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Kapitel 1

Mengen, Relationen, Abbildungen

Die Mengenlehre ist die Basis der modernen Mathematik. Nahezu alle Teilgebiete der
Mathematik lassen sich in der Sprache der Mengenlehre formalisieren. Um die Mengen-
lehre streng formal aufzubauen, benoétigt man Begriffe aus der Préadikatenlogik (auch
Logik erster Stufe genannt). Dies ist nicht Gegenstand dieser Vorlesung. Da aber die
Grundbegriffe der Mengenlehre (wie Mengen, Relationen, und Abbildungen) fir die li-
neare Algebra und fiir das Mathematikstudium allgemein praktisch sind, beginnen wir
die Vorlesung mit einer kurzen informellen Einfithrung. Auf potentielle Probleme mit
der naiven Mengenlehre und die Notwendigkeit eines streng formalen Aufbaus der Men-
genlehre kommen wir ebenfalls kurz zu sprechen. Mehr dazu erfahrt man aber erst in
anderen Vorlesungen (wie z.B. [2]).

1.1 Mengen

Mengen bestehen aus Elementen. Schreibweise:
eeM e ist Element der Menge M
e¢ M e ist nicht Element der Menge M

Eine Menge kann beschrieben werden, indem man alle Elemente der Menge angibt. Zum
Beispiel bedeutet die Schreibweise

M = {5,7,11}

dass M die Menge ist, die genau die Elemente 5, 7 und 11 hat. Mengen selbst kénnen
auch Element anderer Mengen sein: beispielsweise ist {1, {2, 3}} die Menge mit genau den
Elementen 1 und {2, 3}. Sonderfall: die Menge {} ohne Elemente heifit leere Menge und
wird mit @ bezeichnet. Mit der Piinktchen-Methode kann man auch unendliche Mengen
angeben:

N:={0,1,2,3,...} Die Menge der natiirlichen Zahlen
N, :={1,2,3,...} Die Menge der positiven natiirlichen Zahlen
Z:={0,1,-1,2,-2,3,-3,...} Die Menge der ganzen Zahlen

13



1 Mengen, Relationen, Abbildungen

Weitere besondere Mengen, die in dieser Vorlesung von Bedeutung sind:

Q := Menge der rationalen Zahlen
R := Menge der reellen Zahlen
C := Menge der komplexen Zahlen

Gleichheit von Mengen: Zwei Mengen A, B sind gleich, wenn sie genau die gleichen
Elemente enthalten. Wir schreiben dann A = B.

1.1.1 Beschreibung von Mengen durch Eigenschaften
Der Ausdruck
{reN| JyeN: z=3y+1}
—_—
es existiert ein y

bezeichnet die Menge aller natiirlichen Zahlen, fiir die ein y € N existiert, so dass z =
3y+1. Also alle natiirlichen Zahlen, die bei Division durch 3 den Rest 1 lassen. Allgemein
verwenden wir Ausdriicke der Gestalt

{x € M | x hat Eigenschaft F}

fiir eine Eigenschaft F.

1.1.2 Mengentheoretische Operationen und Bezeichnungen

Die Enthaltenseinsbeziehung (Inklusion)lz

AcB A ist Teilmenge von B
d.h., jedes Element von A ist auch Element von B
AcCB A ist echte Teilmenge von B:

AcBund A+ B

Der Unterschied von A € B und A C B ist also, dass es in letzterem Fall ein Element
x € B gibt mit z ¢ A. Zum Beispiel:

N, cNCZ
Durchschnitt (Schnitt):

AnB:={zx|x € Aund z € B}

'In manchen Gebieten der Mathematik, z.B. in der Analysis, wird fiir € meist C verwendet; fiir C
wird dann z.B. ¢ verwendet. Die Meinungen gehen hier unversshnlich auseinander. Uber kurz oder
lang werden Thnen noch andere terminologische Konflikte in der Literatur begegnen, es ist also gut,
sich bereits frith daran zu gewohnen. Innerhalb dieser Vorlesung aber werde ich mich um Konsistenz
bemiihen.
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1.1 Mengen

Man sagt, dass A und B disjunkt sind falls An B = @.

Vereinigung:
AUB :={x|x € A oder z € B}

Verallgemeinerung: sei I eine Menge und fiir jedes ¢ € I sei M; eine Menge. Dann
definieren wir

ﬂMZ- :={z | x € M; fiir alle i € I}
i€l
UM,» i={x | x € M, fireini eI}
i€l
Beispiel 1.1.1. Fiir ¢ € N sei M; := {1,2,...,n}; also My = @, My = {0}, My = {0,1},
M3 ={0,1,2}, und so weiter. Dann ist
U Mz = N
1€EN
m M,L =g. A
i€N
Differenz:
A\B:={z|xz € Aund z ¢ B}

Komplement: falls klar ist, dass wir Teilmengen einer Menge M betrachten, und A €
M, dann steht A fiir M\ A, das Komplement von A (in M). Die Komplementmenge héingt
also auch von M ab; da aber M oft aus dem Kontext klar ist, flieit diese Information
nicht in die Notation ein.

Potenzmenge:
P(A):={B| B c A}

Kartesisches Produkt:
AX B :={(a,b) |a€ Aund b € B}

Was ist ein Paar (a,b)? Es gelte (a,b) = (a',b') genau dann wenn a = @' und b = b'. Die
Reihenfolge ist wichtig! Es gilt: (1,2) # (2,1) aber {1,2} = {2,1}.

Als Mengen fassen wir das Paar (a,b) daher (zum Beispiel) als {{a}, {a,b}} auf.
Verallgemeinerung: n-Tupel (aq,...,a,). Das Element a;, fiir i € {1,...,n}, wird der
i-te Fintrag des Tupels genannt.

Ay XX Ay i={(ay,...,a,) | Vi€ {l,...,n} gilt a; € A;}

Hier steht “Vi € M” fiir: “fiir alle 1 € M”.
Analog: “3i € M” steht fiir “es gibt (mindestens) ein i € M”.

Weitere Abkiirzung:
A= Ax - x A

Beispiel: R®.

15



1 Mengen, Relationen, Abbildungen

1.1.3 Rechenregeln

Es gibt folgende Rechenregeln fiir Mengenoperationen:

AnA=A Schnitt ist idempotent
AUuUAd=A Vereinigung ist idempotent
AnB=BnA Schnitt ist kommutativ
AuB=BUA Vereinigung ist kommutativ
An(BNnC)=(AnB)nC Schnitte sind assoziativ
Au(BuC)=(AuB)uC Vereinigungen sind assoziativ

AnNn(BuC)=(AnB)U(AnC) Schnitt ist distributiv iiber Vereinigung
Au(BnC)=(AuB)n(AuC(C) Vereinigung ist distributiv iiber Schnitt

Diese Rechenregeln kénnen besonders einfach mit sogenannten Venndiagrammen ver-
deutlicht werden.

Fiir die Regel An (BuU(C) = (An B) U (An C) beispielsweise sieht man, dass die
Ausdriicke auf beiden Seiten dieselbe farbige Fliache im Diagramm rechts beschreiben.
1.1.4 Kardinalitaten
| A| bezeichnet die Anzahl der Elemente (die Michtigkeit) einer Menge A.

@] =0 [{e} =1 1{2,4,4}] =2
Es gilt folgendes.
P(a)] =2

|Ax B[ =[A] -|B|
|AUB| = |A| +|B| - |An B

1.1.5 Das Russellsche Paradoxon
M:={z |z ¢x}
Gilt M € M? Gilt M ¢ M?

Notwendigkeit einer streng formalen, axiomatischen Mengenlehre.
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1.2 Relationen

1.1.6 Zermelo-Fraenkel Mengenlehre

ZF': weitverbreitete axiomatische Mengenlehre.

1.

2.

1.2

Leere Menge: Es gibt eine leere Menge.

Extensionalitdt: Wenn zwei Mengen die gleichen Elemente haben, dann sind sie
gleich.

. Paarmenge: Fiir alle Mengen A und B gibt es eine Menge {A, B} mit der Eigen-

schaft dass C' € {A, B} genau dann wenn C' = A oder C' = B.

Vereinigung: Fiir alle Mengen M existiert die Menge | J M, die gleich der Vereini-
gung aller Mengen in M ist, soll heissen,

UM:= {z | es gibt ein e € M so dass x € e}.

Unendliche Mengen: Es gibt eine Menge M, die die leere Menge und die Menge
{e} fiir jedes e € M enthélt.

. Potenzmengen: Fiir jede Menge M gibt es eine Menge, die genau alle Teilmengen

von M enthilt.

Ersetzungsschema: Informell: Bilder von Mengen unter definierbaren Funktionen
sind selbst wieder Mengen; eine Formalisierung des Funktionsbegriffs folgt in Ka-
pitel 1.2.3. Fiir eine formale Definition des Begriffs definierbar verweisen wir auf
die Vorlesung Einfiihrung in die mathematische Logik [2].

. Fundierung: Jede Menge M # @ enthélt ein e, so dass e N M = @. Insbesondere:

Mengen enthalten sich nicht selbst.

Relationen

Eine (zweistellige, oder binire) Relation R zwischen A und B ist eine Teilmenge von
A X B. Schreibweise: statt (a,b) € R auch R(a,b).

Bemerkung 1.2.1. Praktische Visualisierungen:

e Falls An B = @: Darstellung durch Graphen (siehe Abschnitt 1.2.2), mit Kante

zwischen a und b falls (a,b) € R.

e Spezialfall A = B: man spricht von einer Relation auf A. Darstellung durch gerich-

tete Graphen (siehe Abschnitt 1.2.2): Pfeil von a nach b falls (a,b) € R.

Eine Relation R € A? heifit

e reflexiv wenn fiir alle a € A gilt: (a,a) € R.

e symmetrisch wenn fiir alle a,b € A gilt: falls (a,b) € R, dann auch (b,a) € R.
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e antisymmetrisch wenn fiir alle a,b € A gilt: falls (a,b) € R und (b,a) € R, dann
ist a = b.

e transitiv wenn fiir alle a,b,c € A mit (a,b) € R und (b,c) € R auch gilt (a,c) € R.

Beispiele: ‘<’ ist eine binére Relation auf N, und ist transitiv, aber nicht reflexiv und

nicht symmetrisch. Die binére Relation < auf N, definiert durch n < m falls n < m oder
n = m, ist ebenfalls transitiv, zusétzlich reflexiv, und antisymmetrisch.

1.2.1 Aquivalenzrelationen

Eine Relation R € A? ist eine Aquivalenzrelation (auf A) falls R reflexiv, symmetrisch,
und transitiv ist. Motivation: Verallgemeinerung von Gleichheit. Klassenbildung.

[2]r:={y € A| R(y,z)}

heiflt die Aquivalenzklasse von z beziiglich R. Wir schreiben A/R fiir die Menge aller
Aquivalenzklassen von A beziiglich R, die Faktormenge von A nach R.

Lemma 1.2.2. ° Sei R eine Aquivalenzrelation auf einer Menge A. Dann sind zwei
Elemente aus A genau dann dquivalent, wenn sie die gleiche Aquivalenzklasse haben:

R(z,y) gilt genau dann wenn [z]g = [y]r

Beweis. Seien z,y € A so dass R(x,y). Zeigen zuerst [x]r € [y]gr. Sei z € [z]g,
d.h. R(z,z). Wegen R(x,y) und Transitivitit folgt R(z,y), also z € [y]g. Zur Inklusion
[y]r € [x]Rr: wir haben R(y,x) mit Symmetrie, und verwenden das soeben bewiesene.

Umgekehrt: nehme an, dass [z]g = [y]g. Da y € [y]r wegen Reflexivitit gilt also
y € [2]g, und damit R(x,y). O

Definition 1.2.3 (Partition). Eine Partition einer Menge A ist eine Menge P nicht
leerer Teilmengen von A die paarweise disjunkt sind und deren Vereinigung gleich A ist.

Man nennt die Elemente von P die Klassen der Partition P.

Proposition 1.2.4 (Aquivalenz und Partition). 7 Die Faktormenge A|R einer Aqui-
valenzrelation R auf einer Menge A ist stets eine Partition. Umgekehrt gilt: ist P eine
Partition von A, dann ist Rp := UAieP A;x A; eine Aquivalenzrelation. Es gilt R = Ra/r
und A/ Rp = P.

Ubung 1. Beweisen Sie Proposition 1.2.4.

’Ein Lemma (altgriechisch fiir ,,das Angenommene”; Mehrzahl Lemmata) ist eine Hilfsaussage, die
praktisch ist in Beweisen von anderen Aussagen. Das konkret vorliegende Lemma zum Beispiel ist
beim Beweis von Proposition 1.2.4 weiter unten hilfreich.

*Eine Proposition bezeichnet in der Mathematik wie das Wort Satz eine wahre Aussage, allerdings eine,
die vielleicht weniger bedeutend ist, und meist keinen Namen trégt. Die Unterteilung in Satz, Propo-
sition, und Lemma ist bisweilen nicht eindeutig und héngt auch von den Vorlieben der Autor:innen
ab.
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Abbildung 1.1: Eine Illustration des gerichteten Graphen G mit Knotenmenge
{v1,v2,v3,0v4} und Kantenmenge {(v1,v4), (v4,v2), (v2,01), (v4, v3)}).

1.2.2 Graphen

Ein (ungerichteter) Graph ist ein geordnetes Paar G = (V, E) bestehend aus einer Menge
V von Knoten und einer Menge E von zwei-elementigen Teilmengen von V', den Kanten
des Graphen G.

Ein gerichteter Graph ist ein geordnetes Paar (V, A) bestehend aus einer Menge V'
von Knoten und einer zweistelligen Relation A € V? auf V', den Kanten des gerichteten
Graphen. Graphen kénnen wie in Abbildung 1.1 illustriert werden.

Jeder ungerichtete Graph G = (V, F) kann als gerichteter Graph (V, A) aufgefasst
werden: wir setzen A = {(a,b) | {a,b} € E}. Die Kantenrelation A ist dann eine sym-
metrische Relation im Sinne von Abschnitt 1.2. Aus (V, A) gewinnen wir G = (V, E)
zuriick durch F = {{a,b} | (a,b) € A}.

1.2.3 Abbildungen (Funktionen)

Schreibweise fiir Funktion f von einer Menge A (Definitionsbereich) in eine Menge B
(Wertebereich):
f:A—> B

Jedem z € A wird genau ein Element aus B zugeordnet, das mit f(x) bezeichnet wird.
Formal ist eine Funktion ein Paar bestehend aus

1. einer Relation Gy € A X B — dem Graph der Funktion, und
2. dem Wertebereich B,
mit folgenden Eigenschaften:

1. f ist iiberall auf A definiert: d.h., fiir alle a € A gibt es ein b € B mit (a,b) € Gy.

2. Eindeutigkeit: fiir alle a € A und fiir alle b,b' € B mit (a,b) € G} und (a,b') € G
gilt b=1b.

Schreibweise: b = f(a) falls (a,b) € G¢. Nennen f(a) das Bild von a unter f, und a ein
Urbild von f(a) unter f. Weitere hiufige Schreibweise: x — f(x).
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1.2.4 Spezielle Eigenschaften von Funktionen

o fi A — B heifit surjektiv falls fiir alle b € B ein a € A existiert mit (a,b) € G¢. In
anderen Worten, jedes b € B hat (mindestens) ein Urbild unter f.

o f:A — B heiit injektiv falls fiir alle a,a' € A und b € B gilt: falls f(a) = f(a')
dann auch a = d'. In anderen Worten, jedes b € B hat hichstens ein Urbild.

e f: A — B heifit genau dann bijektiv wenn f injektiv und surjektiv ist. In anderen
Worten, zu jedem b € B gibt es genau einen Pfeil.

Weitere Bezeichnungen. Sei f: A - B und A' ¢ A. Dann definieren wir das Bild
von A' unter f als
fTAT:={f(a) | a € A}.
Die Abbildung ¢g: A' — B definiert durch f +~ f(a) heift Einschrinkung von f auf A',
und wird mit f| 4 bezeichnet.
Fiir B' ¢ B definieren wir die Urbildmenge von B' unter f als

f'[B']:= {a € A: f(a) € B}
Der Kern von f ist die folgende Aquivalenzrelation auf A
{(a,a) € A% | f(a) = f(a)}. (1.1)

Beispiel 1.2.5. Wir untersuchen einige Beispiele von konkreten Funktionen auf die Ei-
genschaften injektiv, surjektiv, und bijektiv.

o fiZ->N:xw 2? ist weder injektiv noch surjektiv.
e Die Additionsfunktion RXR — R : (x,y) — x +y ist nicht injektiv, aber surjektiv.

e id: A —» A:x — x heifit die identische Funktion oder Identitit auf A (ist bijektiv).
Bezeichnung haufig id 4.

e Fiir das direkte Produkt A X B heifien m: AXB — A : (a,b) » a und my: AX B —
B : (a,b) » b Projektionen auf ersten beziehungsweise zweiten Faktor. A

1.2.5 Komposition von Abbildungen

Seien f:A — B und ¢g: B — C Funktionen. Dann bezeichnet g o f die Komposition
(Hintereinanderausfithrung) von f und g, ndmlich die Abbildung von A nach C die
definiert wird durch (g o f)(x) := g(f(z)) fiir alle x € A.

1.2.6 Umkehrabbildung

Wenn f: A — B eine Funktion ist, dann definiert (Gf)_1 :={(b,a) | (a,b) € Gy} genau
dann eine Funktion von B nach A wenn f bijektiv ist. Falls f zumindest injektiv ist,
dann definiert (G f)_l eine Funktion von f[A] nach A. Diese Funktion wird dann die

Umkehrfunktion von f genannt, und mit f_1 bezeichnet. Falls f: A — B bijektiv ist,
dann gilt f_1 of=idg und fo f_1 =idpg.
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1.2.7 Operationen

Eine n-stellige Operation auf einer Menge A ist eine Abbildung f: A" — A.

Beispiel 1.2.6. Die Addition und Multiplikation von natiirlichen Zahlen sind 2-stellige
Operationen auf N. A

Beispiel 1.2.7. Fiir alle Mengen A sind Schnitt und Vereinigung zweistellige Operationen
auf P(A). A

1.2.8 Gleichmidchtige Mengen

Mengen A, B heissen gleichmdchtig (Schreibweise |A| = |B|) falls es eine bijektive Ab-
bildung f: A — B gibt.
Schreibweise:

e |A| < |B| gdw es eine injektive Abbildung f: A — B gibt.
e |A| < |B| falls |A| < |B| und nicht gilt |A| = |B|.

Beispiel 1.2.8. Die Mengen N, Z, NX N, Q sind gleichmichtig (sie sind abzdihlbar unend-
lich). A

Satz 1.2.9 (Cantor). 4 Fiir jede Menge A gilt |A| < |P(A)].

Beweis. Ein Widerspruchsbeweis. Angenommen, es gibe eine Bijektion f: A — P(A).
Sei

Ui={reA|xz¢ f(z)}

Uc A UeP(A). Da f bijektiv ist, existiert u € A so dass f(u) = U. Entweder u € U
oder u ¢ U.

Wire u € U, so u € f(u), also u ¢ U nach Def. von U, Widerspruch.

Wire u ¢ U, so u ¢ f(u), also u € U nach Def. von U, Widerspruch. O

Satz 1.2.10 (Bernstein-Schroder). Fiir alle Mengen A, B gilt: wenn |A| < |B| und
|B| < |A|, dann |A| = |B].

Beweis. Es geniigt, den Fall zu betrachten, dass A € B und dass f die identische
Abbildung ist. Definiere C' := {¢"(z) | n € N,o € B\ A}. Es gilt B\ C € A da
¢"(B\ A) = B\ A. Siehe Abbildung.

“Ein Satz in der Mathematik ist eine wahre Aussage, die von grofler Bedeutung ist, und hiufig nach
ihrer Entdecker:in benannt wird. Das Wort ,Theorem’ bezeichnet besonders herausstehende Sétze,
und wird im Deutschen sehr sparsam verwendet, deutlich seltener jedenfalls als das englische Wort
‘theorem’, was eher dem deutschen Wort ‘Satz’ entspricht.
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Sei h: B = A gegeben durch i
g(x) falls x € C 9Bl
h(x) = glA]
x fallsx € B\ C.
Die Abbildung h ist injektiv:
e Falls h(z) = h(y) € C, dann g(z) = g(y),
also x = y € C' wegen der Injektivitdt von g.
e Falls h(x) = h(y) € B\ C dann gilt z = h(z) = h(y) = y.
Die Abbildung h ist auch surjektiv: fiir jedes x € An C
gibt es ein y € C' mit x = g(y) und fiir jedes x € A\ C gilt x = h(x). O

1.2.9 Das Auswahlaxiom

Sei g: A — B eine Surjektion. Falls A und B endlich sind, so gibt es auch eine Injektion
f von B nach A: denn fiir jedes b € B gibt es ein a € A so dass g(a) = b, und wir
definieren f(b) := a. Wenn A und B unendlich sind, so stellt sich die Frage, ob eine
solche Funktion f {iberhaupt existiert.

Das Auswahlaxiom (AC fiir englisch Axziom of choice) impliziert, dass solche Funk-
tionen existieren (es entspricht aber der mathematischen Praxis, das Auswahlaxiom an-
zunehmen). Es gibt viele dquivalente Formulierungen des Auswahlaxioms; eine ist die
folgende.

(AC) Falls g: A — B eine Surjektion ist, so gibt es auch eine Injektion f: B — A so dass
go f=idp.

Tatsédchlich ist bekannt, dass man in ZF die Existenz solcher Funktionen im allgemei-
nen nicht zeigen kann!

1.2.10 Die natiirlichen Zahlen
Der Aufbau der natiirlichen Zahlen als Mengen:
0:=@
1:= {0} = {2}
2:={0,1} = {@,{2}}
3:=40,1,2} = {o,{2}.{2,{a}}}

n+1:={0,1,...,n}={n}un

Fiir n € N ist also n + 1 die Menge, die n und alle Elemente von n enthélt.
Vorteil dieser Definition: fiir alle natiirlichen Zahlen m und n gilt:

m<ne=m~acn

S men
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1.2 Relationen

Bemerkung 1.2.11. ‘<’ und ‘<’ sind (zweistellige) Relationen auf N:
{(n,m) € N° | n <m}

Die Relation < auf N ist eine Wohlordnung: jede Teilmenge T° von N besitzt ein
kleinstes Element. Das heifit, fiir jedes T € N gibt es ein z € T so dass fir alle y € T
gilt z < y.

Beispiel 1.2.12. Die folgenden Ordnungen sind keine Wohlordnungen:

e Die bekannte Ordnung < der ganzen Zahlen Z.

e Die bekannte Ordnung der nicht-negativen rationalen Zahlen
Q) :={reQ|z=20} A

Addition und Multiplikation
Die Addition ist induktiv definiert: fiir alle n,m € N

n+0:=n

n+(m+1):=(n+m)+1
Die Multiplikation ist induktiv definiert mit Hilfe der Addition: n,m € N

n-0:=0

+
n'm =n-m+t+n

Wir definieren auf N die Teilbarkeitsrelation: fiir a,b € N gelte a|b (sprich: a teilt b)
genau dann wenn es ein k € N gibt mit a - k = b. Eine Zahl p € N heifit Primzahl (oder
prim), wenn sie grofler als 1 ist und nur durch 1 und sich selbst teilbar ist.

1.2.11 Restklassen modulo n

Sein € Ny = {1,2,3,...} und z,y € Z. Dann ist x ein Teiler von y falls ein z € Z
existiert so dass y = xz. Schreiben x = y mod n falls n ein Teiler von y — x. Dadurch
wird eine Aquivalenzrelation definiert, nimlich {(z,y) | © = y mod n}. Menge der
Aquivalenzklassen: Z/n (die Restklassen modulo n; auch mit Z/(mod n) oder Z/nZ
bezeichnet). Jedes Element y € [x] wird Reprisentant von [2] genannt. Rechnen mit

Restklassen ist repriasentantenweise méglich:
e Addition: [z] + [y] := [z + y]
e Multiplikation: [z] - [y] := [z - y]

Achtung: man muss beweisen, dass dies “wohldefiniert” ist, d.h., nicht von der Auswahl
der Représentanten abhéngt.
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1.3 Beweisprinzipien

Was ist ein Beweis? Es gibt ein Gebiet der Mathematik, das sich damit beschéftigt: die
Beweistheorie. 1930er Jahre: Axiomensysteme und Beweiskalkiile, mit denen sich alle
wahren mathematischen Aussagen herleiten lassen. Doch das sprengt den Rahmen der
Vorlesung.

1.3.1 Logische Konnektoren

Fiir systematische und formale Definition verweisen wir auf eine Logikvorlesung, wie
z.B. [2].

A, B, C, etc. stehen im folgenden fiir mathematische Aussagen, die entweder wahr (1)
oder falsch (0) sind; man spricht hier auch von aussagenlogischen Variablen.

e Schreiben A A B fiir die Aussage A und B (‘Konjunktion’). Die Aussage A A B ist
genau dann wahr, wenn sowohl A als auch B wahr sind.

e Schreiben A v B fiir die Aussage A oder B (‘Disjunktion’). Die Aussage A V B ist
genau dann wahr, wenn A oder B wahr ist (was den Fall einschliefit, dass sowohl
A als auch B war sind).

e Schreiben —A fiir die Aussage nicht A (‘Negation’). Die Aussage —A ist genau
dann wahr, wenn A nicht wahr ist.

Bemerkung 1.3.1. Die Aussage ~(A A B) ist genau dann wahr, wenn —~A vV =B wahr ist.
Die Aussage ~(A Vv B) ist genau dann wahr, wenn —A A =B wahr ist.

1.3.2 Abkiirzungen

Wir schreiben A = B als Abkiirzung fiir =A v B (‘Implikation’).
Bemerkung 1.3.2. A = B gilt genau dann, wenn B = - A gilt (‘Kontraposition’).
Bemerkung 1.3.3. A = B gilt genau dann, wenn A A =B falsch ist (‘Widerspruchsbe-

weis’).
Bemerkung 1.3.4. Falls A gilt, und B = A gilt, so gilt auch B.
Wir schreiben A < B als Abkiirzung fiir (A = B) A (B = A) (‘Aquivalenz’).

Um zu zeigen, dass die Aussagen A;, As,..., A, édquivalent sind (d.h., A, & A; fiir
alle 7,5 € {1,...,n}), geniigt es, zu zeigen, dass

AlﬁAg/\AQﬁAE}/\"'/\An_l:>An/\An=>A1

Gute Wahl der Reihenfolge kann Arbeit sparen!
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1.3.3 Aussagenlogik

Ein aussagenlogischer Ausdruck ist ein Ausdruck, der aus aussagenlogischen Variablen,
A, V, =, und Klammern aufgebaut ist, wie zum Beispiel AA (BV=C). Eine Tautologie ist
ein aussagenlogischer Ausdruck, der wahr ist fiir alle Belegungen der aussagenlogischen
Variablen mit wahr oder falsch.

Beispiel 1.3.5. Die folgenden aussagenlogischen Aussagen sind Tautologien:

[ AV—|A.

-(A A B) & (~A Vv =B) (sieche Bemerkung 1.3.1)

-(AvV B) & (-~A A =B) (siehe Bemerkung 1.3.1)

(A= B) & (=B = —A) (siche Bemerkung 1.3.2).

A = B & (A A =B) (siehe Bemerkung 1.3.3).

(AA (A= B))= B (siche Bemerkung 1.3.4). A

1.3.4 Mengengleichheit
Um zu zeigen, dass zwei Mengen A und B gleich sind, geniigt es zu zeigen, dass
AcBund BS A.
Bei endlichen Mengen reicht zu zeigen:

A S Bund |A| = |B].

1.3.5 Volistidndige Induktion

Es seien Ay, Ay, Ao, ... Aussagen. Wir wollen zeigen, dass A; fiir alle ¢ € N gilt.
Dazu geniigt es zu zeigen:

1. Induktionsanfang: es gilt Ag.

2. Induktionsschritt: fiir jedes n = 0 gilt: wenn A, gilt (Induktionsvoraussetzung),
dann auch A, ;1 (Induktionsbehauptung).

Dann gilt A; fiir jedes i € N (Induktionsschluss).
Beispiel 1.3.6. Aussage A,:

Induktionsanfang n = 1.

25



1 Mengen, Relationen, Abbildungen

Induktionsschritt: es gelte A,,, zu zeigen ist A,,41.

n+1 n
Z 1= Zz +(n+1)
i=1 i=1
+1 2
= % + §(n +1) (Induktionsvoraussetzung)
3 n+n+2n+2
B 2
+1 + 2
NOESNEED) .

Bemerkung 1.3.7. Es gibt einen Zusammenhang zwischen dem Prinzip der vollstdndigen
Induktion mit der Aussage, dass N eine Wohlordnung ist. Dazu betrachten wir die Menge

S :={i e N| A; gilt nicht}.

Angenommen, es stimmt nicht, dass Ag, Ay, As,... gelten. Dann ist S # @ und besitzt
daher ein kleinstes Element. Das heifit, es gibt ein ¢ € N, so dass Ag, A,...,A;_1 al-
lesamt gelten, aber A; gilt nicht. Die ist eine Situation, die wir im Induktionsschluss
ausschliessen.
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Kapitel 2

Gruppen, Korper, Vektorriaume

Bekannteste Beispiele fiir Korper: Q, R und C mit Addition und Multiplikation. Die Defi-
nition von Korpern besteht im Wesentlichen aus einer Axiomatisierung der Rechenregeln
von Addition und Multiplikation. Motivationen fiir diese Abstraktion:

e Es gibt eine grofie Vielfalt an interessanten Korpern. Jede Definition und jeden
Satz, den wir allgemein fiir Korper einfithren beziehungsweise beweisen, kénnen
wir spéter auf alle moglichen Korper anwenden.

e Ein angemessener Grad an Abstraktion ist per se eine Errungenschaft, da die
Abstraktion dann den Blick lenkt auf das Wesentliche, was wir fiir den Aufbau der
linearen Algebras bendtigen.

Jeder Korper ist insbesondere eine Gruppe; wir starten daher mit einem kurzen Abschnitt
zu Gruppen.

2.1 Gruppen

Eine Menge G zusammen mit einer 2-stelligen Operation m: G? > G heifit Gruppe, wenn
folgende Axiome erfiillt sind. Wir schreiben m(x,y) = x o y der Einfachheit halber.

1. Assoziativititsgesetz: fiir alle x,y, z € G:
zo(yoz)=(zoy)os

2. Existenz eines neutralen Elements: es gibt ein e € G, so dass fiir alle x € G gilt:
roe=zund eox = x.

3. Existenz inverser Elemente: zu jedem x € G gibt es ein y € G, so dass x oy = ¢
und y o x = e. Schreiben 27 fiir Y.

FEine Gruppe heifit abelsch, wenn die Operation o zusitzlich das Kommutativititsgesetz
erfiillt:

fiir alle z,y gilt x oy =y o x.
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Bemerkung 2.1.1. Die genaue Bezeichnung fiir die Gruppenoperation, das neutrale Ele-
ment, und das Inverse von x ist nicht von Bedeutung. Weitere Varianten sind: -, 1, und
:z:_l, oder +, 0, —x.

Beispiel 2.1.2. (Z,4+), (Q,+), (R;+), (Q\ {0},-). A

2.1.1 Erste Folgerungen

Lemma 2.1.3. Das neutrale Element e einer Gruppe ist eindeutig bestimmit.

Beweis. Seien e, e zwei neutrale Elemente. Dann ist eoe' = e (weil e neutrales Element)
und e o €' = ¢' (weil ¢ neutrales Element). Also e = ¢'. O

Lemma 2.1.4. Das inverse Element 2~ ' von  ist in einer Gruppe eindeutig festgelegt.

Beweis. Fiir Gruppenelemente yq, yo mit

royy=yox=e Voraussetzung 1
Toys=ysox=e Voraussetzung 2
folgt
Yyp=yio0e (e neutrales Element)
=y1 0 (xoys) (Voraussetzung 1)
= (y1 0 ) 0 Yy (Assoziativitit)
=eoyy (Voraussetzung 2)
= 1o (e neutrales Element) O

Folgerung: (2~ 1)7! = 2.

Ubung 2. Ein links-inverses Element zu x beziiglich einer 2-stelligen Operation o mit
neutralem Element e ist ein Element y, so dass y o x = e. Zeigen Sie, dass man das
dritte Gruppenaxiom zur Existenz inverser Element abschwéichen kann zur Existenz von
Linksinversen. In anderen Worten: falls (G, o) das Assoziativititsgesetz erfiillt, es ein
neutrales Element gibt, und zu jedem x € G ein linksinverses Element in G gibt, dann
ist (G, o) bereits eine Gruppe.

2.1.2 Beispiel: die symmetrische Gruppe

Sei X eine Menge. Schreiben Sym(X) fiir die Menge aller Permutationen von X, d.h., Bi-
jektionen zwischen X und X. Dann ist (Sym(X ), o) eine Gruppe, wobei o die Kompositi-
on von Abbildungen ist. Das neutrale Element ist die Identitdt idx, und zu x € Sym(X)
ist die Umkehrabbildung 27" das inverse Element.
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2.2 Korper

2.1.3 Untergruppen

Sei (G, o) eine Gruppe, U C G eine Teilmenge so dass
e ceU,;
e fiir alle u € U gilt = U;
o fiir alle u,v € U gilt uov € U.

Dann heifit (U, o) (genauer: (U, o|yxy)) eine Untergruppe von (G, o).
Beispiel 2.1.5. Beispiele zu Untergruppen.

e {e} ist stets Untergruppe.
e (Z,+) ist Untergruppe von (Q, +).
e (Q\ {0},-) ist Untergruppe von (R \ {0}, -). A

Anmerkung: Jede Gruppe G ist eine Untergruppe von Sym(G) (Beweis kommt spéter
im Studium).

2.2 Korper

Ein Korper (englisch field; franzosisch corps) ist eine Menge K zusammen mit zwei
bindren Operationen

+:KXK->K Addition
KX K - K Multiplikation

die folgende Axiome erfiillen:

1. (K, +) ist eine abelsche Gruppe mit neutralem Element 0 (Nullelement), und in-
versem Element —x zu jedem = € K.

2. Fiir (K, -) gilt: Multiplikation ist assoziativ, kommutativ, es existiert ein neutrales
Element 1 (Eins-element), und fiir alle x € K \ {0} existiert ein inverses Element

-1
T .

3.0+1.
4. Distributivgesetz: fiir alle z,y, z € K gilt

z-(y+z)=z-y+x-2

Hiufig wird eine mathematische Struktur und die entsprechende Grundmenge mit
dem gleichen Buchstaben bezeichnet, aber in einer anderen Schriftart. Etwa K fiir einen
Korper und K fiir die Grundmenge. Héufig wird aber auch das gleiche Symbol fiir
Grundmenge und Korper verwendet. Beispielsweise steht R sowohl fiir die Menge der
reellen Zahlen als auch fiir den Korper der reellen Zahlen.
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2 Gruppen, Korper, Vektorrdume

Beispiel 2.2.1. R = (R, +, ). A

Beispiel 2.2.2. Q = (Q, +,-). A
Kein Beispiel: (Z, +, ). (Warum?)

Bemerkung 2.2.3. In einem Koérper K := (K, +,-) gilt fiir alle z,y € K:

e 0-2=0=2-0.Denn 0-2=(0+0)-2=0-2+0-x,also0=0-x.

e (—x)-y=—(z-y)=2-(-y).Denn 0=0-y=(z+ (-x))y=x-y+ (-x) -y, also
(-z) -y =—(z-y). Die Gleichung —(z - y) = x - (—y) folgt analog.

e z-y=0 x=0o0dery=0.

2.2.1 Der Korper mit zwei Elementen

Die Menge {0, 1} mit folgender Addition und Multiplikation ist ein Kérper:

_ O
(evBlan) Raw]
— Ol

+ 1
0 1
1 0

— OO

‘Rechnen modulo 2’
e Nullelement ist 0.
e Eins-element ist 1.
e Inverse Elemente bzgl + sind =0 =0 und -1 = 1.
e Inverses Element von 1 beziiglich - ist 17" = 1.

Bezeichnung fiir diesen Korper: GF(2) = ({0,1}; +, +) oder Fs.

2.2.2 Weitere endliche Kérper

Sei p eine Primzahl. Dann ist (Z/p, +,) ein Korper (mit Addition und Multiplikation
wie in Abschnitt 1.2.11).

Bemerkung 2.2.4. (Z[n,+,-) ist im allgemeinen kein Korper (aber ein Ring; Definiti-
on 4.2.1).

Bemerkung 2.2.5. Fiir jede Primzahlpotenz p”* gibt es einen Kérper GF(p™) mit p™
Elementen.
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2.2 Korper

2.2.3 Der Korper der komplexen Zahlen

Die Gleichung 2° = =1 hat keine reelle Losung. Imagindre Zahlen: Zahlen, deren Quadrat
eine nicht-positive reelle Zahl ist. Mit ¢ bezeichnen wir die imaginére Zahl mit ¢-¢ = —1.
Komplexe Zahlen kénnen in der Form a + b - ¢ mit a,b € R dargestellt werden. Hierbei
heifit a der Realteil und b der Imagindrteil.

Formale Definition. Formal definieren wir die komplexen Zahlen mit Hilfe von R%:

i)
() () = (she)

Schreibweise: schreiben a statt (g) fir alle ¢ € R, und schreiben ¢ statt ((1)) Dann gilt

)

C:={a+0b-i]|a,beR}

o Addition:

e Multiplikation:

Die Menge

bildet zusammen mit der obigen Addition und Multiplikation den Kdrper der komplexen
Zahlen.
Nullelement ist 0, denn (8) + (Z) = (2)
Eins-element ist 1, denn ([1)) . (‘;) = (‘;)
Geometrische Interpretation. (Komplexe) Gaufische Zahlenebene: z = a + bi ent-
spricht dem Punkt (Z) € R? der Ebene.

Geometrische Interpretation der Multiplikation:

e Multiplikation mit —1:

e Multiplikation mit ¢:

e Multiplikation mit —i:
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2 Gruppen, Korper, Vektorrdume

2.2.4 Weitere Begriffsbildungen

Die Charakteristik char(K) eines Kérpers K ist die kleinste Zahl n € N¥, so dass

1+--+1=0.
.

n mal

Falls eine solche Zahl nicht existiert, so ist char(K) := 0.

Bemerkung 2.2.6. Algebraische Strukturen, die alle Eigenschaften eines Korpers besit-
zen, aufler dass die Multiplikation notwendigerweise kommutativ ist, heissen Schiefkdrper.
Der Begriff der Charakteristik ist auch fiir Schiefkérper definiert. Der Satz von Wedder-
burn besagt, dass jeder Schiefkérper mit endlich vielen Elementen bereits ein Korper ist.
Ein Beispiel fiir einen Schiefkérper der Charakteristik 0, der kein Korper ist, sind die
Quaternionen.

2.3 Vektorraume

Vektorraume sind das zentrale Thema der linearen Algebra. Sei K ein Kérper mit Eins-
element 1. Die Elemente von K werden Skalare genannt. Ein Vektorraum iiber dem
Korper K (kurz, ein K-Vektorraum) ist eine Menge V' zusammen mit zwei Abbildungen

V2—>V:(u,v)l—>u+v

(der Addition) und
KXV ->V:i(\u) - A

(der skalaren Multiplikation) so dass folgende Axiome erfiillt sind:
1. (V, +) ist abelsche Gruppe mit Nullelement 0;
2. Fiir alle \,p € K und v € V gilt (Au)v = A(uw);
3. Fiir alle v € V gilt 1v = v.

4. Fiir alle u,v € V und fiir alle A € K gilt

Mu+v) = u+ M

5. Fiir alle v € V und fiir alle A\, u € K gilt

(A + p)v=Xv+ pv

Die Elemente von V heiflen Vektoren. Wir definieren also zuerst Vektorrdume, und dann
Vektoren, nicht anders herum.
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2.3 Vektorrdume

2.3.1 Beispiele
Der Vektorraum K"

Sei K ein Korper und n € N,. Die Menge K" aller n-Tupel (ay,...,a,) von Elementen
ai,...,a, € K bildet einen Vektorraum iiber KX wenn Addition und skalare Multiplika-
tion wie folgt definiert werden:

aq bl a1 + bl
' U I :
anp by, a, + b,
und fiir A € K
ajq A aq
NEn- .
an, A-a,

Der Nullvektor ist 0 := (0,...,0).
Wichtige Spezialfille: R = R*, R? R,

Vektorraume durch Kérpererweiterungen

Sei K ein Korper. Eine Teilmenge U € K heifit Teilkorper (Unterkorper) wenn gilt
1. 0,1 eU;
2. Furallea,beUist a+be U;
3. Fir alle a € U ist —a € U,
4. Fir allea,be Uista-be U,
5. Firallea € U\ {0} ist a ' € U.

Dann ist U zusammen mit der Einschrénkung der Addition und Multiplikation auf U 2
und dem gleichen Null- und Eins-element selbst ein Korper.

Schreibweise:
U<K

Beispiele:
Q=<R=C

Sei K < K'. Dann ist K' ein Vektorraum iiber K:
e Addition in K' schon vorhanden;

e Multiplikation von v € K mit Skalar A € K € K "

AU =\
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Beispiele:
e R ist ein Q-Vektorraum.
e C ist ein R-Vektorraum.

e R ist ein R-Vektorraum.

Funktionenraume
Sei K ein Korper und X eine beliebige Menge. Dann bildet die Menge
K* :={f | f: X - K}
aller Abbildungen von X in K einen K-Vektorraum mit folgenden Operationen:

e Addition f + g¢:
(f +9)(z) := f(2) + g(x)

e Multiplikation mit Skalar A € K:
Af)(@) = A+ f(a)
Nullvektor ist die Nullfunktion

0: X->K:2-0

Potenzmenge als F,-Vektorraum

Die Potenzmenge P(A) einer beliebigen Menge A wird zu einem Vektorraum iiber Fy
(siehe Abschnitt 1.1.2), mit folgenden Operationen, fiir X,Y € P(A):

e Addition X +Y := (X UY)\ (X nY) (Symmetrische Differenz)
e Skalare Multiplikation 0- X := @ und 1+ X := X.

Nullvektor ist 0 := @. Das additiv Inverse von X € P(X) ist X selbst, denn

X+X=0=0.

2.3.2 Erste Folgerungen

Lemma 2.3.1. In einem K-Vektorraum V gilt fir alle w € V :
1. Ou=0

2. (-1)u = —u.
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Beweis. Zu Teil 1.

0 =0u+ (—(0u))
=(0+0)u+ (—(0u))
= (Ou + Ou) + (—(0u))

2.3 Vektorrdume

Vektorraumgesetz 1)
Korpergesetz)

Vektorraumgesetz 5)

o~ o~ o~ o~

= Ou Vektorraumgesetz 1)
Zu Teil 2.
0 =0u (Teil 1)
=(1-1u (Korpergesetz)
=lu+ (-1)u (Vektorraumgesetz 5)
=u+(-1u (Vektorraumgesetz 3)

Wegen der Eindeutigkeit des inversen Elements (Lemma 2.1.4) folgt (—1)u = —u. O

Lemma 2.3.2. Fir alle A € K und v € V gilt A\u = 0 genau dann, wenn X\ = 0 oder
u = 0.

Ubung 3. Beweisen Sie Lemma 2.3.2.

2.3.3 Untervektorraume

Sei V' ein K-Vektorraum.

Definition 2.3.3. Eine Teilmenge U S V heifit Untervektorraum von V| wenn gilt
e 0eU.
e Firalleu,veUistu+veU.

e FiralleueU und A € K ist Au € U.

. . R2
Schreibweise:
UsV U
Beispiel 2.3.4. Sei V der R-Vektorraum R? aus Abschnitt 2.3.1.
Dann ist jede Gerade durch den Ursprung (0,0),
also jede Teilmenge von V der Gestalt {(z,y) € V | A\iz + Aoy = 0},
fiir ein A1, Ay € R, ein Untervektorraum von V. A

Lemma 2.3.5. Sei U € V. Dann ¢ilt U <V genau dann, wenn
e U nichtleer ist, und

e U zusammen mit der Addition (wie in V') und der skalaren Multiplikation (wie in
V') selbst ein K-Vektorraum ist.
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Beweis. Wenn U <V, dann gilt 0 € U, also U # @. Ausserdem ist fiir alle w € U auch
—u € U,da —u = (=1)-u € U nach Lemma 2.3.1 und Voraussetzung. Die Einschrinkung
von o auf U? und von - auf K X U liefert somit Funktionen von U* — U beziehungsweise
K XU — U, und es gelten alle Vektorraumaxiome.

Umgekehrt sei U # @ so, dass (U, +|;2, -| kxy) ein Vektorraum ist. Sei w € U. Dann
gilt 0 = 0-u € U. Weiterhin sind mit u,v € U und A € K auchu+v € U und A\u e U. [

Bemerkung 2.3.6. Der Schnitt von Untervektorrdumen eines Vektorraumes ist wieder
ein Vektorraum:
U,UysV =2 U nUy =V

Dies gilt nicht fiir Vereinigung! Betrachte dazu V = R?, u = (1,0), und v = (0, 1).
Dann sind Ru := {\u | A € R} und Rv Untervektorrdume von V. Aber:

(L1)=u+v ¢ RuURv

2.4 Basen und Dimension

2.4.1 Linearkombinationen

Sei V ein K-Vektorraum. Seien vq,...,v, € V Vektoren und A{,..., A, € K Skalare.
Dann heif3t

n

Z Av; = Ao+ e+ AL,

i=1
eine Linearkombination von vq,...,v,. Die Menge aller Linearkombinationen von Vek-
toren aus S € V wird mit (S) bezeichnet, und die lineare Hiille (oder auch: (linearer)
Abschluss, (linearer) Spann, (lineares) Erzeugnis) von S genannt:

(SYy:={Mv1+---+ v, |v1,...,0v, €S, A\,..., N\, € K,n € N}
S darf auch unendlich sein! Legen fest (@) = 0.
Vereinbaren auflerdem: (v1,...,v,) steht fiir ({v1,...,v,}).
Bemerkung 2.4.1. Die Abbildung
PV)->PV): W - (W)

ist ein Hillenoperator, d.h., es gelten fiir alle X,Y € V:

e X c(X).

e XCVY = (X)c(Y).

o ({(X)) = (X).

Proposition 2.4.2. (vq,...,v,) ist ein Untervektorraum von V, und zwar der kleinste
Untervektorraum von V, der vy, ..., v, enthdhlt.
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2.4 Basen und Dimension

Beweis. Sei U := (vy,...,v,).
1.0=0-vy++-+0-v, €U.

2. Seien u,v € U, d.h., u = \vy + -+ + A\yv, und v = pqvy + -+ + pyv,. Dann ist
u+v= (A + p)vy + (N, + pn)v, € U.

3. Seienu € U, A\ € K, u = A\jv1+---+\,v,. Dann ist Au = (A\)vy+---+(A\,)v, € U.

Also gilt U < V. Ist vq,...,v, € W fiir Untervektorraum W < V', so gehoren auch alle

Linearkombinationen von vy, ...,v, zu W, also {vy,...,v,) < W. Daher ist (vy,...,v,)
der kleinste Untervektorraum von V', der vy, ..., v, enthéilt. O

Man nennt U = (vy,...,v,) auch den von vy, ..., v, erzeugten (aufgespannten) Vek-
torraum. Die Menge {v1,...,v,} heit dann Erzeugendensystem von U.

2.4.2 Lineare Unabhdngigkeit
Ein n-Tupel (vq,...,v,) € V" heiBt linear unabhingig falls gilt

/\11)1+~-~+)\nvn:0=>/\1:~-~=/\n=0.
Ansonsten: (vy,...,v,) linear abhingig. Eine Menge U = {vy,...,v,} € V heifit linear
unabhdngig wenn jedes n-Tupel (vy,...,v,) mit paarweise verschiedenen Elementen aus

U linear unabhéingig ist. Ansonsten: U heif3t linear abhdngig.

Bemerkung 2.4.3. Ein einzelner Vektor v € V ist genau dann linear abhingig, wenn
v = 0. Ein Tupel (vy,...,v,) ist genau dann linear abhingig, wenn mindestens ein
Vektor v; Linearkombination der anderen ist:

v; = z )\jU]
J#i

Bemerkung 2.4.4. Jede Obermenge einer linear abhéngigen Menge ist linear abhéngig.
Jede Teilmenge einer linear unabhéngigen Menge ist linear unabhéngig.

Beispiel 2.4.5. In V = R” (als R-Vektorraum):

e v = ((1)) und vy = ((1)) sind linear unabhéngig: denn Ajv; + Aqug = (i;) = 0 genau

dann wenn A\ = Ay = 0.

® v = (;) und vy = (Z) sind linear abhéngig, denn vy = 2v;.

e U = (;) und vy = (27;) sind linear abhéngig (aber in R? aufgefasst als Q-Vektorraum

sind v; und vy linear unabhiingig, da = ¢ Q).

e Je drei Vektoren vy, vq9,v3 € R? sind linear abhéngig.
a az az) (0} _
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Anders geschrieben,

1A + agAg + azh3 =0
und by A\ + by +b3A3 =0

hat fiir alle aq,as,as, by, bs,b3 € R nichttriviale (d.h., von (0,0,0) verschiedene)
Losung fiir Aq, Ao, As. A
2.4.3 Basen

Eine Teilmenge B € V heifit Basis von V wenn
1. B linear unabhéngig, und
2. (B)=V.

Fiir Basis B = {v1,...,v,}, v; paarweise verschieden, nennen wir B = (vy,...,v,) ge-
ordnete Basis (oder auch kurz Basis).

Satz 2.4.6 (Eindeutigkeit der Koordinaten). Ist B = (vy,...,v,) geordnete Basis von
V, so gibt es fiir jeden Vektor u € V genau ein n-Tupel (A1,...,\,) € K", so dass

U= AMvy + o+ A0,

D.h., jedes Element w ldsst sich eindeutig als Linearkombination von Basiselementen
beschreiben. Das n-Tupel (A1, ..., \,) heit Koordinatenvektor von u beziiglich B. Die
Abbildung

o K" =V i(A,.., ) B Ao + o+ A\,

ist bijektiv und heifit kanonischer J}'ﬁ’asiszlsomorpMsmus.1

Beweis von Satz 2.4.6. Da B eine Basis ist, gilt insbesondere (B) = V und jedes u € V
lasst sich schreiben als u = Ajvqy + ++- + \,v,. Wenn nun gilt

AUL + -+ ApUp = AJ01 + oo + A0y,
so folgt
(A = AD)vg + -+ (A = Ap)v, = 0.
Da vq,...,v, linear unabhéngig sind, so folgt A — )\'1 =0,..., A\, — )\'n =0, also \; = )\'1,
I

A = AL O

Beispiel 2.4.7. 1. Betrachten B := {ej,es} mit e; := ((1)) und ey := (?) ist Basis fiir

R?. Zum Beispiel u = (2) € R? kann geschrieben werden als u = 8 - e; + 3 - eg. Die
Abbildung ¢p ist die Identitit auf K>.

"Der Begriff ‘Isomorphismus’ wird fiir Vektorrdume in Abschnitt 3.1 eingefiihrt werden).
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2. Die beiden Vektoren v = ((1)), Vg = G) bilden ebenfalls eine Basis fiir R®. Haben
(§)=5'Ul+3’1}2. A
Bemerkung 2.4.8. Fiir beliebigen Korper K ist

1 0 0

ol |1 0
€1 = , €2 = R y En =

0 0 1

Basis des K-Vektorraums K". Das n-Tupel (e, ...,e,) heiit Standardbasis von K".
Satz 2.4.9 (Charakterisierungssatz fiir Basen). Sei V' ein K- Vektorraum und B € V.

e (Erginzung) B ist genau dann Basis von V, wenn B eine maximale linear un-
abhingige Menge ist (d.h., jede echte Obermenge von B ist linear abhingig).

o (Auswahl) B ist genau dann Basis von V, wenn B ein minimales Erzeugenden-
system von V st (d.h., keine echte Teilmenge von B erzeugt V).

Beweis. Erginzung: ‘=’ Sei B Basis. Angenommen es gibt ein v € V' '\ B mit B U {v}
linear unabhiingig. Da (B) = V gibt es A\,...,\, € K und vq,...,v, € B mit v =
Av1 + o+ + \v,, im Widerspruch zur linearen Unabhéingigkeit von B U {v}.

‘<’ Sei B maximale linear unabhéingige Menge. Wire B keine Basis, so gibe es ein
v € V mit v ¢ (B). Behauptung: Dann wire B' := B U {v} linear unabhiingig (im
Widerspruch zur Maximalitdt von B).

Wiire B' linear abhéngig, so gidbe es Ay, A\1,..., A, € K und vq,...,v, € B so dass
AU + A\qvg + <o+ + A\,b, = 0, aber (Mg, A\1,...,A\,) # (0,0,...,0). Falls \y = 0 so sind
bi,...,b, linear abhingig, Widerspruch. Falls \g # 0 so ist v = )\61(—)\1171 —e= b, €
(B) im Widerspruch zu v ¢ (B). O

Ubung 4. Beweisen Sie den zweiten Teil von Satz 2.4.9.
Satz 2.4.10 (Satz iiber die Existenz von Basen). Jeder Vektorraum hat eine Basis.

Beweis fiir endlich erzeugte Vektorrdume. Angenommen V' = (vq,...,v,). Falls die Men-
ge M = {vy,...,v,} linear unabhingig ist, dann ist {vy,...,v,} eine Basis. Ansons-
ten ldsst sich ein Element v € M schreiben als Linearkombination der anderen. Sei
M' := M\ {v}. Es gilt (M') = V. Starte das Verfahren mit der kleineren Menge M'
anstatt von M von vorne. Nach endlich vielen Schritten muss das Verfahren abbrechen,
und wir haben eine Basis gefunden.

Der Beweis fiir unendlich dimensionale Vektorrdume erfordert das Auswahlaxiom (vie-
le Beweise verwenden hier das Zornsche Lemma, welches dquivalent ist zum Auswahl-
axiom) was wir uns fiir’s nichste Semester aufheben (Abschnitt 5.1). O]
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2.4.4 Austauschsatz

Bemerkung: Sei K endlicher Korper, |K| = ¢ € N. Hat ein K-Vektorraum V eine Basis
mit n Elementen, so folgt aus Satz 2.4.6 (Eindeutigkeit der Koordinaten) dass |V| = ¢".
Also hat jede Basis von V' genau n Elemente.

Lemma 2.4.11 (Austauschlemma). Sei B = (vy,...,v,) eine Basis eines Vektorraums
V ound w = A\jvy + -+ + A\yv, € V\ {0} beliebig, und sei \;j # 0 fiir ein j € {1,...,n}.
Dann ist B' = (vy,. .. ,Vjm1, W, Vjt1, - - -, Up) ebenfalls eine Basis.

‘Austausch’ von v; gegen w.
Beweis. 1ter Teil: B' ist Erzeugendensystem von V.

-1 -1
Uj—)\j w—)\j Z/\ZUZ
(£

also B ¢ (B') und
v=(B)c((B')=(B)cV

also V = (B').

2ter Teil: B' ist linear unabhéngig. Ansonsten gébe es nichttriviale Linearkombination
U1+ e+ pgw e+ ppv, =0
Falls p1; = 0 dann sind vy, ..., v, linear abhéngig, Widerspruch zur Annahme dass B
Basis. Also p; # 0:
-1 -1 -1 -1
w=(—p; p)vy + o+ (mpy pg-1)vi-r + 0005+ (—py pgen)vien + oo+ (mpg pn)vn

Andererseits
w=M\Nvy + -+ )\jvj + o+ A0,

Fiir die geordnete Basis (vq,...,v,) ergibt sich mit Satz 2.4.6 (Eindeutigkeit der Koor-
dinaten) dass A; = 0, Widerspruch. O

Beispiel 2.4.12. V = R? hat die folgende Basis:

0 1 1
v = 1 , Vg = 0 , Vg = 1
1 1 0
1
Sei w = vg — vy = | =1 |. Nach Austauschlemma sind (w, vy, v3), (v1,w, v3) Basen (nicht
0
aber (vy,v9,w)). A

Ubung 5. Zeigen Sie die Behauptungen in Beispiel 2.4.12.
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Satz 2.4.13 (Austauschsatz von Steinitz). Es sei B = {vy,...,v,} eine Basis eines
K-Vektorraums V, und C' = {wy, ..., w,,} sei belicbige Menge linear unabhingiger Vek-
toren. Dann gilt

(a) |C| = |B|, d.h., m < n:

‘Jede linear unabhdingige Menge besteht aus hichstens n Elementen’.

(b) Durch Hinzunahme von n—m geeignet gewdihlten Vektoren aus B kann man C zu
etner Basis von V' ergdnzen.

Beweis. Beweis von (a) und (b) durch Induktion iiber m.

Induktionsanfang m = 1: w; # 0, d.h., V hat mindestens ein Element ungleich 0.
Also muss auch gelten |B| = 1 = m. Aussage (b) folgt direkt aus dem Austauschlemma,
Lemma 2.4.11.

Induktionsschritt m > 1: Die Aussagen (a) und (b) seien richtig fiir m —1 (Induktions-
voraussetzung). Zu zeigen: (a) und (b) gelten auch fiir m. Sei €' := {wy, ..., wyn_1} C C
(ist linear unabhéngig). Nach Induktionsvoraussetzung gelten

(a') m—1<n, und
(b') es gibt vy, ..., v, € B so dass B' := {wi, ..., WpH_1,Vm,...,v,} Basis von V.
(a) gilt fiir m:
1. Fall: n > m — 1. Dann ist n = m, fertig.
2. Fall: n < m — 1 (also n = m — 1). Nach (') ist {wy, ..., wn_1} Basis von V, also ist
{wq,...,wp_1,w,} linear abhéingig, Widerspruch zur Voraussetzung.
(b) gilt fiir m: B' Basis. w,, € (B').
Wy = AW + - Ao 1Wine1 + AU + o0 + A0,
Wire A\; = 0 fiir alle ¢ = m, so wire w,, = ZZIl Ajw; im Widerspruch zur linearen
Unabhingigkeit von C' = {wy,...,w,,}. Also gibt es j € {m,...,n} mit A\; # 0. Nach
Austauschlemma (Lemma 2.4.11) ist

{w17 cees Wim=1,Umys - - - 7/Uj—17wmuvj+17 e 7/U7”L}

Basis von V, also ist (b) erfiillt. Nach Induktion gelten (a) und (b) fiir alle m € N. [

Bemerkung 2.4.14. Sei V ein K-Vektorraum mit Basis {v1,...,v,}.

