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1 Introduction

Around the first years of this millenium, several previously separate research communities
realised that many of their central questions are essentially the same: in the late 80s and 90s,
the graph homomorphism community intensively studied the computational complexity of
the H-colouring problem [62]. Independently, the theoretical artificial intelligence community
studied constraint satisfaction problems and their computational complexity (including the
important Boolean CSPs which were classified by Schaefer [88] in 1978). In the late 90s,
researchers realised that universal algebra provides the right tools for this task [38, 66]. The
paper by Feder and Vardi, whose conference version appeared in 1993, is probably the most
influential article in the area and has inspired generations of researchers [54,55]. It formulates
for the first time the dichotomy conjecture, which has been solved in 2017 by Bulatov [36]
and by Zhuk [96]. It also links the topic with finite model theory. For example, it identifies
Datalog from database theory as an important framework that captures many of the central
consistency algorithms that have been used to solve CSPs. Feder and Vardi prove that a
complexity dichotomy for finite-domain CSPs implies a complexity classification for the frag-
ment of NP called MMSNP. They also prove that every finite-domain CSP is computationally
equivalent to the H-colouring problem for some finite digraph, thus further substantiating the
connection between graph homomorphisms and constraint satisfaction.

This course starts very concretely, in the setting of digraphs rather than the more general
setting of relational structures, because digraphs are notationally simpler than general struc-
tures. Digraphs are ideal for black-board teaching, because they are easy to draw and it is
easy to come up with interesting examples. After having introduced the basics of the theory
of graph homomorphisms in Section 2, we present an algorithm of outstanding importance:
the so-called arc consistency procedure. This algorithm is theoretically very well understood.
Moreover, it is practically important, because of its low time and space requirements, because
it is easy to implement, and because it is widely applicable. Numerous exercises that we for-
mulate at the end of the subsections can be easily solved if the reader properly understands
the underlying principles of arc consistency.

The arc consistency procedure can be generalised to the k-consistency procedure, which is
more powerful, and still in P, but more demanding in time and space requirements. Theoret-
ical results in later sections of this course show that if k-consistency solves the H-colouring
problem, then so does the 3-consistency algorithm. This algorithm is sometimes referred to
as the (strong) path-consistency procedure and it is the topic of Section 4. A full description
of when this procedure solves the H-colouring problem has to wait until Section 15 of the
course, but we do see some sufficient conditions that can be used to answer the question for
many concrete digraphs H.

At some point, the restriction to digraphs becomes unnatural; we step to general relational
structures in Section 5. This will be the appropriate setting for presenting the main tools
for complexity classification, which are, in increasing strength, primitive positive definitions,
primitive positive interpretations, and primitive positive constructions. Primitive positive
constructions are part of the statement of a solution to the Feder-Vardi dichotomy conjecture:
if a finite structure admits a primitive positive construction of K3 (the complete graph with
three vertices), then its CSP is NP-hard (a statement that we prove in Section 5); otherwise,
its CSP is in P (this is the content of the result of Bulatov [36] and of Zhuk [96]).

All three of these concepts (pp definitions, pp interpretations, and pp constructions)
can also be characterised universal-algebraically, in terms of polymorphisms. For primitive
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positive definability, this can be found in Section 6, where we also apply it to prove Schaefer’s
complexity dichotomy result for CSPs of two-element structures. The universal-algebraic
theory that captures primitive positive interpretations is presented in Section 8, and the
universal-algebraic theory for primitive positive constructions in Section 9.

In Section 10 we show the Hell-Nešetřil dichotomy for the H-colouring problem for finite
undirected graphs H. From this result we obtain a universal-algebraic formulation of the
complexity dichotomy for all finite structures in terms of a Siggers polymorphism (of arity six).
A much more informative formulation of the complexity dichotomy uses cyclic polymorphisms
in Section 14, which is substantially more difficult to prove. In particular, we need the
fundamental theorem of abelian algebras from Section 12, and absorption theory, developed
by Barto and Kozik [12] and presented in Section 13.

Concerning algorithms for CSPs, we treat the Bulatov-Dalmau algorithm for structures
with a Maltsev polymorphism (Section 7), and in Section 15 the bounded width case (i.e.,
the CSPs that can be solved by Datalog). A complete algorithm that solves all tractable
finite-domain CSPs is outside of the scope of this course.

2 The Basics

We mostly work with finite graphs; results that also hold for graphs with infinitely many
vertices are only treated when it comes with no extra effort.

2.1 Graphs and Digraphs

The concepts in this section are probably known to most students, and can safely be skipped;
the section fixes standard terminology and conventions from graph theory and can be con-
sulted later if needed. Almost all definitions in this section have generalisations to relational
structures, which will be introduced in Section 5; however, we focus exclusively on graphs in
this section since they allow to reach the key ideas of the underlying theory with a minimum
of notation.

A directed graph (also digraph) G is a pair (V,E) of a set V = V (G) of vertices and a
binary relation E = E(G) on V . Note that in general we allow that V is an infinite set. For
some definitions and results, we require that V is finite, in which case we say that G is a finite
digraph. However, since this course deals exclusively with finite digraphs, we will omit this
most of the time. The elements (u, v) of E are called the arcs (or directed edges) of G. Note
that we allow loops, i.e., arcs of the form (u, u); a digraph without loops is called loopless. If
(u, v) ∈ E(G) is an arc, and w ∈ V (G) is a vertex such that w = u or w = v, then we say
that (u, v) and w are incident.

An (undirected) graph is a pair (V,E) of a set V = V (G) of vertices and a set E = E(G) of
edges, each of which is an unordered pair of (not necessarily distinct) elements of V . In other
words, we explicitly allow loops, which are edges that link a vertex with itself. Undirected
graphs can be viewed as symmetric digraphs: a digraph G = (V,E) is called symmetric if
(u, v) ∈ E if and only if (v, u) ∈ E. For a digraph G, we say that G′ is the undirected graph of
G if G′ is the undirected graph with V (G′) = V (G) and where {u, v} ∈ E(G′) if (u, v) ∈ E(G)
or (v, u) ∈ E(G). For an undirected graph G, we say that G′ is an orientation of G if G′ is
a directed graph such that V (G′) = V (G) and E(G′) contains for each edge {u, v} ∈ E(G)
either the arc (u, v) or the arc (v, u), and no other arcs.
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For some notions for digraphs G one can just use the corresponding notions for undirected
graphs applied to the undirected graph of G; conversely, most notions for directed graphs,
specialised to symmetric graphs, translate to notions for the respective undirected graphs.

2.1.1 Examples of graphs, and corresponding notation

• The complete graph on n vertices [n] := {1, . . . , n}, denoted by Kn. This is an undirected
graph on n vertices in which every vertex is joined with any other distinct vertex (so
Kn contains no loops).

• The cyclic graph on n vertices, denoted by Cn; this is the undirected graph with the
vertex set {0, . . . , n− 1} and edge set{

{0, 1}, . . . , {n− 2, n− 1}, {n− 1, 0}
}

=
{
{u, v} : |u− v| = 1 mod n

}
.

• The directed cycle on n vertices, denoted by ~Cn; this is the digraph with the vertex set
{0, . . . , n− 1} and the arcs

{
(0, 1), . . . , (n− 2, n− 1), (n− 1, 0)

}
.

• The path with n + 1 vertices and n edges, denoted by Pn; this is an undirected graph
with the vertex set {0, . . . , n} and edge set

{
{0, 1}, . . . , {n− 1, n}

}
.

• The directed path with n+ 1 vertices and n edges, denoted by ~Pn; this is a digraph with
the vertex set {0, . . . , n} and edge set {(0, 1), . . . , (n− 1, n)}.

• A tournament is a directed loopless graph G with the property that for all distinct
vertices x, y either (x, y) or (y, x) is an edge of G, but not both.

• The transitive tournament on n ≥ 2 vertices, denoted by Tn; this is a directed graph
with the vertex set {1, . . . , n} where (i, j) is an arc if and only if i < j.

Let G and H be graphs (we define the following notions both for directed and for undi-
rected graphs). Then G]H denotes the disjoint union of G and H, which is the graph with
vertex set V (G) ∪ V (H) (we assume that the two vertex sets are disjoint; if they are not,
we take a copy of H on a disjoint set of vertices and form the disjoint union of G with the
copy of H) and edge set E(G) ∪ E(H). A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). A graph G′ is an induced subgraph of G if V ′ = V (G′) ⊆ V (G) and
(u, v) ∈ E(G′) if and only if (u, v) ∈ E(G) for all u, v ∈ V ′. We also say that G′ is induced by
V ′ in G, and write G[V ′] for G′. We write G− u for G[V (G) \ {u}], i.e., for the subgraph of
G where the vertex u and all incident arcs are removed.

We call |V (G)|+ |E(G)| the size of a graph G. This quantity will be important when we
analyse the efficiency of algorithms on graphs.

2.1.2 Paths and Cycles

We start with definitions for directed paths; the corresponding terminology is then also used
for undirected graphs as explained in the beginning of this section.

A path P (from u1 to uk in G) is a sequence (u1, . . . , uk) of vertices of G and a sequence
(e1, . . . , ek−1) of edges of G such that ei = (ui, ui+1) or ei = (ui+1, ui) ∈ E(G), for every
1 ≤ i < k. The vertex u1 is called the start vertex and the vertex uk is called the terminal
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vertex of P , and we say that P is a path from u1 to uk. Edges (ui, ui+1) are called forward
edges and edges (ui+1, ui) are called backward edges. If all edges are forward edges then the
path is called directed. If u1, . . . , uk are pairwise distinct then the path is called simple. We
write |P | := k − 1 for the length of P (i.e., we count the number of edges of P ). The net
length of P is the difference between the number of forward and the number of backward
edges. Hence, a path is directed if and only if its length equals its net length.

A sequence (u0, . . . , uk−1) of vertices and a sequence of edges (e0, . . . , ek−1) is called a
cycle (of G) if (u0, . . . , uk−1, u0) and (e0, . . . , ek−1) form a path. If all the vertices of the cycle
are pairwise distinct then the cycle is called simple. We write |C| := k for the length of the
cycle C = (u0, . . . , uk−1). The net length of C is the net length of the corresponding path
(u0, . . . , uk−1, u0). The cycle C is called directed if the corresponding path is a directed path.

A digraph G is called (weakly) connected if there is a path in G from any vertex to any
other vertex in G. Equivalently, G is connected if and only if it cannot be written as H1 ]H2

for digraphs H1, H2 with at least one vertex each. A connected component of G is a maximal
(with respect to inclusion of the vertex sets) connected induced subgraph of G. A digraph G
is called strongly connected if for all vertices x, y ∈ V (G) there is a directed path from x to y
in G. Two vertices u, v ∈ V (G) are at distance k in G if the shortest path from u to v in G
has length k.

Some particular notions for undirected graphs G. A (simple) cycle of G is a sequence
(v1, . . . , vk) of k ≥ 3 pairwise distinct vertices of G such that {v1, vk} ∈ E(G) and {vi, vi+1} ∈
E(G) for all 1 ≤ i ≤ k−1. An undirected graph is called acyclic if it does not contain a cycle.
A sequence u1, . . . , uk ∈ V (G) is called a (simple) path from u1 to uk in G if {ui, ui+1} ∈ E(G)
for all 1 ≤ i < k and if all vertices u1, . . . , uk are pairwise distinct. We allow the case that
k = 1, in which case the path consists of a single vertex and no edges. Two vertices u, v ∈ G
are at distance k in G if the shortest path in G from u to v has length k. We say that an
undirected graph G is connected if for all vertices u, v ∈ V (G) there is a path from u to v.
The connected components of G are the maximal connected induced subgraphs of G. A forest
is an undirected acyclic graph, a tree is a connected forest.

A source in a digraph is a vertex with no incoming edges, and a sink is a vertex with no
outgoing edges.

2.2 Graph Homomorphisms

Let G and H be directed graphs. A homomorphism from G to H is a mapping h : V (G) →
V (H) which preserves the edges, i.e., (h(u), h(v)) ∈ E(H) whenever (u, v) ∈ E(G). If such
a homomorphism exists between G and H we say that G homomorphically maps to H, and
write G→ H. Otherwise, we write G 6→ H. Two directed graphs G and H are

• homomorphically equivalent if G→ H and H → G; in this case, we also write G↔ H.

• homomorphically comparable if G→ H or H → G; otherwise, we say that H and G are
homomorphically incomparable.

A homomorphism from G to H is sometimes also called an H-colouring of G. This termi-
nology originates from the observation that H-colourings generalise classical colourings in the
sense that a graph is n-colourable if and only if it has a Kn-colouring. Graph n-colorability
is not the only natural graph property that can be described in terms of homomorphisms:
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• a digraph is called balanced (in some articles: layered) if it homomorphically maps to a
directed path ~Pn;

• a digraph is called acyclic if it homomorphically maps to a transitive tournament Tn.

The equivalence classes of finite digraphs with respect to homomorphic equivalence will
be denoted by D. Let ≤ be a binary relation defined on D as follows: we set C1 ≤ C2 if
there exists a digraph H1 ∈ C1 and a digraph H2 ∈ C2 such that H1 → H2 (note that this
definition does not depend on the choice of the representatives H1 of C1 and H2 of C2). If
f is a homomorphism from H1 to H2, and g is a homomorphism from H2 to H3, then the
composition f ◦ g of these functions is a homomorphism from H1 to H3, and therefore the
relation ≤ is transitive. Since every graph H homomorphically maps to H, the order ≤ is also
reflexive. Finally, ≤ is antisymmetric since its elements are equivalence classes of directed
graphs with respect to homomorphic equivalence. Define C1 < C2 if C1 ≤ C2 and C1 6= C2.
We call (D,≤) the homomorphism order of finite digraphs.

The homomorphism order on digraphs turns out to be a lattice where every two elements
have a supremum (also called join) and an infimum (also called meet ; see Example 8.5). In
the proof of this result, we need the notion of direct products of graphs. This notion of graph
product1 can be seen as a special case of the notion of direct product as it is used in model
theory [65]. The class of all graphs with respect to homomorphisms forms an interesting
category in the sense of category theory [62] where the product introduced above is the
product in the sense of category theory, which is why this product is sometimes also called
the categorical graph product.

Definition 2.1 (direct product). Let H1 and H2 be two graphs. Then the (direct-, cross-,
categorical-) product H1×H2 of H1 and H2 is the graph with vertex set V (H1)×V (H2); the
pair ((u1, u2), (v1, v2)) is in E(H1 ×H2) if (u1, v1) ∈ E(H1) and (u2, v2) ∈ E(H2).

Note that the product is symmetric and associative in the sense that H1×H2 is isomorphic
to H2 ×H1 and H1 × (H2 ×H3) is isomorphic to (H1 ×H2) ×H3, and we therefore do not
specify the order of multiplication when multiplying more than two graphs. The n-th power
Hn of a graph H is inductively defined as follows. H1 is by definition H. If H i is already
defined, then H i+1 is H i ×H.

Proposition 2.2. The homomorphism order (D,≤) is a lattice; i.e., for all A1, A2 ∈ D

• there exists an element A1 ∧A2 ∈ D, the meet of A1 and A2, such that (A1 ∧A2) ≤ A1

and (A1 ∧A2) ≤ A2, and such that for every U ∈ D with U ≤ A1 and U ≤ A2 we have
U ≤ A1 ∧A2;

• there exists an element A1 ∨A2 ∈ D, the join of A1 and A2, such that A1 ≤ (A1 ∨A2)
and A2 ≤ (A1 ∨A2), and such that for every U ∈ D with A1 ≤ U and A2 ≤ U we have
A1 ∨A2 ≤ U .

Proof. Let H1 ∈ A1 and H2 ∈ A2. For the meet, the equivalence class of H1 × H2 has the
desired properties. For the join, the equivalence class of the disjoint union H1 ]H2 has the
desired properties.2

1Warning: there are several other notions of graph products that have been studied; see e.g. [62].
2For this reason, H1 ]H2 is sometimes called the co-product of H1 and H2.
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With the seemingly simple definitions of graph homomorphisms and direct products we
can already formulate very difficult combinatorial questions.

Conjecture 1 (Hedetniemi). Let G and H be finite graphs, and suppose that G×H → Kn.
Then G→ Kn or H → Kn.

The smallest n ∈ N such that G → Kn is also called the chromatic number of G, and
denoted by χ(G). Clearly, χ(G × H) ≤ min(χ(G), χ(H)). Hedetniemi’s conjecture can be
rephrased as

χ(G×H) = min(χ(G), χ(H)) .

This conjecture is easy for n = 1 and n = 2 (Exercise 4), and has been solved for n = 3 by El
Zahar and Sauer [52]. The conjecture has been refuted in 2019 by Yaroslav Shitov [90].

Clearly, (D,≤) has infinite ascending chains, that is, sequences E1, E2, . . . such that Ei <
Ei+1 for all i ∈ N. Take for instance the equivalence class of ~Pi for Ei. More interestingly,
(D,≤) also has infinite descending chains.

Proposition 2.3. The lattice (D,≤) contains infinite descending chains E1 > E2 > · · · .

Proof. For this we use the following directed graphs, called zig-zags, which are frequently
used in the theory of graph homomorphisms. We may write an orientation of a path P as a
sequence of 0’s and 1’s, where 0 represents a forward arc and 1 represents a backward arc.
For two orientations of paths P and Q with the representation P = p0, . . . , pn ∈ {0, 1}∗ and
Q = q0, . . . , qm ∈ {0, 1}∗, respectively, the concatenation P ◦Q of P and Q is the oriented path
represented by p0, . . . , pn, q0, . . . , qm. For k ≥ 1, the zig-zag of order k, denoted by Zk, is the
orientation of a path represented by 11(01)k−11. We recommend the reader to draw pictures
of Zk where forward arcs point up and backward arcs point down. Now, the equivalence
classes of the graphs Z1, Z2, . . . form an infinite descending chain.

Proposition 2.4. The lattice (D,≤) contains infinite antichains, that is, sets of pairwise
incomparable elements of D with respect to ≤.

Proof. Again, it suffices to work with orientations of paths. For k, l ≥ 1, the k, l multi zig-zag,

denoted by Zk,l, is the orientation of a path represented by 1
(
1(01)k

)l
1. Our infinite antichain

now consists of the equivalence classes containing the graphs Zk,k for k ≥ 1.

A strong homomorphism from a digraph G to a digraph H is a function from V (G) to
V (H) such that (f(u), f(v)) ∈ E(H) if and only if (u, v) ∈ E(G) for all u, v ∈ V (G). An
isomorphism between two directed graphs G and H is an bijective strong homomorphism
from G to H. Note that a homomorphism h : G → H is an isomorphism if and only if it is
bijective, and h−1 is a homomorphism from H to G. An automorphism of a digraph H is an
isomorphism from H to H.

Exercises.

1. How many connected components do we have in (P3)3?

2. How many weakly and strongly connected components do we have in (~C3)3?
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3. Let G and H be digraphs. Prove that G×H has a directed cycle
if and only if both G and H have a directed cycle.

4. Prove the Hedetniemi conjecture for n = 1 and n = 2.

5. Show that the Hedetniemi conjecture is equivalent to each of the following two state-
ments.

• Let n be a positive integer. If for two graphs G and H we have G 6→ Kn and
H 6→ Kn, then G×H 6→ Kn.

• Let G and H be graphs with χ(G) = χ(H) = m. Then there exists a graph K
with χ(K) = m such that K → G and K → H.

6. Show that Hedetniemi’s conjecture is false for directed graphs.
Hint: there are counterexamples G, H with four vertices each.

7. Show that for every k ∈ N, every pair of adjacent vertices of (K3)k has exactly one
common neighbour (that is, every edge lies in a unique subgraph of (K3)k isomorphic
to K3).

8. Show that for every k ∈ N, every pair of non-adjacent vertices in (K3)k has at least two
common neighbours.

9. Show that a digraph G homomorphically maps to ~P1 = T2 if and only if ~P2 does not
homomorphically map to G.

10. Construct an orientation of a tree that is not homomorphically equivalent to an orien-
tation of a path.

11. Construct a balanced orientation of a cycle that is not homomorphically equivalent to
an orientation of a path.

12. Show that for all digraphs G we have G→ T3 if and only if ~P3 6→ G.

13. Show that G → ~Pn, for some n ≥ 1, if and only if any two paths in G that start and
end in the same vertex have the same net length.

14. Show that G → ~Cn, for some n ≥ 1, if and only if any two paths in G that start and
end in the same vertex have the same net length modulo n.

15. Let a be an automorphism of Kk
n. Show that there are permutations p1, . . . , pk of

{1, . . . , n} and a permutation q of {1, . . . , k} such that

a(x1, . . . , xk) = (p1(xq(1)), . . . , pk(xq(k))).

11



2.3 The H-colouring Problem and Variants

When does a given digraph G homomorphically map to a digraph H? For every digraph H,
this question defines a computational problem, called the H-colouring problem. The input
of this problem consists of a finite digraph G, and the question is whether there exists a
homomorphism from G to H.

There are many variants of this problem. In the precoloured H-colouring problem, the
input consists of a finite digraph G, together with a mapping f from a subset of V (G) to
V (H). The question is whether there exists an extension of f to all of V (G) which is a
homomorphism from G to H. In the list H-colouring problem, the input consists of a finite
digraph G, together with a set Sx ⊆ V (H) for every vertex x ∈ V (G). The question is
whether there exists a homomorphism h from G to H such that h(x) ∈ Sx for all x ∈ V (G).
It is clear that the H-colouring problem reduces to the precoloured H-colouring problem (it
is a special case: the partial map might have an empty domain), and that the precoloured
H-colouring problem reduces to the list H-colouring problem (for vertices x in the domain of
f , we set Sx := {f(x)}, and for vertices x outside the domain of f , we set Sx := V (H)).

The constraint satisfaction problem is a common generalisation of all these problems,
and many more. It is defined not only for digraphs H, but more generally for relational
structures. Relational structures are the generalisation of graphs that can have many relations
of arbitrary arity instead of just one binary edge relation. The constraint satisfaction problem
will be introduced formally in Section 5. If H is a digraph, then the constraint satisfaction
problem for H, also denoted CSP(H), is precisely the H-colouring problem and we use the
terminology interchangeably. Note that since graphs can be seen as a special case of digraphs,
H-colouring is also defined for undirected graphs H. In this case we obtain essentially the
same computational problem if we only allow undirected graphs in the input; this is made
precise in Exercise 18.

For every finite graph H, the H-colouring problem is obviously in NP, because for every
graph G it can be verified in polynomial time whether a given mapping from V (G) to V (H)
is a homomorphism from G to H or not. Clearly, the same holds for the precoloured and the
list H-colouring problem. We have also seen that the Kn-colouring problem is the classical
n-colouring problem, which is NP-complete [56] for n ≥ 3, and therefore, no polynomial-time
algorithm exists for Kn-colouring with n ≥ 3, unless P=NP. However, for many graphs and
digraphs H (see Exercise 19 and 9) the H-colouring problem can be solved in polynomial
time. Since the 1990s, researchers have studied the question: for which digraphs H can the
H-colouring problem be solved in polynomial time? It has been conjectured by Feder and
Vardi [55] that H-colouring is for any finite digraph H either NP-complete or can be solved
in polynomial time. This is the so-called dichotomy conjecture, and it has been confirmed in
2017, independently by Bulatov [36] and by Zhuk [96].

Theorem 2.5 (Bulatov [36], Zhuk [96]). Let H be a finite digraph. Then CSP(H) is in P or
NP-complete.

It was shown by Ladner that unless P=NP there are infinitely many complexity classes
between P and NP; so the conjecture states that for H-colouring these intermediate complex-
ities do not appear. Feder and Vardi also showed that if the dichotomy conjecture holds for
H-colouring problems, then also the more general class of CSPs for finite relational structures
exhibits a complexity dichotomy (see Section 5.2).

The list H-colouring problem, on the other hand, is quickly NP-hard, and therefore less
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difficult to classify. And indeed, a complete classification has been obtained by Bulatov [33]
already in 2003. Alternative proofs can be found in [6, 35]. For finite undirected graphs, it is
known since 1990 that the dichotomy conjecture holds [60]; this text provides two fundamen-
tally different proofs of the following.

Theorem 2.6 (of [60]). Let H be a finite undirected graph. If H homomorphically maps
to K2, or contains a loop, then H-colouring can be solved in polynomial time. Otherwise,
H-colouring is NP-complete.

The case that H homomorphically maps to K2 will be the topic of Exercise 19. The entire
proof of Theorem 2.6 can be found in Section 10, and an alternative proof in Section 14.5.

Exercices.

16. Let H be a finite directed graph. Find an algorithm that decides whether
there is a strong homomorphism from a given graph G to the fixed
graph H. The running time of the algorithm should be polynomial
in the size of G (note that we consider |V (H)| to be constant).

17. Let H be a finite digraph such that CSP(H) can be solved in polynomial time.
Find a polynomial-time algorithm that constructs for a given finite digraph G
a homomorphism to H, if such a homomorphism exists.

18. Let G and H be directed graphs, and suppose that H is symmetric.
Show that f : V (G)→ V (H) is a homomorphism from G to H if and only if
f is a homomorphism from the undirected graph of G to the undirected
graph of H.

19. Show that for any graph H that homomorphically maps to K2 the constraint
satisfaction problem for H can be solved in polynomial time.

20. Prove that CSP(T3) can be solved in polynomial time.

21. Prove that CSP(~C3) can be solved in polynomial time.

22. Let N be the set {Z1, Z2, Z3, . . . }. Show that a digraph G→ ~P2 if and only if
no digraph in N homomorphically maps to G.

23. Suppose that CSP(G) and CSP(H), for two digraphs G and H, can be solved
in polynomial time. Show that CSP(G×H) and CSP(G ]H) can be solved
in polynomial time as well.

24. Suppose that G and H are homomorphically incomparable and suppose that
CSP(G) ∪ CSP(H) can be solved in polynomial time. Show that CSP(G)
and CSP(H) can be solved in polynomial time as well.
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25. Suppose that G and H are homomorphically incomparable and connected,
and suppose that CSP(G ]H) can be solved in polynomial time. Show that
CSP(G) and CSP(H) can be solved in polynomial time as well.

26. Show that the assumption in the previous exercise that G and H are connected
is necessary. Specifically, find digraphs G and H such that CSP(G ]H)
can be solved in polynomial time, but CSP(G) and CSP(H) are NP-hard.

27. Find digraphs G and H such that CSP(G×H)
can be solved in polynomial time, but CSP(G) and CSP(H) are NP-hard,
or show that there are no such digraphs (unless P = NP).

2.4 Cores

An endomorphism of a digraph H is a homomorphism from H to H. A finite digraph H is
called a core if every endomorphism of H is an automorphism. A graph G is called a core of
H if H is homomorphically equivalent to G and G is a core.

Proposition 2.7. Every finite digraph H has a core, which is unique up to isomorphism,
and which is isomorphic to an induced subgraph of H.

Proof. Any finite digraph H has a core, since we can select an endomorphism e of H such
that the image of e has smallest cardinality; the subgraph of H induced by e(V (H)) is a
core of H. Let G1 and G2 be cores of H, and f1 : H → G1, g1 : G1 → H, f2 : H → G2, and
g2 : G2 → H be homomorphisms. Let e1 := f2 ◦ g1 and e2 := f1 ◦ g2. See Figure 1.

We claim that e1 is the desired isomorphism. Suppose for contradiction that e1 is not
injective, i.e., there are distinct x, y in V (G1) such that e1(x) = e1(y). It follows that e2 ◦ e1

cannot be injective, too. But e2 ◦ e1 is an endomorphism of G1, contradicting the assumption
that G1 is a core. Similarly, e2 is an injective homomorphism from G2 to G1, and it follows
that |V (G1)| = |V (G2)| and both e1 and e2 are bijective.

Now, since |V (G1)| is finite, e2◦e1◦· · ·◦e2◦e1 = (e2◦e1)n = id for large enough n. Hence,
e2 ◦ e1 ◦ · · · ◦ e2 = (e1)−1, so the inverse of e1 is a homomorphism, and hence an isomorphism
between G1 and G2.

Since a core G of a finite digraph H is unique up to isomorphism, we call G the core of H.
We want to mention without proof that it is NP-complete to decide whether a given digraph
H is not a core [61].

Cores can be characterised in many different ways; for some of them, see Exercise 30.
There are examples of infinite digraphs that do not have a core in the sense defined above;
see Exercise 32. Since a digraph H and its core have the same CSP, it suffices to study
CSP(H) for core digraphs H only. Working with cores has advantages; one of them is shown
in Proposition 2.9 below. In the proof of this proposition, we need a concept that we will use
again in later sections.

Definition 2.8. Let H be a digraph and let u, v ∈ V (H) be vertices of H. Then the digraph
H/{u, v} obtained from H by contracting u, v is defined to be the digraph with vertex set
V (H)\{u, v}∪

{
{u, v}

}
and the edge set obtained from E(H) by replacing each edge in E(H)

of the form (x, u) or (x, v), for x ∈ V (H), by the edge (x, {u, v}), and each edge in E(H) of
the form (u, x) or (v, x), for x ∈ V (H), by the edge ({u, v}, x).
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H

f1 f2

G1 G2

g1 g2

e2

e1

Figure 1: Illustration of the uniqueness proof for cores
.

Proposition 2.9. Let H be a core. Then CSP(H) and precoloured CSP(H) are linear-time
equivalent.

Proof. The reduction from CSP(H) to precoloured CSP(H) is trivial, because an instance G
of CSP(H) is equivalent to the instance (G, c) of precoloured CSP(H) where c is everywhere
undefined.

We show the converse reduction by induction on the size of the image of the partial
mapping c in instances of precoloured CSP(H). Let (G, c) be an instance of precoloured
CSP(H) where c has an image of size k ≥ 1. We show how to reduce the problem to one
where the partial mapping has an image of size k − 1. If we compose all these reductions we
finally obtain a reduction to CSP(H).

