Eigenwerte bestimmen. Wir berechnen die Determinante für das charakteristische
Polynom durch Entwicklung nach der ersten und 4ten Reihe, und dann nach der
4ten Spalte.

det(XE6 −A) =

»»»»»»»»»»»»»»»»»»»»»»»»

X − 2 0 0 0 0 0
−1 X −1 −1 −1 0
−1 1 X − 3 −1 0 1
0 0 0 X − 2 0 0
−1 4 −2 −2 X − 4 0
0 −2 1 1 1 X − 2

»»»»»»»»»»»»»»»»»»»»»»»»

= (X − 2)2

»»»»»»»»»»»»»»»»

X −1 −1 0
1 X − 3 0 1
4 −2 X − 4 0
−2 1 1 X − 2

»»»»»»»»»»»»»»»»

= (X − 2)3

»»»»»»»»»»»»

X −1 −1
1 X − 3 0
4 −2 X − 4

»»»»»»»»»»»»
+ (X − 2)2

»»»»»»»»»»»»

X −1 −1
4 −2 X − 4
−2 1 1

»»»»»»»»»»»»
=⋯ = (X − 2)5(X − 3) = χA(X)
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Eigenwerte:

λ1 = 2 algebraische Vielfachheit m1 = 5

λ2 = 3 algebraische Vielfachheit m2 = 1

Jordansche Normalform existiert also.

2. Basen der Eigenräume bestimmen. Idee: Basisvektoren bilden “Startpunkte der
Jordankästchen”

• Für λ1 = 2: Eigλ1(A) = Kern(A − λ1En):

A1 ∶= A − λ1En =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
1 −2 1 1 1 0
1 −1 1 1 0 −1
0 0 0 0 0 0
1 −4 2 2 2 0
0 2 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rg(A1) = 3 (Zwei Nullzeilen und z6 = z2 − z5 zeigt rg(A2) ≤ 3, und z1, z2, z3

sind linear unabhängig) Also:

dim Eigλ1 = dim KernA1 = n − rg(A1) = 6 − 3 = 3

Finden drei linear unabhängige Eigenvektoren aus Lös(A1,0), z.B. mit dem
gaußschen Algorithmus:

u1 ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
2
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, u2 ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, u3 ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
−1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

B = (u1, u2, u3) ist Basis für Eigλ1(A).
• Für λ2 = 3: dim Eigλ2 ≤ m2 = 1 (m2 = 1 ist algebraische Vielfachheit),

A2 = A − λ2En.

Lösung von A2u = 0:

u4 ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
−1
−1
0
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Also Bλ2 = {u4}.
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3. Bestimmung der Jordankästchen.
Allgemeine Idee: Wenn B eine Basis mit J = M

B
B (fA) in jordanscher NF,

dann muss für die zu einem Jordanblock von J zu Eigenwert λ gehörigen Spal-

ten v
(1)
, . . . , v

(s)
gelten

Av
(1)

= λv
(1)

Av
(2)

= v
(1)
+ λv

(2)

⋮

Av
(s)

= v
(s−1)

+ λv
(s)

• u
(1)
1 ∶= u1 = (0, 1, 2, 0, 0, 1)⊤.

u
(2)
1 : Lösung von A1u

(2)
1 = u

(1)
1 , etwa u

(2)
1 = (2, 1, 1, 0, 0, 0)⊤.

Keine Lösung für u
(3)
1 in A1u

(3)
1 = u

(2)
1 .

(Erste Zeile von A1 Null, erste Komponente von u
(2)
1 nicht Null.)

Jordankästchen Ku1 ∶= (u(1)1 , u
(2)
1 ).

• u
(1)
2 ∶= u2 = (0, 1, 1, 0, 1, 0)⊤.

u
(2)
2 : Lösung von A1u

(2)
2 = u

(1)
2 , etwa u

(2)
2 = (1, 0, 0, 0, 0, 0)⊤.

Keine Lösung für u
(3)
1 in A1u

(3)
2 = u

(2)
2 .

(erste Komponente von u
(2)
2 nicht Null, erste Zeile von A1 Null.)

Jordankästchen Ku2 = (u(1)2 , u
(2)
2 ).

• u
(1)
3 ∶= u3 = (0, 0,−1, 1, 0, 0)⊤,

und keine Lösung für u
(2)
3 in A1u

(2)
3 = u

(1)
3 .

Jordankästchen Ku3 = (u(1)3 ).

• Jordankästchen Ku4 = (u(1)4 ) = ((0,−1,−1, 0,−2, 1)⊤).

4. Zusammensetzen: B = (u(1)1 , u
(2)
1 , u

(1)
2 , u

(2)
2 , u

(1)
3 , u

(1)
4 ) ist Basis von R6

und liefert
die Spalten für

S ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 2 0 1 0 0
1 1 1 0 0 −1
2 1 1 0 −1 −1
0 0 0 0 1 0
0 0 1 0 0 −2
1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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7.2 Die Frobenius-Normalform

Die Jordansche Normalform von C ist

J = S
−1
AS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1
0 2

2 1
0 2

2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. △

Algorithmus zur Berechnung der Jordanschen Normalform:

Gegeben: A ∈ Kn×n.

1. Bestimme alle Eigenwerte λ1, . . . , λr ∈ K von A und deren algebraische Vielfach-
heiten m1, . . . ,mr (faktorisiere das charakteristische Polynom). Falls ∑r

i=1mi < n,
gebe aus ‘A besitzt keine JNF’.

2. Für i ∈ {1, . . . , r}, sei Ai ∶= A − λiEn. Berechne Basis Bi = (u1, . . . , uni) des
Eigenraums

Eigλi(A) = Kern(Ai).

Größe ni der Basis ist die Anzahl der Jordankästchen zum Eigenwert λi.

3. Bestimmung der Jordankästchen: Für jeden Basisvektor u ∈ Bi, suchen nach

größtmöglichem s, so dass es Vektoren u
(1)
, . . . , u

(s)
gibt mit u

(1) ∶= u und

Au
(1)

= λiu
(1)

i.e., (A − λiEn)u(1) = 0

Au
(2)

= 1 ⋅ u
(1)
+ λiu

(2)
i.e., (A − λiEn)u(2) = u(1)

. . .

Au
(s)

= 1 ⋅ u
(s−1)

+ λiu
(s)

i.e., (A − λiEn)u(s) = u(s−1)
. (7.13)

Siehe Abbildung 7.4.

4. Aneinanderreihung aller Vektoren u
(j)

aus Schritt 3. ergibt Basis B von Kn.
Sei S die Matrix mit Vektoren von B als Spalten. Dann gilt:

J ∶= S
−1
AS =M

B
B (fA)

ist die jordansche Normalform von A (J gewinnt man direkt aus den charakteris-
tischen Daten, die wir zuvor allesamt berechnet haben).

Wichtig: Probe machen. Müssen wir dazu die Inverse von S berechnen? Nein!
Machen die Probe mit

SJ = SA.
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7 Normalformen von Matrizen

J =

u
(1)

u
(2)

u
(3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

λ1 0 0 0 0
⋱ 0 0 0

λ1 0 0 0
⋱ 0 0 0

λi 1 0
0 λi 1
0 0 λi
0 0 0 ⋱

0 0 0 0 λr

Abbildung 7.4: Illustration zu Schritt 3 im Algorithmus zur Berechnung der jordanschen
Normalform.

Bemerkung 7.2.50. Es gibt zwei kritische Stellen in diesem Algorithmus. Der erste ist
Schritt 1, denn wir haben noch kein effizientes Verfahren kennengelernt, um das charak-
teristische Polynom in faktorisierter Form zu berechnen. Wir werden später auf dieses

Problem zurückkommen (siehe 7.3.22). Die zweite Stelle ist die Suche nach u
(1)
, . . . , u

(s)

in Schritt 3., so dass s größtmöglich. Mit dem gaußschen Algorithmus können wir heraus-

finden, ob es in (7.13) eine Lösung gibt für u
(s)

. Das liefert aber noch keine Gewissheit,

dass s größtmöglich ist (denn dafür könnte es notwendig sein, bereits u
2
, . . . , u

(s−1)
an-

ders zu wählen). Auch dieses Problem werden wir in Abschnitt 7.3.5 lösen.

Bemerkung 7.2.51. Effiziente Algorithmen zur Berechnung der jordanschen Normalform
und deren exakte Komplexität sind Gegenstand aktueller Forschung; es sei verwiesen
auf [4].

Übung 45. Sei J ∈ Kn×n in jordanscher Normalform. Zeigen Sie: die Anzahl der Jor-
dankästchen zum Eigenwert 0 ist gleich n − rg(A).

Übung 46. Beschreiben Sie, wie man mit Hilfe der jordanschen Normalform die Frobenius-
Normalform berechnen kann.

3

Übung 47. Sei V ein beliebiger, nicht notwendigerweise endlichdimensionaler Vektor-
raum. Dann heißt f ∈ End(V ) diagonalisierbar, wenn V eine Basis aus Eigenvektoren
von f besitzt (wie im endlichdimensionalen Fall, siehe Satz 4.3.19). Finden Sie ein Bei-
spiel für ein f ∈ End(V ) mit V unendlichdimensional, welches sich nicht schreiben läßt
als fN + fD mit fN nilpotent und fD diagonalisierbar.

4
Tipp: Übung 28.

3
Dank an die Teilnehmer:innen der VL im SS 2024 für die Idee zu dieser Übung.

4
Inspiriert durch die Teilnehmer:innen der VL im SS 2024.
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7.3 Die Hermite-Normalform

7.3 Die Hermite-Normalform

Für A ∈ Qm×n kennen wir bereits einen effizienten Algorithmus, um zu entscheiden,
ob das Gleichungssystem Ax = b eine Lösung in Qn besitzt (Abschnitt 4.1.8). In diesem
Abschnitt wollen wir einen effizienten Algorithmus für Lösbarkeit in Zn vorstellen. Wenn
man alle Zeilen mit dem kleinsten gemeinsamen Vielfachen der Nenner aller Koeffizienten
multipliziert, erhält man ein System mit der gleichen Lösungsmenge, aber ganzzahligen
Koeffizienten. Wir werden daher annehmen, dass A ∈ Zm×n. Solche Systeme Ax = b
werden auch lineare diophantische Gleichungssysteme genannt. Ganzzahlige Lösungen
sind in sehr vielen Anwendungen relevant, z.B. in der diskreten Optimierung.

Um ganzzahlige Lösungen zu finden, behandeln wir eine neue Normalform, die Hermite-
Normalform

5
(Abschnitt 7.3.2). Unser Beweis für die Existenz der Hermite-Normalform

liefert noch kein effizientes Verfahren, um diese auch wirklich auszurechnen; mit einem
cleveren Trick aber gelingt uns das in Abschnitt 7.3.3. Die Anwendung auf lineare dio-
phantische Gleichungssysteme folgt dann in Abschnitt 7.3.4. In diesen drei Abschnitten
folgen wir im wesentlichen Kapitel 4 und 5 des Lehrbuchs von Schrijver [10].

Viele Aussagen in diesem Abschnitt lassen sich für alle, oder doch zumindest für
gewisse Ringe verallgemeinern (z.B. für den Polynomring Q[X], und allgemeiner für
Hauptidealringe; Gegenstand der Vorlesung AL10). Ähnliche Ideen wie bei der Hermite-
Normalform helfen uns dann, auf überraschende Art und Weise (wie ich finde) auch
die Frobenius-Normalform (und damit auch die Jordan-Normalform, siehe Beweis von
Satz 7.2.45) effizient zu berechnen! Dazu benötigen wir eine weitere Normalform, nämlich
die Smith-Normalform (Abschnitt 7.3.5), die wir ebenfalls für Matrizen aus dem Poly-
nomring Q[X] berechnen können. Die Berechnung der Frobenius-Normalform mit Hilfe
der Smith-Normalform ist dann Gegenstand von Abschnitt 7.3.6.

7.3.1 Unimodulare Spaltenäquivalenz

In diesem Abschnitt betrachten wir eine neue Äquivalenzrelation auf Matrizen. Wir
benötigen dafür den folgenden Begriff.

Definition 7.3.1. Es sei R ein Ring mit Eins. Dann heißt A ∈ R
n×n

unimodular falls
det(A) eine Einheit in R ist (Definition 4.2.2). Zwei Matrizen A,B ∈ R

m×n
heissen

unimodular spaltenäquivalent falls A = BU für eine unimodulare Matrix U ∈ R
n×n

.

Unimodulare Spaltenäquivalenz ist tatsächlich eine Äquivalenzrelation. Unimodulare
Zeilenäquivalenz ist analog definiert.

Beispiel 7.3.2. Eine Permutationsmatrix (auch Vertauschungsmatrix ) ist eine quadra-
tische Matrix, in der in jeder Zeile und in jeder Spalte genau ein Eintrag eins ist und
alle anderen Einträge null sind. Jede Permutationsmatrix P ∈ Kn×n entspricht genau
einer Permutation π ∈ Sym({1, 2, . . . , n}): die zu π gehörige Permutationsmatrix hat
die Einträge pij = 1 falls π(i) = j und pij = 0 sonst. Alle Permutationsmatrizen sind

5
Benannt nach Charles Hermite, geboren am 24.12.1822 in Dieuze, Lothringen; gestorben am 14.1.1901
in Paris.
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unimodular (Proposition 4.1.3). Das gilt insbesondere für die Elementarmatrix für das
Vertauschen zweier Spalten (Abschnitt 3.2.3). △

Beispiel 7.3.3. Die Elementarmatrix für die Multiplikation einer Spalte mit einem Skalar
r ∈ R (Abschnitt 3.2.3) ist genau dann unimodular, wenn r eine Einheit ist (Propositi-
on 4.1.3). △

Beispiel 7.3.4. Die Elementarmatrix für die Addition einer Spalte mit einem Vielfachen
einer anderen Spalte (Abschnitt 3.2.3) ist unimodular (Proposition 4.1.3). △

Im Folgenden sei R = Z.

Bemerkung 7.3.5. Eine Matrix A ∈ Zn×n ist unimodular, falls detA ∈ {−1, 1}.

Definition 7.3.6. Vertauschen von Spalten, Multiplikation einer Spalte mit −1, und
Addition eines ganzzahligen Vielfachen einer Spalte zu einer anderen heißen elementare
unimodulare Spaltentransformationen. Entsprechend heißen Permutationsmatrizen, Ele-
mentarmatrizen für die Multiplikation mit −1, und Elementarmatrizen für die Addition
eines ganzzahligen Vielfachen einer Spalte zu einer anderen (nicht derselben!) unimodu-
lare Elementarmatrizen.

Wir werden eine Normalform für Matrizen A ∈ Zm×n bis auf unimodulare Spal-
tenäquivalenz in Abschnitt 7.3.2 kennenlernen, die Hermite-Normalform.

7.3.2 Die Hermite-Normalform

Die Hermite-Normalform ist eine Normalform für Matrizen bis auf unimodulare Spal-
tenäquivalenz (Abschnitt 7.1.3). Analog erhält man auch eine Normalform für unimodu-
lare Zeilenäquivalenz. Die Formulierung der Normalform für Spaltenäquivalenz (anstatt
Zeilenäquivalenz) wird praktisch sein bei unserer Anwendung für Lösbarkeit linearer
diophantischer Gleichungssysteme (Abschnitt 7.3.4).

Definition 7.3.7. Eine Matrix M ∈ Zm×n vom Rang m ist in Hermite-Normalform
falls sie von der Gestalt [B 0] ist, wobei B ∈ Nm×m eine in Qm×m invertierbare Matrix
in unterer Dreiecksform ist, in der jeder Diagonaleintrag strikt größer ist als alle anderen
Einträge in der gleichen Zeile.

Satz 7.3.8. Jede Matrix A ∈ Zm×n vom Rang m kann durch unimodulare Spaltenope-
rationen in eine Matrix in Hermite-Normalform überführt werden.

Beweis. Algorithmus, erster Teil. Angenommen, A ist von der Gestalt

(B 0
C D

) (7.14)

wobeiB in unterer Dreiecksform und positiven Einträgen auf der Diagonalen. (Anfänglich
ist B ∈ Z0×0

.) Es sei (d1,1, . . . , d1,k) die erste Zeile von D.

1. Falls d1,i < 0, multipliziere Spalte i mit −1. Wir können also ohne Beschränkung
der Allgemeinheit annehmen, dass d1,1, . . . , d1,k ∈ N.
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2. Wende Spaltenoperationen an, so dass d1,1+⋯+d1,k ∈ N so klein wie möglich ist.

3. Vertausche Spalten, so dass d1,1 ≥⋯ ≥ d1,k.

Beobachtung 1. d1,1 > 0 da sonst d1,1 = ⋯ = d1,k = 0, und damit rg(A) < m, im
Widerspruch zu unseren Annahmen.
Beobachtung 2. d1,2 =⋯ = d1,k = 0. Ansonsten, falls d12 > 0: subtrahiere 2-te Spalte
in D von der 1-ten, im Widerspruch zur Minimalität von d1,1 +⋯+ d1,k ∈ N.
Beobachtung 3. Die resultierende Matrix hat die Gestalt in (7.14) für eine Matrix B
in Dreiecksform, die um eine Zeile und eine Spalte größer ist als zuvor.

Wenn wir dieses Verfahren endlich oft wiederholen, erhalten wir schließlich eine Matrix
der Gestalt (B∣0) wobei B Dreiecksmatrix mit positiver Diagonale.

Algorithmus, zweiter Teil. Wir schreiben die Matrix B = (bi,j)i∈{1,...,m},j∈{1,...,m}
weiter um, damit alle Einträge nicht-negativ und jeder Diagonaleintrag bi,i strikt größer
ist als alle anderen Einträge bi,j in der gleichen Zeile. Wir gehen Zeile für Zeile in aufstei-
gender Ordnung vor. Für Zeile i addieren wir zur Spalte j < i ein ganzzahliges Vielfaches
der Spalte i, so dass 0 ≤ bi,j < bi,i. Dabei ändern sich für i

′
< i die Eintrage bi′,j nicht,

da bi′,i = 0. Die resultierende Matrix ist in Hermite-Normalform.

Es folgt also, dass jede rationale Matrix A ∈ Zm×n vom Rang m unimodular ähnlich ist
zu einer MatrixH in Hermite-Normalform. Wir nennenH dann die Hermite-Normalform
von A. Ähnlich wie im Beweis von Satz 7.1.2 kann man zeigen, dass die Hermite-
Normalform von A eindeutig ist.

Proposition 7.3.9. Für A ∈ Zn×n sind die folgenden Aussagen äquivalent.

1. A ist unimodular.

2. A lässt sich schreiben als Produkt unimodularer Elementarmatrizen.

3. A hat eine inverse Matrix in Zn×n.

Beweis. 2. ⇒ 3. Jede unimodulare Elementarmatrix hat ein Inverses. Das Inverse von
A ergibt sich aus den Inversen der unimodularen Elementarmatrizen (3.3).