1. Alle Basen von V haben gleiche Michtigkeit (nédmlich n).
Beweis: By, By Basen. Dann gilt nach Satz 2.4.13 (1) |By| < |Bs| und analog
| Ba| < | B

2. Jede linear unabhéngige Menge C mit n Elementen ist eine Basis.
Beweis: Nach Satz 2.4.13 (2), denn fiir m = n gibt es nichts zu ergénzen.

3. Ist U < V Untervektorraum, so hat jede Basis von U hochstens n Elemente und
kann stets zu einer Basis von V' ergénzt werden.
Beweis: Basis von U ist linear unabhéngige Menge C' € V', kann nach Satz 2.4.13
(2) ergéinzt werden.
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2 Gruppen, Korper, Vektorrdume

2.4.5 Dimension
Dimension: “Die Anzahl der Freiheitsgrade in einem mathematischen Raum”

Definition 2.4.15. Sei V ein K-Vektorraum und B = {vq,...,v,} eine Basis. Dann
nennt man n die Dimension von V.

dim]K Vi=n

Falls aus dem Kontext klar ist, welches der zu Grunde liegende Korper ist, oder der
Korper keine Rolle spielt, so schreiben wir auch dim V' anstatt dimg V. Fiir V = {0}
ist dimV = 0 (B = @). Falls keine endliche Basis existiert, schreiben wir dim V' = oo.
Definition 2.4.15 hiangt wegen Satz 2.4.13 nicht von der Auswahl der Basis ab.

Bemerkung 2.4.16. Seien Uy < Uy < V Untervektorrdume. Dann gilt
dim Uy = dim Uy

sowie

dimU; =dimU; & Uy = Uy
(sieche Bemerkung 2.4.14 (3)).
Definition 2.4.17. Sind Uy, U; < V Untervektorrdume von V', so heif3t
Uy +Uy:={u+v|u€U,veU}
die Summe von U; und Us,. Gilt zusitzlich U; N Uy = {0}, so schreibt man
Uy e U,

und spricht von der direkten Summe. Falls U; @ Uy = V, so heifit Uy Komplement von
U (in V). Wir sagen auch, Uy und U, sind komplementdr.

Satz 2.4.18. Secien Uy,U; < V. Dann gilt: Uy + Uy < V. Mehr noch: Uy + Uy ist der
kleinste Untervektorraum von V, der Uy und Uy enthdlt, d.h.,

Ui+ U, = <U1 UU2>

Beweis. Uy + Uy € (Uy U Us): klar.

U, €Uy + Uy, Uy € Uy + Usy: Klar.

Nach Proposition 2.4.2 ist (U; U Usy) der kleinste Untervektorraum von V', der Uy U Uy
enthélt. Also reicht es zu zeigen, dass U; + U, ein Untervektorraum ist:

0+0=0ecU; +U,
(u1 +ug) + (v1 + ) = (ug +v1) + (ug +v2) €Uy + Uy
)\(’U,l + 'LLQ) = ()\Ul) + ()\Ug) € Ul + UQ
Beispiele mit Zeichnung an der Tafel: Wie hingt die Dimension von Durchschnitt

und Summe von den Dimensionen der einzelnen Teile ab? Betrachten Vereinigung und
Schnitt von Gerade U; und Ebene Uy im R?. Jeweils zwei Fille:
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2.4 Basen und Dimension

o Gerade liegt in der Ebene, Uy < Us.
dlm(U1 N UQ) =1.
d1m(U1 + UQ) = 2.

e Gerade liegt nicht in der Ebene.
d1m(U1 N UQ) = 0.
dim(U; + Uy) = 3.

Satz 2.4.19 (Dimensionssatz). Sind Uy, Uy < V' endlichdimensional, so gilt
dlm(Ul + UQ) = dlm(Ul) + dlm(UQ) - dlm(Ul N UQ) .

Speziell gilt also
d1m(U1 @ UQ) = dlm(Ul) + dlm(UQ) .

Bemerkung:
dim(U; N Uy) < min{dim Uy, dim U}

daUiNnUs <U; und Uy NnU,; < Uy (AbSChDitt 233)

Beweis von Satz 2./.19. Sei Uy := Uy N Uy und B = (vy,...,v,,) Basis von Uy. Dann

kann B zu einer Basis
Bl = (’Ula"'avmvwlw"?wr)

von Uy und zu Basis
BQ = (Ul)"wvmvula"')us)

von Us ergéinzt werden (Folgerung von Satz 2.4.13 da Uy < Uy und Uy < Us).

Behauptung:
(vlw <oy Um, Wi, - - 7wr7u17-"7u5)

ist Basis von Uy + Uy. Denn
<B1 UB2> = Ul + U2

und vy, ...y Uy W,y -« - Wy, U, - - -, Ug Sind linear unabhéngig: sei
AV + oo+ AU, F ppwy + o ppw, + y1ug + oo + ygus =0
Es folgt

Yiug + o+ Ysls = —({\1@1 oo+ N U F qwy F e+ ,u,nw,nl) elU; nU,

Y

e, e,
Also gibt es Darstellung durch Basis B:
VUL F e F YU = QU F o+ QU
Da By = (v1,...,Up,U1,...,Us) linear unabhéingig erhalten wir

'71:"'=’Ys=al='”=am=0

(2.1)
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2 Gruppen, Korper, Vektorrdume

Also folgt aus (2.1) dass
A1+ o+ AU+ pqwy F o+ ppw, =0
Da By = (v1,...,Vm, ft1, - - - » [ ) linear unabhingig gilt
M=o =Ap=p1=-=p=0.
Damit ist lineare Unabhéngigkeit von (vy,..., v, Wy, ..., W, Uy,...,us) bewiesen. [

Ubung 6. Nach Satz 2.4.19 gilt dim(U; + Us) = dim(U;) + dim(Us) — dim(U; N Uy). Was
halten Sie von folgender Aussage:

dim(Uy + Uy + Us) = dim(Uy) + dim(Uy) + dim(Us)
- d1m(U1 N UQ) - d1rn(U1 N Ug) - d1m(U2 N Ug)
+ d1m(U1 NU; N Ug)

Satz 2.4.20 (Charakterisierungssatz fiir direkte Summen). Seien Uy,Us < V. Dann gilt
genau dann 'V = Uy & Uy, wenn sich jeder Vektor v € V eindeutig als Summe v = vy + vg
mit v1 € Uy und vy € Uy darstellen ldsst.

Beweis. Zuerst die Riickrichtung: Haben V' = Uy + Us. Ist u € Uy NUs, so ist u+ (—u) =
0 = 0 + 0. Also folgt aus Eindeutigkeit v = 0, d.h., U; n Uy = {0}.

Hinrichtung: Da V = U; @ U, lésst sich jedes v € V' als Summe v + vy darstellen.
FEindeutigkeit: ist v = v1 + vy = v'l + ?}’2 mit ’1)1,’1)'1 € U; und '1)2,1}’2 € U,, so folgt

I I
Ul — V] =Vg —VUy =t U

also
ue U nNU;= {0}

Also vy — v'l = 0 und daher v; = v'l, und vy — v'2 = 0 und daher vy = 1)'2. ]
Direkte Summen mit mehreren Summanden:
UhoUy,eUs:= (U oUy) ®Us
Man darf die Klammern weglassen:
(UyoUy)eUs=U; & (Uy & Us)
Zunichst gilt Uy + (Uy + Uz) = Uy + (U + Usz). Weiterhin gilt

(a) U nU;={0}
und (b) (U1 + UQ) NnU;3 = {0}
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genau dann wenn

(c) Upin(U;eUs)={0}
und (d) U,NnU;s = {0} .

Davon die Hinrichtung: Uy N Uz € (Uy + Uy) N Us = {0} wegen (b), also gilt (d). Sei
v € Uy N (Uy ® Us). Dann gilt v = ug + ug fiir us € Uy und ug € Us. Also v — ug = ug €
(U; + Uy) n Uz = {0} wegen (b). Ausserdem v = uy € U; N Uy = {0}, daher v = 0, also
(¢). Riickrichtung &hnlich.

Analoges gilt fiir beliebig viele Summanden.

Satz 2.4.21 (Zerlegungssatz). Sei V' ein K-Vektorraum, n = dimV, und {vy,...,v,}
eine Basis von V. Dann st

V=U®&" U,
f’d?” Uz = (’U,Z> = KUZ‘.

Beispiel 2.4.22. R" = Re; ® -+ ® Re,,. A

Folgerung: Jeder Untervektorraum eines endlichdimensionalen Vektorraums V hat ein
Komplement.

Beweis von Satz 2.4.21.
V=U+:-+U,=(u...uy)
Es bleibt zu zeigen: (Uy + +-+ + U;) N U;41 = {0} fiir i € {1,...,n —1}. O

Ubung 7. Vervollstindigen Sie den Beweis von Satz 2.4.21.
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Kapitel 3

Lineare Abbildungen,
Gleichungssysteme, Matrizen

3.1 Lineare Abbildungen I

Lineare Abbildungen sind die wesentlichen strukturerhaltende Abbildung fiir Vektorrdume.

Definition 3.1.1 (Lineare Abbildung). Es seien V' und W Vektorrdume iiber einem
Korper K. Eine Funktion f:V — W heiit lineare Abbildung oder (Vektorraum-) Homo-
morphismus wenn gilt

o fiir alle v,v' evV:

flo+v) = f) + F(0") (Vertréglichkeit mit der Addition)

e firallev eV und A € K:
fw) = Af(v) (Vertriiglichkeit mit der skalaren Multiplikation)
Insbesondere folgt fiir A = 0, dass f(0) = 0. Wir sprechen von einem Isomorphismus
wenn f zusétzlich bijektiv ist. Weitere Bezeichnungen fiir den Spezialfall V = W:
e cine lineare Abbildung f:V — V heiit Endomorphismus (von V);

e ein Isomorphismus f:V — V heifit Automorphismus (von V).

Zwei Vektorrdume V und W heiflen isomorph wenn ein Isomorphismus f: V' — W exis-
tiert. Es handelt sich also bei isomorphen V und W bis auf Umbenennung der Elemente
um den gleichen Vektorraum.

Bemerkung 3.1.2. Wenn f:V — W ein Isomorphismus ist, dann auch f LW 5 Vi seien
u,v € W und A € K. Wegen der Surjektivitit von f gibt es u',v' € V mit f(u') = v und
f(@") = v. Dann gilt

S ut ) = 5D+ ) = 7T ) =d = T )+ (),
SO @) = £ () = du
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Proposition 3.1.3. Die Komposition linearer Abbildungen ist wieder linear: wenn f: V) —
Vo und g: Vo — V3 linear sind, dann ist auch g o f: Vi — V3 linear.

Beweis. Fiir alle v,0' € V; und A € K gilt

g(f (M) = g(Af(v)) = Ag(f(v))
g(f(v+0) = g(f(v) + f(v)) = g(F () + g(f(v')). o

3.2 Matrizen

Beispiel einer 2 X 3-Matrix iiber R:
5 =3 0
1 25 «

Formal:

Definition 3.2.1 (Matrizen). Sei K ein Korper. Eine m X n-Matriz mit Eintrigen aus
K ist ein Element des mn-dimensionalen Vektorraums K™ iiber K. Schreiben K" fiir
die Menge aller (m X n)-Matrizen.

Falls B € K™", so geben wir B hiufig in folgender Schreibweise an:

bll ot bln
B =
bml o bmn

Insbesondere diirfen wir fiir A € K und m X n-Matrizen M, N schreiben: AM und
M + N, und 0 steht fiir die Matrix in K™", deren Eintrége allesamt 0 sind.

Motivationen: Matrizen dienen der kompakten Beschreibung von z.B.
e linearen Abbildungen;
e linearen Gleichungssystemen;

e (gerichteten und ungerichteten) Graphen, und vielem anderen mehr.

Beschreibung linearer Abbildungen

Sei B eine (m X n)-Matrix iiber K. Dann beschreibt B die lineare Abbildung
fe: K" - K" : 2w Bz

wobei
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1
Beispiel 3.2.2. Fir B = (0 (1)) ist fp = idg2:

seea i) () :

Beschreibung linearer Gleichungssysteme

biiry + o + by, = 2

b1 + o + by = Zm
Ubersichtlichere Schreibweise fiir das lineare Gleichungssystem:
bin o b\ [ 21

bml I bmn Tn Zm

Y

B

mit Hilfe der Koeffizientenmatriz B. Kurzschreibweise: Bx = z.

Beschreibung von Graphen

Sei G = (V,A) ein gerichteter Graph mit Knotenmenge V = {vq,...,v,}. Dann ist
die Adjazenzmatriz von G die Matrix B € {0,1}"" mit b;; = 1 falls {v;,v;} € E
und b; ; = 0 sonst. Der gerichtete Graph aus Abbildung 1.1 hat beispielsweise folgende
Adjazenzmatrix:

O O = O
_ o O O
= o O O
O O O

Die Adjazentmatrix eines ungerichteten Graphen ist definiert als die Adjazenzmatrix des
zugehorigen symmetrischen Graphen (siehe Abschnitt 1.2.2).

3.2.1 Matrizenmultiplikation

Seien 4 € K™ und B € K™".
Dann lassen sich die Funktionen fp:K" — K™ : 2 = Bz und f4: K" - K : 2 » Az
komponieren: sei fap := fa4 ° fB.

Beobachtung: es gibt ein C' € K™ mit fo = fap. Schreiben: “C' = AB”.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

A B AB

Definition 3.2.3. Das Produkt AB zweier Matrizen A € K und B € K™ ™" ist
genau dann definiert, wenn m = m' und zwar durch

m
X
AB := (Z aikbk]) e K"
k=1 i=1,...,r,j=1,..n
fir A= (aij)i=1,.rj=1,.,m u0d B = (bi;)i=1,..m' j=1,. n-

Proposition 3.2.4. Fiir die Matrizenmultiplikation gelten:

1. Assoziativititsgesetz
(AB)C = A(BQ)

2. Die Einheitsmatrizen

1 0 e 0

PO LI
0 0. 1

mxn

sind Eins-elemente fiir die Multiplikation: Fir A € K gilt

E, A=A und AE, = A

3. Distributivgesetze

A(B+C)=AB+ AC
(B+C)A=BA+CA

4. Vertrdaglichkeit mit der Skalarmultiplikation: fir A € K gilt

(M)B = A\(AB) = A(\B) (3.1)

Ubung 8. Beweisen Sie Proposition 3.2.4.
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Definition 3.2.5. Die i-te Zeile der Einheitsmatrix hat die Gestalt

ei=(0,...,0,4_,,0,...,0)611{"

7

und wird Einheitsvektor genannt.

Beispiel 3.2.6. Matrizenmultiplikation in K™" ist nicht kommutativ.
0 1\/1 1 00
(O 0) (0 0) - (O O) (3.2)
1 1\(0 1} (0 1 N
0 0)lo 0/ \0 O
Die Menge K™" mit Addition und der eben definierten Multiplikation ist fiir n > 2

nicht einmal ein Schiefkérper, da es Matrizen ungleich 0 gibt, die kein multiplikatives
Inverses haben, wie Beispiel 3.2.6 (3.2) ebenfalls zeigt.

Definition 3.2.7. Eine Matrix A € K™™" heiit invertierbar (oder regulir oder nicht-
singulir) wenn m = n (quadratische Matrix) und eine Matrix B € K" existiert, so
dass

AB=BA=E,.

Die Matrix B ist durch A eindeutig bestimmt (Lemma 2.1.4!) und wird mit A~ bezeich-
net.

Bezeichnung:
GL(n, K) := {A € K" | A invertierbar}

(englisch: “general linear group”)

Eigenschaften.
1. Fiir A, B € K" gilt

AB=F, e BA=E, o B=A"'oA=B"

2. Ist A invertierbar, so auch A~ und es gilt (A_l)_1 = A.
3. Sind A4, B € K™ invertierbare Matrizen, so ist auch AB invertierbar und es gilt

(AB) '=p7'a™! (3.3)

4. GL(n, K) ist beziiglich der Matrizenmultiplikation eine Gruppe.

5 Fir A e K\ {0} gilt A\A) ' =A"A™ . Denn: A'ATT (M) = AxAAT A= E,.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Beispiel 3.2.8. Eine Matrix A € K™ der Gestalt

A1 0
A2
0 A
fir A,..., A\, € K heiflt Diagonalmatriz. Eine Diagonalmatrix ist genau dann invertier-

bar, wenn Aq,..., A, # 0, und in diesem Fall gilt

Ubung 9. Wie berechnet sich das Produkt von Diagonalmatrizen?
nxXn

Ubung 10. Sei D € K™ eine Diagonalmatrix, so dass DA = AD fiir alle A € K",
Dann gilt D = AE,, fiir ein A € K (diese Matrizen werden auch Skalarmatrizen genannt).

Ubung 11. Zeigen Sie: Falls B € K™ so, dass BA = AB fiir alle A € K", dann gilt
B = \E, fiir ein A € K. Hinweis: Betrachte die Matrix Fj;, die eine 1 an der Stelle ¢, j
hat, und sonst Null ist. Was bedeutet E;; B = BE;;?

Ubung 12. Sei A € K. Dann gilt genau dann Az = O fiir alle 2 € R”, wenn A = 0.

3.2.2 Rang
Sei A = (aw) € Kan.
S1 N Sn
( aiy PN A1y ) 21
am1 s Amn Zm

Zeilen von A sind Elemente aus K" und die Spalten von A sind Elemente aus K™

Definition 3.2.9 (Rang). Die maximale Zahl linear unabhingiger Spalten von A (in
K™) heifit Spaltenrang von A. Die maximale Zahl linear unabhiingiger Zeilen von A (in
K") heiflt Zeilenrang von A.

Bemerkung 3.2.10. Seien sq,...,s, die Spalten von A. Dann
Spaltenrang von A = dimg (s1,...,5,) -
Seien z1, ..., z,, die Zeilen von A. Dann
Zeilenrang von A = dimg (21, ..., 2;,) -
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Satz 3.2.11. Dann
Zeilenrang von A = Spaltenrang von A
Definieren rg(A) := Zeilenrang von A = Spaltenrang von A.
Beweis. Eine Spalte heifle linear tiberfliissig wenn sie Linearkombination der anderen

Spalten ist. Analog fiir Zeilen. Weglassen einer linear iiberfliissigen Spalte &ndert den
Spaltenrang nicht.

Behauptung. Weglassen einer linear iiberfliissigen Spalte &ndert auch den Zeilenrang
nicht! Sei etwa letzte Spalte s,, linear iiberfliissig, d.h.,

Up = A8+ o0+ Ap_18p-1

also a;, = Maj + -+ + A\y—16; -1 fir ¢ € {1,...,n}. Durch Weglassen der n-ten Spalte
entstehe aus A die Matrix A' mit Zeilen z'l, cee z:n. Dann gilt

i I
a1z + oz, =0 a2+ o+, =0

Riickrichtung hierbei klar. Hinrichtung: fiir die letzte Komponente gilt

n—1 n—1
Q101 T 200+ Oy = O Z AkQig |+ 0+ apy, Z Ak @k
k=1 k=1

n—1
Z Ak(oaan + -+ + o) = 0
k=1

Analog dndert das Weglassen einer linear iiberfliissigen Zeile nicht den Spaltenrang.

Durch sukzessives Weglassen von linear iiberfliissigen Zeilen und Spalten gelangt man
m'xn/'

zu einer m' X n'-Matrix A' € K ohne linear iiberfliissige Zeilen oder Spalten, mit m'

Zeilen in K" und n' Spalten in K™ :
Zeilenrang(A) = Zeilenrang(A') = m' < dim(K") = n'

Spaltenrang(A) = Spaltenrang(A') = n' < dim(K™ ) = m'
Alsom' = 7. O

Beispiel 3.2.12. Der Rang der Nullmatrix 0 (alle Eintréige 0) ist Null: rg(0) = 0. A

Bemerkung 3.2.13. Der Beweis von Satz 3.2.11 zum Rang ein Matrix A ist leider nicht
komplett algorithmisch: denn es ist bis zu dieser Stelle der Vorlesung (noch) nicht klar,
wie man (effizient!) berechnet, ob eine Spalte beziehungsweise eine Zeile von A linear
iiberfliissig ist. Die néchsten beiden Abschnitte werden dieses Problem 16sen.
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3.2.3 Zeilenumformungen

Sei A € K™". Die folgenden Umformungen von A heiBen elementare Zeilenumformun-
gen (manchmal auch (elementare) Zeilentransformationen):

(1) Vertauschung zweier Zeilen;
(2) Multiplikation einer Zeile mit einem Skalar A\ € K \ {0};
(3) Addition des A-fachen (A € K') einer Zeile zu einer anderen Zeile.

Analog: elementare Spaltenumformungen.
Bemerkung 3.2.14. Mit (1) lassen sich die Zeilen beliebig permutieren (Satz 4.1.1).

Bemerkung 3.2.15. Jede elementare Zeilenumformung lasst sich wieder mit einer elemen-
taren Zeilenumformung riickgéingig machen.

Beispiel 3.2.16. In diesem Beispiel werden die einzelnen Zeilentransformationen durch
Pfeile angedeutet, die unten beschriftet sind mit einem der genannten drei Typen (1),
(2), oder (3) der Transformation, und oben beschriftet sind mit einer Beschreibung der
Transformation; zum Beispiel steht zo + z; ~ 29 fiir die Transformation, die die zweite
Zeile durch die Summe der ersten beiden Zeilen ersetzt.

1 2 3 1 2 3 1 2 3
3 9 12Ty g g 2EETEG o
11 1) @ A\r11) ® 111
Vorteil der letzten Darstellung: Zeilenrang (némlich 2) sofort ablesbar. A

Lemma 3.2.17. Elementare Umformungen dndern den Rang einer Matriz nicht.
Beweis. (z1,...,z,) bleibt bei elementaren Zeilenumformungen erhalten:

o (21,29) = (A22,21)

o fiir A € K\ {0} gilt: (2) = (\2)

o (21,22 + Az1) = (21, 22) O

Bemerkung 3.2.18. Jede Zeilenumformung einer Matrix A ldsst sich beschreiben als Ma-
trizenmultiplikation T'A von A mit einer geeigneten Matrix T

1. Az; ~ z; (Multiplikation der Zeile z; mit \): Wéhle

1 0 - 0
0 - -
: 1
T := A
1 :
oo 0
0 0 1
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2. z; e zj (Vertauschung von Zeile z; und z;): Wéhle

1

Diese Matrizen T' werden auch Elementarmatrizen genannt.

Bemerkung 3.2.19. Offensichtlich ist jede Elementarmatrix invertierbar, und die inverse
Matrix ist ebenfalls eine Elementarmatrix:

e Falls T' die Elementarmatrix ist von Az; ~ z;, dann ist 77! die Elementarmatrix
von %zi ~ 2

e Falls T' die Elementarmatrix ist von z; «» z;, dann ist 7! = T;

e Falls T" die Elementarmatrix ist von z;+Az; ~ 2;, dann ist 7! die Elementarmatrix
von z; — Azj ~ z;.

Bemerkung 3.2.20. Analog lassen sich elementare Spaltenumformungen durch Multipli-
kation mit Elementarmatrizen von rechts beschreiben.

3.2.4 Algorithmus zur Umwandlung einer Matrix in Stufenform

In diesem Abschnitt stellen wir eine Prozedur zur Rangbestimmung vor. Es handelt sich
um das Kernstiick des Gauflschen Algorithmus zur Losung von linearen Gleichungssys-
temen.

Idee: Erzeugen mit Hilfe von elementaren Zeilenumformungen eine Matrix, deren
Rang direkt sichtbar ist.
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Definition 3.2.21. A € K™*" ist in (oberer) Stufenform, falls A von der Gestalt

0 coe 0 a'ljl cee a1]2 cee a1]3 cee 0/1]7 coe a]_n
0o -+ 0 e 0 CLQJ'Z a2j3
: 0 - 0 - :
A=|: R (3'4)
0 - el 0 e 0
0 - el 0 e 0
mit 0 < j; < jo < -+ < jp <nund ayy,...,a € K\ {0}.

Bemerkung 3.2.22. Fir A € K™ von der Form (3.4), so gilt rg(A) = r (gleich der
Anzahl der Stufen). Grund: die ersten r Zeilen sind linear unabhéngig, denn A\yzy + -+ +
Arzr = 0 impliziert

)\1’(11]'1 +A2'O+”'+Ar’0:0 (:> )\1 =0) (jl—te Spalte)
Ay s agj, + o +:X0=0 (= A3=0) (jo-te Spalte)
usw.

Also j; =0 fir allei € {1,...,r}, und rg(A) = r.
Beispiel 3.2.23. Betrachten A € Q3X4 wie folgt.

01 2 3 135 1 . 135 1
zZ1e923 23T 5R2™23
0 2 4 8 02 4 8|222""19g 2 4 8
1351, @ lo1 2 3 @) 000 -1
Stufenform, rg(A) = 3. A

Allgemein: induktiver Algorithmus zur Uberfithrung einer Matrix in Stufenform mit
Hilfe von elementaren Zeilenumformungen. Hat die Matrix A € K™ die Gestalt'

o --.. 0 ayj, - k | % vee %
. . . B | . . . .
: Lo beliebig
AR = § S S AT (3.5)
! ak7jk
0 o B
1 am7]k
mit ayj,,...,a5-15,, # 0 und k groBtmoglich. Falls Stufenform noch nicht erreicht ist,

so liasst sich weiter wie folgt verfahren:

lter Fall: ay ; = 0. Vertauschen der k-ten Zeile mit einer Zeile, fiir die a;; # 0
(i > k) (die gibt es, da Stufenform noch nicht erreicht und k gréfitmoglich gewihlt).
Damit 0.B.d.A. 2ter Fall.

'Sterne in Matrizen stehen fiir beliebige Eintréige.
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3.2 Matrizen

2ter Fall: ay ;, # 0. Von jeder Zeile z; (I > k) subtrahiere man (awkagék)zk.

Dies ergibt Matrix der Gestalt

0 = 0 ay * .. x|
Ak—155_1 * [
0 0 Ak i :

Tttt TTTTTTTTTTTTTTTT 0 ”””””””””””” "BT”

Der Algorithmus endet, wenn B' = 0 oder wenn keine Zeilen mehr vorhanden sind.

Bemerkung 3.2.24. Im Verfahren wurden keine elementaren Zeilenumformungen vom
Typ (2) verwendet (Multiplikation einer Zeile mit einem Skalar).

3.2.5 Bestimmung von Dimension und Basen

Seien uq, ..., u, € K". Bestimmung von d := dim (uy, ..., u,,): Sei
. X
A= . (S Km "
-

Dann gilt d = rg(A) und d ist durch Umformen von A in Zeilen-Stufenform bestimm-
bar. Siehe Lemma 3.2.17 (elementare Zeilenumformungen #ndern den Rang nicht) und
Beobachtung am Ende von Abschnitt 3.2.3 (Ablesen des Rangs in der Stufenform).

Bestimmung einer Basis von V := (uq,...,u,,): Umformen von

—u—

mXxn

in Stufenform B € K
Basis von V. Denn: falls

. Die vom Nullvektor verschiedenen Zeilen von B bilden eine

2 —uy—
. o .
- -
durch elementare Zeilenumformung, so ist (21, ..., 2mn) = (u1,...,u,,) (siche Beweis von

Satz 3.2.17, “Elementare Umformungen dndern den Rang einer Matrix nicht”).

Rechnungen in beliebigen endlichdimensionalen Vektorridumen:
Sei nun V' ein beliebiger n-dimensionaler K-Vektorraum. Das Rechnen in V' ldsst sich
auf das Rechnen mit Koordinatenvektoren bzgl. einer Basis zuriickfithren (Grundlage:
Satz 2.4.6).
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Wiederholung: Sei V' ein K-Vektorraum mit geordneter Basis B = (vy,...,v,). Dann ist
et K" = Vi (A, ) B Ao + -+ Ao,
ein Isomorphismus, d.h., eine bijektive Abbildung mit den Eigenschaften
o (21 + 22) = p(21) + 9(22);

e p(\2) = Ap(2).
D.h., K" und V sind “im Prinzip” der gleiche Vektorraum (Vergleiche: Satz 2.4.6).

Gegeben: wq,...,w,, €V.
Gesucht: Basis von (w1, ..., w,,).
Ansatz: Fiir i € {1,...,m} gibt es u; = (M1, ..., \in) € K" so dass w; = pg(u;). Also:
w1 = A1qU1 + o0 F AU,
Wy = A1V + o + AnnUn
Setzen
A1 A
A=) :
Aml 0 Amn
Dann gelten
dimy (wy, ..., wy,) = dimge (U, ..., u,) = 1g(A) (3.6)
und
(wlv"'awm)=¢B(<u17"'7um))' (37)
Insbesondere: (b1, ..., bs) ist genau dann Basis von (u1, . .., u,, ), wenn (o(by), ..., (b))
Basis von (wy, ..., w,,) ist.

3.2.6 Invertierbarkeitskriterium

Wir lernen nun ein wichtiges notwendiges und hinreichendes Kriterium fiir die Invertier-
barkeit von Matrizen kennen.

Satz 3.2.25. Eine Matriz A € K" ist genau dann invertierbar, wenn rg(A) = n.

Beweis. “=7: Sei A invertierbar. Wir miissen zeigen, dass die Spalten v, ...,v, von A
linear unabhéngig sind. Wir nehmen an, dass \jvy + «-- + A\,v, = 0, also dass

M) /0
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3.2 Matrizen

Dann gilt
A
A'Al =0
An
Al
Da A7'4 = E,, erhalten wir | : [ = 0 and daher Ay = -+ = X, = 0. Also ist der
An
Spaltenrang von A gleich n.
“e=": Sei rg(A) = n. Dann sind Spalten v1,...,v, von A linear unabhéngig, also eine
Basis von K", und (vq,...,v,) = K". Also gibt es Linearkombinationen
1
0
|=e = bnvl + oo + bnlvn
0
0
(:) =ep, = by,v1 + - + by,
1
Also ist
bir - bip | |
Al Dol = 0nvr e A bprvn e bipur e+ by | = By
bnl b’rm | |
und haben damit das Inverse
) b11 bin
A= :
bnl bnn
zu A gefunden. 0

3.2.7 Konstruktion der inversen Matrix

Es gelte AB = C fiir drei Matrizen A, B,C € K™". Uberfithrt man A und C durch
die gleichen elementaren Zeilenumformungen in Matrizen A' und C', dann gilt auch
A'B = C'. Denn: eine elementare Zeilenumformung entspricht Multiplikation von links
mit einer Elementarmatrix 7', und damit:

AB=C=T(AB)=TC
= (TA)B=TC (nach Proposition 3.2.4).
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Folgerung:
AAT =B,
M M
E, A7 = A7

Das bedeutet: erhilt man E,, durch elementare Zeilenumformungen aus einer Matrix A,
so verwandeln die gleichen Zeilenumformungen die Matrix F,, in die Matrix A7

Beispiel 3.2.26.

10 -2 100
A=|0 1 0 01 0|=F;
10 0 00 1
10 -2 1 00
Z3— 21 ~ 23 : 01 O 0 1 0
00 2 -1 0 1
10 -2 1 0 0
27 s~z |01 0 0 1 0
00 1 —27t o 27!
100 0 0 1
2= (=2)z3~» 2z : [0 1 0 0 1 0 |=4at A
00 1 —27t o 27!

Zur Konstruktion von A~ bensétigen wir also einen Algorithmus, der A durch Zeile-
numformungen in FE,, iiberfiihrt.

1. Teil: Umformung von A mit Algorithmus in Zeilen-Stufenform (Abschnitt 3.2.4).
Gibt es weniger als n Stufen, so ist rg(A) < n — 1, und A ist nicht invertierbar (siehe
Abschnitt 3.2.5). Ansonsten hat A die Form

ap; ke %
0 agp -
%e ... *

0 0 ap,

wobei alle a;; € K\ {0}.
2. Teil, 1. Schritt: Alle Diagonalelemente zu 1:

Multiplikation von z; mit al-_l-1 firi e {1,...,n}:
1 % e %
0 1
0 - 0 1
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3.3 Lineare Gleichungssysteme

2. Schritt: Alle Elemente * zu Null machen: Fiir j = 2,3,...,n (der Reihe nach)
Bearbeitung der Spalte j: Von Zeile z; mit i € {1,...,5 — 1} wird a,jz; abgezogen
(ersetze z; durch z; — a;;2;). Dies ergibt

1 0 PR e X%
0 1 = & :
|
0 1 =
0 1
0 0 0 1

und fiihrt schlieflich zu F,,.

Satz 3.2.27. Sei A € K™, Die folgenden Aussagen sind dquivalent:
1. A ist invertierbar (A_1 existiert)
2. 1g(A) =n

Die Spalten von A sind linear unabhdngig

Die Zeilen von A sind linear unabhdngig

A kann durch elementare Zeilenumformungen in E, umgewandelt werden

S T e

det A # 0 (kommt spdter in Abschnitt 4.1, Satz /.1.9)

Beweis. (1) & (2): Satz 3.2.25.
(2) = (3) = (4): Satz 3.2.11.
(1) < (5): Abschnitt 3.2.7. O

3.3 Lineare Gleichungssysteme

3.3.1 Definitionen

by
Ist Ac K™, b=| : | € K" so heifit
bm,

a1y + o+ apT, = by

Am1T1 + 0 + ATy = bm

kurz
x7
Ax =b fir x =

Tp
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

lineares Gleichungssystem (LGS) (mit m Gleichungen und n Unbekannten zq, ...

und Koeffizienten aus K).
e b # 0: inhomogenes LGS
e b =0: homogenes LGS

Az = 0 ist das zu Ax = b gehdrige homogene Gleichungssystem.

Los(A,b) := {z € K" | Az = b}
heifit Lisungsmenge des LGS Az = b.

3.3.2 Losbarkeitskriterium

Sei A € K™". Dann heifit Az = b losbar falls Los(A, b) #+ @.
Bemerkung 3.3.1. Seien si,...,s, € K" die Spalten von A. Dann gilt

falz) = Az = z181 + -+ + 1,8,.

Also ist Az = b genau dann lésbar, wenn b € (sq,...,5,).

Es gibt drei Moglichkeiten:

1. Az = b ist nicht 16sbar: Los(A,b) = @.
Zum Beispiel z1 + 29 = 1, 1 + 29 = 2.

2. Ax = b ist eindeutig losbar: |Los(A,b)| = 1.
Zum Beispiel z1 + z9 = 1, 29 = 2.

3. Az = b hat mehrere Losungen: |Los(A,b)| > 1.
Zum Beispiel 1 + z9 = 1, 221 + 229 = 2.

Proposition 3.3.2. Ein LGS Az = b ist genau dann l0sbar, wenn
rg(A) = rg(Alb).
Dabei bezeichne A|b die Matrix

aip vt a by
Am1  **° Qmn bm
Beweis. Schreiben sq,..., s, fir die Spalten von A.
Az = b losbar
< be(s1,...,8,) (Bemerkung 3.3.1)
< (S1,...,8,) =(S1,.+.,8,0) (sieche Abschnitt 2.4.1)
< dim(sy,...,s,) =dim(s,...,S,,b) (sieche Abschnitt 2.4.5)
<= r1g(A) =1rg(Alb) (sieche Abschnitt 3.2.2).
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3.3 Lineare Gleichungssysteme
Bemerkung 3.3.3. rg(A) = m ist hinreichende (aber nicht notwendige) Bedingung fiir
Losbarkeit (denn rg(A) < rg(A|b) < m).
Satz 3.3.4. Sei vy eine Lisung des LGS Ax =b (d.h., Avg = b). Dann gilt

Los(A,b) = vg + Los(A,0) :={vg+ v | v € Los(A,0)}

“Allgemeine Losung des inhomogenen LGS
= spezielle Losung des inhomogenen LGS

+ allgemeine Losung des zugehorigen homogenen LGS.”
Beweis. Sei v € Los(A, 0). Nach Distributivitéitsgesetz gilt
A(vg+v) = Avg+ Av=b+0=10

D.h., vg + v € Los(A, b).
Umgekehrt: Sei w € Los(A,b). Dann ist v := w — vy € Los(A, 0), denn

Av=A(w—1vy) = Aw—Avyg=b—-0=0.
Also w = vy + v € vy + Los(A, 0). O
Beispiel 3.3.5. K =R, m=1,n=2.
2@ + 4dxg = 12
‘Az = b

T

2
A=(24) e R?, x=<$2

), b=(12)eR’

vy = (11) ist spezielle Losung.

Los(A,0) = {(2) | 221 + 4o = 0}

e

ist Gerade x5 = —%ml. Zeichnung!

Menge aller Losungen:
4-2)\
Los(A,b) = vg + Los(A,0) = {( 1 +)\> | A ER}

ist Gerade xo = —%xl + 3. Zeichnung! A
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

3.3.3 Bild und Kern
Sei A € K™*". Definieren Kern und Bild von A. Entspricht Kern und Bild der Abbildung
fa:K' = K"z Az
Bild von A (ist das Bild von f4; vergleiche Abschnitt 1.2.4):
BildA:= {Az |z € K"} = (s1,...,5,) s K"
wobei s1,...,s,, die Spalten von A. Also:
rg(A) = dim(Bild A).

Kern von A (ist der Kern von f4, allerdings etwas anders definiert als in (1.1) in Ab-
schnitt 1.2.4):

Kern A := {x € K" | Az = 0} = L5s(A4, 0). (3.8)
Einfach nachzurechnen: Kern A ist Untervektorraum von K".
Satz 3.3.6. Es gilt
dim(Kern A) + dim(Bild A) = n ‘Dimensionsformel’
rg(A) =n—-d ‘Rangformel’
wobei d := dim(Kern A) der Defekt von A.

Beweis: spéter fiir lineare Abbildungen, Satz 3.4.15.
Seien A € K™ und b € K™. Ist vy € K" spezielle Lésung von Az = bund ist (vq, ..., v4)
Basis von Los(A4,0), so ist

LOS(A,b) = {’UQ + Ao + oo+ Mgy | Ay s Ag € K}

Das bedeutet, dass d = n—rg(A) nach Satz 3.3.6 die Anzahl der frei wihlbaren Parameter
(A, ..., Ag) ist fiir allgemeine Losung @ = vy + Ay + +++ + Agug € K",

Korollar 3.3.7. ° Seien A € K™ und b € K™ so, dass das LGS Ax = b ldsbar.
Dann ist Az = b genau dann eindeutig lésbar, wenn rg(A) = n.

Beweis.

Az = b ist eindeutig losbar < |Los(A,b)| =1
< Los(4,0) = {0} (Satz 3.3.4)
< dim(Kern A) =0
= n=n—dim(Kern A) =rg(A) (Satz 3.3.6) O

’Ein Korollar bezeichnet in der Mathematik eine wahre Aussage von Interesse, die sich unmittelbar,
oder mit vergleichsweise geringem Aufwand, aus einer (meist direkt davor) bewiesenen Aussage ergibt.
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3.3 Lineare Gleichungssysteme

Bemerkung 3.3.8. Eindeutigkeit der Losung héngt nur von A ab (nicht von b).

Bemerkung 3.3.9. Fiir n = m und rg(A) = n ist A'b die (eindeutig bestimmte) Losung
von Ax =b.

Bemerkung 3.3.10. Fiir n > m (mehr Unbekannte als Gleichungen) gilt: wenn lésbar,
dann nie eindeutig (weil rg(A) < m < n).

Bemerkung 3.3.11. Fiir n < m: alle 3 Fille sind moglich (siche Abschnitt 3.3.2). Wegen
rg(A) < n < m (insbesondere: Zeilenrang(A) < n) sind einige der Zeilen Linearkombi-
nationen der anderen (also linear iiberfliissig, falls LGS losbar).

3.3.4 Der GauBsche Algorithmus

Wie 16st man ein lineares Gleichungssystem Ax = b? Prinzip: Az = b wird durch Zei-
lenumformungen in ein gleichwertiges LGS A'z = b umgewandelt, d.h., Los(A,b) =
Los(A',b'), so dass Losbarkeit von A'z = b' leicht entscheidbar ist.

Wir verwenden den Algorithmus aus Abschnitt 3.2.4 mit der erweiterten Koeffizien-
tenmatrix (A|b). Umformung von (A|b) diesem Algorithmus ergibt Matrix (A'[b') in
Stufenform.

I I I I I I
0 Ly O a’ljl e 0/1]2 e a1]3 e al],r, Ly aln bl
I I . )
o -+ 0 ee 0 a2j2 a2j3 ee : b2
: 0O - 0 : :
1,1 . . I I !
(Alp) =| Gyttt ey | by
I
0 0 0 | bryq
: : :
0 .- e 0 e 0 | by,
. . . . I I
fir 1 <j; <+ <j, <nund mit ay;, #0,...,a,; #0.

Merke: r = rg(A).

1. Fall: b..,, ..., b,, nicht alle 0. Dann ist rg(A|b) > r = rg(A), und nach Propositi-
on 3.3.2 ist Ax = b nicht losbar.

2. Fall: bL+1, ey b'n = 0. Dann ist Az = b 16sbar nach Proposition 3.3.2 (und eindeutig
losbar falls r = n, Korollar 3.3.7).

Lemma 3.3.12. Los(A4,b) = Los(4',b).

Beweis. Elementare Zeilenumformungen &ndern nichts (vergleiche Abschnitt 3.2.7):

Ax =0
¢ (elementare Zeilenumformung)
Az =1V
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. I .
Losung von A'xz = b einfach berechenbar:
I I I _ I
Ay Tj, + Qrj +125,+1 toee ATy = br
Auflosen nach x; (‘an Stufe’):

I -1 I I I
x‘jr = (aro) (br - arjr+1xj7‘+1 -t T a?“n'rn)

Zeile Nr. 1:
) ) 1 )
Q45,2 4, + 5 +1T5,+1 + @ Ty = bZ

auflésen nach z;;, bereits berechnete w;, fiir k > j; einsetzen. Schlielich: die restlichen
Ly ooy Ty -1 Als freie Parameter wéhlen. O

Beispiel 3.3.13. LGS Ax = b:

T3+ 3xy + 3x5 = 2
T+ 2x9 + 23+ 414 + 325 = 3
T + 2x9 + 223+ Txy + 625 =5
2x1 +4x9 + x3+ 04 + 325 =4

Erweiterte Koeffizientenmatrix (A|b):

0

NN O
o W
w o W w
= Ot W

1
1 1
1 2
2 415

Umformung zu Stufenform: z; «» zo (Stufenelement muss ungleich Null sein):
“Pivotelement” (fiir numerische Berechnungen in Q ist Wahl wichtig).

1 21 4 3|3
001 3 3|2
12 2 7 6|5
2415 3|4

23 — 21 «» zz und z4 — 227 ~ z4 (1. Spalte unterhalb von Stufe alles zu 0):

12 1 4 3|3
00 1 3 3|2
00 1 3 3|2
00 -1 -3 -3|-2

23 — 29 ~ zg und z4 — (—29) ~ 24 (3. Spalte unterhalb von Stufe alles zu 0).

1 21 4 3|3
0013 3|2
000 O0O0|0
0 00 O0O0|0
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Stufenform (A'|b') erreicht. Wegen rg(A) = 2 = rg(A|b) ist LGS losbar (Propositi-
on 3.3.2).

Loésungen berechnen. Haben freie Parameter Aq, Ay, A3 € K.

Ty = )\3
Ty = )\2
x3 = 2 —3\y — 3\3 (aus dritter Zeile x3 + 3x4 + 3x5 = 2)
To = )\1

I =3—2)\1—(2—3>\2—3)\3)—4)\2—3)\3) = 1—2)\1—)\2.
Es gilt also:
-2 -1 0
1 0 0 |(N
Los(A,b) ={| 0 =3 =3[ |+
0 1 0 [\\
0 0 1

| A1, Ao, Az € K3} A

S O N OO

Bemerkung 3.3.14. Mit dem gaufischen Algorithmus3 lassen sich folgende Probleme
l6sen:

1. Enscheiden, ob ein LGS (Abschnitt 3.3.4) eine Losung besitzt;
. Bestimmung von Kern A (Abschnitt 3.3.5);
. Bestimmung von Bild A (Abschnitt 3.3.6);

2
3
4. Den Rang einer Matrix berechnen (Abschnitt 3.2.3);
5. dim(zq,..., z,) berechnen (Abschnitt 3.2.5);

6. Basis von (z1,...,2,,) ausrechnen (Abschnitt 3.2.5);
7

. Bestimmung der Determinante von A (spéter in Abschnitt 4.1).

3.3.5 Bestimmung des Kerns

mXn

Sei A' die Zeilen-Stufenform von einer Matrix A € K™*". Dann gilt
Kern A = Los(4,0) = Lés(A', 0).

Im Beispiel (aus Abschnitt 3.3.4):

T Al T3 )\2 )\3
1 2 1 4 34,0
0 0 1 3 3]0
)
A=l0 0 0 0 0]0
0O 0 0 0 010
0O 0 0 0 0/o0

*Das Verfahren war schon vor GauB in FEuropa und unabhingig in China bekannt.
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Losungen des homogenen Systems A'z = 0 haben die Form

T —2)\1 - )\2

T A
x=|x3|=|—-3\—3A3| fiir A, A9, A3 € K.

T4 )\2

5 A3

Wegen dimKern A = n —rg(A) = 5 -2 = 3 (Satz 3.3.6) miissen fiir Basis von Kern A
drei linear unabhéngige Losungen gefunden werden. Diese erhélt man, wenn man fiir

(A1, A2, A3) eine Basis von K> einsetzt, zum Beispiel die Einheitsvektoren e; = (1,0,0),
es = (0,1,0), e3 = (0,0,1). Also:

-2 -1 0
1 0 0
w1 = 0 ,Wo = -3 , W3 = -3
0 1 0
0 0 1

ist Basis von Kern A.

3.3.6 Bestimmung des Bilds

mXn

Fiir gegebene Matrix A € K und b € K™ wollen wir wissen, ob b € Bild A. Es seien
S1,..., 8, Spalten von A € K™". Dann: Bild A = (sq,...,s,) (siehe Abschnitt 3.3.3).
Ein Vektor b € K™ ist also genau dann im Bild von A, wenn Az = b eine Losung besitzt.

Ziel: Berechnung einer Basis von Bild A € K™. Idee: Auch hierfiir kann das Verfahren
aus Abschnitt 3.2.5 (Umformung in Stufenform) verwendet werden.

Definition 3.3.15. Sei

ayp 0 A1p «
. . mXn
A= e K
am1 Amn
Die Matrix
- ail am1 »
. nxm
A = : eK
Alp  ** Gmn

heifit transponierte Matriz von A (Zeilen und Spalten vertauscht).
Entspricht Spiegelung an der Diagonalen: (\).

Beispiel 3.3.16.

(123>T_;§
45 6 5
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(Zeilenvektor)T = (Spaltenvektor):

T 1
oo :
Bemerkung 3.3.17. Zu Rechnungen mit der Transposition.
e Offenbar: (A")7 = A.
° (AB)T =B'A". Denn
T = T 4T
=1 ki \J=1 ki
o Ist A € K™" invertierbar, so gilt (A_l)T = (AT)_l. Denn:

T

AT A Y =4 =" =F

Beispiel 3.3.18. Beispiel 3.3.13 aus Abschnitt 3.3.4:

S1 So 83 S4 Sjy
o o0 1 3 3
Ao 2 1 4 3
1 2 2 7 6
2 4 1 5 3

Spalten von A als Zeilen der Matrix

O 1 1 2 S1
0 2 2 4 S9
AT= 1 1 2 1] s3
3 4 7 5 S4
3 3 6 3/ s5
Auf Zeilen-Stufenform bringen:
11 2 1 1 1 2 1 11 2 1
34 7 5 011 2 011 2
33 6 3|~|0 0 0 O0[~|0 0 0 O
011 2 011 2 00 0O
00 0 0 00 0 O 00 0O
Basis von Bild A:
1 0
1 1
21711
1 2
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Wegen Bild A = rg(A) = 2 (Abschnitt 3.3.4) braucht man nur zwei linear unabhéngige
Spalten von A zu finden, z.B.

S = und s5 =

N~ = O
W o W w
>

Ubung 13. Sei a € K™ (ein Spaltenvektor). Was ist die Dimension der Matrix a'a?
Was ist die Dimension der Matrix aa ' ?

Eine Matrix heifit symmetrisch, wenn AT = A Zum Beispiel sind Adjazentmatrizen
von ungerichteten Graphen stets symmetrisch (siehe Abschnitt 3.2).

Ubung 14. Zeigen Sie: fiir alle A € K™ ist ATA symmetrisch.

3.3.7 Unlosbarkeitskriterium

Wenn Az = b fir A € K™" und b € K™ eine Losung hat, kann man das einfach durch
Angabe einer Losung in K" beweisen. Gibt es auch einfache Beweise dafiir, dass Az = b
keine Losung hat? Etwas einfacheres, als den Gaufischen Algorithmus durchzufiihren?

Satz 3.3.19 (Dualitiit). Sei A € K™" und b € K. Dann ist das LGS Az = b genau
dann unlésbar, wenn das (‘duale’) System

T T
(A[b) y = (0]-1) (3.9)
losbar ist.
Beweis. Seien z1,. .., 2,, die Zeilen von (A|b). Angenommen, (A|b)Ty = (0| —1)T hat ei-
ne Losung y € K. Das bedeutet, y; 21 ++**+Ym2m = (0| =1). Also (0] =1) € (21, ..., zm).
Das bedeutet, man kann die Zeile (0] — 1) = (0 --- 0 1) mit elementaren Zeilenum-

formungen aus Azx = b herleiten. Diese Zeile entspricht der unerfiillbaren Gleichung
0xq + ++- + 0z, = —1. Dann ist auch Ax = b unerfiillbar.

Die andere Richtung in Satz 3.3.19 ist etwas schwieriger zu zeigen, allerdings nicht viel,
wenn man die Stufenform kennt. Wir {iberfithren mit Hilfe von elementaren Zeilenum-
formungen die Matrix (A|b) in eine Matrix (C'|d) in Stufenform. Wenn nun (A|b) un-
erfiillbar ist, dann auch (C|d), und r := rg(C) < rg(C|d) nach Satz 3.2.11. Es gilt dann
insbesondere 2,1 = (0|d,4+1) mit d,,; € K\{0}. Ersetze z,,1 durch —d;ilzﬁl =(0|-1).
Da diese Zeile durch elementare Zeilenumformungen aus (A|b) hervorgegangen ist, ist
also (0] = 1) € (z1,..., 2,,). Daher ist das System (Alb)Ty = (0] - 1)T l6sbar. O

3.4 Lineare Abbildungen Il

Lineare Abbildungen waren bereits Gegenstand von Abschnitt 3.1. In diesem frithen
Abschnitt jedoch haben uns die Werkzeuge gefehlt, um wirklich interessante Aussagen
iiber lineare Abbildungen formulieren zu kénnen. Dies ist jetzt anders, weshalb wir dieses
Thema hier nochmal aufgreifen.
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3.4.1 Beispiele
1. Die identische Abbildung idy:V — V ist linear (ein Endomorphismus).
2. Die Nullabbildung V' — V:v — 0 ist stets linear.
3. Allgemeiner: fiir A € K ist = Ax linear.

4. Die Abbildung f:C - C: z i - z ist linear (betrachten C als R-Vektorraum).

() (2)

Geometrische Interpretation: Drehung um 90 Grad.

Es gilt z.B. f(v+v') = f(v) + f(v') und f(2u) = 2f(u).

Wichtiges Beispiel:
Proposition 3.4.1. Sei A € K™*". Dann ist
far K" = K" 1z Az

eine lineare Abbildung.

Beispiel 3.42. n=m=2, A= ((1) _1):

X
1 xr1 + X2
fA T2 = xo + 21‘3

T3

faler) = (é) fales) = (}) fales) = (3) A

Ubung 15. Es sei K ein Kérper. Beweisen Sie, dass eine Abbildung f: K — K genau dann
linear ist, wenn es ein A € K gibt, so dass fiir alle v € K gilt, dass f(v) = \v.
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3.4.2 Beschreibung linearer Abbildungen

Im gesamten Abschnitt stehen V und W fiir zwei K-Vektorrdume. Weiterhin seien
V1,-..,0, €V und f:V — W eine lineare Abbildung. Dann gilt:

f[<{v17"'avn})] = <{f(vl)7af(vn)}) (310)
Denn:
FOuvr+ -+ X0,) = A f(or) + -0+ A f(vn)
Insbesondere:
flVlsw (Proposition 2.4.2) (3.11)
Satz 3.4.4. Sei (vq,...,v,) eine Basis von V. Dann gibt es zu jedem n-Tupel (w1, ..., w,) €

W" genau eine lineare Abbildung f:V — W mit v; » w; fiir alle i € {1,...,n}.

Damit ist jede lineare Abbildung f eindeutig festgelegt, wenn man die Bilder f(v;)
einer Basis kennt. Die Bilder der Basiselemente sind beliebig wéhlbar.

Beweis von Satz 3.4.4. Jedes v € V ldsst sich eindeutig schreiben als v = Ajv; + ++ +
Aty € V' (Satz 2.4.6). Wir definieren dann (wohldefiniert!)

f(’U) = )\1’(01 + oeee + )\nwn

Diese Abbildung ist linear, und f(v;) = w; fiir alle ¢ € {1,...,n}. Um die Eindeutigkeit
dieser Abbildung nachzuweisen, sei f' eine beliebige lineare Abbildung mit f(v;) = w;
fiir alle 7 € {1,...,n}. Dann gilt

f'(v) = f'()\lvl + o Apuy)
= M (f(v1) + -+ A (f(vn))
= )\1(11)1) + e+ )\n(wn) = f(U)

und damit f' = f. O

3.4.3 Kern, Bild, Rang, Defekt
Sei f:V — W lineare Abbildung. Dann definieren wir

e Kern f:={v eV | f(v) =0}.

Bild f = f[V]:= {f(v) | v € V} (siehe Abschnitt 1.2.3).
e rg f := dim(Bild f) (Definition sinnvoll wegen Bild f < W, siehe (3.11))
e dfkt f := dim(Kern f) der Defekt von f.

Bemerkung 3.4.5. Begriffe fiir Matrizen A stimmen mit denen fiir die zugehorige lineare
Abbildung f4:x — Ax iiberein (siehe Abschnitt 3.3.3):
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e Kern A = Kern fy;
e Bild A = Bild f4;
e rgA=rgf4.
Satz 3.4.6. Sei f:V = W eine lineare Abbildung. Dann:
1. f injektiv & Kern f = {0};
2. Falls W endlich dimensional, so gilt
f surjektiv < Bild f =W < dimBild f = dim W,
3. Falls dimV =dimW =n < 00, so gilt f injektiv < f surjektiv < f bijektiv
(also Isomorphismus)
Beweis. Zu 1.
f) = (') & f(0) = f(v) =0
= flu—-0v)=0
sSv-0 € Kern f

Zu 2. Siehe Abschnitt 2.4.5.
Zu 3. (Gilt nur in endlich dimensionalen Vektorrdumen.)
f injektiv < Kern f = {0}
<= dimKern f =0
= dimBildf=n-0=n (nach Dimensionsformel, Satz 3.3.6)
= Bidf=W (siehe 2.)
= f surjektiv (nach Definition). O

Satz 3.4.7. Sei f:V — W eine lineare Abbildung, und v, ...,v, eine Basis von V.
Dann:

1. f ist genau dann injektiv wenn f(v1),..., f(v,) linear unabhdingig;

2. f ist genau dann surjektiv wenn {f(v1),..., f(v,)) = W;

3. f ist genau dann Isomorphismus wenn {f(v1),..., f(v,)} eine Basis ist von W.
Beweis. 1, ‘=": Sei f injektiv und Ay f(v1) + -+ N\, f(v,) = 0. (Z.z.: Ay = -+ = )\, =0).
Dann:

)‘lf(vl) + et )‘nf(vn) =0

= f(Avr + -+ X\0,) =0 (Linearitét von f)

= M\ + -+ A\, € Kern f

= \v;+-+ A, =0 (Satz 3.4.6 (1.), da f injektiv)
=N =-=X,=0 (da vq,...,v, linear unabhéngig)
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‘<’ Seien f(v1),..., f(v,) linear unabhéingig und v = A\jvy + --+ + A\,v, € V. Dann:

f(v)=0
= v € Kern f
= f(v) = A f(vr) + -+ A fv,) =0
=N\ =-=),=0 (da vy, ...,v, linear unabhéngig).

Also ist v = 0 und f ist injektiv nach Satz 3.4.6 (1.).

2. f ist nach Definition genau dann surjektiv wenn Bild f = W. Man rechnet leicht
nach dass Bild f < W. Da (f(vy),..., f(v,)) der kleinste Untervektorraum von W der
f(v1),..., f(v,) enthilt, ist f genau dann surjektiv wenn W = (f(vy),..., f(v,)).

3. Direkt aus 1. und 2. O

Satz 3.4.8 (Fundamentalsatz fiir endlich dimensionale Vektorrdume). Je zwei K- Vektor-
raume, die von n Elementen erzeugt werden, sind isomorph. Insbesondere ist jeder n-
dimensionale K- Vektorraum V isomorph zu K", geschrieben V = K".

Im Prinzip kénnte man sich also beim Studium von endlichdimensionalen Vektorrdumen
auf K" beschrinken; das wire aber unpraktisch, da viele Vektorriume ganz anders ange-
geben sind. Trotzdem ist es eine wichtige Einsicht, dass Rechnen mit Koordinaten (nach
Wahl einer Basis!) moglich ist.