Let x ∈ V (G) and u ∈ V (H) be such that c(x) = u. We first contract all vertices y of
G such that c(y) = u with x. Then we create a copy of H, and attach the copy to G by
contracting x ∈ V (G) with u ∈ V (H). Let G′ be the resulting graph, and let c′ be the partial
map obtained from c by restricting it such that it is undefined on x, and then extending it so
that c(v) = v for all v ∈ V (H), v 6= u, that appear in the image of c. Note that the image of
c′ has size k − 1. Note that the size of G′ and the size of G only differ by a constant.

We claim that (G′, c′) has a solution if and only if (G, c) has a solution. If f is a homo-
morphism from G to H that extends c, we further extend f to the copy of H that is attached
in G′ by setting f(v′) to v if vertex v′ is a copy of a vertex v ∈ V (H). This extension of f
clearly is a homomorphism from G′ to H and extends c′.

Now, suppose that f ′ is a homomorphism from G′ to H that extends c′. The restriction
of f ′ to the vertices from the copy of H that is attached to x in G′ is an endomorphism of H,
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and because H is a core, it is an automorphism α of H. Moreover, α fixes v for all v ∈ V (H)
in the image of c′. Let β be the inverse of α, i.e., let β be the automorphism of H such that
β(α(v)) = v for all v ∈ V (H). Let f be the mapping from V (G) to V (H) that maps vertices
that were identified with x to β(f ′(x)), and all other vertices y ∈ V (G) to β(f ′(y)). Clearly,
f is a homomorphism from G to H. Moreover, f maps vertices y ∈ V (G), y 6= x, where c is
defined to c(y), since the same is true for f ′ and for α. Moreover, because x in G′ is identified
to u in the copy of H, we have that f(x) = β(f ′(x)) = β(f ′(u)) = u, and therefore f is an
extension of c.

Corollary 2.10. If for every finite digraph H, the precoloured H-colouring problem is in P
or NP-complete, then CSP(H) is in P or NP-complete for every finite digraph H as well.

The following example shows that the assumption of Proposition 2.9 that H is a core is
necessary (unless P = NP).

Example 2.11. Let H be the disjoint union of K3 and a loop. Then CSP(H) is trivial and
in P. The precoloured H-colouring problem, however, is NP-complete: we may prove this
by a reduction from the NP-complete CSP(K3) as follows. Clearly, this problem is already
NP-complete if restricted to input graphs that are connected. Let G be a connected finite
graph. Let c be a partial map sending one vertex of G to some element of K3. Then G has
a homomorphism to K3 if and only if c can be extended to a homomorphism from G to H.
To see this, let f : G→ K3 be a homomorphism. Composing f with a permutation of V (K3)
is also a homomorphism from G to K3, and hence in particular to H. So we may obtain a
homomorphism from G to H which extends c. Conversely, if f is a homomorphism from G
to H which extends c then f(V (G)) ⊆ V (K3), since f(x) ∈ V (K3) and G is connected. 4

We have already seen in Exercise 17 that the computational problem to construct a ho-
momorphism from G to H, for fixed H and given G, can be reduced in polynomial-time to
the problem of deciding whether there exists a homomorphism from G to H. The intended
solution of Exercise 17 requires in the worst-case |V (G)|2 many executions of the decision pro-
cedure for CSP(H). Using the concept of cores and the precoloured CSP (and its equivalence
to the CSP) we can give a faster method to construct homomorphisms.

Proposition 2.12. If there is an algorithm that decides CSP(H) in time T , then there
is an algorithm that constructs a homomorphism from a given digraph G to H (if such a
homomorphism exists) which runs in time O(|V (G)|T ).

Proof. Let C be the core of H; we may suppose that C is a subgraph of H. By Proposition 2.9,
and since CSP(C) and CSP(H) are the same problem, there is an algorithm A for precoloured
CSP(C) with a running time in O(T ).

To construct a homomorphism from a given finite digraph G to H, we first apply A to
(G, c) for the everywhere undefined function c to decide whether there exists a homomorphism
fromG to C. If no, then there is also no homomorphism toH and there is nothing to be shown.
If yes, we select some x ∈ V (G), and extend c by defining c(x) = u for some u ∈ V (C). Then
we use algorithm A to decide whether there is a homomorphism from G to C that extends
c. If no, we try another vertex u ∈ V (H). Clearly, for some u the algorithm must give the
answer “yes”. We proceed with the extension c where c(x) = u, and repeat the procedure
with another vertex x from V (G). At the end, c is defined for all vertices x of G, and c is a
homomorphism from G to C. Clearly, since H and C are fixed, algorithm A is executed at
most O(|V (G)|) many times.
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Exercises.

28. Prove that the core of a strongly connected digraph is strongly connected.

29. Show that Zk,l is a core for all k, l ≥ 2.

30. Prove that for every finite digraph G the following is equivalent:

• G is a core.

• Every endomorphism of G is injective.

• Every endomorphism of G is surjective.

31. Show that the three properties in the previous exercise are no longer
equivalent if G is infinite.

32. Show that the infinite tournament (Q;<) has endomorphisms
that are not automorphisms. Show that every digraph that is
homomorphically equivalent to (Q;<) also has endomorphisms
that are not automorphisms.

33. Prove that cores and products of digraphs without sources and sinks
have no sources and sinks.

34. Let H be the core of G which we may assume to be a subgraph of G.
Show that there exists a retraction from G to H, i.e.,
a homomorphism e from G to H such that e(x) = x for all x ∈ V (H).

35. A permutation group on a set V is called transitive if for all a, b ∈ V there exists g ∈ G
such that g(a) = b. Show that if (V,E) is a graph with a transitive automorphism
group, then the core of (V,E) also has a transitive automorphism group.

36. Show that the connected components of a core are cores that form an antichain in
(D,≤); conversely, the disjoint union of an antichain of cores is a core.

37. Prove that the core of a digraph with a transitive automorphism group
is connected.

38. A permutation group G on as set X is called primitive if the only
equivalence relations on X that are preserved by all permutations
in G are the equality relation and the equivalence relation with only
one equivalence class. Prove that the core of a digraph with a
primitive automorphism group has a primitive automorphism group.

39. Determine the computational complexity of CSP(H) for

H :=
(
Z; {(x, y) : |x− y| ∈ {1, 2}}

)
.
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2.5 Polymorphisms

Polymorphisms are a powerful tool for analysing the computational complexity of constraint
satisfaction problems; as we will see, they are useful both for NP-hardness proofs and for
proving the correctness of polynomial-time algorithms for CSPs. Polymorphisms can be seen
as multi-dimensional variants of endomorphisms.

Definition 2.13. Let H be a digraph and k ≥ 1. Then a polymorphism of H of arity k is a
homomorphism from Hk to H.

In other words, a mapping f : V (H)k → V (H) is a polymorphism of H if and only if
(f(u1, . . . , uk), f(v1, . . . , vk)) ∈ E(H) whenever (u1, v1), . . . , (uk, vk) are arcs in E(H). Note
that any digraph H has all projections as polymorphisms, i.e., all mappings πki : V (H)k →
V (H), for i ≤ k given by πki (x1, . . . , xk) = xi for all x1, . . . , xk ∈ V (H). The operation πki is
called the i-th projection of arity k.

Example 2.14. The operation (x, y) 7→ min(x, y) is a polymorphism of the digraph ~Tn =
({1, . . . , n};<). 4

An operation f : V (H)k → V (H) is called

• idempotent if f(x, . . . , x) = x for all x ∈ V (H).

• conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk} for all x1, . . . , xk ∈ V (H).

A digraph H is called projective if every idempotent polymorphism is a projection. The
following will be shown in Section 6.4.

Proposition 2.15. For all n ≥ 3, the graph Kn is projective.

Exercises.

40. Show that if f : Hk → H is a polymorphism of a digraph H, then
f̂(x) := f(x, . . . , x) is an endomorphism of H.

41. Show that if H is a finite core digraph with a symmetric binary
polymorphism f , that is, f(x, y) = f(y, x) for all x, y ∈ V (H),
then H also has an idempotent symmetric polymorphism.

3 The Arc-consistency Procedure

The arc-consistency procedure is one of the most fundamental and well-studied algorithms
that are applied for CSPs. This procedure was first discovered for constraint satisfaction
problems in artificial intelligence [80,83]; in the graph homomorphism literature, the algorithm
is sometimes called the consistency check algorithm.

Let H be a finite digraph, and let G be an instance of CSP(H). The idea of the procedure
is to maintain for each vertex of G a list of vertices of H, and each element in the list of x
represents a candidate for an image of x under a homomorphism from G to H. The algorithm
successively removes vertices from these lists; it only removes a vertex u ∈ V (H) from the
list for x ∈ V (G), if there is no homomorphism from G to H that maps x to u. To detect
vertices x, u such that u can be removed from the list for x, the algorithm uses two rules (in
fact, one rule and a symmetric version of the same rule): if (x, y) is an edge in G, then
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ACH(G)
Input: a finite digraph G.
Data structure: a list L(x) ⊆ V (H) for each vertex x ∈ V (G).

Set L(x) := V (H) for all x ∈ V (G).
Do

For each (x, y) ∈ E(G):
Remove u from L(x) if there is no v ∈ L(y) with (u, v) ∈ E(H).
Remove v from L(y) if there is no u ∈ L(x) with (u, v) ∈ E(H).
If L(x) is empty for some vertex x ∈ V (G) then reject

Loop until no list changes

Figure 2: The arc-consistency procedure for CSP(H).

• remove u from L(x) if there is no v ∈ L(y) with (u, v) ∈ E(H);

• remove v from L(y) if there is no u ∈ L(x) with (u, v) ∈ E(H).

If eventually we cannot remove any vertex from any list with these rules any more, the
digraph G together with the lists for each vertex is called arc-consistent. The pseudo-code of
the entire arc-consistency procedure is displayed in Figure 2.

Clearly, if the algorithm removes all vertices from one of the lists, then there is no ho-
momorphism from G to H. It follows that if ACH rejects an instance of CSP(H), it has no
solution. The converse implication does not hold in general. For instance, let H be K2, and
let G be K3. In this case, ACH does not remove any vertex from any list, but obviously there
is no homomorphism from K3 to K2.

However, there are digraphs H where the ACH is a complete decision procedure for
CSP(H) in the sense that it rejects an instance G of CSP(H) if and only if G does not
homomorphically map to H. In this case we say that AC solves CSP(H).

Remark 3.1. The running time of ACH is for any fixed digraph H polynomial in the size of
G. Quite remarkably, it is also polynomial if H is part of the input, in which case we refer to
the procedure as AC.

Implementation. In a naive implementation of the procedure, the inner loop of the algo-
rithm would go over all edges of the digraph, in which case the running time of the algorithm
is quadratic in the size of G. In the following we describe an implementation of the arc-
consistency procedure, called AC-3, which is due to Mackworth [80], and has a worst-case run-
ning time that is linear in the size of G. Several other implementations of the arc-consistency
procedure have been proposed in the Artificial Intelligence literature, aiming at reducing the
costs of the algorithm in terms of the number of vertices of both G and H. But here we
consider the size of H to be fixed, and therefore we do not follow this line of research. With
AC-3, we rather present one of the simplest implementations of the arc-consistency procedure
with a linear running time.

The idea of AC-3 is to maintain a worklist, which contains a list of arcs (x0, x1) of G that
might help to remove a value from L(x0) or L(x1). Whenever we remove a value from a list
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AC-3H(G)
Input: a finite digraph G.
Data structure: a list L(x) of vertices of H for each x ∈ V (G).

the worklist W : a list of arcs of G.

Subroutine Revise((x0, x1), i)
Input: an arc (x0, x1) ∈ E(G), an index i ∈ {0, 1}.

change = false
for each ui in L(xi)

If there is no u1−i ∈ L(x1−i) such that (u0, u1) ∈ E(H) then
remove ui from L(xi)
change = true

end if
end for
If change = true then

If L(xi) = ∅ then reject
else

For all arcs (z0, z1) ∈ E(G) with z0 = xi or z1 = xi add (z0, z1) to W
end if

W := E(G)
Do

remove an arc (x0, x1) from W
Revise((x0, x1), 0)
Revise((x0, x1), 1)

while W 6= ∅

Figure 3: The AC-3 implementation of the arc-consistency procedure for CSP(H).

L(x), we add all arcs that are in G incident to x. Note that then any arc in G might be added
at most 2|V (H)| many times to the worklist, which is a constant in the size of G. Hence, the
while loop of the implementation is iterated for at most a linear number of times. Altogether,
the running time is linear in the size of G as well.

Arc-consistency for pruning search. Suppose that H is such that AC does not solve
CSP(H). Even in this situation the arc-consistency procedure might be useful for pruning
the search space in exhaustive approaches to solve CSP(H). In such an approach we might
use the arc-consistency procedure as a subroutine as follows. Initially, we run ACH on the
input instance G. If it computes an empty list, we reject. Otherwise, we select some vertex
x ∈ V (G), and set L(x) to {u} for some u ∈ L(x). Then we proceed recursively with the
resulting lists. If ACH now detects an empty list, we backtrack, but remove u from L(x).
Finally, if the algorithm does not detect an empty list at the first level of the recursion, we
end up with singleton lists for each vertex x ∈ V (G), which gives rise to a homomorphism
from G to H.

20



3.1 The Power Graph

For which H does the Arc-Consistency procedure solve CSP(H)? In this section we present
an elegant and effective characterisation of those finite digraphs H where AC solves CSP(H),
found by Feder and Vardi [55].

Definition 3.2. For a digraph H, the power graph P (H) is the digraph whose vertices are
non-empty subsets of V (H) and where two subsets U and V are joined by an arc if the
following holds:

• for every vertex u ∈ U , there exists a vertex v ∈ V such that (u, v) ∈ E(H), and

• for every vertex v ∈ V , there exists a vertex u ∈ U such that (u, v) ∈ E(H).

The definition of the power graph resembles the arc-consistency algorithm, and indeed,
we have the following lemma which describes the correspondence.

Lemma 3.3. ACH rejects G if and only if G 6→ P (H).

Proof. Suppose first that ACH does not reject G. For u ∈ V (G), let L(u) be the list derived
at the final stage of the algorithm. Then by definition of E(P (H)), the map x 7→ L(x) is a
homomorphism from G to P (H).

Conversely, suppose that f : G→ P (H) is a homomorphism. We prove by induction over
the execution of ACH that for all x ∈ V (G) the elements of f(x) are never removed from
L(x). To see that, let (a, b) ∈ E(G) be arbitrary. Then (f(a), f(b)) ∈ E(P (H)), and hence
for every u ∈ f(a) there exists a v ∈ f(b) such that (u, v) ∈ E(H). By inductive assumption,
v ∈ L(b), and hence u will not be removed from L(a). This concludes the inductive step.

Theorem 3.4. Let H be a finite digraph. Then AC solves CSP(H) if and only if P (H)
homomorphically maps to H.

Proof. Suppose first that AC solves CSP(H). Apply ACH to P (H). Since P (H)→ P (H), the
previous lemma shows that ACH does not reject P (H). Hence, P (H)→ H by assumption.

Conversely, suppose that P (H)→ H. If ACH rejects a digraph G then G 6→ H. If ACH

does accept G, then the lemma asserts that G → P (H). Composing homomorphisms, we
obtain that G→ H.

Observation 3.5. Let H be a core digraph. Note that if P (H) homomorphically maps to H,
then there also exists a homomorphism that maps {x} to x for all x ∈ V (H) (here we use the
assumption that H is a core!). We claim that in this case the precoloured CSP for H can be
solved by the modification of ACH which starts with L(x) := {c(x)} for all x ∈ V (G) in the
range of the precolouring function c, instead of L(x) := V (H). This is a direct consequence
of the proof of Theorem 3.4. If the modified version of ACH solves the precoloured CSP for
H, then the classical version of ACH solves CSP(H). Hence, it follows that the following are
equivalent:

• AC solves CSP(H);

• the above modification of ACH solves the precoloured CSP for H;

• P (H)→ H.

21



Note that the condition given in Theorem 3.4 can be used to decide algorithmically
whether AC solves CSP(H), because it suffices to test whether P (H) homomorphically maps
to H. Such problems about deciding properties of CSP(H) for given H are often called al-
gorithmic meta-problems. A naive algorithm for the above test would be to first construct
P (H), and then to search non-deterministically for a homomorphism from P (H) to H, which
puts the meta-problem for solvability of CSP(H) by AC into the complexity class NExpTime
(Non-deterministic Exponential Time). This can be improved.

Proposition 3.6. There exists a deterministic exponential time algorithm that tests for a
given finite core digraph H whether P (H) homomorphically maps to H.

Proof. We first explicitly construct P (H), and then apply ACH to P (H). If ACH rejects,
then there is certainly no homomorphism from P (H)→ H by the properties of ACH , and we
return ‘false’. If ACH accepts, then we cannot argue right away that P (H) homomorphically
maps to H, since we do not know yet whether ACH is correct for CSP(H).

But here is the trick. What we do in this case is to pick an arbitrary x ∈ V (P (H)), and
remove all but one value u from L(x), and continue with the execution of ACH . If ACH then
derives the empty list, we try the same with another value u′ from L(x). If we obtain failure
for all values of L(x), then clearly there is no homomorphism from P (H) to H, and we return
‘false’. Otherwise, if ACH does not derive the empty list after removing all values but u from
L(x), we continue with another element y of V (P (H)), setting L(y) to {v} for some v ∈ L(y).
We repeat this procedure until at the end we have constructed a homomorphism from P (H)
to H. In this case we return ‘true’.

If ACH rejects for some x ∈ V (P (H)) when L(x) = {u} for all possible u ∈ V (H), then
the adaptation of ACH for the precoloured CSP would have given an incorrect answer for the
previously selected variable (it said yes while it should have said no). By Observation 3.5,
this means that P (H) does not homomorphically map to H. Again, we return ‘false’.

The precise computational complexity to decide for a given digraph H whether P (H)→ H
is not known; we refer to [44] for related questions and results.

Question 1. What is the computational complexity to decide for a given core digraph H
whether P (H)→ H? Is this problem in P?

3.2 Tree Duality

Another mathematical notion that is closely related to the arc-consistency procedure is tree
duality. The idea of this concept is that when a digraph H has tree duality, then we can show
that there is no homomorphism from a digraph G to H by exhibiting a tree obstruction in G.
This is formalized in the following definition.

Definition 3.7. A digraph H has tree duality if there exists a (not necessarily finite) set N

of orientations of finite trees such that for all digraphs G there is a homomorphism from G
to H if and only if no digraph in N homomorphically maps to G.

We refer to the set N in Definition 3.7 as an obstruction set for CSP(H). Note that no
T ∈ N homomorphically maps to H. The pair (N, H) is called a duality pair. We have
already encountered such an obstruction set in Exercise 9, where H = T2, and N = {~P2}. In
other words, ({~P2}, T2) is a duality pair. Other duality pairs are ({~P3}, T3) (Exercise 12), and
({Z1, Z2, . . . }, ~P2) (Exercise 22).
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Theorem 3.8 is a surprising link between the completeness of the arc-consistency proce-
dure, tree duality, and the power graph, and was discovered by Feder and Vardi [54] in the
more general context of constraint satisfaction problems.

Theorem 3.8. Let H be a finite digraph. Then the following are equivalent.

1. H has tree duality;

2. P (H) homomorphically maps to H;

3. AC solves CSP(H).

4. If every orientation of a tree that homomorphically maps to G also homomorphically
maps to H, then G homomorphically maps to H;

Proof. The equivalence 2 ⇔ 3 has been shown in the previous section. We show 3 ⇒ 1,
1⇒ 4, and 4⇒ 2.

3⇒ 1: Suppose that AC solves CSP(H). We have to show that H has tree duality. Let N
be the set of all orientations of trees that do not homomorphically map to H. We claim that if
a digraph G does not homomorphically map to H, then there is T ∈ N that homomorphically
maps to G.

By assumption, the arc-consistency procedure applied to G eventually derives the empty
list for some vertex of G. We use the computation of the procedure to construct an orientation
T of a tree, following the exposition in [73]. When deleting a vertex u ∈ V (H) from the list
of a vertex x ∈ V (G), we define an orientation of a rooted tree Tx,u with root rx,u such that

1. there is a homomorphism from Tx,u to G mapping rx,u to x;

2. there is no homomorphism from Tx,u to H mapping rx,u to u.

Assume that the vertex u is deleted from the list of x because we found an arc (x, y) ∈ E(G)
such that there is no arc (u, v) ∈ E(H) with v ∈ L(y); if it was deleted because of an arc
(y, x) ∈ E(H) the proof follows with the obvious changes.

If there is no v ∈ V (H) such that (u, v) ∈ E(H), then we define Tx,u to be the tree that
just contains an arc (p, q) with root rx,u = p; clearly, Tx,u satisfies property (1) and (2).
Otherwise, for every arc (u, v) ∈ E(H) the vertex v has already been removed from the list
L(y), and hence by induction Ty,v having properties (1) and (2) is already defined. We then
add a copy of Ty,v to Tx,u, contract all the roots of all copies into one vertex q, and finally
add an arc from the root vertex rx,u to q.

We verify that the resulting orientation of a tree Tx,u satisfies (1) and (2). For every
v ∈ V (H) such that (u, v) ∈ E(H), let fv be the homomorphism from Ty,v mapping ry,v
to y, which exists due to (1). The common extension of all the maps fv to V (Tx,u) that
maps rx,u to x is a homomorphism from Tx,u to G, and this shows that (1) holds for Tx,u.
Suppose for contradiction that there exists a homomorphism h from Tx,u to H that maps
rx,u to u. Let v = h(q); then h restricts to a homomorphism from Ty,v to H, a contradiction.
This shows that (2) holds for Tx,u. When the list L(x) of some vertex x ∈ V (G) becomes
empty, we can construct an orientation of a tree T by contracting the roots of all Tx,u into a
vertex r. We then find a homomorphism from T to G by mapping r to x and extending the
homomorphism independently on each Tx,u. But any homomorphism from T to H must map
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r to some element u ∈ V (H), and hence there is a homomorphism from Tx,u to H that maps
x to u, a contradiction.

1⇒ 4: If H has an obstruction set N consisting of orientations of trees, and if G does not
homomorphically map to H, there exists an orientation of a tree T ∈ N that maps to G but
not to H.

4 ⇒ 2: To show that P (H) homomorphically maps to H, it suffices to prove that every
orientation T of a tree that homomorphically maps to P (H) also homomorphically maps to
H. Let f be a homomorphism from T to P (H), and let x be any vertex of T . We construct
a sequence f0, . . . , fn, for n = |V (T )|, where fi is a homomorphism from the subgraph of T
induced by the vertices at distance at most i to x in T , and fi+1 is an extension of fi for all
0 ≤ i < n. The mapping f0 maps x to some vertex from f(x). Suppose inductively that we
have already defined fi. Let y be a vertex at distance i+1 from x in T . Since T is an orientation
of a tree, there is a unique y′ ∈ V (T ) of distance i from x in T such that (y, y′) ∈ E(T ) or
(y′, y) ∈ E(T ). Note that u = fi(y

′) is already defined. In case that (y′, y) ∈ E(T ), there
must be a vertex v in f(y) such that (u, v) ∈ E(H), since (f(y′), f(y)) must be an arc in
P (H), and by definition of P (H). We then set fi+1(y) = v. In case that (y, y′) ∈ E(T ) we
can proceed analogously. By construction, the mapping fn is a homomorphism from T to H.

3.3 Totally Symmetric Polymorphisms

There is also a characterisation of the power of the arc-consistency procedure which is based
on polymorphisms.

Definition 3.9. A function f : Dk → D is called totally symmetric if

f(x1, . . . , xk) = f(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}.

Example 3.10. The operation (x1, . . . , xk) 7→ minimum(x1, . . . , xk) is totally symmetric. 4

Example 3.11. The majority operation m : {0, 1}k → {0, 1} given by

m(x, x, y) = m(x, y, x) = m(y, x, x) = x

for all x ∈ {0, 1} is

• not totally symmetric because 0 = m(0, 0, 1) 6= m(0, 1, 1) = 1;

• is symmetric in the sense that m(x1, x2, x3) = m(xα(1), xα(2), xα(3)) for every permuta-
tion α of {1, 2, 3}. 4

Theorem 3.12 (from [48]). Let H be a finite digraph. Then the following are equivalent.

1. P (H) homomorphically maps to H;

2. H has totally symmetric polymorphisms of all arities;

3. H has a totally symmetric polymorphism of arity 2|V (H)|.
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Proof. 1. ⇒ 2.: Suppose that g is a homomorphism from P (H) to H, and let k ∈ N be ar-
bitrary. Let f be defined by f(x1, . . . , xk) = g({x1, . . . , xk}). If (x1, y1), . . . , (xk, yk) ∈ E(H),
then {x1, . . . , xk} is adjacent to {y1, . . . , yk} in P (H), and hence (f(x1, . . . , xk), f(y1, . . . , yk)) ∈
E(H). Therefore, f is a polymorphism of H, and it is clearly totally symmetric.

The implication 2. ⇒ 3. is trivial. To prove that 3. ⇒ 1., suppose that f is a totally
symmetric polymorphism of arity 2|V (H)|. Let g : V (P (H))→ V (H) be defined by

g({x1, . . . , xn}) := f(x1, . . . , xn−1, xn, xn, . . . , xn)

which is well-defined because f is totally symmetric. Let (U,W ) ∈ E(P (H)), and let
x1, . . . , xp be an enumeration of the elements of U , and y1, . . . , yq be an enumeration of the el-
ements of W . The properties of P (H) imply that there are y′1, . . . , y

′
p ∈W and x′1, . . . , x

′
q ∈ U

such that (x1, y
′
1), . . . , (xp, y

′
p) ∈ E(H) and (x′1, y1), . . . , (x′q, yq) ∈ E(H). Since f preserves E,

g(U) = g({x1, . . . , xp}) = f(x1, . . . , xp, x
′
1, . . . , x

′
q, x1, . . . , x1)

is adjacent to

g(W ) = g({y1, . . . , yq}) = f(y′1, . . . , y
′
p, y1, . . . , yq, y

′
1, . . . , y

′
1) .

Given Theorem 3.12, it is natural to ask whether there exists a k so that the existence of
a totally symmetric polymorphism of arity k implies totally symmetric polymorphisms of all
arities. The following example shows that this is not the case.

Example 3.13. For every prime p ≥ 3, the digraph ~Cp clearly does not have a totally
symmetric polymorphism of arity p: if f : {0, . . . , p−1}p → {0, . . . , p−1} is a totally symmetric
operation, then f(0, 1, . . . , p− 1) = f(1, . . . , p− 1, 0), and hence f does not preserve the edge
relation. On the other hand, if n < p then ~Cp has the totally symmetric polymorphism

f(x1, . . . , xn) := |S|−1
∑
x∈S

x mod p

where S = {x1, . . . , xn}. (Note that |S| < p and hence has a multiplicative inverse.) The
operation is clearly totally symmetric; the verification that it preserves the edge relation of
~Cp is Exercise 52. 4

3.4 Semilattice Polymorphisms

Some digraphs have a single binary polymorphism that generates operations satisfying the
conditions in the previous theorem. A binary operation f : D2 → D is called commutative if
it satisfies

f(x, y) = f(y, x) for all x, y ∈ D.

It is called associative if it satisfies

f(x, f(y, z)) = f(f(x, y), z) for all x, y, z ∈ D.

Definition 3.14. A binary operation is called a semilattice operation if it is associative,
commutative, and idempotent.

Examples of semilattice operations are functions from D2 → D defined as (x, y) 7→
min(x, y); here the minimum is taken with respect to any fixed linear order of D.
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Figure 4: One of the smallest orientations of a tree H such that CSP(H) is NP-complete
(assuming P 6= NP; all orientations of trees with less vertices can be solved by path consis-
tency [25]).

Theorem 3.15. Let H be a finite digraph. Then P (H) → H if and only if H is homomor-
phically equivalent to a digraph with a semilattice polymorphism.

Proof. Suppose first that P (H) → H. Thus, H and P (H) are homomorphically equivalent,
and it suffices to show that P (H) has a semilattice polymorphism. The mapping (X,Y ) 7→
X ∪ Y is clearly a semilattice operation; we claim that it preserves the edges of P (H). Let
(U, V ) and (A,B) be edges in P (H). Then for every u ∈ U there is a v ∈ V such that
(u, v) ∈ E(H), and for every u ∈ A there is a v ∈ B such that (u, v) ∈ E(H). Hence, for
every u ∈ U ∪ A there is a v ∈ V ∪ B such that (u, v) ∈ E(H). Similarly, we can verify that
for every v ∈ V ∪B there is a u ∈ U ∪A such that (u, v) ∈ E(H). This proves the claim.

For the converse, suppose that H is homomorphically equivalent to a digraph G with
a semilattice polymorphism f . Let h be the homomorphism from H to G. The operation
(x1, . . . , xn) 7→ f(x1, f(x2, f(. . . , f(xn−1, xn) . . . ))) is a totally symmetric polymorphism of
G. Then Theorem 3.12 implies that P (G) → G. The map S 7→ {h(u) | u ∈ S} is a
homomorphism from P (H) to P (G). Therefore, P (H)→ P (G)→ G→ H, as desired.

By verifying the existence of semilattice polymorphisms for a concrete class of digraphs,
we obtain the following consequence.

Corollary 3.16. AC solves CSP(H) if H is an orientation of a path.

Proof. Suppose that 1, . . . , n are the vertices of H such that either (i, i+ 1) or (i+ 1, i) is an
arc in E(H) for all i < n. It is straightforward to verify that the mapping (x, y) 7→ min(x, y)
is a polymorphism of H. The statement now follows from Theorem 3.15.