3.⇒ 1. Wenn A ein Inverses B ∈ Zn×n hat, dann ist det(A) eine Einheit in Z, denn
(mit Satz 4.1.15)

1 = det(En) = det(AB) = det(A)det(B).
Um die Implikation 1. ⇒ 2. zu zeigen, transformieren wir A mit unimodularen Zei-

lenumformungen in Stufenform, wie bei der Berechnung der Hermite-Normalform in
Satz 7.3.8. Die Stufenform muss sogar schon in Dreiecksform sein, denn sonst wäre
det(A) = 0 und damit A nicht unimodular. Alle Diagonaleinträge der Dreiecksmatrix
müssen aus {−1, 1} sein, denn sonst wäre det(A) keine Einheit in Z (siehe (4.3)). Wir
können also durch weitere unimodulare Zeilenumformungen alle Diagonaleinträge zu 1
machen. Durch unimodulare Spaltentransformationen lassen sich dann alle Einträge aus-
serhalb der Diagonalen eliminieren, wir erhalten also die Matrix En. Also läßt sich A
schreiben als Produkt unimodularer Elementarmatrizen.
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Beispiel 7.3.10. Wir betrachten die Matrix

A = (1 2
3 4

) .

Durch unimodulare Spaltenumformungen erhalten wir im ersten Teil des Algorithmus:

(1 0
3 −2

) = A (1 −2
0 1

)

(1 0
3 2

) = (1 0
3 −2

) (1 0
0 −1

) = A (1 −2
0 1

) (1 0
0 −1

) = A (1 2
0 −1

)

Im zweiten Teil des Algorithmus wird dies weiter vereinfacht:

(1 0
1 2

) = (1 0
3 2

) ( 1 0
−1 1

) = A (1 2
0 −1

) ( 1 0
−1 1

) = A (−1 2
1 −1

)

Die Hermite-Normalform von A ist also H = (1 0
1 2

) und für die Matrix U = (−1 2
1 −1

)
gilt det(U) = −1 und AU = H. △

Beispiel 7.3.11. Wir betrachten die (invertierbare) Matrix

A =

⎛
⎜⎜
⎝

3 4 1
2 1 5
4 −1 0

⎞
⎟⎟
⎠
.

Durch unimodulare Spaltenumformungen erhalten wir:

A
s1↭s3
−−−−→

(1)

⎛
⎜⎜
⎝

1 4 3
5 1 2
0 −1 4

⎞
⎟⎟
⎠

s2−4s1↝s2
−−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 0 3
5 −19 2
0 −1 4

⎞
⎟⎟
⎠

s3−3s1↝s3
−−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 0 0
5 −19 −13
0 −1 4

⎞
⎟⎟
⎠
= (1 0

C D
) .

Wir wiederholen das Verfahren nun mit der kleineren Matrix D.

D = (−19 −13
−1 4

) −s1↝s1,−s2↝s2
−−−−−−−−−−−→

(2)
(19 13

1 −4
) s1−s2↝s1
−−−−−−−→

(1)
(6 13
5 −4

) s2−s1↝s2
−−−−−−−→

(3)
(6 1
5 −9

)

s1↭s2
−−−−→

(1)
( 1 6
−9 5

) s2−6s1↝s2
−−−−−−−−→

(3)
( 1 0
−9 −46

)

Also lässt sich A mit unimodularen Spaltenumformungen in folgende Gestalt bringen:

⎛
⎜⎜
⎝

1 0 0
5 1 0
0 −9 46

⎞
⎟⎟
⎠
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Im zweiten Teil des Algorithmus wird die Matrix weiter wie folgt reduziert.

⎛
⎜⎜
⎝

1 0 0
5 1 0
0 −9 46

⎞
⎟⎟
⎠

s1−5s2↝s1
−−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 0 0
0 1 0
−45 −9 46

⎞
⎟⎟
⎠

s1+s3↝s2
−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 0 0
0 1 0
−45 35 46

⎞
⎟⎟
⎠

s1+s3↝s1
−−−−−−−→

(3)

⎛
⎜⎜
⎝

1 0 0
0 1 0
1 35 46

⎞
⎟⎟
⎠
. △

7.3.3 Ein polynomieller Algorithmus

Es lässt sich leicht zeigen, dass das Verfahren im Beweis von Satz 7.3.8 nach polyno-
miell vielen Rechenschritten terminiert.

6
Es kann aber das Problem auftreten, dass die

Einträge der Matrizen während der Berechnung sehr groß werden; so groß, dass man
sie nicht mehr mit polynomiell vielen Bits abspeichern kann (Beispiel 4.1.26 läßt sich
entsprechend anpassen). Um das Problem zu beheben, verwenden wir einen Trick (der
laut Schrijver [10] von Domich 1983 in seiner Masterarbeit gefunden wurde), und zeigen
damit den folgenden Satz, der 1979 von Kannan und Bachem [7] gezeigt wurde (für
Verbesserungen siehe Chou und Collins [3]).

Satz 7.3.12. Zu einer gegebenen Matrix A ∈ Zm×n vom Rang m lässt sich in polyno-
mieller Rechenzeit eine unimodulare Matrix U ∈ Zn×n und eine Matrix H ∈ Zm×n in
Hermite-Normalform berechnen, so dass AU = H.

Beweis. Es sei C eine beliebige quadratische Untermatrix von A vom Rang m; es ist
klar, dass sich so ein C und s ∶= ∣det(C)∣ in polynomieller Zeit berechnen lässt (z.B.
mit dem gaußschen Algorithmus). Wir betrachten nun die Matrix

A
′
∶= [A ∣ sEm].

Behauptung. Die zusätzlichen Spalten sind ganzahlige Linearkombinationen der Spal-
ten von C, und damit auch der Spalten von A.

Die Inverse von C berechnet sich nach Satz 4.1.33 durch C
−1
=

C
#

detC
; da C ganzzahlig

ist, ist auch C
#

ganzzahlig. Also ist det(C)C−1
ganzzahlig. Es gilt

C(det(C)C−1) = det(C)Em ∈ {sEm,−sEm},

und die Behauptung ist bewiesen.
Die Behauptung impliziert, dass sich die Hermite-Normalform von A aus der für A

′

ergibt durch Entfernen von überschüssigen Spalten, die nur 0 enthalten. Wir folgen nun
dem Algorithmus aus dem Beweis von Satz 7.3.8 mit der folgenden Modifikation. Falls
beim Algorithmus eine Spalte erzeugt wird, deren i-ter Eintrag den Wert s überschreitet,

6
Der interessanteste Teil der Laufzeitanalyse ist Schritt 2 im ersten Teil. Die Analyse hier ist ähnlich zur
Analyse des euklidischen Algorithmus, der in der Fortsetzungsvorlesung AL10 ausführlich behandelt
wird.
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7 Normalformen von Matrizen

dann ziehen wir die i-te Spalte der Matrix sEm ab (wir rechnen bei den Koeffizienten
also ‘modulo s’ ).

Es ist klar, dass das Produkt der Elementarmatrizen für die unimodularen Zeilenum-
formungen die gesuchte unimodulare Matrix U liefert, und dass auch die Einträge dieser
Matrix nicht zu groß werden.

7.3.4 Ganzzahlige Lösungen für lineare Gleichungssysteme

Der folgende Satz hat viele Anwendungen in der theoretischen Informatik.

Satz 7.3.13. Es gibt einen Algorithmus mit polynomieller Laufzeit, der für gegebenes
A ∈ Qm×n und b ∈ Qm entscheidet, ob Ax = b eine ganzzahlige Lösung besitzt.

Beweis. Zunächst stellen wir fest, dass wir ohne Beschränkung der Allgemeinheit anneh-
men können, dass A und b ganzzahlig ist, da die Multiplikation jeder Zeile der erweiterten
Koeffizientenmatrix (A∣b) mit dem kleinsten gemeinsamen Vielfachen aller Koeffizien-
ten der Zeile die Anzahl der Bits der Zahlen nur linear vergößert, und den Lösungsraum
nicht verändert.

Als nächstes entscheiden wir mit dem gaußschen Algorithmus aus Abschnitt 3.3.4, ob
Ax = b eine rationale Lösung besitzt. Falls nein, dann sicherlich auch keine ganzzahlige.
Falls ja, wählen wir eine maximale Menge linear unabhängiger Zeilen von A aus (das
geht ebenfalls mit Hilfe des gaußschen Algorithmus). Das resultierende Untersystem hat
die gleiche Lösungsmenge, und wir arbeiten daher im folgenden mit diesem Untersystem
anstatt mit A. Wir nehmen also an, dass A vom Rang m ist.

Als nächstes berechnen wir mit dem Verfahren von Satz 7.3.12 in polynomieller Zeit
eine unimodulare Matrix U ∈ Zn×n, so dass AU = [B 0], für B ∈ Nm×m vom Rang
m, die Hermite-Normalform von A ist. Dann hat B eine Inverse B

−1
∈ Qm×m, die sich

effizient berechnen lässt (siehe Abschnitt 3.2.7).

Behauptung: Ax = b hat genau dann ganzzahlige Lösung, wenn B
−1
b ganzzahlig ist.

Falls B
−1
b ganzzahlig ist, dann ist s ∶= U(B−1

b, 0, . . . , 0)⊤ ∈ Zn eine ganzzahlige
Lösung von Ax = b, denn

As = AU(B−1
b, 0, . . . , 0)⊤ = [B 0](B−1

b, 0, . . . , 0)⊤ = b.

Umgekehrt, sei s ganzzahlig ist mit As = b. Nach Proposition 7.3.9 hat U eine Inverse
U
−1
∈ Zn×n. Dann ist U

−1
s eine ganzzahlige Lösung von [B 0]x = b, da

[B 0]U−1
s = As = b.

Insbesondere ist dann B
−1(b) ganzzahlig.

Beispiel 7.3.14. Wir betrachten das lineare diophantische Gleichungssystem Ax = b für

A = (1 2
3 4

) und b = (1
2
) .
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Wir wir in Beispiel 7.3.10 gesehen haben, gilt AU = H für

H = (1 0
1 2

) , U = (−1 2
1 −1

) .

Da

H
−1
b = ( 1 0

−1
2

1
2

)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

Beispiel 4.1.34

(1
2
) = (1

1
2

)

nicht ganzzahlig ist, hat das System

x + 2y = 1

3x + 4y = 2

keine ganzzahlige Lösung (aber die fraktionale Lösung x = 0, y = 1
2
).

Für b = (−1
−1

) dagegen ist

H
−1
b = ( 1 0

−1
2

1
2

) (−1
−1

) = (−1
0
)

ganzzahlig, und tatsächlich ist

UH
−1
b = (−1 2

1 −1
) (−1

0
) = ( 1

−1
)

eine ganzzahlige Lösung für

x + 2y = −1

3x + 4y = −1. △

Übung 48. Charakterisieren Sie die Teilmenge von Q3
, die aus allen Tripeln (a1, a2, b)

besteht, so dass ganze Zahlen x1, x2 ∈ Z existieren mit a1x1 + a2xn = b.

Übung 49. Zeigen Sie, dass sich lineare Gleichungssysteme über dem Ring Zn (siehe
Abschnitt 4.2.1) für beliebiges n ∈ {2, 3, 4, . . . } in polynomieller Zeit lösen lassen (die
Aufgabe ist besonders interessant, wenn n nicht prim ist!).

Hinweis. Ein möglicher Lösungsansatz besteht darin, die Aufgabe auf Lösbarkeit in
Z zu reduzieren. Für a ∈ Z schreiben wir [a] für die Restklasse von a modulo n. Es
seien a0, a1, . . . , an ∈ {0, 1, . . . , n−1}. Zeigen Sie zunächst, dass es genau dann Elemente
x1, . . . , xn ∈ Zn gibt mit [a1]x1+⋯+ [an]xn = [a0], wenn es Elemente y, z1, . . . , zn ∈ Z
gibt mit

a1z1 +⋯+ anzn = a0 + y +⋯+ y
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

n mal

.

Übung 50. Finden Sie einen Algorithmus mit polynomieller Laufzeit, der für gegebe-
ne lineare Gleichungssysteme Ax = b und Cx = d mit A,B ∈ Qm×n und b, d ∈ Qm

entscheidet, ob jede ganzzahlige Lösung von Ax = b auch eine Lösung von Cx = d ist.

207



7 Normalformen von Matrizen

7.3.5 Die Smith-Normalform

In diesem Kapitel betrachten wir eine Normalform von Matrizen bis auf unimodula-
re Äquivalenz (Definition 7.3.1), nämlich die Smith-Normalform (Satz 7.3.20). Viele
der Ideen zur Berechnung der Hermite-Normalform sind auch für die Berechnung der
Smith-Normalform nützlich. Die Smith-Normalform kann dazu verwendet werden, um
die Frobenius-Normalform zu berechnen, und hat weitere Anwendungen in der Algebra.
Unsere Anwendungen der Smith-Normalform verwenden Matrizen über dem Polynom-
ring K[X], und wir beschränken uns ab jetzt auf diesen Fall. Hier sind die Einheiten
gerade die Elemente von K \ {0}.

Bemerkung 7.3.15. Die Smith-Normalform existiert auch für den Ring Z, und allge-
mein für Dedekind Ringe, also insbesondere also für Hauptidealringe und damit auch
für euklidische Ringe; diese Begriffe werden allerdings erst in der Vorlesung Algebra –
grundlegende Konzepte (AL10) behandelt.

Die unimodularen Elementarmatrizen sind hier die Permutationsmatrizen, die Ele-
mentarmatrizen für die Multiplikation einer Spalte mit einer Einheit, und die Element-
armatrizen für die Addition von rs zu s

′
, wobei s und s

′
verschiedene Spalten und r ∈ R

ist.

Lemma 7.3.16. Sei A ∈ K[X]n×n. Dann sind folgende Aussagen äquivalent.

1. A ist unimodular.

2. A kann geschrieben werden als Produkt von unimodularen Elementarmatrizen (De-
finition 7.3.6).

3. A hat ein Inverses in K[X]n×n, d.h., es gibt ein B ∈ K[X]n×n, so dass

AB = BA = En.

Beweis. Der Beweis von 2. ⇒ 3. und 3. ⇒ 1. geht genau wie der Beweis von 7.3.9.
Auch die Implikation 1. ⇒ 2. geht wie dort: wir transformieren A mit unimodularen
Zeilenumformungen in Stufenform, analog zum Algorithmus bei der Berechnung der
Hermite-Normalform in Satz 7.3.8. Die Stufenform muss sogar schon in Dreiecksform
sein, denn sonst wäre det(A) = 0 und damit A nicht unimodular. Alle Diagonaleinträge
der Dreiecksmatrix müssen aus K \ {0} sein, denn sonst wäre det(A) keine Einheit in
K[X] (siehe (4.3)). Wir können also durch weitere unimodulare Zeilenumformungen alle
Diagonaleinträge zu 1 machen. Durch unimodulare Spaltentransformationen lassen sich
dann alle Einträge ausserhalb der Diagonalen eliminieren, wir erhalten also die Matrix
En; also läßt sich A schreiben als Produkt unimodularer Elementarmatrizen.

Definition 7.3.17. Zwei Matrizen A,B ∈ R
m×n

heißen unimodular äquivalent falls es
unimodulare Matrizen P ∈ R

m×m
und Q ∈ R

n×n
gibt, so dass PAQ = B.
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Um auch gleich die Eindeutigkeit der Smith-Normalform nachzuweisen, benötigen wir
einige weitere, recht natürliche Definitionen. Falls ϕ1, . . . , ϕk ∈ K[X], so existiert ein
eindeutiges normiertes Polynom von maximalem Grad, welches alle ϕ1, . . . , ϕk teilt, wel-
ches wir den größten gemeinsamen Teiler ggT(ϕ1, . . . , ϕk) von ϕ1, . . . , ϕk nennen.

Definition 7.3.18. Sei A ∈ K[X]m×n und k ∈ {1, . . . ,min(m,n)}. Ein k-Minor von A
ist die Determinante einer k× k Untermatrix von A. Der größte gemeinsame Teiler aller
k-Minoren von A wird Determinantenteiler von A genannt, und mit dk(A) bezeichnet;
zudem definieren wir d0(A) ∶= 1. Der Determinantenrang von A ist die größte natürliche
Zahl k, so dass A einen k-Minor ungleich 0 besitzt, und wird mit r(A) bezeichnet.

Lemma 7.3.19. Es seien A,B ∈ K[X]m×n unimodular äquivalent. Dann gilt r(A) =
r(B) und für alle i ∈ {1, . . . , r} gilt di(A) = di(B).

Beweis. Seien P,Q ∈ K[X]n×n unimodular so dass PAQ = B. Die Zeilen von PA sind
Linearkombinationen der Zeilen von A. Also ist für k ≤ min(m,n) jeder k-Minor von
PA eine Linearkombination der k-Minoren von A. Analog ist jede Spalte von (PA)Q
eine Linearkombination der Spalten von PA, also ist jeder k-Minor von (PA)Q eine
Linearkombination der k-Minoren von PA, und folglich der k-Minoren von A. Daher

• sind für k > r(A) alle k-Minoren von B gleich 0, also r(B) ≤ r(A),

• und für k ≤ r(A) gilt dk(A)∣dk(B).

Mit dem gleichen Argument angewandt auf P
−1
BQ

−1
A zeigt man r(A) ≤ r(B) und

dk(B)∣dk(A). Da der ggT normiert ist, folgt dk(A) = dk(B).

Satz 7.3.20 (Smith-Normalform). Jede Matrix A ∈ K[X]n×n ist unimodular äquivalent
zu einer eindeutigen Matrix der Gestalt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ϕ1 0
⋱

ϕm
0
⋱

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

wobei ϕ1, . . . , ϕm ∈ K[X] normiert, so dass ϕi∣ϕj für alle i, j ∈ {1, . . . ,m} mit i < j.
Die Zahl m und die Polynome ϕ1, . . . , ϕm ∈ K[X] berechnen sich wie folgt:

• m = r(A) ist der Determinantenrang von A, und

• ϕi =
di(A)
di−1(A) für i ∈ {1, . . . ,m}.