Beweis. Sei (v, ...,v,) eine Basis von V, und (wy, ..., w, ) eine Basis von W (Satz 2.4.10:
Basen existieren). Nach Satz 3.4.4 gibt es eine lineare Abbildung f mit f:v; = w;, und
f ist Isomorphismus gemé&fl Satz 3.4.6. 0

Sei B = (vy,...,v,) Basis von K-Vektorraum V', und (eq,...,e,) die kanonische Basis
von K". Nach Satz 3.4.4 gibt es einen eindeutig bestimmten Isomorphismus

(pBZKn — V mit LpB(ei) = v;

Dieser heifit der kanonische Basisisomorphismus. Beschreibt den Zusammenhang zwi-
schen Vektoren und ihren Koordinatenvektoren

A
: P A\vp + e+ Ay,
An

Aussagen iiber V in gleichwertige Aussagen iiber Elemente von K" umwandeln.

Beispiel: Bereits in Abschnitt 3.2.5.

(uq,...,u,) Basis von K" & (og(u1),...,e5(u,)) Basis von V

(wy,...,w,) Basis von V < (Lp]_gl(wl), . ,gaél(wn)) Basis von K"
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3.4.4 Faktorrdume
Sei V' ein K-Vektorraum, und U < V Untervektorraum. Fiir v € V heif3t

v+U:={v+u|ueU}

Nebenklasse von v beziiglich U. Das Element v heiflit Reprisentant von v+ U. Die Menge
der Nebenklassen
VIU:={v+U|veV}

heilt Faktorraum von V nach U. Wie wir sehen werden, ist der Faktorraum auch wieder
ein K-Vektorraum.

Bemerkung 3.4.9. Es gilt

wev+U < (w=wv+u fir ein u € U)
& (v—w = firein u' € U)
sSv-—weU
=vew+U
Sv+U=w+U (3.12)

Das heifit, jedes Element einer Nebenklasse ist Reprasentant dieser Nebenklasse. Durch
v~w:i=ut+U=w+U

ist eine Aquivalenzrelation definiert (sieche Abschnitt 1.2.1), die Aquivalenzklassen sind
gerade die Nebenklassen:
[v].=v+U

Abschnitt 1.2.1 besagt, dass V /U = V [~ eine Zerlegung von V in disjunkte Nebenklassen
ist. Bild malen!

Ubung 16. Beweisen Sie die Behauptungen in Bemerkung 3.4.9.

Beispiel 3.4.10. V := ]R2, U < V sei die Gerade durch 0 mit Richtungsvektor v. Durch
jeden Punkt p € R? gibt es genau eine Gerade g' parallel zu g:

[p] :=g'=p+Rv=p+U

Die Gerade ¢' hingt nicht von der Auswahl des Repriisentanten ab: ¢' = [p] = [¢] genau
dann, wenn p und p' auf der gleichen Geraden ¢' parallel zu g liegen. Der Faktorraum
V' |U ist die Schar der zu g parallelen Gerade p + U. A

Auf der Menge der Geraden lédsst sich folgende Vektorraumstruktur definieren:

[p]+[q] := [p+4q]
Alp] := [Ap]

Das funktioniert, weil die Gerade [p+ ¢] nur von den Geraden [p] und [¢] abhéngt, aber
nicht von der konkreten Wahl der Représentanten p,q € R
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Satz 3.4.11. Sei V ein K-Vektorraum und U < V. Dann ist V |U zusammen mit den
folgenden Operationen ein K-Vektorraum (der Faktorraum ):

o Addition:
(v+U)+(w+U):=(w+w)+U

o Multiplikation mit Skalar A\ € K :

A(v+U):=(\w)+U

Dabei ist
Vv ]
e Nullvektor Oy =0y +U =U
e additives inverses Element —(v + U) = (-v) + U.
0

Siehe Abbildung rechts.

Beweisskizze: + und Multiplikation mit Skalar
sind wohldefiniert: die Definition héngt nicht naty

von der Wahl der Reprasentanten ab. "

7 zeigen: WGDDU+U=U’+U,U)+U=U)'+U,
dann (v' +w') + U = (v +w) + U.
Nach (3.12) gilt v' € v + U und w' € w + U. Also 0+U

vV +w e+U)+ (w+U)
=v+w+U+U
=(v+w)+U.

Und mit (3.12) gilt (o' + ') + U = (v + w) + U.
Analog fiir skalare Multiplikation.

Die Vektorrauaxiome iibertragen sich damit von den Axiomen fiir die Repréisentanten
v € V auf die Nebenklassen v + U € V/U. O

Proposition 3.4.12. Die Abbildung naty:V — V [U gegeben durch v — v + U ist eine
lineare Abbildung, mit Kern(naty ) = U, und heifit natiirliche Homomorphismus.

Beweis. Linearitiit folgt aus Definition von V' /U.

Kern(naty) = {v € V | naty(v) = Oyy}
={veV|v+U=U}
={veV|veU}
=U O
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Satz 3.4.13 (Homomorphiesatz). Es sei f:V — W eine lineare Abbildung (Homomor-
phismus) und U := Kern f. Dann gilt

Bild f =V /U
Ein Isomorphismus ist gegeben durch
h:V]U->Bildf:(v+U)+ f(v)
Beweis. Achtung! Definition darf nicht vom Reprisentanten abhéngen.

e h ist wohldefiniert: Seien w, A% beliebig so dass v+ U = o' +U. Zu zeigen ist,
dass f(v) = f(v'). Es gilt v' € v+ U und daher gibt es ein v € U mit v' = v + w.
Da u € U = Kern f gilt dann

FQW) = flo+u) = f) + f(u) = f(v) +0 = f(v)

h ist linear:

h((v+U)+ (w+U)) = h((v+w)+U)

= flo+w) = f(v) + f(w)
- h(v +U) + h(w + U)

Multiplikation mit Skalar: analog.

h ist surjektiv: Nach Definition gilt fiir beliebiges f(v) € Bild f

h(v+UV) = f(v) € Bild h.

h ist injektiv: Nach Satz 3.4.6 genau dann, wenn Kernh = {0}.

h(v+U)=0< f(v)=0
=sveKemnf=U
<=>U+U:U=Ov/U 0

Also: homomorphe Bilder entsprechen Faktorrdumen V /U, gegeben durch Unterrdume
U von V. Siehe Abbildung.
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V U W
Homom. f
0
nat
U Isom. h
V/U v
0+U

Wie lasst sich eine Basis eines Faktorraums finden?

Lemma 3.4.14. SeiU < V mit Basis (vy,...,vq) und (v1,...,04, Vg41, - - -, Vg+r) (€rginzte)
Basis von V. Dann ist (vge1 + U, ..., 044, + U) Basis von V |U.

(Siehe Abschnitt 2.4.4 zum Austauschsatz von Steinitz.)

Folgerungen:

VIU = (vgs1s- - Vgar) (gleiche Dimension und Satz 3.4.8)
V=Ue <Ud+1, .. 'avd+7‘>

Beweis. Basis: 1) Erzeugendensystem: Sei v € V beliebig. Da (vy,...,vy) Basis ldsst
sich v schreiben als v = Ajv; + +-- + \,,v,,. Dann:

v+ U = naty(v) = Z)‘i naty (v;)
i=1
n

=0y, + Z ; natyr (v;) (weil v; € U = Kern(naty) fiir ¢ < d)
i=d+1
= Aa+1(Var1 + U) + oo+ + Agir (vgr + U)

2) Lineare Unabhéngigkeit: Sei ) ;- ;.4 Ai(v; + U) = 0yyy = U. Da

Z Ni(v; +U) = Z \;natyr(v;) = natU< Z )\ivi>

i=d+1 i=d+1 i=d+1

78



3.4 Lineare Abbildungen I1

gilt also:

n

naty ( Z Aivi) = Oy y
i=d+1

= Z \iv; € Kern(naty ) = U

i=d+1
n
= Z Aiv; = Ao + o+ Agug flir geeignete Aq,..., \g EK
i=d+1
n
= ( Z )‘ZUZ) - )\1’U1 — e — )\d’l)d =0
i=d+1
S A === Agg1 = =7, =0 (v1,...,v, linear unabhéngig). O

Satz 3.4.15 (Dimensionssatz). Sei U < V' endlichdimensional. Dann gilt
dimV /U = dimV — dimU

(Dimension verhilt sich wie Logarithmus log(a/b) = log(a) — log(b).)
Sei f:V — W lineare Abbildung. Dann gilt

dim(Bild f) = dim V' — dim(Kern f) (3.13)

Beweis. Der erste Teil folgt mit » = dim(V /U), n = dimV, und d = dim U direkt aus
Lemma 3.4.14. Der zweite Teil folgt aus dem ersten Teil und dem Homomorphiesatz:
dim(Bild f) = dim(V /Kern f). Setze U := Kern f. O

Korollar 3.4.16. Scien f:U — V und g:V — W lineare Abbildungen zwischen end-
lichdimensionalen Vektorrdumen. Dann gilt

rg(g o f) < min(rg(g),rg(f))-
Beweis. Offensichtlich gilt: Bild(g o f) € Bild(g). Also

rg(g o f) = dim(Bild(g o f)) = dim(Bild(g)) = rg(g).

Auch gilt
rg(g o f) = dim(Bild(g o f))
= dimV — dim(Kern(g o f)) (Dimensionsformel)
= dim(Bild(f)) + dim(Kern(f)) — dim(Kern(g o f)) (Dimensionsformel)
< dim(Bild(f)) = rg(f) (Kern(f) € Kern(go f)).O

Ubung 17. Es sei f:V — W eine lineare Abbildung. Sei U < V so, dass V /U isomorph
ist zu Bild(f). Zeigen Sie, dass dann U = Kern(f)."

4Ubungsaufgabe inspiriert von Student:innenfrage WS’23/24.
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3.4.5 Lineare Abbildungen und Matrizen

Jede Matrix A € K™" beschreibt eine lineare Abbildung, némlich
fa:K' K" 1z Az

Umgekehrt gilt: jede lineare Abbildung ldsst sich durch eine Matrix beschreiben.
Sei f:V — W eine lineare Abbildung, wobei:

e V ein n-dimensionaler Vektorraum mit Basis B = (vy,...,v,), und
e W ein m-dimensionaler Vektorraum mit Basis C' = (w1, ..., w,,).
Nach Satz 3.4.4 ist f eindeutig durch die Bilder der Basisvektoren festgelegt:

m
f(vj) = agjwy + o+ + apmjwy, = Zaijwi
£

~

Das heifit, f wird eindeutig festgelegt durch die Matrix

B all cee a/lj coe aln
A:=Mo(f):=| : : : (3.14)

aml cee amj cee amn

die sogenannte Darstellungsmatriz.

Merkregel: Die Spalten der zu f gehorigen Darstellungsmatrix Mg @)
sind die Koordinatenvektoren (beziiglich der Basis C' von W) der Bilder von
B (der Basisvektoren von V) unter f:V — W.

A

Dabei gilt: Hat v € V' den Koordinatenvektor v = | : | (beziiglich B), so hat f(v) den
An

Koordinatenvektor Au (beziiglich C) fir A = MCB (f), d.h., die lineare Abbildung

fa: K" K" :ue Au
beschreibt die lineare Abbildung f in ihren Koordinatenvektoren:

v L. w

es e

K" A:=ME(f) K"
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Ein sogenanntes kommutatives Diagram. Konkret:

V= AU+ o+ A\, L fv) = pc(Au)

I@B I@c
A
w=| : — Au

An

Denn:

flep(u)) = f(v)

1]
o,
rv13
—
>
<.
~
—~
(o4
LR
~—

Z (Z aij)\j) w; = pc(Au)

Beispiel 3.4.17. V := K", W := K". Standardbasen B,, := (ej,...,e,) von V und B,,
von W. Der kanonische Basisisomorphismus ¢p :K" — K" : v - v ist die identische
Abbildung, also ist jede lineare Abbildung

f: K" - K"

darstellbar als
farK' > K" :uw Au

mit A = Mgr’;( f). Hier: Spalten von A sind die Bilder der Einheitsvektoren.

Beispiel zum Beispiel: f: R® - R?%:

(Projektion auf xy-Ebene) ist linear, zugehorige Matrix

A=z =g ¢ o)
Spalten von A sind Bilder der Koordinatenvektoren, A = (f(eq)f(e2)f(e3)). A
Beispiel 3.4.18. Fiir die identitsche Abbildung idy:V — V gilt (nur eine Basis, B = C)
1 0 - 0
MGy =6, =7 1l
0 O. 1
Aber fiir B # C' entsteht nicht E,,! A
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Beispiel 3.4.19. Die Polynome
ag + a1 X + CL2X2 + CLng

in einer Unbekannten X vom Grad hochstens drei mit reellen Koeffizienten bilden einen
R-Vektorraum. Was ist ein Polynom? Aus der Schule bekannt. Ein Ausdruck geformt
mit Hilfe von Variable, Skalaren, Addition, und Multiplikation.

V= REY[X]

Addition und Multiplikation mit Skalar A € R wie iiblich.
Basis ist z.B. B = (vg, v1,v9,v3) mit vg =1, v1 = X, vy = X2, vg = X3,
Kanonischer Basisisomorphismus:
aop
.| @ 2 3
I = agUg + a1v1 + agUg + aszvg = ag + a1 X + 10X + az X
2
as
Das heifit pg(e;) = v;q fiir i € {1,...,4}. Das Differenzieren
dift: R*V[x] - RSV [ x]

ist lineare Abbildung mit Matrix

A = MJ(diff) =

o O O O
o O o
o O N O
o w o o

: diff
ag + a1 X + a2X2 + ang — a1 +2a9 X + 3a3X3 = pp(Au)

-1
IWB l@ﬁ

aq A
a .
.0 fa 2(12
U = — Au =
3as
as

0

Proposition 3.4.20. Die Komposition von linearen Abbildungen entspricht dem Pro-
dukt der zugehorigen Matrizen: Vi, Vo, V3 seien K-Vektorrdume mit Basen By, By, Bg
und f1: V] = Va, fo: Vo = Vi lineare Abbildungen.

Vi f1 Vy f2 Vi
IV}Bl IWBQ I‘PB;;
Kn fA1 Km ng Kr
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Dann gilt

Mg (fa0 fi) = Mg (f2)Mp (/1)

(Funktionenkomposition) (Matrizenmultiplikation)

Folgerung fiir Inverse:
C, -1 B -1
Mg (f ") = (Mc(f))

Bemerkung 3.4.21. Die linearen Abbildungen f:V — W bilden selbst einen Vektorraum,
Bezeichnung:
Homy (V, W)

Operationen komponentenweise:
(f +9)(w) := f(v) + g(v)
(Af)(w) = A+ f(v)
Falls dimV = n und dim W = m so gilt:

Hom(V, W) = Hom(K", K™) = K™*"

3.4.6 Basiswechsel und Koordinatentransformation

Sei V ein K-Vektorraum, B = (vq,...,v,) eine Basis von V, und B' = (vy,...,v,,) eine
andere Basis von V. Bei Basiswechsel B ~ B' indern sich die Koordinatenvektoren eines
Vektors v € V': die Koordinatentransformation bei einem Basiswechsel wird beschrieben
durch die Transformationsmatrix

T := MB(idy)
oder ’
S := Mg (idy) =T~

Ist

I

. -1

r=| 1 |=¢pp(v)
xn

der Koordinatenvektor von v € V' bzgl. B, d.h., v = zyv1 + --- + x,,v,, und

der Koordinatenvektor bzgl. B', d.h., v = :clv'l + e+ xnvil, dann gilt

2 =Tz und z = Sz’
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Beispiel 3.4.22. V = R%

1 -1
B:= (61762)73' 1= (wy,wy), wy = (1)’102 = ( 0 )

Dann: (siche Merkregel, (3.14))

1 -1 .
S=(1 0)=M§<ldv)

T = S_l = (_01 1) = Mgv(ldv)

Koordinatentransformation: Koordinatenvektor von v € V

bzgl. Basis B = (eq, e3) bzgl. Basis B = (wq, wsy)

.- ():( S)() (&)
€2 = (?) ” (—01 1)@ ) G) :

3.4.7 Transformationsformel fiir Matrizen einer linearen Abbildung

Bi, By: Basen eines K-Vektorraumes V.
C1, C5: Basen eines K-Vektorraumes W.
f:V = W lineare Abbildung.

Wie hingen A; := Mgll(f) und A, := Mg;(f) zusammen?
Wegen Proposition 3.4.20 und da
[ =idwofoidy
gilt dass
Mg (f) = Mg, (id,) o Mg (£) 0 My2(id,) (3.15)
Ay =S7'AS (3.16)
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3.4 Lineare Abbildungen I1

wobei S := Mgf(idw) und S := Mgf(idv) Transformationsmatrizen (siehe Abschnitt 3.4.6).

K" K™
Yl wy
s| | \% —f> w S| | T
A; ‘k
K" K™

Spezialfall: V = W, B, = C;, By = Cy. Hier gilt S = S und damit
A2 = S_lAls.

3.4.8 Aquivalenz von Matrizen
Es gibt verschiedene wichtige Aquivalenzrelationen auf der Menge der Matrizen.

Definition 3.4.23 (Aquivalenz). Eine Matrix A € K™ heift dquivalent zu einer
Matrix B € K™" wenn es invertierbare Matrizen S € K" und T € K™ ™ gibt so dass

B=T"'45.

Als kommutatives Diagram:

Kn fa Km

1fs 1fT
n /B m
K" — K
Definition 3.4.24 (Zeileniiquivalenz). Eine Matrix A € K™" heift zeilendiquivalent
(auch: links-iquivalent) zu einer Matrix B € K™™" wenn es eine invertierbare Matrix

S e K™™ gibt so dass
B =SA.

Spaltendquivalenz ist analog definiert, wird aber hier nicht weiter betrachtet.

A und B sind genau dann zeilenéquivalent, wenn man B aus A durch elementare Zei-
lenoperationen gewinnen kann (dies folgt aus Satz 3.2.27); also ist jede Matrix dquivalent
zu einer in Stufenform (Abschnitt 3.2.4).

Definition 3.4.25 (Ahnlichkeit). Eine Matrix A € K™ heiBt dhnlich zu einer Matrix
B € K™ wenn es eine invertierbare Matrix S € K™ gibt so dass

B=5'4s.

Bemerkung 3.4.26. Aquivalenz, Zeilensiquivalenz, und Ahnlichkeit sind Aquivalenzrelationen
(auf K™ bzw. auf K™*™). (Vergleiche Abschnitt 1.2.1.) Ahnlichkeit impliziert Aquivalenz,
und Zeilendquivalenz impliziert Aquivalenz. A ~ B.
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

Ubung 18. Beweisen Sie die Behauptungen in Bemerkung 3.4.26.

Satz 3.4.27 (Charakterisierung von Aquivalenz). Fiir Ay, Ay € K™*" sind die folgenden
Aussagen gleichbedeutend:

1. Ay und Ay sind dquivalent.

2. Es gibt eine lineare Abbildung f:K" — K™, Basen By, By von K", und Basen
C1,Cy von K™ s0 dass Ay = Mgll(f) und Ay = Mg;(f)

3. rg(Ap) = rg(As).

4. Die Matriz Ay ldsst sich durch elementare Zeilen und” Spaltenumformungen in
die Matriz Ay umwandeln.

Beweis. 1. = 2.: Sei Ay = g_lAlS. Wahle f := f4,. Wihle B; := (eq,...,e,) und
Cy = (eq,...,e,) Standardbasen. Dann ist A; = Mgll(fAl). Fiir By := B1S (neue
Basis von V = K") und Cy := C, S (neue Basis von W = K™) ist

My*(idy) = S und M2 (idw) = S

also
Ay = 871 AL = Mg (idy )M, (fa,) M (idy)
= Mgy (fa,) (siche (3.15))
2. = 3.
rg(Ay) =rg(f) = rg(As) (Abschnitt 3.4.3)

3. = 4.: Aus Zeilenstufenform A lésst sich durch elementare Spaltenumformungen die
Matrix
E. 0
0 0

konstruieren, mit 7 = rg(A). Gilt sowohl fiir A; als auch fiir Ay da rg(A;) = rg(As).

4. = 1.: Jede elementare Zeilenumformung einer Matrix A ist als Multiplikation T'A mit
invertierbarer Matrix T' beschreibbar (Abschnitt 3.2.3). Analog ist jede Spaltenumfor-
mung als Multiplikation AS mit invertierbarer Matrix S beschreibbar. Produkte inver-
tierbarer Matrizen sind invertierbar, also

Ay =TAS
fiir geeignete invertierbare Matrizen T und S. 0

Satz 3.4.28 (Charakterisierung von Ahnlichkeit). Die folgenden Aussagen sind dquivalent
fd?" Al, A2 € Kan:
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nxn

1. Ay und As sind dhnlich: es existiert invertierbare Matrix S € K mit Ay =

ST AL S;
2. Es gibt Basis B von K" so dass Ay = Mg(fAl).

Beweis. (1) = (2): Wihle fiir B ¢ K" die Spalten von S.
(2) = (1): Falls B = (by,...,b,), so withle S := (by,...,b,) € K", O

3.4.9 Homogene Gleichungssysteme und Untervektorraume

Proposition 3.4.29. Sei V' ein K-Vektorraum, und U € V. Dann sind dquivalent.
1. U 1ist ein Untervektorraum von V;
2. U ist die Losungsmenge eines homogenen linearen Gleichungssystems.

Beispiel 3.4.30. Es sei V' = R*. Betrachten

1 0
1 0
U - ( 0 9 1 )
0 0
Dann kann U beschrieben werden als
1 0
1 0
U—{)\l 0 +A2 1 |)\1,)\2€K}
0 0

0). A

Beweis von Proposition 3.4.29. Wir nehmen zunéchst an, dass U = Los(A,0) fir A €
K™ ". Seien u,v € U. Dann gilt Au = Av = 0, und damit gilt A(u +v) = Au + Av = 0.
Analog: nachrechnen, dass au € U fiir alle « € K und v € U.

Umgekehrt sei U < V und (uq,...,u,,) eine Basis von U. Nach dem Satz von Steinitz
findet sich eine Basis B von V der Gestalt (uy,..., U, Upmsts---,Uy,). Definiere T :=
M g’”(id), eine invertierbare Matrix, und seien X € K™ und R € K"™™ 50 dass
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3 Lineare Abbildungen, Gleichungssysteme, Matrizen

X .
T= (R) Dann gilt

veEU < v E (Upy... Upy)
= Tve(Tuy,....,Tuy,) ={e,...,em)
= (Tv)mer =+ =(Tv), =0
= Rv=0
< v € Los(R,0). O

3.4.10 Gleichungssysteme und affine Unterraume

Idee: die Losungsmenge eines allgemeinen linearen Gleichungssystems ist ein “affiner
Unterraum”. Offiziell definieren wir affine Unterrdume mit Hilfe von Untervektorraumen.

Definition 3.4.31. Sei V' ein K-Vektorraum. Dann ist W € V ein affiner Unterraum
von V falls es einen Untervektorraum U < V und ein w € W gibt, so dass

W={w+u|u€eU}.

Siehe Abbildung rechts. In anderen Worten: R2
die affinen Unterrdume von V sind genau die Nebenklassen u/w
von Untervektorrdumen von V.

Die Dimension eines affinen Raumes
W ={w+u | u € U} ist definiert als die Dimension
des Untervektorraumes U.

Proposition 3.4.32. Sei V' ein K-Vektorraum, und W € V. Dann sind dquivalent:
(1) W st affiner Unterraum von V', oder W = @;
(2) W ist die Losungsmenge eines linearen Gleichungssystems iiber V ;
(3) fiir alle wy,...,w; € W and ay,...,a0 € K mit aq + -+ = 1 ist

aiwy + -+ oquw; €W

Abbildung 3.1 veranschaulicht den dritten Punkt in Proposition 3.4.32 anhand von
w,UeWEV:R2 und aqw + av € W fiir oy = ag = %

Beweis. (2) = (1): Sei Az = b ein LGS. Falls Az = b eine Losung besitzt, so gilt nach
Abschnitt 3.3.2
Los(A,b) = vg + Los(A, 0).

Da Los(A,0) <V, ist die Losungsmenge eines LGS also ein affiner Unterraum von V.
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[RZ

\

\"

Abbildung 3.1: Illustration einer Affinkombination von w und v in R

(1) = (2): Falls W = @, so ist W Losungsmenge des LGS 0 = 1. Ansonsten ist
W ={w+u | u e U} fir U< V. Nach Proposition 3.4.29 gibt es A € K™" mit
U = Los(A,0). Dann ist

W ={w+u|ueLos(A,0)}
={w+u | Au = 0}
= {w' | A(w' —w) = 0} = Lés(4, Aw).

(1) = (3): Falls W = @, so gilt (3) trivialerweise. Ansonsten ist W = {w+u | u € U}
fiir ein U < V. Es seien wy,...,w; € W und «, ...,y € K sodass ay + -+ = 1. Wir
schreiben u; fiir w; — wy. Dann gilt

Zaiwi = Zai(wl +u;) = Zaiwl +Zaiui e W.

—
=1
(3) = (1): Falls W = @, so ist nichts zu zeigen. Falls W # @, dann zeigen wir
zunéchst, dass U := {v —v' | v,v' € W} < V. Siehe Abbildung 3.2.
Seien uy,uy € U. Dann ist uy = vy —v'l und uy = vy — U’Q fiir vl,vll,vg,vlg € W. Also ist
nach Annahme w := vy — vg + vy € W, und damit gilt uq + ug = w — v'2 eU.SeiuelU
und « € K. Dann gibt es v,v' € W mit v —v' = u. Es gilt

1 I 1 1
au=av—av =av—av +v —v € U.
-
ew

Wir zeigen nun, dass W = w + U = {w + u | u € U} fiir ein beliebiges w € W. Sei
u € U, also u = v - fiir v,v' € W. Nach Annahme ist auch w + u = w+v —v' € W,
da 1+ 1-1=1. Umgekehrt lésst sich jedes w' € W schreiben als w' = w + w' — w und
ist damit in w + U. O
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RZ

\

Abbildung 3.2: Illustration zum Beweis der Implikation (3) = (1).

Definition 3.4.33. Sei V ein K-Vektorraum und M € V. Die affine Hiille (M) g einer
Teilmenge M € V ist der kleinste affine Unterraum von V', der M enthélt.

Ist ein Hiillenoperator (vgl. Abschnitt 2.4.1).

Proposition 3.4.34. Es gilt

(M)ag = {aqwy + -+ + aw, wl,...,wnEM,al,...,anEK,ZO@- =1}.
i

Beweis. Sicherlich ist

I
McM := {a1w1+---+anwn|w1,...,wneM,Zai=1}.
i

Behauptung: M' ist affiner Unterraum von V. Seien at,...,0p € Kmit ay,...,a; =1
und wy, ..., w, € M' mit w; = Z?Il o jw; ; fiir w; ; € M und Z?zl a;; =1 fiir alle i < .
Dann gilt

l

1.

. 1

ajwy + o+ quwp = ZO[@' Z QWi eW
=1 j=1

da ) .« Zj =y a; =1. Also ist M' nach Proposition 3.4.32 ((3) = (1)) ein affiner
Unterraum von V. Da (M )ag der kleinste affine Unterraum von V ist, der M enthiilt,
folgt, dass (M)ag € M'.

Umgekehrt sei w € M. Dann gibt es wy,...,w, € Mund ay,..., o, € Kmit ) ;a; =1
so dass w = aqwy + +++ + a,w,. Wegen Proposition 3.4.32 ((1) = (3)) angewandt auf
(M)Aﬁ“ iStUJE(M)Aff. ]
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Kapitel 4

Determinanten, Polynome,
Diagonalisierbarkeit

4.1 Determinanten
Determinanten spielen eine Rolle bei
e Losbarkeit von linearen Gleichungssystemen,
e der Frage, wie lineare Abbildungen das Volumen von Kérpern verdndern,

e und vielem mehr.

4.1.1 Permutationen

Eine bijektive Abbildung f: A — A heifit auch Permutation von A.
Lateinisch ‘permutere’: vertauschen.
Oft ist A ={1,2,...,n}. Definiere

S, := {0 | o eine Permutation auf {1,2,...,n}}

Es gilt
S, =nli=n-(n-1)-2-1

Schreibweise fiir Permutationen:
1 2 n
o(l) o(2) - o(n)
(Zwei-Zeilen-Schreibweise)

Alternativ: Zyklenschreibweise (als Produkt disjunkter Zyklen):

o= (aras...a,)(biby...bs)(...)-(...)
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falls o die Elemente wie folgt abbildet (Bild malen!):

U(ai) = Gi+1(modr)> U(bz) = bi+1(mods)a oo

Zyklen der Linge 1, das heifit, “Fixpunkte” ¢ mit o(c) = ¢, werden héufig nicht mitge-
schrieben falls Grundmenge aus Kontext klar.

Beispiel.
1 23 45 6 7 8
238476 51
Zyklenschreibweise:
(1238)(57)
Schreibweise nicht eindeutig:
(57) = (75)

(1238)(57) = (57)(1238)
Bemerkungen.

e S, ist beziiglich der Hintereinanderausfiihrung o (Kompositionsoperation) von Ab-
bildungen eine Gruppe, die (volle) symmetrische Gruppe auf A = {1,2,...,n}.

e Eins-element: id4 = (1)(2)(3)-:+(n).

e Inverses Element zu o: die Umkehrabbildung von o.
Beispiel: (ag ... as)_l =(as...ay).

e Die Gruppe S, ist nicht abelsch: Beispiel fiir n = 4:

(123) o (124) = (13)(24)
(124) o (123) = (14)(23)

Permutationen der Form 7 = (ij) (zwei Elemente vertauschen) heiflen Transpositionen.
Satz 4.1.1. Jede Permutation ldsst sich als Komposition von Transpositionen darstellen.
Beweis. Jeder Zyklus (ajas .. .a,) ist darstellbar als
(a1az) o (agaz) o -+ o (a,-1a;) O
Proposition 4.1.2. Sei o € S, und sind
0 =TT Tk
1 I
g = TlTQ"’Tkl

zwet Darstellungen als Produkt von Transpositionen, so gilt k = k' mod 2.
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Definieren das Signum von o
. k
sign(o) 1= (—1)".
Also sign(o) = 1 falls k gerade (o ist gerade Permutation) und sign(o) = —1 falls k
ungerade (o ist ungerade Permutation). Proposition 4.1.2 zeigt, dass das Signum wohl-
definiert ist.

Um Proposition 4.1.2 zu beweisen, benétigen wir folgende Definition.

Definition 4.1.3. Sei o € S,,. Ein Fehlstand von o ist ein Paar (i,j) mit 1 <i<j<mn
und o (i) > o(j). Wir schreiben f(o) fiir die Anzahl der Fehlstinde von o.

Proposition 4.1.2 folgt unmittelbar aus folgendem Lemma.
Lemma 4.1.4. Es gilt sign(o) = (—1)f(0).

Beweis. Sei o = wo 7 fiir ein m € S,, und eine Transposition 7 € S,,. Offenbar ist f(o) =
f(m)+ 1 oder f(o) = f(7r) = 1. Da f(id) = 0 folgt die Aussage nun aus Satz 4.1.1. [

Bemerkungen.

sign(oy09) = sign(o ) sign(oz)

sign(7) = —1 fiir alle Transpositionen 7.

Die geraden Permutationen (sign(o) positiv) bilden eine Untergruppe von S, die
sogenannte alternierende Gruppe, geschrieben A,,.

Ist p eine ungerade Permutation (sign(p) negativ) so gilt
S, =A,UpA, wobeiTA,:={poc|oeA,}.

4.1.2 Determinantenfunktionen

Es gibt (mindestens) zwei grundverschiedene Moglichkeiten, Determinanten einzufiihren:
Mit einer expliziten Formel, oder {iber ihre Eigenschaften. Wir wihlen letzteren Zugang.

Definition 4.1.5. Sei K ein Kérper und n € N, . Eine Funktion
det: K" > K: A det A

heifit Determinantenfunktion wenn sie folgende Eigenschaften hat:
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(D1) Linearitit in jeder Zeile, d.h., fiir alle Zeilenvektoren z1,...,2,,2 € K" mit i €
{1,...,n} und X € K gilt

21 Z1 21
. ’ . o’
det| z; + z; | = det| 2; | +det| z;

Zn Zn Zn

Z1 <1

det )"Zi = ). det Zi |

Zn Zn

(D2) det ist alternierend, d.h., hat A zwei gleiche Zeilen, so ist det A = 0;
(D3) det E,, = 1.

Gibt es solche Funktionen?

Beispiel 4.1.6. n = 2.

det (al 21> 1= arby — aghy (4.1)
2

)
ist Determinantenfunktion (nachpriifen!). Geometrische Interpretation fir K = R: Aus-

druck in (4.1) misst den ‘vorzeichenbehafteten’ Flicheninhalt des Parallelogramms P,
das von den folgenden beiden Vektoren aufgespannt wird.

_ [ _ by
Uy = as und wug = by

Siehe Abbildung 4.1: falls 0 < £ (u1,us) < 180° so ist Flicheninhalt von P gleich

(a1 + bl)(az + bg) - 2F1 - 2F2 - 2F3

aias + a1by + biag + b1by — 2b1a9 — ajag — biby

albg - azbl.

Vorzeichen ist negativ falls 180° < o = & (uq,us) < 360°. A

Bemerkung 4.1.7. Fiir n = 3 sind Determinanten als Volumina interpretierbar (siehe
Abschnitt 6.4.2).
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Abbildung 4.1: Die Determinante misst den vorzeichenbehafteten Flicheninhalt eine
Parallelograms.

4.1.3 Eigeschaften von Determinantenfunktionen

Die folgende Proposition klirt das Verhalten einer Determinantenfunktion det: K™*"

K bei elementaren Zeilenumformungen.
Proposition 4.1.8. Sei det: K" — K eine Determinantenfunktion.
1. z; > z; fiir i # j: Entsteht A aus A € K™ durch Vertauschen von zwei Zeilen,

so gilt
det A' = —det A

2. Az; ~ z;: Entsteht A aus A durch Multiplikation einer Zeile mit einem Skalar
A €K, so gilt:
det A' = X - det A

3. Az; + zj ~ zj fiiri # j: Entsteht A" aus A durch Addition eines Vielfachen einer
Zeile zu etner anderen Zeile, so gilt:

det A' = det A
Das gleiche gilt auch fiir elementare Spaltenumformungen: folgt spéter.

Beweis. 2.: folgt direkt aus der Linearitdt (D1).
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3.:
21 21 21
ooy |7 7 o2
det A' = det| : =" det| : [+ A-det =/ det A+ 0
zj+ Az Z; Z;
Zn, Zn Zn
1.: Seien
Zi Zj
A=|:|und A" =] :
Zj Z
Betrachten
Zi+Zj ZZ'+Z]' Zi+zj
B:= , B':=| i |, und B":=
Zj Zi z; t 25
Dann ist
0 (22 det B" (R0 det B + det B' (%)
Also
det A@aet BY —det B' Y —det 4" O
(D2) ldsst sich verschirfen:
Satz 4.1.9. Fiir eine Determinantenfunktion det: K" — K gilt:

(D2) rg(A)<n < detA=0
Beweis. “=": Wenn rg(A) < n dann ist eine Zeile Linearkombination der anderen.
O.B.d.A: z, = Z?z_ll Aizi- Wegen der Linearititsbedingung (D1) gilt:

Z1 <1

. n—1 .

det| | Y ndet| ¢ [0
i—1 Zn-1
1=
Zn Zi

“e=”: Wenn rg(A) = n dann kann A durch elementare Zeilenumformungen in F,, um-
geformt werden. Wére det A = 0, so wire auch det E,, = 0 geméfl Proposition 4.1.8, im
Widerspruch zu (D3). Also det A # 0. O
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Riickfithrung auf F,, stets moglich bei rg(A) = n, also ist Determinante eindeutig
berechenbar. Wenn es sie iiberhaupt gibt!

Lemma 4.1.10. Es gibt hichstens eine Determinantenfunktion det: K" — K.

Beuweis. Seien det, det' Determinantenfunktionen. Wegen Satz 4.1.9 gilt det A = det' A =
0 falls rg A < n. Sei also rg A = n. Nach Satz 3.2.27 erhalten wir F,, aus A durch

elementare Zeilenumformungen. Dabei dndert sich die Determinante geméfi Propositi-

on 4.1.8 fiir det und fiir det' auf die gleiche Weise. Weil det E,, = det'En (2) 1, folgt

det A = det' A. O

4.1.4 Die Leibnizsche Formel

Satz 4.1.11 (Die Leibnizsche Formel). Es gibt (genau) eine Determinantenfunktion
det: K" - K.

Fir A = (a;;) € K™ gilt

det(A) = Z sign(o)a15(1)"* *Ano(n) (4.2)

o€eS,

Verallgemeinerung vom Fall n = 2 aus Abschnitt 4.1.2.

Beweis. Wegen Lemma 4.1.10 muss nur gezeigt werden, dass die in (4.2) definierte Funk-
tion det die Eigenschaften (D1), (D2) und (D3) hat.

(D1) Seien
21 Z1 21
Bi=|zi+Xz|, A:=|z und A' := %
Zn Zn Zn
Dann gilt
det B = Z sign(o)big(1)*bi o (i) *Ono(n)
og€ES,
= Z sign(0)a15 (1) (i) + Gi.o(i))***Ano(n)
og€eS,
. . )
= Z sign(o)ai,(1) @i o (i) Ano(n) + Z sign(0)a15(1)"** @ o ()" **Ano(n)
o€S, oES),
=det A + det A'
Analog:

det AZi = Adet Zi
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(D2) Die Matrix A = (a;;) habe zwei gleiche Zeilen, 0.B.d.A. z; = z;. Das heifit:
ay; = ag; fﬁI‘jE{l,...,?’L}

Sei 7 = (12) € S,, (Transposition). Dann

det A = Z sign(o)a14(1)" *Ano(n)

og€ES,
. . I
= Z sign(o)aiy(1)  tnon) + Z sign(o )a1e'(1)"**Ane'(n)
o€A, o'eA, T
= Z A15(1)* " Ono(n) t Z —015(2)025(1)35(3) ** *Ano(n)
€A, €A,
= Z A15(1) " Ono(n) — Z A15(1)025(2) """ Ano(n)
og€A, gEA,
=0

Die zweite Gleichung gilt, da S,, = A,, U A, 7, die dritte, da o7(1) = 0(2), o7(2) =

o(1), und o7(n) = o(n) fir alle n € {3,...,n}, und die vierte, da ay; = ay; fiir
alle j € {1,...,n}, und damit a1,(2)a20(1) = G10(1)020(2)-
(D3)
det E,, = Z sign(0)016(1)***One(n) = sign(id) - 1---1 =1
og€eS,
wobei a;; = 0;; = 1 fiir ¢ = j und a;; = 6;; = 0 sonst. O

Neue Schreibweise: |A| := det A,

aiy ... Qip aiy ... Qip
: = det :

Ap1 .- Qpp Ap1 .- Qpp

Ubung 19. Beweisen Sie, dass fiir quadratische Matrizen A und B gilt
A 0
*

B‘ = det(A) - det(B).

Beispiel 4.1.12. Betrachten n = 3 und A € K>3

Die Leibnizformel ergibt:

. Es gibt 3! = 6 Permutationen o € S,,.

aj; aiz aiz | ajx a2
a1 Qg2 G23 | A21 (22
a3y dagz asz | aszy as2

Schriglinien einzeichnen! Vorzeichen!
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Gerade Permutationen (Diagonalen):

tajia92a33 tajoag3as; +tay13a21a32
o=id o = (123) o = (132)

Ungerade Permutationen (Nebendiagonalen):

—a31a22013 —a3202301] —0a33a21012
o = (13) o =(23) o=(12)
Regel von Sarrus (gesprochen Sarriis). A

4.1.5 Berechnung der Determinante

Wie berechnet man Determinanten? Die Leibnizsche Regel ist im allgemeinen zu aufwéndig.
Idee: die Determinante einer Dreiecksmatriz ist das Produkt der Hauptdiagonalelemente.

all * *
0 “ o
det| . (1222 W x| T onazan, (4.3)
0 - 0 ap
Folgt sofort aus Leibnizformel. Fiir o # id ist ein Faktor in a14(1) * *** * Gpo(n) gleich Null

(denn a;; = 0 fiir i > j).

Diese Idee liefert ein Berechnungsverfahren!

e Umwandlung der Matrix in Stufenform. Dabei &ndert sich Determinante gemé&f
Proposition 4.1.8 in Abschnitt 4.1.3.

o Determinante der Stufenform ist Produkt der Hauptdiagonalelemente (wie oben
erklart).

Beispiel 4.1.13.

1 0 2 1 0 2
2 1 2[=]0 1 -2 (29 — 221 ~ 29)
010 0 1
10
=10 1 =2 (Z3 — Z9 ™ 2’3)
00 2
=1-1-2=2
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4 Determinanten, Polynome, Diagonalisierbarkeit

Alternative Rechnung:

1 0 2 1 0 2
2 1 2/=10 1 -2 (29 — 221 ~ 29)
01 0 01 0
1 2 0
=—lo -2 1 (55 e s3)
0 0 1
=—(1--2-1) =2 A

Ubung 20. Zeigen Sie, dass das skizzierte Verfahren zur Berechnung der Determinante
. y . nxn .. . . . . .
einer Matrix aus K iitber die Stufenform mit einer Anzahl an Rechenoperationen in

K auskommt, die beschrénkt ist durch ein Polynom in n.

Es gibt viele Moglichkeiten, das Berechnen von Determinanten zu erleichtern.

nxn

Proposition 4.1.14. Sei A € K™, Dann gilt:

det AT =det A

Beweis. A = (a;;), AT = (bij), bij = a

ji-

det AT = Z sign(a)bla(l) ... bng(n)
og€eS,

= Z sign(o)aq(1)1 - - - Go(n)n
o€esS,

Z sign(o)ag,o-1(k,) - - - Ak,o-1(k,) Wobei k; 1= o (i)
og€ES,

Z sign(o)ais-1(1y - - - Gpo=1(n) Umordnen: {1,...,n} = {k1,...,k,}

€S,

Z sign(a')alor(l) gl () denn sign(c) = sign(a_l)

o'es,

=det A O

Folgerung: Das Verhalten der Determinante bei elementaren Spaltenumformungen ist
das gleiche wie bei elementaren Zeilenumformungen (ersetze ‘Zeile’ durch ‘Spalte’ in
Proposition 4.1.8).

Satz 4.1.15. Seien A, B € K™*". Dann gilt:
1. det(AB) = det A - det B

2. Fiir A € GL(n,K) (invertierbare Matrizen, siche Abschnitt 3.2.1) gilt

det(A™") = (det A)7".
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4.1 Determinanten

Beweis. 1.: Falls rg(B) < n dann rg(AB) < n (siehe Korollar 3.4.16), und mit Satz 4.1.9
det(AB) = 0 = det A - det B.

Also muss (1) nur fiir invertierbares B bewiesen werden (rg(B) = n, det B # 0). Sei
B € GL(n,K) fest. Die Abbildung

K" 5 K: A det(AB)
hat folgende Eigenschaften:
(D1) f ist linear in den Zeilen von A
(D2) Falls A zwei gleiche Zeilen hat, dann ist f(A) = 0:

rg(A) < 0=rg(AB) <n (Korollar 3.4.16)
= det AB=0 wie oben fiir B statt A.

Weiterhin gilt
f(E,) =det(E,B) =detB.
Damit erfiillt die Abbildung

FK™™: Aw (det B) ' f(A)
#0

alle drei Bedingungen (D1), (D2) und (D3) einer Determinantenfunktion. Wegen Ein-
deutigkeit der Determinantenfunktion (Lemma 4.1.10) folgt f(A) = det A, also

(det B)_1 det(AB) = det A
= det(AB) =det A-detB.

1=detE, = det(4A™")
=det A- det(A_l) nach Teil 1.

Also det(A™") = (det A)_l. O

Direktes Nachrechnen mit Leibnizformel ebenfalls mo6glich.

Weitere Rechenregeln. Wir definieren nun die Entwicklung einer Determinante nach
einer Zeile oder Spalte. Eine Matrix, die aus A € K™*" durch wiederholtes Streichen von
beliebig vielen Zeilen und Spalten entsteht, heit Untermatriz (oder Teilmatriz) von A.
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4 Determinanten, Polynome, Diagonalisierbarkeit

Definition 4.1.16. Sei A € K™". Dann steht Ajj € KO0 g die Matrix, die
aus A durch Streichen der i-ten Zeile und j-ten Spalte entsteht.

ay;
By i By B, B,
A=lag = ag G|, Ay =|pop
By i By 5o

anj

Satz 4.1.17 (Entwicklungssatz). Es gilt

(%); Entwicklung nach der i-ten Zeile:

det A = Z(—l)ﬂ—]aw det AU
j=1

(*%*); Entwicklung nach der j-ten Spalte:

det A = Z(—l)”jazj det Aij

i=1
Zum Beweis. (*);:
0
By : By
0 (Dl) o CLZ‘]' 0 0
det|0 - 0 a; 0 -« 0| =" (~-1)"7det| 0 B, By
0 0 Bs By
B3 : By
0

= (—1)Z+JCLU det A”
folgt aus der Leibnizformel.
(xx);: folgt aus (*); und Proposition 4.1.14: det AT = det A. O
Beispiel 4.1.18. n = 3:

1 21 I e
1 4 0= 7 Vorzeichen (-1)""7 : | = + -
3 00 + - +
Entwicklung nach 1. Zeile (*);:
4 0 1 0 1 4
0 0‘_2"3 0‘“"3 0‘
=1:0-2-0+1-(1-0—-3-4) =12

+1-
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4.1 Determinanten

Entwicklung nach 2. Spalte (%% )s:

10 1 3
3 0 10

= —-2.0+4-(1-0-1-3)-0=-12

) e o

Entwicklung nach 3. Zeile (*)3:

2 1
+3.‘4 OI_().l...|+().|...|
=3.(2-0-4-1) = —12 A

Ubung 21. Mit dem Entwicklungssatz 1é8t sich rekursive die Determinante einer Matrix
in K™ vollstindig berechnen. Ist das entsprechende Verfahren polynomiell in dem
Sinn, dass die bendtigte Anzahl der Rechenoperationen in K durch ein Polynom in n
beschrinkt ist?

4.1.6 Die Determinante von linearen Abbildungen

Sei f:V = V eine lineare Abbildung, und A := M5 (f) die zugehérige Matrix (beziiglich
einer Basis B von V; siche Abschnitt 3.4.5).

Definition 4.1.19. det f := det A.

Dies ist wohldefiniert, da fiir A; = Mg(f)7 Ay = Mg' (f) nach Satz 3.4.28 eine inver-
tierbare Matrix S € K" existiert mit Ay = S_lAls . Also

det Ay = det(S™ 4,5)

= (det S)~" det A; (det S) nach Satz 4.1.15
= det A, da Multiplikation in K kommutativ.

Bemerkung 4.1.20. Wir halten fest: dhnliche Matrizen haben die gleiche Determinante.

Bemerkung 4.1.21. det f kann als Verzerrungsfaktor fiir Flichen (in R2) bzw. Volumina
(in R™) der Abbildung f interpretiert werden (siehe auch spiteren Abschnitt 6.4.2):

Fli=(detf)-F
0 1

beschreibt Scherung in « Richtung mit Faktor a.
det(A) = 1, Flidcheninhalt bleibt gleich.

Beispiel 4.1.22. V = RQ, A= (1 a) A @1 R?

\/
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4 Determinanten, Polynome, Diagonalisierbarkeit

4.1.7 Losung linearer Gleichungssysteme mittels Determinanten
Lineares Gleichungssystem
Ax =1b
L1
mit Ae K™", be K", z =
ajn
Spezialfall n = m:
Az = b eindeutig 16sbar
<= rg(A)=n nach Korollar 3.3.7
< det(A) #0 nach Satz 4.1.9

‘Eisensteinkriterium’ (1844).

Wir wissen also insbesondere, dass Az = b eine Losung besitzt, falls det(A) # 0.
Die Determinante kann aber sogar verwendet werden, um diese explizit auszurechnen!
Definieren dazu die Matrix

aip -t a1(5-1) by a1(j+1) °°° Qin
A;(b) = ¢ : ;

anl  *** QAp(j-1) bn, An(j+1) *** Qnn
A;(b) entsteht also aus A durch Ersetzung der j-ten Spalte durch b.

Satz 4.1.23 (Cramersche Regel). Sei A € K" mit det(A) # 0. Dann berechnet sich
die eindeutige Losung x von Ax = b wie folgt:

1 det(A1(b)) det(Aq(b))/ det(A)
det(A, (b)) det(A,,(b))/ det(A)
Beispiel 4.1.24. Das lineare Gleichungssystem
201 + 329 =1
T — 41‘2 =6
hat die eindeutige Losung
1 3
6 —4] -22
I = 9 3 = _—11 =2
il
2 1
1 6 11
S TI Y R T A
i
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Beweis der Cramerschen Regel (4.4).
ap an1 by

T1+ | |z, =
A1n Anp bn

b nach links in die i-te Spalte bringen:

ai xia1; — by Qn1
S P ST : +o4+] |z, =0
A1n Lilpg — bn Qpn

Die Spalten sind also linear abhéngig, und nach Satz 4.1.9 ist die Determinante gleich
Null:

apy cccoxga —by e ai,
: : P l=0
apl  **° Tilpi — bn ot App
Wegen der Linearitidtsbedingung (D1):
all ce e al'L cee aln all cee bl cee a/ln
o . I . P
Gn1 Qng Qpn Gn1 bn Unn
Also z; = | 4i ()] ]
i .

|Al

Folgerung. Wenn A € Q™" und b € Q", und z € R" die eindeutige Lsung ist von
Az = b, dann gilt z € Q".

Wie schnell sind die Algorithmen zum Lo&sen linearer Gleichungssysteme?
Man sieht leicht, dass die Uberfithrung einer Matrix aus K™" in Stufenform aus Ab-
schnitt 3.2.4 hochstens mn viele elementare Zeilenumformungen erfordert. Jede Zeile-
numformung bendtigt eine lineare Anzahl an arithmetischen Operationen. Damit scheint
der gauflsche Algorithmus insgesamt besser zu sein als die Auswertung von (4.4). Wir
miissen allerdings bei der exakten Analyse vorsichtig sein, denn eine einzelne arithmeti-
sche Operation kann sehr viel Zeit erfordern, wenn die Zahlen sehr grof3 werden. Bei un-
geschickten Folgen von elementaren Zeilenumformungen zur Umwandlung in Stufenform
konnen tatséchlich extrem grofie Zahlen auftreten; wir betrachten dazu die folgenden
Beispiele.

Beispiel 4.1.25. Betrachte die Matrix

20 0 - 0
1 0 0
11 2 =~
N |
11 1 2
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4 Determinanten, Polynome, Diagonalisierbarkeit

Diese 143t sich mit dem Verfahren aus Abschnitt 3.2.4 wie folgt in Diagonalform bringen:

mit den elementaren Zeilenumformungen 2z; — zq ~ z; fiir i € {2,...,n} erhalten wir
20 0 -0
04 0 -0
02 4 -~ :
P w0
02 -+ 2 4
Wir fahren fort mit 2z; — 29 ~ z; fiir i € {3,...,n} und erhalten
200 0 -0
040 0 -0
00 8 O :
00 4 - .o
Do 8 0
0 0 4 4 8

und so weiter, bis wir schliefSlich mit der Umformung 2z,, — z,,_1 ~ z, die Diagonalmatrix

20 0 - 0
022 0 - 0
0 0 2° :
oo 0
0 0 - 0 2"

Die Zahl 2" ist zwar grof8, aber noch nicht extrem gro8: sie kann noch ohne Probleme ab-
gespeichert und manipuliert werden. Es kénnen aber auch noch sehr viel gréflere Zahlen
auftreten; betrachte dazu das néchste Beispiel. A

Beispiel 4.1.26. Betrachte die folgende Uberfithrung einer Matrix in Stufenform. Sei
x € Z eine Zahl, z.B. = = 2.

1 -z 0 1 -z 0 1 -z 0
T 1 0 zi—xz1~z | 0 :1}2+1 0 z3—z4~z3 | 0 5172+1 0
_— 2 _—

r oz r+1]| ieq123 |0 z°+x z+1 0 =z =z
x 0 0 0 2 0 0 & 0

1 -z 0 1 -z 0
29—T23™29 0 1 —1‘2 23—T29™23 0 1 —332
Z2tEse 3

0 = T | sma2zmz |0 0 2742

0 2> 0 0 0 (2%

Wir bemerken, dass jede der 4 Zeilenumformungen natiirlich ist in dem Sinn, dass sie,
angewandt auf eine Matrix der Gestalt

(0 2
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4.1 Determinanten

mit A in Stufenform, den Betrag eines Eintrags der ersten Spalte von C' kleiner macht.
Dieses Beispiel 1af3t sich verallgemeinern. Und zwar sei

A(i, )

A(l,z) := und A(i + 1,2) := x+1

8 8 &8

z 0 0 T
z 0 0 0

Dann gibt es fiir jedes n = 2 eine natiirliche (im obigen Sinn) Umformung der Matrix

A(n,z) € 72" in Stufenform, bei der der Eintrag rechts unten in der Stufenform z?
ist (‘doppelt exponentiell’ [6]).

Es werden exponentiell viele Bits in n bendtigt, um eine Zahl der Gréfienordnung 7’
abzuspeichern. Damit benottigt ein Verfahren, bei dem solche Zahlen erzeugt werden,
auch exponentiell viel Zeit. Man kann sich schnell davon iiberzeugen, dass es dann schon

fiir relativ kleine n zu astronomisch grofien Rechenzeiten kommt. A

Das Verfahren zur Berechnung der eindeutigen Losung eines Gleichungssystems aus
Abschnitt 4.1.7 mit Hilfe von Determinanten hat das Problem der zu groflen Zahlen
nicht (insbesondere konnen die auftretenden Determinanten nie doppelt exponentiell
grofl werden; siche Lemma 4.1.28).

Die Umformung in Stufenform aus Beispiel 4.1.26 ist nicht die, die der gauflschen Al-
gorithmus vorgenommen hétte: beim Verfahren aus Abschnitt 3.2.4 wird im k-ten Schritt
von jeder Zeile z; mit [ > k der Vektor (a j, a;;;-k)zk subtrahiert (wir verwenden die Be-
zeichnungen aus Abschnitt 3.2.4). Mit Hilfe von Determinanten 148t sich zeigen, dass
die Laufzeit des gaulischen Algorithmus polynomiell in der Eingabegriofle ist. Essentiell
dafiir ist, dass alle auftretenden rationalen Zahlen stets gekiirzt werden; dazu folgende
Definition.

Definition 4.1.27. Sei r = p/q € Q, p,q € Z teilerfremd, ¢ > 0. Wir definieren
Groe(r) := 1+ [logy(|p| +1)] + [loga(g +1)] € N.
Sei nun b € Q" und A € Q™" Dann definieren wir
Groe(b) := 1 + Groe(by) + -+- + Groe(b,)
Groe(A) := mn + Z Groe(ai;).
0]
Lemma 4.1.28. Sei A € Q™ ™. Dann ist Groe(det A) < 2 Groe(A).

Beweis. Sei A = (p;;[qi;)i,; wobel p;j,q;; € Z fiir alle i, j teilerfremd und ¢;; > 0. Seien
ausserdem p, q € Z mit p/q = det A so dass p und ¢ teilerfremd und ¢ > 0. Dann gilt

n
g =[]y = 28Il 2 ghisalona gl (4.5)
ij=1
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4 Determinanten, Polynome, Diagonalisierbarkeit

und mit der Leibnizschen Formel
n
et Al < [ [(Ipyl + 1)
ij=1

Damit haben wir

n
Ip| = |det A| - ¢ < l_[(lpzy| + 1)Q7;j — 2Hi,j:110g2(|pij|+1)+10g2 %j < 2Groe(A)—1 ' (4.6)
ij=1

Aus (4.5) und (4.6) folgt
Groe(det A) = 1+ [logy(|p| + 1)] + [loga(q + 1)1 < 2 Groe(A). O

Proposition 4.1.29. Wenn Az = b, mit A€ Q""" und b € Q™, eine Lisung hat, dann
auch eine der Grofle hochstens 2(Groe(A) + Groe(d)).

Beweis. Wir kénnen annehmen, dass die Zeilen von A linear unabhéngig sind (denn da
Az = b eine Losung hat, konnen abhéngige Zeilen entfernt werden ohne den Lésungsraum
zu verdndern). Ausserdem kénnen wir durch umsortieren der Spalten von A annehmen,
dass A von der Gestalt [ A As] ist fiir A; mit det(A;) # 0. Dann ist

AT'p
0
eine Losung von Ax = b, und die Grofle dieser Losung erfiillt nach Lemma 4.1.28 die
gewiinschte Schranke. O

Wir wollen nun nachweisen, dass der gau3sche Algorithmus polynomielle Laufzeit hat.
Es geniigt nicht zu zeigen, dass die berechneten Losungen polynomielle Gréfle haben,
sondern wir miissen dies auch von allen Zahlen nachweisen, die im Laufe der Berechnung
auftreten!

Falls M € K™" iy,...,ix € {1,...,m}, und j1,...,5 € {1,...,n}, dann schreiben
wir M, e i die Untermatrlx von M die aus M durch Loschen aller Zeilen ausser

Ik
i1, zk und aller Spalten ausser ji,...,7j; entsteht. Sei
_(Br Ck
A = ( 0 Dk)

die Matrix im k-ten Schritt des Verfahrens aus Abschnitt 3.2.4. Dann gilt fiir jeden
Eintrag d;; von D}, offensichtlicherweise

B, *
ij det(Bk) det ((Ak)1 _____ ) . .
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Da A; aus A durch Addition von Vielfachen der ersten k Zeilen zu anderen Zeilen
entstanden ist, gilt (4.7) bis auf das Vorzeichen auch fiir A anstatt A, (wir erinnern an
Proposition 4.1.3 und Bemerkung 3.2.24), d.h.,

& = +det (Alkzk:;)
YT det (AT

Also gilt Groe(d;;) < 4 Groe(M) nach Lemma 4.1.28. Auf &hnliche Weise 148t sich auch
fiir den zweiten Teil des gaufischen Algorithmus nachweisen, dass die auftretenden Zahlen
nicht zu grofl werden [10].