We want to remark that there are orientations of trees H with an NP-complete H-colouring
problem (the smallest ones have 20 vertices [25]; see Figure 4). It can be shown (using a
condition that will be presented in Section 14.3) that this digraph does not have tree-duality,
without any complexity-theoretic assumptions.

Exercises.

42. Show that if G and H are homomorphically equivalent, then P (G) and P (H) are also
homomorphically equivalent.
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Figure 5: The graph from Exercise 48.

43. Recall that a digraph is called balanced if it homomorphically maps to a directed path.
Let H be a finite digraph. Prove or disprove:

• if H is balanced, then P (H) is balanced;

• if H is an orientation of a tree, then P (H) is an orientation of a forest;

• P (H)→ H if and only if H is acyclic.

44. Solve the problems from the previous exercise for infinite digraphs H.

45. Show that AC solves CSP(Tn), for every n ≥ 1.

46. Up to isomorphism, there is only one unbalanced cycle H on four vertices that is a core
and not the directed cycle. Show that AC does not solve CSP(H).

47. Does the digraph ({0, 1, 2, 3, 4, 5}; {(0, 1), (1, 2), (0, 2), (3, 2), (3, 4), (4, 5), (3, 5), (0, 5)}) have
tree duality?

48. Can the CSP for the digraph depicted in Figure 5 be solved by the arc consistency
procedure?

49. Let H be a finite digraph. Show that P (H) contains a loop if and only if H contains a
directed cycle.

50. Show that the previous statement is false for infinite digraphs H.

51. Show that an orientation of a tree homomorphically maps to H if and only if it homo-
morphically maps to P (H).

52. Prove the final statement in Example 3.13.

53. Let H be a finite digraph. Then ACH rejects an orientation of a tree T if and only if
there is no homomorphism from T to H (in other words, AC solves CSP(H) if the input
is restricted to orientations of trees).

54. Show that there is a linear-time algorithm that tests whether a given
orientation of a tree is a core.

55. Show that the core of an orientation of a tree can be computed
in polynomial time.

56. Let G and H be finite digraphs, let x ∈ V (G), and let L(x) be the list computed by the
arc consistency procedure. Show that L(x) is preserved by all polymorphisms of H.

57. Does Exercise 19 remain true for directed graphs?
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4 The Path-consistency Procedure

The path-consistency procedure is a well-studied generalization of the arc-consistency proce-
dure from artificial intelligence. The path-consistency procedure is also known as the pair-
consistency check algorithm in the graph theory literature.

Many CSPs that can not be solved by the arc-consistency procedure can still be solved
in polynomial time by the path-consistency procedure. The simplest examples are H = K2

(see Exercise 19) and H = ~C3 (see Exercise 21). The idea is to maintain a list of pairs from
V (H)2 for each pair of elements from V (G) (similarly to the arc-consistency procedure, where
we maintained a list of vertices from V (H) for each vertex in V (G)). We successively remove
pairs from these lists when the pairs can be excluded locally. Some authors maintain a list
only for each pair of distinct vertices of V (G), and they refer to our (stronger) variant as the
strong path-consistency procedure. Our procedure (where vertices need not be distinct) has
the advantage that it is at least as strong as the arc-consistency procedure, because the lists
L(x, x) and the rules of the path-consistency procedure for x = y simulate the rules of the
arc-consistency procedure.

PCH(G)
Input: a finite digraph G.
Data structure: for all x, y ∈ V (G) a list L(x, y) of elements of V (H)2

For each (x, y) ∈ V (G)2

If (x, y) ∈ E(G) then L(x, y) := E(H),
else L(x, y) := V (H)2.
If x = y then L(x, y) := L(x, y) ∩ {(u, u) | u ∈ V (H)}.

Do
For all vertices x, y, z ∈ V (G):

For each (u,w) ∈ L(x, z):
If there is no v ∈ V (H) such that (u, v) ∈ L(x, y) and (v, w) ∈ L(y, z) then

Remove (u,w) from L(x, z)
If L(x, z) is empty then reject

Loop until no list changes

Figure 6: The (strong) path-consistency procedure for CSP(H).

In Subsection 4.2 we will see many examples of digraphs H where the path-consistency
procedure solves the H-colouring problem, but the arc-consistency procedure does not. The
greater power of the path-consistency procedure comes at the price of a bigger worst-case
running time: while the arc-consistency procedure has linear-time implementations, the best
known implementations of the path-consistency procedure require cubic time in the size of
the input (see Exercise 58).

Remark 4.1. Similarly as for AC, the path-consistency procedure is polynomial even if H
is part of the input, in which case we refer to the procedure with PC.
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4.1 The k-consistency procedure

The path-consistency procedure can be generalised further to the k-consistency procedure. In
fact, arc- and path-consistency procedure are just a special case of the k-consistency for k = 2
and k = 3, respectively. In other words, for digraphs H the path-consistency procedure is the
3-consistency procedure and the arc-consistency procedure is the 2-consistency procedure.

The idea of k-consistency is to maintain sets of (k−1)-tuples from V (H)k−1 for each (k−1)-
tuple from V (G)k−1, and to successively remove tuples by local inference. It is straightforward
to generalise also the details of the path-consistency procedure. For fixed H and fixed k, the
running time of the k-consistency procedure is still polynomial in the size of G. But the
dependency of the running time on k is clearly exponential.

However, we would like to point out that path consistency alias 3-consistency is of partic-
ular theoretical importance, due to the following recent result.

Theorem 4.2 (Barto and Kozik [11]). If CSP(H) can be solved by k-consistency for some
k ≥ 3, then CSP(H) can also be solved by 3-consistency.

Exercises

58. Show that the path-consistency procedure for CSP(H) can (for fixed H) be implemented
such that the worst-case running time is cubic in the size of the input digraph. (Hint:
use a worklist as in AC-3.)

59. Show that if path consistency solves CSP(H1) and path consistency solves CSP(H2),
then path consistency solves CSP(H1 ]H2).

4.2 Majority Polymorphisms

In this section, we present a powerful criterion that shows that for certain digraphs H the
path-consistency procedure solves the H-colouring problem. Again, this condition was first
discovered in more general form by Feder and Vardi [55]; it subsumes many criteria that were
studied in artificial intelligence and in graph theory before.

Definition 4.3. Let D be a set. A function f from D3 to D is called a majority function if
f satisfies the following equations, for all x, y ∈ D:

f(x, x, y) = f(x, y, x) = f(y, x, x) = x

Example 4.4. As an example, let D be {1, . . . , n}, and consider the ternary median opera-
tion, which is defined as follows. Let x, y be three elements from D. We define

median(x, x, y) = median(x, y, x) = median(y, x, x) := x.

If x, y, z are pairwise distinct elements of D, suppose that {x, y, z} = {a, b, c}, where a < b < c.
Then median(x, y, z) is defined to be b. Note that

median(x, y, z) = min(max(x, y),max(x, z),max(y, z)). 4

If a digraph H has a polymorphism f that is a majority operation, then f is called a
majority polymorphism of H.
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Example 4.5. Let H be the transitive tournament on n vertices, Tn. Suppose the vertices
of Tn are the first natural numbers, {1, . . . , n}, and (u, v) ∈ E(Tn) if and only if u < v. Then
the median operation is a polymorphism of Tn, because if u1 < v1, u2 < v2, and u3 < v3,
then clearly median(u1, u2, u3) < median(v1, v2, v3). 4

Theorem 4.6 (of [55]). Let H be a finite digraph. If H has a majority polymorphism, then
the H-colouring problem can be solved in polynomial time (by the path-consistency procedure).

For the proof of Theorem 4.6 we need the following lemma.

Lemma 4.7. Let G and H be finite digraphs. Let f be a polymorphism of H of arity k and let
L := L(x, z) be the final list computed by the path-consistency procedure for x, z ∈ V (G). Then
f preserves L, i.e., if (u1, w1), . . . , (uk, wk) ∈ L, then (f(u1, . . . , uk), f(w1, . . . , wk)) ∈ L.

Proof. Let (u1, w1), . . . , (uk, wk) ∈ L. We prove by induction over the execution of PCH on G
that at all times the pair (u,w) := (f(u1, . . . , uk), f(w1, . . . , wk)) is contained in L. Initially,
this is true because f is a polymorphism of H. For the inductive step, let y ∈ V (G). By
definition of the procedure, for each i ∈ {1, . . . , k} there exists vi such that (ui, vi) ∈ L(x, y)
and (vi, wi) ∈ L(y, z). By the inductive assumption, (f(u1, . . . , uk), f(v1, . . . , vk)) ∈ L(x, y)
and (f(v1, . . . , vk), f(w1, . . . , wk)) ∈ L(y, z). Hence, (f(u1, . . . , uk), f(w1, . . . , wk)) will not be
removed in the next step of the algorithm.

Proof of Theorem 4.6. Let f : V (H)3 → V (H) be a majority polymorphism of H. Clearly, if
the path-consistency procedure derives the empty list for some pair (x, z) from V (G)2, then
there is no homomorphism from G to H.

Now suppose that after running the path-consistency procedure on G for all pairs (x, z)
from V (G)2 the list L(x, z) is non-empty. We have to show that there exists a homomorphism
from G to H. A function h from an induced subgraph G′ of G to H is said to preserve the
lists if (h(x), h(z)) ∈ L(x, z) for all x, z ∈ V (G′). The proof shows by induction on i that
every homomorphism from a subgraph of G with i vertices that preserves the lists can be
extended to any other vertex in G such that the resulting mapping is a homomorphism to H
that again preserves the lists.

For the base case of the induction, observe that for all vertices x, z ∈ V (G) every mapping
h from {x, z} to V (H) such that (h(x), h(z)) ∈ L(x, z) can be extended to every y ∈ V (G) such
that (h(x), h(y)) ∈ L(x, y) and (h(y), h(z)) ∈ L(y, z) (and hence preserves the lists), because
otherwise the path-consistency procedure would have removed (h(x), h(z)) from L(x, z).

For the inductive step, let h′ be any homomorphism from a subgraph G′ of G on i ≥ 3
vertices to H that preserves the lists, and let x be any vertex of G not in G′. Let x1, x2,
and x3 be some vertices of G′, and h′j be the restriction of h′ to V (G′) \ {xj}, for 1 ≤ j ≤ 3.
By inductive assumption, h′j can be extended to x such that the resulting mapping hj is a
homomorphism to H that preserves the lists. We claim that the extension h of h′ that maps
x to f(h1(x), h2(x), h3(x)) is a homomorphism to H that preserves the lists.

For all y ∈ V (G′), we have to show that (h(x), h(y)) ∈ L(x, y) (and that (h(y), h(x)) ∈
L(y, x), which can be shown analogously). If y /∈ {x1, x2, x3}, then h(y) = h′(y) = f(h′(y),
h′(y), h′(y)) = f(h1(y), h2(y), h3(y)), by the properties of f . Since (hi(x), hi(y)) ∈ L(x, y) for
all i ∈ {1, 2, 3}, and since f preserves L(x, y) by Lemma 4.7, we have (h(x), h(y)) ∈ L(x, y),
and are done in this case.

Clearly, y can be equal to at most one of {x1, x2, x3}. Suppose that y = x1 (the other
two cases are analogous). There must be a vertex v ∈ V (H) such that (h1(x), v) ∈ L(x, y)
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(otherwise the path-consistency procedure would have removed (h1(x), h1(x1)) from L(x, x1)).
By the properties of f , we have h(y) = h′(y) = f(v, h′(y), h′(y)) = f(v, h2(y), h3(y)). Because
(h1(x), v), (h2(x), h2(y)), (h3(x), h3(y)) are in L(x, y), Lemma 4.7 implies that (h(x), h(y)) =
(f(h1(x), h2(x), h3(x)), f(v, h2(y), h3(y))) is in L(x, y), and we are done.

We conclude that G has a homomorphism to H.

Corollary 4.8. The path-consistency procedure solves the H-colouring problem for H = Tn.

Another class of examples of digraphs having a majority polymorphism are unbalanced
cycles, i.e., orientations of Cn that do not homomorphically map to a directed path [53]. We
only prove a weaker result here.

Proposition 4.9. Directed cycles have a majority polymorphism.

Proof. Let ~Cn be a directed cycle. Let f be the ternary operation on the vertices of ~Cn that
maps u, v, w to u if u, v, w are pairwise distinct, and otherwise acts as a majority operation. We
claim that f is a polymorphism of ~Cn. Let (u, u′), (v, v′), (w,w′) ∈ E(~Cn) be arcs. If u, v, w are
all distinct, then u′, v′, w′ are clearly all distinct as well, and hence (f(u, v, w), f(u′, v′, w′)) =
(u, u′) ∈ E(~Cn). Otherwise, if two elements of u, v, w are equal, say u = v, then u′ and v′

must be equal as well, and hence (f(u, v, w), f(u′, v′, w′)) = (u, u′) ∈ E(~Cn).

Exercises.

60. Show that every orientation of a path has a majority polymorphism.

61. Show that C4 has a majority polymorphism but C6 does not.

62. A quasi majority operation is an operation from V 3 to V satisfying

f(x, x, y) = f(x, y, x) = f(y, x, x) = f(x, x, x)

for all x, y ∈ V .

• Show that every digraph with a quasi majority polymorphism is homomorphically
equivalent to a digraph with a majority polymorphism.

• Use Theorem 2.6 to show that a finite undirected graph H has an H-colouring
problem that can be solved in polynomial time if H has a quasi majority polymor-
phism, and is NP-complete otherwise.

63. There is only one unbalanced cycle H on four vertices that is a core and not the directed
cycle (we have seen this digraph already in Exercise 46). Show that for this digraph H
the H-colouring problem can be solved by the path-consistency procedure.

64. Determine for which n ≥ 1 there is a linear order on the vertices of ~Cn such that median
with respect to this linear order is a polymorphism of ~Cn.

65. Determine for which n ≥ 1 the operation f from Proposition 4.9 preserves ~Tn.

66. Show that every unbalanced orientation of a cycle
has a majority polymorphism.
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67. Modify the path-consistency procedure such that it can deal with instances
of the precoloured H-colouring problem. Show that if H has a majority polymorphism,
then the modified path-consistency procedure solves the precoloured H-colouring prob-
lem.

68. Modify the path-consistency procedure such that it can deal with instances of the list
H-colouring problem. Show that if H has a conservative majority polymorphism, then
the modified path-consistency procedure solves the list H-colouring problem.

69. An interval graph H is an (undirected) graph H = (V ;E) such that there is an interval
Ix of the real numbers for each x ∈ V , and (x, y) ∈ E if and only if Ix and Iy have a
non-empty intersection. Note that with this definition interval graphs are necessarily
reflexive, i.e., (x, x) ∈ E. Show that the precoloured H-colouring problem for interval
graphs H can be solved in polynomial time. Hint: use the modified path-consistency
procedure in Exercise 67.

70. Show that if H is a (reflexive) interval graph,
then H has a conservative majority polymorphism.

71. Let H be a reflexive graph. Show that H has a conservative majority
polymorphism if and only if H is a circular arc graph, i.e., H can be
represented by arcs on a circle so that two vertices are adjacent
if and only if the corresponding arcs intersect.

72. Let H be an irreflexive graph. Then H has a conservative majority
polymorphism if and only if H is bipartite and the complement of a
circular arc graph.

73. Show that the digraph (Z; {(x, y) | x− y = 1}) has a majority polymorphism and that
its CSP can be solved in polynomial time.

74. Show that (Z; 6=) does not have a majority polymorphism, but a quasi majority poly-
morphism and that CSP(Z; 6=) can be solved in polynomial time.

75. Show that the digraph H = (Z; {(x, y) | x− y ∈ {1, 3}}) has a majority polymorphism,
and give a polynomial time algorithm for its H-colouring problem.

76. Consider the digraph C++
2 depicted in Figure 7 (a so-called semicomplete digraph).

Show the following statements.3

• CSP(C++
2 ) cannot be solved by the arc-consistency procedure.

• A finite digraph G homomorphically maps to C++
2 if and only if no digraph of

the following form maps to G: start with any orientation of an odd cycle, and if
(u, v), (w, v) are edges on the cycle, append to v an outgoing directed path with
two edges.

• H does not have a majority polymorphism.

• CSP(C++
2 ) can be solved by the path-consistency procedure.

3The author thanks Florian Starke and Sebastian Meyer for the idea for this exercise.

32



Figure 7: The graph C++
2 from Exercise 76.

4.3 Testing for Majority Polymorphisms

In this section we show that the question whether a given digraph has a majority polymor-
phism can be decided in polynomial time. The method that we present is sometimes referred
to as a self-reduction and can be adapted for several other polymorphism conditions and
several other algorithms (see Exercise 158).

Majority-Test(H)
Input: a finite digraph H.

Let G := H3.
For all u, v ∈ V (H), precolour the vertices (u, u, v), (u, v, u), (v, u, u), (u, u, u) with u.
If PCH(G) derives the empty list, reject.
For each x ∈ V (G)

Found-Value := False.
For each (u, u) ∈ L(x, x)

For all y, z ∈ V (G), let L′(y, z) be a copy of L(y, z).
L′(x, x) := {(u, u)}.
Run PCH(G) with the lists L′.
If this run does not derive the empty list

For all y, z ∈ V (G), set L(y, z) := L′(y, z).
Found-Value := True.

End For.
If Found-Value = False then reject.

End For.
Accept.

Figure 8: A polynomial-time algorithm to find majority polymorphisms.

Theorem 4.10. There is a polynomial-time algorithm to decide whether a given digraph H
has a majority polymorphism.

Proof. The pseudo-code of the procedure can be found in Figure 8. Given H, we construct
a new digraph G as follows. We start from the third power H3, and precolour all vertices of
the form (u, u, v), (u, v, u), (v, u, u), and (u, u, u) with u. Let G be the resulting precoloured
digraph. Note that there exists a homomorphism from G to H that respects the colours if
and only if H has a majority polymorphism.
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To decide whether G has a homomorphism to H, we run the modification of PCH for
the precoloured H-colouring problem on G (see Exercise 67). If this algorithm rejects, then
we can be sure that there is no homomorphism from G to H that respects the colours, and
hence H has no majority polymorphism. Otherwise, we use the same idea as in the proof of
Proposition 3.6: create a copy L′ of the lists L. Pick x ∈ V (G) and remove all but one pair
(u, u) from L′(x, x). If PCH derives the empty list on L′ instead of L, we try the same with
another pair (v, v) from L(x, x).

If there exists x ∈ V (G) such that PCH detects an empty list for all (u, u) ∈ L(x, x) then
the adaptation of PCH for the precoloured CSP would have given an incorrect answer for the
previously selected variable: PCH did not detect the empty list even though the input was
unsatisfiable. Hence, H cannot have a majority polymorphism by Theorem 4.6.

Otherwise, if PCH does not derive the empty list after removing all pairs but (u, u) from
L(x, x), we continue with another vertex y ∈ V (G), setting L(y, y) to {(u, u)} for some
(u, u) ∈ L(y, y). We repeat this procedure; if the algorithm never rejects, then eventually all
lists for pairs of the form (x, x) are singleton sets {(u, u)}; the map that sends x to u is a
homomorphism from G to H that respects the colours. In this case we return ‘true’.

It is easy to see that the procedure described above has polynomial running time.

Exercises.

77. Modify the algorithm ‘Majority-Test’ to obtain an algorithm that tests whether a given
digraph H has a quasi majority polymorphism.

4.4 Digraphs with a Maltsev Polymorphism

If a digraph H has a majority polymorphism, then the path-consistency procedure solves
CSP(H). How about digraphs H with a minority polymorphisms of H? It turns out that
this is an even stronger restriction.

Definition 4.11. A ternary function f : D3 → D is called

• a minority operation if it satisfies

∀x, y ∈ D. f(y, x, x) = f(x, y, x) = f(x, x, y) = y

• and a Maltsev operation if it satisfies

∀x, y ∈ D. f(y, x, x) = f(x, x, y) = y.

Example 4.12. Let D := {0, . . . , n− 1}. Then the function f : D3 → D given by (x, y, z) 7→
x − y + z mod n is a Maltsev operation, since x − x + z = z and x − z + z = x. For
n = 2, this is even a minority operation. If n > 2, this function is not a minority, since then
1 − 2 + 1 = 0 6≡ 2 mod n. Note that f is a polymorphism of ~Cn. To see this, suppose that
u1 − v1 ≡ 1 mod n, u2 − v2 ≡ 1 mod n, and u3 − v3 ≡ 1 mod n. Then

f(u1, u2, u3) ≡ u1 − u2 + u3 ≡ (v1 + 1)− (v2 + 1) + (v3 + 1)

≡ f(v1, v2, v3) + 1 mod n . 4

The following result appeared in 2011.
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Figure 9: A totally rectangular digraph.

Theorem 4.13 (Kazda [68]). If a finite digraph H has a Maltsev polymorphism then H also
has a majority polymorphism.

Hence, for finite digraphs H with a Maltsev polymorphism, the strong path-consistency
procedure solves the H-colouring problem, and in fact even the precoloured H-colouring
problem. Theorem 4.13 is an immediate consequence of Theorem 4.19 below; to state it, we
need the following concepts.

Definition 4.14. A digraph G is called rectangular if (x, y), (x′, y), (x′, y′) ∈ E(G) implies
that (x, y′) ∈ E(G).

We start with the fundamental observation: digraphs with a Maltsev polymorphism m are
rectangular. This follows immediately from the definition of polymorphisms: we must have
(m(x, x′, x′),m(y, y, y′)) ∈ E(G), but m(x, x′, x′) = x and m(y, y, y′) = y′, so (x, y′) ∈ E(G).
The converse does not hold, as the following example shows.

Example 4.15. The digraph
(
{a, b, c}; {(a, a), (a, b), (b, c), (c, c)}

)
is rectangular, but has no

Maltsev polymorphism m. Indeed, such an m would have to satisfy m(a, a, c) = c and
m(a, c, c) = a. Note that

(m(a, a, c),m(a, b, c)) ∈ E(G)

and (m(a, b, c),m(a, c, c)) ∈ E(G),

but G has no vertex x such that (c, x) ∈ E(G) and (x, a) ∈ E(G). 4

We are therefore interested in stronger consequences of the existence of a Maltsev poly-
morphism.

Definition 4.16. A digraph G is called k-rectangular if whenever G contains directed paths
of length k from x to y, from x′ to y, and from x′ to y′, then also from x to y′. A digraph G
is called totally rectangular if it is k-rectangular for all k ≥ 1.

Lemma 4.17. Every digraph with a Maltsev polymorphism m is totally rectangular.

Proof. Let k ≥ 1, and suppose thatG is a digraph with directed paths (x1, . . . , xk), (y1, . . . , yk),
and (z1, . . . , zk) such that xk = yk and y1 = z1. We have to show that there exists a directed
path (u1, . . . , uk) in G with u1 = x1 and uk = zk. It can be verified that ui := m(xi, yi, zi)
has the desired properties.
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An example of a totally rectangular digraph is given in Figure 9. The next lemma points
out an important consequence of k-rectangularity.

Lemma 4.18. Let G be a finite totally rectangular digraph with a cycle of net length d > 0.
Then G contains a directed cycle of length d.

Proof. Let C = (u0, . . . , uk−1) be a cycle of G of net length d; we prove the statement by
induction on k. Clearly, C can be decomposed into maximal directed paths, that is, there
is a minimal set D of directed paths such that each pair (u0, u1), (u1, u2), . . . , (uk−1, u0) is
contained in exactly one of the paths of D. If the decomposition D consists of a single directed
path then we have found a directed cycle and are done. Let P be the shortest directed path
of D, leading from u to v in G. Then there are directed paths Q and Q′ in D such that Q
starts in u and Q′ ends in v, and P 6= Q or P 6= Q′. By assumption, |Q|, |Q′| ≥ ` := |P |. By
`-rectangularity, there exists a directed path P ′ of length ` from the vertex s of Q′ at position
|Q′| − ` to the vertex t of Q at position `. Now we distinguish the following cases.

• Q = Q′: the cycle that starts in s, follows the path Q until t, and then returns to s via
the path P ′ is shorter than C but still has net length d.

• Q 6= Q′: the cycle starting in s, following Q for the final |Q| − ` vertices of Q, the cycle
C until Q′, the first |Q′|− ` vertices of Q′ until t, and then P ′ back to s is a cycle which
is shorter than C but still has net length d.

In both cases, the statement follows by induction.

The following is a strengthening of Theorem 4.13; we only prove that 1 implies 2, and 2
implies 3, which suffices for the already mentioned consequence that for digraphs H with a
Maltsev polymorphism, path consistency solves the H-colouring problem (cf. Exercise 59).

Theorem 4.19 (Theorem 3.3 and Corollary 4.12 in [43]). Let G be a finite digraph. Then
the following are equivalent.

1. G has a Maltsev polymorphism.

2. G is totally rectangular.

3. If G is acyclic, then the core of G is a directed path. Otherwise, the core of G is a
disjoint union of directed cycles.

4. G has a minority and a majority polymorphism.

Proof. The implication from 4 to 1 is trivial since every minority operation is in particular
a Maltsev operation. The implication from 1 to 2 is Lemma 4.17. For the implication from
2 to 3, let us assume that G is connected. The general case then follows by applying the
following argument to each of its connected components, and the observation that directed
paths homomorphically map to longer directed paths and to directed cycles.

We first consider the case that G is acyclic, and claim that in this case G is balanced, i.e.,
there exists a surjective homomorphism h from G to ~Pn for some n ≥ 1. Otherwise, there
exist u, v ∈ V (G) and two paths P and Q from u to v of different net lengths `1 and `2 (see
Exercise 13). Put these two paths together at u and v to form an unbalanced cycle C. Then
Lemma 4.18 implies that G contains a directed cycle contrary to our assumptions.
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Now, choose n with G→ ~Pn minimal, and fix u ∈ h−1(0) and v ∈ h−1(n). Then it is easy
to see from total rectangularity that there must exist a path of length n in G from u to v,
and hence the core of G is ~Pn.

Now suppose that G contains a directed cycle; let C be the shortest directed cycle of G.
We prove that G homomorphically maps to C. It is easy to see that it suffices to show that
for any two vertices u, v of G and for any two paths P and Q from u to v we have that their
net lengths are congruent modulo m := |C| (see Exercise 14). Suppose for contradiction that
there are paths of net length `1 and `2 from u to v in G such that d := `1 − `2 6= 0 modulo
m; without loss of generality, `2 < `1, so d > 0. We can assume that u is an element of C,
since otherwise we can choose a path S from a vertex of C to u by connectivity of G, and
append S to both P and Q. We can also assume that d < m because if not, we can append
C to Q to increase the length of Q by a multiple of m, until d = `1 − `2 < m. Lemma 4.18
then implies that G contains a directed cycle of length d, a contradiction to the choice of C.

For the missing implication from 3 to 4, we refer to [43] (Corollary 4.11).

Rectangularity will be revisited from a universal algebraic perspective in Section 11.2
(Proposition 11.10).

Exercises.

78. Let H be the digraph ({0, 1, . . . , 6}; {(0, 1), (1, 2), (3, 2), (4, 3), (4, 5), (5, 6)}). For which
k is it k-rectangular?

79. Show that G = (V,E) is rectangular if and only if E is a disjoint union
of sets of the form A×B where A,B ⊆ V .

5 Logic

A signature is a set of relation and function symbols. The relation symbols are typically
denoted by R,S, T, . . . and the function symbols are typically denoted by f, g, h, . . . ; each
relation and function symbol is equipped with an arity from N. A τ -structure A consists of

• a set A (the domain or base set ; we typically use the same letter in a different font)

• a relation RA ⊆ Ak for each relation symbol R of arity k from τ , and

• an operation fA : Ak → A for each function symbol f of arity k from τ .

Function symbols of arity 0 are allowed; they are also called constant symbols (and the
respective operations are called constants). In this text it causes no harm to allow structures
whose domain is empty. A τ -structure A is called finite if its domain A is finite.

A homomorphism h from a τ -structure A to a τ -structure B is a function from A to B
that preserves each relation and each function: that is,

• if (a1, . . . , ak) is in RA, then (h(a1), . . . , h(ak)) must be in RB;

• for all a1, . . . , ak ∈ A we have h(fA(a1, . . . , ak)) = fB(h(a1), . . . , h(ak)).
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An isomorphism is a bijective homomorphism h such that the inverse mapping h−1 : B → A
that sends h(x) to x is a homomorphism, too.

A relational structure is a τ -structure where τ only contains relation symbols, and an
algebra (in the sense of universal algebra) is a τ -structure where τ only contains function
symbols. This section is mainly about relational structures; algebras will appear in Section 8.

Note that in a τ -structure A, every function symbol of arity n must be defined on all of
An; in some settings, this requirement is not natural and we therefore also define multi-sorted
structures.

5.1 Multisorted Structures

This section is for later reference, and can be skipped at the first reading. Multisorted
structures will be used in Section 8.6 and in Section 9.

Let S be a set; the elements of S are called sorts. We write S∗ for the set of words over
S (i.e., finite sequences of elements of S) and S+ for the set of non-empty words over S.
An S-sorted signature τ consists of a set of function symbols (typically denoted by f, g, . . . )
and a set of relation symbols (typically denoted by R,S, . . . ). Each relation symbol R ∈ τ is
equipped with a type tp(R) ∈ S∗, and each function symbol f ∈ τ is equipped with a type
tp(R) ∈ S+.

If τ is an S-sorted signature, then an S-sorted τ -structure M consists of

• a set As for every s ∈ S;

• a relation RM ⊆ As1 × · · · × Asn for each relation symbol R ∈ τ of type tp(R) =
(s1, s2, . . . , sn), n ∈ N;

• a function fM : As1 × · · · × Asn → As0 for each function symbol f ∈ τ of type tp(f) =
(s0, s1, . . . , sn), for n ∈ N.