Das folgende Beispiel wird im nächsten Abschnitt eine wichtige Rolle spielen.
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7 Normalformen von Matrizen

Beispiel 7.3.21. Es sei ϕ ∈ K[X] ein normiertes Polynom vom Grad n. Dann ist die
Smith-Normalform von XEn − Zϕ von der Gestalt

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0
⋱

1
0 ϕ

⎞
⎟⎟⎟⎟⎟⎟
⎠
. (7.15)

Wie wir in Beispiel 7.2.1 gesehen haben, lässt sich XEn − Zϕ durch unimodulare Zeile-
numformungen in folgende Gestalt bringen:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 X 0 0 α1

0 −1 X 0 α2

⋱ ⋱ ⋱ ⋮
⋱ ⋱ X αn−2

⋮ ⋱ −1 X + αn−1

0 ⋯ 0 α0 +Xα1 +X
2
α2 +⋯+ αn−1X

n−1 +Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Durch unimodulare Spaltenumformungen können dann

• die Einträge −1 auf der Diagonalen zu 1 geändert werden, und

• die Einträge mit X oberhalb der Diagonalen zu 0 geändert werden,

• die ersten n − 1 Einträge der letzten Spalte zu 0 geändert werden.

Die resultierende Matrix hat die Form (7.15). △

Beweis von Satz 7.3.20. Wir geben ein Verfahren an, welches nach einer endlichen An-
zahl von Schritten terminiert, und unimodulare Matrizen P ∈ K[X]n×n und Q ∈

K[X]m×m und ein normiertes Polynom ϕ1 ∈ K[X] liefert, so dass

PAQ = (ϕ1 0
0 B

) (7.16)

wobei B ∈ K[X](n−1)×(m−1)
und ϕ1 teilt alle Einträge von B.

1. Falls A = 0 dann sind wir fertig; wir nehmen also im Folgenden an, dass A =

(aij) ≠ 0.

2. Wende Zeilen- und Spaltenvertauschungen an, so dass a1,1 ≠ 0, und so dass a1,1 ∈

K[X] unter allen Einträgen von A, die nicht 0 sind, den kleinsten Grad besitzt.

3. Schreibe jeden Eintrag a1,j in der ersten Zeile als a1,j = q1,ja1,1+r1,j für q1,j , r1,j ∈

K[X] mit grad(r1,j) < grad(a1,1) (Polynomdivision), und führe folgende unimo-
dulare Spaltenumformung durch: ziehe q1,ja∗1 von der j-ten Spalte a∗j von A ab,
so dass danach a1,j = r1,j .
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4. Analog zum vorigen Schritt verfahren wir mit den Spalten anstatt der Zeilen.

5. Falls ein Eintrag von A strikt kleineren Grad hat als a1,1, gehe zu Schritt 1.

6. Ansonsten: a1,1 ≠ 0; alle anderen Einträge der ersten Zeile und ersten Spalte sind
0; und alle anderen Einträge von A, die nicht 0 sind, haben größeren Grad als a1,1.
Falls a1,1 alle anderen Einträge von A teilt, so können wir durch Multiplikation
der ersten Zeile mit einer Einheit in K[X] erreichen, dass a1,1 normiert ist. Also
ist A von der gewünschten Gestalt und das Verfahren bricht ab.

7. Ansonsten, falls a1,1 den Eintrag ai,j nicht teilt, schreibe aij als ai,j = qa1,1 + r
für q, r ∈ K[X] mit 0 ≠ grad(r) < grad(a1,1). Addiere dann die erste Zeile von A
zur i-ten Zeile. Subtrahiere das q-fache der ersten Spalte von der j-ten Spalte. Wir
erhalten eine Matrix mit Eintrag r an der Stelle i, j. Fahre fort mit Schritt 1.

Wir wenden dieses Verfahren nun induktiv auf B anstatt auf A an. Bei Abbruch des Ver-
fahrens ist die resultierende Matrix in Smith-Normalform. Das Verfahren terminiert nach
endlich (polynomiell) vielen Schritten: zunächst ist die Tiefe der Induktion höchstens n.
Im Induktionsschritt wird höchstens n mal zu Schritt 1 zurückgesprungen, da jedesmal
der Grad von a1,1 strikt kleiner wird.

Da alle auftretenden Umformungen im Verfahren durch Multiplikation mit unimodu-
laren Elementarmatrizen von links oder von rechts beschrieben werden können, folgt,
dass die resultierende Matrix S unimodular äquivalent ist zu A.

Die Eindeutigkeit folgt aus der zweiten Aussage. Nach Lemma 7.3.19 gilt

r(A) = r(S) = m

und für i ∈ {1, . . . ,m} gilt

di(A) = di(S) = ϕ1⋯ϕi,

und damit ist ϕi =
di(A)
di−1(A) .

Bemerkung 7.3.22. Wie bei der Berechnung der Hermite-Normalform besteht bei der
algorithmischen Berechnung der Smith-Normalform die Gefahr, dass Einträge der Ma-
trizen zu groß werden. Mit ähnlichen Methoden wie in Abschnitt 7.3.3 lässt sich das
vermeiden, so dass auch die Smith-Normalform einer Matrix A ∈ Q[X]n×n in polyno-
mieller Zeit berechnet werden kann [3,7].

7.3.6 Zusammenhang Smith-Normalform und Frobenius-Normalform

Die Smith-Normalform kann dazu verwendet werden, um die Frobenius-Normalform (aus
Abschnitt 7.2.5) von A ∈ Kn×n zu berechnen! Wir berechnen dazu die Smith-Normalform
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S der Matrix XEn −A mit Einträgen aus K[X]. Diese ist von der Gestalt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ϕ1 0
⋱

ϕm
0
⋱

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.17)

wobei ϕ1, . . . , ϕm ∈ K[X] normierte Polynome sind, so dass ϕi∣ϕj für alle i, j ∈ {1, . . . ,m}
mit i < j.

Bemerkung 7.3.23. Es gilt m = n und ∏i∈{1,...,n} ϕi = χA. Das folgt direkt aus der
Definition von χA = det(XEn −A) und der Beobachtung, dass

• sowohl χA als auch ∏i∈{1,...,n} ϕi normiert sind, und

• unimodulare Zeilen- und Spaltenumformungen die Determinante bis auf Multipli-
kation mit einer Einheit nicht ändern (siehe Proposition 4.1.3 für Zeilenumformun-
gen, und kombiniere mit Proposition 4.1.14 für Spaltenumformungen).

Satz 7.3.24. Falls A ∈ Kn×n, ϕ1, . . . , ϕn ∈ K
n×n

die Polynome aus (7.17) der Smith-
Normalform. Dann gilt ϕ1 = ⋯ = ϕ` = 1 für ` = ∑n

i=1 grad(ϕi), und ϕ`+1, . . . , ϕn sind
die Ähnlichkeitsinvarianten von A. Die Frobenius-Normalform F von A hat also die
Gestalt

F =

⎛
⎜⎜
⎝

Zϕn 0
⋱

0 Zϕ`+1

⎞
⎟⎟
⎠
.

Beweis. Es seien ψ1, . . . , ψk die Ähnlichkeitsinvarianten von A, so dass ϕi∣ϕi−1 für alle
i ∈ {2, . . . , k}. Wenn ψi für i ∈ {1, . . . , k} vom Grad di ist, dann haben wir in Bei-
spiel 7.3.21 gesehen, dass XEdi − Zψi unimodular äquivalent ist zu

Ci ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
ψi

⎞
⎟⎟⎟⎟⎟⎟
⎠
.

Man sieht daher leicht, dass sich XEn−A mit unimodularen Zeilen- und Spaltenumfor-
mungen in die Gestalt

⎛
⎜⎜
⎝

Ck 0
⋱

0 C1

⎞
⎟⎟
⎠
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bringen läßt. Durch Vertauschen von Zeilen und Spalten erhalten wir dann die Matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
⋱

1
ψk

⋱
0 ψ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Da 1∣φi und ψi∣ψj für i, j ∈ {1, . . . , k} mit i < j, ist diese Matrix in SNF, und aus
der Eindeutigkeit der Smith-Normalform (Satz 7.3.20) folgt, dass k = n − ` und ψ1 =

ϕ`+1, . . . , ψk = ϕn. Die Aussage folgt aus der Eindeutigkeit der Frobenius-Normalform
(Satz 7.2.31).

Definition 7.3.25. Zwei Matrizen A,B ∈ R
n×n

heißen unimodular ähnlich falls es eine
unimodulare Matrix S ∈ R

n×n
gibt mit SAS

−1
= B.

Nachrechnen: unimodulare Ähnlichkeit ist eine Äquivalenzrelation.

Korollar 7.3.26 (Satz von Frobenius). Seien A,B ∈ Kn×n. Dann sind die folgenden
drei Aussagen logisch äquivalent.

1. A und B sind ähnlich;

2. XEn −A und XEn −B sind unimodular ähnlich;

3. XEn −A und XEn −B sind unimodular äquivalent.

Beweis. Angenommen, A und B sind ähnlich. Dann gibt es eine invertierbare Matrix
C ∈ Kn×n so dass A = CBC

−1
, und es gilt

XEn −A = CXEnC
−1
− CBC

−1
= C(XEn −B)C−1

.

Die Implikation 2. ⇒ 3. ist trivial. Für die Implikation 3. ⇒ 1 verwenden wir, dass
XEn −A und XEn −B die selbe Smith-Normalform S haben (Satz 7.3.20), und damit
nach Satz 7.3.24 auch die gleichen Ähnlichkeitsinvarianten; die Aussage folgt dann aus
der Eindeutigkeit der Frobenius-Normalform (Satz 7.2.31).

Bemerkung 7.3.27. Korollar 7.3.26 hat einen direkten Beweis, der ohne die Smith-
Normalform auskommt; siehe Serre [11] (Theorem 6.3.2).

Übung 51. Seien A ∈ Q[X]n×n und b ∈ Q[X]n. Erläutern Sie, wie man in polynomieller
Zeit feststellen kann, ob es ein x ∈ Q[X]n gibt, so dass Ax = b.

Übung 52. Die ganzzahligen Lösungen eines linearen Gleichungssystems lassen sich auch
mit Hilfe der Smith-Normalform bestimmen. Sei Ax = b für A ∈ Zm×n und b ∈ Zm das
gegebene lineare Gleichungssystem. Seien P ∈ Zm×m und Q ∈ Zn×n unimodular, so dass
S = PAQ in Smith-Normalform. Zeigen Sie die folgenden Aussagen:
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7 Normalformen von Matrizen

• Ax = b und PAx = Pb haben die gleichen ganzzahligen Lösungen.

• Ax = b hat genau dann eine ganzzahlige Lösung, wenn Sy = Pb eine ganzzahlige
Lösung hat. (Tipp: setze x = Qy).

• Die ganzzahligen Lösungen von Sy = Pb lassen sich einfach ermitteln.

Übung 53 (Christian Zschalig). Finden Sie zwei ganzzahlige Matrizen, die unimodular
äquivalent und spaltenäquivalent, aber nicht unimodular spaltenäquivalent sind.

Tipp. Es gibt bereits Beispiele aus Z2×2
.

Übung 54. Kann man mit Hilfe der Smith-Normalform auch die Jordan-Normalform
berechnen (so sie denn existiert)?

7

7
Vielen Dank an die Teilnehmer:innen der VL im SS24 für die Idee zu dieser Übung.
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Kapitel 8

Euklidische und unitäre
Vektorräume

Euklidische Vektorräume sind Vektorräume mit einem ausgezeichneten Skalarprodukt,
und wurden bereits in Abschnitt 6.1.3 eingeführt. Wir wenden uns diesen jetzt systema-
tischer zu. Ein großer Teil der Theorie kann parallel für Vektorräume über C entwickelt
werden; die Modifikationen der Aussagen für die komplexe Variante wird immer grün
hervorgehoben.

8.1 Bilinearformen

Wichtiger Spezialfall: Skalarprodukt (Abschnitt 6.1.3). Sei V ein K-Vektorraum. Wir
schreiben im folgenden wieder x anstatt x⃗ für Elemente von V .

Definition 8.1.1. Eine Abbildung

B∶V × V → K

heißt Bilinearform (auf V ) wenn gilt: für alle u, v, u1, u2, v1, v2 ∈ V und α ∈ K:

• Linearität in der ersten Stelle: B(u1+u2, v) = B(u1, v)+B(u2, v) und B(αu1, v) =
αB(u1, v).

• Linearität in der zweiten Stelle: B(u, v1+v2) = B(u, v1)+B(u, v2) und B(u, αv) =
αB(u, v).

Folgerung:

B(0, v) = 0 = B(u,0)
B(−u, v) = −B(u, v) = B(u,−v)

Für K = C: eine Abbildung B∶V × V → C heißt Semibilinearform (oder Sesquilinear-
form

1
) falls gilt

1
Sesqui: lateinisch für eineinhalb.
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8 Euklidische und unitäre Vektorräume

• Linearität in der ersten Stelle (wie oben)

• Semilinearität in der zweiten Stelle:

B(u, v1 + v2) = B(u, v1) +B(u, v2)
B(u, βv) = β̄B(u, v)

wobei β̄ ∶= a − bi für β = a + bi die konjugiert komplexe Zahl zu β ∈ C.

Bemerkung 8.1.2. In der Physik andere Konvention: das erste Argument erfüllt Semili-
nearität.

Bemerkung 8.1.3. Konjugation definiert ein Automorphismus des Körpers (C;+,∗),
d.h., eine bijektive Abbildung C → C, die verträglich ist mit Addition und Multipli-
kation:

(a + bi) + (c + di) = (a + c) − (b + d)i = (a + bi) + (c + di)
(a + bi) ∗ (c + di) = ac + (bc + ad)i − bd = ac − adi − bci − bd

= (a − bi) ∗ (c − di) = (a + bi) ∗ (c + di)

Definition 8.1.4. Eine (Semi-) Bilinearform B∶V × V → K heißt

• nicht ausgeartet falls

∀u ≠ 0 ∃v ∈ V ∶ B(u, v) ≠ 0

∀v ≠ 0 ∃u ∈ V ∶ B(u, v) ≠ 0

• symmetrisch falls
∀u, v ∈ V ∶ B(u, v) = B(v, u)

• hermitisch falls K = C und

∀u, v ∈ V ∶ B(u, v) = B(v, u)

• positiv definit falls K = R oder K = C und

∀u ∈ V \ {0} ∶ B(u, u) ∈ R und B(u, u) > 0.

• Skalarprodukt falls K = R (bzw. K = C) und B positiv definit und symmetrisch
(bzw. hermitisch).

Beispiele für (Semi-) Bilinearformen.

1. Das Standardskalarprodukt im Rn (siehe Abschnitt 6.1.3):

B(x, y) ∶= x ∗ y = x⊤y = x1y1 +⋯+ xnyn
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8.1 Bilinearformen

2. das Lorentz-Produkt (Relativitätstheorie) auf V = R4
:

x =

⎛
⎜⎜⎜⎜⎜⎜
⎝

x1

x2

x3

t

⎞
⎟⎟⎟⎟⎟⎟
⎠

y =

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1

y2

y3

s

⎞
⎟⎟⎟⎟⎟⎟
⎠

(Raum- und Zeitkoordinaten)

B(x, y) ∶= x1y1 + x2y2 + x3y3 − c
2
ts = x

⊤
Ay
⊤

wobei (c: Lichtgeschwindigkeit)

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 −c2

⎞
⎟⎟⎟⎟⎟⎟
⎠

Kein Skalarprodukt, da nicht positiv definit.

3. Sei V der Vektorraum aller auf dem Intervall [a, b] ⊆ R stetigen Funktionen f ∶R→
R. Dann ist

B(f, g) ∶= ∫
b

a
f(x)g(x) dx

ein Skalarprodukt (Beispiel 6.1.2).

Allgemeine Sätze für Skalarprodukte (so wie z.B. Cauchy-Schwartz) gelten für alle diese
Beispiele und brauchen nicht immer neu bewiesen zu werden.

8.1.1 Bilinearformen und Matrizen

Sei V ein K-Vektorraum mit der Basis C = (v1, . . . , vn), und B∶V ×V → K eine (Semi-)
Bilinearform auf V . Die Matrix

A = (aij) ∈ Kn×n

mit aij = B(vi, vj) heißt Gramsche Matrix
2

der Bilinearform. (Hängt von C ab!)

Durch die Gramsche Matrix ist die Bilinearform eindeutig festgelegt: seien u = ∑n
i=1 αivi

und v = ∑n
i=1 βivi. Dann ist

B(u, v) = B (∑αivi,∑βivi) =∑
i,j

αiβjB(vi, vj)

=∑
i,j

αiaijβj = (α1, . . . , αn)A
⎛
⎜⎜
⎝

β1

⋮
βn

⎞
⎟⎟
⎠
. (8.1)

2
Jórger Perdersen Gram (1850-1916), dänischer Versicherungsmathematiker.
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8 Euklidische und unitäre Vektorräume

Spezialfall V = Kn, C = (e1, . . . , en) Standardbasis:

B(u, v) = u⊤Av (8.2)

Standardbilinearform auf Kn: A = En, d.h., B(u, v) = u⊤v (vgl. Standardskalarprodukt).

Umgekehrt gilt: für jede Matrix A ∈ Kn×n ist durch (8.1) bzw. (8.2) eine Bilinearform
auf V bzw. Kn gegeben.

Zusammenhang Eigenschaften von Bilinearformen und Matrizeneigenschaften: sei B∶V ×
V → K Bilinearform und A die Gramsche Matrix von B (bzgl. irgendeiner Basis). Dann
gilt

B symmetrisch ⇔ A symmetrisch, d.h., A = A
⊤

B hermitisch ⇔ A hermitisch, d.h., A = Ā
⊤

B positiv definit ⇔ A positiv definit, d.h., ∀x ≠ 0 ∶ 0 < x
⊤
Ax (falls K = R oder C)

B nicht ausgeartet ⇔ rg(A) = n

Denn: es gibt kein v ∈ V mit u
⊤
Av ≠ 0 genau dann, wenn u

⊤
A = 0. Es gibt u ∈ V \ {0}

mit u
⊤
A = 0 genau dann, wenn A nicht invertierbar ist, also wenn rg(A) ≠ n.

Nun ein Vorgriff auf Abschnitt 8.3.5 (Hauptachsentransformation). Minoren (Deter-
minanten von quadratischen Untermatrizen) haben wir bereits in Definition 7.3.18 ken-
nengelernt. Der k-te Hauptminor einer Matrix ist die Determinanten der Untermatrix,
die aus den ersten k Elementen der ersten k Zeilen von A besteht.

Proposition 8.1.5. Sei B eine symmetrische Bilinearform B von Rn (oder Cn). Dann
ist B genau dann ein Skalarprodukt, wenn alle Hauptminoren der Gramschen Matrix A
von B (reell und) positiv sind.

Beweis. Kommt in Abschnitt 8.3.5.

Beispiel 8.1.6. Die Diagonalmatrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1 0
λ2

⋱
0 λn

⎞
⎟⎟⎟⎟⎟⎟
⎠
∈ Rn×n

ist genau dann Gramsche Matrix eines Skalarprodukts, wenn alle Eigenwerte λi positiv
sind. Das zugehörige Skalarprodukt auf Rn ist dann

B(u, v) = u⊤Av = λ1u1v1 +⋯+ λnunvn (8.3)

(“gewichtetes Standardskalarprodukt”).