4.1.8 Invertieren einer Matrix mittels Determinanten

Falls eine Matrix A € K™ invertierbar ist, so lisst sich die Inverse elegant mit Hilfe
von Determinanten berechnen. Dazu verwenden wir wieder die Teilmatrizen A;; (Defini-
tion 4.1.16) und die Schreibweise A;(b) aus Abschnitt 4.1.7. Zuniichst eine Hilfsaussage,
die direkt aus dem Entwicklungssatz (Satz 4.1.17) folgt.

Lemma 4.1.30. Fiir A € K™" undi,j € {1,...,n} giltdet(4;(e;)) = (=1)" det(A;;).

Definition 4.1.31. Fiir A € K" und 4,5 € {1,...,n} heit aZ = (-1)"" det(A;;) ein
Kofaktor von A. Die Transponierte der Kofaktormatrix (af;)l je{l,...n} heiss die Adjunkte

oder Komplementdrmatriz von A, und wird mit A* bezeichnet.

Beispiel 4.1.32. Falls A = (1 9

1
0)./ dann ist ajﬁl = (—1)3 det(A5) = —1. A

_ #
Satz 4.1.33. Sei A € K" invertierbar. Dann gilt A - détA'

Anders geschrieben: es gilt

det All —det A21 e (_1)n+1 det Anl
A_l — 1 —det A12 det A22 :
det A : . :
(=1)"*! det Ay, e (=)™ det A,

Falls A = (a; j)ie(1,....m},je{1,...,n}» dann schreiben wir a; 4 fiir die i-te Zeile von A, und
ay ; fiir die j-te Spalte von A.
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Beweis. Wir zeigen A% A = det A - E,,. Tatséichlich gilt fiir 7,7 € {1,...,n}, dass

(A#A)ij = Z (A" - agj

ke{l,...,n}
= ) (- det(Ay) - ay
ke{l,...,n}
= Z ar; - det(A;(ex)) (Lemma 4.1.30)
ke{l,....,n}
= det(aix, .., A(i=1)%, Qjx, A(i+1)%s - - - Onx ) (Linearitdt in der j-ten Spalte)
= 0;; - det(A) (det ist alternierend). O

Beispiel 4.1.34. Die inverse Matrix von A = G (2)) ist

1 (2 0] (1
A _detA<—1 1)‘(—%

o= O
~—
>

4.2 Polynomringe

Ein Polynom - was ist das?
ol + 2z +1

Ausfiihrlich behandelt in: Vorlesung Algebra (AL10).
Trennung von Syntax und Semantik, Polynomen und Polynomfunktionen.

4.2.1 Ringe

Vieles (aber nicht alles) in dieser Vorlesung bleibt giiltig, wenn man Kérper durch Ringe
ersetzt.

Definition 4.2.1. Eine Menge R mit zwei binfiren Operationen, + (‘Addition’) und -
(‘Multiplikation’), heifit Ring, falls gilt

1. (R, +) ist eine abelsche Gruppe: + ist assoziativ, es gibt ein neutrales Element und
inverse Elemente beziiglich +, und + ist kommutativ (siehe Abschnitt 2.1).

2. (R,-) ist eine Halbgruppe, d.h., die Multiplikation ist assoziativ.

3. Es gelten die Distributivititsgesetze (vergleiche mit Abschnitt 2.2!):

r-(y+z)=z-y+x-2z
(y+z2)-x=y-x+z-x

Ein Ring R heifit
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e Ring mit Eins falls es ein neutrales Element fiir die Multiplikation gibt. Falls es
so ein Element gibt, so ist es eindeutig (siehe Beweis von Lemma 2.1.3), und wird
mit 1 bezeichnet.

e kommutativer Ring falls die Multiplikation kommutativ ist.

Definition 4.2.2. Ein Element v € R eines Rings R mit Eins heifit Finheit falls es ein
multiplikatives Inverses hat, d.h., falls es Element v € R gibt, so dass vu = uv = 1.

Beispiel 4.2.3. (Z; +,-): der Ring der ganzen Zahlen (kommutativ, mit Eins; die einzigen

Einheiten sind 1 und -1). A
Beispiel 4.2.4. (Zy,,+,+): der Restklassenring (sieche Abschnitt 1.2.11; kommutativ, mit
Eins; Korper falls n prim). A

Beispiel 4.2.5. (Knxn,+,~): der Matrizenring tiber K (nicht kommutativ, sieche Bei-
spiel 3.2.6; aber mit Eins E,,). A

Beispiel 4.2.6. Sei V' ein Vektorraum. Dann ist
End(V):={f:V - V| f lineare Abbildung}
der Endomorphismenring, mit folgenden Operationen

(fi + f2)(v) := fi(v) + fa(v)
(fi- f2)(w) := fi(fa(v))
Das neutrale Element fiir die Addition ist der Endomorphismus, der ganz V auf 0 ab-
bildet, und fiir den wir 0 schreiben. A
Bemerkung 4.2.7. Die folgenden Definitionen dieser Vorlesung haben eine natiirliche
Verallgemeinerung von Koérpern auf Ringe:
o Matrizen,

e Determinanten,

e Das Analogon zu Vektorrdumen iiber einem Korper ist der Begriff des Moduls'
iiber einem Ring.

4.2.2 Polynome iiber K

Weitere wichtige Beispiele fiir Ringe sind Polynomringe. Polynome iiber R sind Ihnen
bereits aus der Schule bekannt; die Elemente eines solchen Ringes sind Polynome, mit
einer geeigneten Addition und Multiplikation. Tatséchlich lassen sich Polynome bereits
iiber einem Ring anstatt eines Korpers betrachten, und wir werden Polynome daher
gleich in dieser Allgemeinheit definieren.

'Im Unterschied zu anderem sprachlichen Gebrauch wird Modul in diesem Kontext mit Betonung auf
dem o ausgesprochen.
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Sei R ein kommutativer Ring mit Eins (z.B. ein Kérper). Eine Abbildung ¢:N — R
heifit auch Folge. Schreibweise: ¢ = (a;);en = (ag,a1,...) mit a; := ©(i) € K. Sei F
die Menge aller Folgen mit der Figenschaft, dass a; = 0 fiir fast alle i € N, d.h., mit
Ausnahme von endlich vielen. Auf F werden folgende Operationen definiert:

e Addition:
(ai)ien + (bi)ien = (@i + b;)ien

e Multiplikation mit Skalar ¢ € R:
¢+ (a;)ien = (¢ a;)ien

Bemerkung 4.2.8. Falls R sogar ein Korper K ist, dann wird F zu einem K-Vektorraum.
Eine (unendliche!) Basis ist

(170707”')7
(0,1,0,...),
(070717"')7

Es gilt F < RN, d.h., F ist ein Untervektorraum vom Funktionsraum RN (siehe Ab-
schnitt 2.3.1).

Neue Bezeichnungen (X ein beliebiges Symbol):

alt neu
(1,0,0,...) = x°
(0,1,0,...) = x*
(0,0,...,0,1,0,...) =: X"
F =: R[X]

Es folgt:
(k,0,0,...)=k-(1,0,0,...)=k-X"=1k-1 (=k€R)
(0,k,0,..)=k-(0,1,0,...) =k- X' =:k-X
(0,...,0,k,0,...)=k-(0,...,0,1,0,...) = k- X"

Bemerkung 4.2.9. Man kann R als Teilmenge von R[ X ] auffassen (und das werden wir
im Folgenden tun). Insbesondere steht dann 0 € R fiir das Element (0,0,...) € RV

Haben also
2
(ag,a1,...,0p,0,0,...) =ag+ a1 X +as X" + -+ +a, X"

und insbesondere
(0,0,..)=0+0-X+0-X>+---=0.

Die Elemente von R[ X ] heien Polynome (iber R) in der Unbestimmten X.
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4.2.3 Der Polynomring R[ X ]
In R[X] lasst sich eine Multiplikation wie folgt definieren:

e Fiir Basiselemente:
X' x7 = x

e Fiir Linearkombinationen geméfl dem Distributivgesetz:

fir p=ay+a X+ +a,X" und ¥ =by + b X + -+ + b, X" gelte

pp=co+c X+ + cn+an+m
mit ¢ = Zf:o aby_; fiir k € N.

Satz 4.2.10. (R[X],+,-) ist ein kommutativer Ring mit Eins.
Die Eins 1 ist neutrales Element fiir die Multiplikation.

Bezeichnung: Polynomring tiber R in der Unbekannten X.

4.2.4 Der Grad eines Polynoms

Sei
p=ag+a X +apX’ + e € R[X]

Definieren den Grad des Polynoms ¢ wie folgt:

grad(0) :
grad(p) := max(i € N | a; # 0}

— 00

Dann gilt:

grad(y +¢) < max(grad(y), grad(¢))

grad(p - ¥) < grad(e) + grad(+)) (4.8)
wobei max(a,—00) = max(—00,a) := —00, und —00 + a = a + (00) := —oo fiir alle

a € NU {—o0}. Falls R sogar ein Koérper ist, gilt in (4.8) Gleicheit anstatt <.

4.2.5 Polynomfunktionen
Nun der bereits angekiindigte wichtige Ubergang von der Syntax zur Semantik.

Sei ¢ € R[ X ] ein Polynom,
p=ag+a X+ a2X2 et a, X"
Sei S ein Ring mit R € S (z.B. S = R[X], siche Bemerkung 4.2.9) und s € S. Dann ist

S 2
©” () 1= ag + a5 + ags” + -+ a,s’"
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ein Element von S!
Auswertung von ¢ in S an der Stelle s. “Einsetzen” von s in (.

Die Abbildung
gpS:S—> S:ire gps(s)
heifit die zu ¢ gehorige Polynomfunktion. In der Algebra allgemeiner: ‘Termfunktion’.

Wichtig: Unterschied

Polynom Polynomfunktion
(Syntax) (Semantik)
S

¥ ¥

Definition 4.2.11. Sei ¢ € R[ X ] ein Polynom. Ein Element s € S heifit Nullstelle von
© in S falls gos(s) = 0. Fiir a € R heilen die Nullstellen des Polynoms X" — a (n-te)
Wurzeln von a.

Hier steht O fiir das Nullelement des Ringes S = Nullelement von R.

4.2.6 Der Auswertungshomomorphismus
Satz 4.2.12 (Auswertungssatz). Es sei S ein Ring und R € S ein kommutativer Ring
mit 1. Sei s € S so dass s-r =1 -s fiir aller € R. Dann gilt fiir alle p,v € R[X]:
S S S
(e +1) (s) = ¢ (s5) +¥7(s)
S R S
(o) (s) = (s)- 9" (s)

Die Voraussetzungen sind z.B. gegeben, wenn S ebenfalls ein kommutativer Ring ist.
Algebraischer Hintergrund: die Abbildung

het R[X] = St m o (s)

ist ein (Ring-) Homomorphismus.

Beispiel 4.2.13. Sei S := K> Ist K € S? Eigentlich nicht. Aber schon mit ‘Trick’ {iber
Einbettung von K in S: ein Kérperelement k € K wird als Matrix

kE 0
s =)
2%X2

Eins-element im Ring K

2x2

interpretiert. Dann gilt K € S und fiir £ € K und A € K™~ gilt
k-A:=(k-FEy)-A
:A’(k’EQ) (31)

=A-k
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und damit ist Satz 4.2.12 anwendbar. Seien ¢1 = (=2 + X) und 5 = (3 + X). Dann ist
pi=p1pp = (-2+ X)(3+ X)

= —6+X+X°
Nullstellen von ¢ in K : 2, =3.
Fir z.B. A = <(2] _13) eK¥> =5 ergibt sich:

[ D -0 )
3 (A) = (g g) + ((2) _13) - (g (1))

2
s, (=6 0Y (2 1) (2 1\ (00
‘P(A)‘(o —6)+(0 —3)+(0 —3) - ‘(0 0)
Satz 4.2.12 (Auswertungssatz) ergibt

) =) ) = (g L) (5 )0

22, , B. die Matrix A. A

Beispiel 4.2.14. Sei V' ein K-Vektorraum. Dann ist End(V') ein (nicht kommutativer)
Ring (Beispiel 4.2.6). Wir werden im Folgenden annehmen, dass K € End(V') ist: das
Element A € K fassen wir auf als v — \idy. Also kénnen wir Polynome ¢ € K[X]
auswerten in End(V"). A

Nullstellen von ¢ in K

4.2.7 Polynomdivision

Teilbarkeitslehre fiir Polynome dhnlich wie fiir Zahlen (Vorlesung Algebra).

Definition 4.2.15. Seien ¢, 1) € K[ X ]. Dann heifit ¢ ein Vielfaches von 1, und ¢ ein
Teiler von ¢ (Schreibweise: 1|p), falls es ein p; € K[ X] gibt mit ¢ = ¢11).

Polynomdivision: Division mit Rest.

Beispiel:
5 4 3 2 . 2 _ 3 2
( X° 43X +0-X° +X° +6X -6): (X"+X-1)=X"+2X"-X+4
- x° +x* -x?
(
0o +2x* -x°
- 2x*  42x?  —2x?)
0 -x*  3x?
—( -x =X X)
0 4X* 45X -6
—( 4X% 44X -4
0 X -2 ‘Rest’ p=X —2
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Also: % =y + £, d.h.,
P19+ p

wobei grad(p) < grad(v).

Lemma 4.2.16. Sei ¢ € K[X] und k € K. Dann ist k genau dann Nullstelle von ¢,
wenn (X — k)|p.

Beweis. Sei 1 := (X — k).
‘<=’ p = 1 - Y ergibt mit Satz 4.2.12

p(k) = e1(k)p(k) = ¢1(k) - 0=0

‘=": Polynomdivision liefert ¢ = ¢ - (X —k) + p wobei grad(p) < grad(v)) = 1. Wegen
o(k) =0 folgt p(k) = 0. Da grad(p) = 0 ist p € K. Also p = 0, und damit ¥ |¢. O

Definition 4.2.17. Die algebraische Vielfachheit einer Nullstelle k ist definiert als
max{m € N : (X = k)"|¢}.

Eine mehrfache Nullstelle ist entsprechende eine Nullstelle mit algebraischer Viel-
fachheit grofler als 1. Wie zeigt man, dass ein Polynom mehrfache Nullstellen hat?
Dafiir ist das folgende Lemma oft praktisch. Die Ableitung eines Polynoms ¢(X) =
ap + a1 X +ax X Zhee s a, X" ist definiert als das Polynom

n—1

go'(X) = ay + 2a9X + -+ + na, X
(Siehe auch Beispiel 3.4.19.)

Lemma 4.2.18. Ein Polynom ¢ € K[X] hat genau dann X\ € K als mehrfache Null-
stelle, wenn A sowohl eine Nullstelle von ¢ als auch von gp' ist.

Beweis. Wenn A eine mehrfache Nullstelle von ¢ ist, dann gilt ¢(X) = (1 — X)™(X)
mit m 2 2 (Lemma 4.2.16). Also ist

©'(X) = m(X = \)"(X) + (X = N) " (X)

was ebenfalls A\ als Nullstelle hat.

Umgekehrt: nehmen wir an, dass A Nullstelle von sowohl ¢ als auch von gp' ist. Dann
kénnen wir schreiben ¢(X) = (X — A)¢(X), und ¢'(X) = (X) + (X = \)'(X). Also
0=¢(X)A) =\ + (A= NP (A) = ¥(N) und damit ist A Nullstelle von . Also ist
A mehrfache Nullstelle von . O
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

Viele Anwendungen in der Physik, Stochastik, diskreten Mathematik, ...

Definition 4.3.1. Sei V' ein K-Vektorraum, und f:V — V ein Endomorphismus. (D.h.,
f ist eine lineare Abbildung, sieche Abschnitt 3.4.) Ein Element A € K heifit Eigenwert
(EW) von f, falls es einen Vektor v # 0 gibt, so dass:

flw) =X (4.9)
Jeder Vektor v # 0 mit dieser Eigenschaft heifit Eigenvektor von f zum Eigenwert .

Speziell: Eigenwert A € K und Eigenvektor v € K" einer Matrix A € K™": definiert
als EW und Eigenvektor von

fa:K' - K":z 0 Az,
d.h.,
Au = du mit u # 0.

Bemerkung 4.3.2. Der Nullvektor v = 0 erfiillt (4.9) trivialerweise, ist aber kein Eigen-
vektor. Der Eigenwert 0 tritt genau dann auf, wenn Kern(f) # {0} (also genau dann,
wenn f nicht injektiv ist, bzw. wenn det(f) = 0; Satz 3.2.27).

Definition 4.3.3. Seien A € Kund f:V - V.
Eig,\(f) := Eig, :={v e V| f(v) = v} (4.10)
heifit Eigenraum von f zum Eigenwert A (im Englischen eigenspace).

Eig,(f) ist Untervektorraum von V', denn

Eigy(f) ={ve V| f(v) - Av =0}
={veV[(f-Aid)(v) = 0}
= Kern(f — Aid) < V.

Die Dimension von Eig, heifit geometrische Vielfachheit von .
Spezialfall f = f4: K" - K" : 2 Ax:

Eig)(A) := Eigy\(fa) = Kern(A - \E,,)
Also:

dim(Eigy(A)) = dim(Kern(A — \E))
=n—-1g(A - \E)

ist die geometrische Vielfachheit von A nach der Dimensionsformel (Satz 3.3.6).
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Bemerkung 4.3.4. Seien V ein K-Vektorraum mit Basis B = (vq,...,v,), f:V — V ein
Endomorphismus, und A := Mg( f) Darstellungsmatrix von f (siehe Abschnitt 3.4.5).
Dann haben A und f die gleichen Eigenwerte, und Eig,(f) = Eig,(A). Genauer: sei
¢©p: K" > V der kanonische Basisisomorphismus (Abschnitt 2.4.3). Dann gilt

Az = \x & pp(Azx) = pp(\x)
= flep(@)) = App()
Ist # der Koordinatenvektor von v bzgl. Basis B (das heifit, ¢g(x) = v) dann gilt:

v ist Eigenvektor von f zu EW A
< z ist Eigenvektor von A zu EW A (4.11)

Beispiel 4.3.5. f: R? 5 R?: 2 — Az lineare Abbildung mit Darstellungsmatrix
3 -1
A= (_1 . ) |

Was macht f7

Experimentieren:

1 3—-1
1 3+1
’U2=(_1) A’02=<_1_3)=4’U2

A1 = 2 Eigenwert, vy = G) Eigenvektor.

Ay = 4 Eigenwert, vy = (_11) Eigenvektor.
B := (v1,v9) ist sogar Basis. Muss nicht immer sein!

Fiir beliebigen Vektor v € R?
V= U1 T QU2

folgt
f() =ayf(v) + az f(v2)

= 2011 + 4y
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Das heifit Streckung um Faktor 2 in Richtung v;, und um Faktor 4 in Richtung vs.
Das kann man aus der Darstellungsmatrix MBB( f) direkt ablesen:

B (2 0
Ist Diagonalmatrix (Beispiel 3.2.8) mit Eigenwerten auf der Diagonale. A

Diagonalmatrix erstrebenswert:
e nur n Werte (statt nQ);
e alle Rechnungen (Inverse, Determinante, etc.) einfacher;
e Verhalten der Abbildung ablesbar;

e EW ablesbar.

4.3.1 Anwendung: Pagerank

Webseiten S := {1,...,n}.

Links zwischen Seiten: Teilmenge L von S2.
Wichtigkeit 0 < w(1),...,w(n) € R (fir Ranking).
Wie konnte sinnvolles Ranking funktionieren?

Idee. Eine Seite ist wichtig, wenn es viele Links von wichtigen Seiten auf diese Seite
gibt.

wi) ~ Y w()
J:(Gi)eL
Formal:
w(i) =AY azw(j)
j=1
wobei a;; := 1 falls (4,7) € L und a;; := 0 sonst. Also
w(1)

=iz = Mz fir A = (aj)ij=1,.n
w(n)

D.h., fiir Ranking wird gebraucht: ein positiver Eigenwert A = 1/ X und ein positiver
Eigenvektor = (alle Eintrége positiv):

Az = \z.

119



4 Determinanten, Polynome, Diagonalisierbarkeit

Beispiel 4.3.6. (Turnier) Teams 1,2, 3, 4.

1—>2

1<

Interpretation der Matrix: 4 <——3

a;; = 1: Team ¢ schligt Team j, sonst a;; = 0.

A = (a;) =

_ o O O
SO O =
SO ==
S = = O

Eigenvektor
0.62
055
T 1032
0.45
zum Eigenwert ~ 1,39 (einziger positiver EW). A

4.3.2 Berechnung von Eigenwerten und das charakteristische Polynom

Sei A € K" bzw. f:V — V Endomorphismus mit A = Mg(f) (beziiglich Basis B).

Definition 4.3.7. Das charakteristische Polynom2 von A, beziehungsweise von f, ist
das folgende Polynom aus K[ X ]:

X —ayy —a12 —Qain
-a X-a e —a
Xp(X) = xa(X) i=det(XE-A)=| .* 2 2
—0n1 —Apy ... X —apy

Bemerkung 4.3.8. Definition funktioniert auch, wenn statt Koérper K nur ein Ring R
verwendet wird (Definition 4.2.1; A € R™™", x; € R[X]).

Proposition 4.3.9. Ahnliche Matrizen haben dasselbe charakteristische Polynom.
Beweis. Fiir B=S"AS gilt
det(XE — B) =det(XS™'S — ST'AS)
=det(S (XE - A)S)

=det S™" - det(XE — A) - det S
=det(XE - A) . O

*Manche Autor:innen definieren das charakteristische Polynom von A als det(A—\E). Unsere Definition
hat den Vorteil, dass der fiithrende Eintrag des Polynoms stets 1 ist. Allerdings macht das keinen
groflen Unterschied, da sich die eine Variante der Definition durch Multiplikation mit (—1)" aus der
anderen ergibt.
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Also ist x y(X) unabhéngig von der Wahl der Basis B. Ansonsten wire Definition 4.3.7
so gar nicht moglich.

Satz 4.3.10. Die FEigenwerte sind genau die Nullstellen des charakteristischen Poly-

noms, d.h.,
ANeKist EWwvon A & det(A\E—-A)=0.

Beweis.

ANEW < Jv e K"\ {0} :v € Kern(\E — A) (Definition 4.3.1)
= det(A\E-A4)=0 (Abschnitt 4.1.7)

Die zweite Gleichung folgt aus den Beobachtungen aus Abschnitt 4.1.7: ein homogenes
LGS Bz = 0 (stets losbar!) hat genau dann eine eindeutige Losung, wenn det B # 0. [

Beispiel 4.3.11. Betrachte

0 -1 1
A=|-3 -2 3|eRr¥
-2 -2 3
X 1 -1
xa(A) =det(XE-A)=|3 X+2 -3 (Definition)

2 2 X -3
=X(X+2)(X-3)-6-6+2(X+2)+6X — (X —3)3 (Sarrus, Beispiel 4.1.12)
=X -3X?+2X*—6X —12+2X +4+6X —3X +9  (Ausmultiplizieren)
=X X" -Xx+1 (Vereinfachen)
=(X - 1)2(X +1) (Faktorisieren)

Also: haben folgende Nullstellen

A =1 (algebraische Vielfachheit 2)
Ao = -1 (algebraische Vielfachheit 1)
Geometische Vielfachheiten werden spéiter ausgerechnet (Beispiel 4.3.21). A

Beispiel 4.3.12. V = R?
_[cosa —sina
" \sina  cosa

Charakteristisches Polynom:
xa(X) = cos® o — 2X cos o + sin” o
=X2—2Xcosa+1

Eigenwerte: die Nullstellen von y4(X).
Fallunterscheidung:
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o a=0.
Ya(X)=X2-2X +1=(X -1)
Eigenwert 1, algebraische Vielfachheit 2.

e o = 180°.
ya(X)= X2 +2X +1=(+1)

Eigenwert -1, algebraische Vielfachheit 2.

e a#0und o # 180°.
ya(X) =X = (2cosa)X + 1

hat keine Nullstellen in R.
p, g-Formel: ¢ = 1, p/2 = — cosa. Haben die Losungen

—cosat+ Veosta—1

mit cos” a — 1 < 0 fiir o # {0°,180°}. A
Beispiel 4.3.13. Die Eigenwerte einer Dreiecksmatrix

all *

ann

sind die Elemente der Hauptdiagonalen (algebraische Vielfachheit ist dabei schon beriicksichtigt),
denn

xa(X) =det(XE - A)
= (X - all)(X - a22)”'(X - ann)' A

Bemerkung 4.3.14. Fiir das charakteristische Polynom

YaA(X) = det(XE — A)

=a,X" + an_an_l + o+ a1 X +ag
einer Matrix A € K" gilt
1. ag =det—A Setze X =0
2. a,=1

3. apey = (=1)" HNag 4 +an,) =t (=1)""'Spur(A)  Summe der Hauptdiagonalen
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Beweis durch Auswerten der Leibnizschen Formel. Einzig der Summand
(X - all)"’(X - ann)

der Determinante fiir die Permutation id € .S, ist relevant, da es nur dort n—1 Auftreten
von X geben kann (alle anderen Permutationen unterscheiden sich von id an mindes-
tens zwei Stellen, die entsprechenden Summanden haben also Grad hochstens n — 2).
Ausmultiplizieren dieses Summanden liefert Koeffizienten (—1)" " Spur(A) fiir X" .

Ubung 22. Beweisen Sie: fiir A, B € K™" gilt Spur(AB) = Spur(BA).

Ubung 23. Seien Ay, ..., A, € K" und 7 € S,, eine Permutation. Gilt Spur(A4, ..., 4,) =
Spur( A1y Arn))?

Ubung 24. Zeigen Sie: fiir quadratische Matrizen A und B und
A %
we(d 3

Kommentare. (Erinnerung: Nullstellen «» Linearfaktoren, Lemma 4.2.16)
Sétze und Algorithmen zur Faktorisierung univariater Polynome ¢ € K[ X ]:

gilt xar = x4 * XB-

e iiber K = C: jedes Polynom zerféllt in Linearfaktoren. Wenn man bereits eine
Nullstelle a kennt (numerische Verfahren), so fithrt man Polynomdivision durch
(X — a) durch und wendet das Verfahren rekursiv auf den Quotienten an.

e iiber K = R: faktorisieren in C, und beobachten, dass mit jeder komplexen Null-
stellen a + b - 7, fiir a,b € R, auch die konjugiert komplexe a — i - b eine Nullstelle
ist.

Also treten neben den Linearfaktoren auch Faktoren auf der Gestalt

((X—(a+b.¢))(x—(a—b.i))=X2+ggx+(a2+b2).
eR eR

e iiber endlichen Kérpern K = F,: Berlekamp-Algorithmus [12].

e iiber K = Q: Lenstra-Lenstra-Lovész Algorithmus [8].

4.3.3 Diagonalmatrizen

Erinnern uns an Beispiel
3 -1
=(405)
aus Abschnitt 4.3. Eigenvektoren bilden Basis B = {G), (_11)},
und Darstellungsmatrix von f, diagonal:

iD= (3 )

Wann ist das der Fall?
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Lemma 4.3.15. Sei V' ein K-Vektorraum mit Basis B = (vy,...,v,), und f:V -V
ein Endomorphismus. Dann sind dquivalent:

1. Die Darstellungsmatriz von f beziiglich B ist Diagonalmatriz:

A1 0
. B Ao
A:=Mp(f) = .
0 An
2. B ist Basis aus Eigenvektoren von f, genauer f(v;) = Nv; fiiri € {1,...,n}.

Beweis. (2) = (1): klar (siehe Abschnitt 3.4.5: Merkregel!)

(1) = (2): Offenbar Ae; = \;e; (i-te Spalte von A)

Also ist e; Eigenvektor von A zu EW A,.

Also ist v; = pp(e;) Eigenvektor von f zu EW ); (siehe (4.11)).

Das bedeutet, f(v;) = \v;. O

Ziel im Folgenden: moglichst viele linear unabhéingige Eigenvektoren finden.
Verschiedene Eigenwerte sichern lineare Unabhéngigkeit!

Lemma 4.3.16. Seien vy, ...,v, Figenvektoren von f € End(V') zu verschiedenen Ei-
genwerten Ay, ..., .. Dann sind vy, ...,v, linear unabhdngig.

Beweis. Induktion iiber r. Fiir r = 1 ist v; # 0 linear unabhéngig. Sei nun die Aussage
richtig fir » = k = 1; zu zeigen ist die Aussage fiir r = k + 1. Seien vy,..., v, Vgt
Eigenvektoren zu EW Ay, ..., \p, \py1 (paarweise verschieden). O.B.d.A Ag;1 # 0 (sonst
andere Nummerierung). Sei

QU] + o+ QU1 =0 (4.12)
Dann gilt:

QU AR+1V1 + 0+ QA 10k + Qg1 A1 Vke1 = 0 (Aggr - (4.12)) (4.13)
a1 A1 oo+ AU + Qi1 Aes1Vk+1 = 0 (Anwenden von f auf (4.12)) (4.14)
\—v—l
=f(v1)

| ——
=f(ayvy)
Oq()\l - )\k+1)U1 + eee + ak(>\k - )\k+1)vk =0 (Subtraktion (4.14) - (4.13)
Nach Induktionsvoraussetzung sind vy, ..., v, linear unabhéngig, also
(A = A1) =+ = (A = A1) =0 .
Wegen \; # A\pyq ist A; — Apy1 # 0, fiir alle 7 € {1,...,k}, und daher

ap=-=qa =0
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Aus (4.12) folgt nun
k41 Vg1 = 0
H—J
#0

also auch ay4q = 0. O
Definition 4.3.17. Sei V in K-Vektorraum, f € End(V), und A € K™".

o f heifit diagonalisierbar, wenn es eine Basis von V gibt, die aus Eigenvektoren von
f besteht (Motivation: Lemma 4.3.15);

e A heiit diagonalisierbar, wenn es eine invertierbare Matrix S € GL(K,n) gibt, so
dass A' := ST1AS eine Diagonalmatrix ist. In anderen Worten: A ist genau dann
diagonalisierbar, wenn A #hnlich ist zu einer Diagonalmatrix A

Bemerkung 4.3.18. Definition sinnvoll, denn fiir jede Basis B von V ist f genau dann
diagonalisierbar, wenn Mg( f) diagonalisierbar.

Satz 4.3.19 (Diagonalisierbarkeitskriterium). Es seien:
e VV cin n-dimensionaler K- Vektorraum,

f e End(V),

A= Mg(f) Darstellungsmatrixz von f beziiglich einer Basis B von V,

e \i,..., A\, alle paarweise verschiedenen Eigenwerte von f (bzw. von A),

e ny,...,n, die zugehorigen geometrischen Vielfachheiten, n; = dim Kern(A — \;E),
o vgi), ... ,1)7(1?) sei Basis des Eigenraums Eigy (f) = Kern(f — A;id),

e my,...,m, die algebraischen Vielfachheiten von Ay, ..., A, das heifit,

m; = max{m € N | Jp € K[A]: x(X) = (X = \;)"}.

Dann gilt

1. (v§1), . ,v,(lll), ey ’UY), . ,vs;)) st linear unabhdngig.

T '
2.npsmiund ) ;_yn; <Y i mp Sn.

3. Die folgenden Aussagen sind dquivalent:
a) f ist diagonalisierbar;
b) Es gibt eine Basis von K", die nur aus Eigenvektoren von A besteht.

c) A ist diagonalisierbar; in diesem Fall ist fir jede Matriz S, deren Spalten
Ui, ..., Uy, linear unabhdingige Eigenvektoren von A sind, STTAS eine Diago-
nalmatriz.
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d) Das charakteristische Polynom x 4 zerfdllt in Linearfaktoren
Xa(X) = (X = A)™ (X =A™
und n; =m; firi € {1,...,r}.
e) Yiqni=n=dmV.

Bemerkung 4.3.20. Unmittelbare Folgerung aus (e) = (a): Falls r = n, also wenn es n
verschiedene Eigenwerte gibt, dann ist f diagonalisierbar. Dies ist selbstverstédndlich nur
ein hinreichendes, nicht aber ein notwendiges Kriterium: denke an die Diagonalmatrix
FE», die nur einen Eigenwert hat.

Beweis. Zu 1.:

agl)v?) +oe a4 aY)UY) + e+ a;i)v,(z:) =0 (4.15)

ny ¥ni
J

=:w1€ing>\1 =:wT€ing>\T
Definiere S := {i € {1,...,7} | w; # 0}.

e 1. Fall: S # @&. Die Menge {w; | i € S} besteht aus Eigenvektoren zu paarweise
verschiedenen Eigenwerten. Nach Lemma 4.3.16 sind wy, . . ., w, linear unabhéngig.
Dann gilt ) ;.o w; # 0, im Widerspruch zu (4.15) und der Definition von S.

e 2. Fall: S = @. Dann gilt fiir jedes i € {1,...,n}

w; = agi)vii) + e+ aﬁf}vﬁi’ 0

und daher agi) = = Oz%li) =0da vgi), o ,vr(fi) Basis bilden.
. oo (@) (i) o Tseat « B e (D (i) (i)
Zu 2.: Die Basis (vy ', ..., vy, ) von Eig,, ldsst sich zu Basis B := (v; ..., v/, ..., 0 )

von V' ergéanzen (Steinitz’scher Austauschsatz: Satz 2.4.13). Die Darstellungsmatrix hat
dann die Form

Aioee 00
P«
B 0 o0 N\
M:=Mg(f)=|- g R
0 S
|
Denn: die ersten n; Spalten sind die Koordinatenvektoren der Bilder von /UY), e ;E,i)
nach Merkregel, da f (UJ(»Z)) = /\ivig-l).

Also
X =det(AE = M) = (X — ;)" - Restpolynom

d.h., n; < m;. Wegen

grad(y - ¥) = grad(y) + grad()
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

folgt

,
Zmi < grad(xys) =n.
i=1

Zu 3.: Wir zeigen (a) = (b) = (¢) = (d) = (e) = (a).

(a) = (b): Da f diagonalisierbar, hat V eine Basis C' = (wy, ..., w,) aus Eigenvektoren
von f (Lemma 4.3.15). Die Koordinatenvektoren u; = gojgl(wl), o up = o5 (w,) bilden
Basis von K" aus Eigenvektoren von A.
(b) = (c): Sei uq,...,u, eine Basis von K" aus Eigenvektoren von A, und sei
S=lu - u,

A1 0
Dann gilt fiir eine Diagonalmatrix D = , dass

0 An

SD = | ANu; - Aug, (Matrizenmultiplikation).
Also gilt
SD =AS =|Auy - Au,

genau dann wenn Awu; = Au; fiir i = 1,...,n, d.h., genau dann, wenn die Spalten Eigen-
vektoren sind. Da (uy,...,u,) Basis von K" ist, folgt dass

rg(S) =n = S € GL(n,K)
und
SD=AS < D=S8"AS.
Also (b) = (c).
(¢) = (d): Aund
dy 0
D=S5"AS = :
0 dy,
sind dhnlich, haben also das gleiche charakteristische Polynom (Proposition 4.3.9)
Xa(X) =xp(X) = (X =d1)(X = dy)--+(X = dp,)
= (X =AM (X =N (zusammenfassen)
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4 Determinanten, Polynome, Diagonalisierbarkeit

d.h., zu A; gibt es genau m,; verschiedene Indizes mit \; = d;, = -+ = dtmi' Die zu-
gehorigen Spalten Uty s - - - Uy, VOD A sind linear unabhéngige (nach Voraussetzung)
Eigenvektoren von \;, d.h., m; < n;. Daher n; = m;.

(d) = (e): Mit (d) gilt n = grad(xs) = ) ;m; = ) ;n; und daher (e).

(e) = (a): Wenn ) ,n; = n, dann bilden die Eigenvektoren in 1. eine Basis (wegen
n=dimV). O
4.3.4 Wie diagonalisiert man eine Matrix?

Sei A € K™". Bestimmung einer Basis aus Eigenvektoren.
e 1. Schritt: Bestimmung aller Eigenwerte von A (Verfahren aus Abschnitt 4.3.2).

e 2. Schritt: Zu jedem Eigenwert A\ wird eine Basis des Eigenraums Eigy(A) be-
stimmt.

e 3. Schritt: Ergeben alle Basen aus Schritt 2 insgesamt n Vektoren, so bilden diese
eine Basis von V aus Eigenvektoren und A ist diagonalisierbar, sonst nicht.
Nimmt man diese Eigenvektoren von A als Spalten einer Matrix S, so liefert diese
die Diagonalisierung S ~1AS.

Beispiel 4.3.21. n = 3.

X s z -y +z
fIRE->R |y || -3z—-2y+3z
z —2x — 2y + 3z

lineare Abbildung f = f4 : u — Au mit

0 -11
A=|-3 -2 3].
-2 -2 3

A= Mg(f) fiir B = (ey, €9, €3) Standardbasis von K°.
Diagonalisierbar? D = STtAS?

e 1. Schritt. Bestimmung der Eigenwerte.
Beispiel 4.3.11: Eigenwerte

— A1 = 1 mit algebraischer Vielfachheit m; = 2, und
— Ao = —1 mit algebraischer Vielfachheit mqy = 1.
xa(X) = (X = 1)*(X +1)

e 2. Schritt.
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

— Bestimmung einer Basis von Eigy (A) = Kern(A -\ E3) = Los(A - A E3,0).

-1 -1 1
A— )\1E3 =|-3 -3 3
-2 -2 2

U

rg(A - A E3) =1
dim(Kern(A — \{FE3)) =3 —1=2 ist geometrische Vielfachheit von \;.

U

Gesucht: Losungen des Gleichungssystems

T 0
(A=NE3)|22|=]|0
T3 0

Im Allgemeinen mit dem Gaufischen Algorithmus (Abschnitt 3.3.4), hier auch
direkt klar:

-1 -1 110 -1 -1 1]0
-3 -3 3|0 |~ 0 0 0/0
-2 -2 210 0O 0 010
Rang 1, also dim(Los) =3 -1 =2
Losung:
T3 = U9 freier Parameter us € R
To = iy freier Parameter puo € R

T1 = —p1 t 2

Basis fiir Losungsraum: Einsetzen einer Basis fiir die Parameter (Zl),
2

1

z.B. Einheitsvektoren.
T
1
(Z;):(O):ul— o | =1 1
I3 0

I 1

0
() ()=-()-
I3 1

(u1,uy) ist Basis fiir Eigenraum Eig,, (A).
— Bestimmung einer Basis von Eigy, (A) = Kern(A - Xy E3) = Los(A - A E3,0).

1 -1 1
A - )\2E3 =(-3 -1 3
-2 -2 4
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4 Determinanten, Polynome, Diagonalisierbarkeit

Gauflscher Algorithmus:

1 -1

110 . 1 -1 110
-3 -1 3|0 | =25 -3 -1 3|0
-2 =2 410 0 -4 6|0
- 1 -1 110
DAt -4 610
-4 6
i 1 -1 1]0
22710 -4 610
0 0 0]0
Rang = 2, also dim(Los) =3 -2 = 1.
Losung:
T3 =1 freier Parameter p € R

To = 3/2M

Ty =x9— 3= ()2

Basis fiir Eigenraum Eigy,(A): setze u beliebig, z.B. p = 2, erhalten

W =

us =

\V)

e 3. Schritt. Die Basen von Eigy und Eig,, ergeben zusammen 3 Vektoren, also
Basis von V = R®. Also ist A diagonalisierbar. Die Matrix S ist gegeben durch

-1 1 1
S = Uy Uz Uz | = 1 0 3
0 1 2
A0 0
STTAS =10 A 0 A
0 0 X

Ubung 25. Ist

(0 -1 2x2
A_(l O)ER

diagonalisierbar? Ist A in c>? diagonalisierbar?

Ubung 26. Ist
11 2x2
A= (0 1) eER

diagonalisierbar? Ist A in c>? diagonalisierbar?
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4.3 Eigenwerte, Eigenvektoren, Diagonalisierbarkeit

Ubung 27. Stimmen Sie der folgenden Aussage zu: ‘die meisten Matrizen in Cc*? sind
diagonalisierbar’? Falls ja, warum?

Bemerkung 4.3.22. Diagonalisierbarkeit D = S™'AS ist niitzlich auch fiir Berechnung
von Potenzen von A:

A=5SDS™!
A =5DS'sps™! = sp*st

Weiterhin:

leicht berechenbar.

4.3.5 Anwendung: Lineares Wachstum

Population: ¢,,, Léwenzahnpflanzen im Jahr m. Wir nehmen an, dass Lowenzahn einjihrig
oder zweijahrig ist (in seltenen Fillen ist er auch dreijéhrig, aber das vernachléssigen wir
hier — es liesse sich aber analog behandeln). Das Wachstum verhélt sich entsprechend
der Gleichung

tme1 = Wity + Woly—1 + W3 (4.16)
Konkret: Fiir tg = 0,t1 = 1, w; = we = 1,wg =0, d.h.,
tr+1l =t + T
erhilt man die Fibonacci-Folge
0,1,1,2,3,5,8,...
Beschreibung von (4.16) als lineare Abbildung:
(”;:1) -( ) ( tfj;) + (ﬁ’f’) (4.17)

Setze xg = (ié) = ((1)) und z,,+1 = Ax,, + b, d.h., z,,41 = f(z,,) fiir lineare Abbildung

f:R2—>]R2:a:l—>Ax+b
Damit lisst sich x,,, aus Anfangszustand xy berechnen:

Tm = [(@ma1) = F(@mog) = = [ (@0) = ATag + (A" + -+ A+ E)b.
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4 Determinanten, Polynome, Diagonalisierbarkeit

Beachte: (A" '+ -+ A+ E)A-E)=A"-F (‘Teleskopsumme’).
Falls (A — F) invertierbar gilt also:

2= A"z + (A" = E)(A-E)"'b

Falls A diagonalisierbar: 35 invertierbar mit S 1AS=D Diagonalmatrix, und

2y =SD"S 2o+ (SD™ST - EYA-E) b (4.18)
A1 0
Fir D = und |[A{],...,|A\,| < 1 konvergiert
0 An
AT 0 0 - 0
D™ = gegen 0=]: :
0 A 0 -~ 0

und die Folge (x,,)men konvergiert gegen

—BE(A-B) b= (E- A)_lb (“stabile Folge”)

11 0
Charakteristisches Polynom:

X(X-1)-1=X"-X-1

Fir Fibonacci-Folge:

Eigenwerte:
A
A = (1+V5)/2 ~1,6180339887 ... mit Eigenvektor ( 11)
- A2
Ao =(1-v5)/2~-0,618... mit Eigenvektor 1

A1 > 1 (“Goldener Schnitt”), unbegrenztes Wachstum.

A A\ (1 =X (A=A 0
1 1)\-1 XN ) 0 A1 — Ao
Aus (4.18) folgt

tmar) (M A\ (AT0 1 I -X\(1
S Ul U TS T A W) R VL i oy vl (S S W A X

J\

v ¥

S D S-1 foty)
~ 1 )\1171+1 )\gn+1 1 _)\2
- )\1 - /\Q )\T )\gb -1 )\1
Also
t = (AT =23) (A= X)
— | —
ganze Zahl  irrationale Zahlen!
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4.3.6 Trigonalisierbarkeit
Und wenn A nicht diagonalisierbar?

Definition 4.3.23. Eine Matrix A € K" heifit trigonalisierbar, wenn sie zu einer
(oberen) Dreiecksmatrix D dhnlich ist, d.h., 35 € GL(n,K):

/\1 *
ST'AS =D = ,
0 An
Fiir Trigonalisierbarkeit reicht ein Teil des Kriteriums fiir Diagonalisierbarkeit.
Satz 4.3.24. Eine Matriz A € K" ist genau dann trigonalisierbar, wenn das charak-

teristische Polynom x 4 in Linearfaktoren zerfillt, d.h., IXy, ..., A\, € K (miissen nicht
verschieden sein) so dass

Xa(X) = (X = A)-(X = Ap).

Bemerkung 4.3.25. Jede Matrix A € C™" ist trigonalisierbar, da jedes Polynom iiber
dem Korper C der komplexen Zahlen in Linearfaktoren zerfillt (Fundamentalsatz der
Algebra oder Hauptsatz der Algebra, kommt spéter im Studium).

Beweis von Satz 4.53.24. “=7: Sei

)\1 *
STAS=D = :
0 An
Dann (Abschnitt 4.3.2)

XA =XD=(X=X)(X=X\,)

“<=": per Induktion iiber n.

Wir zeigen die Aussage fiir untere Dreiecksmatrix; dies ist dquivalent, da x4 = x4T.
Die Aussage ist sicher wahr fiir n = 1. Sei u,,; Eigenvektor von A zu Eigenwert

An+1. Existiert, da x4 in Linearfaktoren zerfillt. Ergénzen wu,,, zu einer Basis B =

(uy,ug, ..., Uyy1) VoD K™™', Sei R die Matrix mit den Spalten uy, us, ..., Ups1- Dann ist

M = R AR von der Gestalt

M 0
* An+1

xa=xm = (X =A)xurs

also zerfillt auch x;; in Linearfaktoren. Dann ist M nach Induktionsannahme trigo-
nalisierbar, d.h., es existiert eine invertierbare Matrix S so dass (S )_1M S eine untere
Dreiecksmatrix. Definiere ~

S = (S 0) € Kn+1><n+1

01

Es gilt
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4 Determinanten, Polynome, Diagonalisierbarkeit

Da det(S) = det(S) # 0 ist S invertierbar, und es gilt
g (D7 o
' =(% %)
Dann ist
ST'RTARS = 57! (M 0 )S
* )\n+1
A1 0
_((9)T'MS 0 _ A2
* )\n+1
* An

untere Dreiecksmatrix. Mit Q) := RS ist also Q_lAQ untere Dreiecksmatrix, d.h., A ist
trigonalisierbar. ]

Beispiel 4.3.26. Eine Matrix, die trigonalisierbar, aber nicht diagonalisierbar ist:
11
0 1

Eigenwert A\; = 1 mit algebraischer Vielfachheit 2, geometrische Vielfachheit ist

dim(Kern(A — A\ E)) = dim(Kern (8 (1)))
=dim({(‘§>|y=0})=1. A

4.3.7 Anwendung: Stochastische Matrizen

Der Inhalt dieses Abschnitts ist als Ausblick zu verstehen. Sei A € R™" und s € R".
Wann existiert
lim A™s?

m—00
Spezialfall: sei s Eigenvektor von A zum Eigenwert 1, d.h.:
As =35 “stationdre Verteilung” s
Eine Matrix A = (a;;) € R™" heifit
e zeilenstochastisch falls 0 < a;; < 1 und Zeilensummen Eins betragen.

e spaltenstochastisch: analog.

e doppelt stochastisch: sowohl als auch.
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e stochastisch: zeilen- oder spaltenstochastisch.

Beispiel 4.3.27. Betrachten das folgende Beispiel.

]
113
\ I l
12 Tro 12
Beschreibung durch Matrix (‘Ubergangsmatrix’):

1/3 1/2 0 0 0\ duBere Neustadt
1/3 1/2 1/2 0 O Mensa
13 0 1/2 0 0| Tre Math
0 0 0 0 1 FlieBband
0 0 0 1 0 Lobtau

Wir zeichnen also genau dann einen gerichteten Pfeil von Knoten j nach Knoten ¢ mit
der Beschriftung ¢, wenn in der i-ten Zeile und j-ten Spalte der Ubergangsmatrix der
Eintrag ¢ > 0 steht. A

Lemma 4.3.28. Jede stochastische Matrizc A € R™" hat den Eigenwert 1.

Beweis. Betrachtene := (1,..., 1)T € R". Falls A zeilenstochastisch ist, gilt Ae = e, d.h.,
e ist Eigenvektor von A zum Eigenwert 1. Der spaltenstochastische Fall geht analog. [

Satz 4.3.29. Sei A € R™" stochastisch, aperiodisch und irreduzibel, und s € R". Dann
ezistiert lim, oo A5, ist unabhingig von s, und gleich dem Figenvektor zum Figenwert
1 von A.

Koénnen den Grenzwert also berechnen, indem wir ein lineares Gleichungssystem 16sen!

Reverse Engineering: was konnte hier ‘aperiodisch’ heissen? Und was ‘irreduzibel’?

Definition 4.3.30. Eine Matrix heifit irreduzibel wenn sie nicht geschrieben werden

kann in der Form
M 0
P N

fiir quadratische Matrizen M und .

~ Dampfungsfaktor bei Google PageRank.
~» Weiterfithrende Frage: Wie schnell ist die Konvergenz?
Allgemeinerer Fall: A nicht mehr notwendigerweise stochastisch.

A heiflt positiv falls fiir alle 4,5 € {1,...,n} gilt a;; > 0. Positive Vektoren: analog.

Satz 4.3.31 (Perron(-Frobenius), positiver Fall). Falls A € R™" positiv und irreduzibel,
s0 so gibt es einen positiven (also insbesonderen reellen) Eigenwert X der algebraischen
Vielfachheit 1 so dass alle anderen Eigenwerte betragsmdfig strikt kleiner sind, und und
einen positiven Eigenvektor zu .
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4 Determinanten, Polynome, Diagonalisierbarkeit

Anmerkungen.

e Wenn wir statt der Positivitdt von A nur fordern, dass A nicht-negativ ist, so kann
es andere Eigenvektoren geben, die betragsméssig grofitmoglich sind: zum Beispiel
hat die Matrix

0 1
(1 o)

e Ausserdem muss der maximale Eigenwert nicht die algebraische Vielfachheit 1
haben, kann auch 0 sein, und der entsprechende Eigenwert muss nicht positiv sein:
zum Beispiel hat

0 1
o o)

1
den einzigen Eigenwert 0 der Vielfachheit 2 mit zugehorigem Eigenvektor ( 0).

die Eigenwerte 1 und —1.

Was aber fiir den nicht-negativen Fall bleibt:

Satz 4.3.32 ((Perron-) Frobenius, nicht-negativer Fall). Falls A € R™" nicht-negativ
und irreduzibel, so gibt es einen positiven (reellen) betragsmdjSig grifiten Eigenwert A mit
nicht-negativen Eigenvektor. Die Anzahl der betragsmdifig grofiten Figenwerte ist genau
die Periodizitdt von A.

Zu diesem Satz sind verschiedene Beweise bekannt, die allerdings iiber den Stoff der
Vorlesung hinausgehen. Einer der Beweise verwendet den Fixpunktsatz von Brouwer.
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Kapitel 5

Dualitat

Duale Réume in der linearen Algebra sind ein Beispiel fiir wichtiges Prinzip in der
Mathematik, das Dualitdtsprinzip. Manche Aussagen in diesem Zusammenhang gelten
fiir beliebige Vektorrdume, andere nur fiir endlich erzeugte. Wir behandeln also zunéchst
nochmal Satz 2.4.10: jeder Vektorraum besitzt eine Basis. Wir haben bisher nur einen
Beweis fiir endlich erzeugte Vektorraume kennengelernt. Fiir den allgemeinen Fall miissen
wir etwas ausholen.

5.1 Das Zornsche Lemma
Sei A eine Menge. Eine Relation R € A? heiBt

e Halbordnung auf A (oder partielle Ordnung) falls sie reflexiv, antisymmetrisch, und
transitiv ist (siehe Abschnitt 1.2);

o total falls fiir alle a,b € A gilt, dass (a,b) € R oder (b,a) € R.
e lineare Ordnung (oder Totalordnung) auf A falls sie eine totale Halbordnung ist.

Beispiel 5.1.1. Die Ordnung < der natiirlichen Zahlen aus Abschnitt 1.2.10 ist eine
lineare Ordnung. A

Wir schreiben a < b falls @ < b und a # b.

Definition 5.1.2. Sei < eine Halbordnung auf einer Menge A. Ein Element a € A heifit
minimal falls es kein b € A gibt mit b < a. Eine Teilmenge B S A heifit Kette, wenn
die Einschrankung von < auf B, also die Relation < r‘IBQ, eine lineare Ordnung von B
ist. Ein Element a € A heifit untere Schranke von B € A, falls a < b fiir alle b € B gilt.
FEine untere Schranke von B, die in B liegt, heifit ein kleinstes Element von B. Analog
definiert man die Begriffe maximales Element, obere Schranke, und griftes Element.

Bemerkung 5.1.3. Besitzt eine Halbordnung ein kleinstes Element, so ist dieses eindeu-
tig bestimmt und auch minimal. In einer Totalordnung ist ein minimales Element auch
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5 Dualitéat

stets das kleinste Element. Jede endliche Halbordnung besitzt minimale und maxima-
le Elemente, und jede endliche lineare Ordnung besitzt ein kleinstes und ein grofites
Element.

Beispiel 5.1.4. Die Ordnung =< der natiirlichen Zahlen N besitzt ein kleinstes Element 0,
aber kein grofites Element und auch keine maximalen Elemente. A

Beispiel 5.1.5. Die Menge der echten Untervektorrdume von R?’, geordnet durch Inklusi-
on, ist eine Halbordnung, aber keine lineare Ordnung. Sie besitzt ein kleinestes Element,
namlich {0}, kein gréfites Element, aber mehrere maximale Elemente, ndmlich alle 2-
dimensionalen Untervektorriume von R, A

Der folgende Satz hat axiomatischen Charakter: er ist (in ZF) dequivalent zum Aus-
wahlaxiom (siehe Abschnitt 1.2.9). Fiir einen Beweis des Satzes mit Hilfe des Auswahl-
axioms verweisen wir z.B. auf das Skript zur Logikeinfithrung an der TU Dresden [2].

Satz 5.1.6 (Zornsches Lemma). Sei A eine nicht-leere Menge und < eine Halbordnung
auf A. Falls jede nicht-leere Kette eine obere Schranke in A besitzt, so hat A ein maxi-
males Element.

Wir verwenden diesen Satz, um Satz 2.4.10 in voller Allgemeinheit zu zeigen. Wir
zeigen eine etwas allgemeinere Aussage (eine schwichere Form des Basiserginzungssatzes
haben wir bereits in Satz 2.4.9 kennengelernt).

Satz 5.1.7 (Starker Basisergdnzungssatz). Jede linear unabhdingige Teilmenge A eines
Vektorraumes V ist in einer Basis von V' enthalten.

Beweis. Sei U die Menge aller linear unabhéngigen Teilmengen von V, die A enthalten,
geordnet durch Inklusion. Dann ist A € U, also gilt U + @.
Ist V eine nichtleere Kette in i, so ist auch W := |V linear unabhiingig: denn wenn

v1,...,0, € W paarweise verschieden sind, so gibt es V1,...,V,, € V mit v; € V; fiir alle
i € {1,...,n}. Da V linear geordnet ist, besitzt {Vi,...,V,} ein gréfites Element; ohne
Beschrinkung der Allgemeinheit sei dies V;. Also sind vy, ..., v, € V4, und somit linear

unabhéngig. Folglich ist W eine obere Schranke von V.
Nach dem Lemma von Zorn besitzt U ein maximales Element B. Das heif3t, B ist eine
maximale linear unabhéngige Teilmenge von V', nach Satz 2.4.9 also eine Basis. 0

5.2 Duale Raume

Seien V, W K-Vektorrdume. Dann ist
Homg (V,W) ={f | f:V - W ist lineare Abbildung}

selbst ein K-Vektorraum (Bemerkung 3.4.21). Spezialfall W = K:
Definition 5.2.1. Eine lineare Abbildung f:V — K heifit auch Linearform von V, und

V* := Homg (V,K)

heifit Dualraum von V.
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Auf V* sind wie folgt Vektorraumoperationen definiert:

e Addition: fir f,ge V* undv eV
(f +9)(v) := f(v) + g(v).
e Multiplikation mit Skalar: fir a« €K, f € V¥, undv e V
(af)(v) = af(v).
Der Nullvektor von V* ist die Nullabbildung:
0:V-K:vme0.

Beispiel 5.2.2. Ist V = K", so wird V* = Homg(V,K) beschrieben durch K" = K™
Wir kénnen die Elemente von V' als Spaltenvektoren und die Linearformen auf V als
Zeilenvektoren auffassen. A

Ubung 28. Sei V der unendlichdimensionale Vektorraum RY mit komponentenweiser
Addition und Skalarmultiplikation (siehe Abschnitt 2.3.1). Definiere ¢: V' — V durch
t(ag,ay,aq,...) := (0,a9,a;1,as9,...). Zeige, dass t eine lineare Abbildung ist ohne Ei-
genvektoren.

5.3 Duale Basen

Sei B = (b;);es eine Basis von V. Dann gibt es zu jedem i € I genau ein b; € V™ mit

b! (bj) = d;; fiir alle j € I. Hier ist d;;, das Kroneckersymbol, wie folgt definiert

1leK fallsi=j
5 { e (5.1)

- 0 € K sonst.

Offensichtlicherweise ist b; eine lineare Abbildung, und falls ¢* € V™ so, dass c*(bj) = 045
fiir alle j € I, dann gilt ¢* = b} . Denn jedes v € V lisst sich schreiben als \; b, ++oo+ A0
fir ¢1,...,i, € I, m €N, A\{,..., )\, € K. Dann gilt

c*(v) = Alc*(bil) 4o 4 )\nc*(bin)
=\
= Aib; (byy) + =+ + Aub; (b;)) = b (v).

Lemma 5.3.1. Ist B = (b;);e; eine Basis von V, dann ist B* := (b )ier linear un-
abhingig. Ist I endlich, so ist B* eine Basis von V™.

Beweis. Es sei n € N, \y,...,\, € K, und iy,...,i, € I beliebig. Wir definieren v* :=
Alb;kl + oo+ )\nbfn. Falls nun v* = 0, dann gilt insbesondere v*(bij) = 0 fiir jedes j €
{1,...,n}. Da v*(bij) = \; folgt A\; =0 fiir alle j € {1,...,n}.
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5 Dualitéat

Falls nun I endlich ist, dann lisst sich jedes Element f € V™ schreiben als Yier f (b; )by :
denn fiir jedes j € I gilt

(Z f(b»b;‘) (bj) = > F(bi) b7 (b;) = £(b;).
i€l i€l —

Die Aussage folgt, da zwei lineare Funktionen genau dann gleich sind, wenn sie die
gleichen Werte auf der Basis B annehmen. O

Die Basis B* von V™ heifit die zu B duale Basis.
Korollar 5.3.2. Falls V endlichdimensional, so gilt V = V™.