Note that for the one-sorted case, i.e., if |S| = 1, we recover the notion of a structure
as introduced earlier. Vector spaces or, more generally, modules may be viewed naturally as
two-sorted structures; see Example 8.3.

The syntax and semantics of first-order logic over an S-sorted signature τ are defined
as follows. Let V be a set; the elements of V are called variables. Each variable x ∈ V is
equipped with a type tp(x) ∈ S; we require that for every s ∈ S there are infinitely many
variables of type s.

If x1, . . . , xn are variables, then a τ -term t of type tp(t) over the variables x1, . . . , xn is
defined inductively as follows.

• each variable from x1, . . . , xn is a τ -term of type tp(t) = (tp(xi), tp(x1), . . . , tp(xn)).

• if f ∈ τ is a function symbol of type (s0, s1, . . . , sn), for n ∈ N, and for each i ∈ {1, . . . , n}
we have a τ -term ti of type (si, tp(x1), . . . , tp(xn)) over the variables x1, . . . , xn, then
(the syntactic object) f(t1, . . . , tn) is a τ -term over x1, . . . , xn of type (s0, tp(x1), . . . , tp(xn)).
Note that the case n = 0 is another base case of the induction, which covers terms with-
out any occurrence of variables.

All τ -terms t over the variables x1, . . . , xn are built in this way; we often write t(x1, . . . , xn)
to indicate that t is a term over x1, . . . , xn.

38



If M is an S-sorted τ -structure, x1, . . . , xn ∈ V , and t(x1, . . . , xn) is a τ -term of type
tp(t) = (s0, tp(x1), . . . , tp(xn)), then the term function tM (in the one-sorted case called term
operation) is the function of type tp(t) defined inductively as follows:

• if t is of the form xi, for i ∈ {1, . . . , n}, then tM is the function (a1, . . . , an) 7→ ai.

• if t is of the form f(t1, . . . , tk), for f of type (s0, tp(t1), . . . , tp(tk)), then tM is the
function (a1, . . . , an) 7→ fM(tM1 (a1, . . . , an), . . . , tMk (a1, . . . , an)).

An atomic S-sorted τ -formula over variables x1, . . . , xn of type (tp(x1), . . . , tp(xn)) is

• an expression of the form t1 = t2, for S-sorted τ -terms t1(x1, . . . , xn) and t2(x1, . . . , xn)
of type tp(t1) = (s0, tp(x1), . . . , tp(xn)) and tp(t2) = (s0, tp(x1), . . . , tp(xn)),

• an expression of the form R(t1, . . . , tn), for S-sorted τ -terms t1, . . . , tn and a relation
symbol R ∈ τ of type (tp(t1), . . . , tp(tn)).

An S-sorted first-order τ -formula over the variables x1, . . . , xn ∈ V of type (tp(x1), . . . , tp(xn))
is defined inductively as one of the following expressions:

• an atomic S-sorted first-order τ -formula over x1, . . . , xn;

• φ1 ∧ φ2 for S-sorted first-order τ -formula φ1, φ2 over the variables x1, . . . , xn;

• ¬φ for an S-sorted first-order τ -formula φ over the variables x1, . . . , xn;

• ∃x0.φ where x0 ∈ V and φ is an S-sorted first-order τ -formula over the variables
x0, x1, . . . , xn.

If M is an S-sorted τ -structure, x1, . . . , xn ∈ V , and φ(x1, . . . , xn) is an τ -formula, then
φM is the relation defined as follows.

• If φ is atomic and of the form t1 = t2, then φM consists of all tuples (a1, . . . , an) ∈
Atp(x1) × · · · ×Atp(xn) such that tM1 (a1, . . . , an) = tM2 (a1, . . . , an).

• If φ is atomic and of the form R(t1, . . . , tk) for S-sorted τ -terms t1, . . . , tk and R ∈ τ
of type (tp(t1), . . . , tp(tk)), then φM consists of all tuples (a1, . . . , an) ∈ Atp(x1) × · · · ×
Atp(xn) such that (

tM1 (a1, . . . , an), . . . , tMk (a1, . . . , an)
)
∈ RM.

• If φ is of the form φ1 ∧ φ2 for S-sorted τ -formulas φ1 and φ2 over x1, . . . , xn, then
φM := φM1 ∩ φM2 .

• If φ is of the form ¬ψ for some S-sorted τ -formula ψ over x1, . . . , xn, then φM :=
(Atp(x1) × · · · ×Atp(xn)) \ ψM;

• If φ is of the form ∃x0.ψ for some x0 ∈ V and some S-sorted τ -formula ψ over
x0, x1, . . . , xn, then φM consists of all tuples (a1, . . . , an) ∈ Atp(x1) × · · · × Atp(xn) such

that there exists a0 ∈ Atp(x0) such that (a0, a1, . . . , an) ∈ ψM.

We recover the syntax and semantics of usual first-order logic as the special case of the
one-sorted case.
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Exercises.

80. Show that one can decide in polynomial time whether a given string is an S-sorted
τ -term over variables x1, . . . , xn.

81. Generalise the notion of a homomorphism between τ -structures to S-sorted τ -structures.

5.2 Primitive Positive Formulas

A first-order τ -formula φ(x1, . . . , xn) is called primitive positive (in database theory also
conjunctive query) if it is of the form

∃xn+1, . . . , x`(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic τ -formulas, i.e., formulas of the form R(y1, . . . , yk) with R ∈ τ
and yi ∈ {x1, . . . , x`}, of the form y = y′ for y, y′ ∈ {x1, . . . , x`}, or > and ⊥ (for true and
false). As usual, formulas without free variables are called sentences. If A is a τ -structure
and φ a τ -sentence, then we write A |= φ if A satisfies φ (i.e., φ holds in A).

Note that if we would require that all our structures have a non-empty domain, we would
not need the symbol > since we can use the primitive positive sentence ∃x. x = x to express
it. It is possible to rephrase the H-colouring problem and its variants using primitive positive
sentences.

Definition 5.1. Let B be a structure with a finite relational signature τ . Then CSP(B) is
the computational problem of deciding whether a given primitive positive τ -sentence φ is true
in B.

The given primitive positive τ -sentence φ is also called an instance of CSP(B). The
conjuncts of an instance φ are called the constraints of φ. A mapping from the variables of
φ to the elements of B that is a satisfying assignment for the quantifier-free part of φ is also
called a solution to φ.

Example 5.2 (Disequality constraints). Consider the problem CSP({1, 2, . . . , n}; 6=). An
instance of this problem can be viewed as an (existentially quantified) set of variables, some
linked by disequality4 constraints. Such an instance holds in ({1, 2, . . . , n}; 6=) if and only if
the graph whose vertices are the variables, and whose edges are the disequality constraints,
has a homomorphism to Kn. 4

The dichotomy conjecture of Feder and Vardi was that CSP(B) is always in P or NP-
complete, for every finite structure B with finite relational signature; this conjecture was
proved by Bulatov [36] and by Zhuk [96]. For a first more informative formulation of their
result, see Theorem 5.19; many more reformulations can be found later in the text. Feder
and Vardi showed that their conjecture is equivalent to the special case of their conjecture
for finite digraphs (see Theorem 2.5), because for every relational structure B there exists a
finite digraph H such that CSP(B) and CSP(H) are polynomial time equivalent; this result
has later been refined in [41].

4We deliberately use the word disequality instead of inequality, since we reserve the word inequality for the
relation x ≤ y.
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Exercises.

82. Show that CSP
(
{0, 1};R0,1, R1,1, R0,0)

)
, where the relation

Ri,j equals {0, 1}2 \ {(i, j)}, can be solved in polynomial time.

83. Generalise the notion of direct products from digraphs (Definition 2.1)
to general relational τ -structures.

84. Generalise the arc-consistency procedure and the power graph
to general relational structures, and prove a generalisation of Theorem 3.4.

85. Generalise the concept of tree duality to general relational structures,
and prove a generalisation of Theorem 3.8.

86. Does the arc-consistency procedure (see Exercise 84) solve CSP(B) where
B has domain B = {0, 1, 2, 3}, the unary relation UB

i for every i ∈ B,
and the binary relations B4 \ {(0, 0)} and {(1, 2), (2, 3), (3, 1), (0, 0)}?

87. Generalise the k-consistency procedure from digraphs to general relational structures.

88. Verify that the structure B from Exercise 86 has the binary idempotent commutative
polymorphism ∗ defined as 1∗2 = 2, 2∗3 = 3, 3∗1 = 1, and 0∗b = b for all b ∈ {1, 2, 3}.
Verify that ∗ satisfies ‘restricted associativity’, i.e., x∗(x∗y) = (x∗x)∗y for all x, y ∈ B
(and since it is additionally idempotent and commutative it is called a 2-semilattice).

89. Does the structure B from Exercise 86 have a majority polymorphism?

90. Does the path-consistency procedure solve CSP(B) for the structure B
from Exercise 86?

91. Let B be the structure with domain B := {−1, 0,+1} and the ternary relations

RB := {(x, y, z) ∈ B3 | x+ y + z ≥ 1}
SB := {(x, y, z) ∈ B3 | x+ y + z ≤ −1}.

• Prove that for every k ∈ N, the k-ary operation s defined by

(x1, . . . , xk) 7→


+1 (x1 + · · ·+ xk)/k ≥ 1/3

−1 (x1 + · · ·+ xk)/k ≤ 1/3

0 otherwise

is a polymorphism of B.

• Show that CSP(B) cannot be solved by the arc-consistency procedure (see Exer-
cise 84).

• Show that the k-consistency procedure solves CSP(B), for a sufficiently large k
(see Exercise 87).
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5.3 From Structures to Formulas

To every finite relational τ -structure A we can associate a τ -sentence, called the canonical
conjunctive query of A, and denoted by φ(A). The variables of this sentence are the elements
of A, all of which are existentially quantified in the quantifier prefix of the formula, which is
followed by the conjunction of all formulas of the form R(a1, . . . , ak) for R ∈ τ and tuples
(a1, . . . , ak) ∈ RA.

For example, the canonical conjunctive query φ(K3) of the complete graph on three ver-
tices K3 is the formula

∃u, v, w
(
E(u, v) ∧ E(v, u) ∧ E(v, w) ∧ E(w, v) ∧ E(u,w) ∧ E(w, u)

)
.

The proof of the following proposition is straightforward.

Proposition 5.3. Let B be a structure with finite relational signature τ , and let A be a finite
τ -structure. Then there is a homomorphism from A to B if and only if B |= φ(A).

5.4 From Formulas to Structures

To present a converse of Proposition 5.3, we define the canonical structure S(φ) (in database
theory this structure is called the canonical database) of a primitive positive τ -sentence,
which is a relational τ -structure defined as follows. We require that φ does not contain ⊥.
If φ contains an atomic formula of the form x = y, we remove it from φ, and replace all
occurrences of x in φ by y. Repeating this step if necessary, we may assume that φ does not
contain atomic formulas of the form x = y.

Then the domain of S(φ) is the set of variables that occur in φ. There is a tuple (v1, . . . , vk)
in a relation R of S(φ) if and only if φ contains the conjunct R(v1, . . . , vk). The following is
similarly straightforward as Proposition 5.3.

Proposition 5.4. Let B be a relational τ -structure and let φ be a primitive positive τ -sentence
that does not contain ⊥. Then B |= φ if and only if S(φ) homomorphically maps to B.

Due to Proposition 5.4 and Proposition 5.3, we may freely switch between the homo-
morphism and the logic perspective whenever this is convenient. In particular, instances of
CSP(B) can from now on be either finite structures A or primitive positive sentences φ.

Note that the H-colouring problem, the precoloured H-colouring problem, and the list H-
colouring problem can be viewed as constraint satisfaction problems for appropriately chosen
relational structures.

5.5 Primitive Positive Definability

Let A be a τ -structure, and let A′ be a τ ′-structure with τ ⊆ τ ′. If A and A′ have the same
domain and RA = RA′ for all R ∈ τ , then A is called the τ -reduct (or simply reduct) of A′,
and A′ is called a τ ′-expansion (or simply expansion) of A. If A is a structure, and R is a
relation over the domain of A, then we denote the expansion of A by R by (A, R).

If A is a τ -structure, and φ(x1, . . . , xk) is a formula with k free variables x1, . . . , xk, then
the relation defined by φ is the relation

{(a1, . . . , ak) | A |= φ(a1, . . . , ak)} .

If the formula is primitive positive, then this relation is called primitive positive definable.
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Example 5.5. The relation {(a, b) ∈ {0, 1, 2, 3, 4}2 | a 6= b} is primitive positive definable in
C5: the primitive positive definition is

∃p1, p2

(
E(x1, p1) ∧ E(p1, p2) ∧ E(p2, x2)

)
. 4

Example 5.6. The non-negative integers are primitively positively definable in (Z; 0, 1,+, ∗),
namely by the following formula φ(x) which states that x is the sum of four squares.

∃x1, x2, x3, x4(x = x2
1 + x2

2 + x2
3 + x2

4)

Clearly, every integer that satisfies φ(x) is non-negative; the converse is the famous four-square
theorem of Lagrange [59]. 4

Definition 5.7 (Relational product). For binary relations R1, R2 ⊂ B2, define R1 ◦R2 to be
the binary relation {

(x, y) | ∃z(R1(x, z) ∧R2(z, y))
}
. (1)

For R ⊆ B2 and k ≥ 1, define R1 := R and Rk+1 := Rk ◦ R. Note that Rk is primitively
positively definable in (B;R).

The following lemma says that we can expand structures by primitive positive definable
relations without changing the complexity of the corresponding CSP. Hence, primitive positive
definitions are an important tool to prove NP-hardness: to show that CSP(B) is NP-hard,
it suffices to show that there is a primitive positive definition of a relation R such that
CSP(B, R) is already known to be NP-hard. Stronger tools to prove NP-hardness of CSPs
will be introduced in Sections 5.7 and 5.9.

Lemma 5.8 (Jeavons, Cohen, Gyssens [66]). Let B be a structure with finite relational
signature, and let R be a relation that has a primitive positive definition in B. Then CSP(B)
and CSP(B, R) are linear-time equivalent.

Proof. It is clear that CSP(B) reduces to the new problem. So suppose that φ is an instance
of CSP((B, R)). Replace each conjunct R(x1, . . . , xl) of φ by its primitive positive definition
ψ(x1, . . . , xl). Move all quantifiers to the front, such that the resulting formula is in prenex
normal form and hence primitive positive. Finally, equalities can be eliminated one by one:
for equality x = y, remove y from the quantifier prefix, and replace all remaining occurrences
of y by x. Let φ′ be the formula obtained in this way.

It is straightforward to verify that φ is true in (B, R) if and only if φ′ is true in B, and it
is also clear that φ′ can be constructed in linear time in the representation size of φ.

Recall from Section 2.3 that CSP(K5) is NP-hard. Since the edge relation of K5 is
primitively positively definable in C5 (Example 5.5), Lemma 5.8 implies that CSP(C5) is
NP-hard, too.
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Exercices.

92. Let f : Ak → A be an operation. The graph of f is the relation

Gf := {(a1, . . . , ak, a0) | a0 = f(a1, . . . , ak)}.

Show that a relation is primitively positively definable in the
structure (A; f) if and only if it is primitively positive definable in (A;Gf ).

93. Show that if E ⊆ B2, then En = E2 for some n ∈ N if and only if
the digraph (B;E) is strongly connected.

94. For a binary relation R ⊆ A×B, define R−1 := {(b, a) | (a, b) ∈ R}.
For n ∈ N, define R−n := (R−1)n (see Definition 5.7).
Show that (Rn)−1 = R−n.

95. Show that (R ∪R−1)n = B2, for some n ∈ N, if and only if
the graph (B;E) is weakly connected.

96. Show that the relation R := {(a, b, c) ∈ {1, 2, 3}3 | a = b or b = c or a = c} has a
primitive positive definition over K3.

97. Show that the relation 6= on {1, 2, 3} has a primitive positive definition in the structure
({1, 2, 3};R, {1}, {2}, {3}) where R is the relation from the previous exercise.

98. Let R+, R∗ be the relations defined as follows.

R+ := {(x, y, z) ∈ Q3 | x+ y = z}
R∗ := {(x, y, z) ∈ Q3 | x ∗ y = z}.

Show that R∗ is primitive positive definable in the structure (Q;R+, {(x, y) | y = x2}).

99. Let B be any set, and for n ∈ N define the relation P 2n
B of arity 2n as follows.

P 2n
B := {(x1, y1, x2, y2, . . . , xn, yn) ∈ B2n |

∨
i∈{1,...,n}

xi = yi}

Show that for every n the relation P 2n
B has a primitive positive definition in (B;P 4

B).

100. Let n ≥ 4. Is there a primitive positive definition of 6= over the structure

Mn := ({1, . . . , n};R, {1}, {2}, . . . , {n})
where R := {(1, . . . , 1), (2, . . . , 2), . . . , (n, . . . , n), (1, 2, . . . , n)}?
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5.6 Cores and Constants

An automorphism of a structure B with domain B is an isomorphism between B and itself.
The set of all automorphisms α of B is denoted by Aut(B), and forms a permutation group.
If G is a permutation group on a set B, and b ∈ B, then a set of the form

S = {α(b) | α ∈ G}

is called an orbit of G (the orbit of b). Let (b1, . . . , bk) be a k-tuple of elements of B. A set
of the form

S = {(αb1, . . . , αbk) | α ∈ Aut(B)}

is called an orbit of k-tuples of B; it is an orbit of the componentwise action of G on the set
Bk of k-tuples from B.

Lemma 5.9. Let B be a structure with a finite relational signature and domain B, and let
R = {(b1, . . . , bk)} be a k-ary relation that only contains one tuple (b1, . . . , bk) ∈ Bk. If
the orbit of (b1, . . . , bk) in B is primitive positive definable, then there is a polynomial-time
reduction from CSP(B, R) to CSP(B).

Proof. Let φ be an instance of CSP(B, R) with variable set V . If φ contains two constraints
R(x1, . . . , xk) and R(y1, . . . , yk), then replace each occurrence of y1 by x1, then each occur-
rence of y2 by x2, and so on, and finally each occurrence of yk by xk. We repeat this step
until all constrains that involve R are imposed on the same tuple of variables (x1, . . . , xk).
Replace R(x1, . . . , xk) by the primitive positive definition θ of its orbit in B. Finally, move
all quantifiers to the front, such that the resulting formula ψ is in prenex normal form and
thus an instance of CSP(B). Clearly, ψ can be computed from φ in polynomial time. We
claim that φ is true in (B, R) if and only if ψ is true in B.

Suppose φ has a solution s : V → B. Since (b1, . . . , bk) satisfies θ, we can extend s
to the existentially quantified variables of θ to obtain a solution for ψ. In the opposite
direction, suppose that s′ is a solution to ψ over B. Let s be the restriction of s′ to V . Since
(s(x1), . . . , s(xk)) satisfies θ, it lies in the same orbit as (b1, . . . , bk). Thus, there exists an
automorphism α of B that maps (s(x1), . . . , s(xk)) to (b1, . . . , bk). Then the extension of the
map x 7→ αs(x) that maps variables yi of φ that have been replaced by xi in ψ to the value
bi is a solution to φ over (B, R).

The definition of cores can be extended from finite digraphs to finite structures: as in
the case of finite digraphs, we require that every endomorphism be an automorphism. All
results we proved for cores of digraphs remain valid for cores of structures. In particular,
every finite structure C is homomorphically equivalent to a core structure B, which is unique
up to isomorphism (see Section 2.4). The following proposition can be shown as in the proof
of Proposition 2.9.

Proposition 5.10. Let B be a finite core structure. Then the orbits of k-tuples of B are
primitive positive definable.

Proposition 5.10 and Lemma 5.9 have the following consequence.

Corollary 5.11. Let B be a finite core with a finite relational signature. Let b1, . . . , bn ∈ B.
Then CSP(B) and CSP(B, {b1}, . . . , {bn}) are polynomial time equivalent.
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Exercises.

101. Show that if m is the number of orbits of k-tuples of a finite structure A,
and C is the core of A, then C has at most m orbits of k-tuples.

102. Show that if A is a finite structure, and C its core, and if A and C have
the same number of orbits of pairs, then A and C are isomorphic.

5.7 Primitive Positive Interpretations

Primitive positive interpretations are a powerful generalisation of primitive positive definabil-
ity that can be used to also relate structures with different domains. They are a special case
of (first-order) interpretations that play an important role in model theory (see, e.g., [64]).

If C and D are sets and g : C → D is a map, then the kernel of g is the equivalence relation
E on C where (c, c′) ∈ E if g(c) = g(c′). For c ∈ C, we denote by c/E the equivalence class
of c in E, and by C/E the set of all equivalence classes of elements of C. The index of E is
defined to be |C/E|.

Definition 5.12. Let σ and τ be relational signatures, let A be a τ -structure, and let B be
a σ-structure. A primitive positive interpretation I of B in A consists of

• a natural number d, called the dimension of I,

• a primitive positive τ -formula δI(x1, . . . , xd), called the domain formula,

• for each atomic σ-formula φ(y1, . . . , yk) a primitive positive τ -formula φI(x1, . . . , xk),
called the defining formulas, and

• the coordinate map: a surjective map h : D → B where

D := {(a1, . . . , ad) ∈ Ad | A |= δI(a1, . . . , ad)}

such that for all atomic σ-formulas φ and all tuples ai ∈ D

B |= φ(h(a1), . . . , h(ak)) ⇔ A |= φI(a1, . . . , ak) .

Sometimes, the same symbol is used for the interpretation I and the coordinate map. Note
that the dimension d, the set D, and the coordinate map h determine the defining formulas
up to logical equivalence; hence, we sometimes denote an interpretation by I = (d,D, h).
Note that the kernel of h coincides with the relation defined by (y1 = y2)I , for which we
also write =I , the defining formula for equality. Also note that the structures A and B
and the coordinate map determine the defining formulas of the interpretation up to logical
equivalence.

Example 5.13. Let G be a digraph and let F be an equivalence relation on V (G). Then
G/F is the digraph whose vertices are the equivalence classes of F , and where S and T are
adjacent if there are s ∈ S and t ∈ T such that {s, t} ∈ E(G). If F has a primitive positive
definition in G, then G/F has a primitive positive interpretation in G. 4
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Example 5.14. The field of rational numbers (Q; 0, 1,+, ∗) has a primitive positive 2-
dimensional interpretation I in (Z; 0, 1,+, ∗). Example 5.6 presented a primitive positive
definition φ(x) of the set of non-negative integers. The interpretation is now given as follows.

• The domain formula δI(x, y) is y ≥ 1 (using φ(x), it is straightforward to express this
with a primitive positive formula);

• The formula =I (x1, y1, x2, y2) is x1y2 = x2y1;

• The formula 0I(x, y) is x = 0, the formula 1I(x, y) is x = y;

• The formula +I(x1, y1, x2, y2, x3, y3) is y3 ∗ (x1 ∗ y2 + x2 ∗ y1) = x3 ∗ y1 ∗ y2;

• The formula ∗I(x1, y1, x2, y2, x3, y3) is x1 ∗ x2 ∗ y3 = x3 ∗ y1 ∗ y2. 4

Theorem 5.15. Let B and C be structures with finite relational signatures. If there is a
primitive positive interpretation of B in C, then there is a polynomial-time reduction from
CSP(B) to CSP(C).

Proof. Let d be the dimension of the primitive positive interpretation I of the τ -structure B
in the σ-structure C, let δI(x1, . . . , xd) be the domain formula, and let h : δI(C

d)→ B be the
coordinate map. Let φ be an instance of CSP(B) with variable set U = {x1, . . . , xn}. We
construct an instance ψ of CSP(C) as follows. For distinct variables V := {y1

1, . . . , y
d
n}, we set

ψ1 to be the formula ∧
1≤i≤n

δI(y
1
i , . . . , y

d
i ) .

Let ψ2 be the conjunction of the formulas θI(y
1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) over all conjuncts

θ = R(xi1 , . . . , xik) of φ. By moving existential quantifiers to the front, the sentence

∃y1
1, . . . , y

d
n (ψ1 ∧ ψ2)

can be re-written to a primitive positive σ-sentence ψ, and clearly ψ can be constructed in
polynomial time in the size of φ.

We claim that φ is true in B if and only if ψ is true in C. Suppose that f : V → C satisfies
all conjuncts of ψ in C. Hence, by construction of ψ, if φ has a conjunct θ = R(xi1 , . . . , xik),
then

C |= θI
(
(f(y1

i1), . . . , f(ydi1)), . . . , (f(y1
ik

), . . . , f(ydik))
)
.

By the definition of interpretations, this implies that

B |= R
(
h(f(y1

i1), . . . , f(ydi1)), . . . , h(f(y1
ik

), . . . , f(ydik))
)
.

Hence, the mapping g : U → B that sends xi to h(f(y1
i ), . . . , f(ydi )) satisfies all conjuncts of

φ in B.
Now, suppose that f : U → B satisfies all conjuncts of φ over B. Since h is a surjective

mapping from δI(C
d) to B, there are elements c1

i , . . . , c
d
i in C such that h(c1

i , . . . , c
d
i ) = f(xi),

for all i ∈ {1, . . . , n}. We claim that the mapping g : V → C that maps yji to cji satis-
fies ψ in C. By construction, any constraint in ψ either comes from ψ1 or from ψ2. If it
comes from ψ1 then it must be of the form δI(y

1
i , . . . , y

d
i ), and is satisfied since the pre-image

of h is δI(C
d). If the constraint comes from ψ2, then it must be a conjunct of a formula
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θI(y
1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) that was introduced for a constraint θ = R(xi1 , . . . , xik) in φ.

It therefore suffices to show that

C |= θI
(
g(y1

i1), . . . , g(ydi1), . . . , g(y1
ik

), . . . , g(ydik)
)
.

By assumption, R(f(xi1), . . . , f(xik)) holds in B. By the choice of c1
1, . . . , c

d
n, this shows that

R(h(c1
i1
, . . . , cdi1), . . . , h(c1

ik
, . . . , cdik)) holds in C. By the definition of interpretations, this is

the case if and only if θI(c
1
i1
, . . . , cdi1 , . . . , c

1
ik
, . . . , cdik) holds in C, which is what we had to

show.

In many hardness proofs we use Theorem 5.15 in the following way.

Corollary 5.16. Let B be a finite relational structure. If there is a primitive positive inter-
pretation of K3 in B, then CSP(B) is NP-hard.

Proof. This is a direct consequence of Theorem 5.15 and the fact that CSP(K3) is NP-hard
(see, e.g., [56]).

Indeed, K3 is one of the most expressive finite structures, in the following sense.

Theorem 5.17. If n ≥ 3 then every finite structure has a primitive positive interpretation
in Kn.

Proof. Let A be a finite τ -structure with the domain A = {1, . . . , k}. Our interpretation I of
A in Kn is 2k-dimensional. The domain formula δI(x1, . . . , xk, x

′
1, . . . , x

′
k) expresses that for

exactly one i ≤ k we have xi = x′i. Note that this formula is preserved by all permutations of
{1, . . . , k}. We will see in Proposition 6.19 that every such formula is equivalent to a primitive
positive formula over Kn. Equality is interpreted by the formula

=I (x1, . . . , xk, x
′
1, . . . , x

′
k, y1, . . . , yk, y

′
1, . . . , y

′
k) :=

k∧
i=1

(
(xi = x′i)⇔ (yi = y′i)

)
Note that =I defines an equivalence relation on the set of all 2k-tuples (u1, . . . , uk, u

′
1, . . . , u

′
k)

that satisfy δI . The coordinate map sends this tuple to i if and only if ui = u′i. When R ∈ τ is
m-ary, then the formula R(x1, . . . , xm)I is any primitive positive formula which is equivalent
to the following disjunction of conjunctions with 2mk variables x1,1, . . . , xm,k, x

′
1,1, . . . , x

′
m,k:

for each tuple (t1, . . . , tm) ∈ RA the disjunction contains the conjunct
∧
i≤m xi,ti = x′i,ti ; again,

Proposition 6.19 implies that such a primitive positive formula exists.

Exercises.

103. Show that the digraph

({a, b, c, d, e}; {(a, b), (b, c), (c, d), (d, e), (b, d), (a, d), (d, e)})

has a pp-interpretation in ({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {0}, {1}), and vice versa.

Hints. Exercise 120. There is a 1-dimensional pp-interpretation of the
second structure in the digraph.
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5.7.1 Composing Interpretations

Primitive positive interpretations can be composed: if

• C1 has a d1-dimensional pp-interpretation I1 in C2, and

• C2 has an d2-dimensional pp-interpretation I2 in C3,

then C1 has a natural (d1d2)-dimensional pp-interpretation in C3, which we denote by I1 ◦ I2.
To formally describe I1 ◦ I2, suppose that the signature of Ci is τi for i = 1, 2, 3, and that
I1 = (d1, S1, h1) and I2 = (d2, S2, h2). When φ is a primitive positive τ2-formula, let φI2
denote the τ3-formula obtained from φ by replacing each atomic τ2-formula ψ in φ by the
τ3-formula ψI2 . Note that φI2 is again primitive positive. The coordinate map of I1 ◦ I2 is
defined by

(a1
1, . . . , a

1
d2 , . . . , a

d1
1 , . . . , a

d1
d2

) 7→ h1

(
h2(a1

1, . . . , a
1
d2), . . . , h2(ad11 , . . . , a

d1
d2

)
)
.

Two pp-interpretations I1 and I2 of B in A are called homotopic5 if the relation

{(x̄, ȳ) | I1(x̄) = I2(ȳ)}

of arity d1 + d2 is pp-definable in A. Note that idC is a pp-interpretation of C in C, called the
identity interpretation of C (in C).