Beweis: offenbar mit Proposition 8.1.5.

Direkter Beweis:
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8.1 Bilinearformen

• Der Ausdruck in (8.3) ist sicher symmetrisch, und positiv definit falls alle λ1, . . . , λn
positiv sind.

• Falls aber λi ≤ 0 für ein i ≤ n, dann ist B(ei, ei) = λi ≤ 0, und damit ist B nicht
positiv definit. △

8.1.2 Zusammenhang zwischen Bilinearformen

“Kennt man eine, kennt man alle.”
Bilinearformen unterscheiden sich nur durch einen Endomorphismus, genauer:

Satz 8.1.7. Sei B∶V ×V → K eine nicht ausgeartete Bilinearform auf V und f ∶V → V
lineare Abbildung (Endomorphismus). Dann ist

B
′(u, v) ∶= B(f(u), v) (8.4)

ebenfalls eine Bilinearform, und jede Bilinearform B
′

ensteht aus B auf diese Weise
(für geeignetes f).

Für V = Kn lässt sich (8.4) schreiben als

B
′(u, v) = B(Cu, v)

für ein C ∈ Kn×n.

Beweis. Sei V = Kn. Sei A
′

die Gramsche Matrix von B
′

und A die Gramsche Matrix
von B. Dann ist A invertierbar, da B nicht ausgeartet (Satz 3.2.25). Also

B
′(u, v) = u⊤A′v = u⊤A′A−1

Av = ((A−1)⊤(A′)⊤
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

=∶C

u)⊤Av = B(Cu, v).

8.1.3 Beschreibung von Bilinearformen durch quadratische Formen

Sei B∶V × V → K eine Bilinearform auf V . Die zugehörige quadratische Form

q∶V → K

ist definiert durch

q(v) ∶= B(v, v).

Achtung: keine lineare Abbildung!
q hat die Eigenschaften:

1. q(λv) = λ2
q(v)

2. q(u + v) = q(u) +B(u, v) +B(v, u) + q(v)
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8 Euklidische und unitäre Vektorräume

Eine symmetrische Bilinearform ist sogar durch q eindeutig bestimmt (falls char(K) ≠ 2),
denn aus der zweiten Eigenschaft folgt (‘Polarisierung’):

B(u, v) = 2
−1(q(u + v) − q(u) − q(v))

Bemerkung: 2
−1

existiert nicht in F2 oder allgemeiner falls char(K) = 2.

Die Kennlinie K einer Bilinearform ist definiert durch

K ∶= {u ∈ V ∣ q(u) = 1}.

Beispiel 8.1.8. V = R2
. Anderes Skalarprodukt:

x ∗ y ∶= 2x1y1 + x1y2 + x2y1 + x2y2

= (x1 x2) (2 1
1 1

)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Gramsche Matrix

(y1

y2
)

Kriterium aus Proposition 8.1.5 zeigt, dass Skalarprodukt vorliegt:

det(2) > 0, det (2 1
1 1

) > 0

Die zugehörige quadratische Form:

q(x) = x ∗ x = 2x
2
1 + 2x1x2 + x

2
2

Kennlinie:
K ∶= {x ∈ R2 ∣ 2x

2
1 + 2x1x2 + x

2
2 = 1}

eine Ellipse. Bild: eine Ellipse durch Punkte (0, 1), (0,−1), (1,−1), (−1, 1).
Bestimmung der Achsen: Hauptachsentransformation. △

Bemerkung 8.1.9. Die Kennlinie einer Bilinearform ist stets ein Kegelschnitt (Ellipse für
Skalarprodukte).

Klassifikation von Bilinearformen durch Kennlinie: Kapitel 8.3.5, verwendet ebenfalls
Hauptachsentransformation.

8.1.4 Bilinearformen und Dualraum

Erinnerung: V
∗

steht für den dualen Raum aller Linearformen von V . Zusammenhang
zwischen Bilinearformen B∶V × V → K und linearen Abbildungen L∶V → V

∗
:

• Sei φ∶V → V
∗

lineare Abbildung. Dann ist durch

Bφ(u, v) ∶= φ(u)ÍÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÏ
∈V ∗

(v)

eine Bilinearform definiert (die genau dann nicht ausgeartet ist, wenn φ injektiv
ist).
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8.2 Euklidische und Unitäre Vektorräume

• Jede Bilinearform entsteht auf diese Weise. Für die Bilinearform B∶V ×V → K ist
durch

φB∶V → V
∗
∶ u↦ fu

mit fu(v) ∶= B(u, v) eine lineare Abbildung definiert (die genau dann injektiv ist,
wenn B nicht ausgeartet ist).

Durch diesen Zusammenhang ist eine Bijektion gegeben, denn es gilt

BφB = B und φBφ = φ.

8.2 Euklidische und Unitäre Vektorräume

Wiederholung (Definition 6.1.1): ein euklidischer bzw. unitärer Vektorraum ist ein R
(bzw. C)-Vektorraum V mit einem Skalarprodukt

∗∶V × V → R V × V → C

Wiederholung:

∥u∥ ∶=
√
u ∗ u =

√
q(u)

heißt Norm von u ∈ V .
u ist normierter Vektor falls ∥u∥= 1.

Satz 8.2.1. In einem euklidischen bzw. unitären Vektorraum gilt:

• Die Norm ist ein vernünftiges Längenmaß:

1. ∥x∥ ≥ 0 für alle x ∈ V ; ∥x∥ = 0 ⇔ x = 0.

2. ∥αx∥ = ∣α∣ ⋅ ∥x∥ für alle x ∈ V und α ∈ R bzw. α ∈ C.

3. Die Dreiecksungleichung (siehe Abschnitt 6.1.5):

∥x + y∥ ≤ ∥x∥+∥y∥

• Die Cauchy-Schwarzsche Ungleichung:

∣x ∗ y∣ ≤ ∥x∥⋅∥y∥

äquivalent dazu:
(x ∗ y)(x ∗ y) ≤ (x ∗ x)(y ∗ y)

bzw.

∣x ∗ y∣2= (x ∗ y)(x ∗ y)
= (x ∗ y)(y ∗ x) ≤ (x ∗ x)(y ∗ y)

Gleichheit gilt genau dann, wenn x−αy = 0, d.h., wenn x, y linear abhängig sind.
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8 Euklidische und unitäre Vektorräume

ℝn ℂn

Euklidischer 
VR

Unitaerer 
VRHilbertraum

Banachraum Prähilbertraum

Normierter 
Raum

Metrischer 
Raum

Topologischer 
Raum

Norm

Abstand

Offene Mengen

Norm 
und Vollständigkeit Skalarprodukt

Skalarprodukt 
und Vollständigkeit

ℝ-Vektorraum 
mit Skalarprodukt

ℂ-Vektorraum 
mit Skalarprodukt

Beweis. Wir konzentrieren uns auf den komplexen Fall der Cauchy-Schwarzen Unglei-
chung; den reellen Fall haben wir bereits in Abschnitt 6.1.4 betrachtet. Falls y = 0 ist
die Aussage trivial. Sei nun y ≠ 0. Setzen α ∶= x∗y

∣∣y∣∣2 . Nun gilt

0 ≤ (x − αy) ∗ (x − αy) (∗ ist positiv definit)

= x ∗ (x − αy) − αy ∗ (x − αy) (Linearität in 1. Stelle)

= (x ∗ x) − ᾱ(x ∗ y) − α(y ∗ x) + αᾱ(y ∗ y) (Semilinearität in 2. Stelle)

= ∥x∥2
−
(x ∗ y)(x ∗ y)

∥y∥2

−
(x ∗ y)(y ∗ x)

∥y∥2
+

(x ∗ y)(x ∗ y)(y ∗ y)
∥y∥2 ∥y∥2

(Einsetzen von α)

= ∥x∥2
−
(x ∗ y)(y ∗ x)

∥y∥2
(Vereinfachen)

Damit ist (x ∗ y)2
≤ ∥x∥2 ∥y∥2

.

Übung 55. Sei A ∈ Rn×n so, dass ∥Ax∥= 0 für alle x ∈ Rn. Zeigen Sie, dass A = 0.

Jede Norm auf einem Vektorraum induziert durch d ∶= ∥x − y∥ eine Metrik (Ab-
standsbegriff ↝ Analysis). Ist ein unitärer Raum vollständig bzgl. der Norm (i.e., jede
Cauchyfolge konvergiert), so heißt er Hilbert-Raum. Ein Vektorraum, in dem ein Skalar-
produkt definiert ist, heißt dagegen Prähilbertraum.
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8.2 Euklidische und Unitäre Vektorräume

Beispiel 8.2.2. Betrachten die Menge der Folgen (xn)n∈N von komplexen Zahlen, so dass
die Reihe ∑∞

n=1 ∣xn∣
2

konvergiert. Hierauf definieren wir das Skalarprodukt

(xn)n∈N ∗ (yn)n∈N ∶= ∑
n∈N

xnȳn

Dieser Ausdruck konvergiert: zunächst ist

n

∑
i=1

∣xiȳi∣ ≤ (
n

∑
i=1

∣xi∣2)
1/2

(
n

∑
i=1

∣yi∣2)
1/2

wegen der Ungleichung von Cauchy-Schwarz für das Standardskalarprodukt im Cn; die
rechte Seite aber ist uniform beschränkt. Dieser Raum ist vollständig und damit ein Hil-
bertraum, und wird (wie die entsprechende Norm) mit `2 bezeichnet und auch “der Hil-
bertraum” genannt. Es ist bis auf Isometrie der einzige unendlich-dimensionale separable
(d.h., mit abzählbarer dichter Teilmenge) Hilbertraum (Satz von Fischer-Riesz). △

8.2.1 Orthogonalität

Zwei Vektoren u, v eines euklidischen Vektorraums V heißen orthogonal, u ⊥ v, wenn
u ∗ v = 0. Für Teilmenge U ⊆ V heißt

U
⊥
∶= {w ∈ V ∣ ∀u ∈ U ∶w ⊥ u}

das orthogonale Komplement von U .

Bemerkungen.

• U
⊥

ist stets Untervektorraum von V und es gilt

U
⊥
= ⟨U⊥⟩ = ⟨U⟩⊥

• Vorgriff: für U ≤ V ist U
⊥

ein Komplement im Sinne von Definition 2.4.17, d.h.,
es gilt (für Begründung siehe Bemerkung 8.2.13)

V = U ⊕ U
⊥

(jedes v ∈ V lässt sich eindeutig schreiben als u + w für u ∈ U und w ∈ U
⊥

)
Insbesondere:

dimU + dimU
⊥
= dimV

8.2.2 Orthogonalsysteme

Sei V euklidischer oder unitärer Vektorraum.

Definition 8.2.3. (v1, . . . , vr) ∈ V r
heißt
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8 Euklidische und unitäre Vektorräume

• Orthogonalsystem falls v1 ≠ 0, . . . , vr ≠ 0 und vi ∗ vj = 0 für verschiedene i, j ∈
{1, . . . , r};

• Orthonormalsystem falls (v1, . . . , vn) ein normiertes Orthogonalsystem, d.h., falls
zusätzlich ∥vi∥= 1 für alle i ∈ {1, . . . , r}. Anders geschrieben: vi ∗ vj = δij
(Kroneckersymbol);

• Orthogonalbasis falls Basis und Orthogonalsystem;

• Orthonormalbasis (oder kurz ON-Basis) falls Basis und Orthonormalsystem.

Proposition 8.2.4. Jedes Orthogonalsystem ist linear unabhängig.

Folgerung: ein Orthogonalsystem (v1, . . . , vr) ist genau dann eine ON-Basis, wenn
r = dimV .

Beweis. Sei (v1, . . . , vr) Orthogonalsystem, und

α1v1 +⋯+ αnvn = 0

Zu zeigen: αi = 0. Skalarprodukt mit vi auf beiden Seiten ergibt

α1(v1 ∗ vi) +⋯+ αr(vr ∗ vi) = 0

also αi(vi ∗ vi) = 0. Da vi ≠ 0 ist vi ∗ vi ≠ 0, also αi = 0.

Bemerkung 8.2.5. Die Gramsche Matrix eines Skalarprodukts ist bezüglich einer ON-
Basis stets die Einheitsmatrix.

Beispiel 8.2.6. Sei V = Rn und

x ∗ y ∶= x1y1 +⋯+ xnyn

das Standardskalarprodukt. Wegen ei ∗ ej = δij ist (e1, . . . , en) eine ON-Basis. △

8.2.3 Das Gram-Schmidtsche Orthonormalisierungsverfahren

Sei V ein euklidischer bzw. unitärer VR und seien (v1, . . . , vr) linear unabhängig.

Satz 8.2.7 (Gram-Schmidt). Durch folgende rekursive Definitionen erhält man für k ∈
{1, . . . , r} ein Orthonormalsystem (ṽ1, . . . , ṽr) mit ⟨v1, . . . , vk⟩ = ⟨ṽ1, . . . , ṽk⟩:

ṽ1 ∶=
1

∥v1∥
v1

v
′
k ∶= vk −

k−1

∑
i=1

(vk ∗ ṽi)ṽi (8.5)

ṽk ∶=
1

∥v′k∥
v
′
k (Normierung).
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8.2 Euklidische und Unitäre Vektorräume

v1

0

v2

v3

U

~

~

pU

v3
~

v3‘

Abbildung 8.1: Illustration zum Verfahren von Gram-Schmidt für k = 3.

Idee für (8.5) für k = 3: sei U = ⟨ṽ1, ṽ2⟩ der von ṽ1, ṽ2 aufgespannte Untervektorraum
und pU die Projektion von v3 auf U . Siehe Abbildung 8.1 (und Abschnitt 6.2.4).

v
′
3 = v3 − pu = v3 −

2

∑
i=1

(v3 ∗ ṽi)ṽi

Folgerung 1. Jeder n-dimensionale euklidische (unitäre) VR hat eine ON-Basis (man
starte Verfahren mit Basis v1, . . . , vn).

Folgerung 2. Jede Orthonormalbasis eines Untervektorraums U ≤ V läßt sich zu einer
ON-Basis von V ergänzen.

Beweis von Satz 8.2.7. Per Induktion über k. Fall k = 1: klar, ṽ1 ∗ ṽ1 = 1.
Induktionsschritt: Behauptung sei für alle j < k bereits bewiesen.

v
′
k ∗ vj = (vk −

k−1

∑
i=1

(vk ∗ ṽi)ṽi) ∗ vj

= vk ∗ ṽj −
k−1

∑
i=1

(vk ∗ ṽi) (ṽi ∗ ṽj)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=δij

= vk ∗ ṽj − vk ∗ ṽj = 0

also ṽk ∗ ṽj =
1

∥v′k∥
(v′k, ṽj) = 0. Weiterhin gilt ṽk ∗ ṽk = 1 und

⟨ṽ1, . . . , ṽk⟩ = ⟨v1, . . . , vk⟩
Dies folgt aus

⟨ṽ1, . . . , ṽk⟩ ⊆ ⟨ṽ1, . . . , ṽk−1, vk⟩ (wegen (8.5))

= ⟨v1, . . . , vk−1, vk⟩ (Induktionsvoraussetzung))

Es gilt sogar Gleichheit, da ṽ1, . . . , ṽk nach Proposition 8.2.4 linear unabhängig.
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8 Euklidische und unitäre Vektorräume

Beispiel 8.2.8. Sei V = R4
mit Standardskalarprodukt.

v1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

v2 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
0
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

v3 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

sind linear unabhängig. Gram-Schmidtsches ON-Verfahren liefert:

ṽ1 ∶=
v1

∥v1∥
=
v1√

4
=

1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

und

v
′
2 ∶= v2 − (v2 ∗ ṽ1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

− 1
2
+0+ 1

2
+ 1

2
2=1

ṽ1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
0
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠
− 1 ⋅

1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠
=

1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

−3
−1
1
3

⎞
⎟⎟⎟⎟⎟⎟
⎠
.

Weiterhin ṽ2 =
v
′
2

∥v2∥ =
1

2
√

5

⎛
⎜⎜⎜⎜⎜⎜
⎝

−3
−1
1
3

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (Probe: v1 ∗ v2 = 0.)

v
′
3 ∶= v3 − (v3 ∗ ṽ1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=− 1
2

ṽ1 − (v3 ∗ ṽ2)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=− 3

2
√
5

ṽ2

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
−1

⎞
⎟⎟⎟⎟⎟⎟
⎠
−(−1

2
)1

2Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=

5
20

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠
−(− 3

2
√

5
) 1

2
√

5Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
3
20

⎛
⎜⎜⎜⎜⎜⎜
⎝

−3
−1
1
3

⎞
⎟⎟⎟⎟⎟⎟
⎠
=

1

20

⎛
⎜⎜⎜⎜⎜⎜
⎝

−4
2
8
−6

⎞
⎟⎟⎟⎟⎟⎟
⎠
=

1

10

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2
1
4
−3

⎞
⎟⎟⎟⎟⎟⎟
⎠

ṽ3 ∶=
v
′
3

∥v′3∥
=

1√
30

⎛
⎜⎜⎜⎜⎜⎜
⎝

−2
1
4
−3

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (Probe: vi ∗ vj = δij .) △

Bemerkung 8.2.9. Manchmal kann es von Vorteil sein, zunächst nur ein Orthogonal-
system zu berechnen, und die Normierung der Vektoren erst am Ende des Verfahrens
durchzuführen, da dann im Anfangsteil des Algorithmus keine Wurzeln gezogen werden
müssen.

Motivation: Mit ON-Basis wird das Rechnen mit Koordintenvektoren, Skalarprodukt,
und orthogonalem Komplement besonders einfach.
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8.2 Euklidische und Unitäre Vektorräume

Bemerkung 8.2.10. Sei (v1, . . . , vn) ON-Basis von euklidischen/unitären VR V . Dann
gilt folgender Entwicklungssatz für v ∈ V (gilt auch für unendliche ON-Basen):

v =
n

∑
i=1

(v ∗ vi)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
“Fourierkoeffizienten”

vi

Denn: falls v = ∑n
j=1 αjvj , dann gilt

v ∗ vi =
n

∑
j=1

αj (vj , vi)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=δij

= αi.