Beweis. Folgt aus Lemma 5.3.1. Folgt ebenfalls aus dem Fundamentalsatz der endlichdi-
mensionalen Vektorrdume (Satz 3.4.8). Ein konkreter Isomorphismus ist gegeben durch

LB:V—»V*:iAibiHiAib;". O

5.4 Die natiirliche Isomorphie V = V**

Der Bidualraum zu V ist definiert als
V¥ = (VY = Homg (V" K).
Falls V endlich-dimensional, so gilt V = V* = V** nach Korollar 5.3.2. Wie wir gleich

sehen werden, sind die Vektorraume V und V** auf besondere Weise (“natiirlich”) iso-
morph.

Fiir beliebige Vektorrdume V und v € V' sei
- K

*k *

vV
definiert durch v**(f) := f(v).
Satz 5.4.1. Sei V ein Vektorraum. Die Abbildung
ngV—>V** oot
ist ein injektiver Homomorphismus. Falls V' endlichdimensional ist, so ist v ein Isomor-

phismus — der natiirliche Isomorphismus zwischen V und V™.

Bemerkung 5.4.2. Wenn V' abz&hlbar unendlich aber nicht endlich erzeugt ist, wie zum
Beispiel V' = Fo[ X], dann gilt

V¥ = |V (nach Satz 5.4.1)
> |2N| (da V unendliche Basis besitzt, Satz 2.4.10)
> |N]| (nach Satz 1.2.9)
= |V| (da V abzihlbar).

Also kann ¢ nicht surjektiv sein (Satz 1.2.10).
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5.5 Annulatoren

Beweis von Satz 5.4.1. Zeigen zuerst, dass v** linear fiir jedes v € V; d.h., v** € V**.
Seien dazu f, f' € V" und \ € K beliebig. Dann gilt

v (fr + A ) = (i + M) () (Definition von v™**)
= fi(v) + Afa(v) (Rechnen in V™)
=0 " (f1) + W (fo) (Definition von v* ™).

Zeigen als niichstes, dass ¢ linear. Seien vy, vy € V und A € K. Sei f € V™ beliebig.

o(vy + Av2)(f) = f(vr + Av) (Definition von ¢)
= f(v1) + Af(v2) (Linearitéit von f)
= p(v1)(f) + Ap(v2)(f) (Definition von ¢)
= (p(v1) + Ap(v2))(f)

Injektivitit: Ist v € V' \ {0}, so ist p(v) = v** # 0. Dazu ergéinzen wir v zu einer

Basis B von V und definieren f € V* durch f(u) := 1 fiir alle v € B. Dann gilt
v**(f) = f(v) = 1. Falls V endlichdimensional, so folgt Bijektivitiit aus Satz 3.4.6. [

Bemerkung 5.4.3. Sei V' endlichdimensional. Im Gegensatz zu den Isomorphismen zwi-
schen V und V*, die von der Basis B abhiingen, ist der Isomorphismus ¢:V — V**
natiirlich (oder kanonisch), soll heissen, unabhingig von der Wahl einer Basis.

5.5 Annulatoren

Sei V endlichdimensional, S € V.

Definition 5.5.1. Der Annulator von S in V™ ist die Menge
SY:={feV*| f(s)=0 fir alle s € S}.
Bemerkung 5.5.2. 8° < V* (direktes Nachrechnen der Definition).

Sei V ein endlichdimensionaler K-Vektorraum und U < V ein Untervektorraum.

Proposition 5.5.3. Es gilt dim U + dim U = dimV. Wenn (uy,...,u) Basis von U
und (Ui, ..., U, Ups1s - - -, Up) Basis von V, dann ist (upsq, ..., un) Basis von U" .

Beweis. (ugsq,---,u,) Basis von U": zunichst gilt fir v € U und j € {k+1,...,n}

;‘ e U°. Denn v = Zle o;u; und damit ist u;k(v) =

Zf;l aluj(ul) = 0. Lineare Unabhiingigkeit und (uj 1,...,ur) = U 0. nachrechnen wie

im Beweis von Lemma 5.3.1. Also: dimU + dim U’ =k + (n—k) =n = dim V. O

dass u;k(v) = 0 und damit dass u

Bemerkung 5.5.4. Nach Satz (Satz 3.4.15) gilt dim V /U + dim U = dim V' und damit

v/ =v|U=0" (siehe Abschnitt 3.4.4).
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5 Dualitéat

Abbildung 5.1: Illustration zu Dualraum und Annulator.

Betrachten nun S € V beliebig und S°° := (S°)Y € V** = V. Siehe Abbildung 5.1.

Proposition 5.5.5. Sei ¢ der natiirliche Isomorphismus zwischen V. und V**. Dann
gitt % = ©(S) genau dann wenn S < V.

Beweis. Es gelte zunsichst S°° = ©(S). Mit der Bemerkung haben wir R 7
Alsoist S = ¢ (S™) <o H (V) = V.

Umgekehrt sei S < V. Sei (uq,...,u;) Basis von S, und (uq,...,u, Urs1, ..., U, ) Basis
von V. Zeigen zuerst S € (). Sei w = i aip(u;) € S% und sei j = k + 1. Nach
Proposition 5.5.3 ist u; € $°. Dann gilt

0= w(u;) (we $% und u; € SO)
= Z azgo(uz)(u;k) (Definition von w)
i=1
= Z alu;k(uz) (Definition von ¢)
i=1
= (Definition des Kroneckersymbols).

Also folgt

k
w = Zai<ﬂ(ui) € ¢(9).

=1
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5.6 Dualitdtssatz der linearen Algebra

J =t}

(X
(Ut )°

Abbildung 5.2: Tllustration zu UY N US = (U; U Uy)" = (U + Uy)°.

©(S) € §%: Sei v € S. Zu zeigen: p(v) € S°. Sei f € S°. Dann

o(v)(f) = f(v) (Definition von ¢)
=0 (davESundeSO). O

5.6 Dualitatssatz der linearen Algebra

Seien V, W endlichdimensionale K-Vektorrdume, und f:V — W eine lineare Abbildung.
Dann ist

ffwr sV igmgof
eine lineare Abbildung, die zu f duale Abbildung.

Satz 5.6.1. Sei V ein endlichdimensionaler Vektorraum. Dann ist U — U° eine bijek-
tive Abbildung von der Menge der Untervektorriume von V auf die Menge der Unter-
vektorraume von V. Dabei gelten:

1. {0}’ =Vv*

2. UycUy, = U 2US

3. (U nUL)° =UY + U (siehe Definition 2.4.17)
4 (U ul)’ = (U +10,)" = U U,
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5 Dualitéat

Fiir lineare Abbildung f:V — W gilt
5. Kern(f*) = (Bild f)°
*

[ genau dann injektiv wenn f surjektiv.

6. Bild(f*) = (Kern f)°
* genau dann surjektiv wenn f injektiv.

7. 1g(f*) =rg(f)

¥ genau dann bijektiv, wenn f bijektiv.
Beweis. Zu 1: {0}" = {f e V* | f(0) = 0} = V*.
Zu 2: Sei f € Uy. Dann gilt fiir alle u € Uy, dass f(u) = 0. Wenn U; € Us, dann gilt

auch fiir alle u € UY, dass flu)=0. Also f € Uy,
3.-7.: Ubung! O

Korollar 5.6.2. Sei V' endlichdimensionaler Vektorraum und S € V. Dann gilt
(8) =9 (5™)

Beweis. Aus S € (S) folgt durch zweimaliges Anwenden von Satz 5.6.1 (2.) dass §%° ¢
(5)". Da $” < V haben wir also

00 00
ST =(8)" =9((5)
nach Proposition 5.5.5, und damit die Aussage des Korollars. O

Ubung 29. Satz 3.3.19 triagt den Namen Dualitit. Diskutieren Sie, ob dieser Titel ge-
rechtfertigt ist. Wie sieht das duale System vom dualen System aus? Gibt es einen
Zusammenhang zur Dualitéit, wie sie in diesem Kapitel betrachtet wurde?

Bemerkung 5.6.3. Es gibt noch andere Kontexte in der Mathematik, in denen der Begriff
Dualitit verwendet wird, z.B.

e Komplementbildung beziiglich der Teilmengen einer Menge A (Schnitt ist dann
dual zu Vereinigung, siche Abschnitt 1.1.3)

e Negation in der Aussagenlogik (Konjunktion ist dann dual zur Disjunktion, der
Allquantor ist dual zum Existenzquantor, siehe Abschnitt 1.3.1).

e Eine ganz andere Form der Dualitdt kommt aus der Graphentheorie: dort ist der
Dualgraph eines ebenen Graphen G definiert als der Graph G, dessen Knoten die
Fldchen von G sind, und in dem zwei Knoten mit einer Kante verbunden sind,
wenn sich entsprechenden Fliachen in G eine Kante teilen. Hier 148t sich zeigen,
dass (G™)* isomorph ist zu G*. Siche Abbildung 5.1.
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5.6 Dualitdtssatz der linearen Algebra

G G* G** - G

AR DA

Abbildung 5.3: Der Dualgraph G™ eines ebenen Graphen G, und der Dualgraph des
Dualgraphen (G™)*.
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Kapitel 6

Analytische (Geometrie

Bisher: abstrakte K-Vektorrdume V; allerdings: V = K".
Dieses Kapitel: Spezialisierung K = R und oft n = 2,3 (~ zusitzliche Eigenschaften).

6.1 Das Skalarprodukt

Nicht zu verwechseln mit “Produkt mit einem Skalar” (skalare Multiplikation).

6.1.1 Wiederholung und Bezeichnungen

Verschiedene Interpretationen der Paare (x,x9) € R

e Punkte P(xq,25) der euklidischen Ebene mit Koordinaten x1,xs (beziiglich fest-
gelegtem Koordinatensystem)

e Translation der Ebene: (y1,y2) = (y1 + 21,y + 22).

e Zeilenvektoren (xy,x9) € R

e Spaltenvektoren (2) e R¥!

Entsprechende Verallgemeinerungen auf Rg, R4, e

Interpretation als komplexe Zahle x1 + z9i: Spezialitéit von R?=C. R2
P(x4,5)
e Darstellung eines Punktes durch ‘Ortsvektor’: x | %,
Pfeil von Punkt P(0,0) zu Punkt P(z1,z2).
T X
e Darstellung von Translation durch ‘freien Vektor’ (z1, z5): .
BaN -
beschreibt Pfeil RS von Punkt R nach Punkt S. aR RS
S
Addition: Komposition von Translationen. Q s

—

—_— —
Aneinandersetzen der Pfeile: QR + RS = QS.
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6 Analytische Geometrie

6.1.2 Lange (Norm) eines Vektors

€7
cleR

nx1

S
1]

T

|Z||:= Vai + - + 22
n = 2: Pythagoras!

Abstand zweier Punkte: Seien P : 2 = (x1,22) und Q : ¥ = (y1,y2) zwei Punkte in R?,
dann gilt

Liinge (oder Norm) von z:

IPOII= 117 - #ll= v/ (s = 21)2 + (g — 22)?

6.1.3 Das Skalarprodukt

Seien 7,y € R". Betrachten Z,7 als Elemente von R

n

N T = .

T kY= (J?) y=(x1,...,:vn) P ETyr T+ TYn
Yn

heifit inneres oder Skalarprodukt (andere Schreibweise: (x,y)). Was fiir eine Abbildung
ist *7
*:R'"XR" > R: (&,9)~ 2 *y
1. * ist bilinear, d.h., fiir alle v € R" sind die Abbildungen f;: R" — R : Z + Z%v und
die Abbildung f;:R" - R : Z = v * & lineare Abbildungen (siche Abschnitt 3.4).
Sind eh die gleiche Abbildung.

2. * ist symmetrisch (d.h., kommutativ):
T*y=1y*2
3. x ist positiv definit, d.h.,
T+#0=>2%7>0
T=0=0%0=0 (folgt bereits aus Bilinearitét).

Allgemein ist ein Skalarprodukt eines R-Vektorraumes V eine bilineare, symmetrische,
und positiv definite Abbildung von V? nach R. Deswegen spricht man im Fall vom oben
eingefithrten Skalarprodukt * des R" auch vom tblichen oder Standard-Skalarprodukt.
Dies ist nur das néchstliegende Skalarprodukt; z.B. ist fiir jede invertierbare n X n-Matrix
A auch (z,y) = AZ * Ay ein Skalarprodukt.

Definition 6.1.1. Ein euklidischer Vektorraum ist ein R-Vektorraum V zusammen mit
einem Skalarprodukt auf V.
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6.1 Das Skalarprodukt

Beispiel 6.1.2. Der R-Vektorraum aller stetigen reellen Funktionen auf dem Interval
[—m, +m] ist euklidisch mit Skalarprodukt

1 +7
grhi= = J g(OR(L)dt. A

6.1.4 Die Ungleichung von Cauchy-Schwarz

Ist V ein euklidischer Vektorraum mit Skalarprodukt *, und € V, so versteht man
unter der Norm von z die reelle Zahl ||z|| := V2 * 2 > 0.

Satz 6.1.3. Es sei V' ein euklidischer Vektorraum mit Skalarprodukt *. Dann gilt
zxy < ||zl
Aquivalent dazu ist:
(@xy)(y*z) < (zxz)(y*y)
(Riickrichtung durch Wurzelziehen, da ||z, ||y|| = 0.)

T*Y

Tll” Nun gilt

Beweis. Falls y = 0 ist die Aussage trivial. Sei nun y # 0. Setzen « :=

0<s(F-af)*(T—ay)=c%7—20(Z*9) +a°(§ *7)
e (sEfzJ)2 (s‘c’fz])2
1911° lIy1l°
- S 2
911>

Damit ist (Z * 7)° < ||Z]|*||7]]°. =

Bemerkung 6.1.4. Falls y ein positives Vielfaches von Z, also wenn y = Az fiir ein A\ € Ry,
dann gilt sogar Gleichheit: denn

gx AT =Xz x 2| = A |]2]] - [12]] = [1Z]] - [[Az]].

6.1.5 Die Dreiecksungleichung

Es sei V' ein euklidischer Vektorraum. Dann gilt < Y
Beweis. 17 + gill= 3] +115) -
17+ 511" = (& +9) * (Z +9)
=Tx2+2T*y)+yxy Bilinearitit
< [|Z]1+2l1Z]I- 191+ 1711 Cauchy-Schwarz (Satz 6.1.3)
= (I211+11g1)’
Da Norm nicht-negativ kann man Wurzel ziehen und erhilt das gewiinschte. O
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6 Analytische Geometrie

6.1.6 Geometrische Interpretation des Skalarproduktes im R

Es gilt fiir n = 2:
z*y = ||Z||-lyll- cos o (6.1)

wobei ¢ = 4(2,y) Winkel zwischen # und g (im Bogenmaf).

X ¥
Produkt wird negativ, falls 7 < ¢ < 37” (stumpfe Winkel) A{v

Produkt wird Null, falls ¢ = = oder ¢ = 37” 0 . >

2 —»
Produkt wird positiv, falls —g <p< g (spitze Winkel) lixll cos ¢

<y

Projektion von Vektor & auf Gerade g mit Richtung 3 hat Linge
T*y
Iyl

1Z]]- cos ¢ =

Projektion von Vektor z auf g ist also (genaueres zu Projektionen: siche Abschnitt 6.2.4):

T*Y .
TR
1y1I?

Bemerkung 6.1.5. Die Gleichung (6.1) kann als Definition fiir den Winkel ¢ zwischen
z,7 € R" \ {0} benutzt werden.

Spezialfall: # L ¢y = &(z,y) = {n/2,-7/2} < *y =0 (Orthogonalitiit)

6.2 Geradendarstellungen
Geraden im R" konnen auf verschiedene Arten dargestellt werden.

6.2.1 Parameterdarstellung

Die Parameterdarstellung einer Geraden g im R" (durch den Punkt @ und mit dem
Richtungsvektor v):

g=u+Rv={u+Xv|\eR}

©y
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6.2 Geradendarstellungen

In Koordinatendarstellung;:

T1 = U+ Ay

T, = U, + v,

Alternativ: Statt mit Richtungsvektor v kann die Gerade g auch mit einem weiteren

Punkt w auf g dargestellt werden (v = w — u).

6.2.2 Hessesche Normalform

Sei g Gerade in R%. Sei 4 € g, und n Normalenvektor von g: n L g (soll heissen n L v
fiir Richtungsvektor v von g). Wir fordern zusitzlich ||n|| = 1 (n ist Normaleneinheits-

vektor). Dann gilt:

reEge (r—u)ln (< nur fiir n = 2!)
Sn*(r—u)=0

Snkr=n*xu
Die Hessesche Normalform einer Geraden g € R*:
n*r=d
fiir d := n * u (hingt nicht von der Wahl von u € g ab!).

Fiir n = (Z;) ergibt sich:
nixT1 + Noxy = d

L2 2 - . . ,
mit ny +n3 = 1 (wegen ||n||= 1; ‘Normierung’).
Dabei ist d der vorzeichenbehaftete Abstand der Geraden g zum Nullpunkt:

d=nxu=|n|-|[ull-cose = ||ul|-cos ¢

Positiv falls —90° < ¢ < 90°, negativ falls 90° < ¢ < 270°.

Rechtfertigung des Begriffes Abstand:

o fiir alle = € g gilt
d = ||z

-

denn d = n * x < ||n||-||Z]|= ||Z]] nach Cauchy-Schwarz (Satz 6.1.3).

e Es gibt ein 7y € ¢ mit |d| = ||Zy]|: siche Abschnitt 6.2.5.
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6 Analytische Geometrie

6.2.3 Koordinatendarstellung
Gerade g im R?: fiir (ay,as9) #(0,0)

x 2 .
9= {<x;) € R™ | a1z1 + agxs = ao} = Lés((a1,a2), ao)

Losungsmenge eines linearen Gleichungssystems der Form ajz1 + asxo = ag.

Zugehorige Hessesche Normalform:

a7 a2 ago

—rt———1y = ——
Vai + a3 Va2 + a3 Vai + a3
=iy =ing =:d

. 2 2
es gilt n] + ny = 1.

Parameterdarstellung im Fall ay # 0 ist z.B.

0 1
il =la |+ A _a
2 ag ag
Setze w1 = A\, dann x5 = (ag — a1 \)/as. Analog fiir a; # 0.

6.2.4 (Orthogonale) Projektionen

Sei g eine Gerade in R? mit Richtungsvektor v. Die (orthogonale) Projektion eines Punk-
tes ¢ € R? auf g ist p € g mit (§—p) L 4, das heiBt (§—p) * © = 0.
Existiert stets, und ist eindeutig. Bild!

Berechnung aus Hessescher Normalform.
Gegeben: g = { € R? | 7 % ¥ = d} und ¢ € R”.
Gesucht: Projektion p von ¢ auf Gerade g.
Antwort: p =g+ Ay - n fiir \g =d —n *q.

Beweis:
(q=p)*v=(g—qg—=Aon)*xv=0
nxp=n*(q+A\n)

(Existenz gezeigt.)

Berechnung aus Parameterform.
Gegeben: g = u +Rv und ¢ € R".
Gesucht: Projektion p von ¢ auf Gerade g.
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6.2 Geradendarstellungen

Antwort:

(g—u)*v

T (6.2)

ﬁ=ﬁ+)\15mit)\1= =
llv

Beweis: (¢ —p) L v und p € g. Das heifit, (¢ —p) * v = 0 und A\, : p = u + A\ 0.
Einsetzen ergibt

(g—u—-X\v)*x0v=0
:(cj—ﬁ)*ﬁ—)\l(ﬁ*ﬁ):O

(g—u)*xv
=S\ =
' 5]

(Eindeutigkeit gezeigt.)

6.2.5 Zusammenhang Projektionen mit Hessescher Normalform

Es sei g eine Gerade im R? und po die Projektion von 0 auf g. Dann ist py L v, also ist

n:= ”20” Normaleneinheitsvektor von g. Das bedeutet, dass
0
n*xr=d

mit d := n * py die Hessesche Normalform von g ist.

Es gilt |d| = |n * po| = |ﬁ * po| = ||pol| und damit ist py wirklich der Punkt auf g,
der nichstmoglich an 0 liegt — daher also die Bezeichnung von |d| als der Abstand von
g zum Ursprung (siehe Abschnitt 6.2.2).

Wenn ¢ in Parameterdarstellung gegeben ist durch ¢ = u + Rv, so kénnen wir mit
(6.2) die Hessesche Normalform von g bestimmen, indem wir py ausrechnen wie folgt:

- - —Uu * v

Po=u-+ ||2'17

v

6.2.6 Abstand Punkt-Gerade

Fs sei g ¢ R? eine Gerade, gegeben iiber die Hessesche Normalform n * £ = d. Der
(vorzeichenbehaftete) Abstand d; € R zwischen ¢ € R? und der Geraden g ist

dg = nxq—d
und es gilt
o |l¢—pll = |d;] fiir p := ¢ — d; - n (der Projektion von ¢ auf g)
g = pll=1lg = q + dg - nll= |dg]
o fiir alle 7 € g gilt d; < ||¢ — Z||, denn wegen Cauchy-Schwarz gilt

dij=d-nxqg=nxz-n*xqg=nx(@-q)<|nll-llz-ql=lz-4qll.
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6 Analytische Geometrie

° d]5:Ofalls§Eg.
dz > 0 falls 7 und (g —u) spitzen Winkel bilden, fiir ein (fquivalent: fiir alle) u € g
dj < 0 falls 7 und (¢ — u) stumpfen Winkel bilden. Bild!

Ubung 30. Zeigen Sie: drei Punkte u,v,w € R" liegen genau dann auf einer Geraden,
wenn es a,b,c € R gibt, die nicht alle gleich Null sind, so dass au + bv + cw = 0 und
a+b+c=0.

6.3 Ebenendarstellungen

6.3.1 Parameterdarstellung

Darstellung durch Punkt u und zwei linear unabhingige Richtungsvektoren v, w:

E:=u+ (v,w) (Abschnitt 2.4.1)
=u+Ro+ Rw
T € E falls es A\, € R gibt mit u + \v + paw. >
Koordinatenweise: .
0

T1 = Uy + A\vyp + pwy
Ty = Uy + AV, + pwy,

6.3.2 Hessesche Normalform einer Ebene im R’
Analog zu Abschnitt 6.2.2 (Geraden im ]RQ).
E=u+Rv+Ruw

Sei n normierter Normalenvektor von E, d.h., ||n||=1,n L v, n L w.

T€EE o (z—-u)Ln

en*(z-u)=0 (Hessesche Normalform von E)

Anders geschrieben:
E={z|n*z=d}
mit d := n * u (der vorzeichenbehaftete Abstand zwischen Nullpunkt und E).
Allgemein (analog zu Abschnitt 6.2.6): Fiir Punkt Q, mit ¢ = @, ist
n* (q—u)
der vorzeichenbehaftete Abstand von @) zur Ebene E.
Also: wenn dieser Ausdruck Null wird, liegt ¢ auf der Ebene.
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6.3 Ebenendarstellungen

6.3.3 Koordinatendarstellung

Koordinatendarstellung einer Ebene E im R®:

I
E = { Ty | € RB | a1 + asxeo + azxz = d} = Lés((al,ag,a3),d)
L3

Von Koordinatendarstellung in Hessesche Normalform: definiere

aq -
- - a
a:=|ay und ni= ——.
’ 1
3

Es gilt
E={z|n*x=d}.

6.3.4 Orthogonalprojektion von Punkt auf Ebene
Gegeben: Punkt ¢ € R*, Ebene
E =4+ Rv + Ruw.
Gesucht: Orthogonalprojektion p von ¢ auf E, d.h.,
1. p € E, d.h., es gibt A\ und g mit p = u + Ay + pow
2. v%(¢—p)=0und w* (¢—p) = 0.
Einsetzen von 1. in 2. ergibt Gleichungssystem fiir A\g und pg:

Mo(0 * 0) + puo(v * w) =0 * (¢ — u)

No( * U) + po(w * w) = w * (¢ — )

Losung mit Cramerscher Regel (Abschnitt 4.1.7):
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6 Analytische Geometrie

Dann ist der gesuchte Vektor p:
P =1U+ AU+ pow
Ist F in Hessescher Normalform gegeben,
E={ZeR’|n«*(f-4)=0}

so lisst sich die Projektion p von ¢ auf E wie folgt berechnen:
¢ — p hat gleiche Richtung wie n.

—~

QU
|

3t
*

=y

~—
3

vorzeichenbehaftete Linge von p—q

6.4 Das duBere Produkt (Vektorprodukt)

Anwendungen in Mathematik, Physik und Informatik, z.B.:

e Berechnung des Drehmoments, oder der Lorenzkraft
(bewegte Ladung im magnetischen Feld)

o Abstandsformel windschiefer Geraden
e Algorithmische Geometrie

. . R . . 3 -
Ausgangsidee: Wollen von zwei Richtungsvektoren, die eine Ebene im R” definieren,
moglichst bequem an einen Normelenvektor der Ebene kommen.

Das dufiere Produkt oder Vektorprodukt

wird durch folgende Eigenschaften (eindeutig!) definiert:

1. 51)(52_

|
)
w

2. €2X53=61
3. ggxgl=€2

4. X ist bilinear (siche Abschnitt 6.1.3)

ot

. X ist schiefsymmetrisch, d.h., a X b=—bxa.
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6.4 Das dufiere Produkt (Vektorprodukt)

Bemerkung: €; X €; = 0 folgt aus Schiefsymmetrie fiir a = b.

Seien a,b € R,

ay bl
a= ag | = alél + CL2(§2 + a3€3 b=|by|= blgl + bggg + bggg
as b3
dann gilt
az by
as bs
agbs — asby
- g aq bl
aXb=|—-aibg+azb | =] - (63)
ag bs
arby — agby
a; b
az by

Nachrechnen: Ausdruck in (6.3) erfiillt alle Bedingungen der Definition des Vektorpro-
duktes; wir haben also inbesondere die Existenz eines Vektorproduktes bewiesen. Zur
Eindeutigkeit: Aus der Bilinearitét von X erhidhlt man

axb= (a1§1 + a2€2 + a3§3) X b

a1 (€1 X b) + as(éy X b) + az(€; x b) (Bilinearitét)
ay(by(e1 X €1) + ba(ey X €3) + bs(ey X €3))

+ag(bi(€a X €1) + by(€a X €3) + bz(€a X €3))

+ as(bi(es X €1) + by(eg X €3) + by(€5 X €3)) (Bilinearitit)

ai(byes — byey) + ag(—bies + bzey) + az(brea — boey) (1., 2., 3., und 5.)

(agbs — asby)ey + (arbs — asby)és + (—aiby + agby)és  (Zusammenfassen)

6.4.1 Beziehungen zwischen Vektorprodukt und Skalarprodukt
Vektorprodukt weder kommutativ noch assoziativ.
1. Der Grassmannsche Entwicklungssatz:
(Gxb)Xxc=(a*c) -b—(b*?)-a

2. Das Spatprodukt (a X b) * ¢ erfiillt

ap b1
(&Xb)*5= as bg Co
as b3 C3

Aus unserem Wissen iiber Determinanten lassen sich nun viele Eigenschaften fiir
das Spatprodukt herleiten, z.B. (a X b) ¥ c = (bXc) *xa=(cXa)*b
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6 Analytische Geometrie

3. Die Lagrangesche Identitdt:
(Gxb)*(Cxd)=(a*c)-(bxd)—(axd)-(b*?)
Beweis: ausrechnen mit Hilfe von (6.3).

Beweis. Fiir Grassmann:

asbs — asby
(Eixb)x5= —a1b3 + azby X c
a1by — agby

(=a1bs + agby)cs — (a1by — agby)cy
= | —(agbz — agby)cz + (a1by — azby)cy
(agbs — agby)cy — (—aybs + azby)c
—a1bzcs + aszbicg — aibocy + asbicy
= | —agbscs + asbacg + a1bacy — ashicy
(agbscy — agbacy + arbscy — azbicy

a1b101 + a2b201 + agbgcl a1b101 + (11b262 + a1b303
= | a1bicy + asbacy + asbscy | — | agbicy + agbacy + asbscs
alblcg + a2b203 + a3b303 a36101 + a3b202 + a3b303

(G%x¢)-b—(bx7)-a

Fiir das Spatprodukt:

azbs — agbs
(C;Xb)*g: —a1bs + asb; *C

a1b2 - a2b1
ap by
= a2b361 - (IngCl - a1b302 + a3b102 + a16203 - a2b103 = |as b2 Co
az by c3

Fiir Lagrange:
(axb)*(cxd)=((cxd)xa)*b (Gleichheit fiirs Spatprodukt)

= ((¢xa)d— (d*a)c) *b (Grassmann)

=(@*¢)-(bxd)—(a*d)-(b*¢) (Rechnen mit Skalarprodukt) CJ

6.4.2 Geometrische Interpretation des Vektorproduktes
Seien a,b € R®. Dann gilt
e (Gxb)Laund (axb)Lb

e ||a xb|| = ||a]|-]|b]|-|sin | ist der Flicheninhalt des von den Vektoren a und b
aufgespannten Parallelogramms.
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6.4 Das dufiere Produkt (Vektorprodukt)

Beweis. Rechnen zunéchst nach, dass (@ X b) * @ = 0.
Setze ¢ := a im Spatprodukt aus Punkt 3 in Abschnitt 6.4.1: erhalten

ap b a
(5xb)*£i= as bQ as| =0
a3 by as

Der Flicheninhalt des von @ und b aufgespannten Parallelograms mit Hohe & ist ||a||A,
wobei h = ||b|||sin ¢| mit ¢ := £(a,b). Nach der Lagrangeschen Identitit gilt
-7 -7 S22 o L T2
(axb)* (axb)=|lall"[|b]|"—(a * b)
2072 N2 2
= [lall”[[o]]"=llall"[[o]](cos ¢)
112072 2
= [lallI”[[6]]” (1 = cos™ ¢)

0272 . 2
= [[a]|"[[b]]” sin” ¢. O
Das Spatprodukt
ay b1 C1
(CLXb)*C= as by ¢y
az by c3

el
(o]

ist das vorzeichenbehaftete Volumen des von a, aufgespannten Spats (Form der Kris-

talle im Kalkspat; auch Parallelepiped).

e Vorzeichen positiv, falls a, 5, ¢ “Rechtssystem”
(sonst “Linkssystem”, linke Hand Regel).

o (axb)*¢ = ||axb||-||é]|-|cos ¢l; hier ist ||€]|-|cos ¢| die Hohe des Spats und ||a@xb||
der Flicheninhalt der von a und b aufgespannten Grundficiche des Spats.

6.4.3 Anwendung: Abstand zweier Geraden
Seien g1, go Geraden in ]R3, gegeben als

g1 = Uy + Roy >><

go = 122 + R’UQ

Das Vektorprodukt vs := v; X v5 ist genau dann 0, wenn v; und vy Vielfache vonein-
ander sind, d.h., wenn g; und g, parallel sind. Ansonsten steht v3 senkrecht auf v; und
V9. Sei E; die Ebene durch u; mit Normalenvektor vz. Alle Punkte von g, haben den
gleichen Abstand zu E;. Es geniigt also, den Abstand von uy zu F; zu berechnen — und
das geht wie in Abschnitt 6.3.4.
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6 Analytische Geometrie

6.5 Orthogonale lineare Abbildungen

Eine lineare Abbildung f:R" — R" heifit orthogonal falls fiir alle Z,7 € R" gilt: £ x ¢ =
f(Z) * f(). Die Abbildung f erhdilt das Skalarprodukt. Eine Matrix A € R™" heiBt

orthogonal falls AT =471 (insbesondere: A ist invcrtierbar).1

AT
Gleichheit falls Gleichheit falls
A symmetrisch A orthogonal

A-1
A</
Gleichheit falls
A eine Involution, A2=E

Proposition 6.5.1. Fualls A eine orthogonale Matrix ist, dann ist x — Ax eine ortho-
gonale lineare Abbildung.

Beweis. Falls A" A = E,,, dann gilt fiir alle 7,7 € R"
T s D T, g . -
zxy=z y=x (A A)y=(Az) (Ay) = f(z) * f(y). O

Bemerkung 6.5.2. Es gilt sogar die Umkehrung: falls eine lineare Abbildung f orthogonal
ist, und A = Mg(f) fiir die Standardbasis B = (eq,...,e,) von R", so ist A orthogonal
(Satz 8.3.5).

Eigenschaften von orthogonalen Abbildungen:

Proposition 6.5.3. Sei f:R" — R" orthogonal. Dann gilt fiir alle z,y € R":

1 lz]l = 1 f (@)
2.2 Lye f(z) L f(y).
3. |det f| = 1.

Beweis. 1 und 2 folgen direkt aus der Definition von Orthogonalitit (f erhilt das Ska-
larprodukt, also auch Rechtwinkligkeit und Norm). Zu 3:

det(f) = det(A) = det(AT) (Proposition 4.1.14)
= det(A™) (Proposition 6.5.1)
= det(A) " = det(f) ™ (Satz 4.1.15)
Also muss gelten |det A| = 1. O

'In Abschnitt 8.3.2 werden wir diese Begriffe noch etwas allgemeiner definieren.
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6.5 Orthogonale lineare Abbildungen

6.5.1 Die Gruppen O(n), SO(n)
e Das Produkt orthogonaler Matrizen ist orthogonal.
e Die inverse Matrix einer orthogonalen Matrix ist wieder orthogonal.

Also bildet O(n) := {M € R™" | M orthogonal} beziiglich der Matrizenmultiplikation
eine Gruppe (eine Untergruppe von GL(n,R), Abschnitt 3.2.1).
SO(n) :={M € O(n) | det M =1}

ist eine Untergruppe von O(n), die spezielle orthogonale Gruppe.
Verwenden det(A - B) = det(A) - det(B)

6.5.2 Die orthogonale Gruppe O(2)
f:R? > R?*: 7 — A7 durch Bilder f(ey), f(es) (Spalten von A) eindeutig festgelegt.

forthogonal < || f(e1)l|=1 = || f(e2)|| und f(e1) L f(e2)
Wihlt man f(eq) beliebig mit || f(eq)||= 1, so gibt es nur 2 Moglichkeiten fiir f(es):

e Drehung um Winkel a = £(e1, f(€1)) = £(ea, f(€2)).
RZ
B cosa —sina
= = f
Mg (f) (sina cos ) D(a) ) b .
&4
e Spiegelung an Gerade g. A

cosa  sina
sinae —cosa

MEG) -

Also:
0(2) = ‘{D(a) |0<a< 27r}l

Dreh;mgen
U{S(a)|0 < a=2nr}

Spieglungen

Wegen det D(a) = 1 und det S(a)) = —1 folgt

SO(2) ={D(a) | 0 = a = 27} (Menge aller Drehungen).

Berechnung des Drehwinkels «. Sei M = (ZH 212) € SO(2). Dann ist
21 (22
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6 Analytische Geometrie

und es gilt
cosa = aj] = a.

Berechnung der Spiegelungsachse g. Fiir b = 0 ist
e o €{0,7}, da sina = b,

e g=1,dacos0 =cosm =1, und

1 -
[ ] g=R'(O)=R'€1.

Also nehmen wir im folgenden an, dass b # 0.
Ansatz ohne Winkel:
fT€Ege= Mi=2

Sprich: 7 ist Eigenvektor von M zum Eigenwert 1.
Lineares Gleichungssystem:

ary + bxy = 11

bri — axy = x4

gesucht ist nichttriviale Losung. Probieren zunéchst xz; = 1.
Wir erhalten a + bzy = 1 und damit x5 = (1 —a)/b (wie bereits erwihnt ist b # 0). Also:

1
9=R'((1—a)/b)

Falls g keinen Punkt der Form (;2) enthélt, so gilt g =R - ((1)) =R-é,.

6.5.3 Die orthogonale Gruppe O(3)

f:R* 5 R® : ¥ » AZ durch Bilder f(e1), f(es), f(e3) (Spalten von A) eindeutig fest-
gelegt. Zwei Moglichkeiten: sind im Rechtssystem (det A = 1) oder im Linkssystem
(det A = —-1).

Mittelfinger
es f(es) Linke Hand
Zeigefinger
e f(e,) fle,)
2
> €4 Daumen f(e1) f(e1)
0
Rechte Hand f(e 3)
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6.5 Orthogonale lineare Abbildungen

Bemerkung: Jede Drehung A € SO(3) ldsst sich als Hintereinanderausfithrungen von
Drehungen um die Koordinatenachsen eindeutig beschreiben.

A = Dy(a) o Dy(3) o D3(7)

(v, B,v: Eulersche Winkel.)

Anwendung: Satellitenjustierung.

163






Kapitel 7

Normalformen von Matrizen

7.1 Klassifikation und Normalformen

7.1.1 Was heiBBt ‘klassifizieren’?

Nicht exakt definierbar — es hdngt davon ab, was man erreichen will.
Ausgangssituation:

e Menge M.
Z.B. K™" Hom(V,W), ...

e Aquivalenzrelation E € M x M (Abschnitt 1.2.1).
7.B. Ahnlichkeit von Matrizen, Aquivalenz von Matrizen (im engeren Sinne), ...

Klassifikation heif3t

e Festlegen einer Aquivalenzrelation

e Gutes Verstindnis der Faktormenge M /FE und der Zuordnung M — M /E.
Insbesondere: wann sind zwei Element dquivalent.

A: Klassifikation durch charakteristische Daten

Beispiel. M: Menge aller Geraden in RZ.
(91.92) € E:= gi1lg2 (Parallelitiit)

Charakteristisches Datum: Anstiegswinkel .
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7 Normalformen von Matrizen

“Daten”
pry
fiM—- D
g« o Anstiegswinkel von g
Es gilt E(g1,92) < f(91) = f(92) = [91]e = [92]r d.h.,
E =Kerm f = {(z,5) € M | f(z) = f(3)} (7.1)

Kern einer Abbildung im Sinne von (1.1). Ist formal verschieden vom Kern einer linearen
Abbildung. Aber es gibt natiirlich einen Zusammenhang, siche Ubung 31.

Ubung 31. Es sei f: A - B eine lineare Abbildung, und E := {(x,y) € M | f(z) = f(y)}
der Kern von f im Sinne von (7.1), und sei Kern( f) der Kern von f im Sinne der linearen
Algebra (Definition 3.8). Zeigen Sie:

e fiir alle a € A gilt genau dann a € Kern(f), wenn E(a,0).

e fiir alle a,b € A gilt E(a,b) genau dann, wenn a — b € Kern(f).

B: Klassifikation durch Reprasentanten

Auswahl eines Repriisentanten aus jeder Aquivalenzklasse aus M/ E:
Gesucht: N € M so dass jede Aquivalenzklasse genau einen Représentanten in N hat.

D.h.,
N> M|E:mw~ [m]g
ist bijektiv.
Elemente aus N heiflen auch Normalformen.

Beispiel. M ist Menge aller Geraden in R? und E ist Parallelitit.
N: Menge der Geraden durch 0.

Typische Anforderungen:
e Fiir gegebene mq, my € M, entscheide ob (mq,ms) € E.
e 7Zu jedem m € M finde Normalform, d.h., finde n € N mit (m,n) € E.

Erstes Problem lasst sich auf zweites zuriickfiihren!
7.1.2 Aquivalenz
Wiederholung: Seien 4, B € K™,
A~ B:= A und B sind dquivalent (im engeren Sinne)
d.h., es gibt invertierbare Matrizen S € K" und 7' € K™ ™ so dass

B=TAS.
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7.1 Klassifikation und Normalformen

Eine Aquivalenzrelation.

Klassifikation durch charakteristische Daten: A ~ B < rg(A) = rg(B) (Satz 3.4.27,
Charakterisierung von Aquivalenz, Abschnitt 3.4.8).

Klassifikation durch Reprisentanten: als Normalform fiir die Aquivalenzklasse aller Ma-
trizen in K" vom Rang r kann man folgende Matrix withlen (siehe Beweis von Satz 3.4.27):

E’r‘ O mXn
(0 0) eK

7.1.3 Zeilendquivalenz

Wiederholung Definition 3.4.24: A, B € K™ heissen zeilendquivalent (oder linksiquivalent)
falls es eine invertierbare Matrix S gibt so dass B = SA.

e Zeileniiquivalenz definiert eine Aquivalenzrelation auf K™"".

e Falls A und B zeilenéquivalent sind, dann auch dquivalent. (Zeilendquivalenz liefert
feinere Unterscheidung als Aquivalenz.)

Motivation: Wenn die erweiterten Koeffizientenmatrizen von zwei Gleichungssyste-
men zeilendquivalent sind, dann haben sie den gleichen Losungsraum (Lemma 3.3.12).

Jede Matrix ist zeilendquivalent zu einer Matrix in Stufenform (Definition 3.2.21); aber
offensichtlich gibt es zeilendquivalente Matrizen mit derselben Stufenform: beispielsweise

1 1\ 2zme (2 2) 3202 (11
_— _— .
0 0) (2 00 (2) 00
Definition 7.1.1. Eine Matrix A € K™ ist in reduzierter Stufenform, falls
e A in Stufenform ist,

e der fithrende (linkeste) Eintrag jeder Zeile, der nicht 0 ist, ist 1, und

e jede Spalte, die eine 1 enthilt, in allen anderen Eintrdgen 0 ist.

0 0 1 aij, 0o - 0 vee 0 eee aiy,
0 0 - 0 1 a2;, :
e 0 0
A= 1 Ay,
0 0 0
0 0 0
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7 Normalformen von Matrizen

Satz 7.1.2. Jede Matriz A € K™" lisst sich durch elementare Zeilenumformungen in
eine eindeutige Matrix N in reduzierter Stufenform dberfihren; N ist zeilendquivalent
zu A.

Beweis. Wir wissen bereits, dass sich A durch elementare Zeilenumformungen in eine
Matrix in Stufenform (Abschnitt 3.2.4) iiberfiithren ldsst. Es ist leicht zu sehen, dass sich
jede Matrix in Stufenform durch elementare Zeilenumformungen weiter in eine Matrix
N in reduzierter Stufenform umformen lésst: zum Beispiel

1 2\ 322722 (1 2\ z21-2z~z (1 0
_— _—
0 3 (2) 0 1 (3) 01

Elementare Zeilenumformungen lédssen sich durch Multiplikation von links mit inver-
tierbaren Elementarmatrizen beschreiben. Da das Produkt von invertierbaren Matrizen
ebenfalls invertierbar ist (3.3), gibt es also eine invertierbare Matrix S mit SA = N.

Zur Eindeutigkeit: seien A und B zeilenfiquivalente Matrizen in reduzierter Stufen-
form. Angenommen A # B; wir wollen dies zum Widerspruch fiithren. Sei 7 € {1,...,n}
minimal, so dass sich A und B in der i-ten Spalte unterscheiden. Sei A' (bzw. B') die
Matrix, die aus der i-ten Spalte von A (bzw. B) und allen Spalten mit kleinerem Index
besteht, deren Eintridge nur einmal 1 und sonst nur 0 sind. Dann ist A notwendigerweise
von der Gestalt

E, 0
E
A'=(Ok 8) oder A=|0 1
0 O
Analog ist B' von der Gestalt
E, 0O
E
B'=(Ok g) oder B'=| 0 1
0 0
fireink € {1,...,n}und r,s € K * Die Matrizen A' und B' sind zeilendquivalent, da A’

aus A und B' aus B durch Wegstreichen von Spalten entsteht und sich Zeilendquivalenz
dadurch nicht dndert. Wenn also A' von der zweiten Gestalt ist, so ist auch B' von der
zweiten Gestalt, was nicht sein kann, da sich A und B per Annahme in der i-ten Spalte
unterscheiden.

Beide Matrizen kénnen aufgefasst werden als erweiterte Matrizen eines linearen Glei-
chungssystems (wie in Abschnitt 3.3.4). Das Gleichungssystem fiir A st

(@)7=(o)

Ty =71,...,2,=7;,0=0,...,0=0,

also von der Gestalt

hat also die eindeutige Losung r. Analog hat das System fiir B' die eindeutige Losung
s. Da beide Systeme zeilendquivalent sind, gilt » = s, wieder ein Widerspruch. O
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7.2 Die Frobenius-Normalform

Aquivalenzbegriff | Normalform

Aquivalenz Abschnitt 7.1.2
Zeilendquivalenz | Reduzierte Stufenform, Abschnitt 7.1.3
Ahnlichkeit Frobenius-Normalform (Satz 7.2.31), Abschnitt 7.1.4

Abbildung 7.1: Ubersicht zu Normalformen von Matrizen.

Korollar 7.1.3. A € K" ist genau dann invertierbar, wenn sich A schreiben lisst als
Produkt von Elementarmatrizen.

Beweis. Offensichtlich ist jede Elementarmatrix invertierbar (Bemerkung 3.2.19), und
das Produkt von invertierbaren Matrizen ist ebenfalls invertierbar (3.3).

Sei umgekehrt A invertierbar. Dann ldsst sich A nach Satz 7.1.2 durch elementare
Zeilenumformungen in eine Matrix IV in reduzierter Stufenform iiberfithren. Diese hat
den gleichen Rang wie A (Lemma 3.2.17), ndmlich n; also ist N von der Gestalt E,,.
Die Zeilenumformungen lassen sich beschreiben durch ein Produkt S = 57.55---S; von
Elementarmatrizen. Die Matrix S ist invertierbar und es gilt SA = N = FE,,, also ist
A=5"= S;;lmSQ_lSl_l ein Produkt von Elementarmatrizen. O

7.1.4 Ahnlichkeit

Wiederholung: A = A= A und A' sind dhnlich, d.h., es gibt invertierbare Matrix S
mit

A= 5748
Eine Aquivalenzrelation. Ist feiner als Zeilendiquivalenz (und Aquivalenz).
Motivation: Ahnliche Matrizen beschreiben die gleiche lineare Abbildung! (Satz 3.4.28)

Fragen:
e wie entscheiden wir, ob zwei Matrizen dhnlich sind?

e was ist moglichst einfache/schone/praktische Normalform?

Bemerkung 7.1.4. Falls A diagonalisierbar: die Diagonalmatrix als NF (Satz 4.3.19; ein-
deutig bis auf Reihenfolge der Eigenwerte). Aber nicht jede Matrix ist diagonalisierbar.

Bemerkung 7.1.5. Falls K = C: jede Matrix trigonalisierbar (Abschnitt 4.3.6). Allerdings:
wenig Kontrolle {iber die Eintrdge der Dreiecksmatrix oberhalb der Diagonalen.

7.2 Die Frobenius-Normalform

Miissen ein wenig ausholen ...
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7 Normalformen von Matrizen

7.2.1 Das Charakteristische Polynom Il

K[ X ]: der Polynomring, siche Abschnitt 4.2.
Wiederholung: das charakteristische Polynom yx 4(X) von A = (a;;); j<n € K™

X—-ay; —ap - —a,
| mar X —ag —aapy,
XA(X) o= : .
—Qp1 —QAp2 X - Qnn

aus Abschnitt 4.3.2 (Kapitel zur Berechnung von Eigenwerten). Das folgende Beispiel
zeigt, dass jedes Polynom das charakteristische Polynom einer Matrix ist.

Beispiel 7.2.1. Sei p(X) das Polynom X" + a1 X" '+ -+ a1 X + ag € K[ X], und sei

0 0 -ap
1 0 0 —Qq
o1 0 —a
Zy = R :
0 W 1 0 —ap-s
0 0 = 0 1 —ayg

Dann ist ¢ das charakteristische Polynom von Z,. Berechnen dazu

X 0 e 0 (&7))

-1 X 0 (071
xz,(X)=(0 -1 "~ 0 Qg

0 - 0 -1 X+a,

wie folgt: Addition des X-fachen der zweiten Zeile zur ersten und anschliefendes Ver-
tauschen der ersten beiden Zeilen liefert

-1 X 0 0 o
0 X2 o0 0 ap+ Xa;
0 -1 X 0 a
Xz, (X) = - " .
: -1 X ap_92
0 e 0 -1 X+a,

Addition des X2-fachen der dritten Zeile zur zweiten und anschlieBendes Vertauschen
der zweiten und dritten Zeile liefert

-1 X 0 0 g
0 -1 X 0 (6%
3 2
0 0O X 0 ag+ Xag + X «
xz,(X)= 0 o Ty x 0 ! ’l.
: . . Op—2
0 . 0 -1 X +a,
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Durch Wiederholung erhalten wir schlieflich

-1 X 0 0 o
0 -1 X 0 s
el :
XZW(X) =(-1) o e X Op—2
: -1 X+,
0 - 0 ap+ Xag+X2ag+ - +a, X" + X"
= p(X). A

Ubung 32. Geben sie einen alternativen Beweis von y 7,(X) = ¢(X) durch Entwicklung
nach der letzten Spalte (unter Verwendung von (4.3) und Ubung 19).

Die Matrix Z, aus Beispiel 7.2.1 wird in diesem Abschnitt und auch spéter im Ab-
schnitt 7.3.5 eine besondere Rolle spielen (siehe Beweis von Satz 7.2.12, Lemma 7.2.28,
Theorem 7.2.29, Theorem 7.2.31), und hat einen Namen verdient.

Definition 7.2.2 (Begleitmatrix). Fiir ¢ € K[ X ] heiit die Matrix Z,, aus Beispiel 7.2.1
auch Begleitmatriz von .

Beispiel 7.2.3. Die Begleitmatrix von ¢ = (o + X) ist (—a). A
Beispiel 7.2.4. Die Begleitmatrix von X° — 1 ist
0 01
1 0 0f. A
010
Das folgende Beispiel zeigt, dass das charakteristische Polynom x4 im allgemeinen
nicht verrit, ob A diagonalisierbar ist.

Beispiel 7.2.5.
10 11
A:= (O 1) und B := (0 1)
haben das gleiche charakteristische Polynom

xa(X) = xp(X) = (X - 1),

aber nur die erste Matrix ist diagonalisierbar (Ubung 26). A

7.2.2 Das Minimalpolynom
Ziel: Polynom fiir A, welches verréit, ob A diagonalisierbar.

Definition 7.2.6. Eine Teilmenge 7 eines kommutatives Ringes R heifit Ideal, wenn gilt

p,WEL=>p+peET
peEI,YER=p-YET
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Beispiel 7.2.7. Sei V ein K-Vektorraum. Wir kénnen Polynome ¢ € K[ X ] auswerten in
End(V') (siehe Beispiel 4.2.14). Sei f € End(V'). Betrachten

I; = {p e K[X]| &(Q = 0 }

(]
Auswerten von f  eEnd(V)

Dann ist Zy ein Ideal, und heifit das Ideal von f. A
Bemerkung 7.2.8. Fir jedes f € End(V) gilt Z; # {0}. Denn: fiir dim(V') = n ist

2
dim(End(V)) = n®. Daher sind 1, f, 2, f°,..., f" linear abhiingig. Es gibt also eine
nicht-triviale Linearkombination von 0, d.h., es gibt aq,...,a,2 € K, die nicht alle 0
sind, so dass

2
oz0+a1f+a2f2+ et a2 =0.
2
Dann ist a2 X" + -+ + a; X + ap ein Polynom in Zy \ {0}.
Der folgende Satz ist eine besondere Eigenschaft des Polynomrings K[ X ].

Satz 7.2.9. Jedes Ideal T € K[X] mit Z #+ {0} enthilt ein eindeutiges Polynom ¢ mit
folgenden FEigenschaften:

e ¢ ist normiert, d.h., o = X%+ v wobei d = grad(yp);
e Fir jedes 1 € I existiert 1y € K[X] so dass ¥ = ¢ - 1),.
¢ heift Minimalpolynom von Z, #m Falle von Z; auch Minimalpolynom py von f.

Beweis. Existenz: Sei d minimaler Grad eines Polynoms aus Z, und ¢ € Z vom Grad d
und normiert. Fiir beliebiges ¢ € 7 dividieren wir durch ¢ mit Rest (Abschnitt 4.2.7):

Y= wq + Y,
wobei 1, = 0 oder grad(%),) < d. Falls 9, # 0, dann wire

Yr=9%—¢- wq €z
N -
€1 €I eK[Xx]
—
€T

ein Widerspruch zur Minimalitét von d.

Findeutigkeit: Falls gp' ein anderes Polynom ist mit diesen Eigenschaften, dann teilen
sich p und ¢' gegenseitig, was impliziert dass grad(¢) = grad(¢'). Sei ¢ € K[X] mit
Y= gp' -1). Dann ist ¢ vom Grad 0. Da ¢ und go' normiert sind, gilt ¥ = 1 und ¢ = cp'. O

Bemerkung 7.2.10. Der Grad des Minimalpolynoms ist héchstens n?: dies folgt unmittel-
bar aus Bemerkung 7.2.8. Wir werden spéter sehen, dass Z¢ \ {0} sogar ein Polynom vom
Grad hochstens n enthélt (dies folgt aus dem Satz von Cayley-Hamilton, Satz 7.2.12).
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7.2 Die Frobenius-Normalform

Matrizen / Endomorphismen Ideale

Begleit-
matrix Z ¢

Minimal-
charakteristisches Polynom i

Polynom Xf

Polynome

Definition 7.2.11. Sei A € K”*" und f := fy4 die lineare Abbildung = — Az. Schreiben
[ IA fiir If

o i flir py.

Was ist der Zusammenhang zwischen Minimalpolynom von f und dem charakteris-
tischen Polynom x; von f?7 Zunichst beweisen wir den folgenden wichtigen Satz. Wir
erinnern uns: Polynome aus K[ X ] kénnen ausgewertet werden im Matrizenring K™™"
(Beispiel 4.2.13).

Satz 7.2.12 (Cayley-Hamilton). Sei A € K™*". Dann gilt

i (4)=0ek™"

Also gilt fiir f := fu
X7 €Ly und pig|x;y-
‘Jede Matrix erfiillt ihr eigenes charakteristisches Polynom.’

Bemerkung 7.2.13. Es folgt insbesondere, dass der Grad des Minimalpolynoms hochstens
n ist, da der Grad des charakteristischen Polynoms offensichtlich hochstens n ist. Das
verbessert die quadratische Schranke aus Bemerkung 7.2.8.

Bemerkung 7.2.14. Satz 7.2.12 hat die folgende Variante fiir lineare Abbildungen: sei V'
ein n-dimensionaler K-Vektorraum, und f € End(V'). Dann gilt

X V() =0

wobei 0: V — V : v = 0 die Nullabbildung.
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Was ist faul an folgender Rechnung?
22 7(A) = det(AE, — A) = det(0) = 0

Beweis von Satz 7.2.12. Zu zeigen: fir alle v € V gilt x(f)(v) = 0. Falls v = 0 ist die
Aussage klar, da x¢(f) eine lineare Abbildung ist.

Zwischenschritt: zeigen, dass es ein U < V' gibt mit
(a) veU
(b) U ist (f-) invariant, d.h., YVu € U: f(u) € U.
(¢) Fiir die Einschrinkung g := f|y:U — U (ergibt Sinn wegen (b)) gilt

O™V ()) ) = 0.

Seien dazu

Uy += v

ug := f(uy)

ug = f(uz) = f7(v)
i 1= f(u;) = f'(v)

Es gibt maximal n = dimV viele linear unabhéngige Vektoren, also gibt es ein m €
{1,...,n} so dass

U1, ..., Uy, linear unabhingig

Uy ey Uy, Uma1 linear abhingig
(hier verwenden wir, dass u; = v # 0). Das bedeutet, es gibt aq, ..., a,, € K mit
Upmsl = QUL + o0 + QU (7.2)

Sei U= (ug, ..., Up)-
Randbemerkung: falls m = n dann ist U = V und g = f und (c) impliziert die Aussage.

o U erfiillt (a). v =uy € U.

e U erfiillt (b). Sei u € U, u =Y.', Bu;. Dann

O Z Bif (w;) = Z Biuiv €U
i=1 i=1

weil up,41 € U wegen (7.2).
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e Bestimmung von x,4. Definieren B':= (uy,...,uy,) (Basis von U).
00 0 a
. 1 0 0 (%)
M= Mgr (¢)=]0 1 -+ 0 ag Merkregel! (3.14)
00 « 1 ap

denn: g = f|y, d.h.,

g(ug) = f(u;) = uipr fiir i < m,

und g(u,,) = Upme1 = QU + o+ + Q.
Die Matrix M' ist exakt die Begleitmatrix Z, des Polynoms
o= Xm—oszm_1 — e —an X — .

Also (siehe Beispiel 7.2.1)

Xo(X) = xar(X) = det(XE = M) = ¢.
e g erfiillt (c):
(xg(f))(v)
= ") = f"T (W) = —anf(0) —aw (73)
= Upp] — QU — *** — QiglUy — O U] (Def. von wuq, ..., Uni1)
=0 (7.2)

Wir zeigen nun x¢(f)(v) = 0.
Sei B = (U1,...,Up,Wmntt,---,W,) Erginzung von B' zu Basis von V (existiert
Austauschsatz von Steinitz, Satz 2.4.13). Dann hat Mg( f) die Form

M := Mg(f) = (]\g ]\;n)

wobei M' € K" = ng (g) wie eben. Denn fiir ¢ < m ist f(u;) € U und daher

m
f(uz) = ZCL]UJ +O-wm+1 + .- +0’U)n.
j=1
Also
Xf = XM = XM'* XM" (Ubung 24)
= Xg ' XM" = XM"* Xg (Polynommultiplikation ist kommutativ).

nach
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Einsetzen von f (Auswerten in End V):

X W) = (Gamxg) () @) (siche oben)
= (xa(f) o xg(f))(v)  (Satz 4.2.12)
= xa () xg(f)(w)) (Def. Multiplikation in End V)

=0
= xum(f)(0) (wegen (c))
=0 (denn xp(f) ist lineare Abbildung). [

Beispiel 7.2.15. Das Minimalpolynom von f = idy ist (X)) = (X —1), also verschieden
vom charakteristischen Polynom y; = (X —1)" fiir n = dim V. A

Beispiel 7.2.16. Eine Abbildung f € End(V') heifit Involution falls f2 = idy,. Den Fall
f € {idy,—1idy} haben wir bereits im vorigen Beispiel behandelt. Ansonsten ist das
Minimalpolynom von f

pp(X)=X>-1.