Definition 5.18. Two structures A and B with an interpretation I of B in A and an in-
terpretation J of A in B are called mutually pp-interpretable. If both I ◦ J and J ◦ I are
homotopic to the identity interpretation (of A and of B, respectively), then we say that A
and B are primitively positively bi-interpretable (via I and J).

We close this section with a more informative version of Theorem 2.5. It has been con-
jectured (in slightly different, but equivalent form) by Bulatov, Jeavons, and Krokhin in [39],
which is known under the name tractability conjecture.

Theorem 5.19 (Tractability Theorem, Version 1). Let B be a relational structure with finite
domain and finite signature, and let C be the expansion of the core of B by all singleton unary
relations. If K3 has a primitive positive interpretation in C, then CSP(B) is NP-complete.
Otherwise, CSP(B) is in P.

Proof. The first part of the theorem easily follows from the results that we have already
shown: B and its core have the same CSP, and C has the same complexity by Lemma 5.9.
The first statement then follows from Corollary 5.16. The second statement was shown by
Bulatov [36] and by Zhuk [96].

A reformulation of this result can be found in Section 5.9.

5We follow the terminology from [2].
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5.8 Reduction to Binary Signatures

In this section we prove that every structure C with a relational signature of maximal arity
m ∈ N is primitively positively bi-interpretable with a binary structure B, i.e., a relational
structure where every relation symbol has arity at most two. Moreover, if C has a finite
signature, then B can be chosen to have a finite signature, too. It follows from Theorem 5.15
that every CSP is polynomial-time equivalent to a binary CSP. This transformation is known
under the name dual encoding [45, 49]. We want to stress that the transformation works for
relational structures with domains of arbitrary cardinality.

A d-dimensional primitive positive interpretation I of B in A is called full if for every
R ⊆ Bk we have that R is primitively positively definable in B if and only if the relation
I−1(R) of arity kd is primitively positively definable in A. Note that every structure with a
primitive positive interpretation in A is a reduct of a structure with a full primitive positive
interpretation in A.

Definition 5.20. Let C be a structure and d ∈ N. Then a d-th full power of C is a structure
D with domain Cd such that the identity map on Cd is a full d-dimensional primitive positive
interpretation of D in C.

In particular, for all i, j ∈ {1, . . . , d} the relation

Ei,j :=
{

((x1, . . . , xd), (y1, . . . , yd)) | x1, . . . , xd, y1, . . . , yd ∈ C and xi = yj
}

is primitively positively definable in D.

Proposition 5.21. Let C be a structure and D a d-th full power of C for d ≥ 1. Then C and
D are primitively positively bi-interpretable.

Proof. Let I be the identity map on Cd which is a full interpretation of D in C. Our in-
terpretation J of C in D is one-dimensional and the coordinate map is the first projection.
The domain formula is true and the pre-image of the equality relation in C under the coordi-
nate map has the primitive positive definition E1,1(x, y). To define the pre-image of a k-ary
relation R of C under the coordinate map it suffices to observe that the k-ary relation

S :=
{

((a1,1, . . . , a1,d), . . . , (ak,1, . . . , ak,d)) | (a1,1, . . . , ak,1) ∈ R
}

is primitively positively definable in D and J(S) = R.
To show that C and D are primitively positive bi-interpretable we prove that I ◦ J and

J ◦ I are pp-homotopic to the identity interpretation. The relation{
(u0, u1, . . . , uk) | u0 = I(J(u1), . . . , J(uk)), u1, . . . , uk ∈ Ck+1

}
has the primitive positive definition

∧
i∈{1,...,k}Ei,1(u0, ui) and the relation{

(v0, v1, . . . , vk) | v0 = J(I(v1, . . . , vk)), v1, . . . , vk ∈ Dk+1
}

has the primitive positive definition v0 = v1.

Note that for every relation R of arity k ≤ d of C, in a d-th full power D of C the unary
relation

R′ := {(a1, . . . , ad) | (a1, . . . , ak) ∈ R}

must be primitively positively definable. We now define a particular full power.
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Definition 5.22. Let C be a relational structure with maximal arity m and let d ≥ m. Then
the structure B := C[d] with domain Cd is defined as follows:

• for every relation R ⊆ Ck of C the structure B has the unary relation R′ ⊆ B = Cd

defined above, and

• for all i, j ∈ {1, . . . , d} the structure B has the binary relation symbol Ei,j .

It is clear that the signature of B is finite if the signature of C is finite. Also note that
the signature of C[d] is always binary.

Lemma 5.23. Let C be a relational structure with maximal arity m and let d ≥ m. Then the
binary structure C[d] is a full power of C.

Proof. The identity map is a d-dimensional primitive positive interpretation I of B := C[d]

in C. Our interpretation J of C in B is one-dimensional and the coordinate map is the first
projection. The domain formula is true and the pre-image of the equality relation in C under
the coordinate map has the primitive positive definition E1,1(x, y). The pre-image of the
relation R of C under the coordinate map is defined by the primitive positive formula

∃y
( ∧
i∈{1,...,k}

E1,i(xi, y) ∧R′(y)
)
.

The proof that I ◦ J and J ◦ I are pp-homotopic to the identity interpretation is as in the
proof of Proposition 5.21.

Corollary 5.24. For every structure C with maximal arity m there exists a structure B with
maximal arity 2 such that B and C are primitively positively bi-interpretable. If the signature
of C is finite, then the signature of B can be chosen to be finite, too.

Proof. An immediate consequence of Lemma 5.23 and Proposition 5.21.

We will revisit primitive positive interpretations in Section 8 where we study them from
a universal-algebraic perspective.

5.9 Primitive Positive Constructions

In the previous three sections we have seen several conditions on A and B that imply that
CSP(A) reduces to CSP(B); in this section we compare them. Let C be a class of structures.
We write

1. H(C) for the class of structures homomorphically equivalent to structures in C.

2. C(C) for the class of all structures obtained by expanding a core structure in C by
singleton relations {a}. In the setting of relational structures, they play the role of
constants (which formally are operation symbols of arity 0).

3. I(C) for the class of all structures with a primitive positive interpretation in a structure
from C.
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Let D be the smallest class containing C and closed under H, C, and I. Barto, Opršal,
and Pinsker [17] showed that D = HI(C) := H(I(C)). In other words, if there is a chain of
applications of the three operators H, C, and I to derive A from B, then there is also a two-
step chain to derive A from B, namely by interpreting a structure B′ that is homomorphically
equivalent to A. This insight is conceptually important for the CSP since it leads to a better
understanding of the power of the available tools. If A ∈ HI(B), then we also say that A has
a primitive positive (pp) construction in B, following [17].

Proposition 5.25 (from [17]). Suppose that B is a core, and that C is the expansion of B
by a relation of the form {c} for c ∈ B. Then B pp-constructs C. In symbols,

C(C) ⊆ HI(C) .

Proof. By Proposition 5.10, the orbit O of c has a primitive positive definition φ(x) in B. We
give a 2-dimensional primitive positive interpretation in B of a structure A with the same
signature τ as C. The domain formula δI(x1, x2) for A is φ(x2). Let R ∈ τ . If R is from the
signature of B and has arity k then

RA := {((a1, b1), . . . , (ak, bk)) ∈ Ak | (a1, . . . , ak) ∈ RB and b1 = · · · = bk ∈ O}.

Otherwise, RC is of the form {c} and we define RA := {(a, a) | a ∈ O}. It is clear that A has
a primitive positive interpretation in B.

We claim that A and C are homomorphically equivalent. The homomorphism from C to
A is given by a 7→ (a, c):

• if (a1, . . . , ak) ∈ RC = RB then ((a1, c), . . . , (ak, c)) ∈ RA;

• the relation RC = {c} is preserved since (c, c) ∈ RA.

To define a homomorphism h from A to C we pick for each a ∈ O an automorphism
αa ∈ Aut(B) such that αa(a) = c. Note that b ∈ O since B |= δ(a, b), and we define
h(a, b) := αb(a). To check that this is indeed a homomorphism, let R ∈ τ be k-ary, and
let t = ((a1, b1), . . . , (ak, bk)) ∈ RA. Then b1 = · · · = bk =: b ∈ O and we have that
h(t) = (αb(a1), . . . , αb(ak)) is in RC since (a1, . . . , ak) ∈ RB = RC and αb preserves RB = RC.
If RA = {(a, a) | a ∈ O}, then R is preserved as well, because

h((a, a)) = αa(a) = c ∈ {c} = RC.

Hence, C ∈ H(A) ⊆ HI(B).

Theorem 5.26 (from [17]). Suppose that A can be obtained from C by repeatedly applying H,
C, and I. Then A ∈ HI(C), that is, C pp-constructs A.

Proof. We have to show that HI(C)) = is closed under H, C, and I. Homomorphic equivalence
is transitive so H(H(C)) ⊆ H(C).

We show that if A and B are homomorphically equivalent, and C has a d-dimensional
primitive positive interpretation I1 in B, then C is homomorphically equivalent to a structure
D with a d-dimensional primitive positive interpretation I2 in A. Let h1 : A → B be the
homomorphism from A to B, and h2 the homomorphism from B to A. The interpreting
formulas of I2 are the same as the interpreting formulas of I1; this describes the structure D
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up to isomorphism. We claim that the map g1(I2(a1, . . . , ad)) := I1(h1(a1), . . . , h1(ad)) is a
homomorphism from D to C. Indeed, for a k-ary relation symbol from the signature of C and
D, let ((a1

1, . . . , a
1
d), . . . , (a

k
1, . . . , a

k
d)) ∈ RD; hence, the dk-tuple (a1

1, . . . , a
1
d, . . . , a

k
1, . . . , a

k
d)

satisfies the primitive positive defining formula for R(x1
1, . . . , x

k
d), and

(h1(a1
1), . . . , h1(a1

d), . . . , h1(ak1), . . . , h1(akd))

satisfies this formula, too. This in turn implies that

(I1(h1(a1
1), . . . , h1(a1

d)), . . . , I1(h1(ak1), . . . , h1(akd))) ∈ RC.

Similarly, g2(I1(b1, . . . , bd)) := I2(h2(b1), . . . , h2(bd)) is a homomorphism from C to D. So we
conclude that

I(HI(C)) ⊆ H(I(I(C))) ⊆ HI(C)

because primitive positive interpretability is transitive, too. Finally, Proposition 5.25 shows
that

C(HI(C))) ⊆ HI(HI(C)) ⊆ HI(C)

where the last inclusion again follows from the observations above.

The following example shows that there are finite structures B all of whose polymorphisms
are idempotent such that HI(B) is strictly larger than I(B).

Example 5.27. Let B be the structure with domain (Z2)2 and signature {Ra,b | a, b ∈ Z2}
such that

RB
a,b := {(x, y, z) ∈ ((Z2)2)3 | x+ y + z = (a, b)}.

Let B′ be the reduct of B with the signature τ := {R0,0, R1,0}. Let A be the τ -structure with
domain Z2 such that for a = 0 and a = 1

RA
a,0 := {(x, y, z) ∈ (Z2)3 | x+ y + z = a} .

Now observe that

• (x1, x2) 7→ x1 is a homomorphism from B′ to A, and x 7→ (x, 0) is a homomorphism
from A to B′. Therefore A ∈ H(B′).

• Trivially, B′ ∈ I(B) and consequently A ∈ HI(B).

• All polymorphisms of B are idempotent.

We finally show that A /∈ I(B). Suppose for contradiction that there is a pp-interpretation
of A in B with coordinate map c : C → A where C ⊆ Bn is primitive positive definable
in B. The kernel K of c has a primitive positive definition φ in B. The two equivalence
classes of K are pp-definable relations over B, too: the formula ∃x(φ(x, y) ∧Ra,b(x)) defines
the equivalence class of (a, b). But the relations with a primitive positive definition in B are
precisely affine linear subspaces of the vector space (Z2)2, so their cardinality must be a power
of 4. And two powers of 4 cannot add up to a power of 4. 4
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Using the operator HI, we reformulate the tractability theorem (Theorem 5.19) as follows.

Theorem 5.28 (Tractability Theorem, Version 2). Let B be a relational structure with finite
domain and finite signature. If K3 ∈ HI(B), then CSP(B) is NP-complete. Otherwise,
CSP(B) is in P.

Proof. If K3 ∈ HI(B), then the NP-hardness of CSP(B) follows from Corollary 5.16. Oth-
erwise, let C be the expansion of B by all singleton relations. Note that C ∈ HI(B) by
Proposition 5.25. Hence, if K3 ∈ HI(C), then K3 ∈ B by Theorem 5.26, a contradiction.
Hence, Theorem 2.5 implies that CSP(C) is in P, and therefore CSP(B) is in P.

Assuming that P 6= NP, it follows that K3 ∈ HI(B) if and only if K3 has a primitive
positive interpretation in the expansion of the core of B by all singleton unary relations; we
will see a proof of this fact without complexity-theoretic assumptions (Corollary 9.18).

We will revisit primitive positive constructions in Section 9 where we study them from
a universal-algebraic perspective; in particular, then next reformulation of the tractability
conjecture can be found in Section 9.5.

Exercises.

103. Prove that ~C6 pp-constructs ~C3.

104. Prove that ~C2 ] ~C3 pp-constructs ~C6.

105. Prove that ~C3 pp-constructs ~C9.

6 Relations and Operations

In this section we introduce operation clones. Most of our results concern operation clones on
a finite domain; however, some results can naturally be proved for arbitrary domains without
extra effort and we of course then state the general results.

6.1 Operation Clones

For n ≥ 1 and a set D (the domain), denote by O
(n)
D the set DDn

:= (Dn → D) of n-ary

functions on D. The elements of O
(n)
D will typically be called the operations of arity n on

D, and D will be called the domain. The set of all operations on D of finite arity will be

denoted by OD :=
⋃
n≥1 O

(n)
D . An operation clone (over D) is a subset C of OD satisfying

the following two properties:

• C contains all projections, that is, for all 1 ≤ k ≤ n it contains the operation πnk ∈ O
(n)
D

defined by πnk (x1, . . . , xn) = xk, and

• C is closed under composition, that is, for all f ∈ C ∩ O
(n)
D and g1, . . . , gn ∈ C ∩ O

(m)
D

it contains the operation f(g1, . . . , gn) ∈ O
(m)
D defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) .
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A clone is an abstraction of an operation clone that will be introduced later in the course.
In the literature, operation clones are often called clones, or concrete clones; we prefer to use
the terms ‘operation clone’ and ‘clone’ in analogy to ‘permutation group’ and ‘group’.

If C is an operation clone, then C ′ is called a subclone of C if C ′ is an operation clone and
C ′ ⊆ C . If F is a set of functions, we write 〈F 〉 for the smallest operation clone C which
contains F , and call C the clone generated by F ; similarly, we also say that the elements of
C are generated by F . Note that the set of all clones over a set B forms a lattice: the meet
of two operation clones C and D is their intersection C ∩D (which is again a clone!); the join
of C and D is the clone generated by their union, 〈C ∪D〉.

Remark 6.1. Clones on a two-element set have been classified by Post [86]; the set of such
clones is countably infinite. In contrast, there are 2ω many clones over the set {0, 1, 2} [93].

6.2 Inv-Pol

The most important source of operation clones in this text are polymorphism clones of di-
graphs and, more generally, structures. For simplicity, we only discuss relational structures;
the step to structures that also involve function symbols is straightforward.

Let f be from O
(n)
B , and let R ⊆ Bm be a relation. Then we say that f preserves R (and

that R is invariant under f) if f(r1, . . . , rn) ∈ R whenever r1, . . . , rn ∈ R, where f(r1, . . . , rn)
is calculated componentwise. If B is a relational structure with domain B then Pol(B)
contains precisely those operations that preserve B.

Observation 6.2. Pol(B) is an operation clone.

Conversely, if F is a set of operations on B, then we write Inv(F ) for the set of all
relations on B that are invariant under all functions in F . It will be convenient to define the
operator Pol also for sets R of relations over B, writing Pol(R) for the set of operations of
OB that preserve all relations from R.

Proposition 6.3. Let F be a set of operations on a set B. Then 〈F 〉 ⊆ Pol(Inv(F )).

Proposition 6.4. Let F be a set of operations on a finite set B. Then Pol(Inv(F )) = 〈F 〉.

Proof. Exercise 112.

Proposition 6.5. Let B be any relational structure. Then Inv(Pol(B)) contains the set of
all relations that have a primitive positive definition in B.

Proof. Suppose that R is k-ary, has a primitive positive definition ψ(x1, . . . , xk), and let f be
an l-ary polymorphism of B. To show that f preserves R, let t1, . . . , tl be k-tuples from R.
Let xk+1, . . . , xn be the existentially quantified variables of ψ. Write si for the n-tuple which
extends the k-tuple ti such that si satisfies the quantifier-free part ψ′(x1, . . . , xk, xk+1, . . . , xn)
of ψ. Then the tuple f(s1, . . . , sl) satisfies ψ′ since f is a polymorphism. This shows that
B |= ψ(f(t1, . . . , tl)) which is what we had to show.

Note that Proposition 6.5 also holds (and is useful!) for structures with an infinite domain;
see, e.g., Exercise 111.

Theorem 6.6 (of [32,57]). Let B be a finite relational structure. A relation R has a primitive
positive definition in B if and only if R is preserved by all polymorphisms of B.
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Proof. One direction has been shown in Proposition 6.5. For the other direction, let a1, . . . , aw

be an enumeration of R. Let b1 = (b11, . . . , b
w
1 ), b2 = (b12, . . . , b

w
2 ), . . . , b` = (b1` , . . . , b

w
` ) be an

enumeration of Bw. Let φ be the quantifier-free part of the canonical query of Bw (see
Exercise 83 for the definition of Bw and Section 5.3 for the definition of canonical queries).
Note that for every i ∈ [k] there exists ji ∈ [w] such that (a1

i , . . . , a
w
i ) = bji .

We claim that
ψ(x1, . . . , xk) := ∃b1, . . . , b`(φ ∧

∧
i∈[k]

xi = bji)

is a primitive positive definition of R.
We first show that aj satisfies ψ for every j ∈ [w]. The elements bj1, . . . , b

j
` ∈ B provide

witnesses for the existentially quantified variables showing that aj = (bjj1 , . . . , b
j
jk

) satisfies ψ.
Conversely, suppose that (t1, . . . , tk) satisfies ψ. The witnesses for the existentially quan-

tified variables b1, . . . , b` define a homomorphism f from Bw to B. Since ψ contains the
conjuncts xi = bji , for i ∈ [k], we have that ti = f(b1, . . . , bw)ji . Note that f is a poly-
morphism of B and by assumption preserves R. Since the tuples (a1, . . . , aw) are from R
and

f(a1, . . . , aw) = (f(b1, . . . , bw)j1 , . . . , f(b1, . . . , bw)jk) = (t1, . . . , tk)

we obtain that (t1, . . . , tk) ∈ R.

Corollary 6.7. The complexity of CSP(B) only depends on Pol(B). If C is such that
Pol(B) ⊆ Pol(C), then CSP(C) reduces in linear time to CSP(B).

Proof. Direct consequence of Theorem 6.6 and Lemma 5.8.

Remark 6.8. One direction in Theorem 6.6 is false in general for infinite structures; there are
e.g. infinite digraphs B that are rigid cores and projective, so Pol(B) has uncountably many
invariant relations; in particular, many of these relations do not have a primitive positive
definition in B because there are only countably many primitive positive formulas over the
signature of graphs. However, there is a modified version of the theorem, where primitive
positive definitions are replaced by formulas that additionally allow to form unions of chains
of relations and infinite intersections; see [21]. Theorem 6.6 is true without modification if the
structure B is countably infinite and ω-categorical [26]. There are also many other infinite
structures where Theorem 6.6 remains true; we given an example below.

Example 6.9. Let F be a field. Let R+ be the graph {(x, y, z) ∈ F 3 | x + y = z} of the
addition in F, and for α ∈ F let Sα be the binary relation {(x, αx) | x ∈ F}. We write F for
the structure (F ;R+, (Sλ)λ∈F ) (so this structure can be viewed as a relational version of the
reduct of F in the signature of modules; see Section 8.3).

The following statement is true for arbitrary fields, but already interesting for finite fields,
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and will be used in later sections.

〈F〉 = Inv(Pol(F)) (2)

= Inv({(x, y) 7→ x+ y} ∪ {x 7→ αx | α ∈ F}) (3)

=
{
R | n ∈ N, R linear subspace of Fn

}
∪ {∅} (4)

=
{
{x ∈ Fn | Ax = 0} | n,m ∈ N, A ∈ Fm×n

}
∪ {∅} (5)

Pol(F) = 〈{(x, y) 7→ x+ y} ∪ {x 7→ αx | α ∈ F}〉 (6)

=
{

(x1, . . . , xk) 7→
k∑
i=1

αixi | k ≥ 1, α1, . . . , αk ∈ F
}

(7)

We prove (2), (3), (4), and (5) by showing inclusions in cyclic order. The inclusion 〈F〉 ⊆
Inv(Pol(F)) follows from Proposition 6.5.

Clearly, the relation R+ is preserved by (x, y) 7→ x+ y and preserved by x 7→ αx for every
α ∈ F . Similarly, for every λ ∈ F the relation Sλ is preserved by these operations. Hence,

{(x, y) 7→ x+ y} ∪ {x 7→ αx | α ∈ F} ⊆ Pol(F). (8)

Since the Galois-connection Inv-Pol is antitone, we obtain the left-to-right inclusion for (3).
The equality (4) is by definition of linear subspaces.

For the left-to-right inclusion of (5), suppose that U is a linear subspace of Fn and
that (u1, . . . , um) is a basis of U . By Steinitz’ theorem there exists a basis B of Fn of the
form (u1, . . . , um, um+1, . . . , un). Let T be the basis change matrix which maps ui to ei :=

(0, . . . , 0,
i
1, 0, . . . , 0), which can be written as T =

(
X
R

)
where X ∈ K(m,n) and R ∈ K(n−m,n).

In the following, if S ⊆ Fn, we write 〈S〉 :=
{∑

i∈{1,...,m} αiui | u1, . . . , um ∈ S, α1, . . . , αm ∈
F
}

for the linear hull of S (i.e., for the smallest subalgebra of Fn that contains S, in the
signature of modules). Then

v ∈ U ⇔ v ∈ 〈u1, . . . , um〉
⇔ Tv ∈ 〈Tu1, . . . , Tum〉 = 〈e1, . . . , em〉
⇔ (Tv)m+1 = · · · = (Tv)n = 0

⇔ Rv = 0

⇔ v ∈ {x | Rx = 0}.

Finally, it is a good exercise to write primitive positive definitions of the solution sets of homo-
geneous linear equations systems over the structure F, which closes the chain of implications
(Exercise 106).

We prove (6) and (7) by showing inclusions in cyclic order. The left-to-right inclusion
in (6) follows from (8) and Observation 6.2. Clearly, every operation that can be composed
from the operations in {(x, y) 7→ x + y} ∪ {x 7→ αx | α ∈ F} can be written in the form
(x1, . . . , xk) 7→

∑k
i=1 αixi for some k ≥ 1 and some elements α1, . . . , αk ∈ F , and this shows

the left-to-right inclusion in (7). Finally, these operations preserve addition and multiplication
with scalars, which closes the chain of inclusions. 4
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Example 6.10. Using the same notation as in the previous example, let G be the expansion
of F by all unary relations of the form {α} for α ∈ F .

〈G〉 = Inv
(

Pol(G)
)

(9)

= Inv({(x, y, z) 7→ x− y + z} ∪ {(x, y) 7→ α1x+ α2y | α1 + α2 = 1}) (10)

=
{
R | n ∈ N, R affine subspace of Fn

}
∪ {∅} (11)

=
{
{x ∈ Fn | Ax = b} | n,m ∈ N, A ∈ Fm×n, b ∈ Fm

}
(12)

Pol(G) = 〈{(x, y, z) 7→ x− y + z} ∪ {(x, y) 7→ α1x+ α2y | α1 + α2 = 1}〉 (13)

=
{

(x1, . . . , xn) 7→
n∑
i=1

αixi | n ≥ 1, α1 + · · ·+ αn = 1
}

(14)

We show the inclusions in cyclic order. The inclusion 〈G〉 ⊆ Inv(Pol(G)) follows from Propo-
sition 6.5.

Clearly, the operation m : F 3 → F given by (x, y, z) 7→ x−y+z clearly preserves not only
the relations from F, but also all unary relations of the form {α} for α ∈ F , so m ∈ Pol(G).
Similarly, we verify that (x, y) 7→ α1x + α2y ∈ Pol(G) whenever α1 + α2 = 1. Since the
Galois-connection Inv-Pol is antitone, we obtain the left-to-right inclusion for (10).

For the left-to-right inclusion in (11), let R ∈ Inv({m}). If R = ∅ there is nothing to be
shown. Otherwise, let o ∈ R. We have to show that S := {v− o | o ∈ R} is a linear subspace.
Let u1, u2 ∈ S. Then

u1 + u2 = v1 − o+ v2 − o = (v1 − o+ v2)− o = m(v1, o, v2)︸ ︷︷ ︸
∈R

−o ∈ S.

To see that S is invariant under scalar multiplication, let u ∈ S and α ∈ F . By definition of
S there exists v ∈ R such that u = v − o. Then

αu = α(v − o) = (αv + (1− α)o)︸ ︷︷ ︸
∈R

−o ∈ S.

For the left-to-right inclusion of (12), let R be an affine subspace of Fn. Then R = {w+u |
u ∈ U} for a linear subspace U of V . In Example 6.9 we have seen that there exists A ∈ Fm×n
with U = {x | Ax = 0}. Then

R = {w + u | Au = 0} = {w′ | A(w′ − w) = 0} = {x | Ax = Aw},

so R is the solution set of a system of linear equations. Since ∅ is the solution space of the
unsatisfiable equation system {0 = 1}, this completes the proof.

Similarly as in Example 6.9, it is a good exercise to find a primitive positive definition
of the solution space of a system of linear equations Ax = b in G, which closes the chain of
inclusions.

We prove (13) and (14) by showing inclusions in cyclic order. The left-to-right inclusion
in (14) follows from the fact that all relations of G are preserved by m and by (x, y) 7→
α1x + α2y whenver α1, α2 ∈ F are such that α1 + α2 = 1, and Observation 6.2. Clearly,
every operation that can be composed from these operations can be written in the form
(x1, . . . , xn) 7→

∑n
i=1 αixi for some k ≥ 1 and some elements α1, . . . , αn ∈ F such that

α1 + · · ·+ αn = 1, and this shows the left-to-right inclusion in (7). Finally, these operations
preserve all relations of G, which closes the chain of inclusions. 4
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Exercises.

106. Let n,m ∈ N, A ∈ Fm×n, b ∈ Fm. Give a primitive positive definition of {x ∈ Fn |
Ax = b} in the structure F from Example 6.9.

107. Show that the relation 6= is not primitively positively definable in the graph C6 (the
undirected cycle with 6 vertices).

108. For an operation f : Ak → A and a relation R on A, we write 〈R〉f for
the smallest relation that contains R and is preserved by f . Similarly,
if F is a set of operations, we write 〈R〉F for the smallest relation that
contains R and is preserved by all operations of F . Show that if A is
a structure with a finite domain, then 〈R〉Pol(A) equals the smallest relation
that contains R and has a primitive positive definition over A.

109. Show that (6), (7), (4), and (14) also hold if F is a ring
rather than a field.

110. Show that (5) fails in general if F is a ring (Example 8.2)
rather than a field.

111. Let R+ and R∗ be the relations as defined in Exercise 98. Show that R∗ is not primitively
positively definable in the structure (Q;R+, {(x, y) | y ≥ x2}).

112. Prove Proposition 6.4.

113. Find a digraph with the properties described in Remark 6.8.

6.3 Essentially Unary Clones

An operation f : Bk → B is called essentially unary if there is an i ∈ {1, . . . , k} and a unary
operation f0 such that f(x1, . . . , xk) = f0(xi) for all x1, . . . , xk ∈ B. Operations that are
not essentially unary are called essential.6 We say that f depends on argument i if there are
r, s ∈ Bk such that f(r) 6= f(s) and rj = sj for all j ∈ {1, . . . , k} \ {i}.

Lemma 6.11. Let f ∈ OB be an operation. Then the following are equivalent.

1. f is essentially unary.

2. f preserves P 3
B :=

{
(a, b, c) ∈ B3 | a = b or b = c

}
.

3. f preserves P 4
B :=

{
(a, b, c, d) ∈ B4 | a = b or c = d

}
.

4. f depends on at most one argument.

Proof. Let k be the arity of f . The implication from (1) to (2) is obvious, since unary
operations clearly preserve P 3

B.
To show the implication from (2) to (3), we show the contrapositive, and assume that f vio-

lates P 4
B. By permuting arguments of f , we can assume that there are 4-tuples a1, . . . , ak ∈ P 4

B

with f(a1, . . . , ak) /∈ P 4
B and l ≤ k such that in a1, . . . , al the first two coordinates are equal,

6This is standard in clone theory, and it makes sense also when studying the complexity of CSPs, since the
essential operations are those that are essential for complexity classification.
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and in al+1, . . . , ak the last two coordinates are equal. Let c := (a1
1, . . . , a

l
1, a

l+1
4 , . . . , ak4). Since

f(a1, . . . , ak) /∈ P 4
B we have f(a1

1, . . . , a
k
1) 6= f(a1

2, . . . , a
k
2), and therefore f(c) 6= f(a1

1, . . . , a
k
1)

or f(c) 6= f(a1
2, . . . , a

k
2). Let d = (a1

1, . . . , a
k
1) in the first case, and d = (a1

2, . . . , a
k
2) in

the second case. Likewise, we have f(c) 6= f(a1
3, . . . , a

k
3) or f(c) 6= f(a1

4, . . . , a
k
4), and let

e = (a1
3, . . . , a

k
3) in the first, and e = (a1

4, . . . , a
k
4) in the second case. Then for each i ≤ k, the

tuple (di, ci, ei) is from P 3
B, but (f(d), f(c), f(e)) /∈ P 3

B.
The proof of the implication from (3) to (4) is again by contraposition. Suppose f depends

on the i-th and j-th argument, 1 ≤ i 6= j ≤ k. Hence there exist tuples a1, b1, a2, b2 ∈ Bk

such that a1, b1 and a2, b2 only differ at the entries i and j, respectively, and such that
f(a1) 6= f(b1) and f(a2) 6= f(b2). Then (a1(l), b1(l), a2(l), b2(l)) ∈ P 4

B for all l ≤ k, but
(f(a1), f(b1), f(a2), f(b2)) /∈ P 4

B, which shows that f violates P 4
B.