Bemerkung 8.2.11. Bezüglich einer ON-Basis (v1, . . . , vn) ist jedes Skalarprodukt das
Standardskalarprodukt der Koordinatenvektoren: für u = ∑n

i=1 αivi und w = ∑n
i=1 βivi

gilt

u ∗ w = α1β1 +⋯+ αnβn

bzw., in unitären VR,

u ∗ w = α1β̄1 +⋯+ αnβ̄n

Denn:

∑αivi ∗∑βjvj =∑
i,j

αiβ̄j (vi ∗ vj)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
δij

Bemerkung 8.2.12. Es gilt die Parsevalsche Gleichung :

v ∗ v = ∥v∥2
=

n

∑
i=1

∣v ∗ vi∣2

(rechte Seite: Summe der Quadrate der Fourrierkoeffizienten)

Denn: für v = ∑n
i=1 αivi ist

v ∗ v
(2.)
= α1ᾱ1 +⋯+ αnᾱn = ∣α1∣2 +⋯+ ∣αn∣2

(1.)
=

n

∑
i=1

∣v ∗ vi∣2

In Hilberträumen gilt für orthonormales System (e1, e2, . . . ):

v ∗ v = ∥v∥2
≥∑
i∈N

∣v ∗ ei∣2 (Besselsche Ungleichung)

Bemerkung 8.2.13. Sei U ≤ V und (u1, . . . , um) ON-Basis von U .
Sei (u1, . . . , um, um+1, . . . , un) Ergänzung zu ON-Basis von V (Verfahren von Gram-
Schmidt, Folgerung 2). Dann ist

U
⊥
= ⟨um+1, . . . , un⟩
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8 Euklidische und unitäre Vektorräume

und (um+1, . . . , un) ist ON-Basis von U
⊥

.

Also: V = U ⊕ U
⊥

(siehe Abschnitt 2.4.17).

Denn: vi ∗ vj = 0 fur i ≤ m und m + 1 ≤ j, also vm+1, . . . , vn ∈ U
⊥

also

⟨um+1, . . . , un⟩ ⊆ U⊥

Umgekehrt sei v ∈ ∑αivi ∈ U
⊥

. Dann ist αi
(1)
= v ∗ vi = 0 für i ≤ m (da vi ∈ U). Also

v = ∑n
i=m+1 αivi ∈ ⟨vm+1, . . . , vn⟩.

8.2.4 Orthogonalprojektion

Sei V euklidischer (oder unitärer) VR, und U ≤ V Untervektorraum.

V = U ⊕ U
⊥

∃u,w ∶ v = u + w (eindeutig!)

Bezeichnung: pU(v) ∶= u.

Definition 8.2.14. Die Orthogonalprojektion eines Vektors v ∈ V auf einen Unterraum
U ist der (eindeutig bestimmte) Vektor pU(v) ∈ U , so dass eine Zerlegung v = pU(v)+w
mit w ∈ U

⊥
existiert (insbesondere pU(v) ⊥ w).

Einfache Berechnung von pU(v) mit ON-Basis (u1, . . . , um) von U :

pU(v) =
m

∑
i=1

(v ∗ ui)ui

(erster Teil der Fourierentwicklung, siehe Abschnitt 8.2.3)

Satz 8.2.15. Sei V euklidischer VR und U ≤ V .

1. Für alle u ∈ U und v ∈ V gilt

∥v − pU(v)∥2
≤ ∥v − u∥2

2. Das Gleichheitszeichen gilt nur für u = pU(v).

Beweis. Zu (1). Sei v ∈ V . Dann gibt es w ∈ U
⊥

mit v = pU(v) + w (Abschnitt 8.2.1).
Sei u ∈ U . Dann gilt

∥v − u∥2
= ∥w + pU(v) − u∥2

= ∥w∥2
+∥pU(v) − u∥2

(da w ⊥ (pU(v) − u))
≥ ∥w∥2

= ∥v − pU(v)∥2
.

Zu (2). Nach dem Entwicklungssatz aus Abschnitt 8.2.3:

v =
m

∑
i=1

(v ∗ vi)vi
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

∈U

+
n

∑
i=m+1

(v ∗ vi)vi
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

∈U⊥

= pU(v) (nach Definition 8.2.14).
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8.2.5 Anwendung: Methode der kleinsten Fehlerquadrate

Entwickelt von Gauß zur Berechnung von Planetenbahnen.

Annahme: theoretisch bekannter (oder vermuteter) Zusammenhang f zwischen zwei
(Mess-) Größen

y = f(x) = a0 + a1g1(x) +⋯+ amgm(x)

wobei g1, . . . , gm bekannte Funktionen, z.B. gi(x) ∶= xi, also

y = f(x) = a0 + a1x +⋯+ amx
m

Gegeben: Messreihe (x1, y1), . . . , (xn, yn) (i.A. fehlerbehaftet)

Gesucht: Möglichst genaue Approximation für f , d.h., für a0, a1, . . . , am.

Was ist gute Approximation?

Ansatz:

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1

y2

⋮
yn

⎞
⎟⎟⎟⎟⎟⎟
⎠

falls Messwerte
=

exakt

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 g1(x1) ⋯ gm(x1)
1 g1(x2) ⋯ gm(x2)
⋮ ⋮ ⋮
1 g1(xn) ⋯ gm(xn)

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0

a1

⋮
am

⎞
⎟⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

c1

c2

⋮
cn

⎞
⎟⎟⎟⎟⎟⎟
⎠

Maß für Abweichung der Kurve f von den Messpunkten ist

∥y −Aa∥ =

√
(y1 − c1)2 +⋯+ (yn − cn)2

Norm in Rm+1
z.B. für Standardskalarprodukt.

→ Methode der kleinsten Fehlerquadrate.
Große Abweichungen der Modellfunktion von den Daten werden stärker gewichtet.

Gegeben: A, y.
Gesucht: a ∈ Rm+1

, so dass ∥y −Aa∥ ≤ ∥y −Ab∥ für alle b ∈ Rm+1
.

Sei

U ∶= {Ab ∣ b ∈ Rm+1} = BildA ≤ Rn

Lösung Aa = pU(y) liefert beste Approximation gemäß Definition 8.2.14,
da ∥y − pU(y)∥ minimal.

Lösungsmethode:

1. Bestimmung einer Basis (v1, . . . , vr) von U ∶= BildA.

2. Bestimmung einer ON-Basis (ṽ1, . . . , ṽr) von U (siehe Abschnitt 8.2.3).

3. Berechne pU(y) = ∑r
i=1(y ∗ ṽi)ṽi (siehe Satz 8.2.15).
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4. Berechnung der Lösung a =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0

a1

⋮
am

⎞
⎟⎟⎟⎟⎟⎟
⎠

des Gleichungssystems

Aa = pU(y)

liefert beste Approximation

f(x) = a0 + a1g1(x) +⋯+ amgm(x).

Lösbarkeit garantiert, da pU(y) ∈ U = BildA, Abschnitt 3.3.2.
System eindeutig lösbar falls rg(A) = r = n, Korollar 3.3.7.

Beispiel. Messreihe:

Versuch Nr. xi yi
1 -1 -3/2
2 0 1
3 1 0
4 2 3

-1
-3/2

1

0

3

0 1 2

Theoretisch gegebener Zusammenhang sei lineare Funktion (Gerade)

y = f(x) = a0 + a1xÍ ÒÒÒÑÒÒÒÒÏ
g1(x)

“Ausgleichsrechnung”: Fehler
√
∑i≤4(f(xi) − yi)2 minimieren.

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −1
1 0
1 1
1 2

⎞
⎟⎟⎟⎟⎟⎟
⎠
, y =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−3/2
1
0
3

⎞
⎟⎟⎟⎟⎟⎟
⎠

Gesucht: Lösung a = (a0

a1
) für Aa = pU(y), U ∶= BildA.

1. Basis von U : haben rg(A) = 2 und wählen

v1 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠
, v2 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
0
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠
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2. ON-Basis von U :

ṽ1 =
1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

v
′
2 ∶= v2 − (v2 ∗ ṽ1)ṽ1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
0
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠
−

1

4

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
0
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠
∗

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟
⎠
=

1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

−3
−1
1
3

⎞
⎟⎟⎟⎟⎟⎟
⎠

∥v′2∥ =
√
(9 + 1 + 1 + 9)/4 =

√
5

ṽ2 ∶=
1

∥v′2∥
v
′
2 =

1

2
√

5

⎛
⎜⎜⎜⎜⎜⎜
⎝

−3
−1
1
3

⎞
⎟⎟⎟⎟⎟⎟
⎠

3. Berechnung von pU(y):

pU(y) = (y ∗ ṽ1)ṽ1 + (y ∗ ṽ2)ṽ2
Ü
=

5

4
ṽ1 +

5
√

5

4
ṽ2

Ü
=

5

4

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
0
1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

4. Lösung des Gleichungssystems A (a0

a1
) = pU(y) nach a0 und a1:

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 −1
1 0
1 1
1 2

⎞
⎟⎟⎟⎟⎟⎟
⎠
(a0

a1
) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−5/4
0

5/4
5/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

Hat Lösung a0 = 0, a1 = 5/4.

Ergebnis: die beste Approximation für die Messreihe ist die Gerade

y = f(x) = 5

4
x

Jede andere Gerade liefert größeren Fehler!

8.3 Klassifikation bis auf orthogonale und unitäre Ähnlichkeit

Was sind strukturverträgliche Abbildungen für euklidische Vektorräume? Mit Struktur
ist gemeint: Skalarprodukt, Längen, Orthogonalität, Winkel, . . . Die Antwort lautet: or-
thogonale Abbildungen.
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8 Euklidische und unitäre Vektorräume

8.3.1 Orthogonale und unitäre Abbildungen

In diesem Abschnitt behandeln wir orthogonale (und unitäre) Abbildungen in etwas
allgemeinerer Form als in Abschnitt 6.5).

Es seien V und W euklidische (unitäre) Vektorräume, ∗V und ∗W die dazugehörigen
Skalarprodukte, und ∥.∥V , ∥.∥W die zugehörigen Normen.

Definition 8.3.1. Eine lineare Abbildung f ∶V → W heißt orthogonal (bzw. unitär)
falls für alle u, v ∈ V :

u ∗V v = f(u) ∗W f(v)

Satz 8.3.2 (Charakterisierung Orthogonalität). Es sei f ∶V →W lineare Abbildung.
Dann sind äquivalent:

1. f ist orthogonal;

2. ∀x ∈ V ∶ ∥x∥V = 1⇒ ∥f(x)∥W= 1

3. ∀x ∈ V ∶ ∥x∥V = ∥f(x)∥W (f ist längentreu)

4. falls (u1, . . . , ur) ON-System in V , so ist (f(u1), . . . , f(ur)) ein ON-System in W .

Beweis. 1.⇒ 2.: Aus ∥x∥ = 1 folgt

∥f(x)∥2
W = f(x) ∗ f(x)
= x ∗ x (wegen (1))

= ∥x∥2
V = 1

also auch ∥f(x)∥W= 1.

2.⇒ 3.: Ist x = 0, so gilt f(x) = 0, also ∥f(x)∥ = 0 = ∥x∥.
Sei nun x ≠ 0. Für x̃ = x

∥x∥ gilt ∥x̃∥= 1. Also ∥f(x̃)∥= 1 wegen (2) und es folgt

∥f(x)∥W = ∥f(∥x∥V x̃)∥
= ∥x∥V ⋅∥f(x̃)∥W (Linearität von f und Eigenschaft von Normen)

= ∥x∥V .

3.⇒ 4.: Sei (u1, . . . , ur) ein ON-System. Dann

∥uj∥ = 1
(3)
⇒ ∥f(uj)∥= 1

Sei j ≠ k, zu zeigen bleibt: f(uj) ∗ f(uk) = 0.

∥uj + uk∥2
= ∥uj∥2

+ ∥uk∥2
+

=0Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Î
2(uj ∗ uk)

∥f(uj + uk)∥2
= ∥f(uj) + f(uk)∥2

= ∥f(uj)∥2
+ ∥f(uk)∥2

+ 2(f(uj) ∗ f(uk))
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8.3 Klassifikation bis auf orthogonale und unitäre Ähnlichkeit

Also f(uj) ∗ f(uk) = 0.

4.⇒ 1.: Es gelte (4), z.z. ist u ∗ v = f(u) ∗ f(v).
1. Fall: u, v sind linear abhängig, o.B.d.A: v = αu für α ∈ K. Dann ist ũ ∶= u

∥u∥ ein

ON-System (bestehend aus nur einem Vektor) also auch f(ũ) nach (4). Es folgt

u ∗ v = ∥u∥ũ ∗ α∥u∥ũ = ũ ∗ ũÍ ÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÏ
=1

∥u∥2
α

und f(u) ∗ f(v) = f(∥u∥ũ) ∗ f(α∥u∥ũ) = (f(ũ) ∗ f(ũ))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=1

∥u∥2
α.

2. Fall: u, v sind linear unabhängig. Verfahren aus Abschnitt 8.2.3 liefert ON-System
(ũ, ṽ) mit ⟨u, v⟩ = ⟨ũ, ṽ⟩, d.h. es gibt α1, α2, β1, β2 so dass u = α1ũ + α2ṽ und v =

β1ũ + β2ṽ. Nach (4) ist (f(ũ), f(ṽ)) ein ON-System, also

f(u) ∗ f(v) = (α1f(ũ) + α2f(ṽ)) ∗ (β1f(ũ) + β2f(ṽ))
= α1β1 + α2β2

= (α1ũ + α2ṽ) ∗ (β1ũ + β2ṽ) = u ∗ v.

Wegen Satz 8.3.2 werden unitäre und orthogonale Abbildungen auch häufig Isometrien
genant. Wir sehen also: längentreu impliziert winkeltreu. Die Umkehrung gilt aber nicht
(x↦ 2x ist winkeltreue, aber nicht längentreue linear Abbildung).

Folgerungen:

1. Sind B = (v1, . . . , vn) und B
′
= (w1, . . . , wn) ON-Basen von V bzw. von W , so ist

die durch f ∶V →W ∶ vi ↦ wi definierte lineare Abbildung orthogonal.

2. Wenn f ∶V →W orthogonal, dann ist f injektiv, denn

f(x) = 0⇒ ∥f(x)∥= 0

⇒ ∥x∥= 0

⇒ x = 0.

8.3.2 Darstellungsmatrizen orthogonaler Abbildungen

Häufig wird Orthogonalität nur für quadratische Matrizen definiert; wir machen das
gleich etwas allgemeiner, damit auch der Zusammenhang zu orthogonalen Abbildungen
in voller Allgemeinheit formuliert werden kann.

Definition 8.3.3. Eine Matrix A ∈ Rm×n (bzw. Cm×n) heiße orthogonal (bzw. unitär)
wenn

A
⊤
A = En bzw. Ā

⊤
A = En.

Bemerkung 8.3.4. Falls A ∈ Rn×n orthogonal (unitär), so ist A invertierbar und es gilt

A
−1
= A

⊤
(A

−1
= Ā

⊤
), also insbesondere auch AA

⊤
= AA

−1
= En (AĀ

⊤
= AA

−1
= En).
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8 Euklidische und unitäre Vektorräume

Rechtfertigung für diese Definition: Satz 8.3.5.

Satz 8.3.5. Seien V und W euklidische (unitäre) Vektorräume mit ON-Basen B =

(v1, . . . , vn) beziehungsweise C = (w1, . . . , wm). Sei f ∶V → W eine lineare Abbildung
und sei A ∶=MB

C (f) ∈ Rm×n (Cm×n) die Darstellungsmatrix von f . Dann sind äquivalent:

1. A ist orthogonal (unitär);

2. f ist orthogonal (unitär);

3. die Spalten von A bilden eine ON-Basis von U ≤ Rm (Cm) mit dim(U) = n
bezüglich des Standardskalarproduktes.

Beweis. (1)⇒ (2): Für das Standardskalarprodukt haben wir diese Implikation in Pro-
position 6.5.1 gezeigt. Der allgemeine Fall geht im Prinzip genauso; wir zeigen ihn gleich
für den unitären Fall. Seien u = x1u1+⋯+xnun ∈ V und v = y1v1+⋯+ ynvn ∈ V . Da
∗ hermitesch und B orthonormal gilt

u ∗ v = x1y1 +⋯+ xnyn

= x
⊤
Enȳ = x

⊤
Ā⊤Aȳ (da A unitär)

= x
⊤(A⊤Ā)ȳ = (Ax)⊤(Ay) = f(u) ∗ f(v).

(2) ⇒ (3): nach Satz 8.3.2 ist f(v1), . . . , f(vn) ein ON-System. Die i-te Spalte von
A ist der Koordinatenvektor von f(vi) bezüglich der ON-Basis C; also sind die Spalten
von A eine ON-Basis von U ≤ Rm (Cm) mit dim(U) = n.

(3)⇒ (1): Seien s1, . . . , sn die Spalten von A. Dann gilt si ∗ sj = s
⊤
i sj = δij für alle

i, j ∈ {1, . . . , n}. Also A
⊤
A = En.

O(n) ⊂ Rn×n: Menge aller quadratischen orthogonalen Matrizen.
U(n) ⊂ Cn×n: Menge aller quadratischen unitären Matrizen.

Bemerkung 8.3.6. Für orthogonale (bzw. unitäre) Matrix A ∈ Rn×n (bzw. Cn×n) gilt

• ∣detA ∣ = 1 (denn 1
det(A) = det(A−1) = det(A⊤) = det(A)).

• ∣λ∣ = 1 für jeden Eigenwert λ von A (denn fA ist längentreu!).

Beispiel 8.3.7. Permutationsmatrizen (Beispiel 7.3.2) sind orthogonal: Bezeichnet Pπ die
zu einer Permutation π zugehörige Permutationsmatrix, dann gilt

P
⊤
π Pπ = Pπ−1Pπ = Pπ−1◦π = Pid = E

denn

• die transponierte Permutationsmatrix ist gleich der Permutationsmatrix der inver-
sen Permutation, und
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8.3 Klassifikation bis auf orthogonale und unitäre Ähnlichkeit

• das Produkt von Permutationsmatrizen entspricht der Hintereinanderausführung
der Permutationen. △

Übung 56. Wie würden Sie die Lösung des linearen Gleichungssystems Ax = b berechnen,
wenn A ∈ Qn×n orthogonal ist?

Übung 57. Zeigen Sie: die vorzeichenbehafteten Permutationsmatrizen, bei denen in jeder
Zeile und Spalte genau ein Eintrag plus oder minus eins ist und alle übrigen Einträge
null sind, sind genau die ganzzahligen orthogonalen Matrizen.

8.3.3 Orthogonale und unitäre Ähnlichkeit

Zwei Matrizen A,A
′
∈ Rn×n (Cn×n) heißen orthogonal ähnlich (bzw. unitär ähnlich; in

der Literatur bisweilen auch: unitär äquivalent, das ist aber im Hinblick auf die Definition
von (gewöhnlicher) Ähnlichkeit und Äquivalenz irreführend) falls es eine orthogonale
(unitäre) Matrix S gibt so dass A = S

−1
A
′
S. Eine Äquivalenzrelation.