Fiir Eigenwerte A einer Involution gilt A* = 1: Nullstellen von g (X!
Behauptung: f ist diagonalisierbar, d.h., es gibt eine Basis von V' aus Eigenvektoren von
f (Lemma 4.3.15 und Definition 4.3.17). Es gilt sogar

V =Kern(f —idy) & Kern(f + idy).
Denn:

e Kern(f —idy ) und Kern(f + idy ) sind Eigenrdume der Eigenwerte 1 und —1.

e Kern(f —idy) n Kern(f + idy ) = {0}: falls v € Kern(f — idy) N Kern(f + idy/),
dann gilt —v = f(v) = v, also v = 0.

e Kern(f —idy ) + Kern(f +idy ) = V: jedes v € V kann geschrieben werden als
Vo), vt f()
“ 2 J “ 2 J

eKern(f+idy) €Kern(f-idy )

Denn: (f —idy)(v + f(v)) = f(v+ f(v)) —v = f(v) = f(v) +v = f(v) = 0, also

v+ f(v) € Kern(f —idy/).
Analog: v — f(v) € Kern(f + idy/). A

Das Minimalpolynom gibt uns das meiste von dem, was wir typischerweise vom cha-
rakteristischen Polynom bekommen.

Proposition 7.2.17. Sei V endlichdimensional und f € End(V'). Dann gelten:
e )\ € K ist genau dann Eigenwert von f, wenn piy(X) = 0.

e [ ist genau dann invertierbar wenn py(0) # 0.

176



7.2 Die Frobenius-Normalform

Beweis. Es sei ; ;
-1
pp =X +a41 X T+t X+

Teil 1: Sei A € K ein EW von f, und v € V' \ {0} ein zugehériger Eigenvektor,
f(v) = Av. Dann gilt wegen f'(v) = \'v
d - .
0= s () = (f + aq S+ +arf +agidy)(v)
=%+ ad_l)\d_lv + v+ agu = pp(A)v

also pr(A) = 0 da v # 0. Umgekehrt, falls pr(A) = 0, dann ist xy(\) = 0 (Lemma 4.2.16),
da ps|xs nach dem Satz von Cayley-Hamilton (Satz 7.2.12). Also ist A ein Eigenwert
von f (Satz 4.3.10).

Teil 2: Wenn 11£(0) = o # 0, dann kénnen wir p¢(f) = 0 umschreiben zu

L= fU + agoa 770 4 an)—ag

also gilt
-1 —1, a1 -2 .
foEa (g f Tt aridy)
Umgekehrt, wenn 4¢(0) = 0, dann ist 0 ein Eigenwert nach Teil 1. Also gibt es ein
v € V \ {0} mit f(v) =0, und f ist nicht injektiv, damit nicht invertierbar. O

Teil 1 von Proposition 7.2.17 in Kombination mit Satz 4.3.10 ergibt direkt die folgende
Aussage.

Korollar 7.2.18. FiirV endlichdimensional und f € End(V') haben x s und puy dieselben
Nullstellen.

In anderen Worten: die Polynome x; und py haben dieselben Faktoren der Gestalt
(X = \), fir A € K (Lemma 4.2.16). Diese Aussage werden wir spiter auf Faktoren
allgemeinerer Gestalt erweitern (Lemma 7.2.37).

Im Gegensatz zum charakteristischen Polynom kann die Berechnung des Minimalpoly-
noms von A aufwendig sein. Allerdings hilft der Satz von Cayley-Hamilton (Satz 7.2.12),
da man nicht mehr alle Polynome testen muss, sondern nur noch die Teiler von y 4. Wir
demonstrieren das in den Beweisen der folgenden Propositionen.

Proposition 7.2.19. Die Begleitmatriz eines normierten Polynoms ¢ € K[ X] hat das
Minimalpolynom ¢, d.h., pz, = .

Beweis. Sei ¢ = X" +04n_1Xn_1 +---+a1 X +p. Wir kennen bereits das charakteristische
Polynom von Z,, es gilt némlich xz, = ¢ (Beispiel 7.2.1). Da z,, normiert ist und Xz,
teilt (Satz 7.2.12), geniigt es zu zeigen, dass der Grad von z,, gleich n ist. Offenbar gilt
fiir

0O 0 « 0 -«
10 « 0 -
Z,=10 1 0 _'042
00 - 1 —a,
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dass

Zwel €9

Z(peg = €3 = Z@el

n—1
Zpn-1 =€y =2, e1.
Angenommen, es géibe in IZ(,; ein normiertes Polynom
m m—1
Y=X"+0n X +-+ 08X+ 5
vom Grad m < n, dann wire also

-1
0=y(Z,)e1 = Zyer+ Bn-1Zy €1+ -+ P1Z,e1 + Boer

H—J
EKTLXTL
= em+1 + Bm-16m + - + Prea + Poer.
und damit wiren die Basisvektoren eq,...,e,,+1 linear abhéingig, ein Widerspruch. [

Proposition 7.2.20. Das Minimalpolynom von

A1 0

P
A= 1
0 A

15t
pa(X) = (X = A)-(X = Ay) = xa(X).
Beweis. Es ist klar (siehe (4.3)), dass
Xa(X) = (X = A)-(X = A).

Da puy ein Teiler ist von x4, geniigt es zu zeigen, dass fiir jedes i € {1,...,n} das
Polynom ¢;(X) := xa(X)/(X = A;) nicht in Zy liegt. Fiir i = n berechnen wir

(A - A1E‘n)(14 - )\QEn)(A - )\n—lEn)

0 1 0 )\1—)\2 1 0 .
10 A=y 1 0 0 1 Apn—o=Ap—1 1 0
10 0 Ag—A; 0 0 A3—Xs 0 0 1
N N 0 0 An_An—l
0 0 1
o0 = Apo—A,_; 1 0
10 0 % 0 0 1
0 0 )\n_)"n—l
0 0 . 0 1
= . = 0 (5) ’ 0 * ¢O
: *
0 0 0 *
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Die Aussage folgt fiir alle 7 € {1,...,n} durch Umsortierung der Faktoren von ¢;(X).
O

Ubung 33. Sei A = (61 g) Zeigen Sie, dass pa = kgV(up, uc)-

Ubung 34. Sei A € K™". Zeigen Sie, dass pq = pugT.

Ubung 35. Was ist das Minimalpolynom der Nullabbildung 0? Was ist das Minimalpo-
lynom der identischen Abbildung?

Ubung 36. Sei f € End(V) so, dass g ein konstantes Polynom ist. Zeigen Sie, dass dann
V ={0}.

7.2.3 Minimalpolynom und Diagonalisierbarkeit

Wiederholung (Abschnitt 4.3.4): Wie entscheiden wir, ob eine Matrix A € K™ diago-
nalisierbar ist?

1. Berechne die Eigenwerte von A.
2. Berechne die zugehorigen Eigenrdume.
3. Entscheide, ob man eine Basis aus Eigenvektoren finden kann.

Insbesondere: wenn x4 = (X — A\)-+-(X — \,,) fiir paarweise verschiedene \,...,\,,
dann ist A diagonalisierbar (Bemerkung 4.3.20). Wenn wir hier das charakteristische
Polynom durch das Minimalpolynom ersetzen, erhalten wir sogar ein hinreichendes und
notwendiges Kriterium fiir Diagonalisierbarkeit!

Satz 7.2.21 (Minimalpolynom and Diagonalisierbarkeit). Sei A € K™ " und seien
AL, - A die paarweise verschiedenen Figenwerte von A. Dann sind dquivalent:

(1) A ist diagonalisierbar;
(2) (A= AEy)(A=AEy) =0;
(3) pa(X) = (X = A1) (X = Ag).

Beweis. (1) = (2). Definiere p(X) 1= (X =A1)---(X=\) € K[X]und ; = /(X =\;).
Es ist zu zeigen, dass ¢(A) = 0. Sei v € K" beliebig. Wir zeigen, dass ¢(A)v = 0. Da A
per Annahme diagonalisierbar ist, gibt es nach Satz 4.3.19 (3c) eine Basis von K" aus
Eigenvektoren von A. Also kann man v schreiben als Summe uy + +++ 4+ uy, (falls v = 0 ist
k = 0) wobei fiir alle i € {1,...,k} der Vektor u; ein Eigenvektor zum Eigenwert \; ist.

p(A)v = p(A)(uy + -+ + uy)
= o(A)ug + - + p(A)uy,
= o1 (X = A)(Aug + -+ + (X = M) (A)uy,
= o1(A = ME )uy + -+ + (A = M By )ug,
= p1(A)(Auy — Agug) + -+ + 0 (A)(Auy, — Apug) =0+ --- +0=0.
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(2) = (3): Nach (2) ist ¢ € T4 und damit py|p. Umgekehrt gilt ¢|ua: zeigen dazu,
dass jeder Faktor (X — );) von ¢ ein Teiler von u,4 ist. Dafiir geniigt es zu zeigen,
dass \; eine Nullstelle ist von p (Lemma 4.2.16). Satz 4.3.10 impliziert, dass \; eine
Nullstelle ist von x4, also auch eine von p4 nach Korollar 7.2.18. Da sowohl u4 also
auch ¢ normiert sind, muss also gelten 4 = .

(3) = (1): Beweis per Induktion nach n. Fiir n = 1 = k ist A sicher diagonalisierbar.
Sei nun n > 1, und sei die Aussage richtig fiir alle m < n.

Behauptung: fiir f := f4 und V := K" sind Kern(f — A;idy) und Bild(f — A;idy)
komplementér, d.h. (Definition 2.4.17)

Kern(f — A idy ) @ Bild(f — Ay idy) = V.
Wegen der Dimensionsformel dim Bild + dim Kern = n (3.3.6) geniigt es zu zeigen, dass
Kern(f — Ay idy) + Bild(f = A\ idy) = V.

Dividieren (X — Ag)--<(X — M) mit Rest durch (X — A1), und erhalten ¢,¢ € K[ X],
grad(y) < 1, so dass

(X = A2) (X = M) = (X = A1) + 9.

Da grad(vy) < 1, ist ¢ ein Korperelement; weiterhin ist ¢ # 0, da (X — ;) fiir 7 €
{2,...,k} kein Teiler von (X — );) ist. Setzen f ein, stellen um, und erhalten

(f = Agidy )+ (f = Amidy) = (f = Aridy)e(f) = ¢idy . (7.4)

Sei nun v € V' beliebig. Dann folgt aus (7.4), dass

Yidv(0) = (f = daidy)-+(f = A id)(0) = (f = M i)l £)0).

=1 =lvg

Also ¢ - v = vy + vy. Wir haben (f — Ajidy)(vy) = 0, da pug(f) = 0 nach Satz 7.2.12.
Also v; € Kern(f — Ay idy). Ausserdem haben wir

vy = (f = Aidy)e(f)(v) € Bild(f — Apidy).

Ly = v, folgt die Behauptung.

P

Da dim(Kern(f — Ay idy)) > 0, gilt dim(Bild(f — \;id)) < n. Wenden Induktionsvor-
aussetzung an auf U := Bild(f — A1id) < V. Da f(U) < U, ist die Einschrinkung fis
von f auf U aus End(U). Ferner ist xy, ein Teiler von py. Also zerfillt x s, in paarweise
verschiedene Linearfaktoren, und fi; ist diagonalisierbar nach Induktionsvoraussetzung.

Sei vy, ..., v, eine Basis von U aus Eigenwerten von fr;, und sei v,,,41, - - . , ¥, eine Basis
von Kern(f—\;id) = Eigy (f). DaUnKern(f—A;id) = {0}, ist vy, ..., U, Vst - - -, Up
eine Basis von V' aus Eigenvektoren von f. Die Aussage folgt nun aus dem ersten Dia-
gonalisierbarkeitskriterium (Satz 4.3.19). O

Weil ivl +

Und was, wenn f nicht diagonalisierbar ist?
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7.2.4 Zyklische Unterrdume

Sei V' ein endlichdimensionaler K-Vektorraum. Die folgende Definition extrahiert wich-
tige Ideen aus dem Beweis des Satzes von Cayley-Hamilton (Satz 7.2.12).

Definition 7.2.22. Sei f € End(V). Dann heifit S < V invariant unter f (oder f-
invariant) falls

f(sS)cs.
Bemerkung 7.2.23. f|s € End(S).
Bemerkung 7.2.24. Fiir alle v € V gilt

(v) ist f-invariant < (v ist Eigenvektor von f oder v = 0)
= f(v) €(v).
Bemerkung 7.2.25. Die Eigenrdume von f (Definition 4.3.3) sind invariant.
Beispiel 7.2.26. Wir betrachten wieder das folgende System (Beispiel 4.3.27).

FlieBband

_i

1
obtau

—
o
=

Beschreibung durch Matrix:

1/3 1/2 0 0 0\ duBere Neustadt
1/3 1/2 1/2 0 0 Mensa
1/3 0 1/2 0 0 Tre Math

0 0 0 0 1 Flieband

0 0 0O 1 0 Lobtau

Dann ist ((0.3,0.4,0.3,0,0)) invariant. Weiterhin ist ((0,0,0,0.5,0.5)) invariant. A

Ziel dieses Abschnittes: Dekomposition
V=5S&:-&5

fir invariante S; < V, so dass die Matrixdarstellung von f; := f|g, durch ps (X) ein-
deutig bestimmt.

Definition 7.2.27. Fiir v € S\ {0}, definiere
2
Zy = (v, f(v), f7(v),...)

der (von v erzeugte) zyklische Unterraum von V.
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Abbildung 7.2: Illustration der Matrix in (7.5). Zur Erkliarung der Bedeutung der Illus-
trationen siehe Beispiel 4.3.27.

Da dim(V') = n existiert k € {1,...,n} mit
) e o, f), 12, ()

Lemma 7.2.28. Sei v € V \ {0}, und sei k € N kleinstmdglich, so dass fk(v) €
(v,f(v),fZ, . fk_l(v)). Dann ist Z,, invariant unter f, und

k-1
B=(v,f(v),....f" (v))
ist Basis fiir Z,. Ausserdem gilt (siehe Bild 7.2)

00 - 0 «a
].0"'00[1

B
Mp(flz,)=|0 1 - 0 ag |=2Z, (7.5)
0 0 1 oy

wobei
k k-1
[rw) =agv+arf(v) + - +apaf  (v)
und  o(X) = xF - ozk_le_l — =1 X — .

Beweis. Die Vektoren v, f(v),..., fk_l(v) sind linear unabhéngig, da k kleinstmoglich
gewihlt. Zu zeigen ist, dass

(B) = Z, = {0, f(v), f(v),..).
Sei m € N beliebig. Zeigen per Induktion nach m, dass f"'(v) € (B). Falls m < k, dann
v""(v) € B. Angenommen fm_l(v) = Bov + Brf(v) + -+ + ﬁk._lfk_l(v). Dann ist
() = Bof (v) + Brf*(v) + - + B £ (v) € (B) .
€(B)

Sei nun u € Z, beliebig. Dann gilt

u=7 v 0 f)++ o f(v) € (B)
&(B) €(B) €(B)
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Die Matrixdarstellung von f|, beziiglich B ist

() JG@) = ) D)
0 0 0 ap
1 0 0 (e5]
=(v f@) - FT) )01 e 0 ay
6 () “.’ i ak.—l
(Merkregel, (3.14)! Spalten sind Koordinaten der Bilder der Einheitsvektoren.) O

Satz 7.2.29 (Zerlegung in zyklische Unterrdume). Sei V' n-dimensional und f € End(V').
Dann gibt es vy,...,v; €V so dass

V=02,0 &2,

und V' hat eine Basis B so dass

Zsm 0 0
B 0 Z
Mp (f) = w2
0 ZS%

fiir normierte o1, ..., o € K[X].

Beweis. Per Induktion nach n. Sei v € V' so, dass m = dim Z,, groftmoglich. Falls m =n
ist nichts zu zeigen. Betrachte g: V — K™ definiert durch

h(u)
gty o= | MO
h(F™ ™ (u))
wobei h:V — K Linearform mit h(v) = -+ = h(fm_2(v)) = 0 und h(fm_l(v)) = 1.

(v,... . ™ H(v) sind linear unabhingig.)

Behauptung 1: g|; : Z, — K™ ist Isomorphismus. Die Darstellungsmatrix dieser Ab-

bildung beziiglich der Basis B = (v, f(v), ..., f™ '(v)) von Z, und der Standardbasis
von K™ ist

0O -+ 0 1
A= 1 %

0 .-

1 =% *

also offensichtlich invertierbar.
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Behauptung 2: Kern(g) ist f-invariant. Sei u € Kern(g), also

h(u)
=] MU g
h(f™ (u))
Dann ist

h(f(u)) 0

h(f*(u)) 0

g(f(u)) = : = :

h(F™ " (u)) 0

h(f™ (w)) h(f™ (u))

Da f"(u) € (u, f(u),.. .,fm_l(u)) fiir alle u ist h(f""(u)) = 0. Also f(u) € Kern(g)
wie behauptet.

Behauptung 3: V = Z, ® Kern(g). Es gilt Z, n Kern(f) = {0} da g|z, injektiv.
Ausserdem

dim Z, + dim Kern(g) = dim Bild(g) + dim Kern(g) = dim(V")

also V = Z, + Kern(g).

Wenden nun die Induktionsvoraussetzung an auf die Einschrinkung von f auf Kern(g),
und der Satz folgt aus Lemma 7.2.28. O

Beispiel 7.2.30. Die Darstellung von f aus Satz 7.2.29 ist nicht eindeutig: die Matrix

01
A:: (1 0>:ZX2—1

ist bereits von der Form in Satz 7.2.29. Auf der anderen Seite gilt fiir die Basis B =

(e9,e1) von R?, dass
B (1 0\ _ [Zx 0
MB(fA) - (0 _1) - ( 0 ZX+1) . A

7.2.5 Die Frobenius-Normalform

Die Frobenius-Normalform (bisweilen auch rationale Normalform) liefert eine Klassifi-
kation von quadratischen Matrizen bis auf Ahnlichkeit.

Satz 7.2.31 (Frobenius-Normalform). Sei V' n-dimensional und f € End(V'). Dann hat
V eine Basis B so dass

Z,, 0 - 0
B 0 Z
Mg (f) = w2
0 Zsﬂk
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7.2 Die Frobenius-Normalform

mit der Eigenschaft dass p;|pi—1 fiir alle i € {2,...,k}; die Polynome ¢1,..., ¢ sind
hierbei eindeutig, und @1 = u(f).

Die Polynome 1, . . ., ¢, heiflen auch Ahnlichkeitsinvarianten (denn &hnliche Matrizen
haben die gleichen Ahnlichkeitsinvarianten), und die Untermatrizen Z,,,...,Z,, die
Kistchen der Frobenius-Normalform.

Beweis. Wie im Beweis der Zyklendekomposition (Satz 7.2.29) wihlen wir v; € V so,
dass m = dim Z,, gr(jﬁtlrnéglich.1 Mit dieser Wahl gilt

F™ (1) = agur + arf(vr) + o+ + ot 7 (01) (7.6)
fir ag, ..., a1 € K. Sei
ng(X) = Xm - Ozm_le_l - "’—Och — Q)

Behauptung 1: ¢1(f) = 0, d.h., o1(f)(u) = 0 fiir alle v € V. Fiir u = v; stimmt das
wegen (7.6). Fiir u = f(vy) haben wir
P 1)) = et 7 (F(01)) = o = e f(F(0)) = o f(vr)
= F(™ (1) = @t [ (01) = o = ar f(r) = agur)
= f(0) =0

Analog fiir u = f2(vl), U= fm_l(vl), und die Aussage folgt fiir u € Z,,, .
Aus der Zyklendekomposition (Satz 7.2.29) folgt, dass V = Z, & W. Sei nun u € W.
Da m grofStmoglich, gilt

FM 1+ ) = nea [ (01 ) + o (01 + )

-1 -1
= Y1 (1) o+ (u) ot [T (w) + o+ ().
€70, ) ew

=f™(v1) =f™ ()
Also gilt insbesondere
Yt ST 1) # e+ yo(01) = (1) = et S (01) + e+ agvr)

und da vy, f(v1),..., f™ ' (v;) linear unabhingig, gilt o; = v, fiir i € {0,...,m — 1}.
Also

e1(f)(w) = o1(f)(v1) + o1 (f)(u)
= 1(f) (v +u) (Linearitéit von ¢1(f))
= f"(vg +u) - am_lfm_l(vl +u) —ag(vy +u) (Definition von ¢1)
= *ym_lfm_l(vl +u)+ -+ (v +u) (Definition von ~g, . .., Vm-1)
— et f 7 (0 + 1) — () + )
=0 (da a; = ).

'Es ist nicht unmittelbar klar, wie dieser Schritt algorithmisch durchgefiihrt werden kann. Ein effizientes
Verfahren zur Berechnung der Frobenius-Normalform wird in Abschnitt 7.3.6 vorgestellt.

185
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Behauptung 2: ¢; = py (und ist damit eindeutig). Wir wissen bereits, dass ¢1(f) = 0,
also fif|@r. Auf der anderen Seite sind vy, f(v1),. .., ™ (v;) linear unabhingig, also
grad(ps) = m. Da ¢ und gy normiert gilt ¢ = py.

Wihlen nun vy € W und ¢o(X) auf die gleiche Art wie v; und 1(X).
Behauptung 3: ¢, teilt ;. Da grad ¢y < grad ¢ kénnen wir schreiben

Y1 = quOQ + 1,

fiir 1y, 1, € K[X] mit grad, <1 := grad¢s (Polynomdivision).

0=v1(f)(v2) (Nach Behauptung 1.)
= g (f)(p2(f)(v2)) + ¥r(f)(v2)
=0
= ¢r(f)(v2)
= Bova + Brf(va) + -+ + B ' (v) fiir By, ..., B-1 € K.
Da vg, f(v3), ... ,fl_l(vg) linear unabhéngig, gilt By = 81 = +-- = Bj_1 = 0.

Also v, = 0 und vy teilt 7.
Behauptung 4: ¢, ist eindeutig. Obwohl Z, das nicht ist!

Es sei U’1 so, dass
ZyoW =vV=2,0W.

Wir wissen bereits, dass es Basen B, B'von V gibt, so dass

! Z
by =% §) wango = (% %)

Es gentigt daher zu zeigen, dass g = pa'-
Sei 1) € K[X]. Es gibt invertierbare Matrix 7' € K™*" mit

-1 ZS01 0 — ZS01 0
T (o A)T_(O Al

Also

5 o) (6 )

=w(T‘1<Zgl Z)T) -7 (‘[’(%ﬁ) w(OA)>T.

Insbesondere haben die Matrizen ¥(A) und 1(A') den gleichen Rang. Es folgt aus dem

zweiten Teil von Proposition 7.2.17, dass ¢(A) = 0 < ¢(A4") = 0. Da ¢ beliebig gewihlt
war, haben A und A’ also das gleiche Minimalpolynom. O
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7.2 Die Frobenius-Normalform

Bemerkung 7.2.32. Falls K € K und 4 € K™ ¢ (K')™", so spielt es fiir die Frobenius-
Normalform keine Rolle, ob wir beziiglich K oder beziiglich K' rechnen. Wenn wir bei-
spielsweise starten mit einer Matrix mit rationalen Eintrigen, dann sind die Koeffizienten
von p1(X), ..., ¢x(X) und damit der Frobenius-Normalform (die wie bereits erwihnt
auch rationale Normalform genannt wird) ebenfalls rational.

Beispiel 7.2.33. Das Minimalpolynom beschreibt eine lineare Abbildung nicht eindeutig.
Betrachten dazu die Matrizen

000 0 000 0
1000 1000
A=l 00 o™ B=1y g 0 0
000 0 0010

Es ist x4(X) = X* = v5(X) und pa(X) = X = up(X) aber A und B haben nicht
die gleiche Frobenius-Normalform: B hat die Ahnlichkeitsinvarianten ¢; = @y = X 2,
wahrend p; = X2, pe = X, pg = X die fiir A sind. A
Ubung 37. Geben Sie eine Diagonalmatrix an, die nicht in Frobenius-Normalform ist.

Ubung 38. Bestimmen Sie alle K"*"-Matrizen, bei denen die Frobenius-Normalform aus
n Késtchen besteht.

Ubung 39. Zeigen Sie, dass die Frobenius Normalform einer Diagonalmatrix D mit paar-
weise verschiedenen Diagonaleintréigen gleich der Begleitmatrix von yx 4 ist.

10 0
Ubung 40. Was ist die Frobenius-Normalform von [0 0 =1 |?
01 -1

Ubung 41. Ist die Basis B aus der Frobenius-Normalform ebenfalls eindeutig, oder sind
nur die Ahnlichkeitsinvarianten eindeutig?

Ubung 42. Ist jede Matrix A € K™" #hnlich zu einer Matrix, die hochstens 2n — 1
Eintrédge hat, die ungleich 0 sind? Beweisen Sie oder finden Sie ein Gegenbeispiel.

Korollar 7.2.34. Fir M € K" sind die folgenden Aussagen dquivalent.

1. Die Frobenius-Normalform von M hat nur ein Kdstchen, d.h., ist von der Gestalt
M=z

Bart

2. UM = XM-

Beweis. 1 = 2: Sei ¢ := . Dann gilt

XM =Xz, (Voraussetzung)
= (Proposition 7.2.1)
= K-

2 = 1: Wenn die Frobenius-Normalform neben ji5; noch eine weitere Ahnlichkeitsinvariante
1) besitzt, denn ist 1) ein Teiler von xs. Da grad(vy) > 0 folgt, dass uy # - O
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Bemerkung 7.2.35. Das Produkt ¢ -+, der Ahnlichkeitsinvarianten von f € End(V') ist
gleich dem charakteristischen Polynom x s: dies folgt direkt aus der Frobenius-Normalform
und der Beobachtung dass x(Z,) = ¢ (Beispiel 7.2.1).

Ubung 43. Beweisen Sie den Satz von Cayley-Hamilton (Satz 7.2.12) aus der Frobenius-
Normalform.

Zwei Polynome heiflen teilerfremd, wenn sie nur konstante gemeinsame Teiler haben.
Beispiel 7.2.36. Seien ¢, € K[ X ] teilerfremd, und

Z., 0
. ®»
A'_<0 Zw)'

Dann hat A die Frobenius-Normalform Z_,,. Da x4 = @1, geniigt es nach Korollar 7.2.34
zu zeigen, dass pus = xa. Nach dem Satz von Cayley Hamilton ist pu4 ein Teiler von
x4 = p¥. Umgekehrt wird g4 von sowohl ¢ als auch 1 geteilt. Denn

_ _ (1ra(Zy,) 0
O—NA(A)—( AOSD NA(Zw))

bedeutet, dass 0 = p14(Z,) und 0 = p4(Zy). Also wird p14 von piz_ = ¢ und von pz, =
geteilt. Da ¢ und ¥ teilerfremd sind, wird gy von i) geteilt. A

Ein Polynom ¢ € K[X] heiit irreduzibel falls es nicht geschrieben werden kann als
Produkt von Polynomen kleineren Grades.

Lemma 7.2.37. Sei V endlichdimensional und f € End(V). Dann haben x¢ und iy
dieselben irreduziblen Faktoren.

Beweis. Nach dem Satz von Cayley-Hamilton (Satz 7.2.12) gilt us|xs. Sei also 9 ein
irreduzibler Faktor von ;. Nach Bemerkung 7.2.35 ist xy = o1+, wobei oy, ..., ¢;
die Ahnlichkeitsinvarianten von f in der Frobenius-Normalform. Da 1 irreduzibel ist,
gibt es ein i € N so dass v|¢;. In der Frobenius-Normalform gilt ;|1 und ¢ = py.
Also 1|y O

Wir haben bereits die Existenz und Eindeutigkeit der Frobenius-Normalform bewiesen
(Satz 7.2.31), aber bisher noch keinen Algorithmus kennengelernt, um diese Normalform
zu berechnen. Tatséchlich gibt es sogar einen Algorithmus, der dies in polynomieller Zeit
leistet, wie wir in Abschnitt 7.3.5 sehen werden.

7.2.6 Die Jordan-Weierstrass Normalform

Genau wie die Frobenius-Normalform klassizifiziert die Jordan- Weierstrass Normalfoer
Matrizen bis auf Ahnlichkeit. Sie teilt viele Vorziige von Diagonalmatrizen, und tatséchlich
ist die Jordan-Normalform einer diagonalisierbaren Matrix eine Diagonalmatrix (im Ge-
gesatz zur Frobenius-Normalform, siehe Beispiel 7.2.30). Allerdings existiert die Jordan-
Weierstrass Normalform nur fiir trigonalisierbare Matrizen, also wenn das charakteris-
tische Polynom in Linearfaktoren zerfillt (siehe Abschnitt 4.3.6). Laut Gerd Fischer [5]

2Héiuﬁg auch nur jordansche Normalform genannt, aber etwa zeitgleich von Weierstrass entdeckt.
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handelt es sich hier um das ‘wohl schwierigste Theorem der elementaren linearen Alge-
bra’. Zunéchst betrachten wir allerdings eine Vorstufe, die sogenannte Jordan-Chevalley-
Zerlegung. Dafiir benotigen wir den folgenden wichtigen Begriff.

Definition 7.2.38. Man nennt f € End(V") nilpotent falls fk = 0 fiir ein k£ € N. Analog
dazu heiBt A € K" nilpotent falls AF = 0 fiir ein k € N.

Intuitiv kann man nilpotente Matrizen als solche betrachten, die “besonders schlimm
nicht diagonalisierbar” sind.

Satz 7.2.39. Sei V ein n-dimensionaler K-Vektorraum und f € End(V'). Dann sind
dquivalent:

1. f ist nilpotent.

2. pg = x¢ fiir ein d € {1,...,n}.

3. Xxf = X"

4. Es gibt eine Basis B von V, so dass

0 *

ME(f)=| ~ | (7.7)
0 0

Beweis. Falls f nilpotent ist, dann gibt es ein & € N mit X b e Ty (das Ideal von f,
definiert in Beispiel 7.2.7). Also ist ps = X'mitl<ds<n (sieche Bemerkung 7.2.13).
Die Implikation 2. = 3. folgt aus dem Lemma, dass py und x; dieselben irreduziblen
Faktoren haben (Lemma 7.2.37), denn nach Annahme ist X ist der einzige irreduzible
Faktor von gy, und xs ist vom Grad n. Die Implikation 3. = 4. folgt aus unserem
Trigonalisierungskriterium (Satz 4.3.24): wenn x5 = X " dann ist f trigonalisierbar. Da
alle Eigenwerte 0 sind, hat die Dreiecksform auf der Diagonalen nur Eintrage 0, und ist
daher von der gewiinschten Gestalt (7.7). Die Implikation 4. = 1. folgt aus Ubung 44. [

Bemerkung 7.2.40. Eine Matrix in der Gestalt von (7.7) zeichnet sich dadurch aus, dass
der zugehorige gerichtete Graph (wie etwa in Beispiel 4.3.27) keine gerichteten Kreise
hat.

Ubung 44. Zeigen Sie, dass eine Matrix der Gestalt (7.7) nilpotent ist.

Satz 7.2.41 (Jordan-Chevalley-Zerlegung). Sei A € K"™" so, dass x 4 in Linearfaktoren
zerfallt. Dann ist A = D + N, wobei

e D diagonalisierbar,

e N nilpotent, und
e DN =ND;
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hierbei sind D und N eindeutig.

Dieser Satz wird bisweilen auch Hauptraumzerlegung genannt, nach einem wichtigen
Begriff, der fiir den Beweis des Satzes benétigt wird: der Begriff eines Hauptraumes
(Im Englischen: generalised eigenspace. Vergleiche mit der Definition eines Eigenraumes
(Definition 4.3.3).

Definition 7.2.42. Sei V ein n-dimensionaler Vektorraum und f € End(V'). Sei A ein
Eigenwert von f und m € N. Dann heifit

Hauy ,,,(f) := Kern ((f - )\idv)m)
der m-te Hauptraum vom [ zum Figenwert A.

Beispiel 7.2.43. Falls V' ein n-dimensionaler Vektorraum und f € End(V') nilpotent,
dann gilt Hauy ,(f) = V. A

Beweis des Satzes von der Hauptraumzerleqgung, Satz 7.2.41. Es sei
Xa(X) = (X =)™ (X =A™

fiir Aq,..., A, paarweise verschieden. (Falls my = -+ = m,. = 1, so ist A diagonalisierbar
(Bemerkung 4.3.20), und die Aussage stimmt mit N = 0.)

Sei f:= f4 und V; := Hauy, ,, (f). Dann gilt (und daher rithrt der Name ‘Hauptraum-
zerlegung’):

V=Vie oV, (7.8)
Um das zu sehen, schreiben wir

V = Kern (Xf(f)) (Satz 7.2.12)
= Kern((f -\ idv)ml DD (f - A\ ldv)mT)

Es geniigt also zu zeigen, dass falls ¢, € K[X] teilerfremd sind, sich der Kern der
linearen Abbildung (pv)(f) wie folgt schreiben 148t:

Kern ((¢¢)(f)) = Kern (¢(f)) ® Kern (4(f)) (7.9)
Denn ¢ := (X — A\;)"" ist teilerfremd zu v := Hz‘e{27...,k}(X - \;)™, also

Kern(p(f)) ® Kern(y(f)),

=1

und die Aussage folgt per vollstandiger Induktion.
Wir zeigen zunéchst, dass

U := Kern (p(f)) nKern (¢(f)) = {0}.
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Der Untervektorraum U ist f-invariant, denn falls v € U, dann gilt ¢(f)(v) = 0, und
damit
e(f)(f(v)) = fe(f)(v) =0,
%—/

0

also f(v) € Kern (¢(f)). Analog zeigt man, dass f(U) € Kern (¢(f)). Also f(U) € U.
Dann gilt o(f|y) = 0 und ¥(f|y) = 0; das Minimalpolynom von f|;; teilt also sowohl
¢ als auch 1), ist also nach Annahme konstant. Das ist nur dann méglich, wenn U = {0}
(Ubung 36).

Es sei W := Kern ((¢)(f)). Offenbar gilt Kern (o(f)) € W und Kern (1(f)) € W.
Um Aussage (7.9) zu zeigen, geniigt es also zu zeigen, dass

dimKern ((p¥)(f)) = dimKern (¢(f)) + dim Kern (1(f)). (7.10)

J

=W
Analog zur f-Invarianz von U zeigt man die f-Invarianz von W. Es gilt

Bild(4(flw)) € Kern(o(f|w)). (7.11)
Denn falls v € Bild(¢)(f|w)), so gibt es v € W mit ¥ (f|w(v)) = u. Dav € W, gilt

e(flw)(uw) = v (flw)(v) = 0,

also u € Kern(o(f|w)).
Weiterhin gilt

Kern(e(flw)) = Kern(e(f)) (7.12)

Trivialerweise ist Kern(o(f|)) € Kern(¢(f)). Umgekehrt, falls v € Kern(p(f)), dann
ist u € W, also in Kern(o(f|w))-

dim W = dim Kern(o(f|w)) + dim Bild(¢(f|w)) (Dimensionsformel, Satz 3.3.6)
< dimKern(o(f|w)) + dimKern(o(f|w)) (7.11)
= dim Kern(p(f)) + dim Kern(#(f)) (7.12).
Es gilt sogar Gleichheit, da Kern(¢(f)) € W und Kern(¢(f)) € W, und Kern(p(f)) N
Kern(p(f)) = {0}. Damit haben wir (7.10), und in Folge (7.9) und (7.8) bewiesen.
Wir definieren nun fp, fy € End(V') durch

(fp)lv, :=Aiidy,
(), =(f = Niid) |y,

fiir alle ¢ € {1,...,7}. Sei B eine Basis von V zusammengesetzt aus den Basen fiir
Vi,...,V,: definieren D := M5 (fp) und N := M5 (fy). Offensichtlich ist f = fp + fn
und A = D + N. Ausserdem ist D in Diagonalform, und daher DN = ND.
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448 o8

Abbildung 7.3: Illustration eines Jordankéstchens der Gréfle k zum Eigenwert A € K
aus Beispiel 7.2.44. Zur Erklédrung der Bedeutung der Illustrationen siehe
Beispiel 4.3.27.

Wir zeigen nun, dass N nilpotent ist. Sei v € V; wir zeigen, dass N"(v) = 0. Das ist
trivial fiir v = 0. Ansonsten liegt v nach (7.8) in V; = Kern ((f — A;idy)"™) fiir genau ein
i€ {l,...,r}. Esgiltalso0 = (f=\;idy)""(v) = (fn)"(v), und damit auch N"(v) = 0.
Eindeutigkeit: Siche Peter Petersen, Linear Algebra [9], Ubung 14 in Abschnitt 2.8, oder
Gerd Fischer, Lineare Algebra [5], ‘Zusatz’ in Abschnitt 4.6.3 (Normalformen werden in
Albrecht Beutelspacher, Lineare Algebra [1] nicht behandelt). O

Beispiel 7.2.44. Betrachte

A0 - 0 0 1 0 Al 0
0 A 0 0 - 0 A
Jn()‘) A E -.. + E ." 1 - . 1
0 A 0 0 0 A
:vD =}V
Siehe Abbildung 7.3. Dann ist p15, (1)(X) = (X = A)" = x5, (1)(X) (Proposition 7.2.20).
Also ist Z(x_yy» dhnlich zu J,(X). A

Die Matrix J,,(\) aus Beispiel 7.2.44 heifit Jordankdistchen der Groie n zum Eigenwert
A € K. Diese Matrizen sind die Bausteine fiir die Jordan-Normalform. Spezialfall n = 1:

J () =) e K™

Satz 7.2.45 (Jordan-Weierstrass Normalform). Sei A € K™ und das charakteristische
Polynom zerfalle in Linearfaktoren:

Xa(X) = (A = X)™ (N = )™

Al, .-y Ao Bigenwerte von A.
my,...,m,: algebraische Vielfachheiten.
ni,...,n.: geometrische Vielfachheiten.
Dann existiert eine zu A dhnliche Matriz J der Gestalt
Js1,1)(A1) 0
Js(l,nl)()‘l)
Js(r,l)()‘r)
0 Js(nnr)(Ar)
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Zu jedem Eigenwert N;, i € {1,...,r}, gibt es n; Jordankdstchen Js; 1)(Ni), - - -, Js(in) (M),
deren Linge sich zu m; aufsummiert, d.h., Zje{17m7ni} s(i,7) = m;. Die Gesamtanzahl
der Jordankdstchen ist demnach t := Zie{l,...,r} n;.

Die Matrix J heifit auch jordansche Normalform und ist bis auf die Reihenfolge
der Jordanké&stchen eindeutig. Diese kann eindeutig gemacht werden durch Festlegung
s(i, 1) = s(4,2) = -+- = s(i,n;) fiir jedes i € {1,...,7} und A\; < Ay < -+ < A, (im Falle
von K = R, ansonsten fixiere beliebig Ordnung auf K).

Bemerkung 7.2.46. Aus der jordanschen Normalform lassen sich sofort ablesen:

e die Eigenwerte: die Hauptdiagonalelemente.

die algebraische Vielfachheit von EW A;:
die Anzahl m; der A\; auf der Hauptdiagonale.

die geometrische Vielfachheit von EW A;:
die Anzahl n; der Jordankéstchen zum EW ;.

das charakteristische Polynom in faktorisierter Form, ndmlich [ [, .. X =)™

e das Minimalpolynom in faktorisierter Form, namlich I_L-E{l r}(X - )\i)s(i’l).
~ Klassifikation durch charakteristische Daten: brauchen blos die Werte
AMyoos Ay, .oy, s(1,1),...,8(r,n,)

Beweis von Satz 7.2.45. Sei f := f4 € End(V'). Wie im Beweis von Satz 7.2.41 schreiben
wir f = fp + fy fiir fp diagonalisierbar und fy nilpotent. Dann zerlegen wir V in
Eigenrdume fiir fp:

V =Kern(fp — A\1id) @ --- ® Kern(fp — A id)
Die Eigenrdume sind auch fy-invariant: sei v so, dass (fp — A;id)(v) = 0. Dann ist

(fp = Aid)(fyv) = (fpfv — Arid fy)(v)
= fn (fp = A1id)(v) = 0.

=0
Nach Satz 7.2.31 existiert eine Basis B, so dass
Zyy 0 o0
B 0 Z
Mp(fy) =] . o2
0 Z

Pk
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die Frobenius Normform von fy ist. Die Ahnlichkeitsinvarianten 1, . .., ¢}, sind alle von
der Gestalt X k, fiir ein k < n, da fy = 0, also sehen die Blécke der FNF so aus:

0 0 0
1 0

:o e 0
0 1 0

Sei B' die geordnete Basis, die man aus B durch Umdrehen der Reihenfolge erhélt. Dann

ist J := M5 (fa) = ng (fn) + MZE (fp) die jordansche Normalform von A. Es bleibt
zu zeigen, dass die Anzahl der Jordankéstchen zum Eigenwert \; genau die geometrische
Vielfachheit von J; ist, also n; = dim(Kern(A — \;E,,)). Zum einen sind zwei Spalten
von J linear unabhéngig, wenn sie in unterschiedlichen Jordanké&stchen liegen. Zum
anderen gilt fiir die jeweils erste Spalte s jedes Jordankéstchens zum Eigenwert A;, dass
(A= \E,)s =0, und damit folgt die Behauptung. O

7.2.7 Beispiele

Beispiele zur Berechnung der Frobenius-Normalform, und, falls moglich, der jordanschen
Normalform (letzteres kann abhéingen vom Koérper, in dem wir rechnen).

Beispiel 7.2.47.
1 01
A=(0 1 0
1 0 1

Fiir Frobenius-Normalform: suchen v; € V' so, dass dim Z,, gro8tmoglich.

1 1 2
Wihle vy := 0 |, erhalten Av; = |0 | und A2v1 =10 |=2Av;. Dann ist dim Z,,, = 2.
0 1 2

2
Geht noch besser: Wahle vy :=| 1 [, erhalten
0

2 4
Av; =|1| und A2U1 =1
2 4

allesamt linear unabhéngig, und damit ist Z,,, = V von gréfitmaéglicher Dimension. Haben
APuy = (8,1,8) = (12,3,12) — (4,2,4) = 34%0, =2+ Av, +0- vy
Mit Basis B = (vy, Avy, A%v;) ist

Mg (fa) = Z,,
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fiir p1(X) = X? = 3X?% +2X = pua(X). Die Frobenius-Normalform von A ist also

5 0 0 O
ME(f)=[1 0 2.
01 3

Zur Berechnung der jordanschen Normalform. Wir bestimmen zunéchst das charakteris-
tische Polynom.

YA(X) =det(A- XE3) =(1-X) - (1-X)=-X"+3X"-2X
= —X(X*-3X+2)=-X(X-1)(X +2)

Wir haben also drei verschiedene Eigenwerte bei dim V' = 3, und damit eine Basis aus
Eigenvektoren. Also ist A diagonalisierbar (siehe Bemerkung 4.3.20). Sei S eine Matrix,
deren Spalten aus Eigenvektoren von A zu den verschiedenen Eigenwerten besteht, also

etwa
1 1 -1
S=10 0 0
-1 0 3
Dann gilt
1 0 1 1 1 -1 0 1 2 1 1 =1\/0 0 O
0 1 0 0 0 |=]0 Of={0 O O0{/O0O 1 O
1 0 1/\-1 0 3 01 2 -1 0 3/\0 0 -2
-A =S =S -D
also S"'AS = D und damit ist A dhnlich zu einer Diagonalmatrix. A
Beispiel 7.2.48. Die Matrix
2100 00
021000
A= 002000
1000 200
000O0O0T1
00 0O0O0O0

ist nicht diagonalisierbar, aber bereits in Jordan-Normalform.
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Zwei Figenwerte:

O—1—®

e )\, = 2, algebraische Vielfachheit 4, geometrische Vielfachheit 2.

e )\, = (, algebraische Vielfachheit 2, geometrische Vielfachheit 1.

Das charakteristisches Polynom ist x4(X) = (2 - X)*X?.

Beispiel 7.2.49.

20 0 0 0 0
1 0 1 1 1 0
11 -1 3 1 0 -1 _exe
A=1g 0 0 2 o o |EK
1 -4 2 2 4 0
0 2 -1 -1 -1 2

1. Eigenwerte bestimmen. Wir berechnen die Determinante fiir das charakteristische

Polynom durch Entwicklung
4ten Spalte.

det(XEG - A)

(X -2)?

(x -2)°

o= (X

196

nach der ersten und 4ten Reihe, und dann nach der

0 0 0 0 0

X -1 -1 -1 0

1 X-3 -1 0 1

0 0 X-2 0 0

4 -2 -2 X-4 0

-2 1 1 1 X-2

X -1 -1 0
1 X-3 0 1
4 -2 X-4 0

-2 1 1 X-2

X -1 -1 X -1 -1
1 X-3 0 |+(X-2°4 -2 X-4
4 -2 X-4 -2 1 1

~2)°(X - 3) = ya(X)



7.2 Die Frobenius-Normalform

Eigenwerte:

AL =2 algebraische Vielfachheit m; =5
Ay =3 algebraische Vielfachheit mq =1

Jordansche Normalform existiert also.

2. Basen der Eigenrdume bestimmen. Idee: Basisvektoren bilden “Startpunkte der
Jordankéstchen”

e Fiir A\; = 2: Eig,, (A) = Kern(4 - M\ E,):

00 0 0 0 0
1 =2 1 1 1 0
1 -1 1 1 0 -1
Avi=A-ME. =10 o o o0 0 o0
1 -4 2 2 2 0
0 2 -1 -1 -1 0

rg(Ay) = 3 (Zwei Nullzeilen und zg = 29 — z5 zeigt rg(As) < 3, und 2y, 29, 23
sind linear unabhéngig) Also:

dimEigy,, = dimKern A; =n —1g(A4;)=6-3=3

Finden drei linear unabhiéingige Eigenvektoren aus Los(Aq,0), z.B. mit dem
gaufischen Algorithmus:

0 0 0
1 1 0
2 1 -1
up = 0 y U += 0 , U3 += 1
0 1 0
1 0 0

B = (uy,up,u3) ist Basis fiir Eigy (A).
e Fiir Ay = 3: dimEig,, < my =1 (my = 1 ist algebraische Vielfachheit),

AQ =A- )\2En
Losung von Asu = 0:

0

-1

-1

Uy 0

-2

1

Also By, = {u4}.
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3. Bestimmung der Jordankistchen.
Allgemeine Idee: Wenn B eine Basis mit J = Mg( fa) in jordanscher NF,
dann muss fiir die zu einem Jordanblock von J zu Eigenwert A gehorigen Spal-

ten v(l), o gelten

Av = xpM
Av® =M 4 2

Avt = 7 4 )

Wt =y = (0,1,2,0,0,1) 7.

@ 0 etwa ut? = (2,1,1,0,0,0) .

6 _ 2
1 .

( ), : Losung von Alu

Kelne Losung fiir u( X in Ajuy

(2)

(Erste Zeile von A; Null, erste Komponente von u;"" nicht Null.)

Jordankéstchen K, := ugl),u?)).
( ).
o —u2—(0,1,1,0,1,0)
( ), : Losung von Alué ) = ué ), etwa u2 =(1,0,0,0,0 O)
Keme Losung fiir ug ) in Aqus (2) uéQ).
(erste Komponente von uém nicht Null, erste Zeile von A; Null.)
Jordankéstchen K, = gl), éQ))
o ulV i=uy = (0,0,-1,1,0,0)",

und keine Losung fiir ué ) ; 1n Ajus @) _ él).

Jordankéstchen K, = (u 3 )

e Jordankistchen K, = (uil)) = ((0,-1,-1,0, -2, 1)T).

(1) (2)
1

4. Zusammensetzen: B = (u; ', u
die Spalten fiir

,ug ) uéz),uél), 511) ) ist Basis von R® und liefert

0201 0 0
1110 0 -1
.2 110 -1 -1
o000 1 0
0010 0 =2
1000 0 1
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7.2 Die Frobenius-Normalform

Die Jordansche Normalform von C' ist
2 1
0 2
J=S8"AS =

o N
N =

Algorithmus zur Berechnung der Jordanschen Normalform:

Gegeben: A € K™".

1. Bestimme alle Eigenwerte A1,..., )\, € K von A und deren algebraische Vielfach-
heiten my, ..., m, (faktorisiere das charakteristische Polynom). Falls Z;l m; < n,
gebe aus ‘A besitzt keine JNF’.

2. Fir i € {1,...,r}, sei A; := A - \E,. Berechne Basis B; = (uy,...,u,,) des
Eigenraums

Eig,, (A) = Kern(A4;).
Grofle n; der Basis ist die Anzahl der Jordankéstchen zum Eigenwert ;.

3. Bestimmung der Jordankistchen: Fiir jeden Basisvektor u € B;, suchen nach
1) .

grofftmoglichem s, so dass es Vektoren u(l), ey u'® gibt mit '’ := v und
Au = )\iu(l) ie., (A- /\iEn)u(l) =0
Au® =1 4 A0® Le, (A= NE)u? = ot
Aut™ =157 4 3 ie., (A= NE)ul = o7, (7.13)

Siehe Abbildung 7.4.

4. Aneinanderreihung aller Vektoren u" aus Schritt 3. ergibt Basis B von K".
Sei S die Matrix mit Vektoren von B als Spalten. Dann gilt:

J:= ST AS = MB(fa)

ist die jordansche Normalform von A (J gewinnt man direkt aus den charakteris-
tischen Daten, die wir zuvor allesamt berechnet haben).

Wichtig: Probe machen. Miissen wir dazu die Inverse von S berechnen? Nein!
Machen die Probe mit
SJ = SA.
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A
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Abbildung 7.4: Tllustration zu Schritt 3 im Algorithmus zur Berechnung der jordanschen
Normalform.

Bemerkung 7.2.50. Es gibt zwei kritische Stellen in diesem Algorithmus. Der erste ist
Schritt 1, denn wir haben noch kein effizientes Verfahren kennengelernt, um das charak-
teristische Polynom in faktorisierter Form zu berechnen. Wir werden spéter auf dieses
Problem zuriickkommen (siehe 7.3.22). Die zweite Stelle ist die Suche nach u(l), e ,u(s)
in Schritt 3., so dass s groffitmoglich. Mit dem gauflschen Algorithmus konnen wir heraus-
finden, ob es in (7.13) eine Losung gibt fiir u'®). Das liefert aber noch keine Gewissheit,
dass s groftmoglich ist (denn dafiir konnte es notwendig sein, bereits u2, . ,u(s_l) an-
ders zu wihlen). Auch dieses Problem werden wir in Abschnitt 7.3.5 16sen.

Bemerkung 7.2.51. Effiziente Algorithmen zur Berechnung der jordanschen Normalform
und deren exakte Komplexitdt sind Gegenstand aktueller Forschung; es sei verwiesen
auf [4].

Ubung 45. Sei J € K™ in jordanscher Normalform. Zeigen Sie: die Anzahl der Jor-
dankéistchen zum Eigenwert 0 ist gleich n — rg(A).

Ubung 46. Beschreiben Sie, wie man mit Hilfe der jordanschen Normalform die Frobenius-
Normalform berechnen kann.”

Ubung 47. Sei V ein beliebiger, nicht notwendigerweise endlichdimensionaler Vektor-
raum. Dann heiit f € End(V') diagonalisierbar, wenn V eine Basis aus Eigenvektoren
von f besitzt (wie im endlichdimensionalen Fall, siehe Satz 4.3.19). Finden Sie ein Bei-
spiel fiir ein f € End(V') mit V' unendlichdimensional, welches sich nicht schreiben 1483t
als fy + fp mit fy nilpotent und fp diagonalisierbar.4 Tipp: Ubung 28.

*Dank an die Teilnehmer:innen der VL im SS 2024 fiir die Idee zu dieser Ubung.
4Inspirielrt durch die Teilnehmer:innen der VL im SS 2024.
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7.3 Die Hermite-Normalform

7.3 Die Hermite-Normalform

Fiir A € Q™" kennen wir bereits einen effizienten Algorithmus, um zu entscheiden,
ob das Gleichungssystem Ax = b eine Losung in Q" besitzt (Abschnitt 4.1.8). In diesem
Abschnitt wollen wir einen effizienten Algorithmus fiir Losbarkeit in Z" vorstellen. Wenn
man alle Zeilen mit dem kleinsten gemeinsamen Vielfachen der Nenner aller Koeffizienten
multipliziert, erhdlt man ein System mit der gleichen Losungsmenge, aber ganzzahligen
Koeffizienten. Wir werden daher annehmen, dass A € Z™". Solche Systeme Az = b
werden auch lineare diophantische Gleichungssysteme genannt. Ganzzahlige Losungen
sind in sehr vielen Anwendungen relevant, z.B. in der diskreten Optimierung.

Um ganzzahlige Losungen zu finden, behandeln wir eine neue Normalform, die Hermite-
Normalform” (Abschnitt 7.3.2). Unser Beweis fiir die Existenz der Hermite-Normalform
liefert noch kein effizientes Verfahren, um diese auch wirklich auszurechnen; mit einem
cleveren Trick aber gelingt uns das in Abschnitt 7.3.3. Die Anwendung auf lineare dio-
phantische Gleichungssysteme folgt dann in Abschnitt 7.3.4. In diesen drei Abschnitten
folgen wir im wesentlichen Kapitel 4 und 5 des Lehrbuchs von Schrijver [10].

Viele Aussagen in diesem Abschnitt lassen sich fiir alle, oder doch zumindest fiir
gewisse Ringe verallgemeinern (z.B. fiir den Polynomring Q[ X ], und allgemeiner fiir
Hauptidealringe; Gegenstand der Vorlesung AL10). Ahnliche Ideen wie bei der Hermite-
Normalform helfen uns dann, auf iiberraschende Art und Weise (wie ich finde) auch
die Frobenius-Normalform (und damit auch die Jordan-Normalform, siche Beweis von
Satz 7.2.45) effizient zu berechnen! Dazu bendtigen wir eine weitere Normalform, ndmlich
die Smith-Normalform (Abschnitt 7.3.5), die wir ebenfalls fiir Matrizen aus dem Poly-
nomring Q[ X ] berechnen kénnen. Die Berechnung der Frobenius-Normalform mit Hilfe
der Smith-Normalform ist dann Gegenstand von Abschnitt 7.3.6.

7.3.1 Unimodulare Spaltenaquivalenz

In diesem Abschnitt betrachten wir eine neue Aquivalenzrelation auf Matrizen. Wir
bendétigen dafiir den folgenden Begriff.

Definition 7.3.1. Es sei R ein Ring mit Eins. Dann heifit A € R™™" unimodular falls
det(A) eine Einheit in R ist (Definition 4.2.2). Zwei Matrizen A, B € R™" heissen
unimodular spaltendquivalent falls A = BU fiir eine unimodulare Matrix U € R™".

Unimodulare Spalteniiquivalenz ist tatséichlich eine Aquivalenzrelation. Unimodulare
Zeilendquivalenz ist analog definiert.

Beispiel 7.3.2. Eine Permutationsmatriz (auch Vertauschungsmatriz) ist eine quadra-
tische Matrix, in der in jeder Zeile und in jeder Spalte genau ein Eintrag eins ist und
alle anderen Eintriige null sind. Jede Permutationsmatrix P € K™" entspricht genau
einer Permutation m € Sym({1,2,...,n}): die zu 7 gehorige Permutationsmatrix hat
die Eintrége p;; = 1 falls 7(i) = j und p;; = 0 sonst. Alle Permutationsmatrizen sind

®Benannt nach Charles Hermite, geboren am 24.12.1822 in Dieuze, Lothringen; gestorben am 14.1.1901
in Paris.
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unimodular (Proposition 4.1.3). Das gilt insbesondere fiir die Elementarmatrix fiir das
Vertauschen zweier Spalten (Abschnitt 3.2.3). A

Beispiel 7.3.3. Die Elementarmatrix fiir die Multiplikation einer Spalte mit einem Skalar
r € R (Abschnitt 3.2.3) ist genau dann unimodular, wenn r eine Einheit ist (Propositi-

on 4.1.3). A
Beispiel 7.3.4. Die Elementarmatrix fiir die Addition einer Spalte mit einem Vielfachen
einer anderen Spalte (Abschnitt 3.2.3) ist unimodular (Proposition 4.1.3). A

Im Folgenden sei R = Z.
Bemerkung 7.3.5. Eine Matrix A € Z™*" ist unimodular, falls det A € {-1,1}.

Definition 7.3.6. Vertauschen von Spalten, Multiplikation einer Spalte mit —1, und
Addition eines ganzzahligen Vielfachen einer Spalte zu einer anderen heiflen elementare
unimodulare Spaltentransformationen. Entsprechend heiflen Permutationsmatrizen, Ele-
mentarmatrizen fiir die Multiplikation mit —1, und Elementarmatrizen fiir die Addition
eines ganzzahligen Vielfachen einer Spalte zu einer anderen (nicht derselben!) unimodu-
lare Elementarmatrizen.

Wir werden eine Normalform fiir Matrizen A € Z™" bis auf unimodulare Spal-

tendquivalenz in Abschnitt 7.3.2 kennenlernen, die Hermite-Normalform.

7.3.2 Die Hermite-Normalform

Die Hermite-Normalform ist eine Normalform fiir Matrizen bis auf unimodulare Spal-
tendquivalenz (Abschnitt 7.1.3). Analog erhélt man auch eine Normalform fiir unimodu-
lare Zeilendquivalenz. Die Formulierung der Normalform fiir Spalteniquivalenz (anstatt
Zeilendquivalenz) wird praktisch sein bei unserer Anwendung fiir Losbarkeit linearer
diophantischer Gleichungssysteme (Abschnitt 7.3.4).

Definition 7.3.7. Eine Matrix M € Z"™" vom Rang m ist in Hermite-Normalform
falls sie von der Gestalt [B 0] ist, wobei B € N™™ eine in Q™™ invertierbare Matrix
in unterer Dreiecksform ist, in der jeder Diagonaleintrag strikt grofer ist als alle anderen
Eintrdage in der gleichen Zeile.

Satz 7.3.8. Jede Matriz A € Z™" vom Rang m kann durch unimodulare Spaltenope-
rationen in eine Matrixz in Hermite-Normalform dberfiihrt werden.