For the implication from (4) to (1), suppose that f depends only on the first argument.
Let i ≤ k be minimal such that there is an operation g with f(x1, . . . , xk) = g(x1, . . . , xi).
If i = 1 then f is essentially unary and we are done. Otherwise, observe that since f does
not depend on the i-th argument, neither does g, and so there is an (i − 1)-ary operation
g′ such that for all x1, . . . , xn ∈ B we have f(x1, . . . , xn) = g(x1, . . . , xi) = g′(x1, . . . , xi−1),
contradicting the choice of i.

6.4 Minimal Clones

A trivial clone is a clone all of whose operations are projections. Note that it follows from
Lemma 6.11 that for any set B = {b1, . . . , bn} the clone Pol(B;P 4

B, {b1}, . . . , {bn}) is trivial.

Definition 6.12. A clone C is minimal if it is non-trivial, and for every non-trivial E ⊆ C
we have E = C .

Recall that 〈F 〉 denotes the smallest clone that contains F . If g ∈ 〈{f}〉, then we say
that f generates g.

Definition 6.13. An operation f ∈ OB is minimal if f is not a projection and of minimal
arity such that every g generated by f is either a projection or generates f .

The following is straightforward from the definitions.

Proposition 6.14. Every minimal f generates a minimal clone, and every minimal clone is
generated by a minimal operation.

Theorem 6.15. Every non-trivial operation clone C ⊆ OB over a finite set B contains a
minimal operation.

Proof. Consider the set of all clones contained in C , partially ordered by inclusion. From this
poset we remove the trivial clone; the resulting poset will be denoted by P . We use Zorn’s
lemma to show that P contains a minimal element. Observe that in P , all chains (Ci)i∈κ that
are descending, i.e., Ci ⊇ Cj for i < j, are bounded, i.e., for all such chains there exists a D ∈ P
such that Ci ⊇ D for all i ∈ κ. To see this, observe that the set

⋃
i∈κ Inv(Ci) is closed under

primitive positive definability in the sense that it is the set of relations that is primitively
positively definable over some relational structure B (since only a finite number of relations
can be mentioned in a formula, and since Inv(Ci) is closed under primitive positive definability,
for each i ∈ κ). Moreover, one of the relations P 4

B, {b1}, . . . , {bn}, for B = {b1, . . . , bn}, is not
contained in

⋃
i∈κ Inv(Ci); otherwise, there would be a j ∈ κ such that Inv(Cj) contains all
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these relations, and hence Cj is the trivial clone contrary to our assumptions. Hence, Pol(B)
is a non-trivial lower bound of the descending chain (Ci)i∈κ. By Zorn’s lemma, P contains a
minimal element, and this element contains a minimal operation in C .

Remark 6.16. Note that the statement above would be false if B is infinite: take for example
the clone over the domain B := N of the integers generated by the operation x 7→ x+1. Every
operation in this clone is essentially unary, and every unary operation in this clone is of the
form x 7→ x+ c for c ∈ N. Note that for c > 0, the operation x 7→ x+ c generates x 7→ x+ 2c,
but not vice versa, so the clone does not contain a minimal operation.

In the remainder of this section, we show that a minimal operation has one out of the
following five types, due to Rosenberg [87]. An n-ary operation f is called a semiprojection
if there exists an i ≤ n such that f(x1, . . . , xn) = xi whenever |{x1, . . . , xn}| < n. For the
purpose of proving the next lemma, we call an n-ary operation f a weak semiprojection if for
all distinct i, j ∈ {1, . . . , n} there exists an index s(i, j) such that

∀x1, . . . , xn : f(x1, . . . , xn) = xs(i,j)

holds whenever xi and xj are the same variable. Note that in this case, f is a semiprojection
if and only if s(i, j) is constant.

In the proof of the following lemma the following notation for weak semiprojections will
be practical. Let f be a weak semiprojection, let S ⊆ {1, . . . , n} be of cardinality at least
two, and let (x1, . . . , xn) be a tuple of variables such that xi = xj for all i, j ∈ S. Then for
some k ∈ {1, . . . , n} it holds that f(x1, . . . , xn) = xk. If k ∈ S define E(S) := S. Otherwise,
define E(S) := {k}. Note that if S ⊆ T ⊆ {1, . . . , n}, then E(S) ⊆ E(T ). Also note that if
there exists a k ∈ {1, . . . , n} such that k ∈ E(S) for every S ⊆ {1, . . . , n} with at least two
elements, then f is a semiprojection.

Lemma 6.17 (Świerczkowski). Let f be a weak semiprojection of arity at least n ≥ 4. Then
f is a semiprojection.

Proof. We first show that E({1, 2}) ∩ E({3, 4}) 6= ∅. If E({1, 2, 3, 4}) = {`} for some
` /∈ {1, 2, 3, 4}, then E({1, 2}) = {`} = E({3, 4}) and we are done. So we assume that
E({1, 2, 3, 4}) = {1, 2, 3, 4}. First consider the case that E({1, 2}) = {i} ⊆ {3, 4} so that
f(x, x, y, y, x5, . . . , xn) = y. If E({3, 4}) = {j} ⊆ {1, 2} then and f(x, x, y, y, x5, . . . , xn) = x
for i 6= j, which is a contradiction since |B| ≥ 2. Hence, E({3, 4}) = {3, 4} and we have
found i ∈ E({1, 2})∩E({3, 4}). Similarly we can treat the case that E({3, 4}) = {i} ⊆ {1, 2}.
If E({1, 2}) = {1, 2} and E({3, 4}) = {3, 4} then f(x, x, y, y, x5, . . . , xn) = x because of
E({1, 2}) ⊆ {1, 2} and f(x, x, y, y, x5, . . . , xn) = y because of E({3, 4}) ⊆ {3, 4}, a contradic-
tion.

Let i ∈ E({1, 2}) ∩ E({3, 4}). Note that if i /∈ {1, 2}, then E({1, 2}) = {i}. Similarly,
if i /∈ {3, 4} then E({3, 4}) = {i}. We therefore have a set S ⊆ {1, . . . , n} of size two with
E(S) = {i}. Let T ⊆ {1, . . . , n} be of cardinality at least two. We will show that i ∈ E(T ).
Observe that if T ⊆ {1, . . . , n} \ {i}, then E(T ) = E({1, . . . , n} \ {i}) = E(S) = {i}. Now
suppose that T = {i, j} for some j ∈ {1, . . . , n} \ {i}. Then {1, . . . , n} \ T has at least two
elements (since n ≥ 4). We can therefore apply the argument from the first paragraph, up
to renaming argument, to conclude that E({i, j})∩E({1, . . . , n} \ {i, j}) contains an element
k. If k /∈ {i, j}, then E({1, . . . , n} \ {i, j}) = {1, . . . , n} \ {i, j}, which is in contradiction
to E({1, . . . , n} \ {i}) = {i}. Hence, E({i, j}) = {i, j}. This implies that E(T ) = T for all
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T ⊆ {1, . . . , n} of cardinality at least 2 containing i. We conclude that i ∈ E(T ) for every
T ⊆ {1, . . . , n} with at least two elements, so f is a semiprojection.

In other words,

Theorem 6.18 (Rosenberg’s five types theorem). Let f be a minimal operation. Then f has
one of the following types:

1. a unary operation. If f is an operation on a finite set, then it is either a permutation
such that fp(x) = x, for some prime p, or satisfies f(f(x)) = f(x) for all x;

2. a binary idempotent operation;

3. a majority operation;

4. a minority operation;

5. a k-ary semiprojection, for k ≥ 3, which is not a projection.

Proof. The statement is easy to prove if f is unary (see Exercises 116 and 117). If f is
at least binary, then f̂ (see Exercise 40) must be the identity by the minimality of f , and
hence f is idempotent. In particular, we are done if f is binary. If f is ternary, we have to
show that f is majority, Maltsev, or a semiprojection. By the minimality of f , the binary
operation f1(x, y) := f(y, x, x) is a projection, that is, f1(x, y) = x or f1(x, y) = y. Note
that in particular f(x, x, x) = x. Similarly, the other operations f2(x, y) := f(x, y, x), and
f3(x, y) := f(x, x, y) obtained by identifications of two variables must be projections. We
therefore distinguish eight cases.

1. f(y, x, x) = x, f(x, y, x) = x, f(x, x, y) = x.
In this case, f is a majority.

2. f(y, x, x) = x, f(x, y, x) = x, f(x, x, y) = y.
In this case, f is a semiprojection.

3. f(y, x, x) = x, f(x, y, x) = y, f(x, x, y) = x.
In this case, f is a semiprojection.

4. f(y, x, x) = x, f(x, y, x) = y, f(x, x, y) = y.
The operation g(x, y, z) := f(y, x, z) is a Maltsev operation.

5. f(y, x, x) = y, f(x, y, x) = x, f(x, x, y) = x.
In this case, f is a semiprojection.

6. f(y, x, x) = y, f(x, y, x) = x, f(x, x, y) = y.
In this case, f is a Maltsev operation.

7. f(y, x, x) = y, f(x, y, x) = y, f(x, x, y) = x.
The operation g(x, y, z) := f(x, z, y) is a Maltsev operation.

8. f(y, x, x) = y, f(x, y, x) = y, f(x, x, y) = y.
In this case, f is a Maltsev operation.
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We claim that if f is a Maltsev operation, then either it is a minority operation (and we
are done) or it generates a Majority operation. Indeed, if f is not a minority then mini-
mality of f implies that f(x, y, x) = x. Now consider the function g defined by g(x, y, z) =
f(x, f(x, y, z), z). We have

g(x, x, y) = f(x, f(x, x, y), y) = f(x, y, y) = x

g(x, y, x) = f(x, f(x, y, x), x) = f(x, x, x) = x

g(y, x, x) = f(y, f(y, x, x), x) = f(y, y, x) = x .

Note that every ternary function generated by a majority is again a majority. Also note that
a function cannot be a majority and a minority at the same time unless the domain has only
one element, so we obtain in this case a contradiction to the minimality of f .

Finally, let f be k-ary, where k ≥ 4. By minimality of f , the operations obtained from
f by identifications of arguments of g must be projections. The lemma of Świerczkowski
(Lemma 6.17) implies that f is a semiprojection.

Proposition 6.19. For all n ≥ 3, the graph Kn is projective (i.e., all idempotent polymor-
phisms of Kn are projections). All relations that are preserved by Sym({0, . . . , n − 1}) are
primitive positive definable in Kn.

This provides for example a solution to Exercise 96.

Proof. By Theorem 6.15, it suffices to show that the clone of idempotent polymorphisms of Kn

does not contain a minimal operation. Hence, by Theorem 6.18, we have to verify that Pol(Kn)
does not contain a binary idempotent, a Maltsev, a majority, or a k-ary semiprojection for
k ≥ 3.

1. Let f be a binary idempotent polymorphism of Kn.

Observation 1. f(u, v) ∈ {u, v}: otherwise, i := f(u, v) is adjacent to both u and v,
but f(i, i) = i is not adjacent to i, in contradiction to f being a polymorphism.

Observation 2. If f(u, v) = u, then f(v, u) = v: this is clear if u = v, and if u 6= v it
follows from f being a polymorphism.

By Observation 1, it suffices to show that there cannot be distinct u, v and distinct u′, v′

such that f(u, v) = u and f(u′, v′) = v′. Suppose for contradiction that there are such
u, v, u′, v′.

Case 1. u = u′. Since f(u, v′) = f(u′, v′) = v′, we have f(v′, u) = u by Observation 2.
This is in contradiction to f(u, v) = u since u = u′ is adjacent to v′, and E(v, u).

Case 2. u 6= u′.
Case 2.1. f(u′, u) = u: this is impossible because f(u, v) = u, E(u, u′), and E(u, v).
Case 2.2. f(u′, u) = u′: this is impossible because f(v′, u′) = u′, E(u′, v′), and E(u′, u).

2. Since (1, 0), (1, 2), (0, 2) ∈ E(Kn), but (0, 0) /∈ E(Kn), the graph Kn has no Maltsev
polymorphism (it is not rectangular; see Section 4.4).

3. If f is a majority, note that f(0, 1, 2) = f(x0, x1, x2) where xi is some element distinct
from i if f(0, 1, 2) = i, and xi := f(0, 1, 2) otherwise. But (i, xi) ∈ E(Kn), so f is not a
polymorphism of Kn.
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4. Finally, let f be a k-ary semiprojection for k ≥ 3 which is not a projection. Suppose
without loss of generality that f(x1, . . . , xk) = x1 whenever |{x1, . . . , xk}| < k (other-
wise, permute the arguments of f). Since f is not a projection, there exist pairwise
distinct a1, . . . , ak ∈ V (Kn) such that c := f(a1, . . . , ak) 6= a1. Let b1, . . . , bk be such
that bi is any element of V (Kn) \ {c} if c = ai, and bi := c otherwise. Note that b1 = a1

since c 6= a1, and that f(b1, . . . , bk) = b1 = a1 because f is a semiprojection. But
(ai, bi) ∈ E(Kn) for all i ≤ k, so f is not a polymorphism of Kn.

The second part of the statement follows from Theorem 6.6.

The presentation of the proof of the following result is inspired by (but not identical to7)
a presentation of Csákány [46].

Theorem 6.20 (P lonka [85]). Let G the structure obtained from a finite field F of prime
order p as in Example 6.10. Then the clone

Pol(G) =
{

(x1, . . . , xn) 7→
n∑
i=1

αixi | n ≥ 1, α1, . . . , αn ∈ F, α1 + · · ·+ αn = 1
}

is minimal.

Proof. The statement is easy to prove for p = 2, and it also follows from Theorem 6.22 that we
prove later. For p > 2, let f ∈ Pol(G) be non-trivial. We have to show that the clone C := 〈f〉
equals Pol(G). We already know that f can be written as

∑n
i=1 αixi for α1, . . . , αn ∈ F such

that α1 + · · ·+ αn = 1 (Example 6.10).
We first show that f generates a non-trivial binary operation. Since f is non-trivial, there

are distinct p, q ∈ {1, . . . , n} such that αp, αq 6= 0. If (1− αp) = α1 + · · ·+ αn − αp 6= 0, then
equating all arguments of f except the p-th argument with the q-th argument yields the non-
trivial binary operation αpxp + (1−αp)xq. So we may assume that αp = 1. Similar reasoning
applies to all j ∈ {1, . . . , n} with αj 6= 0 instead of p. We therefore may suppose without
loss of generality that α1 = · · · = αk = 1 and αk+1 = · · · = αn = 0, for some k ∈ {2, . . . , n}.
We know that k ≡ 1 mod p, because α1 + · · ·+ αk = 1. Since p > 2, if we identify the first
two arguments, and identify the remaining arguments, we again obtain a non-trivial binary
operation.

Let s ∈ C be the resulting non-trivial binary operation; s is of the form βx1 + (1− β)x2

for some β ∈ F \ {0, 1}. Note that γp−1 = 1 for every γ ∈ F \ {0} by Fermat’s lemma. Let l
and r be the binary operations defined as follows.

l(x, y) := s(s(. . . s(x, y), . . . , y), y)︸ ︷︷ ︸
p−2 occurrences of s

= βp−2x+ βp−3(1− β)y + · · ·+ (1− β)y

r(y, z) := s(y, s(y, . . . , s(y, z) . . . ))︸ ︷︷ ︸
p−2 occurrences of s

= βy + (1− β)βy + · · ·+ (1− β)p−3βy + (1− β)p−2x

7I thank Andrew Moorhead for a hint!
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Note that for all x, y, z ∈ F we have

m(x, y, z) := s(l(x, y), r(y, z))

= βp−1︸︷︷︸
=1

x+ (1− β)(βp−2 + βp−3 + · · ·+ β2 + β)y

+ β((1− β)p−2 + · · ·+ (1− β)2 + (1− β))y + (1− β)p−1︸ ︷︷ ︸
=1

z

= x+ (β − 1)y + ((1− β)− 1)y + z

= x− y + z.

We conclude that m ∈ C . Next, we show that C contains all binary operations α1x1 + α2x2

with α1 + α2 = 1. Indeed, for all x, y ∈ F we have

m(x, y,m(x, y, . . . (m(x, y, x)) . . . ))︸ ︷︷ ︸
α1 occurrences of m

= α1x− α2y.

Finally, m and all operations of the form (x, y) 7→ α1x + α2y with α1 + α2 = 1 generate
Pol(G) (Example 6.10). Hence, C = Pol(G), which concludes the proof.

Corollary 6.21. Let G be the structure obtained from a finite field F of prime order p as in
Example 6.10. Then for every n ∈ N and R ⊆ Fn which is not primitively positively definable
in G, we have that CSP(G, R) is NP-complete.

Proof. Since Pol(G) is minimal, Pol(G, R) only contains the projections, and therefore every
relation R ⊆ F k is primitively positively definable in (G, R). The statement then follows via
Lemma 5.8 from the existence of an NP-hard CSP with a domain of size p (e.g., CSP(Kp) if
p > 2; we will also see such examples for p = 2, see Theorem 6.28).

Exercises.

114. Show that every semilattice operation (Definition 3.14) generates a minimal clone.

6.5 Schaefer’s Theorem

Schaefer’s theorem states that every CSP for a 2-element structure is either in P or NP-hard.
By the general results in Section 6.2, most of the classification arguments in Schaefer’s article
follow from earlier work of Post [86] (also see [77]), who classified all clones on a two-element
domain. We present a short proof of Schaefer’s theorem here.

Note that on Boolean domains, there is precisely one minority operation, and precisely
one majority operation.

Theorem 6.22 (Post [86]). Every minimal operation on {0, 1} is among one of the following:

• a unary constant function.

• the unary function x 7→ 1− x.

• the binary function (x, y) 7→ min(x, y).

• the binary function (x, y) 7→ max(x, y).
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• the Boolean minority operation.

• the Boolean majority operation.

Proof. If f is unary the statement is trivial, so let f be a minimal at least binary idempotent
function above C . There are only four binary idempotent operations on {0, 1}, two of which
are projections and therefore cannot be minimal. The other two operations are min and
max. Next, note that a semiprojection of arity at least three on a Boolean domain must be a
projection. Thus, Theorem 6.18 implies that f is the majority or a minority operation.

Definition 6.23. A Boolean relation R ⊆ {0, 1}n is called affine if it is the solution space of
a system of linear equalities modulo 2 (see Example 6.10).

Lemma 6.24. A Boolean relation is affine if and only if it is preserved by the Boolean
minority operation.

Proof. Let R be n-ary. We view R as a subset of the Boolean vector space {0, 1}n. We
have seen in Example 6.10 that affine spaces are precisely those that are closed under affine
combinations, i.e., linear combinations of the form α1x1+· · ·+αkxk such that α1+· · ·+αk = 1.
In particular, if R is affine then it is preserved by (x1, x2, x3) 7→ x1 + x2 + x3 which is the
minority operation. Conversely, if R is preserved by the minority operation, then x1+· · ·+xk,
for odd k, can be written as

minority(x1, x2,minority(x3, x4, . . .minority(xn−2, xk−1, xk) . . . ))

and hence R is preserved by all affine combinations, and thus affine.

It is well-known and easy to see (see, for example, [23]) that for every relation R ⊆ {0, 1}n
there exists a propositional formula φ(x1, . . . , xn) that defines R, and that φ can even be
chosen to be in conjunctive normal form (CNF). That is, there is a conjunction of disjunctions
of variables or negated variables from x1, . . . , xn such that a tuple (t1, . . . , tn) ∈ {0, 1}n is in
R if and only if the formula φ evaluates to true after replacing xi by ti, for i ∈ {1, . . . , n}.
The following definition is useful for proving that certain Boolean relations R can be defined
in syntactically restricted propositional logic.

Definition 6.25. If φ is a propositional formula in CNF that defines a Boolean relation R,
we say that φ is reduced if the following holds: whenever we remove a literal from a clause in
φ, then the resulting formula no longer defines R.

Clearly, every Boolean relation has a reduced definition: simply remove literals from any
definition in CNF until the formula becomes reduced. A propositional formula in CNF is
called Horn if every clause contains at most one positive literal.

Lemma 6.26. A Boolean relation has a Horn definition if and only if it is preserved by min.

Proof. It is easy to see that min preserves every relation defined by clauses that contains at
most one positive literal, and hence every relation with a Horn definition. Conversely, let R
be a Boolean relation preserved by min. Let φ be a reduced propositional formula in CNF
that defines R. Now suppose for contradiction that φ contains a clause C with two positive
literals u and v. Since φ is reduced, there is an assignment s1 that satisfies φ such that
s1(u) = 1, and such that all other literals of C evaluate to 0. Similarly, there is a satisfying

66



assignment s2 for φ such that s2(v) = 1 and all other literals of C evaluate to 0. Then
s0 : x 7→ min(s1(x), s2(y)) does not satisfy C, and does not satisfy φ, in contradiction to the
assumption that min preserves R.

A binary relation is called bijunctive if it can be defined by a propositional formula in
CNF where each disjunction has at most two disjuncts.

Lemma 6.27. A Boolean relation R is bijunctive if and only if it is preserved by the Boolean
majority operation.

Proof. It is easy to see that the majority operation preserves every Boolean relation of arity
two, and hence every bijunctive Boolean relation. We present the proof that if R is preserved
by majority, and φ is a reduced definition of R, then all clauses C have at most two literals.
Suppose for contradiction that C has three literals l1, l2, l3. Since φ is reduced, there must be
satisfying assignments s1, s2, s3 to φ such that under si all literals of C evaluate to 0 except for
li. Then the mapping s0 : x 7→ majority(s1(x), s2(x), s3(x)) does not satisfy C and therefore
does not satisfy φ, in contradiction to the assumption that majority preserves R.

The following relation is called the (Boolean) not-all-equal relation.

NAE := {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} (15)

Theorem 6.28 (Schaefer [88]). Let B be a structure over the two-element universe {0, 1}.
Then either ({0, 1}; NAE) has a primitive positive definition in B, and CSP(B) is NP-
complete, or

1. B is preserved by a constant operation.

2. B is preserved by min. Equivalently, every relation of B has a definition by a proposi-
tional Horn formula.

3. B is preserved by max. Equivalently, every relation of B has a definition by a dual-
Horn formula, that is, by a propositional formula in CNF where every clause contains
at most one negative literal.

4. B is preserved by the majority operation. Equivalently, every relation of B is bijunctive.

5. B is preserved by the minority operation. Equivalently, every relation of B can be
defined by a conjunction of linear equations modulo 2.

In case (1) to case (5), then for every finite-signature reduct B′ of B the problem CSP(B′)
can be solved in polynomial time.

Proof. If Pol(B) contains a constant operation, then we are in case one; so suppose in the
following that this is not the case. If NAE is primitive positive definable in B, then CSP(B)
is NP-hard by reduction from positive not-all-equal-3SAT [56]. Otherwise, by Theorem 6.6
there is an operation f ∈ Pol(B) that violates NAE. If f̂ defined as x 7→ f(x, . . . , x) equals the
identity then f is idempotent. Otherwise, f̂ equals ¬. But then ¬f ∈ Pol(B) is idempotent
and also violates NAE. So let us assume in the following that f is idempotent. Then f
generates an at least binary minimal operation g ∈ Pol(B).

By Theorem 6.22, the operation g equals min, max, the Boolean minority, or the Boolean
majority function.
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• g = min or g = max. By Lemma 6.26, the relations of B are preserved by min if and
only if they can be defined by propositional Horn formulas. It is well-known that positive
unit-resolution is a polynomial-time decision procedure for the satisfiability problem of
propositional Horn-clauses [89]. The case that g = max is dual to this case.

• g = majority. By Lemma 6.27, the relations of B are preserved by majority if and only
if they are bijunctive. Hence, in this case the instances of CSP(B) can be viewed as
instances of the 2SAT problem, and can be solved in linear time [4].

• g = minority. By Lemma 6.24 every relation of B has a definition by a conjunction of
linear equalities modulo 2. Then CSP(B) can be solved in polynomial time by Gaussian
elimination.

This concludes the proof of the statement.

Exercises.

115. Show that if A is a finite set and f : A→ A, then g := f |A|! satisfies g(g(x)) = g(x) for
all x ∈ A.

116. Show that if f is a permutation on a finite set A, then either f is the identity of f
generates a permutation g which is not the identity and additionally satisfies gp(x) = x
for some prime p.

117. Show that if A is a finite set and f : A → A is not the identity, then f generates a
non-identity operation g which additionally satisfies g(g(x)) = g(x).

118. The Rosenberg theorem is only a preclassification in the sense that not every operation
which has one of the five types is minimal. For each of the following five questions,
either present a proof or give a counterexample.

(a) Which unary operations which are a permutation such that fp(x) = x for some
prime p, or which satisfy f(f(x)) = f(x), are minimal?

(b) Is every binary idempotent operation minimal?

(c) Is every majority operation minimal?

(d) Is every minority operation minimal?

(e) Is every k-ary semiprojection, for k ≥ 3, which is not a projection, minimal?

119. Determine the complexity of the following CSPs.

CSP({0, 1}; {(0, 0, 1, 1), (1, 1, 0, 0)})
CSP({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, {(0, 1), (1, 0)})
CSP({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {(0, 1), (1, 0)}).

120. Show that a Boolean relation R ⊆ {0, 1}k can be defined by a propositional Horn formula
if and only if it is primitively positively definable in ({0, 1}; {0, 1}3\{(1, 1, 0)}, {0}, {1}).

121. Show that all polymorphisms of ({0, 1}; NAE) are essentially unary. Hint: one way to
prove this is to use Theorem 6.18.
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122. Show that all polymorphisms of ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) are projections. Hint:
one way to prove this is to use Theorem 6.18.

123. Show that

Pol({0, 1}; {0}, {1}, {0, 1}3 \ {1, 1, 0})
= 〈min〉
=
{

(x1, . . . , xk) 7→ min(xi1 , . . . , xil) | l ≤ k, i1, . . . , il ∈ {1, . . . , n}
}
.

124. Show that the operation f from case 6 in the proof of Rosenberg’s five types theorem
(Theorem 6.18) not only generates a majority operation, but also a minority operation.

6.6 Near Unanimity Polymorphisms

An operation f of arity at least 3 is a quasi near-unanimity operation if it satisfies the identities

f(x, . . . , x, y) ≈ f(x, . . . , x, y, x) ≈ · · · ≈ f(y, x, . . . , x) ≈ f(x, . . . , x).

If f is additionally idempotent, then it is called a near-unanimity operation. Note that
majority operations are exactly the ternary near-unanimity operations.

Example 6.29. If D has two elements, say D = {0, 1}, then there is a near unanimity of
arity k ≥ 3 which returns 1 if at least two of its arguments are 1, and returns 0 otherwise.
An example of a relation that is preserved by fk+1, but not by fk, is the relation

Bk := {0, 1}k \ {(0, . . . , 0)}. 4

We later often need a more flexible notation concerning projections.

Definition 6.30. For I = {i1, . . . , ik} ∈
([n]
k

)
, with i1 < · · · < ik, we write πnI for the function

from An → Ak defined by πnI (t) := (ti1 , . . . , tik). Sometimes, it will also be convenient to define
πns (t) for t ∈ An and s ∈ [n]k , as follows: πns (t) := (ts1 , . . . , tsk) ∈ Ak. If s = (s1, . . . , sk), we
may also omit the brackets in the subscript and write πns1,...,sk(t) instead of πns (t).

Note that Definition 6.30 is compatible with our earlier definition of the projection op-
erations πni . If n is clear from the context, the superscript n may also be omitted. We
use compact notation for applying functions pointwise or setwise. In particular, if R ⊆ An,
we write πi1,...,ik(R) for the relation {πi1,...,ik(t) | t ∈ R}. We also apply our notation for
projections for relations R ⊆ A1 × · · · ×Ak instead of R ⊆ Ak.

Theorem 6.31. A finite structure B has a k + 1-ary near unanimity polymorphism if and
only if every relation R with a primitive positive definition in B satisfies

R =
⋂

S∈([m]
k )

πS(R). (16)

The next example illustrates that there are some clones C on a finite set B such that
every set R of relations over B such that C = Pol(R) has to be infinite. In fact, we already
know that such clones on a three-element set B must exist, because otherwise there would
be only countably many such clones, which is false (Remark 6.1). There are even concrete
examples of clones on a two-element set which have this property.
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Example 6.32. Let D be the structure with domain {0, 1} which contains

• the unary relation {0},

• the binary relation ≤ := {(0, 0), (0, 1), (1, 1)}, and

• for every n ∈ N the relation Bn := {0, 1}n \ {(0, . . . , 0)}.
Note that all of these relations are preserved by the operation p : {0, 1}3 → {0, 1} given by
(x, y, z) 7→ x∧ (y ∨ z). We claim that Pol(D) = 〈p〉. We already know that 〈p〉 ⊆ Pol(D). To
show the reverse inclusion, we have to show that every relation that is preserved by p belongs
to the set R of relations that are primitively positively definable in D. Indeed,

〈{p}〉 = Pol(Inv({p})) (Proposition 6.4)

⊇ Pol(R) (by assumption)

⊇ Pol(Inv(Pol(D))) (Proposition 6.5)

= Pol(D).