Eine Klassifikation aller Matrizen bis auf orthogonale (unitäre) Ähnlichkeit ist für
diese Vorlesung zu ehrgeizig. Dazu ein Beispiel. Sei n > 2, und betrachten

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 ∗ ∗ ∗ ⋯ ∗
0 2 1 ∗ ∗ ⋯ ∗
0 0 3 1 ∗ ⋯ ∗
0 0 0 4 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ∗
⋮ ⋱ ⋱ 1
0 ⋯ ⋯ 0 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(8.6)

Alle diese Matrizen sind ähnlich, denn die jordansche Normalform ist immer die gleiche,
da allesamt diagonalisierbar wegen χA = (X − 1)(X − 2)⋯(X − n).

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
0 2
⋮ ⋱
0 n

⎞
⎟⎟⎟⎟⎟⎟
⎠

Auf der anderen Seite sind zwei Matrizen von der Form wie in (8.6) nur dann unitär
ähnlich, wenn sie die gleichen Einträge haben (ohne Beweis; hier wird verwendet, dass
auf der oberen Nebendiagonale von A alle Einträge 1 sind. Originalliteratur dazu: Heydar
Radjavi, On Unitary Equivalence of Arbitrary Matrices, Transactions of the AMS, 1962).

Wir erwähnen ohne Beweis:

Satz 8.3.8 (Normalform orthogonaler Matrizen). Eine reelle Matrix A ∈ Rn×n ist genau

dann orthogonal (A−1
= A

⊤), wenn sie zu einer Matrix der folgenden Gestalt orthogonal
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8 Euklidische und unitäre Vektorräume

ähnlich ist

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

+1
⋱

+1
−1

⋱
−1

K1

⋱
Km

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

wobei K1, . . . ,Km Drehmatrizen (Abschnitt 6.5.2), d.h., jeweils von der Gestalt

(cosα − sinα
sinα cosα

)

für ein α ∈ R.

8.3.4 Selbstadjungierte Abbildungen

Für die wichtige Klasse der symmetrischen (hermiteschen) Matrizen wird uns eine Klas-
sifikation bis auf orthogonale Ähnlichkeit gelingen (in Abschnitt 8.3.5). Im folgenden sei
V ein euklidischer (bzw. unitärer) Vektorraum.

Definition 8.3.9. Ein Endomorphismus ϕ∶V → V heißt selbstadjungiert wenn für alle
u, v ∈ V

f(u) ∗ v = u ∗ f(v).

Satz 8.3.10. Sei f ∈ End(V ) und A ∶= M
B
B (f) Darstellungsmatrix von f bezüglich

einer ON-Basis B. Dann ist f genau dann selbstadjungiert wenn A symmetrisch (bzw.

hermitesch, A = Ā
⊤

) ist.

Zum Namen: Ā
⊤
=∶ A∗ heißt Adjungierte zu A.

Beweis. Den Koordinatenvektor von v ∈ V bezüglich B bezeichnen wir mit vB. Dann
ist (f(v))B = AvB und u∗v = u⊤BvB (die Gramsche Matrix ist En weil B eine ON-Basis,

siehe Abschnitt 8.2.3). (Bzw.: u ∗ v = u⊤B v̄B) Also

f(u) ∗ v = u ∗ f(v) ∀u, v ∈ V

⇔ (AuB)⊤vB = u⊤BAvB ∀u, v ∈ V

⇔ u
⊤
BA

⊤
vB = u

⊤
BAvB ∀u, v ∈ V

⇔ A
⊤
= A

(Komplexe Variante: Striche über vB und die A’s auf der rechten Seite.)
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Bemerkung 8.3.11. Adjazenzmatrizen von (ungerichteten) Graphen (siehe Abschnitt 3.2)
sind symmetrisch.

Bemerkung 8.3.12. Symmetrische Matrizen treten auch bei der Beschreibung quadrati-
scher Formen auf (siehe Abschnitt 8.3.7).

Satz 8.3.13. Sei f ∈ End(V ) selbstadjungiert. Dann gilt:

1. f hat nur reelle Eigenwerte, die Nullstellen von χf (interessant wenn V unitärer
Vektorraum);

2. Das charakteristische Polynom χf zerfällt in Linearfaktoren (interessant wenn V
euklidischer Vektorraum);

3. Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal.

Beweis. Zu 1. Sei v ein Eigenvektor zum EW λ:

f(v) = λv, v ≠ 0

Dann gilt

λ(v ∗ v) = λv ∗ v = f(v) ∗ v = v ∗ f(v) = v ∗ λv = λ̄(v ∗ v)

also λ = λ̄, und daher λ ∈ R.

Zu 2. Falls V unitär: Fundamentalsatz der Algebra. Falls V euklidisch: Sei A ∶=MB
B (f)

(symmetrische!) Darstellungsmatrix bzgl ON-Basis B. Fassen A als hermitesche Matrix
A ∈ Cn×n auf. Dann ist

χf(X) = χA(X) = det(XE −A) = (X − λ1)⋯(X − λn) .

Wegen Teil 1 sind λ1, . . . , λn ∈ R, also zerfällt χf(X) auch über R.

Zu 3. Sei f(u) = λu, f(v) = µv, λ ≠ µ. Dann

λ(u ∗ v) = λu ∗ v = f(u) ∗ v
= u ∗ f(v) (da f selbstadjungiert)

= u ∗ µv = µ̄(u ∗ v)
= µ(u ∗ v) (da µ ∈ R nach Teil 1)

Also (λ − µ)(u ∗ v) = 0. Da λ ≠ µ, ist u ∗ v = 0, also u ⊥ v.

8.3.5 Spektralzerlegung (selbstadjungierter Fall)

Titel wird erst später klar. In diesem Abschnitt Lösung des Klassifikationsproblems von
symmetrischen/hermiteschen Matrizen bis auf orthogonale/unitäre Ähnlichkeit.
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8 Euklidische und unitäre Vektorräume

Satz 8.3.14. Sei V ein endlichdimensionaler euklidischer (unitärer) VR, und f ∈

End(V ) selbstadjungiert. Dann existiert eine ON-Basis B von V aus Eigenvektoren von
f (ein Hauptachsensystem); es gilt

M
B
B (f) =

⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠

(8.7)

wobei λ1, . . . , λn reelle Eigenwerte von f .

Beweis. Beweis per Induktion über n ∶= dimV .
Induktionsanfang: n = 1. Jeder Vektor ≠ 0 ist Eigenvektor. Normieren liefert ON-Basis
aus (einem) Eigenvektor.
Induktionsschritt: Sei dimV = n+1 und Satz sei für Dimension n schon bewiesen. Nach
Satz 8.3.13 (2) zerfällt χf in Linearfaktoren. Sei vn+1 Eigenvektor zu Eigenwert λn+1;
o.B.d.A. ∥vn+1∥= 1 (sonst normieren).

U ∶= ⟨vn+1⟩

Behauptung: U
⊥

ist f -invariant, d.h., x ∈ U
⊥
⇒ f(x) ∈ U⊥. Denn:

f(x) ∗ vn+1 = x ∗ f(vn+1) (f selbstadjungiert)

= x ∗ λn+1vn+1 (vn+1 ist EV zu EW λ)

= λn+1(x ∗ vn+1)

Also:

x ∈ U
⊥
⇒ x ∗ vn+1 = 0

⇒ f(x) ∗ vn+1 = 0 (siehe oben)

⇒ f(x) ∈ U⊥

Wegen der Behauptung ist

f0 ∶= f∣U⊥ ∈ End(U⊥)

f0 ist wie f selbstadjungiert. Da dimU
⊥
= n hat U

⊥
nach Induktionsvoraussetzung eine

Basis B = (v1, . . . , vn) aus EW von f0, und von f :

f(vi) = f0(vi) = λivi

für i ∈ {1, . . . , n}. Da vi ⊥ vn+1 ist (v1, . . . , vn, vn+1) eine ON-Basis von V aus Ei-
genvektoren von f . Eigenwerte sind reell nach Satz 8.3.13 (1). Aussage (8.7) folgt aus
Lemma 4.3.15.

Sei A ∈ Rn×n (A ∈ Cn×n) und B = (u1, . . . , un) ein Hauptachsensystem für fA, d.h.,
es gibt λ1, . . . , λn ∈ R so dass ui ist EV von fA zum EW λi. Sei S die Matrix mit den
Spalten u1, . . . , un. Dann ist
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• S orthogonal (Satz 8.3.5), und

• S
⊤
AS (S

⊤
AS̄) Diagonalmatrix (Satz 8.3.14).

“A ist orthogonal diagonalisierbar”. Es gilt

A = S
⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠
S
⊤

=

⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

∣ ∣
u1 . . . un
∣ ∣

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

− u1 −
⋮

− un −

⎞
⎟⎟
⎠

=

⎛
⎜⎜
⎝

∣ ∣
λ1u1 . . . λnun
∣ ∣

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

− u1 −
⋮

− un −

⎞
⎟⎟
⎠
= λ1u1u

T
1 +⋯+ λnunu

⊤
n

und analog A = S
⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠
S̄
⊤
= λ1u1ū

T
1 +⋯+ λnunū

⊤
n .

Man spricht von der Spektralzerlegung von A (Spektrum: Eigenwerte).

Für x ∈ Rn, setze y ∶= S⊤x. Dann gilt

x
⊤
Ax = y

⊤
Dy = λ1y

2
1 +⋯+ λny

2
n. (8.8)

Die n × n-Matrizen Pi ∶= uiu
⊤
i heißen Projektionsmatrizen: für v ∈ Rn ist

Piv = pUi(v)

die Projektion von v auf die Gerade Ui = ⟨ui⟩. Denn:

pUi = (v ∗ ui)ui = (ui ∗ v)ui = (u⊤i v)ui = uiÍÑÏ
∈Rn×1

(u⊤i v)ÍÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
∈R1×1

= (uiu⊤i )v = Piv.

Spektralzerlegung:

Av = λ1pU1
(v) +⋯+ λnpUn(v) (8.9)

Jeder Summand liefert Anteil bezüglich Ui = Rui, den Hauptachsen des Systems.

Korollar 8.3.15. Eine symmetrische Matrix A ∈ Rn×n ist genau dann positiv definit,
wenn alle Eigenwerte positiv sind.

Beweis. Nach Satz 8.3.14 gibt es eine ON-Basis B aus Eigenvektoren u1, . . . , un; sei S
die Matrix mit den Spalten u1, . . . , un. Für x ∈ Rn setze y ∶= S⊤x. Dann gilt (wie in 8.8)

x
⊤
Ax = λ1y

2
1 +⋯+ λny

2
n (8.10)

und daraus liest man die Aussage ab.
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Bemerkung 8.3.16. Aus Korollar 8.3.15 folgt insbesondere Proposition 8.1.5.

Übung 58. Eine Bilinearform B∶Rn × Rn → R heißt positiv semidefinit (negative semi-
definit) falls für alle u ∈ V gilt B(u, u) ≥ 0 (B(u, u) ≤ 0). Zeigen Sie: eine symmetrische
Bilinearform B ist genau dann positiv semidefinit, wenn alle Eigenwerte der Gramschen
Matrix A von B reell und positiv sind.

Übung 59. Zeigen oder widerlegen Sie: eine symmetrische Bilinearform B∶Rn ×Rn → R
ist genau dann positiv semidefinit, wenn für die Gramschen Matrix A von B gilt: für
jedes k ∈ {1, . . . , n} hat die Matrix, die aus den ersten k Elementen der ersten k Zeilen
von A besteht, eine nicht-negative Determinante.

Übung 60. Gibt es x, y ∈ R, so dass die Matrix

⎛
⎜⎜
⎝

x 1 0
1 y 0
0 0 −x

⎞
⎟⎟
⎠

positiv semidefinit ist?

Übung 61. Eine symmetrische Bilinearform B∶Rn × Rn → R ist genau dann positiv
semidefinit, wenn sich die Gramsche Matrix A von B schreiben lässt als A = C

⊤
C für

ein C ∈ Rn×n.

Übung 62. Sei G = (V,E) ein ungerichteter Graph. Die Laplace-Matrix L ∈ Zn×n von
G ist definiert als D − A wobei A die Adjazenzmatrix von G (siehe Abschnitt 3.2) und
D = (dij)i,j∈V die Gradmatrix von G, d.h., die Diagonalmatrix mit Einträgen

di,j = {grad(vi) ∶= ∣{vk ∣ {vi, vk} ∈ E}∣ falls i = j

0 falls i ≠ j.

Zeigen Sie:

• L ist stets positiv semidefinit.

• L hat stets den Eigenwert 0.

Hinweis: Zeigen Sie zunächst, dass für beliebiges v ∈ Rn gilt, dass

(Lv)i = ∑
j∶(i,j)∈E

(vi − vj),

und dann, dass

v
⊤
Lv = ∑

(i,j)∈E,i<j
(vi − vj)2

.
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8.3.6 Hauptachsentransformation

Gegeben: symmetrische (hermitesche) Matrix A ∈ Rn×n (Cn×n).
Gesucht: Hauptachsensystem, i.e., eine ON-Basis von V = Rn (Cn) bestehend aus
Eigenvektoren von A.

Die Matrix S mit diesen Vektoren als Spalten ist dann orthogonal (unitär) und liefert

Diagonalmatrix D = S
⊤
AS (D = S̄

⊤
AS).

Lösung: Wie bei Diagonalisierung (Abschnitt 4.3.4) blos mit Orthonormalisierung.

1. Berechnung der Eigenwerte λ1, . . . , λr von A.

2. a) Zu jedem λi Berechnung einer Basis des Eigenraums

Eigλi(A) = Kern(A − λiE) = Lös(A − λiE,0)

b) Gram-Schmidtsches ON-Verfahren liefert ON-Basis für Eigλi(A)
3. Aneinanderreihung aller ON-Basen aus Schritt 2 (b) liefert ON-Basis (u1, . . . , un)

von V , die nur aus Eigenvektoren besteht:

Aui = µiui mit {µ1, . . . , µn} = {λ1, . . . , λr}
(u1, . . . , un): Hauptachsensystem.

Bemerkung 8.3.17. Verfahren führt stets zur Lösung, denn

• A ist diagonalisierbar (da A symmetrisch / hermitesch);

• die zusammengesetzten Basen aus 2 (b) ergeben ON-Basis nach Abschnitt 8.2.3
(Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal, Satz 8.3.13).

Beispiel 8.3.18. Sei

A = ( 3 −1
−1 3

)

(aus Abschnitt 4.3).

1. Eigenwerte. Nullstellen von det(XE2 −A) = (X − 3)2 − 1: λ1 = 2 und λ2 = 4.

2. a) Eigenräume. Algebraische Vielfachheit = geometrische Vielfachheit = 1.

Eigλ1(A) = ⟨v1⟩ für v1 = (1
1
) Eigλ2(A) = ⟨v2⟩ für v2 = ( 1

−1
)

b) ON-Basen.

u1 ∶=
v1

∥v1∥
=

√
2/2 (1

1
) u2 ∶=

v2

∥v2∥
=

√
2/2 ( 1

−1
)

3. Hauptachsensystem ist B = (u1, u2). △

Bemerkung 8.3.19. Effiziente Algorithmen zur Berechnung der Hauptachsentransforma-
tion und deren exakte Komplexität sind Gegenstand aktueller Forschung; es sei wieder
verwiesen auf [4].
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8 Euklidische und unitäre Vektorräume

8.3.7 Kurven 2ter Ordnung und Kegelschnitte

Eine Kurve 2ter Ordnung (in der Ebene R2) ist eine Menge der Gestalt

K ∶= {(x1, x2) ∈ R2 ∣ ax2
1 + bx1x2 + cx

2
2 + dx1 + ex2 + f = 0} (8.11)

wobei a, b, c, d, e, f ∈ R, und a, b, c nicht alle Null. Treten z.B. auf als Kennlinien von
Bilinearformen, Abschnitt 8.1.3.

Beispiel 8.3.20. Die leere Menge für zum Beispiel für a = 1, b = c = d = e = 0, f = −1,
denn ∅ = {(x1, x2) ∈ R2 ∣ x2

1 = −1}. △

Beispiel 8.3.21. R2
zum Beispiel für a = b = c = d = e = f = 0. △

Beispiel 8.3.22. Ein einzelner Punkt für zum Beispiel a = c = 1 und b = d = e = f = 0,
denn {(0, 0)} = {(x1, x2) ∈ R2 ∣ x2

1 + x
2
2 = 0}. △

Beispiel 8.3.23. Eine Gerade: zum Beispiel beschrieben durch x
2
1 = 0. △

Beispiel 8.3.24. Eine Ellipse: zum Beispiel, für a, c > 0,

{(x1, x2) ∈ R2 ∣ ax2
1 + cx

2
2 = 1}.

Spezialfall a = c: Kreis. △

Beispiel 8.3.25. Eine Parabel: zum Beispiel

{(x1, x2) ∈ R2 ∣ x2
1 − x2 = 0}

(Scheitel im Punkt (0, 0) und Achse auf der x2-Achse). △

Beispiel 8.3.26. Eine Hyperbel: Zum Beispiel

{(x1, x2) ∈ R2 ∣ x2
1 − x

2
2 = 1}

(Mittelpunkt (0, 0) und Hauptachse x2). △

Beispiel 8.3.27. Die Vereinigung von zwei sich schneidenden Geraden: z.B. beschrieben
durch x

2
1 − x

2
2 = 0. △

Beispiel 8.3.28. Die Vereinigung von zwei parallelen Geraden: z.B. beschrieben durch
x

2
1 = 1. △

Dies sind im wesentlichen alle Möglichkeiten. Präzisierung mit Hilfe der Hauptachsen-
transformation.

Geometrisch Kegelschnitte: Schnitt einer Ebene mit Doppelkegel.
Experiment: Taschenlampe auf Wand, welche Fläche sieht man?

Fall 1 (leere Menge) und 8 (Parallele Geraden): Schnitt von Ebene mit Kreiszylinder
(Grenzfall eines Kegels mit Kegelspitze im Unendlichen).

Matrixdarstellung:

x
⊤
Ax + (d e)x + f = 0
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8.3 Klassifikation bis auf orthogonale und unitäre Ähnlichkeit

für symmetrische Matrix

A = ( a b/2
b/2 c

)

Alternative:

x
⊤
Bx = 0

für

B =

⎛
⎜⎜
⎝

a b/2 d/2
b/2 c e/2
d/2 e/2 f

⎞
⎟⎟
⎠

Hauptachsentransformation: es gibt orthogonale Matrix S mit

D = S
⊤
AS = (λ1 0

0 λ2
)

wobei λ1, λ2 Eigenwerte von A. Koordinatentransformation

x = Sx
′
, x

′
= S

⊤
x

liefert (8.11) in neuen Koordinaten (x
⊤
Ax = x

′⊤
Dx

′
)

λ1(x′1)2
+ λ2(x′2)2

+(g1x
′
1 + g2x

′
2) + h = 0

Falls λi ≠ 0 kann durch Koordinatenwechsel auch noch das lineare Glied gix
′
i zum

Verschwinden gebracht werden:

λi(x′i)2
+ gix

′
i = λi(x′i +

gi
2λiÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

=∶x′′i

)2
−

g
2
i

4λ2
i

Fallunterscheidung:

1. λ1λ2 > 0. Ellipse oder degenerierte Fälle: die leere Menge oder ein Punkt.