Beweis. Algorithmus, erster Teil. Angenommen, A ist von der Gestalt

(g g) (7.14)

wobei B in unterer Dreiecksform und positiven Eintrigen auf der Diagonalen. (Anfénglich
ist B € ZOXO.) Es sei (dy1,...,d1 ) die erste Zeile von D.

1. Falls d; ; < 0, multipliziere Spalte 7 mit —1. Wir kénnen also ohne Beschrinkung
der Allgemeinheit annehmen, dass d; 1,...,d; ) € N.
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2. Wende Spaltenoperationen an, so dass dy 1 + +++ +d; ;, € N so klein wie moglich ist.

3. Vertausche Spalten, so dass dj 1 = +++ = dy .

Beobachtung 1. dy; > 0 da sonst dy; = -+ = dy = 0, und damit rg(A4) < m, im
Widerspruch zu unseren Annahmen.
Beobachtung 2. d; 5 = -+- = dy ;, = 0. Ansonsten, falls d;5 > 0: subtrahiere 2-te Spalte

in D von der 1-ten, im Widerspruch zur Minimalitdt von dy j + +-+ + dy ;, € N.
Beobachtung 3. Die resultierende Matrix hat die Gestalt in (7.14) fiir eine Matrix B
in Dreiecksform, die um eine Zeile und eine Spalte grofler ist als zuvor.

Wenn wir dieses Verfahren endlich oft wiederholen, erhalten wir schlie3lich eine Matrix
der Gestalt (B|0) wobei B Dreiecksmatrix mit positiver Diagonale.

Algorithmus, zweiter Teil. Wir schreiben die Matrix B = (b; j)ie(1,....m},je{1,...,m}
weiter um, damit alle Eintrige nicht-negativ und jeder Diagonaleintrag b; ; strikt gréfier
ist als alle anderen Eintrége b; ; in der gleichen Zeile. Wir gehen Zeile fiir Zeile in aufstei-
gender Ordnung vor. Fiir Zeile ¢ addieren wir zur Spalte j < ¢ ein ganzzahliges Vielfaches
der Spalte ¢, so dass 0 < b; ; < b; ;. Dabei &ndern sich fiir i < i die Eintrage b; ; nicht,
da by ; = 0. Die resultierende Matrix ist in Hermite-Normalform. ]

Es folgt also, dass jede rationale Matrix A € Z™"" vom Rang m unimodular &hnlich ist
zu einer Matrix H in Hermite-Normalform. Wir nennen H dann die Hermite-Normalform
von A. Ahnlich wie im Beweis von Satz 7.1.2 kann man zeigen, dass die Hermite-
Normalform von A eindeutig ist.

Proposition 7.3.9. Fir A € Z"" sind die folgenden Aussagen dquivalent.
1. A ist unimodular.

2. A lisst sich schreiben als Produkt unimodularer Elementarmatrizen.

3. A hat eine inverse Matriz in 2" .
Beweis. 2. = 3. Jede unimodulare Elementarmatrix hat ein Inverses. Das Inverse von
A ergibt sich aus den Inversen der unimodularen Elementarmatrizen (3.3).
3. = 1. Wenn A ein Inverses B € Z"" hat, dann ist det(A) eine Einheit in Z, denn
(mit Satz 4.1.15)
1 =det(E,) = det(AB) = det(A) det(B).

Um die Implikation 1. = 2. zu zeigen, transformieren wir A mit unimodularen Zei-
lenumformungen in Stufenform, wie bei der Berechnung der Hermite-Normalform in
Satz 7.3.8. Die Stufenform muss sogar schon in Dreiecksform sein, denn sonst wére
det(A) = 0 und damit A nicht unimodular. Alle Diagonaleintrige der Dreiecksmatrix
miissen aus {—1, 1} sein, denn sonst wire det(A) keine Einheit in Z (siehe (4.3)). Wir
konnen also durch weitere unimodulare Zeilenumformungen alle Diagonaleintriage zu 1
machen. Durch unimodulare Spaltentransformationen lassen sich dann alle Eintréige aus-
serhalb der Diagonalen eliminieren, wir erhalten also die Matrix F,. Also 143t sich A
schreiben als Produkt unimodularer Elementarmatrizen. O
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Beispiel 7.3.10. Wir betrachten die Matrix
1 2
!
Durch unimodulare Spaltenumformungen erhalten wir im ersten Teil des Algorithmus:
1 0 1 -2
(s %)=l 7
10 1 0)\/1 O 1 -2\/1 0 1 2
(3 2) - (3 —2)(0 —1) ‘A(o 1 )(0 —1) ‘A(o —1)

Im zweiten Teil des Algorithmus wird dies weiter vereinfacht:

10 1 0\/1 O 1 2 1 0 -1 2
bo)=( o)l 9)=al 2)(4 9)=a3 2)
: . . 10 s .

Die Hermite-Normalform von A ist also H = (1 2) und fiir die Matrix U = (
gilt det(U) = =1 und AU = H. A
Beispiel 7.3.11. Wir betrachten die (invertierbare) Matrix
3 4
A=|2 1

4

O O =

-1

Durch unimodulare Spaltenumformungen erhalten wir:

143\ 10 3\ 1 0 0 Lo
AZTB s g 2R s g 9| BZIRTH A5 19 —13 =(0 D).
M \o -1 4 (3) 0 -1 4 (3) 0 -1 4

Wir wiederholen das Verfahren nun mit der kleineren Matrix D.

(—19 —13> —817™81,782™S2 (19 13) §1—82™S71 (6 13) S2—81™S2 (6 1 )
D = BRENCNLC R ST, S2ma i,
-1 4 (2) 1 -4 (1) 5 —4 (3)

§1 €S9 ( 1 6) 82—681 ~S9 ( 1 0 )
_— _—
1) -9 5 (3) -9 -46

Also lésst sich A mit unimodularen Spaltenumformungen in folgende Gestalt bringen:

1 0 0
5 1 0
0 -9 46
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Im zweiten Teil des Algorithmus wird die Matrix weiter wie folgt reduziert.

1 0 0 1 0 O
§1—583~S7

5 1 0|——>=| 0 1 0

0 —9 46 (3) 45 -9 46
) A 1 0 0
ammml g 1 0 |20 10 A
(3) 45 35 46 © 1 35 46

7.3.3 Ein polynomieller Algorithmus

Es ldsst sich leicht zeigen, dass das Verfahren im Beweis von Satz 7.3.8 nach polyno-
miell vielen Rechenschritten terminiert.” Es kann aber das Problem auftreten, dass die
Eintrdge der Matrizen wihrend der Berechnung sehr groff werden; so grof, dass man
sie nicht mehr mit polynomiell vielen Bits abspeichern kann (Beispiel 4.1.26 1d8t sich
entsprechend anpassen). Um das Problem zu beheben, verwenden wir einen Trick (der
laut Schrijver [10] von Domich 1983 in seiner Masterarbeit gefunden wurde), und zeigen
damit den folgenden Satz, der 1979 von Kannan und Bachem [7] gezeigt wurde (fiir
Verbesserungen siehe Chou und Collins [3]).

mXn

Satz 7.3.12. Zu einer gegebenen Matriz A € Z
mieller Rechenzeit eine unimodulare Matriz U € Z
Hermite-Normalform berechnen, so dass AU = H.

vom Rang m ldsst sich in polyno-
nxn mXn

und eine Matrizx H € 7 mn

Beweis. Es sei C eine beliebige quadratische Untermatrix von A vom Rang m; es ist
klar, dass sich so ein C' und s := |det(C)| in polynomieller Zeit berechnen lisst (z.B.
mit dem gauflschen Algorithmus). Wir betrachten nun die Matrix

A :=[A]|sE,]

Behauptung. Die zusétzlichen Spalten sind ganzahlige Linearkombinationen der Spal-
ten von C, und damit auch der Spalten von A.
_c* .

Die Inverse von C berechnet sich nach Satz 4.1.33 durch ¢~ ' = ot
ist, ist auch C* ganzzahlig. Also ist det(C)C™" ganzzahlig. Es gilt

da C ganzzahlig

C(det(C)C™) = det(C)E,, € {sE,,, —sE,,},

und die Behauptung ist bewiesen.

Die Behauptung impliziert, dass sich die Hermite-Normalform von A aus der fiir A
ergibt durch Entfernen von iiberschiissigen Spalten, die nur 0 enthalten. Wir folgen nun
dem Algorithmus aus dem Beweis von Satz 7.3.8 mit der folgenden Modifikation. Falls
beim Algorithmus eine Spalte erzeugt wird, deren i-ter Eintrag den Wert s iiberschreitet,

®Der interessanteste Teil der Laufzeitanalyse ist Schritt 2 im ersten Teil. Die Analyse hier ist &hnlich zur
Analyse des euklidischen Algorithmus, der in der Fortsetzungsvorlesung AL10 ausfiihrlich behandelt
wird.
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dann ziehen wir die i-te Spalte der Matrix sE,, ab (wir rechnen bei den Koeffizienten
also ‘modulo s’).

Es ist klar, dass das Produkt der Elementarmatrizen fiir die unimodularen Zeilenum-
formungen die gesuchte unimodulare Matrix U liefert, und dass auch die Eintriage dieser
Matrix nicht zu grofl werden. O

7.3.4 Ganzzahlige Lésungen fiir lineare Gleichungssysteme

Der folgende Satz hat viele Anwendungen in der theoretischen Informatik.

Satz 7.3.13. Es gibt einen Algorithmus mit polynomieller Laufzeit, der fiir gegebenes
AeQ™" undbe Q" entscheidet, ob Az = b eine ganzzahlige Lisung besitzt.

Beweis. Zunichst stellen wir fest, dass wir ohne Beschriankung der Allgemeinheit anneh-
men konnen, dass A und b ganzzahlig ist, da die Multiplikation jeder Zeile der erweiterten
Koeffizientenmatrix (A|b) mit dem kleinsten gemeinsamen Vielfachen aller Koeffizien-
ten der Zeile die Anzahl der Bits der Zahlen nur linear vergofiert, und den Loésungsraum
nicht verdndert.

Als n#chstes entscheiden wir mit dem gauflschen Algorithmus aus Abschnitt 3.3.4, ob
Ax = b eine rationale Losung besitzt. Falls nein, dann sicherlich auch keine ganzzahlige.
Falls ja, wihlen wir eine maximale Menge linear unabhéngiger Zeilen von A aus (das
geht ebenfalls mit Hilfe des gaufischen Algorithmus). Das resultierende Untersystem hat
die gleiche Losungsmenge, und wir arbeiten daher im folgenden mit diesem Untersystem
anstatt mit A. Wir nehmen also an, dass A vom Rang m ist.

Als n#chstes berechnen wir mit dem Verfahren von Satz 7.3.12 in polynomieller Zeit
eine unimodulare Matrix U € Z™" so dass AU = [B 0], fir B € N vom Rang
m, die Hermite-Normalform von A ist. Dann hat B eine Inverse B'e Q™™ die sich
effizient berechnen lisst (sieche Abschnitt 3.2.7).

Behauptung: Az = b hat genau dann ganzzahlige Losung, wenn B ganzzahlig ist.

Falls B~ 'b ganzzahlig ist, dann ist s := U(B_lb,O,...,O)T
Losung von Az = b, denn

€ Z" eine ganzzahlige

As = AU(B™'b,0,...,0)" =[B0}(B™'b,0,...,0)" =b.

Umgekehrt, sei s ganzzahlig ist mit As = b. Nach Proposition 7.3.9 hat U eine Inverse
U e Z™". Dann ist U 's eine ganzzahlige Lésung von [BO]x =1b,da

[B O]U_ls = As =b.

Insbesondere ist dann B~ (b) ganzzahlig. O

Beispiel 7.3.14. Wir betrachten das lineare diophantische Gleichungssystem Az = b fiir
1 2 1
A—<3 4> und b_(2)'
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7.3 Die Hermite-Normalform

Wir wir in Beispiel 7.3.10 gesehen haben, gilt AU = H fiir

n=(ie) o=( )

Da
-1 1 0\ (1 1
o (5 4 G0
2 2
%—J
Beispiel 4.1.34
nicht ganzzahlig ist, hat das System
r+2y=1
3z +4y =2

keine ganzzahlige Losung (aber die fraktionale Losung = = 0, y = %)

Fiir b = (_1

) dagegen ist

ganzzahlig, und tatséchlich ist

-1 -1 2\(-1 1
o= (1 4)(0)= ()
eine ganzzahlige Losung fiir

r+2y=-1
3z +4y = —1. A

Ubung 48. Charakterisieren Sie die Teilmenge von QS, die aus allen Tripeln (a1, as,b)
besteht, so dass ganze Zahlen x1,xy € Z existieren mit a;x; + asx, = b.

Ubung 49. Zeigen Sie, dass sich lineare Gleichungssysteme iiber dem Ring Z, (siche
Abschnitt 4.2.1) fiir beliebiges n € {2,3,4,...} in polynomieller Zeit 16sen lassen (die
Aufgabe ist besonders interessant, wenn n nicht prim ist!).

Hinweis. Ein moglicher Losungsansatz besteht darin, die Aufgabe auf Losbarkeit in
7 zu reduzieren. Fiir a € 7Z schreiben wir [a] fiir die Restklasse von a modulo n. Es

seien ag, ay,...,a, € {0,1,...,n—1}. Zeigen Sie zunichst, dass es genau dann Elemente
T1y...,Tp € Ly gibt mit [aq]xy + -+ + [a, ]2, = [ag], wenn es Elemente vy, 21, ..., 2, € Z
gibt mit

a1z1 + - tapz, =ag+y+--+y.
—
n mal

Ubung 50. Finden Sie einen Algorithmus mit polynomieller Laufzeit, der fiir gegebe-
ne lineare Gleichungssysteme Az = b und Cz = d mit 4,B € Q™" und b,d € Q™
entscheidet, ob jede ganzzahlige Losung von Az = b auch eine Losung von Cz = d ist.

207



7 Normalformen von Matrizen

7.3.5 Die Smith-Normalform

In diesem Kapitel betrachten wir eine Normalform von Matrizen bis auf unimodula-
re Aquivalenz (Definition 7.3.1), nidmlich die Smith-Normalform (Satz 7.3.20). Viele
der Ideen zur Berechnung der Hermite-Normalform sind auch fiir die Berechnung der
Smith-Normalform niitzlich. Die Smith-Normalform kann dazu verwendet werden, um
die Frobenius-Normalform zu berechnen, und hat weitere Anwendungen in der Algebra.
Unsere Anwendungen der Smith-Normalform verwenden Matrizen iiber dem Polynom-
ring K[ X ], und wir beschrinken uns ab jetzt auf diesen Fall. Hier sind die Einheiten
gerade die Elemente von K \ {0}.

Bemerkung 7.3.15. Die Smith-Normalform existiert auch fiir den Ring Z, und allge-
mein fiir Dedekind Ringe, also insbesondere also fiir Hauptidealringe und damit auch
fiir euklidische Ringe; diese Begriffe werden allerdings erst in der Vorlesung Algebra —
grundlegende Konzepte (AL10) behandelt.

Die unimodularen Elementarmatrizen sind hier die Permutationsmatrizen, die Ele-
mentarmatrizen fiir die Multiplikation einer Spalte mit einer Einheit, und die Element-
armatrizen fiir die Addition von rs zu s’, wobei s und s' verschiedene Spalten und r € R
ist.

Lemma 7.3.16. Sei A € K[X]"". Dann sind folgende Aussagen dquivalent.
1. A ist unimodular.

2. A kann geschrieben werden als Produkt von unimodularen Elementarmatrizen (De-
finition 7.3.6).

3. A hat ein Inverses in K[X 1", d.h., es gibt ein B € K[X]"", so dass

AB=BA=E,.

Beweis. Der Beweis von 2. = 3. und 3. = 1. geht genau wie der Beweis von 7.3.9.
Auch die Implikation 1. = 2. geht wie dort: wir transformieren A mit unimodularen
Zeilenumformungen in Stufenform, analog zum Algorithmus bei der Berechnung der
Hermite-Normalform in Satz 7.3.8. Die Stufenform muss sogar schon in Dreiecksform
sein, denn sonst wire det(A) = 0 und damit A nicht unimodular. Alle Diagonaleintrige
der Dreiecksmatrix miissen aus K \ {0} sein, denn sonst wire det(A) keine Einheit in
K[X] (siehe (4.3)). Wir kénnen also durch weitere unimodulare Zeilenumformungen alle
Diagonaleintrége zu 1 machen. Durch unimodulare Spaltentransformationen lassen sich
dann alle Eintrdge ausserhalb der Diagonalen eliminieren, wir erhalten also die Matrix
FE,,; also 1483t sich A schreiben als Produkt unimodularer Elementarmatrizen. O

Definition 7.3.17. Zwei Matrizen 4, B € R™™" heiBen unimodular dquivalent falls es
unimodulare Matrizen P € R™™™ und Q € R™" gibt, so dass PAQ = B.
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7.3 Die Hermite-Normalform

Um auch gleich die Eindeutigkeit der Smith-Normalform nachzuweisen, benotigen wir

einige weitere, recht natiirliche Definitionen. Falls o1, ..., ¢, € K[X], so existiert ein
eindeutiges normiertes Polynom von maximalem Grad, welches alle o1, ..., o} teilt, wel-
ches wir den grifsten gemeinsamen Teiler ggT(p1,. .., QL) von @1,. .., @) nennen.

Definition 7.3.18. Sei A € K[X]™" und k € {1,...,min(m, n)}. Ein k-Minor von A
ist die Determinante einer k X k Untermatrix von A. Der grofite gemeinsame Teiler aller
k-Minoren von A wird Determinantenteiler von A genannt, und mit di(A) bezeichnet;
zudem definieren wir dy(A) := 1. Der Determinantenrang von A ist die gréfite natiirliche
Zahl k, so dass A einen k-Minor ungleich 0 besitzt, und wird mit r(A) bezeichnet.

Lemma 7.3.19. Es seien A,B € K[X]™" unimodular dquivalent. Dann gilt r(A) =
r(B) und fiir alle i € {1,...,r} gilt d;(A) = d;(B).

Beweis. Seien P,Q € K[X]™" unimodular so dass PAQ = B. Die Zeilen von PA sind
Linearkombinationen der Zeilen von A. Also ist fiir & < min(m,n) jeder k-Minor von
PA eine Linearkombination der k-Minoren von A. Analog ist jede Spalte von (PA)Q
eine Linearkombination der Spalten von PA, also ist jeder k-Minor von (PA)Q eine
Linearkombination der k-Minoren von PA, und folglich der k-Minoren von A. Daher

e sind fiir £ > r(A) alle k-Minoren von B gleich 0, also r(B) < r(A),
e und fiir k < r(A) gilt d,.(A)|d,(B).

Mit dem gleichen Argument angewandt auf P~ BQ A zeigt man r(A) < r(B) und
di(B)|dr(A). Da der ggT normiert ist, folgt dy(A) = d(B). O

Satz 7.3.20 (Smith-Normalform). Jede Matriz A € K[ X" ist unimodular dquivalent
zu einer eindeutigen Matriz der Gestalt

v 0
¥Pm
0
0 ’ 0
wobei p1,. .., pm € K[X] normiert, so dass p;|¢; fir alle i,j € {1,...,m} miti < j.

Die Zahl m und die Polynome @1, ..., o, € K[ X] berechnen sich wie folgt:

e m =r(A) ist der Determinantenrang von A, und
d;(A .o
o p; = ﬁ(j‘) firie{l,...,m}.

Das folgende Beispiel wird im néchsten Abschnitt eine wichtige Rolle spielen.
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7 Normalformen von Matrizen

Beispiel 7.3.21. Es sei ¢ € K[ X] ein normiertes Polynom vom Grad n. Dann ist die
Smith-Normalform von X E, — Z, von der Gestalt

1 0
(7.15)
0 ®

Wie wir in Beispiel 7.2.1 gesehen haben, lisst sich X E,, — Z, durch unimodulare Zeile-
numformungen in folgende Gestalt bringen:

-1 X 0 0 o
0 -1 X 0 (%)
X Op—2
: ! X+ a1
0 e 0 ap+Xag+ X ag+ - +a, X" +X"

Durch unimodulare Spaltenumformungen kénnen dann
e die Eintrige —1 auf der Diagonalen zu 1 gedndert werden, und
o die Eintrége mit X oberhalb der Diagonalen zu 0 gedndert werden,
e die ersten n — 1 Eintrige der letzten Spalte zu 0 gedndert werden.
Die resultierende Matrix hat die Form (7.15). A

Beweis von Satz 7.3.20. Wir geben ein Verfahren an, welches nach einer endlichen An-
zahl von Schritten terminiert, und unimodulare Matrizen P € K[X]"" und Q €
K[X]™™ und ein normiertes Polynom ¢, € K[ X] liefert, so dass

Pag= (% 1) (7.16)

wobei B € K[X](n_l)x(m_l) und ¢, teilt alle Eintriige von B.

1. Falls A = 0 dann sind wir fertig; wir nehmen also im Folgenden an, dass A =

2. Wende Zeilen- und Spaltenvertauschungen an, so dass a; ; # 0, und so dass a;; €
K[X ] unter allen Eintrigen von A, die nicht 0 sind, den kleinsten Grad besitzt.

3. Schreibe jeden Eintrag a; ; in der ersten Zeile als a1 ; = qq jai 1 +71; fir q1 5,71 €
K[X] mit grad(r ;) < grad(a;,;) (Polynomdivision), und fithre folgende unimo-
dulare Spaltenumformung durch: ziehe ¢; jax; von der j-ten Spalte ay4; von A ab,

so dass danach ay ; =1 ;.
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7.3 Die Hermite-Normalform

4. Analog zum vorigen Schritt verfahren wir mit den Spalten anstatt der Zeilen.
5. Falls ein Eintrag von A strikt kleineren Grad hat als a1, gehe zu Schritt 1.

6. Ansonsten: aj; # 0; alle anderen Eintrége der ersten Zeile und ersten Spalte sind
0; und alle anderen Eintrége von A, die nicht 0 sind, haben gréfieren Grad als a ;.
Falls a;; alle anderen Eintrége von A teilt, so konnen wir durch Multiplikation
der ersten Zeile mit einer Einheit in K[X] erreichen, dass a;; normiert ist. Also
ist A von der gewiinschten Gestalt und das Verfahren bricht ab.

7. Ansonsten, falls a;; den Eintrag a;; nicht teilt, schreibe a;; als a; ; = qa; 1 +r
fir ¢, € K[X] mit 0 # grad(r) < grad(a; ;). Addiere dann die erste Zeile von A
zur i-ten Zeile. Subtrahiere das g-fache der ersten Spalte von der j-ten Spalte. Wir
erhalten eine Matrix mit Eintrag r an der Stelle ¢, j. Fahre fort mit Schritt 1.

Wir wenden dieses Verfahren nun induktiv auf B anstatt auf A an. Bei Abbruch des Ver-
fahrens ist die resultierende Matrix in Smith-Normalform. Das Verfahren terminiert nach
endlich (polynomiell) vielen Schritten: zunéchst ist die Tiefe der Induktion héchstens n.
Im Induktionsschritt wird héchstens n mal zu Schritt 1 zuriickgesprungen, da jedesmal
der Grad von ay; strikt kleiner wird.

Da alle auftretenden Umformungen im Verfahren durch Multiplikation mit unimodu-
laren Elementarmatrizen von links oder von rechts beschrieben werden koénnen, folgt,
dass die resultierende Matrix S unimodular dquivalent ist zu A.

Die Eindeutigkeit folgt aus der zweiten Aussage. Nach Lemma 7.3.19 gilt

r(A) =r(S)=m

und fiir ¢ € {1,...,m} gilt
di(A) = di(S) = ¢1--¢s,

di(A)

G () =

und damit ist ¢; =

Bemerkung 7.3.22. Wie bei der Berechnung der Hermite-Normalform besteht bei der
algorithmischen Berechnung der Smith-Normalform die Gefahr, dass Eintrédge der Ma-
trizen zu grof§ werden. Mit &hnlichen Methoden wie in Abschnitt 7.3.3 ldsst sich das
vermeiden, so dass auch die Smith-Normalform einer Matrix A € Q[X]™" in polyno-
mieller Zeit berechnet werden kann [3,7].

7.3.6 Zusammenhang Smith-Normalform und Frobenius-Normalform

Die Smith-Normalform kann dazu verwendet werden, um die Frobenius-Normalform (aus
Abschnitt 7.2.5) von A € K™*" zu berechnen! Wir berechnen dazu die Smith-Normalform
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7 Normalformen von Matrizen

S der Matrix X F,, — A mit Eintrdgen aus K[ X ]. Diese ist von der Gestalt

P1 0
Ym
. (7.17)
0 0
wobei 1, ..., ¢, € K[X]normierte Polynome sind, so dass ;| fiir alle i, j € {1,...,m}

mit i < j.
Bemerkung 7.3.23. Es gilt m = n und l_[ie{l .m}®i = Xxa. Das folgt direkt aus der
Definition von x4 = det(X E,, — A) und der Beobachtung, dass

e sowohl x4 als auch [ ], (1....n} i normiert sind, und

e unimodulare Zeilen- und Spaltenumformungen die Determinante bis auf Multipli-
kation mit einer Einheit nicht &ndern (siche Proposition 4.1.3 fiir Zeilenumformun-
gen, und kombiniere mit Proposition 4.1.14 fiir Spaltenumformungen).

Satz 7.3.24. Falls A € K", ©1,..., 0, € K" die Polynome aus (7.17) der Smith-
Normalform. Dann gilt 1 = «++ = py =1 fiir £ = Z?zl grad(y;), und ©p41,. .., 0, sind
die Ahnlichkeitsinvarianten von A. Die Frobenius-Normalform F von A hat also die
Gestalt

Zo, 0
F= .
0 Z‘P(’.Jrl
Beweis. Es seien 1, ...,y die Ahnlichkeitsinvarianten von A, so dass o;|@;_q fiir alle

i € {2,...,k}. Wenn ; fiir i € {1,...,k} vom Grad d; ist, dann haben wir in Bei-
spiel 7.3.21 gesehen, dass X E;, — Z,, unimodular dquivalent ist zu

1
Ci =
¥

Man sieht daher leicht, dass sich X F,, — A mit unimodularen Zeilen- und Spaltenumfor-
mungen in die Gestalt

Ck 0
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bringen 148t. Durch Vertauschen von Zeilen und Spalten erhalten wir dann die Matrix

1 0

Py,
0 Yy

Da 1|¢; und 9|1, fiir 4,5 € {1,...,k} mit ¢ < j, ist diese Matrix in SNF, und aus
der Eindeutigkeit der Smith-Normalform (Satz 7.3.20) folgt, dass k = n — £ und ¢; =
Oty Uk = @pn. Die Aussage folgt aus der Eindeutigkeit der Frobenius-Normalform
(Satz 7.2.31). 0

Definition 7.3.25. Zwei Matrizen A, B € R™" heien unimodular dhnlich falls es eine
unimodulare Matrix S € R™" gibt mit SAS ;)

Nachrechnen: unimodulare Ahnlichkeit ist eine Aquivalenzrelation.

Korollar 7.3.26 (Satz von Frobenius). Seien A, B € K"™". Dann sind die folgenden
drei Aussagen logisch dquivalent.

1. A und B sind dhnlich;
2. XE, — A und XE, — B sind unimodular dhnlich;
3. XE, — A und XE, — B sind unimodular dquivalent.

Beweis. Angenommen, A und B sind dhnlich. Dann gibt es eine invertierbare Matrix
C e K" so dass A = C’BC_I, und es gilt

XE,-A=CXE,C ' -CBC™' =C(XE, - B)C™".

Die Implikation 2. = 3. ist trivial. Fiir die Implikation 3. = 1 verwenden wir, dass
XE, — Aund XE, — B die selbe Smith-Normalform S haben (Satz 7.3.20), und damit
nach Satz 7.3.24 auch die gleichen Ahnlichkeitsinvarianten; die Aussage folgt dann aus
der Eindeutigkeit der Frobenius-Normalform (Satz 7.2.31). O

Bemerkung 7.3.27. Korollar 7.3.26 hat einen direkten Beweis, der ohne die Smith-
Normalform auskommt; siche Serre [11] (Theorem 6.3.2).

Ubung 51. Seien A € Q[X]™" und b € Q[X]". Erléutern Sie, wie man in polynomieller
Zeit feststellen kann, ob es ein z € Q[ X]" gibt, so dass Az = b.

Ubung 52. Die ganzzahligen Losungen eines linearen Gleichungssystems lassen sich auch
mit Hilfe der Smith-Normalform bestimmen. Sei Az = b fir A € Z™" und b € Z™ das
gegebene lineare Gleichungssystem. Seien P € Z™" und Q € Z™" unimodular, so dass
S = PAQ in Smith-Normalform. Zeigen Sie die folgenden Aussagen:

213



7 Normalformen von Matrizen

e Ax =bund PAx = Pb haben die gleichen ganzzahligen Losungen.

e Az = b hat genau dann eine ganzzahlige Losung, wenn Sy = Pb eine ganzzahlige
Losung hat. (Tipp: setze x = Qy).

e Die ganzzahligen Losungen von Sy = Pb lassen sich einfach ermitteln.

Ubung 53 (Christian Zschalig). Finden Sie zwei ganzzahlige Matrizen, die unimodular
dquivalent und spaltenéquivalent, aber nicht unimodular spaltenéquivalent sind.

Tipp. Es gibt bereits Beispiele aus 722,
Ubung 54. Kann man mit Hilfe der Smith-Normalform auch die Jordan-Normalform
berechnen (so sie denn existiert)?7

"Vielen Dank an die Teilnehmer:innen der VL im SS24 fiir die Idee zu dieser Ubung.
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Kapitel 8

FEuklidische und unitare
Vektorraume

Euklidische Vektorrdume sind Vektorrdume mit einem ausgezeichneten Skalarprodukt,
und wurden bereits in Abschnitt 6.1.3 eingefithrt. Wir wenden uns diesen jetzt systema-
tischer zu. Ein grofler Teil der Theorie kann parallel fiir Vektorrdume iiber C entwickelt
werden; die Modifikationen der Aussagen fiir die komplexe Variante wird immer griin
hervorgehoben.

8.1 Bilinearformen

Wichtiger Spezialfall: Skalarprodukt (Abschnitt 6.1.3). Sei V' ein K-Vektorraum. Wir
schreiben im folgenden wieder z anstatt  fiir Elemente von V.

Definition 8.1.1. Eine Abbildung
B:VxV ->K
heifit Bilinearform (auf V') wenn gilt: fiir alle u, v, uq, us,v1,v9 € V und a € K:

e Linearitit in der ersten Stelle: B(uy +uy,v) = B(uy,v)+ B(ug,v) und B(au,v) =
aB(u,v).

e Linearitit in der zweiten Stelle: B(u, vy +v9) = B(u,v1)+ B(u,vy) und B(u, av) =
aB(u,v).

Folgerung:
B(0,v) =0 = B(u,0)
B(-u,v) = =B(u,v) = B(u, —v)

Fiir K = C: eine Abbildung B:V XV — C heifit Semibilinearform (oder Sesquilinear-
fo’/"m/l) falls gilt

1Sesqui: lateinisch fiir eineinhalb.
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8 Fuklidische und unitidre Vektorrdume

e Linearitdt in der ersten Stelle (wie oben)

o Semilinearitdt in der zweiten Stelle:

B(u, vy + v2) = B(u,v1) + B(u,vs)
B(u, Bv) = BB(u,v)
wobei 3 := a — bi fiir B = a + bi die konjugiert kompleze Zahl zu 8 € C.
Bemerkung 8.1.2. In der Physik andere Konvention: das erste Argument erfiillt Semili-

nearitét.

Bemerkung 8.1.3. Konjugation definiert ein Automorphismus des Korpers (C;+, %),
d.h., eine bijektive Abbildung C — C, die vertriglich ist mit Addition und Multipli-
kation:

(a+bi)+ (c+di)=(a+c)=(b+d)i=(a+0bi)+ (c+di)
(a+bi) % (c+di) = ac+ (bc+ ad)i — bd = ac — adi — bei — bd
=(a—-bi)* (c—di) = (a+bi)* (c+di)

Definition 8.1.4. Eine (Semi-) Bilinearform B:V X V — K heifit

e nicht ausgeartet falls

Yu#03veV:Blu,v) #0
Vv #03ueV:Blu,v) #0

o symmetrisch falls
Vu,v € V: B(u,v) = B(v,u)

hermitisch falls K = C und

VYu,v € V : B(u,v) = B(v,u)

positiv definit falls K = R oder K = C und

Vu eV \{0}: B(u,u) € R und B(u,u) > 0.

Skalarprodukt falls K = R (bzw. K = C) und B positiv definit und symmetrisch
(bzw. hermitisch).

Beispiele fiir (Semi-) Bilinearformen.

1. Das Standardskalarprodukt im R" (siehe Abschnitt 6.1.3):

.
B(z,y)i=x*xy=x y=xz1y1 + - + 20,
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2. das Lorentz-Produkt (Relativitdtstheorie) auf V' = R*:

1 1

z=|"? Y = Y2 (Raum- und Zeitkoordinaten)
3 Y3
t s

2 T T
B(x,y) 1= x1y1 + Toys + x3y3 —c ts =x Ay

wobei (c¢: Lichtgeschwindigkeit)

0 O
0 0
1 0
0 2

o O o
S O = O

—c
Kein Skalarprodukt, da nicht positiv definit.

3. Sei V der Vektorraum aller auf dem Intervall [a, b] € R stetigen Funktionen f: R —
R. Dann ist

b
BU) = | fg(e) do
ein Skalarprodukt (Beispiel 6.1.2).

Allgemeine Sétze fiir Skalarprodukte (so wie z.B. Cauchy-Schwartz) gelten fiir alle diese
Beispiele und brauchen nicht immer neu bewiesen zu werden.

8.1.1 Bilinearformen und Matrizen

Sei V' ein K-Vektorraum mit der Basis C' = (vy,...,v,), und B: V XV — K eine (Semi-)
Bilinearform auf V. Die Matrix

A= (ay) e K"

mit a;; = B(v;,v;) heiit Gramsche Matriz” der Bilinearform. (Hangt von C' ab!)

Durch die Gramsche Matrix ist die Bilinearform eindeutig festgelegt: seien u = Z?:l Q;v;
und v = Z?zl Biv;. Dann ist

B(u,v) = B(Z @iV, Z/Bﬂ}i) = ZaiBjB(%Uj)
i

&3}
= Zaiaijﬁj = (al,...,an)A . (81)
1,J

n

2J(’)]rger Perdersen Gram (1850-1916), dénischer Versicherungsmathematiker.
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8 Fuklidische und unitidre Vektorrdume

Spezialfall V = K", C' = (eq,...,e,) Standardbasis:
B(u,v) = u' Av (8.2)

Standardbilinearform auf K": A = E,,, d.h., B(u,v) = u'v (vgl. Standardskalarprodukt).

Umgekehrt gilt: fiir jede Matrix A € K™ ist durch (8.1) bzw. (8.2) eine Bilinearform
auf V bzw. K" gegeben.

Zusammenhang Eigenschaften von Bilinearformen und Matrizeneigenschaften: sei B: V' X
V — K Bilinearform und A die Gramsche Matrix von B (bzgl. irgendeiner Basis). Dann
gilt
B symmetrisch < A symmetrisch, d.h., A = AT
B hermitisch < A hermitisch, d.h., A = AT

B positiv definit < A positiv definit, d.h., Yz #0:0<z' Az (falls K = R oder C)
B nicht ausgeartet < rg(A) =n

Denn: es gibt kein v € V mit u' Av # 0 genau dann, wenn u' A = 0. Es gibt u € V\ {0}
mit u' A = 0 genau dann, wenn A nicht invertierbar ist, also wenn rg(A) # n.

Nun ein Vorgriff auf Abschnitt 8.3.5 (Hauptachsentransformation). Minoren (Deter-
minanten von quadratischen Untermatrizen) haben wir bereits in Definition 7.3.18 ken-
nengelernt. Der k-te Hauptminor einer Matrix ist die Determinanten der Untermatrix,
die aus den ersten k Elementen der ersten k Zeilen von A besteht.

Proposition 8.1.5. Sei B eine symmetrische Bilinearform B von R" (oder C"). Dann
ist B genau dann ein Skalarprodukt, wenn alle Hauptminoren der Gramschen Matriz A
von B (reell und) positiv sind.

Beweis. Kommt in Abschnitt 8.3.5. O
Beispiel 8.1.6. Die Diagonalmatrix
A1 0
A S
0 . An
ist genau dann Gramsche Matrix eines Skalarprodukts, wenn alle Eigenwerte \; positiv
sind. Das zugehérige Skalarprodukt auf R" ist dann

B(u,v) = u' Av = M\ugvy + - + Aytin vy, (8.3)

(“gewichtetes Standardskalarprodukt”).
Beweis: offenbar mit Proposition 8.1.5.

Direkter Beweis:
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e Der Ausdruck in (8.3) ist sicher symmetrisch, und positiv definit falls alle Ay, ..., A\,
positiv sind.

e Falls aber \; < 0 fiir ein ¢ < n, dann ist B(e;,¢e;) = A\; < 0, und damit ist B nicht

positiv definit. A

8.1.2 Zusammenhang zwischen Bilinearformen

“Kennt man eine, kennt man alle.”
Bilinearformen unterscheiden sich nur durch einen Endomorphismus, genauer:

Satz 8.1.7. Sei B:V XV — K eine nicht ausgeartete Bilinearform aufV und f:V -V
lineare Abbildung (Endomorphismus). Dann ist

B'(u,v) := B(f(u),v) (8.4)

ebenfalls eine Bilinearform, und jede Bilinearform B' ensteht aus B auf diese Weise
(fiir geeignetes f).

Fiir V = K" lisst sich (8.4) schreiben als
B'(u,v) = B(Cu,v)
fiir ein C' € K™".

Beweis. Sei V = K". Sei A' die Gramsche Matrix von B' und A die Gramsche Matrix
von B. Dann ist A invertierbar, da B nicht ausgeartet (Satz 3.2.25). Also

B'(u,v) = w Alv=u A'AT Ay = ((A_I)T(A')T u)TAv = B(Cu,v). O
e
=:C
8.1.3 Beschreibung von Bilinearformen durch quadratische Formen
Sei B:V XV — K eine Bilinearform auf V. Die zugehorige quadratische Form
eV -K

ist definiert durch
q(v) := B(v,v).

Achtung: keine lineare Abbildung!
q hat die Eigenschaften:

1. q(\w) = Aq(v)

2. q(u+v) =q(u) + B(u,v) + B(v,u) + q(v)
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8 Fuklidische und unitidre Vektorrdume

Eine symmetrische Bilinearform ist sogar durch ¢ eindeutig bestimmt (falls char(K) # 2),
denn aus der zweiten Eigenschaft folgt (‘Polarisierung’):

B(u,v) = 27 (g(u+v) = q(u) — ¢(v))

Bemerkung: 27" existiert nicht in Fy oder allgemeiner falls char(K) = 2.

Die Kennlinie K einer Bilinearform ist definiert durch
K:={ueV|qu) =1}
Beispiel 8.1.8. V = R*. Anderes Skalarprodukt:

T kY= 2wy + X1y + Tayr + ToYo

o () ()

—
Gramsche Matrix

Kriterium aus Proposition 8.1.5 zeigt, dass Skalarprodukt vorliegt:

det(2) >0, det (? 1) >0

Die zugehorige quadratische Form:
qz) =z *x = 230% + 2w 79 + $§
Kennlinie:
K := {:CER2 | 225 + 20120 + T5 = 1}

eine Ellipse. Bild: eine Ellipse durch Punkte (0,1),(0,-1),(1,-1),(-1,1).
Bestimmung der Achsen: Hauptachsentransformation. A

Bemerkung 8.1.9. Die Kennlinie einer Bilinearform ist stets ein Kegelschnitt (Ellipse fiir
Skalarprodukte).

Klassifikation von Bilinearformen durch Kennlinie: Kapitel 8.3.5, verwendet ebenfalls
Hauptachsentransformation.

8.1.4 Bilinearformen und Dualraum

Erinnerung: V™ steht fiir den dualen Raum aller Linearformen von V. Zusammenhang
zwischen Bilinearformen B:V x V — K und linearen Abbildungen L: V — V™

e Sei ¢:V — V™ lineare Abbildung. Dann ist durch
By(u,v) 1= ¢(u)(v)

;Y_J

ev*

eine Bilinearform definiert (die genau dann nicht ausgeartet ist, wenn ¢ injektiv
ist).
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8.2 FEuklidische und Unitare Vektorrdume

e Jede Bilinearform entsteht auf diese Weise. Fiir die Bilinearform B: V XV — K ist
durch
¢B:V—>V*:ul—>fu

mit f,(v) := B(u,v) eine lineare Abbildung definiert (die genau dann injektiv ist,
wenn B nicht ausgeartet ist).

Durch diesen Zusammenhang ist eine Bijektion gegeben, denn es gilt

B¢B =B und ¢B¢ = (25

8.2 Euklidische und Unitiare Vektorraume

Wiederholung (Definition 6.1.1): ein euklidischer bzw. unitirer Vektorraum ist ein R
(bzw. C)-Vektorraum V' mit einem Skalarprodukt

VXV >R VxV-—-C

Wiederholung:
llull 2= Vu* u =+/q(u)

heifit Norm von v € V.
u ist normierter Vektor falls ||ul|= 1.

Satz 8.2.1. In einem euklidischen bzw. unitiren Vektorraum gilt:

e Die Norm ist ein verniinftiges Langenmaf:
1. ||z|| =0 fir allexz € V; ||z|| =0 & z = 0.
2. ||lazx|| = |« - ||z]| fir alle x € V und a € R bzw. o € C.
3. Die Dreiecksungleichung (siehe Abschnitt 6.1.5):

llz + yll < [lzll+yll
e Die Cauchy-Schwarzsche Ungleichung:

|z %yl < [[=]|-[[yll

dquivalent dazu:
(z*y)(z*y) < (zxz)(y*y)

bzw.

|z * y|2= (z*y)(z*y)
= (zxy)(y*z) < (v *x2)(y *y)

Gleichheit gilt genau dann, wenn x —ay = 0, d.h., wenn x,y linear abhdngig sind.
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8 Fuklidische und unitidre Vektorrdume

Skalarprodukt
und Vollstandigkeit
Euklidischer
VR

R-Vektorraum
mit Skalarprodukt

Unitaerer
VR

C-Vektdrraum
mit Skalafprodukt

Norm

und Vollstéandigkeit Skalarprodukt

Banachraum Préahilbertraum

Normierter\NOrm

Raum

Abstand
Metrischer
Raum
Offene Mengen

Topologischer
Raum

Beweis. Wir konzentrieren uns auf den komplexen Fall der Cauchy-Schwarzen Unglei-
chung; den reellen Fall haben wir bereits in Abschnitt 6.1.4 betrachtet. Falls y = 0 ist

die Aussage trivial. Sei nun y # 0. Setzen « := ﬁy’j%. Nun gilt
0<(z-ay)*(x—ay) (* ist positiv definit)
=z *(z—-ay)—ay* (z - ay) (Linearitat in 1. Stelle)
=(zxxz)—alzxy)—aly*xz)+aa(y *y) (Semilinearitét in 2. Stelle)
=)= (z *y)(z *y)
1y1l?
(exy)(y*xz) (z*xy)(z*y)(y*y) Ei
- 5 5 5 (Einsetzen von «)
llyll lyll* llyll
* *
= ||413||2——(:C y)(y2 z) (Vereinfachen)
llyll
Damit ist (z * y)* < [|z]|* ||y]|%. O

Ubung 55. Sei A € R™" so, dass ||Az||= 0 fiir alle 2z € R". Zeigen Sie, dass A = 0.

Jede Norm auf einem Vektorraum induziert durch d := ||z — y|| eine Metrik (Ab-
standsbegriff ~ Analysis). Ist ein unitdrer Raum wvollstdndig bzgl. der Norm (i.e., jede
Cauchyfolge konvergiert), so heifit er Hilbert-Raum. Ein Vektorraum, in dem ein Skalar-
produkt definiert ist, heiffit dagegen Prdhilbertraum.
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8.2 FEuklidische und Unitare Vektorrdume

Beispiel 8.2.2. Betrachten die Menge der Folgen (x,,),en von komplexen Zahlen, so dass
die Reihe ZZO=1 |$n|2 konvergiert. Hierauf definieren wir das Skalarprodukt

(xn)nGN * (yn)nEN = Z TnUn

neN

Dieser Ausdruck konvergiert: zunéchst ist

n n 1/2 n 1/2
M (Z mf) (Z |yz-|2)
i=1 =1 =1

wegen der Ungleichung von Cauchy-Schwarz fiir das Standardskalarprodukt im C"; die
rechte Seite aber ist uniform beschrénkt. Dieser Raum ist vollstindig und damit ein Hil-
bertraum, und wird (wie die entsprechende Norm) mit ¢y bezeichnet und auch “der Hil-
bertraum” genannt. Es ist bis auf Isometrie der einzige unendlich-dimensionale separable
(d.h., mit abzahlbarer dichter Teilmenge) Hilbertraum (Satz von Fischer-Riesz). A

8.2.1 Orthogonalitat

Zwei Vektoren u,v eines euklidischen Vektorraums V heiflen orthogonal, ©v L v, wenn
u *x v = 0. Fiir Teilmenge U € V heif}t

UJ':={w€V|VuEU:wJ_u}

das orthogonale Komplement von U.

Bemerkungen.

e U™ ist stets Untervektorraum von V und es gilt

e Vorgriff: fir U < V ist U™ ein Komplement im Sinne von Definition 2.4.17, d.h.,
es gilt (fiir Begriindung siehe Bemerkung 8.2.13)

V=UeU"

(jedes v € V lasst sich eindeutig schreiben als u + w fiir v € U und w € UL)
Insbesondere:

dimU + dim U~ = dimV

8.2.2 Orthogonalsysteme

Sei V euklidischer oder unitiarer Vektorraum.

Definition 8.2.3. (vy,...,v,) € V' heifit
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8 Fuklidische und unitidre Vektorrdume

e Orthogonalsystem falls vy # 0,...,v, # 0 und v; * v; = 0 fiir verschiedene i,j €
{1’ ety r};

e Orthonormalsystem falls (vy,...,v,) ein normiertes Orthogonalsystem, d.h., falls
zusitzlich ||v;||= 1 fiir alle ¢ € {1,...,r}. Anders geschrieben: v; * v; = d;;
(Kroneckersymbol);

e Orthogonalbasis falls Basis und Orthogonalsystem;
o Orthonormalbasis (oder kurz ON-Basis) falls Basis und Orthonormalsystem.

Proposition 8.2.4. Jedes Orthogonalsystem ist linear unabhdngig.

Folgerung: ein Orthogonalsystem (vq,...,v,) ist genau dann eine ON-Basis, wenn
r=dimV.
Beweis. Sei (vq,...,v,) Orthogonalsystem, und

ajvy + -+ o, =0
Zu zeigen: «; = 0. Skalarprodukt mit v; auf beiden Seiten ergibt
ar(vy *v;) + -+ + (v, *v;) =0
also a;(v; * v;) = 0. Da v; # 0 ist v; * v; # 0, also «; = 0. ]

Bemerkung 8.2.5. Die Gramsche Matrix eines Skalarprodukts ist beziiglich einer ON-
Basis stets die Einheitsmatrix.

Beispiel 8.2.6. Sei V = R" und
TRy =21y + o0+ Yy

das Standardskalarprodukt. Wegen e; * e; = d;; ist (eq,...,e,) eine ON-Basis. A

8.2.3 Das Gram-Schmidtsche Orthonormalisierungsverfahren

Sei V' ein euklidischer bzw. unitéirer VR und seien (vq,...,v,) linear unabhingig.

Satz 8.2.7 (Gram-Schmidt). Durch folgende rekursive Definitionen erhdlt man fir k €

{1,...,r} ein Orthonormalsystem (01,...,0,) mit {(vi,...,v5) = (U1,...,0):
5 1
V1 += — U
o]l
k-1
I ~ N\~
Vg 1= U — Z(Uk * U;)0; (8.5)
i=1
N I .
Up 1= ——y, (Normierung).
ol
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8.2 FEuklidische und Unitare Vektorrdume

Abbildung 8.1: Mlustration zum Verfahren von Gram-Schmidt fiir k& = 3.

Idee fiir (8.5) fiir k = 3: sei U = (0, 02) der von 01,09 aufgespannte Untervektorraum
und py die Projektion von vz auf U. Siehe Abbildung 8.1 (und Abschnitt 6.2.4).
2
U3 =g — Py = U3 — Z(Us * 03 )0;
i=1

Folgerung 1. Jeder n-dimensionale euklidische (unitidre) VR hat eine ON-Basis (man
starte Verfahren mit Basis vy,...,v,).

Folgerung 2. Jede Orthonormalbasis eines Untervektorraums U < V' 1af3t sich zu einer
ON-Basis von V' ergénzen.

Beweis von Satz 8.2.7. Per Induktion iiber k. Fall k£ = 1: klar, 97 % 9; = 1.
Induktionsschritt: Behauptung sei fiir alle j < k£ bereits bewiesen.

I
Q}k*’Uj

k-1
(’Uk - Z(Uk * @z)ﬁz) * VU
i=1
k-1

v * 05— ) (v % 0) (T % )
=1 o

ij

:vk*ﬁj—vk*f}j:()

also 7y, * ¥, = ”v—l,k”(v;,ﬁj) = 0. Weiterhin gilt 7, * 9 = 1 und

(01, ...,0) = (v1,...,08)
Dies folgt aus
(D1, ., 0k) S (D1, . vy Vo1, V) (wegen (8.5))
=(V1, ..., V1, V) (Induktionsvoraussetzung))
Es gilt sogar Gleichheit, da vy, ..., 7; nach Proposition 8.2.4 linear unabhéngig. ]
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8 Fuklidische und unitidre Vektorrdume

Beispiel 8.2.8. Sei V = R* mit Standardskalarprodukt.
-1

v =

—
o O O

sind linear unabhéngig. Gram-Schmidtsches ON-Verfahren liefert:

1
- (%] (%} 1{1
Vo= —— = — = —
F el T va 2|1
1
und
-1 1 -3
vy = vy — (va % By) By = O PRSI
2 2 2 1 1 1 211 2 1
- 3+0+3+22=1 2) 1 3
-3
! -1
. L e . —
Weiterhin 0y = ol = 3| 1 I (Probe: vy * vy = 0.)
3
vy 1= g —\(U3 * 171)1171 - ‘(U3 * 172)‘172
1 __3
2 25
0 1 -3 —4 -2
_10 __1)1 1 _(_i)i -1 _i 2 _i 1
0 2211 2v5 25| 1 20| 8 10| 4
-1 -5 1)\ '3 -6 -3
20 20
-2
! 1
Sy r= 93— 1 . =5
= o = 75| 4 | (Probe: v; * vj = d;;.)
-3

A

Bemerkung 8.2.9. Manchmal kann es von Vorteil sein, zundchst nur ein Orthogonal-
system zu berechnen, und die Normierung der Vektoren erst am Ende des Verfahrens
durchzufiihren, da dann im Anfangsteil des Algorithmus keine Wurzeln gezogen werden

miissen.

Motivation: Mit ON-Basis wird das Rechnen mit Koordintenvektoren, Skalarprodukt,

und orthogonalem Komplement besonders einfach.
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8.2 FEuklidische und Unitare Vektorrdume

Bemerkung 8.2.10. Sei (vq,...,v,) ON-Basis von euklidischen/unitiren VR V. Dann
gilt folgender Entwicklungssatz fiir v € V' (gilt auch fiir unendliche ON-Basen):

n

v = Z (v *v;) on
i=1

“Fourierkoeffizienten”

Denn: falls v = 2;;1 a;v;, dann gilt
n
vkv; = ) a;(vi,v;) = .
i Z 3 \U;5, U4 i

=1
J ny

Bemerkung 8.2.11. Beziiglich einer ON-Basis (vq,...,v,) ist jedes Skalarprodukt das
Standardskalarprodukt der Koordinatenvektoren: fiir u = 3 ;—; oyv; und w = Y ) Biv;
gilt

uxw=ao1f; + -+ a0,

bzw., in unitdren VR,
ukw=a1f+ -+ a,0,

Z U * Z Bvj = Z aiBj (v; * v;)
i ,

Denn:

——
d;

Bemerkung 8.2.12. Es gilt die Parsevalsche Gleichung:

n

vxo=[lof]F =) ool

i=1
(rechte Seite: Summe der Quadrate der Fourrierkoeffizienten)

. n .
Denn: fiir v = Zi:l ;v; ist

n
2. 1.
EX) @) a1y + o+ apdy, = |oz1|2 + e+ |ozn|2 = Z |v * vi|2
i=1

In Hilbertrdumen gilt fiir orthonormales System (eq, e, ... ):
vkov = ||v||2 > Z |v * ei|2 (Besselsche Ungleichung)
ieN

Bemerkung 8.2.13. Sei U <V und (uq,...,u,,) ON-Basis von U.
Sei (U, ..., Up,Ums1s-- -, U,) Erginzung zu ON-Basis von V' (Verfahren von Gram-
Schmidt, Folgerung 2). Dann ist

UJ_

= (um+17 s 7un>
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8 Fuklidische und unitidre Vektorrdume

und (41, --.,Uy,) ist ON-Basis von Ut
Also: V = U @ U™ (siehe Abschnitt 2.4.17).
Denn: v; * v; =0 fur i < mund m + 1 < j, also Um+1,...,Un€UJ_ also
i
<um+17"'7un> cU

Umgekehrt sei v € ) av; € U™, Dann ist o i vxwv; =0 fiiri <m (dav; € U). Also
v= Z?:m+l o;v; € (Um+17 ERR) Un)-
8.2.4 Orthogonalprojektion
Sei V euklidischer (oder unitédrer) VR, und U < V Untervektorraum.
V=UeU"
Ju,w: v=ut+w (eindeutig!)
Bezeichnung: py(v) := u.

Definition 8.2.14. Die Orthogonalprojektion eines Vektors v € V auf einen Unterraum
U ist der (eindeutig bestimmte) Vektor py(v) € U, so dass eine Zerlegung v = py(v) +w

mit w € U™ existiert (insbesondere py(v) L w).

Einfache Berechnung von py;(v) mit ON-Basis (uq, ..., u,,) von U:
m
pu(v) =Y (v u;)u;
i=1

(erster Teil der Fourierentwicklung, sieche Abschnitt 8.2.3)
Satz 8.2.15. Sei V' euklidischer VR und U <V
1. Firalleuwe U undv eV gilt

2 2
lv = pu ()™ = [[v = ull
2. Das Gleichheitszeichen gilt nur fir u = py(v).

Beweis. Zu (1). Sei v € V. Dann gibt es w € U mit v = py(v) + w (Abschnitt 8.2.1).
Sei u € U. Dann gilt

2 2 2 2
lv = ull”= llw + py(v) = ull” = llw|l"+[lpg (v) - ull (daw L (py(v) —u))
2 2
= |lwll”= llv = pu ()"
Zu (2). Nach dem Entwicklungssatz aus Abschnitt 8.2.3:

m n
v = Z(v*vi)vi+ Z (v * v;)v;
i=1

1=m+1

€U ’ Ut
= py(v) (nach Definition 8.2.14). O
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8.2.5 Anwendung: Methode der kleinsten Fehlerquadrate
Entwickelt von Gaufl zur Berechnung von Planetenbahnen.

Annahme: theoretisch bekannter (oder vermuteter) Zusammenhang f zwischen zwei
(Mess-) Groen
y=f(x) =ag+aigi(z) + - + apgm(z)

wobei g1, ..., g, bekannte Funktionen, z.B. g;(x) := a?i, also
y=f(z) =ag+ax+-+anx"

Gegeben: Messreihe (z1,y1),. .., (z,,y,) (1.A. fehlerbehaftet)

Gesucht: Moglichst genaue Approximation fiir f, d.h., fir ag, aq, ..., an,,.
Was ist gute Approximation?

Ansatz:
(1 L ogi(w1) -+ gmlz1)\ [ ao €1
Y2 | falls Messwerte 1 a1 (1'2) *t Gm (x2 ) ap | _ | C2
: exakt
Yn 1 gl(mn) gm(xn) Am Cn

Maf fiir Abweichung der Kurve f von den Messpunkten ist

ly = Aall = V(g1 = c1)? + - + (g = cn)?
Norm in R™™  2.B. fiir Standardskalarprodukt.

— Methode der kleinsten Fehlerquadrate.
Grofle Abweichungen der Modellfunktion von den Daten werden stirker gewichtet.

Gegeben: A, y.
Gesucht: a € R™"", so dass ||y — Aal| < ||y — Ab]| fiir alle b € R™

Sei
U:={Ab|beR™'} =Bild4 < R"

Losung Aa = pry(y) liefert beste Approximation geméfl Definition 8.2.14,
da ||y = py(y)|| minimal.

Loésungsmethode:
1. Bestimmung einer Basis (vq,...,v,) von U := Bild A.
2. Bestimmung einer ON-Basis (?1,...,0,) von U (siehe Abschnitt 8.2.3).

3. Berechne py(y) = Y i_,(y * 0;)9; (siehe Satz 8.2.15).
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8 Fuklidische und unitidre Vektorrdume

agp

T des Gleichungssystems

4. Berechnung der Losung a =
Am
Aa = py(y)
liefert beste Approximation
f(@) = ap + a191(x) + -+ + amgm ().

Losbarkeit garantiert, da py(y) € U = Bild A, Abschnitt 3.3.2.
System eindeutig losbar falls rg(A) = r = n, Korollar 3.3.7.

Beispiel. Messreihe:

Versuch Nr. ‘ T Y

1]-1 -3/2
210 1
311 0
412 3

Theoretisch gegebener Zusammenhang sei lineare Funktion (Gerade)

y=f(z)=ao+ a1z
——

g1(x)

“Ausgleichsrechnung”: Fehler \/ Y i<a(f(z;) = y;)? minimieren.