Since every relation R that is preserved by p is also preserved by p(x, y, y) = min(x, y), it
is Horn (Lemma 6.26). Let φ be a propositional Horn formula in CNF that defines R; we
may assume that φ is reduced (Definition 6.25). Suppose for contradiction that φ contains a
clause ψ with one positive literal u and two negative literals ¬v and ¬w. Since φ is reduced,
this means that R has satisfying assignments s1, s2, s3 such that u is the only literal in ψ
satisfied by s1, ¬v is the only literal of ψ satisfied by s2, and ¬w is the only literal of ψ
satisfied by s3. Define s := p(s1, s2, s3). Then s(u) = p(1, 0, 0) = 0, s(v) = p(1, 0, 1) = 1, and
s(w) = p(1, 1, 0) = 1. Hence, s satisfies none of the literals u,¬v,¬w; moreover, the other
literals of ψ aren’t satisfied as well, a contradiction to the assumption that R is preserved by
p. Therefore, all clauses of φ either consist of a single positive literal, or of one positive and
one negative literal, or only of negative literals. This shows that R can even be defined by a
conjunction of relations of D (no existential quantification is needed).

Suppose that E is a reduct of D with finite signature; let k be the maximal arity of the
relations in E. Then E is preserved by the k + 1-ary near unanimity polymorphism f from
Example 6.29. We have already mentioned that this function does not preserve the relation
{0, 1}k+1 \ {(0, . . . , 0)}. It follows that Pol(D) is a proper subclone of Pol(E). Note that this
shows that there is no structure D′ over the domain {0, 1} with finitely many relations such
that Pol(D′) = Pol(D), because the relations of D would have a primitive positive definition
in a reduct E of D with finite relational signature, as we have seen above. We have also seen
that Pol(D) is a proper subclone of Pol(E), and hence Pol(D′) ⊆ Pol(E) is a proper subclone
as well. 4

Exercises.

125. Prove Theorem 6.31.

126. Show that if H is a digraph with a k + 1-ary near unanimity polymorphism, then the
k-consistency procedure (see Section 15.1) solves CSP(H).

127. Show that the digraph C++
2 from Exercise 76 does not have near unanimity polymor-

phisms.

128. Let H be an irreflexive graph. Then H has a conservative near unanimity polymorphism
if and only if is has a conservative majority polymorphism.

70



7 Maltsev Polymorphisms

Recall from Section 4.4 the definition of a Maltsev operation: a ternary operation f : D3 → D
satisfying

∀x, y ∈ D. f(y, x, x) = f(x, x, y) = y .

As we have seen in Theorem 4.19, every digraph with a Maltsev polymorphism can be solved
by the path-consistency procedure. However, when considering arbitrary relational structures
then there are many examples with a Maltsev polymorphism that cannot be solved by the
path-consistency procedure [55] (see Theorem 7.2 below). In this section, we present the
algorithm of Bulatov and Dalmau for CSP(A) when A is preserved by a Maltsev polymor-
phism [37].

Theorem 7.1. Let A be a finite structure with finite relational signature and a Maltsev
polymorphism. Then CSP(A) can be solved in polynomial time.

7.1 Affine Maltsev Operations

The most prominent class of structures A with a Maltsev polymorphism comes from groups.
For any group G (see Example 8.1), the operation m given by (x, y, z) 7→ x − y + z is
obviously Maltsev. If G is abelian, then m is called an affine Maltsev operation. Structures
with an affine Maltsev polymorphism are also called affine Maltsev. Note that if the group
G is F = (Zp; +,−, 0), for some prime number p, then the k-ary relations preserved by m
are precisely the affine subspaces of F k (Example 6.10). In this case one can use Gaussian
elimination to solve CSP(A).

Theorem 7.2 (from [55]). Let G be an abelian group (see Example 8.1) with at least two
elements. For c ∈ G and k ∈ N, define

Rkc := {(x1, . . . , xk) ∈ Gk | x1 + · · ·+ xk = c}.

For some a ∈ G\{0}, let B be the structure (G;R3
0, R

2
0, R

3
a). Then for any k ∈ N, the problem

CSP(B) cannot be solved by k-consistency.

Proof. We construct an unsatisfiable instance A of CSP(B) as follows. In the proof of this
theorem, we work with structures of large girth. The girth of a graph G is the length of the
shortest cycle in G. It is known that there are finite graphs of arbitrarily large girth that are
cubic, i.e., all vertices have degree three (much stronger results are known; see, e.g., [18]). Let
(V ;E) be a finite cubic graph of girth at least 4k + 1. Orient the edges E arbitrarily.

The domain of A is V × E. For each v ∈ V we add
(
(v, e1), (v, e2), (v, e3)

)
to (R3

0)A. For
each e = (v, w) ∈ E we add

(
(v, e), (w, e)

)
to (R2

0)A. Finally, we move exactly one of the tuples
from (R3

0)A to (R3
a)

A. Suppose for contradiction that s : A → G is a solution for A. Sum
over all constraints. Since each element of A appears once in a two-variable constraint and
once in a three-variable constraint, we obtain 2

∑
e∈E,u∈e s(u, e) on the left-hand side. Since s

satisfies s(u, e)+s(v, e) = 0 for every edge e = {u, v} ∈ E, the left-hand side can be rewritten
as 2

∑
e∈E

∑
u∈e s(u, e) =

∑
{u,v}∈E

(
s(u, e) + s(v, e)

)
= 0. On the right-hand side we obtain

a since we have precisely one tuple in Sia in A. Hence, s cannot be a homomorphism. Using
high girth, it can be shown that the k-consistency procedure does not derive false on A; for
the details of this last part, see Theorem 8.6.11 in [21].
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7.2 Further Examples

For general finite groups G, and if all relations of B are cosets gH := {gh | h ∈ H} of
subgroups H of Gk, then Feder and Vardi [55] showed how to solve CSP(B) in polynomial
time using a previously known algorithm to find small generating sets for a permutation group.
We will not discuss this approach, but rather present the more general algorithm of Bulatov
and Dalmau which works for all finite structures preserved by a Maltsev polymorphism. The
following proposition shows that this is indeed more general.

Proposition 7.3. Let G be a finite group and let m : G3 → G be the Maltsev operation
defined by m(x, y, z) := xy−1z. Then m preserves a relation R ⊆ Gk if and only if R is a
coset of a subgroup of Gk, for all k ∈ N.

Proof. Let k ∈ N and let H be a subgroup of Gk. Let a ∈ G3 and h1, h2, h3 ∈ H. As usual,
we may apply m to elements of G3 componentwise; then

m(ah1, ah2, ah3) = ah1(ah2)−1ah3 = ah1h2h3 ∈ aH

so m indeed preserves all cosets of H.
Conversely, suppose that R ⊆ Gk is preserved by m. Choose y ∈ R arbitrarily. We claim

that y−1R is a subgroup H of Gk. This will show that R = yH is a coset of a subgroup
of Gk. Arbitrarily choose a, b ∈ y−1R. Then x := ya ∈ R and z := yb ∈ R. Hence,
m(x, y, z) = yay−1yb = yab ∈ R, so ab ∈ y−1R and y−1R is closed under the group operation.
Moreover, m(y, ya, y) = y(ya)−1y = ya−1 ∈ R, so a−1 ∈ y−1R and y−1R is also closed under
taking inverses.

We now present examples of Maltsev operations that do not come from groups in the way
described above.

Example 7.4. On the domain {0, 1, 2}, let m be the minority defined by

m(x, y, z) = x whenever |{x, y, z}| = 3.

Note that m preserves all unary relations, for every permutation α of {0, 1, 2} the relation
{(x, y) | α(x) = y}, and for i ∈ {0, 1} the relation

Rn :={(x1, . . . , xn) ∈ {0, 1}n | x1 + x2 + · · ·+ xn = i mod 2}.

This example will be revisited in Exercise 161, Example 13.12, Exercise 194, and Exercise 195.
4

Example 7.5. On the domain {0, 1, 2}, let m be the minority operation defined by

m(x, y, z) := 2 whenever |{x, y, z}| = 3.

Let A be the algebra ({0, 1, 2},m). Note that m preserves all unary relations, the graph H
of the endomorphism of A which maps 0, 1 to 1 and which maps 2 to 0, and

L =
{

(x, y, z) | x = y = z = 2 or x, y, z ∈ {0, 1} and x+ y + z = 0 mod 2
}
.

The following relations are primitively positively definable with these relations, and hence
belong to Inv(m) as well:

72



• The graph T of the transposition (12) has the primitive positive definition

∃z
(
L(x, y, z) ∧ z ∈ {1, 2}

)
.

• The relation C :=
{

(2, 0), (0, 1), (2, 1), (1, 2)
}

, has the primitive positive definition

∃u, v
(
H(x, u) ∧ T (u, v) ∧H(y, v)

)
.

• The equivalence relation E with the equivalence classes {2} and {0, 1} has the primitive
positive definition ∃z

(
C(x, z) ∧ C(z, y)

)
.

• For every n ∈ N the relation

Ln =
{

(2, . . . , 2)} ∪ {(x1, . . . , xn) ∈ {0, 1}n | x1 + x2 + · · ·+ xn = 0 mod 2
}
.

• The relation{
(x1, . . . , xn) ∈ {0, 1, 2}n | an even number of the xi’s is from {0, 1}

}
has the primitive positive definition

∃y1, . . . , yn
(
Ln(y1, . . . , yn) ∧H(x1, y1) ∧ · · · ∧H(xn, yn)

)
.

This example will be revisited in Exercise 196. 4

Remark 7.6. It is unclear whether Maltsev operations on finite sets can be classified com-
pletely. However, it is known that for every n ∈ N there are only countably many clones on
{1, . . . , n} that contain a Maltsev operation [3].

Exercises.

129. Check the claims made in Example 7.4.

130. Check the claims made in Example 7.5.

131. Let A be the structure ({0, 1, 2}; {1, 2}, H, L) with the relations H and L as defined in
Example 7.5, and let B be its substructure with domain {0, 1}. Show that B has a prim-
itive positive construction in A (easy), and that A has a primitive positive construction
in B (not so easy).

132. Show that if a Maltsev operation m : Dn → D preserves the graph
{(x, y, z, u) | m′(x, y, z) = u} of a Maltsev operation m′ : Dn → D,
then m = m′.
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7.3 Compact Representations of Relations

Our presentation of the proof closely follows that of Bulatov and Dalmau [37].

Definition 7.7 (Forks and Representations). Let R ⊆ An be a relation.

• A fork of R is a triple (i, a, b) such that there exist s, t ∈ R with (s1, . . . , si−1) =
(t1, . . . , ti−1), si = a, and ti = b. We say that s and t witness (i, a, b).

• R′ ⊆ R is called a representation of R if every fork of R is also a fork of R′.

• A representation R′ of R is called compact if its cardinality is at most twice the number
of forks of R.

Clearly, every relation has a compact representation. Recall Exercise 108 for the relevance
of the following lemma.

Lemma 7.8. Let A be a finite set and let m : A3 → A be a Maltsev operation. Let R ⊆ Ak

be a relation preserved by m, and let R′ be a representation of R. Then R = 〈R′〉m.

Proof. We show by induction on i ∈ {1, . . . , n} that π1,...,i(〈R′〉m) = π1,...,i(R). Clearly,
π1,...,i(〈R′〉m) ⊆ π1,...,i(R), so we only need to show the converse inclusion. The case i = 1
follows from that fact that R has for every t ∈ R the fork (1, t1, t1), and since R′ must also
have this fork it must contain a tuple t′ such that t′1 = t1.

So let us assume that the statement holds for i < n. We have to show that for every
t ∈ R we have (t1, . . . , ti+1) ∈ π1,...,i+1(〈R′〉m). By induction hypothesis there exists a tuple
s ∈ 〈R′〉m such that (s1, . . . , si) = (t1, . . . , ti). Then (i+ 1, si+1, ti+1) is a fork of R, so there
exist tuples s′, s′′ ∈ R′ witnessing it. Then the tuple t′ := m(s, s′, s′′) ∈ 〈R′〉m is such that

(t′1, . . . , t
′
i, t
′
i+1) = (m(t1, s

′
1, s
′′
1), . . . ,m(ti, s

′
i, s
′′
i ),m(si+1, si+1, ti+1))

= (t1, . . . , ti, ti+1) (since s′i = s′′i ).

Hence, (t1, . . . , ti, ti+1) is a tuple from π1,...,i+1(〈R′〉m), as required.

Exercises.

133. Let A be a finite set. How many forks does the n-ary relation R := An have? Explicitly
construct a compact representation for R.

134. Let R be the relation {(x, y, z, u) ∈ {0, 1}4 | x + y + z = 1 mod 2}. Find a smallest
possible representation R′ for R. Explicitly compute 〈R′〉m where m is the Boolean
minority.

7.4 The Bulatov-Dalmau Algorithm

Let ∃x1, . . . , xn(φ1 ∧ · · · ∧ φm) be an instance of CSP(A). For ` ≤ n, we write R` for the
relation

{(s1, . . . , sn) ∈ An | A |= (φ1 ∧ · · · ∧ φ`)(s1, . . . , sn)}.
The idea of the algorithm is to inductively construct a compact representation R′` of R`,
adding constraints one by one. Initially, for ` = 0, we have R` = An, and it is easy to
come up with a compact representation for this relation. Note that when we manage to
compute the compact representation R′n for Rn, we can decide satisfiability of the instance: it
is unsatisfiable if and only if R′n is empty. For the inductive step, we need a procedure called
Next which is more involved; we first introduce two auxiliary procedures.
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Procedure Nonempty(R′, i1, . . . , ik, S).

Set U := R′.
While ∃r, s, t ∈ U such that πi1,...,ik(m(r, s, t)) /∈ πi1,...,ik(U):

Set U := U ∪ {m(r, s, t)}
If ∃t ∈ U such that (ti1 , . . . , tik) ∈ S then return t
else return ‘No’.

Figure 10: The procedure Nonempty.

The procedure Nonempty

The procedure Nonempty receives as input

• a compact representation R′ of a relation R,

• a sequence i1, . . . , ik of elements in [n] where n is the arity of R, and

• a k-ary relation S which is also preserved by m.

The output of the procedure is either a tuple t ∈ R such that (ti1 , . . . , tik) ∈ S, or ‘No’ if no
such tuple exists. The procedure can be found in Figure 10.

Correctness. For the correctness of Nonempty we note the following:

• R′ ⊆ U ⊆ R: initially we start from U := R′ ⊆ R, and only add tuples to U obtained
by applying m to tuples in U , so the added tuples are again in R.

• It follows that if Nonempty returns a tuple (ti1 , . . . , tik), then this tuple is indeed from
πi1,...,ik(R) and the output of the algorithm is correct.

• When the algorithm exits the while loop then πi1,...,ik(〈U〉m) = πi1,...,ik(U). SinceR′ ⊆ U
we have that 〈U〉m = R. Hence, every tuple t ∈ πi1,...,ik(R) = πi1,...,ik(〈U〉m) is contained
in πi1,...,ik(U), and so the answer of the algorithm is also correct when it returns ‘No’.

We mention that this procedure does not use the particular properties of a Maltsev poly-
morphism, but works for any explicitly given polymorphism.

Running time. The number of iterations of the while loop can be bounded by the size
|U | of the set U at the end of the execution of the procedure. Hence, when we want to use this
procedure to obtain a polynomial-time running time, we have to make sure that the size of U
remains polynomial in the input size. The way this is done in the Bulatov-Dalmau algorithm
is to guarantee that at each call of Nonempty the size L of πi1,...,ik(R) is polynomial in the
input size. Then |U | is bounded by L+ |R′| which is also polynomial.

We have to test all tuples r, s, t ∈ U ; this can be implemented so that |U |3 steps suffice.
In each step we have to compute m(r, s, t) and test whether πi1,...,ik(m(r, s, t)) ∈ πi1,...,ik(U),
which can be done in O(kL). In the important case that L is bounded by a constant in the
size of the input N , the running time of Nonempty is in O(N4).
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Procedure Fix-values(R′, c1, . . . , ck).

Set j := 0; Uj := R′.
While j < k do:

Set Uj+1 := ∅.
For each (i, a, b) ∈ [n]×A2:

If ∃s, t ∈ Uj witnessing (i, a, b) (assuming s = t if a = b):
If r := Nonempty(Uj , j + 1, i, {(cj+1, a)}) 6= ‘No’

If (i > j + 1) or (a = b = ci):
Set Uj+1 := Uj+1 ∪ {r,m(r, s, t)}

Set j := j + 1.
Return Uk.

Figure 11: The procedure Fix-values.

The procedure Fix-values

The procedure Fix-values receives as input

• a compact representation R′ of an n-ary relation R preserved by m, and

• a sequence c1, . . . , ck ∈ A for k ≤ n.

The output of Fix-values is a compact representation of the relation

R ∩ ({c1} × · · · × {ck} ×A× · · · ×A).

The procedure can be found in Figure 11. The algorithm computes inductively a compact
representation Uj of the relation

Rj = R ∩ ({c1} × · · · × {cj} ×A× · · · ×A)

This is immediate for U0 = R′, and the set Uk is the relation that we have to compute.
For its correctness, suppose inductively that Uj is a compact representation of Rj . We

have to show that the set Uj+1 computed by the procedure is a compact representation of
Rj+1:

1. Uj+1 ⊆ Rj+1. Suppose that the procedure adds {r,m(r, s, t)} to Uj+1, where r and
s witness the fork (i, a, b) of Uj processed in the for-loop of the procedure. Note that
r ∈ Rj+1 since r ∈ 〈Uj〉m ⊆ Rj and rj+1 = cj+1. Since m preserves R and is idempotent,
it also preserves Rj , and since r, s, t ∈ Rj it follows that m(r, s, t) ∈ Rj . To show that
m(r, s, t) ∈ Rj+1 it suffices to show that sj+1 = tj+1 because then m(r, s, t)j+1 = rj+1 =
cj+1 since m is Maltsev. If i > j + 1 then we have that sj+1 = tj+1 since s, t witness
(i, a, b). Otherwise, we must have a = b = ci because of the innermost if-clause of the
procedure. But then s = t by the stipulation of the algorithm on the choice of s and t.

2. All forks (i, a, b) of Rj+1 are forks of Uj+1. If Rj+1 has the fork (i, a, b), then by
inductive assumption Uj must contain witnesses s, t for (i, a, b). Therefore, the first
if-clause of the procedure is positive. Moreover, sj+1 = cj+1 and si = a, so r :=
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Procedure Next(R′, i1, . . . , ik, S).

Set U := ∅.
For each (i, a, b) ∈ [n]×A2:

If Nonempty(R′, i1, . . . , ik, i, S × {a}) =: t 6= ‘No’:
If Nonempty(Fix-values(R′, t1, . . . , ti−1), i1, . . . , ik, i, S × {b}) =: t′ 6= ‘No’:

Set U := U ∪ {t, t′}.
Return Uk.

Figure 12: The procedure Next.

Nonempty(Uj , j+1, i, {(cj+1, a)}) 6= ‘No’. Also note that if i ≤ j+1, then a = si = ci =
ti = b. So all the if-clauses of the procedure are positive, and the procedure adds r and
m(r, s, t) to Uj+1. The tuples r and m(r, s, t) witness (i, a, b). Since s, t witness (i, a, b)
we have that (s1, . . . , si−1) = (t1, . . . , ti−1). Hence, π1,...,i−1(m(r, s, t)) = (r1, . . . , ri−1).
Furthermore, we have that πi(m(r, s, t)) = m(a, a, b) = b.

3. The representation Uj+1 of Rj+1 is compact since at most two tuples are added to Uj+1

for each fork of Rj+1.

Running time. The while loop is performed k ≤ n times; the inner for-loop is executed
for each (i, a, b) ∈ [n]×A2, which is linear for fixed A. The cost of each iteration is dominated
by the cost of calling the procedure Nonempty. Note that when calling Nonempty, the size of
πj+1,i(Uj) is polynomial in the input size (even constant size when A is fixed), so the cost of
Nonempty is in O(N4) where N is the size of the input. Therefore, the total time complexity
of the procedure Fix-values is polynomial in the input size (for fixed A it is in O(N5)).

The procedure Next

Now comes the heart of the algorithm, which is the procedure Next that updates a compact
representation of the solution space when constraints are added one by one. The input of the
procedure is

• a compact representation R′ of a relation R ⊆ An that is preserved by m,

• a sequence i1, . . . , ik of elements from [n],

• a k-ary relation S which is also preserved by m.

The output of the procedure is a compact representation of the relation

R∗ := {t ∈ R | (ti1 , . . . , tik) ∈ S}.

The procedure Next can be found in Figure 12. Observe that

• the condition Nonempty(R′, i1, . . . , ik, i, S × {a}) 6= ‘No’ from the first if-clause is sat-
isfied if and only if there exists a tuple t ∈ R such that (ti1 , . . . , tik) ∈ S and ti = a.
Hence, if such a tuple does not exist, then (i, a, b) cannot be a fork of R∗, and nothing
needs to be done.
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• the condition Nonempty(Fix-values(R′, t1, . . . , ti−1), i1, . . . , ik, i, S × {b}) 6= ‘No’ from
the second if-clause is satisfied if and only if there exists a tuple t′ ∈ R such that

– (t′1, . . . , t
′
i−1) = (t1, . . . , ti−1),

– (t′i1 , . . . , t
′
ik

) ∈ S, and

– t′i = b.

If this condition holds, and since ti = a, we have that t and t′ witness (i, a, b). It only
remains to show that if (i, a, b) is a fork of R∗, then such a tuple t′ must exist. So let
r and s be witnesses for (i, a, b) in R∗. Then the tuple t′ := m(t, r, s) has the desired
properties:

– for j < i we have that t′j = m(tj , rj , sj) = tj ;

– t′ ∈ S because (ri1 , . . . , rik), (si1 , . . . , sik), (ti1 , . . . , tik) ∈ S and m preserves S.

– t′i = m(ti, ri, si) = m(a, a, b) = b.

• The cardinality of U is bounded by twice the number of forks of R∗, so the representation
computed by the algorithm is compact.

Running time. The for-loop of the procedure Next is performed n|A|2 times and the cost
of each iteration is polynomial in the cost of Nonempty and Fix-values. Also note that k is
bounded by the maximal arity of the relations in A, so constant for fixed A. It follows that
πi1,...,ik,i(R) is polynomial, so the running time of the calls to Nonempty are polynomial. For
fixed A, the global running time of the procedure Next is in O(N6) where N is the size of the
input.

Proof of Theorem 7.1. Starting from an empty list of constraints, we add constraints on the
variables x1, . . . , xn one by one, and maintain a compact representation of the n-ary relation
defined by the constraints considered so far. Initially, we start with a compact representation
of the full relation An. In later steps, we use the procedure Next to compute a compact
representation when a constraint is added, in O(N6) for fixed A and N the size of the input.
The instance is unsatisfiable if and only if at the final stage we end up with an empty
representation. The entire running time of the algorithm is in O(N7).

Exercises.

135. Let A be the structure ({0, 1};L0, L1) where Li := {(x, y, z) | x + y + z = i mod 2},
which has the Boolean minority m as polymorphism. Consider the instance

∃x1, . . . , x5

(
L1(x1, x2, x3) ∧ L1(x2, x3, x4) ∧ L1(x3, x4, x5) ∧ L0(x1, x3, x5)

)
Compute compact representations R′` of R`, for ` ∈ {1, 2, 3, 4}.

136. Let B be a structure with a Maltsev polymorphism f and an infinite relational signature.
Note that we have defined CSP(B) only if B has a finite signature. If we want to define
CSP(B) also for structures B with an infinite signature, it is important
to discuss how the relation symbols in the signature of B are represented
in the input. We choose to represent a relation symbol R from B by listing
the tuples in RB. Adapt the Dalmau algorithm such that it can solve
CSP(B) in polynomial time for this choice of representing the relations in B.
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137. The graph isomorphism problem (GI) is a famous computational problem that is neither
known to be solvable in polynomial time, nor expected to be NP-hard. An instance of
GI consists of two graphs G and H, and the question is to decide whether G and H are
isomorphic. Consider the variant of the graph-isomorphism problem
where the vertices are coloured, each color appears at most k times for
some constant k, and the isomorphism between H and G that we are
looking for is required to additionally preserve the colours. Show that
this problem can be solved in polynomial time using Dalmau’s algorithm
(use the previous exercise).

8 Universal Algebra

We have seen in Section 6 that for finite relational structures B with finite relational signature,
the computational complexity of CSP(B) only depends on the polymorphisms of B. For more
advanced results that use this perspective, it will be useful to view the set of all polymorphisms
of B as an algebra, since we may then use ideas and results from universal algebra.

8.1 Algebras and Clones

In universal algebra, an algebra is simply a structure with a purely functional signature. We
will typically use bold font letters, like A, to denote algebras, and the corresponding capital
roman letters, like A, to denote their domain.

Example 8.1 (Group). A group is an algebra with a binary function symbol ◦ for com-
position, a unary function symbol −1 for taking the inverse, and a constant denoted by e,
satisfying

• ∀x, y, z. x ◦ (y ◦ z) = (x ◦ y) ◦ z,

• ∀x. x ◦ x−1 = e,

• ∀x. e ◦ x = x, and ∀x. x ◦ e = x.

Note that all axioms are universal in the sense that all the variables are universally quantified
(more on that comes later). A group is called abelian if it additionally satisfies

∀x, y. x ◦ y = y ◦ x.

For abelian groups we sometimes use the signature {+,−, 0} instead of {◦,−1 , e}. 4

Example 8.2 (Ring). A (unital) ring is an algebra A with the signature {·,+,−, 0, 1} where
·,+ are binary, − is unary, and 0, 1 are constants, such that (A; +,−, 0) is an abelian group
and additionally

∀x, y, z. (xy)z = x(yz) (associativity)

∀x. 1 · x = x (multiplicative unit)

∀x, y, z. x(y + z) = xy + xz (distributivity)

A ring is called commutative if it additionally satisfies

∀x, y. xy = yx (commutativity). 4
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The next example generalises vector spaces.

Example 8.3 (Module). Let R be a ring. An R-module is an algebra M with the signature
{+,−, 0}∪{fr | r ∈ R} such that (M ; +,−, 0) is an abelian group and for all r, s ∈ R it holds
that

∀x, y. fr(x+ y) = fr(x) + fr(y) (17)

∀x. fr+s(x) = fr(x) + fs(x) (18)

∀x. fr(fs(x)) = frs(x). (19)

An R-module is called unitary if it additionally satisfies ∀x.f1(x) = x. We usually write rx
instead of fr(x).

An alternative formalisation of modules is to view them as structures with two sorts, one
sort for R and one for M above (see Section 5.1). The details of this perspective are the
content of Exercise 139 and omitted because we do not need it in this text. 4

Example 8.4 (Semilattice). A meet-semilattice S is a {≤}-structure with domain S such
that ≤S denotes a partial order where any two u, v ∈ S have a (unique) greatest lower bound
u ∧ v, i.e., an element w such that w ≤ u, w ≤ v, and for all w′ with w′ ≤ u and w ≤ v we
have w′ ≤ w. Dually, a join-semilattice is a partial order with least upper bounds, denoted by
u ∨ v. A semilattice is a meet-semilattice or a join-semilattice where the distinction between
meet and join is either not essential or clear from the context.

Semilattices can also be characterised as {∧}-algebras where ∧ is a binary operation that
must satisfy the following axioms

∀x, y, z : x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity)

∀x, y : x ∧ y = y ∧ x (commutativity)

∀x : x ∧ x = x (idempotency, or idempotence).

Clearly, the operation ∧S, defined as above in a semilattice S viewed as a poset, satisfies
these axioms. Conversely, if (S;∧) is a semilattice, then the formula x ∧ y = x defines a
partial order on S which is a meet-semilattice (and x ∧ y = y defines a partial order on S
which is a join-semilattice).

Note that the two ways of formalising semilattices differ when it comes to the notion of a
substructure; a subsemilattice is referring to the substructure of a semilattice when formalised
as an algebraic structure. 4

Example 8.5 (Lattice). A lattice L is a {≤}-structure with domain L such that ≤L denotes
a partial order such that any two u, v ∈ L have a largest lower bound u∧ v and a least upper
bound, denoted by u ∨ v. Lattices can also be characterised as {∧,∨}-algebras where ∧ and
∨ are semilattice operations (Example 8.4) that additionally satisfy

∀x, y : x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption).

If L is a lattice and the operations ∧ and ∨ are defined as above for semilattices, then these
two operations also satisfy the absorption axiom. Conversely, if we are given an algebra
(S;∧,∨) satisfying the mentioned axioms, then the formula x ∧ y = x (equivalently, the
formula x∨y = y) defines a partial order on S which is a lattice. Of course, there is potential
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danger of confusion of the symbols for lattice operations ∧ and ∨ with the propositional
connectives ∧ for conjunction and ∨ for disjunction (which can be seen as lattice operations
on the set {0, 1}) which luckily should not cause trouble here. A lattice L = (L;∧,∨) is called
distributive if it satisfies

∀x, y : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributivity). 4

Exercises.

138. Let A = (A; +,−, 0) be an abelian group. Let R be the set of all endomorphisms of
A. Prove the following operations define a ring R on R: addition is defined pointwise,
and multiplication is defined as function composition. The constant 0R denotes the
endomoprphism which is constant 0, and the constant 1R denotes the identity.

139. Formalise modules (Example 8.3) as two-sorted structures as introduced in Section 5.1.

The clone of an algebra. If A is an algebra with the signature τ , then a τ -term t(x1, . . . , xn)
gives rise to a term operation tA : An → A; the value of tA at a1, . . . , an ∈ A can be obtained
by replacing the variables x1, . . . , xn by a1, . . . , an and evaluating in A.