2. λ1λ2 = 0: Parabel oder degenerierte Fälle: die leere Menge, eine Gerade, oder zwei
parallele Geraden.

3. λ1λ2 < 0. Hyperbel oder degenerierte Fälle: eine Gerade oder zwei sich schneidende
Geraden.

Bemerkung 8.3.29. detA ändert sich nicht, wenn wir drehen und verschieben.

Bemerkung 8.3.30. Kurven zweiter Ordnung im R2
(siehe (8.11)) haben folgende natürliche

Verallgemeinerung im Rn: eine Quadrik ist eine Menge der Gestalt

{(x1, . . . , xn) ∈ Rn ∣
n

∑
i,j=1

ai,jxixj + 2
n

∑
i=1

bixi + c}

für a1,1, . . . , an,n, b1, . . . , bn, c ∈ R, wobei mindestes einer der Koeffizienten a1,1, . . . , an,n
ungleich Null sein muss.
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8 Euklidische und unitäre Vektorräume

Bilinearformen quadratische
Formen

Symmetrische
Bilinearformen

Abbildung 8.2: Zusammenhang Bilinearformen, quadratische Formen, und symmetrische
Bilinearformen.

8.3.8 Klassifikation von quadratischen Formen

Klassifizieren quadratische Formen q∶Rn → R, und daher auch symmetrische Bilinear-
formen B∶Rn×n → R (Abschnitt 8.1.3 zum Zusammenhang quadratische Formen und
Bilinearformen). Können q schreiben als

q(x) = xTAx = Ax ∗ x

wobei ∗ das Standardskalarprodukt und A ∈ Rn×n symmetrisch (siehe Abbildung 8.2).
Denn: sei B Bilinearform mit

q(x) = B(x, x) = ∑
1≤i≤j≤n

B(ei, ej)xixj .

Sei A die Matrix mit Einträgen ai,i ∶= B(ei, ei) und ai,j = B(ei, ej)/2 für i ≠ j. Dann
gilt

q(x) = B(x, x) = ∑
1≤i,j≤n

ai,jxixj = x
⊤
Ax.

Also können wir eine ON-Basis von Rn finden, die A diagonalisiert, d.h.

A = SDS
−1
= S

⎛
⎜⎜
⎝

λ1

⋱
λn

⎞
⎟⎟
⎠
S
⊤

für eine orthogonale Matrix S ∈ Rn×n. Schreiben y für S
⊤
x (Koordinatenwechsel), und

erhalten (wie in (8.8))

q(x) = x⊤SDS⊤ = y⊤Dy = λ1y
2
1 +⋯+ λny

2
n.

Klassifikation:
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8.3 Klassifikation bis auf orthogonale und unitäre Ähnlichkeit

• Alle λ1, . . . , λn positiv oder alle negativ: q ist elliptisch.

• Mindestens ein λi ist Null: q heißt parabolisch.

• Sonst (also alle λi ungleich Null, und es gibt sowohl positive als auch negative
Werte): q heißt hyperbolisch (oder auch indefinit).

Wie kann man den Typ von q entscheiden, ohne die Nullstellen des charakteristischen
Polynoms zu berechnen?

Lemma 8.3.31 (Vorzeichenregel von Descartes). Sei ϕ ∈ R[X] ein Polynom so dass

ϕ(X) = Xn
+ an−1X

n−1
+⋯+ a1X + a0 = (X − λ1)⋯(X − λn) (8.12)

für λ1, . . . , λn ∈ R.

1. 0 ist genau dann Nullstelle von ϕ, wenn a0 = 0.

2. Alle Nullstellen von ϕ sind negativ ⇔ an−1, . . . , a0 > 0.

3. Falls n gerade ist:
alle Nullstellen von ϕ positiv ⇔ an−1 < 0, an−2 > 0, . . . , a1 < 0, a0 > 0

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
alternierend

.

4. Falls n ungerade ist:
alle Nullstellen von ϕ positiv ⇔ an−1 < 0, an−2 > 0, . . . , a1 > 0, a0 < 0.

Beispiel 8.3.32. Die Nullstellen von X
3 −X2 +X − 1 und von X

4 −X3 +X2 −X + 1
sind alle positiv. △

Beweis. • Die erste Aussage ist klar (X ausklammern).

• Beweis der zweiten Aussage.
⇒ folgt aus (8.12): falls λ1, . . . , λn negativ sind, dann sind an−1, . . . , a0 positiv,
denn ausmultiplizierte positive Ausdrücke haben positive Koeffizienten.
⇐: wenn a0, a1, . . . , an−1 positiv sind, dann ist ϕ(t) > 0 für alle nicht-negativen
t ∈ R, also sind alle Nullstellen von ϕ negativ.

• Die dritte Aussage:

Alle Nullstellen von ϕ(X) positiv

⇔ Alle Nullstellen von ϕ(−X) negativ

⇔ Koeffizienten von ϕ(−X) positiv (nach Teil 2)

⇔ an−1 < 0, an−2 > 0, . . . , a1 < 0, a0 > 0

Hier ist Teil 2 anwendbar, da ϕ(−X) weiterhin normiert, wenn n gerade ist.

245



8 Euklidische und unitäre Vektorräume

• Die vierte Aussage: analog zur dritten.
Mit dem einfachen ersten Kriterium in Lemma 8.3.31 können wir also einfach ent-

scheiden, ob eine quadratische Form q parabolisch ist. Mit den übrigen Kriterien läßt
sich feststellen, ob q elliptisch ist. Ansonsten ist q hyperbolisch.

Übung 63. Erklären Sie, warum die Terminologie zu elliptischen, parabolischen, und
hyperbolischen quadratischen Formen zusammenpasst mit der Klassifikation von Kurven
zweiter Ordnung in Ellipsen, Parabeln, und Hyperbeln (oder degenerierten Fällen).

8.3.9 Anwendung: Hauptkomponentenanalyse

Experiment: Probanden beantworten Persönlichkeitsfragen zu Ihnen bekannten Perso-
nen, z.B.: “Nimmt sich die Person Zeit für Andere?”, “Wird die Person schnell zornig”,
etc., auf einer Skala von {1, . . . , 10} (“trifft überhaupt nicht zu”, . . . , bis “trifft voll und
ganz zu”)

Ω: Grundmenge aller möglichen Versuchsergebnisse (Annahme: endlich).

P ∶PΩ
→ [0, 1] ⊂ R: Wahrscheinlichkeitsmaß.

Seien X1, . . . , Xn∶Ω→ R Zufallsvariablen.
In der Anwendung etwa: Xi(ω) = a falls im Versuchsergebnis ω ∈ Ω die Frage i mit a
geantwortet wird.
Schreiben X⃗ für die Zufallsvariable (X1, . . . , Xn), die ω ∈ Ω abbildet auf

(X1(ω), . . . , Xn(ω)) ∈ Rn.

Summe und Produkt von Zufallsvariablen, oder von Zufallsvariablen und reellen Zahlen,
sind punktweise definiert: Beispielsweise ist XY die Zufallsvariable, die ω ∈ Ω abbildet
auf X(ω)Y (ω). Wir schreiben X = i als Abkürzung für {ω ∈ Ω ∣ X(ω) = i}.

Definitionen für Zufallsvariablen X,Y :

• Erwartungswert von X:

E[X] ∶= ∑
ω∈Ω

X(ω)P ({ω})

Schätzung von E[Xi] im Experiment: Für Stichproben ω1, ω2, . . . , ωn berechne
arithmetisches Mittel 1

m
∑j∈{1,...,m}Xi(ωj).

• Varianz von X:
V [X] ∶= E[(X − E[X])2]

• Kovarianz von X und Y :

Cov[X,Y ] ∶= E[(X − E[X]) ⋅ (Y − E[Y ])]

Verallgemeinerung der Varianz V [X] = Cov[X,X].
Erhalten Information über ‘Korrelation’ zwischen X und Y . Beispiel: die Frage
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“Wird die Person schnell zornig” und “Hupt die Person häufig im Straßenverkehr”
sind vermutlich positiv korreliert.

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]
= E[XY −XE[Y ] − E[X]Y + E[X]E[Y ]]
= E[XY ] − E[XE[Y ]] − E[E[X]Y ] + E[E[X]E[Y ]] (Linearität von E[.])
= E[XY ] − E[X]E[Y ] − E[X]E[Y ] + E[X]E[Y ] (E[const] = const)

= E[XY ] − E[X]E[Y ] (8.13)

Insbesondere gilt also

V [X] = E[XX] − E[X]2
. (8.14)

Falls X und Y unabhängig sind, gilt Cov[X,Y ] = 0, denn

E[XY ] = ∑
ω∈Ω

X(ω) ⋅ Y (ω)Pr[{ω}] (Definition)

=∑
i

(i ⋅ Pr(XY = i)) (Summe endlich da Ω endlich)

=∑
k,l

(kl ⋅ Pr(X = k und Y = l))

=∑
k,l

(kl ⋅ Pr(X = k)Pr(Y = l)) (X und Y sind unabhängig)

= E[X]E[Y ].

Erhalten Schätzung von Cov[Xi, Xj] aus dem Experiment: für Stichproben ω1, ω2, . . . , ωm
berechne

1
m ∑

k∈{1,...,m}
(Xi(ωk) − E[Xi])(Yj(ωk) − E[Xj]).

• Die Kovarianzmatrix : Matrix aller paarweisen Kovarianzen von X⃗ = (X1, . . . , Xn)

Cov[X⃗] ∶=
⎛
⎜⎜
⎝

Cov[X1, X1] ⋯ Cov[X1, Xn]
⋮ ⋱ ⋮

Cov[Xn, X1] ⋯ Cov[Xn, Xn]

⎞
⎟⎟
⎠
∈ Rn×n

Cov[X⃗] ist symmetrisch!
Schätzung der Kovarianzmatrix ebenfalls symmetrisch.

Satz 8.3.14 liefert: Cov[X⃗] (bzw. Schätzung von Cov[X⃗]) ist orthogonal diagonalisierbar!
Bedeutung der Eigenwerte und -vektoren?

Lemma 8.3.33. Die normierten Eigenvektoren zum größten Eigenwert von Cov[X⃗]
sind genau die normierten Vektoren u ∈ Rn, die die Varianz V [u⊤X⃗] maximieren.
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8 Euklidische und unitäre Vektorräume

Beweis. Es gilt

V [u⊤X⃗] = E[u⊤X⃗u⊤X⃗] − E[u⊤X⃗]2
(siehe (8.14))

= u
⊤(E[X⃗u⊤X⃗] − E[X⃗]E[u⊤X⃗])

= u
⊤(E[X⃗X⃗⊤] − E[X⃗]E[X⃗]⊤)u

= u
⊤

Cov[X⃗]u (see (8.13)).

Nach Satz 8.3.14 gibt es ein Hauptachsensystem (v1, . . . , vn) für Cov(X⃗), so dass vi ein
EV von Cov(X⃗) zum EW λi mit λ1 ≥ λ2 ≥ ⋯ ≥ λn. Sei S die Matrix mit Spalten
v1, . . . , vn. Also

Cov(X⃗) = S
⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠
S
⊤
.

Sei w ∶= S⊤u. Da u normiert und S orthogonal, ist w normiert! Dann gilt

u
⊤

Cov(X⃗)u = u⊤SDS⊤u = w⊤Dw

=

n

∑
i=1

w
2
i λi (siehe (8.9))

≤ λ1(w2
1 +⋯+ w

2
n) = λ1∥w∥= λ1.

Also gilt für alle u ∈ Rn, dass V [u⊤X⃗] ≤ λ1. Für den Vektor u = v1 gilt Gleichheit, da
dann

w = S
⊤
v1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

und w
⊤
Dw = λ1.

Die normierten Eigenvektoren u zum größten Eigenwert von Cov[X⃗] maximieren also

V [u⊤X⃗]. Umgekehrt, falls u ∈ R normiert so dass V [u⊤X⃗] maximal, dann muss gelten

w
⊤
Dw = λ1, also wi = 0 falls λi < λ1. Also ist w eine Linearkombination von {vi ∣ λi =

λ1}. Also ist auch u ein Eigenvektor zum Eigenwert λ1.

Betrachten in unserer Anwendung die fünf größten Eigenwerte und zugehörige Eigen-
vektoren. Haben im wesentlichen

3
psychologische Interpretation:

1. Extraversion (zurückhaltend und reserviert vs. gesellig),

2. Neurotizismus (selbstsicher und ruhig vs. emotional und verletzlich),

3
Psychologische Modelle sind noch etwas komplizierter; ausgehend von den fünf größten Eigenwerten
und deren Eigenvektoren wird im ‘Big Five’ Modell noch nach weiteren psychologisch relevanten
Kriterien optimiert.
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3. Offenheit für Erfahrungen (konservativ und vorsichtig vs. erfinderisch und neugie-
rig),

4. Verträglichkeit (wettbewerbsorientiert und antagonistisch vs. kooperativ, freund-
lich, mitfühlend), und

5. Gewissenhaftigkeit (unbekümmert und nachlässig vs. effektiv und organisiert).

‘‘The big five”. Klassiker in der Psychologie. Ergebnis sehr stabil, z.B. bzgl. Veränderungen
bei den Details des Experiments:

• andere Fragen,

• andere Skalen für die Antworten,

• andere Proband:innen,

• Fragen nicht über andere Personen, sondern über sich selbst, etc.

Zudem ist Ergebnis weitgehend kulturstabil.

Eine weitere psychologische Entdeckung ist, dass sich mit dem gleichen Ansatz zu Fra-
gebögen für Intelligenztests ein mit Abstand größter Eigenwert findet. Der zugehörige
Eigenvektor ist die Definition von Intelligenz (und der Begriff ‘Intelligenz’ erst danach
in die Alltagssprache übergegangen).

Das Verfahren hat ebenfalls Anwendungen in Bilderkennung, Spracherkennung, ma-
schinellem Lernen, etc. (“Clustering”). Die Hauptkomponentenanalyse ist eine “explo-
rative Faktorenanalyse”, und nicht zu verwechseln mit “konfirmatorischer Faktorenana-
lyse”. Der Autor dankt Timo von Oertzen für Erklärungen zu den Anwendungen der
Hauptkomponentenanalyse in der Psychologie.

Übung 64. Zeigen Sie, dass Kovarianzmatrizen stets positiv semidefinit sind (siehe Übung 58).

8.3.10 Spektralsatz

Klären nun: orthogonale Diagonalisierbarkeit.
Symmetrische Matrizen sind orthogonal diagonalisierbar, aber welche noch?
f ∶V → V diagonalisierbar gdw. V eine Basis hat aus Eigenvektoren von V .
Wann hat V eine ON-Basis aus Eigenvektoren von f?

Definition 8.3.34. Eine Matrix A ∈ Rn×n heißt normal falls

A
⊤
⋅A = A ⋅A

⊤
.

Analog heißt B ∈ Cn×n normal falls

Ā
⊤
⋅A = A ⋅ Ā

⊤
.
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8 Euklidische und unitäre Vektorräume

Bemerkung 8.3.35. • Symmetrische Matrizen mit A
⊤
= A sind offensichtlich normal

A
⊤
⋅A = A ⋅A = A ⋅A

⊤

• Orthogonale (und hermitesche) Matrizen A
−1
= A

⊤
sind normal

A
⊤
A = A

−1
A = En = AA

−1
= AA

⊤

Für A ∈ Cn×n heißt die Matrix Ā
⊤

die Adjungierte von A. Falls A ∈ Rn×n ist die
Adjungierte gleich A

⊤
.

Lemma 8.3.36. Sei A ∈ Cn×n und ∗ das Standardskalarprodukt von C. Dann gilt

Ax ∗ y = x ∗ (Ā⊤y)

(Übrigens: diese Eigenschaft charakterisiert die Adjungierte bereits eindeutig).

Beweis. Es gilt

Ax ∗ y = (Ax)⊤ȳ (Definition Standardskalarprodukt)

= x
⊤
A
⊤
ȳ (Rechenregel für Transposition)

= x
⊤(Ā)⊤y) (Rechenregel für Konjugation)

= x
⊤
∗ (Ā⊤y) (Definition Standardskalarprodukt)

Folgendes geht natürlich auch wieder unitär . . .

Für A ∈ Rn×n gilt:
A = 0⇔ (Ax ∗ y = 0 für alle x, y ∈ Rn)

⇒ ist trivial,⇐: mit y ∶= Ax haben wir Ax∗Ax = 0, und damit Ax = 0 für alle x ∈ Rn,
und damit A = 0 (Übung 12). Falls A symmetrisch ist, lässt sich mehr sagen:

Lemma 8.3.37. Sei A ∈ Rn×n symmetrisch. Dann gilt:

A = 0 ⇔ ∀x ∈ Rn ∶ Ax ∗ x = 0

Beweis. ⇒ ist trivial, ⇐:

0 = A(x + y) ∗ (x + y)
= Ax ∗ xÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

=0

+Ax ∗ y +Ay ∗ x +Ay ∗ y
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

= Ax ∗ y + y ∗Ax da A
⊤
= A

= 2Ax ∗ y

Setze y = Ax, dann erhalten wir 0 = Ax ∗ Ax = ∥Ax∣∣2 für alle x ∈ Rn, also A = 0
(Übung 55).
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Bemerkung 8.3.38. Falls A nicht symmetrisch ist, gilt Lemma 8.3.37 im Allgemeinen
nicht: für

A = (0 −1
1 0

) ‘schiefsymmetrische’ Matrix

gilt für alle x ∈ R2
:

Ax ∗ x = −x ∗Ax = −Ax ∗ x

also Ax ∗ x = 0.

Proposition 8.3.39. Eine Matrix A ∈ Rn×n (A ∈ Cn×n) ist genau dann normal, wenn
für alle x ∈ Rn (x ∈ Cn)

∥Ax∥ = ∥A⊤x∥ ∥Ax∥ = ∥Ā⊤x∥

Beweis. Für alle x ∈ Rn gilt

∥Ax∥ = ∥A⊤x∥
⇔ ∥Ax∥2

= ∥A⊤x∥2

⇔ Ax ∗Ax = A
⊤
x ∗A

⊤
x

⇔ x ∗A
⊤
Ax = x ∗AA

⊤
x (Lemma 8.3.36)

⇔ x ∗ (A⊤A −AA⊤)x = 0

was genau dann der Fall ist, wenn A
⊤
A = AA

⊤
: Denn ⇐ ist trivial, und ⇒ folgt aus

Lemma 8.3.37, da A
⊤
A −AA⊤ = (A⊤A)⊤ − (AA⊤)⊤ selbstadjungiert.