1 -1 ~3/2

1 0 1
A=y 4| 0

1 2 3

Gesucht: Losung a = (ZO> fiir Aa = py(y), U := Bild A.
1

1. Basis von U: haben rg(A) = 2 und wihlen
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2. ON-Basis von U:

1
- 1)1
17901
1
-1 -1 1 1 -3
S N Y R I R R
V=2 A2 R0V = 1T 11721
2 2 1 1 3
sl = (9 +1+1+9)/4=V5
-3
~ 1 1 |-1
Ug 1= ——Wy = ——
v | 2v5| 1
3
3. Berechnung von py(y):
-1
— b b + i ~ [_]§~ +%~ [_JE O
pu(y) = (y * 01)01 + (y * 02)0p = 71 T2 7 1
2

4. Losung des Gleichungssystems A (ZO) = py(y) nach ag und aq:
1

-1 —5/4

(Zf) - 5(;4
5/2

— =

0
1
2
Hat Losung ag = 0,a1 = 5/4.
Ergebnis: die beste Approximation fiir die Messreihe ist die Gerade
5
y=f(2)=2a

Jede andere Gerade liefert grofleren Fehler!

8.3 Klassifikation bis auf orthogonale und unitire Ahnlichkeit

Was sind strukturvertrigliche Abbildungen fiir euklidische Vektorrdume? Mit Struktur
ist gemeint: Skalarprodukt, Léngen, Orthogonalitdt, Winkel, ... Die Antwort lautet: or-
thogonale Abbildungen.
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8 Fuklidische und unitidre Vektorrdume

8.3.1 Orthogonale und unitdre Abbildungen

In diesem Abschnitt behandeln wir orthogonale (und unitéire) Abbildungen in etwas
allgemeinerer Form als in Abschnitt 6.5).

Es seien V und W euklidische (unitére) Vektorrdume, *y und %y, die dazugehoérigen
Skalarprodukte, und ||.||v, ||.||w die zugehérigen Normen.

Definition 8.3.1. Eine lineare Abbildung f:V — W heifit orthogonal (bzw. unitir)
falls fiir alle u,v € V:

uxy v = f(u)*w f(v)

Satz 8.3.2 (Charakterisierung Orthogonalitit). Es sei f:V — W lineare Abbildung.
Dann sind dquivalent:

1. f ist orthogonal;
2. Ve eV :|zlly=1=|f(2)llw=1
3. Nz eV :||z|ly=|f(z)llw (f ist lingentreu)
4. falls (uq,...,u,) ON-System in'V, so ist (f(u1),..., f(u,)) ein ON-System in W.
Beweis. 1. = 2.: Aus ||z|| = 1 folgt
L@@y = f(2) * ()
=xr*z (wegen (1))
= |lzllv=1
also auch || f(z)|lw= 1.

2. = 3.: Ist z = 0, so gilt f(z) =0, also ||f(z)]|| =0 = ||z]|.
Sei nun z # 0. Fiir 7 = ﬁ gilt [|Z||= 1. Also || f(Z)||= 1 wegen (2) und es folgt

/(@) lw = [1£Cllllv2)]l

= ||z|lv: | f(Z)lw  (Linearitét von f und Eigenschaft von Normen)

= |lzllv.
3. = 4.: Sei (uq,...,u,) ein ON-System. Dann
(3)
llujll =1 = [[f(uy)ll= 1

Sei j # k, zu zeigen bleibt: f(u;) * f(ug) = 0.

~0
2 2 2 ———Pe——\
[l + well™ = Nlwsll™ + lugll™ + 2(uy; * w)

£ Gy + wid1? = 11 Cay) + FCa) = 1F )P+ 1 Q) 11+ 20F Cuy) * f(ur)
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Also f(u;) * f(uy) = 0.
4. = 1.: Es gelte (4), z.z. ist u x v = f(u) * f(v).

1. Fall: u,v sind linear abhéingig, 0.B.d.A: v = au fiir o € K. Dann ist @ := ﬁ ein

ON-System (bestehend aus nur einem Vektor) also auch f(@) nach (4). Es folgt

wxv = |lul|d* allul|d = @ * allul’e
=1
- . - - 2
und  f(u) * f(v) = f(l[ull@) * f(allulla) = (f(@) * f(@))|lu]]"c
=1

2. Fall: u, v sind linear unabhéngig. Verfahren aus Abschnitt 8.2.3 liefert ON-System

(@,v) mit (u,v) = (@,0v), d.h. es gibt a,as, 31,32 so dass u = 1% + a0 und v =
B1t + Bo0. Nach (4) ist (f(a), f(9)) ein ON-System, also

flu) * f(v) = (a1 f(@) + aaf(0)) * (BLf(@) + Bof (D))
= a181 + azfBy

= (0l + ) * (B1t + Po?) = u * v. O

Wegen Satz 8.3.2 werden unitére und orthogonale Abbildungen auch hiufig Isometrien
genant. Wir sehen also: ldngentreu impliziert winkeltreu. Die Umkehrung gilt aber nicht
(z ¥ 2z ist winkeltreue, aber nicht langentreue linear Abbildung).

Folgerungen:

1. Sind B = (vq,...,v,) und B' = (wy,...,w,) ON-Basen von V bzw. von W, so ist
die durch f:V — W : v; = w; definierte lineare Abbildung orthogonal.

2. Wenn f:V — W orthogonal, dann ist f injektiv, denn
f@)=0=|f(2)ll=0

= [lz]|=0

=z =0.

8.3.2 Darstellungsmatrizen orthogonaler Abbildungen

Hiufig wird Orthogonalitdt nur fiir quadratische Matrizen definiert; wir machen das
gleich etwas allgemeiner, damit auch der Zusammenhang zu orthogonalen Abbildungen
in voller Allgemeinheit formuliert werden kann.

Definition 8.3.3. Eine Matrix A € R™" (bzw. C"") heiBe orthogonal (bzw. unitir)

wenn .
ATA = E, bzw. ATA = E,.

Bemerkung 8.3.4. Falls A € R™" orthogonal (unitir), so ist A invertierbar und es gilt
At =4T (A_l = AT), also insbesondere auch A4 = AA™" = E, (AflT = AA! = E,).
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8 Fuklidische und unitidre Vektorrdume

Rechtfertigung fiir diese Definition: Satz 8.3.5.

Satz 8.3.5. Seien V und W euklidische (unitire) Vektorrdume mit ON-Basen B =
(v1,...,v,) bezichungsweise C' = (wq,...,wy,). Sei f:V — W eine lineare Abbildung
und sei A = Mg(f) e R™" ((me”) die Darstellungsmatriz von f. Dann sind dquivalent:

1. A ist orthogonal (unitdr);
2. f ist orthogonal (unitir);

3. die Spalten von A bilden eine ON-Basis von U < R™ (C") mit dim(U) = n
beziiglich des Standardskalarproduktes.

Beweis. (1) = (2): Fiir das Standardskalarprodukt haben wir diese Implikation in Pro-
position 6.5.1 gezeigt. Der allgemeine Fall geht im Prinzip genauso; wir zeigen ihn gleich
fiir den unitéren Fall. Seien v = xyuy + - + z,u, € V und v = yyv1 + -+ + y,v, € V. Da
* hermitesch und B orthonormal gilt
UXV =YL+ o+ T Yy
=2 Ey=a AT Ay (da A unitér)
T, T 7y T7 7y
=z (A A)y=(Az) (Ay) = f(u) * f(v).

(2) = (3): nach Satz 8.3.2 ist f(v1),..., f(v,) ein ON-System. Die i-te Spalte von
A ist der Koordinatenvektor von f(v;) beziiglich der ON-Basis C'; also sind die Spalten
von A eine ON-Basis von U < R™ (C") mit dim(U) = n.

(3) = (1): Seien sy, ..., s, die Spalten von A. Dann gilt s; * s; = s;rsj = ¢;; fiir alle
i,j€{l,....n}. Also ATA=E,. O

O(n) c R™™: Menge aller quadratischen orthogonalen Matrizen.
U(n) ¢ C™™: Menge aller quadratischen unitéiren Matrizen.

Bemerkung 8.3.6. Fiir orthogonale (bzw. unitire) Matrix A € R™™ (bzw. C"") gilt

o |detA| =1 (denn = det(A™) = det(A") = det(A)).

_1
det(A)

e |A| =1 fiir jeden Eigenwert A von A (denn f, ist lingentreu!).

Beispiel 8.3.7. Permutationsmatrizen (Beispiel 7.3.2) sind orthogonal: Bezeichnet P, die
zu einer Permutation 7 zugehorige Permutationsmatrix, dann gilt

PPy =PriPy= Pty = Pg=E
denn

e die transponierte Permutationsmatrix ist gleich der Permutationsmatrix der inver-
sen Permutation, und
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8.3 Klassifikation bis auf orthogonale und unitéire Ahnlichkeit

e das Produkt von Permutationsmatrizen entspricht der Hintereinanderausfithrung
der Permutationen. A

Ubung 56. Wie wiirden Sie die Losung des linearen Gleichungssystems Az = b berechnen,
wenn A € Q™" orthogonal ist?

Ubung 57. Zeigen Sie: die vorzeichenbehafteten Permutationsmatrizen, bei denen in jeder
Zeile und Spalte genau ein Eintrag plus oder minus eins ist und alle iibrigen Eintréige
null sind, sind genau die ganzzahligen orthogonalen Matrizen.

8.3.3 Orthogonale und unitire Ahnlichkeit

Zwei Matrizen A, A' € R™™ (C"") heifien orthogonal dhnlich (bzw. unitéir dhnlich; in
der Literatur bisweilen auch: unitdr dquivalent, das ist aber im Hinblick auf die Definition
von (gewohnlicher) Ahnlichkeit und Aquivalenz irrefiihrend) falls es eine orthogonale
(unitéire) Matrix S gibt so dass A = S7'A'S. Eine Aquivalenzrelation.

Eine Klassifikation aller Matrizen bis auf orthogonale (unitire) Ahnlichkeit ist fiir
diese Vorlesung zu ehrgeizig. Dazu ein Beispiel. Sei n > 2, und betrachten

1 1 *x % = *

0 2 1 =% x% *

0O 0 3 1 =« *
A=]10 0 0 4 1 (8.6)

. . %

: |

0 - e 0 n

Alle diese Matrizen sind dhnlich, denn die jordansche Normalform ist immer die gleiche,
da allesamt diagonalisierbar wegen x4 = (X —1)(X = 2)--«(X —n).

10 0
0 2
0 n
Auf der anderen Seite sind zwei Matrizen von der Form wie in (8.6) nur dann unitir
dhnlich, wenn sie die gleichen Eintrige haben (ohne Beweis; hier wird verwendet, dass

auf der oberen Nebendiagonale von A alle Eintrége 1 sind. Originalliteratur dazu: Heydar
Radjavi, On Unitary Equivalence of Arbitrary Matrices, Transactions of the AMS, 1962).

Wir erwidhnen ohne Bewelis:

Satz 8.3.8 (Normalform orthogonaler Matrizen). Eine reelle Matriz A € R™" ist genau
dann orthogonal (A_1 = AT), wenn sie zu einer Matrixz der folgenden Gestalt orthogonal
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8 Fuklidische und unitidre Vektorrdume

ahnlich ist
+1

wobei Ky, ..., K,, Drehmatrizen (Abschnitt 6.5.2), d.h., jeweils von der Gestalt

cosa —sina
sina cos«

fiir ein a € R.

8.3.4 Selbstadjungierte Abbildungen

Fiir die wichtige Klasse der symmetrischen (hermiteschen) Matrizen wird uns eine Klas-
sifikation bis auf orthogonale Ahnlichkeit gelingen (in Abschnitt 8.3.5). Im folgenden sei
V ein euklidischer (bzw. unitirer) Vektorraum.

Definition 8.3.9. Ein Endomorphismus ¢:V — V heif3t selbstadjungiert wenn fiir alle
u,v €V

flu) *v=ux f(v).

Satz 8.3.10. Sei f € End(V) und A := MB5(f) Darstellungsmatriz von f beziiglich
einer ON-Basis B. Dann ist f genau dann selbstadjungiert wenn A symmetrisch (bzw.

hermitesch, A = /IT) ist.
Zum Namen: A’ =: A* heift Adjungierte zu A.

Beweis. Den Koordinatenvektor von v € V beziiglich B bezeichnen wir mit vg. Dann
ist (f(v))g = Avg und u*v = upvg (die Gramsche Matrix ist E,, weil B eine ON-Basis,
siche Abschnitt 8.2.3). (Bzw.: u * v = ulT;ZB) Also

flu) *v=ux f(v) Yu,veV
= (AuB)TvB = u;AvB Yu,veV
= UEATUB = UEAUB Yu,veV
= A=A
(Komplexe Variante: Striche iiber v und die A’s auf der rechten Seite.) O
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8.3 Klassifikation bis auf orthogonale und unitéire Ahnlichkeit

Bemerkung 8.3.11. Adjazenzmatrizen von (ungerichteten) Graphen (siehe Abschnitt 3.2)
sind symmetrisch.

Bemerkung 8.3.12. Symmetrische Matrizen treten auch bei der Beschreibung quadrati-
scher Formen auf (siehe Abschnitt 8.3.7).

Satz 8.3.13. Sei f € End(V) selbstadjungiert. Dann gilt:

1. f hat nur reelle Eigenwerte, die Nullstellen von xy (interessant wenn V unitirer
Vektorraum);

2. Das charakteristische Polynom x¢ zerfdllt in Linearfaktoren (interessant wenn V
euklidischer Vektorraum);

3. FEigenvektoren zu verschiedenen Eigenwerten sind orthogonal.

Beweis. Zu 1. Sei v ein Eigenvektor zum EW A:
fw)y=Xv, v+0
Dann gilt

Mvxv)=Xv*xv=f(v)*xv=v*f(v)=v*v=Nv*v)

also A = \, und daher \ € R.

Zu 2. Falls V unitér: Fundamentalsatz der Algebra. Falls V' euklidisch: Sei A := MEE;( )
(symmetrische!) Darstellungsmatrix bzgl ON-Basis B. Fassen A als hermitesche Matrix
A e C™" auf. Dann ist

Xf(X) = xa(X) = det(XE = A) = (X = A)(X = An).

Wegen Teil 1 sind Ay, ..., A\, €R, also zerfillt x (X)) auch iiber R.
Zu 3. Sei f(u) = A, f(v) = pv, A # p. Dann

Muxv)=du*xv=f(u)*v

=ux* f(v) (da f selbstadjungiert)
=u* pv = ja(u * v)
= p(u * v) (da 1 € R nach Teil 1)

Also (A= p)(u*xv) =0.Da X\ # pu, ist uxv =0, also u L v. O

8.3.5 Spektralzerlegung (selbstadjungierter Fall)

Titel wird erst spéter klar. In diesem Abschnitt Losung des Klassifikationsproblems von
symmetrischen/hermiteschen Matrizen bis auf orthogonale/unitire Ahnlichkeit.
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8 Fuklidische und unitidre Vektorrdume

Satz 8.3.14. Sei V ein endlichdimensionaler euklidischer (unitirer) VR, und f €
End(V) selbstadjungiert. Dann existiert eine ON-Basis B von V aus Figenvektoren von
f (ein Hauptachsensystem); es gilt

A1 0

Mp(f)=| (8.7)
0 A

wobei A, ..., A, reelle Figenwerte von f.

Beweis. Beweis per Induktion iiber n := dim V.

Induktionsanfang: n = 1. Jeder Vektor # 0 ist FKigenvektor. Normieren liefert ON-Basis
aus (einem) Eigenvektor.

Induktionsschritt: Sei dim V' = n + 1 und Satz sei fiir Dimension n schon bewiesen. Nach
Satz 8.3.13 (2) zerfallt x; in Linearfaktoren. Sei v, Eigenvektor zu Eigenwert A,11;
0.B.d.A. ||v,41]| = 1 (sonst normieren).

U:= <Un+1>

Behauptung: U™ st f-invariant, d.h., z € Ut = flz) e U™. Denn:

flz) *v,41 =2 % f(vpe1) (f selbstadjungiert)
=2 % A\pt1Unt1 (Vp+1 ist EV zu EW )

= )\n+1(x * vn+1)

Also:
1
T €U =z *xv,q =0
= f(x) * vp41 =0 (siehe oben)
= f(x)eU"
Wegen der Behauptung ist
foi= flye € End(U™)

fo ist wie f selbstadjungiert. Da dim U 1 = 5 hat U™ nach Induktionsvoraussetzung eine
Basis B = (vy,...,v,) aus EW von fg, und von f:

f(vi) = folvi) = N

fir « € {1,...,n}. Da v; L v,41 ist (vi,...,v,,v,41) eine ON-Basis von V aus Ei-
genvektoren von f. Eigenwerte sind reell nach Satz 8.3.13 (1). Aussage (8.7) folgt aus
Lemma 4.3.15. O

Sei A € R™ (A € C"”") und B = (uq,...,u,) ein Hauptachsensystem fiir f4, d.h.,
es gibt A1,..., A, € R so dass u; ist EV von f4 zum EW );. Sei S die Matrix mit den
Spalten uq,...,u,. Dann ist
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8.3 Klassifikation bis auf orthogonale und unitéire Ahnlichkeit

e S orthogonal (Satz 8.3.5), und

o STAS (STAg) Diagonalmatrix (Satz 8.3.14).

“A ist orthogonal diagonalisierbar”. Es gilt

A1 0
A=S| - S’
0 An
A1 0/ | | \[— w -
= U ... Up :
0 )‘n | | - Up -
| | - ur -
. T T
=AUy ... Ajug : = AUy + oo+ AUy,
| | - Up =
A\ 0
und analog A =9 ST = /\lulﬂlT + e+ )\n'u,nﬂ:;.
0 An
Man spricht von der Spektralzerlegung von A (Spektrum: Eigenwerte).
Fiir z € R", setze y := S'z. Dann gilt
v Az = yTDy = Aly% + e+ /\nyi. (8.8)

Die n X n-Matrizen P; := w;u; heien Projektionsmatrizen: fiir v € R" ist

P = py,(v)
die Projektion von v auf die Gerade U; = (u;). Denn:
T T T
pu; = (v ug)u; = (uy % v)ug = (u; V)ug = w; (u; v) = (g Jv = P.
- -
ERnXl GRIX]
Spektralzerlegung:
Av = Mpy, (v) + +++ + Anpu, (v) (8.9)
Jeder Summand liefert Anteil beziiglich U; = Ru;, den Hauptachsen des Systems.

Korollar 8.3.15. Eine symmetrische Matriz A € R™" ist genau dann positiv definit,
wenn alle Eigenwerte positiv sind.

Beweis. Nach Satz 8.3.14 gibt es eine ON-Basis B aus Eigenvektoren uq,...,u,; sei S

die Matrix mit den Spalten u,, ..., u,. Fiir € R" setze y := STz, Dann gilt (wie in 8.8)
v Az = Aly% + .o + )\nyi (8.10)
und daraus liest man die Aussage ab. O
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8 Fuklidische und unitidre Vektorrdume

Bemerkung 8.3.16. Aus Korollar 8.3.15 folgt insbesondere Proposition 8.1.5.

Ubung 58. Eine Bilinearform B:R" X R" — R heiBt positiv semidefinit (negative semi-
definit) falls fiir alle uw € V' gilt B(u,u) =2 0 (B(u,u) < 0). Zeigen Sie: eine symmetrische
Bilinearform B ist genau dann positiv semidefinit, wenn alle Eigenwerte der Gramschen
Matrix A von B reell und positiv sind.

Ubung 59. Zeigen oder widerlegen Sie: eine symmetrische Bilinearform B:R" x R" — R
ist genau dann positiv semidefinit, wenn fiir die Gramschen Matrix A von B gilt: fiir
jedes k € {1,...,n} hat die Matrix, die aus den ersten k Elementen der ersten k Zeilen
von A besteht, eine nicht-negative Determinante.

Ubung 60. Gibt es z,y € R, so dass die Matrix

O~ 8

1 0
y O
0 -z
positiv semidefinit ist?

Ubung 61. Eine symmetrische Bilinearform B:R" x R" — R ist genau dann Positiv
semidefinit, wenn sich die Gramsche Matrix A von B schreiben lésst als A = C ' C fiir
ein C € R™".

Ubung 62. Sei G = (V, E) ein ungerichteter Graph. Die Laplace-Matriz L € Z™" von
G ist definiert als D — A wobei A die Adjazenzmatrix von G (siehe Abschnitt 3.2) und
D = (d;;)i jey die Gradmatrix von G, d.h., die Diagonalmatrix mit Eintrédgen

g - Jerad(ui) := v [ {vi,vp} € B} falls i = j
"o falls i # j.
Zeigen Sie:
e [ ist stets positiv semidefinit.

e [ hat stets den Eigenwert 0.

Hinweis: Zeigen Sie zuniichst, dass fiir beliebiges v € R" gilt, dass
(Lo)i= Y (=),
Ji(4,5)EE

und dann, dass
-

v Lv= Z (vi—vj)2.

(i.4)EEi<j
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8.3.6 Hauptachsentransformation

Gegeben: symmetrische (hermitesche) Matrix A € R™™ (C""").
Gesucht: Hauptachsensystem, i.e., eine ON-Basis von V' = R" (C") bestehend aus
Eigenvektoren von A.

Die Matrix S mit diesen Vektoren als Spalten ist dann orthogonal (unitéir) und liefert
Diagonalmatrix D = 5" AS (D = STAS).
Loésung: Wie bei Diagonalisierung (Abschnitt 4.3.4) blos mit Orthonormalisierung.

1. Berechnung der Eigenwerte A{,..., A, von A.
2. a) Zu jedem \; Berechnung einer Basis des Eigenraums
Eig,,(A) = Kern(A - \,E) = Los(A - \E,0)
b) Gram-Schmidtsches ON-Verfahren liefert ON-Basis fiir Eig,_ (A)

3. Aneinanderreihung aller ON-Basen aus Schritt 2 (b) liefert ON-Basis (uq, ..., u,)
von V, die nur aus Eigenvektoren besteht:

Aug = pug mit {11, 5 pn} = {0, A
(uq,...,u,): Hauptachsensystem.
Bemerkung 8.3.17. Verfahren fiihrt stets zur Losung, denn

e A ist diagonalisierbar (da A symmetrisch / hermitesch);

o die zusammengesetzten Basen aus 2 (b) ergeben ON-Basis nach Abschnitt 8.2.3
(Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal, Satz 8.3.13).

Beispiel 8.3.18. Sei
3 -1
=450
(aus Abschnitt 4.3).
1. Eigenwerte. Nullstellen von det(X Fy — A) = (X — 3)2 —1: A1 =2und Xy =4

2. a) Eigenrdume. Algebraische Vielfachheit = geometrische Vielfachheit = 1.

Eigy, (A) = (v;) fiir v; = G) Eig,(4) = (v) fiir v = (—11)

b) ON-Basen.
uy - \/_/2( ) Uy + \/_/2( )
||’U1|| ||v2||
3. Hauptachsensystem ist B = (uq, ug). A

Bemerkung 8.3.19. Effiziente Algorithmen zur Berechnung der Hauptachsentransforma-
tion und deren exakte Komplexitéit sind Gegenstand aktueller Forschung; es sei wieder
verwiesen auf [4].
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8 Fuklidische und unitidre Vektorrdume

8.3.7 Kurven 2ter Ordnung und Kegelschnitte
Eine Kurve 2ter Ordnung (in der Ebene RQ) ist eine Menge der Gestalt

K :={(z1,13) € R” | az} + bxyms + cay + duy + eaxo + f = 0} (8.11)

wobei a,b,c,d,e, f € R, und a,b, c nicht alle Null. Treten z.B. auf als Kennlinien von
Bilinearformen, Abschnitt 8.1.3.

Beispiel 8.3.20. Die leere Menge fiir zum Beispiel fira=1,b=c=d=e¢=0, f = -1,

denn @ = {(21,25) € R* | 2] = —1}. A
Beispiel 8.3.21. R? zum Beispiel fira=b=c=d=e= f =0. A
Beispiel 8.3.22. Ein einzelner Punkt fiir zum Beispiel a =c=1undb=d=¢e= f =0,
denn {(0,0)} = {(21,29) € R® | 2] + 25 = 0}. A
Beispiel 8.3.23. Eine Gerade: zum Beispiel beschrieben durch x? =0. A
Beispiel 8.3.24. Eine Ellipse: zum Beispiel, fiir a,c > 0,
{(x1,29) € R? | am% + cx% =1}
Spezialfall a = ¢: Kreis. A
Beispiel 8.3.25. Eine Parabel: zum Beispiel
2, 2
{(21,22) € R" | 2] — 22 = 0}
(Scheitel im Punkt (0,0) und Achse auf der z5-Achse). A
Beispiel 8.3.26. Eine Hyperbel: Zum Beispiel
2, 2 2
{(z1,29) ER™ | 2] — 23 = 1}
(Mittelpunkt (0,0) und Hauptachse z5). A

Beispiel 8.3.27. Die Vereinigung von zwei sich schneidenden Geraden: z.B. beschrieben
durch x% - x% = 0. A

Beispiel 8.3.28. Die Vereinigung von zwei parallelen Geraden: z.B. beschrieben durch
2
T = 1. A

Dies sind im wesentlichen alle Moglichkeiten. Prazisierung mit Hilfe der Hauptachsen-
transformation.

Geometrisch Kegelschnitte: Schnitt einer Ebene mit Doppelkegel.
Experiment: Taschenlampe auf Wand, welche Fliche sieht man?

Fall 1 (leere Menge) und 8 (Parallele Geraden): Schnitt von Ebene mit Kreiszylinder
(Grenzfall eines Kegels mit Kegelspitze im Unendlichen).

Matrixdarstellung:

xTAx+(de)a:+f=0
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fiir symmetrische Matrix

[ a b2
A= (b/2 c )
Alternative:
xTBa; =0
fiir
a b/2 df2
B=|b/2 ¢ e]2
dj2 el2 f

Hauptachsentransformation: es gibt orthogonale Matrix S mit

_ T _ )\1 0
D=5 AS—(O )\2)

wobei A1, A Eigenwerte von A. Koordinatentransformation
T = Sa;', =8z
liefert (8.11) in neuen Koordinaten (z" Az = ac'TDac')
Ai(@1)” + Xo(22) +(g12) + gozs) + 1 =0

Falls \; # 0 kann durch Koordinatenwechsel auch noch das lineare Glied gia:; zum
Verschwinden gebracht werden:

9 2 _ g
iy i

AT _
)‘Z(:CZ) + g;T; = )‘l(xl+ 2)\2 4)\?

_.
=iz,

Fallunterscheidung:

1. A1A9 > 0. Ellipse oder degenerierte Félle: die leere Menge oder ein Punkt.

2. A9 = 0: Parabel oder degenerierte Félle: die leere Menge, eine Gerade, oder zwei
parallele Geraden.

3. A9 < 0. Hyperbel oder degenerierte Félle: eine Gerade oder zwei sich schneidende
Geraden.
Bemerkung 8.3.29. det A &ndert sich nicht, wenn wir drehen und verschieben.

Bemerkung 8.3.30. Kurven zweiter Ordnung im R (siehe (8.11)) haben folgende natiirliche
Verallgemeinerung im R": eine Quadrik ist eine Menge der Gestalt

n

n
{(l’l, ey l‘n) eR" | Z Q; jT;T; + 2 Z b;x; + C}
ij=1 i=1

fir ay1,...,anp,01,...,b,,c € R, wobei mindestes einer der Koeffizienten a 1,...,a,y
ungleich Null sein muss.
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quadratische
Formen

Bilinearformen

Symmetrische
Bilinearformen

Abbildung 8.2: Zusammenhang Bilinearformen, quadratische Formen, und symmetrische
Bilinearformen.

8.3.8 Klassifikation von quadratischen Formen

Klassifizieren quadratische Formen ¢: R" — R, und daher auch symmetrische Bilinear-
formen B:R™" — R (Abschnitt 8.1.3 zum Zusammenhang quadratische Formen und
Bilinearformen). Kénnen ¢ schreiben als

q(zx) = o’ Az = Az * o

wobei * das Standardskalarprodukt und A € R™" symmetrisch (siehe Abbildung 8.2).
Denn: sei B Bilinearform mit

q(z) = B(z,z) = Z B(e;, ej)xix;.
1<i<j<n
Sei A die Matrix mit Eintrigen a;; := B(e;,e;) und a;; = B(e;,e;)/2 fiir i # j. Dann
gilt
Q(x) = B(fEaﬂf) = Z Q; jT;T5 = xTA.’L“.

1<i,j<n
Also kénnen wir eine ON-Basis von R" finden, die A diagonalisiert, d.h.
A

A=SDS'=5 S
An

T

fiir eine orthogonale Matrix S € R™". Schreiben y fiir '« (Koordinatenwechsel), und
erhalten (wie in (8.8))

T T T 2 2
qlz) =2 SDS =y Dy= ANyl + -+ A\,

Klassifikation:
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e Alle Ay,..., A, positiv oder alle negativ: ¢ ist elliptisch.
e Mindestens ein A; ist Null: ¢ hei3t parabolisch.

e Sonst (also alle \; ungleich Null, und es gibt sowohl positive als auch negative
Werte): ¢ heifit hyperbolisch (oder auch indefinit).

Wie kann man den Typ von ¢ entscheiden, ohne die Nullstellen des charakteristischen
Polynoms zu berechnen?

Lemma 8.3.31 (Vorzeichenregel von Descartes). Sei ¢ € R[X] ein Polynom so dass
O(X) = X" +ap X" H kg X +ag = (X =) (X = A\) (8.12)
fir A,..., A, €ER.
1. 0 st genau dann Nullstelle von ¢, wenn ag = 0.
2. Alle Nullstellen von ¢ sind negativ < a,_1,...,a9 > 0.

3. Falls n gerade ist:
alle Nullstellen von ¢ positiv & a,—1 < 0,a,-9 >0,...,a1 <0,a9 > 0.

v
alternierend

4. Falls n ungerade ist:
alle Nullstellen von ¢ positiv < a,—1 < 0,a,-9 >0,...,a17 >0, ag < 0.

Beispiel 8.3.32. Die Nullstellen von X° — X>+ X =1 und von X* - X* + X> - X + 1
sind alle positiv. A

Beweis. e Die erste Aussage ist klar (X ausklammern).

e Beweis der zweiten Aussage.
= folgt aus (8.12): falls Aq,..., A\, negativ sind, dann sind a,_1,...,aq positiv,
denn ausmultiplizierte positive Ausdriicke haben positive Koeffizienten.
<: wenn ag,ay,...,a,_1 positiv sind, dann ist ¢(¢) > 0 fiir alle nicht-negativen
t € R, also sind alle Nullstellen von ¢ negativ.

e Die dritte Aussage:

Alle Nullstellen von ¢(X) positiv
< Alle Nullstellen von p(—X) negativ
< Koeffizienten von ¢(—X) positiv (nach Teil 2)

= a,-1 <0,a,-9>0,...,a1 <0,a9 >0

Hier ist Teil 2 anwendbar, da ¢(—X) weiterhin normiert, wenn n gerade ist.
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8 Fuklidische und unitidre Vektorrdume

e Die vierte Aussage: analog zur dritten. O

Mit dem einfachen ersten Kriterium in Lemma 8.3.31 konnen wir also einfach ent-

scheiden, ob eine quadratische Form ¢ parabolisch ist. Mit den iibrigen Kriterien 148t
sich feststellen, ob ¢ elliptisch ist. Ansonsten ist ¢ hyperbolisch.

Ubung 63. Erklidren Sie, warum die Terminologie zu elliptischen, parabolischen, und
hyperbolischen quadratischen Formen zusammenpasst mit der Klassifikation von Kurven
zweiter Ordnung in Ellipsen, Parabeln, und Hyperbeln (oder degenerierten Féllen).

8.3.9 Anwendung: Hauptkomponentenanalyse

Experiment: Probanden beantworten Personlichkeitsfragen zu Ihnen bekannten Perso-
nen, z.B.: “Nimmt sich die Person Zeit fiir Andere?”, “Wird die Person schnell zornig”,
etc., auf einer Skala von {1,...,10} (“trifft iiberhaupt nicht zu”, ..., bis “trifft voll und
ganz zu”)

: Grundmenge aller moglichen Versuchsergebnisse (Annahme: endlich).
P:P*% - [0,1] ¢ R: WahrscheinlichkeitsmaB.

Seien Xq,...,X,,: Q) — R Zufallsvariablen.

In der Anwendung etwa: X;(w) = a falls im Versuchsergebnis w € Q die Frage i mit a
geantwortet wird.

Schreiben X fiir die Zufallsvariable (X1,...,X,), die w € Q abbildet auf

(X1 (@), ..., X, (w)) € R

Summe und Produkt von Zufallsvariablen, oder von Zufallsvariablen und reellen Zahlen,
sind punktweise definiert: Beispielsweise ist XY die Zufallsvariable, die w € §2 abbildet
auf X (w)Y (w). Wir schreiben X =i als Abkiirzung fiir {w € Q | X (w) = i}.

Definitionen fiir Zufallsvariablen X,Y":

e Frwartungswert von X:

E[X]:= ) X(w)P({w})

weN
Schitzung von E[X;] im Experiment: Fiir Stichproben wy,ws,...,w, berechne
arithmetisches Mittel % Y jet..my Xi(wj).

o Varianz von X:
VIX]:= E[(X - E[X])’]

e Kowvarianz von X und Y:
Cov[X,Y]:=E[(X -FE[X])- (Y —E[Y])]

Verallgemeinerung der Varianz V[X] = Cov[ X, X ].
Erhalten Information iiber ‘Korrelation’ zwischen X und Y. Beispiel: die Frage
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8.3 Klassifikation bis auf orthogonale und unitéire Ahnlichkeit

“Wird die Person schnell zornig” und “Hupt die Person héufig im Straflenverkehr”
sind vermutlich positiv korreliert.

Cov[X,Y] = E[(X - E[X])(Y - E[Y])]
= E[XY - XE[Y] - E[X]Y + E[X]E[Y]]
= E[XY] - E[XE[Y]] - E[E[X]Y]+ E[E[X]E[Y]] (Linearitit von E[.])
= E[XY]-E[X]E[Y]-E[X]E[Y]+ E[X]E[Y] (E[const] = const)
= E[XY] - E[X]E[Y] (8.13)

Insbesondere gilt also
V[X]=E[XX]-E[XT]. (8.14)

Falls X und Y unabhingig sind, gilt Cov[X,Y ] = 0, denn

E[XY]= ) X(w)-Y(w)Pr[{w}] (Definition)
we
= Z (i- Pr(XY =1)) (Summe endlich da 2 endlich)

kl-Pr(X = kund Y = 1))

kl-Pr(X = k)Pr(Y =1)) (X und Y sind unabhéngig)

;(
;(

= E[X]E[Y].
Erhalten Schitzung von Cov[ X;, X;] aus dem Experiment: fiir Stichproben wy,ws, ..., wy,
berechne )
— Y (Xiwr) - BLXGD (Y (wr) - BLX;D).
ke{l,....m}

Die Kovarianzmatriz: Matrix aller paarweisen Kovarianzen von X = (X1,...,X,)

Cov[Xy, X1] -+ Cov[Xy, X, ]

Cov[X]:= : : e R™"
Cov[X,,X ] - Cov[X,,X,]

Cov[X] ist symmetrisch!
Schitzung der Kovarianzmatrix ebenfalls symmetrisch.

Satz 8.3.14 liefert: Cov[ X ] (bzw. Schiitzung von Cov[ X ]) ist orthogonal diagonalisierbar!
Bedeutung der Eigenwerte und -vektoren?

Lemma 8.3.33. Die normierten Figenvektoren zum grdfSten FEigenwert von COV[X']

. . . o . T2 o
sind genau die normierten Vektoren u € R", die die Varianz V[u' X] mazimieren.
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8 Fuklidische und unitidre Vektorrdume

Beweis. Es gilt
V[uT)?] = E[uT)?uTX'] - E[uT)_(;]2 (siehe (8.14))

= (B[Xu' X]-E[X]E[u' X])

=u (B[XX"]-E[X]E[X] )u

=u' Cov[Xu (see (8.13)).
Nach Satz 8.3.14 gibt es ein Hauptachsensystem (v1,...,v,) fiir COV(X ), so dass v; ein
EV von Cov(X) zum EW \; mit \; = Ay = - = \,. Sei S die Matrix mit Spalten
V1, ,Up. Also

A1 0
-

Cov(X) =S S,
0 An

Sei w := S u. Da u normiert und S orthogonal, ist w normiert! Dann gilt
u' Cov(X)u = w' SDS"u=w' Dw
n
= Zw?)\i (siehe (8.9))
i=1
2 2
< Ar(wi + - +wy) = Aflw]]= A

Also gilt fiir alle v € R", dass V[UTX ] < A1 Fiir den Vektor u = v; gilt Gleichheit, da
dann

T T
w=S vy=|.|undw Dw= ).

0

Die normierten Eigenvektoren u zum grofiten Eigenwert von COV[X' ] maximieren also
V[uT)Z' ]. Umgekehrt, falls u € R normiert so dass V[uT)Z' ] maximal, dann muss gelten
w' Dw = A1, also w; = 0 falls \; < Aq. Also ist w eine Linearkombination von {v; | \; =
A1}. Also ist auch u ein Eigenvektor zum Eigenwert ;. O

Betrachten in unserer Anwendung die fiinf grofiten Eigenwerte und zugehorige Eigen-
vektoren. Haben im wesentlichen” psychologische Interpretation:

1. Extraversion (zuriickhaltend und reserviert vs. gesellig),

2. Neurotizismus (selbstsicher und ruhig vs. emotional und verletzlich),

3Psychologische Modelle sind noch etwas komplizierter; ausgehend von den fiinf groffiten Eigenwerten
und deren Eigenvektoren wird im ‘Big Five’ Modell noch nach weiteren psychologisch relevanten
Kriterien optimiert.
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3. Offenheit fiir Erfahrungen (konservativ und vorsichtig vs. erfinderisch und neugie-
rig),

4. Vertriglichkeit (wettbewerbsorientiert und antagonistisch vs. kooperativ, freund-
lich, mitfiihlend), und

5. Gewissenhaftigkeit (unbekiimmert und nachlissig vs. effektiv und organisiert).

“The big five”. Klassiker in der Psychologie. Ergebnis sehr stabil, z.B. bzgl. Verdnderungen
bei den Details des Experiments:

e andere Fragen,

e andere Skalen fiir die Antworten,

e andere Proband:innen,

e Fragen nicht {iber andere Personen, sondern iiber sich selbst, etc.

Zudem ist Ergebnis weitgehend kulturstabil.

Eine weitere psychologische Entdeckung ist, dass sich mit dem gleichen Ansatz zu Fra-
gebogen fiir Intelligenztests ein mit Abstand grofiter Eigenwert findet. Der zugehorige
Eigenvektor ist die Definition von Intelligenz (und der Begriff ‘Intelligenz’ erst danach
in die Alltagssprache iibergegangen).

Das Verfahren hat ebenfalls Anwendungen in Bilderkennung, Spracherkennung, ma-
schinellem Lernen, etc. (“Clustering”). Die Hauptkomponentenanalyse ist eine “ezplo-
rative Faktorenanalyse”, und nicht zu verwechseln mit “konfirmatorischer Faktorenana-
lyse”. Der Autor dankt Timo von Oertzen fiir Erklarungen zu den Anwendungen der
Hauptkomponentenanalyse in der Psychologie.

Ubung 64. Zeigen Sie, dass Kovarianzmatrizen stets positiv semidefinit sind (siche Ubung 58).

8.3.10 Spektralsatz

Klédren nun: orthogonale Diagonalisierbarkeit.

Symmetrische Matrizen sind orthogonal diagonalisierbar, aber welche noch?
f:V = V diagonalisierbar gdw. V eine Basis hat aus Eigenvektoren von V.
Wann hat V' eine ON-Basis aus Eigenvektoren von f7

Definition 8.3.34. Eine Matrix A € R™" heifit normal falls
AT A=A-A".

Analog heit B € C"™" normal falls
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8 Fuklidische und unitidre Vektorrdume

Bemerkung 8.3.35. e Symmetrische Matrizen mit A" = A sind offensichtlich normal
AT A=A-4=4-4T
e Orthogonale (und hermitesche) Matrizen A7 = A" sind normal
ATA=A""A=E, =A4"" = 44"

Fiir A € C™" heift die Matrix A' die Adjungierte von A. Falls A € R™" ist die
. . . T
Adjungierte gleich A .

Lemma 8.3.36. Sei A € C"" und * das Standardskalarprodukt von C. Dann gilt
=T
Arxy=x%x (A y)
(Ubrigens: diese Eigenschaft charakterisiert die Adjungierte bereits eindeutig).
Beweis. Es gilt

Ax *y = (A:J;)ng Definition Standardskalarprodukt)

(
T 4T . oy
=x Ay (Rechenregel fiir Transposition)
= :UT(A)Ty) (Rechenregel fiir Konjugation)
=z x (ATy) (Definition Standardskalarprodukt) O

Folgendes geht natiirlich auch wieder unitar ...

Fiir A € R™" gilt:
A=0e (Az *y =0 fiir alle z,y € R")

= ist trivial, <: mit y := Az haben wir Az * Az = 0, und damit Az = O fiir alle z € R",
und damit A = 0 (Ubung 12). Falls A symmetrisch ist, ldsst sich mehr sagen:

Lemma 8.3.37. Sei A € R™" symmetrisch. Dann gilt:
A=0 & VzeR": Az *xx=0
Bewets. = ist trivial, <:

0=A(z+y)* (z+y)
=Aw;k9:+A:c*y+Ay*1:+Ay*y
= =0

= Az xy+y* Az da A =4
=2Ax %y

Setze y = Az, dann erhalten wir 0 = Az % Az = ||Az||* fiir alle z € R”, also A = 0
(Ubung 55). O
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Bemerkung 8.3.38. Falls A nicht symmetrisch ist, gilt Lemma 8.3.37 im Allgemeinen
nicht: fiir

A= (O _1) ‘schiefsymmetrische’ Matrix

gilt fir alle x € R
Arxx=—ax % Arx = —-Ax xx
also Az % ¢ = 0.

Proposition 8.3.39. Eine Matriz A € R™" (A € C"") ist genau dann normal, wenn
fiir alle x € R" (z € C")

T iT
|Az|| = [|A " z]| |Az|| = ||A" z]|

Beweis. Fiir alle x € R" gilt

| Az|| = [|AT ]|
= ||Az|® = ||A 2|
<=>A.CU*AI=ATLL“*AT.T
erxA Av=x% AA 2 (Lemma 8.3.36)

Sox(ATA-AA Yz =0

was genau dann der Fall ist, wenn ATA = AAT: Denn < ist trivial, und = folgt aus
Lemma 8.3.37, da ATA— AA" = (ATA)T - (AAT)T selbstadjungiert. O

Lemma 8.3.40. Eine Matriz A € R™" ist genau dann normal, wenn BC = CB wobei
B=(A+A")/2 und C = (A-A")/2.

Beweis.
BO=(A+A")/2(A-A")/2
= (A2 (A +ATA-AAT)/4
CB=(A"- (A" = ATA+AA")/4
Also

BCO=CB < A"A—AA" = —ATA+ AA"
= AA"=ATA O

Lemma 8.3.41. Sei A € R™" und sei M € R" invariant unter sowohl f := f4 als auch
fT := fq7. Dann ist M7 ebenfalls f- und fT—im/am'ant.
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8 Fuklidische und unitidre Vektorrdume

Beweis. Sei x € M und y € M'. Zu zeigen ist:

z* f(y)=0 (= M st f-invariant)
T * ny =0 (= M st fT—invariant)
Einfach:
x* f(y) = fT(x) xy=0 (da M fT—invariant)
T * ny =f(zx)*y=0 (da M f-invariant) O

Satz 8.3.42 (Spektralsatz). Sei V' euklidischer VR, dimV =n, und f € End(V'), und
A= Mg(f) beziiglich einer Basis B von V. Die folgenden Aussagen sind dquivalent:

1. A ist orthogonal diagonalisierbar.
2. Es eistiert eine ON-Basis von R" aus Eigenvektoren von f;
3. Das charakteristische Polynom x ¢ zerfdllt in Linearfaktoren und A ist normal;

Beweis. (2) = (1): wissen bereits (Satz 4.3.19): f ist diagonalisierbar.
op fir B = (by,...,b,) ist der kanonische Basisisomorphismus

(z1,...,2,) > 21by + -+ + 2,0,
Fiir ON-Basis (wq,...,w,) aus Eigenvektoren von f seien
-1 -1
Uy = ¥p (w1)7' cyUp = YR (wn)

die Koordinatenvektoren und S := (u1 un) ist die gesuchte Transformationsmatrix
mit D = ST'AS. Es gilt nun

;5 = w; * w; (da (wq,...,w,) ON-Basis)
= ulT u; (da * Standardskalarprodukt) .
AlsoS'S=E,dh,S =5
(1) = (2): wenn uq,...,u, Spalten von S, dann ist w;y := pp(uy),...,w, = pg(u,)
ON-Basis aus Eigenvektoren wegen uZT uj = w; k w;j.
(1) = (3):Falls D =S 145 =STAS diagonal, dann ist auch D' diagonal. Fiir solche
Matrizen gilt D'D=D"D.DaD" =S"A"S und damit AT = SD'S" haben wir
AAT = 5pS'SD'ST = spD' ST
=9D'DS' =SD'S'SDST = AT A
Also ist A normal. Und: x4 = xp zerfallt in Linearfaktoren (Satz 4.3.19).

(3) = (2): Ahnlich zum Beweis von Satz 8.3.14.
(Idee war: zeige fa-Invarianz vom orthogonalen Komplement zu einem Eigenvektor.)
Setze fT 1= fyT.
Ziel: Finde Eigenvektor z so dass M := (x) sowohl f,4 als auch # T -invariant.
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e Setze B:= (A+A')/2und C := (A— A")/2. Lemma 8.3.40: BC = CB.

e Wenden Satz 8.3.14 (Spektralzerlegung) auf die symmetrische Matrix B an:
finden & € R und y € K := Kern(B — aF,). Dann gilt fo(K) € K. Sei z € K. Zu
zeigen ist, dass Cz € K.

(B-aFE,)(Cz) = BCx —aCx
=CBzx - Cax
=C(B-aE,)z=0.
e Wenden Satz 8.3.14 auf symmetrische Matrix (fo)|x an: finden x € K mit Cx =

Bx. Dann gilt
Ax = Br+ Czr = ar + Bz = (a + B)x,

also ist = ein EV von f.
e Nach Lemma 8.3.41 ist M sowohl fa- als auch f T invariant.

T T _.
e flyt: M — M  wieder normal.

Induktion wie im Beweis von Satz 8.3.14. O]

Analog erhélt man den folgenden Satz fiir unitéire Vektorrdume.
Satz 8.3.43. Es sei A € C"". Die folgenden Aussagen sind dquivalent:

1. A ist unitir dhnlich zu einer Diagonalmatriz. (Man sagt, A ist unitir diagonali-
sierbar. )

2. Es existiert eine ON-Basis von C" aus Eigenvektoren von A.

3. A ist normal.

Korollar 8.3.44 (Klassifikation bis auf unitire Ahnlichkeit). Zwei normale Matrizen
sind genau dann unitdr dhnlich, wenn sie die gleichen Figenwerte (mit den gleichen

Vielfachheiten) haben.
Korollar 8.3.45 (Normalform unitéirer Matrizen). Eine Matriz A € C" ist genau
dann unitir (A~ = flT), wenn sie zu einer Diagonalmatriz unitir dhnlich ist, deren
Diagonalelemente alle den Betrag 1 haben, d.h., 3S € U(n) mit

A1 0

STAS =

0 An
mit |>\z| =1.
Beweis. =: Falls A unitér ist, dann auch normal, und unitére Diagonalisierbarkeit folgt
direkt aus Satz 8.3.43. Aussage folgt, da alle Eigenwerte von unitdren Matrizen Betrag
1 haben (Satz 8.3.2).

<: Fiir Diagonalmatrizen D ist D' = D. Falls alle Diagonalelemente Betrag 1 haben,

gilt DD = E: denn fiir alle d € C gilt dd € R, und falls ||d||= 1 so folgt |d| = 1. Also ist
D unitéir. Und damit auch A = SDS' als Produkt unitirer Matrizen. O
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8.4 Der Silverstersche Tragheitssatz
Im Abschnitt 7.1.4 haben wir Matrizen bis auf Ahnlichkeit klassifiziert:
A = B genau dann, wenn es invertierbares S gibt mit B = S “1AS.
Im Abschnitt 8.3.3 dann bis auf orthogonale (bezichungsweise unitire) Ahnlichkeit:
A =yho B genau dann, wenn es orthogonales S gibt mit B = S “tas = ST AS.
Eine weitere interessante Aquivalenzrelation ist auf R™" definiert durch
A =1 B genau dann, wenn es invertierbares S gibt mit B = .S TAS.

In diesem Fall werden A und B auch kongruent genannt. Die Bedeutung von Kongruenz
aus der Sicht der Bilinearformen B:R" x R" — R erklirt sich durch den folgenden
Zusammenhang.

Lemma 8.4.1. Seien A,A' e R™". Es gilt genau dann A ~t A', wenn A und A' die
Gramschen Matrizen von derselben Bilinearform sind.

Beweis. Fiir den Beweis der Riickrichtung sei S = (eq,...,e,) die Standardbasis von
R", und T = (vy,...,v,) eine andere Basis, d.h., P := (v; -+ wv,) ist invertierbar.
Sei A = (a;;) Gramsche Matrix von B beziiglich S, also a;; = B(e;,e;). Dann ist
A =T P' AP die Gramsche Matrix von B beziiglich T, denn
B(v;,v;) = viTAvj
-
= (Pez) A(Pe])
= ¢, (PTAP)e;.

Der Beweis der Vorwiértsrichtung ergibt sich aus der gleichen Rechnung. O

Bemerkung 8.4.2. Kongruente Matrizen haben den gleichen Rang.

Bemerkung 8.4.3. Die Eigenwerte einer quadratischen Matrix sind im Allgemeinen nur
unter Ahnlichkeit von Matrizen invariant, nicht aber unter ~7.

Sei V ein n-dimensionaler euklidischer Vektorraum und A € R™" symmetrisch (bzw.
f:V - V selbstadjungierte Abbildung). Dann sind alle Eigenwerte Ay, ..., A, reell und

Xp(X)=(A=X)----- (A = A).
Seien

ny = Anzahl der \; >0
n_ := Anzahl der \; <0
np := Anzahl der \; =0
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Dann heiit (ny,n_,ng) bzw. (ny,n_) die Signatur (oder der Typ, oder die Trdgheit4)
von A (bzw f), bzw. die Signatur der Bilinearform B(z,y) = :UTAy, bzw. die Signatur
der quadratischen Form ¢(z) := 2! Ax.

rg(A)
ny+n_+ng=n=dmV

ny +n_

Satz 8.4.4 (Sylvesterscher TréigheitssatzS). Es sei A € R™" eine symmetrische Matrizx.
Dann gilt

1 0

Ny
1
-1
A= Dy, n g t= n_
-1
0

L

0 0

Weiterhin: falls (ny,n’,ng) # (ny,n_,ng), dann gilt Dyt nl ) #T Dy, n_ny- Insbeson-
dere gilt also genau dann A =T A', wenn A und A' dieselbe Signatur besitzen (Klassifi-
kation durch charakteristische Daten, Abschnitt 7.1.1).

Das heifit, es gibt eine invertierbare Matrix P so dass D := PTAP. Die Spalten von
P bilden eine Basis von R"; diese heifit Sylvesterbasis der Bilinearform x * y := xTAy.

Beweis. Nach Satz 8.3.14 gibt es eine orthogonale Matrix .S mit
A1 0

D:=S5TAS = -
0 An

wobei Ap, ..., A, die EW von A. Ohne Beschrénkung der Allgemeinheit sind Ay,..., A,

* “This constant number of positive signs which attaches to a quadratic function under all its transfor-
mations (... ) may be termed conveniently its inertia, until a better word is found.” (from Sylvester’s
article “On the Theory of the Syzygetic Relations”.

5 “(...) my view of the physical meaning of quantity of matter inclines me, upon the ground of analogy,
to give [this law] the name of the Law of Inertia for Quadratic forms, as expressing the fact of the
ezistence of an invariable number inseparably attached to such forms.” from Sylvester’s article “On
a Theory of the Syzygetic Relations of Two Rational Integral Functions, Comprising an Application
to the Theory of Sturm’s Functions, and That of the Greatest Algebraical Common Measure”.
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positiv, Ay, 41, -+ .y Ap,+n_ negativ, und A, 4, 41 =+ = A, = 0. Seien
1 .
o = —— firie {1,...,n4}
Vi
1 .
o = firi e {n, +1,...,ny +n_}
Y
;=1 firie{n,+n_+1,...,n}
Setze
(&3] 0
Qp,
O, +1
Q=
Ap,+n_
1
0 1

@ ist invertierbar (denn alle Werte auf der Diagonalen sind ungleich 0) und QT =Q
(aber QT # Q_I!). Es gilt

1 0
1
. -1
Q DQ =
-1
0
0 0
denn

o fiiri e {1,...,n.} gilt oy \ja; = ﬁ =1,
o fiir i € {n+ +1,.. .,TL_} gilt a; \ay; = % = -1,
o fiiri € {n_,...,n} gilt a;\;a; = % =

Also folgt fiir P := SQ € GL(n,R)
PTAP = (SQ)TA(SQ)=Q"STASQ = Q' DQ

die angegebene Normalform.
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n+,n'_,nz) =T Dn+,n_,n0~ Dann gilt n{) = no,
da kongruente Matrizen denselben Rang haben (Bemerkung 8.4.2). Da

Fiir die Eindeutigkeit nehmen wir an, dass D,

. I 1 1
ny +n_ +ng=dimV =n, +n_ + ng,

genligt es zu zeigen, dass n, = n'+ Die Matrizen Dy, ,_n, und D, oy sind nach
Lemma 8.4.1 Gramschen Matrizen derselben Bilinearform B:R"™ x R" — R. Wir stellen
fest, dass n, gleich der Dimension d ist des gréften Untervektorraums U < R", so dass
Blyxy positiv definit ist (siehe Korollar 8.3.15): Klarerweise ist B positiv definit auf
(e1,...,en,),alsogilt d 2 ny. Auf V := (e, 11,...,e,) dagegen ist B negativ semidefinit
(siehe Ubung 58), also gilt U NV = {0}. Das impliziert, dass d < n —dim(V) =n—-n_ —
no = ny. Bs gilt also p = ny. Also auch n}y = p, und (ny,n_,ng) = (ny,n", ny). O

8.5 Singularwertzerlegung

Zur Einordnung;:

H Klassisch, S (und T') invertierbar ‘ S (und T') orthogonal /unitér

S7TAS || Ahnlichkeit Orthogonale /unitire Ahnlichkeit
Abschnitt 7.1.4 Abschnitt 8.3

SAT Aquivalenz Orthogonale/unitére Aquivalenz
Abschnitt 7.1.2

Vorteile:

e Auch anwendbar fiir lineare Abbildungen zwischen Vektorrdumen V, W (mit Ska-
larprodukt) verschiedener (endlicher) Dimension;

e ecffiziente numerische Verfahren, grofie Bedeutung in der numerischen Mathematik;
e mathematischer Kern der Hauptkomponentenanalyse in der multivariaten Statis-

tik, mit Anwendungen in der Datenkompression.

Satz 8.5.1. Sei A € R™™ (A € C""™). Dann gibt es ON-Basis B = (eq,...,em) von
R™ und C = (f1,..., fn) von R" so dass fiir ein k < m gilt:

fler) = Aifi,..o, flew) = A S
flegs1) == flem) =0
A1 0

ME(fa) = e
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8 Fuklidische und unitidre Vektorrdume

A, ...y Ay sind natiirlich keine Eigenwerte! Aber ein guter Ersatz dafiir.

Beweis. Wenden den Spektralsatz (Satz 8.3.14) auf die symmetrische Matrix AT A an.
Erhalten ON-Basis eq, ..., e, fir R™ so dass ATAeZ- = 0;e;. Dann gilt:

T
Aei * Aej =A Aei * €; = 0i€; * €; = Ui(sij-

Sortieren um, so dass oy,...,0 # 0.
Definieren f; := IIAf\ZII fir i € {1,...,k}.
Ergiénzen f1, fo,..., fr zu einer ON-Basis fi,..., f,, von R". ]

8.6 Ubersicht Aquivalenzrelationen

In Abbildung 8.3 findet sich eine Ubersicht zu Aquivalenzrelationen auf Matrizen, in der
Reihenfolge ihrer Einfithrung im Skript.
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8.6 Ubersicht Aquivalenzrelationen

Nornmalform /

Symbol Definition Name charakteristische Motivation
Daten
A= SBT, . fundamental,
A~B S,T € GL(n,R) Aquivalenz — Rang Abschnitt 3.2.2
A=S"BS, < . FrobeniusNF  f € End(V)
A=B S € GL(n,R) Ahnlichkeit Jordan-NF klassifizieren
A=5B, . . . .. .
S € GL(n,R) Zeilen- Reduzierte Zei- Los(A,b) iiber K,
’ dquivalenz lenstufenform Abschnitt 3.3.4
A=B
S.’ . Unimodulare Hermite-NF Los(A,b) iiber Z,
det S Einheit . .
Spalten- Ideen fiir Smith-
dquivalenz NF
A= SBT,
det S und Unimodulare Smith-NF AL10, Frobenius-
det T Einheiten Aquivalenz NF ausrechnen
_ ol _ o1
A=, B i;l _i BS _1 5 BS, Orthogonale fiir normale Ma- Quadratische For-
orthogona Ahnlichkeit  trizen: Spektral- men  klassifizie-
satz ren, Hauptkom-
ponentenanalyse,
Optimierung,
Datenreduktion,
ol
A=T B A=5 BS, Kongruenz  Signatur Symmetrische Bi-
S € GL(n,R) .
linearformen klas-
sifizieren
_al
4=75 BT, Orthogonale  Singulédrwert- Wie bei =guh,
S, T orthogonal v .
Aquivalenz  zerlegung aber  numerisch
robuster

Abbildung 8.3: Aquivalenzrelationen auf Matrizen, entsprechende Normalformen, und
Anwendungen
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