Lemma 8.3.40. Eine Matrix A ∈ Rn×n ist genau dann normal, wenn BC = CB wobei
B = (A +A⊤)/2 und C = (A −A⊤)/2.

Beweis.

BC = (A +A⊤)/2(A −A⊤)/2

= (A2
− (A⊤)2

+A
⊤
A −AA

⊤)/4

CB = (A2
− (A⊤)2

−A
⊤
A +AA

⊤)/4

Also

BC = CB ⇔ A
⊤
A −AA

⊤
= −A

⊤
A +AA

⊤

⇔ AA
⊤
= A

⊤
A

Lemma 8.3.41. Sei A ∈ Rn×n und sei M ⊆ Rn invariant unter sowohl f ∶= fA als auch
f
⊤ ∶= fA⊤. Dann ist M

⊤
ebenfalls f - und f

⊤
-invariant.
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8 Euklidische und unitäre Vektorräume

Beweis. Sei x ∈M und y ∈M
⊤

. Zu zeigen ist:

x ∗ f(y) = 0 (⇒M
⊤

ist f -invariant)
x ∗ f

⊤
y = 0 (⇒M

⊤
ist f

⊤
-invariant)

Einfach:

x ∗ f(y) = f⊤(x) ∗ y = 0 (da M f
⊤

-invariant)

x ∗ f
⊤
y = f(x) ∗ y = 0 (da M f -invariant)

Satz 8.3.42 (Spektralsatz). Sei V euklidischer VR, dimV = n, und f ∈ End(V ), und

A ∶=MB
B (f) bezüglich einer Basis B von V . Die folgenden Aussagen sind äquivalent:

1. A ist orthogonal diagonalisierbar.

2. Es existiert eine ON-Basis von Rn aus Eigenvektoren von f ;

3. Das charakteristische Polynom χf zerfällt in Linearfaktoren und A ist normal;

Beweis. (2)⇒ (1): wissen bereits (Satz 4.3.19): f ist diagonalisierbar.
ϕB für B = (b1, . . . , bn) ist der kanonische Basisisomorphismus

(x1, . . . , xn)↦ x1b1 +⋯+ xnbn

Für ON-Basis (w1, . . . , wn) aus Eigenvektoren von f seien

u1 ∶= ϕ
−1
B (w1), . . . , un ∶= ϕ−1

B (wn)
die Koordinatenvektoren und S ∶= (u1 ⋯ un) ist die gesuchte Transformationsmatrix

mit D = S
−1
AS. Es gilt nun

δij = wi ∗ wj (da (w1, . . . , wn) ON-Basis)

= u
⊤
i uj (da ∗ Standardskalarprodukt) .

Also S
⊤
S = E, d.h., S

⊤
= S

−1
.

(1)⇒ (2): wenn u1, . . . , un Spalten von S, dann ist w1 ∶= ϕB(u1), . . . , wn ∶= ϕB(un)
ON-Basis aus Eigenvektoren wegen u

⊤
i uj = wi ∗ wj .

(1)⇒ (3): Falls D = S
−1
AS = S

⊤
AS diagonal, dann ist auch D

⊤
diagonal. Für solche

Matrizen gilt D
⊤
D = D

⊤
D. Da D

⊤
= S

⊤
A
⊤
S und damit A

⊤
= SD

⊤
S
⊤

haben wir

AA
⊤
= SDS

⊤
SD

⊤
S
⊤
= SDD

⊤
S
⊤

= SD
⊤
DS

⊤
= SD

⊤
S
⊤
SDS

⊤
= A

⊤
A

Also ist A normal. Und: χA = χD zerfällt in Linearfaktoren (Satz 4.3.19).

(3)⇒ (2): Ähnlich zum Beweis von Satz 8.3.14.
(Idee war: zeige fA-Invarianz vom orthogonalen Komplement zu einem Eigenvektor.)

Setze f
⊤ ∶= fA⊤ .

Ziel: Finde Eigenvektor x so dass M ∶= ⟨x⟩ sowohl fA als auch f
⊤

-invariant.
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8.3 Klassifikation bis auf orthogonale und unitäre Ähnlichkeit

• Setze B ∶= (A +A⊤)/2 und C ∶= (A −A⊤)/2. Lemma 8.3.40: BC = CB.

• Wenden Satz 8.3.14 (Spektralzerlegung) auf die symmetrische Matrix B an:
finden α ∈ R und y ∈ K ∶= Kern(B −αEn). Dann gilt fC(K) ⊆ K. Sei x ∈ K. Zu
zeigen ist, dass Cx ∈ K.

(B − αEn)(Cx) = BCx − αCx
= CBx − Cαx

= C(B − αEn)x = 0 .

• Wenden Satz 8.3.14 auf symmetrische Matrix (fC)∣K an: finden x ∈ K mit Cx =
βx. Dann gilt

Ax = Bx + Cx = αx + βx = (α + β)x,
also ist x ein EV von f .

• Nach Lemma 8.3.41 ist M
⊤

sowohl fA- als auch f
⊤

-invariant.

• f∣M⊤∶M⊤
→M

⊤
wieder normal.

Induktion wie im Beweis von Satz 8.3.14.

Analog erhält man den folgenden Satz für unitäre Vektorräume.

Satz 8.3.43. Es sei A ∈ Cn×n. Die folgenden Aussagen sind äquivalent:

1. A ist unitär ähnlich zu einer Diagonalmatrix. (Man sagt, A ist unitär diagonali-
sierbar.)

2. Es existiert eine ON-Basis von Cn aus Eigenvektoren von A.

3. A ist normal.

Korollar 8.3.44 (Klassifikation bis auf unitäre Ähnlichkeit). Zwei normale Matrizen
sind genau dann unitär ähnlich, wenn sie die gleichen Eigenwerte (mit den gleichen
Vielfachheiten) haben.

Korollar 8.3.45 (Normalform unitärer Matrizen). Eine Matrix A ∈ Cn×n ist genau

dann unitär (A−1
= Ā

⊤), wenn sie zu einer Diagonalmatrix unitär ähnlich ist, deren
Diagonalelemente alle den Betrag 1 haben, d.h., ∃S ∈ U(n) mit

S̄
⊤
AS =

⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠

mit ∣λi∣ = 1.

Beweis. ⇒: Falls A unitär ist, dann auch normal, und unitäre Diagonalisierbarkeit folgt
direkt aus Satz 8.3.43. Aussage folgt, da alle Eigenwerte von unitären Matrizen Betrag
1 haben (Satz 8.3.2).

⇐: Für Diagonalmatrizen D ist D̄
⊤
= D̄. Falls alle Diagonalelemente Betrag 1 haben,

gilt DD̄ = E: denn für alle d ∈ C gilt dd ∈ R, und falls ∥d∥= 1 so folgt ∣d∣ = 1. Also ist

D unitär. Und damit auch A = SDS̄
⊤

als Produkt unitärer Matrizen.
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8 Euklidische und unitäre Vektorräume

8.4 Der Silverstersche Trägheitssatz

Im Abschnitt 7.1.4 haben wir Matrizen bis auf Ähnlichkeit klassifiziert:

A ≈ B genau dann, wenn es invertierbares S gibt mit B = S
−1
AS.

Im Abschnitt 8.3.3 dann bis auf orthogonale (beziehungsweise unitäre) Ähnlichkeit:

A ≈ortho B genau dann, wenn es orthogonales S gibt mit B = S
−1
AS = S

⊤
AS.

Eine weitere interessante Äquivalenzrelation ist auf Rn×n definiert durch

A ≈⊤ B genau dann, wenn es invertierbares S gibt mit B = S
⊤
AS.

In diesem Fall werden A und B auch kongruent genannt. Die Bedeutung von Kongruenz
aus der Sicht der Bilinearformen B∶Rn × Rn → R erklärt sich durch den folgenden
Zusammenhang.

Lemma 8.4.1. Seien A,A
′
∈ Rn×n. Es gilt genau dann A ≈⊤ A

′
, wenn A und A

′
die

Gramschen Matrizen von derselben Bilinearform sind.

Beweis. Für den Beweis der Rückrichtung sei S = (e1, . . . , en) die Standardbasis von
Rn, und T = (v1, . . . , vn) eine andere Basis, d.h., P ∶= (v1 ⋯ vn) ist invertierbar.
Sei A = (aij) Gramsche Matrix von B bezüglich S, also aij = B(ei, ej). Dann ist

A
′
≈⊤ P

⊤
AP die Gramsche Matrix von B bezüglich T , denn

B(vi, vj) = v⊤i Avj
= (Pei)⊤A(Pej)
= e

⊤
i (P⊤AP )ej .

Der Beweis der Vorwärtsrichtung ergibt sich aus der gleichen Rechnung.

Bemerkung 8.4.2. Kongruente Matrizen haben den gleichen Rang.

Bemerkung 8.4.3. Die Eigenwerte einer quadratischen Matrix sind im Allgemeinen nur
unter Ähnlichkeit von Matrizen invariant, nicht aber unter ≈⊤.

Sei V ein n-dimensionaler euklidischer Vektorraum und A ∈ Rn×n symmetrisch (bzw.
f ∶V → V selbstadjungierte Abbildung). Dann sind alle Eigenwerte λ1, . . . , λn reell und

χf(X) = (λ1 −X) ⋅ ⋅ ⋅ ⋅ ⋅ (λn − λ).

Seien

n+ ∶= Anzahl der λi > 0

n− ∶= Anzahl der λi < 0

n0 ∶= Anzahl der λi = 0
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8.4 Der Silverstersche Trägheitssatz

Dann heißt (n+, n−, n0) bzw. (n+, n−) die Signatur (oder der Typ, oder die Trägheit
4
)

von A (bzw f), bzw. die Signatur der Bilinearform B(x, y) = x
T
Ay, bzw. die Signatur

der quadratischen Form q(x) ∶= xTAx.

n+ + n− = rg(A)
n+ + n− + n0 = n = dimV

Satz 8.4.4 (Sylvesterscher Trägheitssatz
5
). Es sei A ∈ Rn×n eine symmetrische Matrix.

Dann gilt

A ≈⊤ Dn+,n−,n0
∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
⋱

1
−1

⋱
−1

0
⋱

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n+

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n−

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n0

Weiterhin: falls (n′+, n′−, n′0) ≠ (n+, n−, n0), dann gilt Dn′+,n
′
−,n

′
0
/≈⊤ Dn+,n−,n0

. Insbeson-

dere gilt also genau dann A ≈⊤ A
′
, wenn A und A

′
dieselbe Signatur besitzen (Klassifi-

kation durch charakteristische Daten, Abschnitt 7.1.1).

Das heißt, es gibt eine invertierbare Matrix P so dass D ∶= P
⊤
AP . Die Spalten von

P bilden eine Basis von Rn; diese heißt Sylvesterbasis der Bilinearform x ∗ y ∶= x⊤Ay.

Beweis. Nach Satz 8.3.14 gibt es eine orthogonale Matrix S mit

D ∶= S
⊤
AS =

⎛
⎜⎜
⎝

λ1 0
⋱

0 λn

⎞
⎟⎟
⎠

wobei λ1, . . . , λn die EW von A. Ohne Beschränkung der Allgemeinheit sind λ1, . . . , λn+

4
“This constant number of positive signs which attaches to a quadratic function under all its transfor-
mations (. . . ) may be termed conveniently its inertia, until a better word is found.” (from Sylvester’s
article “On the Theory of the Syzygetic Relations”.

5
“(. . . ) my view of the physical meaning of quantity of matter inclines me, upon the ground of analogy,
to give [this law] the name of the Law of Inertia for Quadratic forms, as expressing the fact of the
existence of an invariable number inseparably attached to such forms.” from Sylvester’s article “On
a Theory of the Syzygetic Relations of Two Rational Integral Functions, Comprising an Application
to the Theory of Sturm’s Functions, and That of the Greatest Algebraical Common Measure”.
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8 Euklidische und unitäre Vektorräume

positiv, λn++1, . . . , λn++n− negativ, und λn++n−+1 = ⋅ ⋅ ⋅ = λn = 0. Seien

αi ∶=
1√
λi

für i ∈ {1, . . . , n+}

αi ∶=
1√
−λi

für i ∈ {n+ + 1, . . . , n+ + n−}

αi ∶= 1 für i ∈ {n+ + n− + 1, . . . , n}

Setze

Q ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 0
⋱

αn+
αn++1

⋱
αn++n−

1
⋱

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Q ist invertierbar (denn alle Werte auf der Diagonalen sind ungleich 0) und Q
⊤
= Q

(aber Q
⊤
≠ Q

−1
!). Es gilt

Q
⊤
DQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
⋱

1
−1

⋱
−1

0
⋱

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

denn

• für i ∈ {1, . . . , n+} gilt αiλiαi =
λi√
λi

2 = 1,

• für i ∈ {n+ + 1, . . . , n−} gilt αiλiαi =
λi√
−λi

2 = −1,

• für i ∈ {n−, . . . , n} gilt αiλiαi =
λi
1
= 0.

Also folgt für P ∶= SQ ∈ GL(n,R)

P
⊤
AP = (SQ)⊤A(SQ) = Q⊤S⊤ASQ = Q

⊤
DQ

die angegebene Normalform.
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8.5 Singulärwertzerlegung

Für die Eindeutigkeit nehmen wir an, dass Dn′+,n
′
−,n

′
0
≈⊤ Dn+,n−,n0

. Dann gilt n
′
0 = n0,

da kongruente Matrizen denselben Rang haben (Bemerkung 8.4.2). Da

n+ + n− + n0 = dimV = n
′
+ + n

′
− + n

′
0,

genügt es zu zeigen, dass n+ = n
′
+. Die Matrizen Dn+,n−,n0

und Dn′+,n
′
−,n

′
0

sind nach

Lemma 8.4.1 Gramschen Matrizen derselben Bilinearform B∶Rn × Rn → R. Wir stellen
fest, dass n+ gleich der Dimension d ist des größten Untervektorraums U ≤ Rn, so dass
B∣U×U positiv definit ist (siehe Korollar 8.3.15): Klarerweise ist B positiv definit auf
⟨e1, . . . , en+⟩, also gilt d ≥ n+. Auf V ∶= ⟨en++1, . . . , en⟩ dagegen ist B negativ semidefinit
(siehe Übung 58), also gilt U ∩V = {0}. Das impliziert, dass d ≤ n−dim(V ) = n−n−−
n0 = n+. Es gilt also p = n+. Also auch n

′
+ = p, und (n+, n−, n0) = (n′+, n′−, n′0).

8.5 Singulärwertzerlegung

Zur Einordnung:

Klassisch, S (und T ) invertierbar S (und T ) orthogonal/unitär

S
−1
AS Ähnlichkeit Orthogonale/unitäre Ähnlichkeit

Abschnitt 7.1.4 Abschnitt 8.3

SAT Äquivalenz Orthogonale/unitäre Äquivalenz
Abschnitt 7.1.2

Vorteile:

• Auch anwendbar für lineare Abbildungen zwischen Vektorräumen V,W (mit Ska-
larprodukt) verschiedener (endlicher) Dimension;

• effiziente numerische Verfahren, große Bedeutung in der numerischen Mathematik;

• mathematischer Kern der Hauptkomponentenanalyse in der multivariaten Statis-
tik, mit Anwendungen in der Datenkompression.

Satz 8.5.1. Sei A ∈ Rn×m (A ∈ Cn×m). Dann gibt es ON-Basis B = (e1, . . . , em) von
Rm und C = (f1, . . . , fn) von Rn so dass für ein k ≤ m gilt:

f(e1) = λ1f1, . . . , f(ek) = λkfk
f(ek+1) =⋯ = f(em) = 0

M
B
C (fA) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ1 0
⋱

λn
0
⋱

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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8 Euklidische und unitäre Vektorräume

λ1, . . . , λn: sind natürlich keine Eigenwerte! Aber ein guter Ersatz dafür.

Beweis. Wenden den Spektralsatz (Satz 8.3.14) auf die symmetrische Matrix A
⊤
A an.

Erhalten ON-Basis e1, . . . , em für Rm so dass A
⊤
Aei = σiei. Dann gilt:

Aei ∗Aej = A
⊤
Aei ∗ ej = σiei ∗ ej = σiδij .

Sortieren um, so dass σ1, . . . , σk ≠ 0.
Definieren fi ∶=

Aei
∥Aei∥ für i ∈ {1, . . . , k}.

Ergänzen f1, f2, . . . , fk zu einer ON-Basis f1, . . . , fn von Rn.

8.6 Übersicht Äquivalenzrelationen

In Abbildung 8.3 findet sich eine Übersicht zu Äquivalenzrelationen auf Matrizen, in der
Reihenfolge ihrer Einführung im Skript.
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8.6 Übersicht Äquivalenzrelationen

Symbol Definition Name

Nornmalform /
charakteristische
Daten

Motivation

A ∼ B
A = SBT ,
S, T ∈ GL(n,R) Äquivalenz Rang

fundamental,
Abschnitt 3.2.2

A ≈ B
A = S

−1
BS,

S ∈ GL(n,R) Ähnlichkeit
Frobenius-NF
Jordan-NF

f ∈ End(V )
klassifizieren

A = SB,
S ∈ GL(n,R) Zeilen-

äquivalenz
Reduzierte Zei-
lenstufenform

Lös(A, b) über K,
Abschnitt 3.3.4

A = BS,
detS Einheit

Unimodulare
Spalten-
äquivalenz

Hermite-NF Lös(A, b) über Z,
Ideen für Smith-
NF

A = SBT ,
detS und
detT Einheiten

Unimodulare
Äquivalenz

Smith-NF AL10, Frobenius-
NF ausrechnen

A ≈orth B
A = S

⊤
BS = S

−1
BS,

S orthogonal
Orthogonale
Ähnlichkeit

für normale Ma-
trizen: Spektral-
satz

Quadratische For-
men klassifizie-
ren, Hauptkom-
ponentenanalyse,
Optimierung,
Datenreduktion,
. . .

A ≈⊤ B
A = S

⊤
BS,

S ∈ GL(n,R) Kongruenz Signatur Symmetrische Bi-
linearformen klas-
sifizieren

A = S
⊤
BT ,

S, T orthogonal
Orthogonale
Äquivalenz

Singulärwert-
zerlegung

Wie bei ≈orth,
aber numerisch
robuster

Abbildung 8.3: Äquivalenzrelationen auf Matrizen, entsprechende Normalformen, und
Anwendungen
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