Example 8.6. If A is a group, then the term operation for the term (x◦y−1)◦z is a Maltsev
operation on A. 4

Example 8.7. If t(x1, x2) is the term that just consists of the variable x1, then tA equals
the projection π2

1. 4

Algebras give rise to clones in the following way. We denote by Clo(A) the set of all term
operations of A of arity at least one. Clearly, Clo(A) is an operation clone since it is closed
under compositions, and contains the projections.

Polymorphism algebras. In the context of complexity classification of CSPs, algebras
arise as follows.

Definition 8.8. Let B be a relational structure with domain B. An algebra B with domain
B such that Clo(B) = Pol(B) is called a polymorphism algebra of B.

Note that a structure B has many different polymorphism algebras, since Definition 8.8
does not prescribe how to assign function symbols to the polymorphisms of B.

Any clone C on a set D can be viewed as an algebra A with domain D whose signature
consists of the operations of C themselves; that is, if f ∈ C, then fA := f . We will therefore use
concepts defined for algebras also for clones. In particular, the polymorphism clone Pol(B) of
a structure B might be viewed as an algebra, which we refer to as the polymorphism algebra
of B. Note that the signature of the polymorphism algebra is always infinite, since we have
polymorphisms of arbitrary finite arity.

8.2 Subalgebras, Products, Homomorphic Images

In this section we recall some basic universal-algebraic facts that will be used in the following
subsections.
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Subalgebras. Let A be a τ -algebra with domain A. A τ -algebra B with domain B ⊆ A is
called a subalgebra of A if for each f ∈ τ of arity k we have fB(b1, . . . , bk) = fA(b1, . . . , bk)
for all b1, . . . , bk ∈ B; in this case, we write B ≤ A. A subuniverse of A is the domain of
some subalgebra of A. Note that as for structures, we do not exclude algebras whose domain
is empty (which is of course only possible if the signature does not contain any constant
symbols). A subalgebra B of A is called proper if ∅ 6= B 6= A. The smallest subuniverse of
A that contains a given set S ⊆ A is called the subuniverse of A generated by S, and the
corresponding subalgebra is called the subalgebra of A generated by S, and denoted by 〈S〉A.

Products. Let A,B be τ -algebras with domain A and B, respectively. Then the prod-
uct A × B is the τ -algebra with domain A × B such that for each f ∈ τ of arity k we
have fA×B

(
(a1, b1), . . . , (ak, bk)

)
=
(
fA(a1, . . . , ak), f

B(b1, . . . , bk)
)

for all a1, . . . , ak ∈ A and
b1, . . . , bk ∈ B. More generally, when (Ai)i∈I is a sequence of τ -algebras, indexed by some set
I, then

∏
i∈I Ai is the τ -algebra A with domain

∏
i∈I Ai such that for a1

i , . . . , a
k
i ∈ Ai

fA
(
(a1
i )i∈I , . . . , (a

k
i )i∈I

)
:=
(
fAi(a1

i , . . . , a
k
i )
)
i∈I .

Lemma 8.9. Let A be the polymorphism algebra of a finite structure A. Then the (domains
of the) subalgebras of Ak are precisely the relations that have a primitive positive definition
in A.

Proof. A relation R ⊆ Ak is a subalgebra of Ak if and only if for all m-ary f in the signature
of A and t1, . . . , tm ∈ R, we have

(
f(t11, . . . , t

m
1 ), . . . , f(t1k, . . . , t

m
k )
)
∈ R, which is the case if

and only if R is preserved by all polymorphisms of A, which is the case if and only if R is
primitive positive definable in A by Theorem 6.6.

Homomorphic Images. Let A and B be τ -algebras. Then a homomorphism from A to
B is a mapping h : A→ B such that for all k-ary f ∈ τ and a1, . . . , ak ∈ A we have

h
(
fA(a1, . . . , ak)

)
= fB

(
h(a1), . . . , h(ak)

)
.

Note that if h is a homomorphism from A to B then the image of h is the domain of a
subalgebra of B, which is called a homomorphic image of A.

Definition 8.10. A congruence of an algebra A is an equivalence relation that is preserved
by all operations in A.

Lemma 8.11. Let B be a finite structure, and B be a polymorphism algebra of B. Then the
congruences of B are exactly the primitively positively definable equivalence relations over B.

Proof. A direct consequence of Theorem 6.6.

Proposition 8.12 (see [42]). Let A be an algebra. Then E is a congruence of A if and only
if E is the kernel of a homomorphism from A to some other algebra B.

Example 8.13. Let G = (V,E) be the undirected graph with V = {a1, . . . , a4, b1, . . . , b4}
such that a1, . . . , a4 and b1, . . . , b4 induce a clique, for each i ∈ {1, . . . , 4} there is an edge
between ai and bi, and otherwise there are no edges in G. Let A be a polymorphism algebra
of G. Then A homomorphically maps to a two-element algebra B. By Proposition 8.12, it
suffices to show that A has a congruence with two equivalence classes. By Lemma 8.11, it
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suffices to show that an equivalence relation of index two is primitive positive definable. Here
is the primitive positive definition:

∃u, v
(
E(x, u) ∧ E(y, u) ∧ E(x, v) ∧ E(y, v) ∧ E(u, v)

)
The equivalence classes of this relation are precisely {a1, . . . , a4} and {b1, . . . , b4}. 4
Example 8.14. Let A be the algebra with domain

A := S3 =
{

id, (231), (312), (12), (23), (13)
}

(the symmetric group on three elements), and a single binary operation, the composition
function of permutations. Note that A has the subalgebra induced by

{
id, (123), (321)}.

Also note that A homomorphically maps to ({0, 1},+) where + is addition modulo 2: the
preimage of 0 is {id, (123), (321)} and the preimage of 1 is {(12), (23), (13)}. 4

When A is a τ -algebra, and h : A → B is a mapping such that the kernel of h is a
congruence of A, we define the quotient algebra A/h of A under h to be the algebra with
domain h(A) where

fA/h(h(a1), . . . , h(ak)) = h(fA(a1, . . . , ak))

where a1, . . . , ak ∈ A and f ∈ τ is k-ary. This is well-defined since the kernel of h is preserved
by all operations of A. Note that h is a surjective homomorphism from A to A/h. The
following is well known (see e.g. Theorem 6.3 in [42]).

Lemma 8.15. Let A and B be algebras with the same signature, and let h : A → B be a
homomorphism. Then the image of any subalgebra A′ of A under h is a subalgebra of B, and
the preimage of any subalgebra B′ of B under h is a subalgebra of A.

Proof. Let f ∈ τ be k-ary. Then for all a1, . . . , ak ∈ A′,

fB(h(a1), . . . , h(ak)) = h(fA(a1, . . . , ak)) ∈ h(A′) ,

so h(A′) is a subalgebra of B. Now suppose that h(a1), . . . , h(ak) are elements of B′; then
fB(h(a1), . . . , h(ak)) ∈ B′ and hence h(fA(a1, . . . , ak)) ∈ B′. So, fA(a1, . . . , ak) ∈ h−1(B′)
which shows that h−1(B′) induces a subalgebra of A.

Exercices.

140. Show that for all τ -algebras A and B with Clo(A) = Clo(B) we have Clo(A2) =
Clo(B2).

141. Find a relational signature τ and τ -structures A, B such that Clo(A) = Clo(B) but
Clo(A×B) 6= Clo(A×A).

142. Prove Proposition 8.12.

143. Consider the algebra An := ({0, . . . , n− 1};m) where m(x, y, z) := x− y + z. Then for
every k ≥ 1 the clone Clo(An)(k) consists of precisely the operations defined as

g(x0, . . . , xk−1) :=
∑
i

aixi

where a0, . . . , ak−1 ∈ Z with
∑

i ai = 1.

144. Let p be a positive prime. Show that the only proper subalgebras of Ap from the
previous exercise are of the form {a} for some a ∈ {0, . . . , p− 1}.
Hint. Use Exercise 143 and Example 6.9.
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A BR

Figure 13: Illustration of E(K3) ≤ A2, where Clo(A) = Pol(K3), as a bipartite graph.

8.3 Algebras and CSPs

Let A and B be algebras with the same signature, and let R ≤ A×B be a subalgebra. The
relation R can be viewed as the edge relation of a bipartite graph with colour classes A and
B. Note that if A = B and Clo(A) = Pol(A), then the relations R that arise in this way
are precisely the binary relations on A that are primitively positively definable in A. For
example, if Clo(A) = Pol(K3), then E(K3) ≤ A2 and the corresponding bipartite graph is
drawn in Figure 13.

The importance of the set-up of R ≤ A × B for CSPs is that we may imagine A as the
possible values for a variable x in an instance of the CSP, and B as the possible values for a
variable y in the CSP, and R represents a binary constraint between x and y. The advantage
of this perspective is that many important definitions are very intuitively phrased in the
language of bipartite graphs.

We start with the following fundamental definition from universal algebra which is highly
relevant for the universal-algebraic approach to CSPs, in particular in Section 13.

Definition 8.16. Let k ≥ 1 and A1, . . . ,Ak be τ -algebras. Then R ≤ A1×· · ·×Ak is called
subdirect if πi(R) = Ai for every i ∈ {1, . . . , k}.

If A is the polymorphism algebra of a finite digraph H, then there is a link between the
notion of subdirect subalgebras of A2 and arc consistency. Let G be a finite digraph and
let L(x) ⊆ V (H) be the list for x ∈ V (G) at the final stage of the evaluation of ACH(G).
Note that for every x ∈ V (G), the set L(x) is a subuniverse of A. Also note that every
(x, y) ∈ E(G) we have that E(H) ∩ (L(x)× L(y)) is subdirect in L(x)× L(y).

Also note that E(H) is subdirect in A2 if and only if H has no sources and no sinks.
Digraphs without sources and sinks are also called smooth.

Let x, y ∈ V (G) and let L(x) and L(y) be the lists computed by the arc consistency
procedure. Recall from Exercise 56 that L(x) and L(y) are subuniverses of the polymorphism
algebra A of H. Note that E(G) ∩ (L(x)× L(y)) ≤ A2 is subdirect!

Exercices.

145. Show that a digraph G = (V,E) is rectangular if and only if E,
when regarded as a bipartite graph with color classes A and B
as described in this section, is a disjoint union of bicliques, i.e.,
if a ∈ A has a path to b ∈ B, then (a, b) ∈ E.
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8.4 Pseudovarieties and Varieties

Varieties are a fascinatingly powerful concept to study classes of algebras. The fundamental
result about varieties is Birkhoff’s theorem, which links varieties with equational theories
(Section 8.5). By Birkhoff’s theorem, there is also a close relationship between varieties and
the concept of an abstract clone (Section 8.6).

If K is a class of algebras of the same signature, then

• P(K) denotes the class of all products of algebras from K.

• Pfin(K) denotes the class of all finite products of algebras from K.

• S(K) denotes the class of all subalgebras of algebras from K.

• H(K) denotes the class of all homomorphic images of algebras from K.

Note that closure under homomorphic images implies in particular closure under isomorphism.
For the operators P, Pfin, S and H we often omit the brackets when applying them to single
singleton classes that just contain one algebra, i.e., we write H(A) instead of H({A}). The
elements of HS(A) are also called the factors of A.

A class V of algebras with the same signature τ is called a pseudovariety if V contains all
homomorphic images, subalgebras, and direct products of algebras in V, i.e., H(V) = S(V) =
Pfin(V) = V. The class V is called a variety if V also contains all (finite and infinite) prod-
ucts of algebras in V. So the only difference between pseudovarieties and varieties is that
pseudovarieties need not be closed under direct products of infinite cardinality. The small-
est pseudovariety (variety) that contains an algebra A is called the pseudovariety (variety)
generated by A.

Lemma 8.17 (HSP lemma). Let A be an algebra.

• The pseudovariety generated by A equals HSPfin(A).

• The variety generated by A equals HSP(A).

Proof. Clearly, HSPfin(A) is contained in the pseudovariety generated by A, and HSP(A) is
contained in the variety generated by A. For the converse inclusion, it suffices to verify that
HSPfin(A) is closed under H, S, and Pfin. It is clear that H(HSPfin(A)) = HSPfin(A). The
second part of Lemma 8.15 implies that S(HSPfin(A)) ⊆ HS(SPfin(A)) = HSPfin(A). Finally,

Pfin(HSPfin(A)) ⊆ H Pfin S Pfin(A) ⊆ HSPfin Pfin(A) = HSPfin(A) .

The proof that HSP(A) is closed under H, S, and P is analogous.

Pseudo-varieties are linked to primitive positive interpretability from Section 5.7.

Theorem 8.18. Let C be a finite structure with polymorphism algebra C. Then B ∈ I(C) if
and only if there exists B ∈ HSPfin(C) such that Clo(B) ⊆ Pol(B).

Proof. We only prove the ‘if’ part of the statement here; the proof of the ‘only if’ part is
similarly easy. There exists a finite number d ≥ 1, a subalgebra D of Cd, and a surjective
homomorphism h from D to B. We claim that B has a primitive positive interpretation I of
dimension d in C. All operations of C preserve D (viewed as a d-ary relation over C), since D
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is a subalgebra of Cd. By Theorem 6.6, this implies that D has a primitive positive definition
δ(x1, . . . , xd) in C, which becomes the domain formula δI of I. As coordinate map we choose
the mapping h. Since h is an algebra homomorphism, the kernel K of h is a congruence
of D. It follows that K, viewed as a 2d-ary relation over C, is preserved by all operations
from C. Theorem 6.6 implies that K has a primitive positive definition in C. This definition
becomes the formula =I . Finally, let R be a relation of B and let f be a function symbol
from the signature of B. By assumption, fB preserves R. It is easy to verify that then fC

preserves h−1(R). Hence, all polymorphisms of C preserve h−1(R), and the relation h−1(R)
has a primitive positive definition in C (Theorem 6.6), which becomes the defining formula
for the atomic formula R(x1, . . . , xk) in I. This concludes our construction of the primitive
positive interpretation I of B in C.

Primitive positive bi-interpretability can also be characterised with the varieties and
pseudo-varieties generated by polymorphism algebras. The following is a special case of
Proposition 25 in [27] (where it is proved for a must larger class of countable structures).

Proposition 8.19. Let A and B be structures with finite domains. Then the following are
equivalent.

• there are polymorphism algebras A of B and B of B such that HSPfin(A) = HSPfin(B);

• A and B are primitively positively bi-interpretable.

Proof. For the forward implication, we assume that there is a d1 ≥ 1, a subalgebra S1 of
Ad1 , and a surjective homomorphism h1 from S1 to B. Moreover, we assume that there
is a d2 ≥ 1, a subalgebra S2 of Bd2 , and a surjective homomorphisms h2 from S2 to A.
The proof of Theorem 8.18 shows that I1 := (d1, S1, h1) is an interpretation of B in A, and
I2 := (d2, S2, h2) is an interpretation of A in B. Because the statement is symmetric it suffices
to show that the (graph of the) function h1 ◦ h2 : (S2)d1 → B defined by

(y1,1, . . . , y1,d2 , . . . , yd1,1, . . . , yd1,d2) 7→ h1(h2(y1,1, . . . , y1,d2), . . . , h2(yd1,1, . . . , yd1,d2))

is primitively positively definable in B. Theorem 6.6 asserts that this is equivalent to showing
that h1 ◦ h2 is preserved by all operations fB of B. So let k be the arity of fB and let
bi = (bi1, . . . , b

i
d1

) be elements of (S2)d1 , for 1 ≤ i ≤ k. Then indeed

fB((h1 ◦ h2)(b1), . . . , (h1 ◦ h2)(bk))

= h1

(
fA(h2(b11), . . . , h2(bk1)), . . . , fA(h2(b1d1), . . . , h2(bkd1))

)
= (h1 ◦ h2)(fB(b1, . . . , bk)) .

For the backwards implication, suppose that A and B are primitive positive bi-interpretable
via an interpretation I1 = (d1, S1, h1) of B in A and an interpretation I2 = (d2, S2, h2) of A
in B. Let A be a polymorphism algebra of A. The proof of Theorem 8.18 shows that S1

induces an algebra S1 in Ad1 and h1 is a surjective homomorphism from S1 to an algebra B
satisfying Clo(B) ⊆ Pol(B). Similarly, S2 is the domain of a subalgebra S2 of Bd2 and h2 is
a homomorphism from S2 onto an algebra A′ such that Clo(A′) ⊆ Pol(A).

We claim that HSPfin(A) = HSPfin(B). The inclusion ‘⊇’ is clear since B ∈ HSPfin(A).
For the reverse inclusion it suffices to show that A = A′ since A′ ∈ HSPfin(B). Let f ∈ τ be
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k-ary; we show that fA = fA
′
. Let a1, . . . , ak ∈ A. Since h2 ◦ h1 is surjective onto A, there

are ci = (ci1,1, . . . , c
i
d1,d2

) ∈ Ad1d2 such that ai = h2 ◦ h1(ci). Then

fA
′
(a1, . . . , ak) = fA

′
(h2 ◦ h1(c1), . . . , h2 ◦ h1(ck))

= h2

(
fB(h1(c1

1,1, . . . , c
1
d1,1), . . . , h1(ck1,1, . . . , c

k
d1,1)), . . . ,

fB(h1(c1
1,d2 , . . . , c

1
d1,d2), . . . , h1(ck1,d2 , . . . , c

k
d1,d2))

)
= h2 ◦ h1(fA(c1, . . . , ck))

= fA(h2 ◦ h1(c1), . . . , h2 ◦ h1(ck))

= fA(a1, . . . , ak)

where the second and third equations hold since h2 and h1 are algebra homomorphisms, and
the fourth equation holds because fA preserves h2 ◦ h1, because I2 ◦ I1 is pp-homotopic to
the identity.

Exercices.

146. Show that an algebra has the empty algebra as a subalgebra
if and only if the signature does not contain constants
(i.e., function symbols of arity 0).

147. Let B be a subuniverse of an algebra A generated by S ⊆ A.
Show that an element a ∈ A belongs to B if and only if
there exists a term t(x1, . . . , xk) and elements s1, . . . , sk ∈ S
such that a = tA(s1, . . . , sk).

148. Show that the operators HS and SH are distinct.

149. Show that the operators SP and PS are distinct.

8.5 Birkhoff’s Theorem

Birkhoff’s theorem provides a characterisation of varieties in terms of sets of identities. A
sentence in a functional signature τ is called a (τ -) identity if it is of the form

∀x1, . . . , xn : s = t

where s and t are τ -terms over the variables x1, . . . , xn (such sentences are also called uni-
versally conjunctive). We follow the usual notation in universal algebra and sometimes write
such sentences as

s ≈ t.

If K is a class of τ -algebras, then we say that K satisfies s ≈ t (or: s ≈ t holds in K), in
symbols K |= s ≈ t, if every algebra in K satisfies s ≈ t.

Theorem 8.20 (Birkhoff [19]; see e.g. [64] or [42]). Let τ be a functional signature, let K be
a class of τ -algebras, and let A be a τ -algebra. Then the following are equivalent.

1. All identities that hold in K also hold in A;
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Figure 14: Illustration for the proof of Birkhoff’s theorem
.

2. A ∈ HSP(K).

If A has a finite domain, and K = {B} for some algebra B with a finite domain, then this is
also equivalent to

3. A ∈ HSPfin(B).

Proof. To show that 2. implies 1., let s(x1, . . . , xn) ≈ t(x1, . . . , xn) be an identity that holds
in K. Then s ≈ t is preserved in products A =

∏
i∈I Bi of algebras Bi ∈ K. To see this, let

a1, . . . , an ∈ A be arbitrary. Since B |= φ we have sBi(a1[i], . . . , an[i]) = tBi(a1[i], . . . , an[i])
for all j ∈ I, and thus sA(a1, . . . , an) = tA(a1, . . . , an) by the definition of products. Since
a1, . . . , an were chosen arbitrarily, we have A |= φ. Moreover, universal sentences are pre-
served by taking subalgebras. Finally, suppose that B is an algebra that satisfies s ≈ t, and
µ is a surjective homomorphism from B to some algebra A. Let a1, . . . , an ∈ A. By the
surjectivity of µ we can choose b1, . . . , bn such that µ(bi) = ai for all i ≤ n. Then

sB(b1, . . . , bn) = tB(b1, . . . , bn)⇒ µ(sB(b1, . . . , bn)) = µ(tB(b1, . . . , bn))

⇒ tA(µ(b1), . . . , µ(bn)) = sA(µ(b1), . . . , µ(bn))

⇒ tA(a1, . . . , an) = sA(a1, . . . , an) .

We only show the implication from 1. to 3. (and hence to 2.) if A and B have finite domains
and K = {B}; the proof of the general case is similar (see Exercise 151). Let a1, . . . , ak be
the elements of A, define m := |B|k and C := Bk. Let c1, . . . , cm be the elements of C;
write ci for (c1

i , . . . , c
m
i ). Let S be the smallest subalgebra of Bm that contains c1, . . . , ck; so

the elements of S are precisely those of the form tB
m

(c1, . . . , ck), for a k-ary τ -term t. See
Figure 14.

Define µ : S → A by

µ(tB
m

(c1, . . . , ck)) := tA(a1, . . . , ak).
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Claim 1: µ is well-defined. Suppose that tB
m

(c1, . . . , ck) = sB
m

(c1, . . . , ck); then tB = sB

by the choice of S, and by assumption we have tA(a1, . . . , ak) = sA(a1, . . . , ak).
Claim 2: µ is surjective. For all i ≤ k, the element ci is mapped to ai.
Claim 3: µ is a homomorphism from S to A. Let f ∈ τ be of arity n and let s1, . . . , sn ∈ S.

For i ≤ n, write si = tSi (c1, . . . , ck) for some τ -term ti (see Exercise 147). Then

µ
(
fS(s1, . . . , sn)

)
=µ
(
fS(tS1 (c1, . . . , ck), . . . , t

S
n(c1, . . . , ck))

)
=µ
(
fS(tS1 , . . . , t

S
n)(c1, . . . , ck)

)
=µ
(
(f(t1, . . . , tn))S(c1, . . . , ck)

)
=
(
f(t1, . . . , tn)

)A
(a1, . . . , ak)

= fA
(
tA1 (a1, . . . , ak), . . . , t

A
n (a1, . . . , ak)

)
= fA(µ(s1), . . . , µ(sn)).

Therefore, A is the homomorphic image of the subalgebra S of Bm, and so A ∈ HSPfin(B).

Theorem 8.20 is important for analysing the constraint satisfaction problem for a structure
B, since it can be used to transform the ‘negative’ statement of not interpreting certain finite
structures, which is equivalent to not having a certain finite algebra in the pseudo-variety
generated by a polymorphism algebra of B, into a ‘positive’ statement of having polymor-
phisms satisfying non-trivial identities. We will learn several concrete identities that must be
satisfied in later sections, e.g., in Section 9.5, Section 10.2, Section 14.2, and Section 14.3.

8.5.1 The Free Algebra

In the following we extract an important idea from the proof of Birkhoff’s theorem and present
it in different words which will be useful later. Fix a functional signature τ and a class of
τ -algebras K.

Definition 8.21. Let F be a τ -algebra generated by X ⊆ F . We say that F has the universal
mapping property for K over X if for every A ∈ K and f : X → A there exists a (unique)
extension of f to a homomorphism from F to A.

Proposition 8.22 (Uniqueness). Suppose that F1,F2 ∈ K have the universal mapping prop-
erty for K over Xi, for i ∈ {1, 2}. If |X1| = |X2| then F1 and F2 are isomorphic.

Proof. Fix any bijection between X1 and X2; the bijection has a unique extension to an
isomorphism between F1 and F2.

Proposition 8.23 (Existence). For every class K of τ -algebras and and for every set X there
exists a τ -algebra F ∈ SP(K) which has the universal mapping property for HSP(K) over X.

By Proposition 8.22, the algebra F ∈ SP(K) is unique up to isomorphism and called the
free algebra for K over X, and will be denoted by FK(X).

Lemma 8.24. Let F be free for K over {x1, . . . , xn} and let s(y1, . . . , yn), t(y1, . . . , yn) be
τ -terms. Then the following are equivalent.

1. K |= s(y1, . . . , yn) ≈ t(y1, . . . , yn)
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2. s(y1, . . . , yn) ≈ t(y1, . . . , yn) holds in F;

3. sF(x1, . . . , xn) = tF(x1, . . . , xn).

Proof. 1. ⇒ 2. : If s ≈ t holds in every algebra of K, then it also holds in products and
subalgebras of algebras in K, and hence also in F.

2.⇒ 3. holds trivially.
3. ⇒ 1. and Let A ∈ K. If a1, . . . , an ∈ A, then the map that sends xi to ai for all

i ∈ {1, . . . , n} can be extended to a homomorphism from F to A, and since sF(x1, . . . , xn) =
tF(x1, . . . , xn) we have sA(a1, . . . , an) = tA(a1, . . . , an). Since a1, . . . , an ∈ A were chosen
arbitrarily, this shows that A |= s(y1, . . . , yn) ≈ t(y1, . . . , yn).

Note that if K := HSP(B), and B and X are finite, then FK(X) ≤ BBX
is finite as well.

8.5.2 Equational Theories

Birkhoff’s theorem provides for every class K of τ -algebras a characterisation of the class of
all τ -algebras that satisfies all identities satisfied by K. Conversely, there is for every set
of τ -identities Σ a syntactic characterisation of the set of all τ -identities that are satisfied
in all algebras that satisfy Σ (i.e., we have a proof-theoretic characterisation of the set of
all universal conjunctive consequences of Σ; the this can be seen as a special case of the
completeness theorem of first-order logic for universally conjunctive sentences in an algebraic
signature τ).

Theorem 8.25. A τ -identity f ≈ g is implied by Σ (i.e., holds in all algebras that satisfy Σ)
if and only if (f, g) is contained in the smallest equivalence relation E which

• contains (r, s) for every (r ≈ s) ∈ Σ,

• is compatible: if f ∈ τ is a function symbol of arity n and (r1, s1), . . . , (rn, sn) ∈ E,
then (f(r1, . . . , rn), f(s1, . . . , sn)) ∈ E,

• is fully invariant: if (r(x1, . . . , xn), s(x1, . . . , xn)) ∈ E and t1, . . . , tn are τ -terms, then
(r(t1, . . . , tn), s(t1, . . . , tn)) ∈ E.

Exercices.

150. Prove Proposition 8.23.

151. Show the implication from 1. to 2. in Birkhoff’s theorem in full generality.

8.6 Abstract Clones

Clones (in the literature often abstract clones) relate to operation clones in the same way as
(abstract) groups relate to permutation groups: the elements of a clone correspond to the
functions of an operation clone, and the signature contains composition symbols to code how
functions compose. Since an operation clone contains functions of various arities, a clone will
be formalized as a multi-sorted structure, with a sort for each arity.
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Definition 8.26. An (abstract) clone C is a multi-sorted structure with sorts {C(i) | i ∈ N≥1}
and the signature {πki | 1 ≤ i ≤ k} ∪ {compkl | k, l ≥ 1}. The elements of the sort C(k) will
be called the k-ary operations of C. We denote a clone by

C = (C(1), C(2), . . . ; (πki )1≤i≤k, (compkl )k,l≥1)

and require that πki is a constant in C(k), and that compkl : C(k)×(C(l))k → C(l) is an operation
of arity k + 1. Moreover, it holds that

compkk(f, π
k
1 , . . . , π

k
k) = f (20)

compkl (π
k
i , f1, . . . , fk) = fi (21)

compkl
(
f, compml (g1, h1, . . . , hm), . . . , compml (gk, h1, . . . , hm)

)
=

compml
(

compkm(f, g1, . . . , gk), h1, . . . , hm
)
. (22)

The final equation generalises associativity in groups and monoids, and we therefore refer
to it by associativity. We also write f(g1, . . . , gk) instead of compkl (f, g1, . . . , gk) when l is
clear from the context. So associativity might be more readable as

f(g1(h1, . . . , hm), . . . , gk(h1, . . . , hm)) = f(g1, . . . , gk)(h1, . . . , hm) .

Every operation clone C gives rise to an abstract clone C in the obvious way: πki ∈ C(k)

denotes the k-ary i-th projection in C , and compkl (f, g1, . . . , gk) ∈ C(l) denotes the composed
function (x1, . . . , xl) 7→ f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) ∈ C . Conversely, every abstract
clone arises from an operation clone - this will follow from Proposition 8.34.

Example 8.27. An algebra A satisfies f(x1, x2) ≈ f(x2, x1) if and only if

Clo(A) |= comp2
2(fA, π2

1, π
2
2) = comp2

2(fA, π2
2, π

2
1). 4

In the following, we will also use the term ‘abstract clone’ in situations where we want
to stress that we are working with a clone and not with an operation clone. The notion of
a homomorphism between clones is just the usual notion of homomorphisms for algebras,
adapted to the multi-sorted case. Since we didn’t formally introduce homomorphisms for
multi-sorted structures, we spell out the definition in the special case of clones.

Definition 8.28. Let C and D be clones. A function ξ : C → D is called a (clone) homo-
morphism if

1. ξ preserves arities of functions, i.e., ξ(C(i)) ⊆ D(i) for all i ∈ N;

2. ξ((πki )C) = (πki )D for all 1 ≤ i ≤ k;

3. ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)) for all n,m ≥ 1, f ∈ C(n), g1, . . . , gn ∈ C(m).

We say that ξ is a (clone) isomorphism if ξ is bijective and both ξ and ξ−1 is a homomorphism.

Example 8.29. We write Proj for the abstract clone of an algebra with at least two elements
all of whose operations are projections; note that any such algebra has the same abstract clone
(up to isomorphism), and that Proj has a homomorphism into any other clone. 4
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Example 8.30. All abstract clones of an algebra on a one-element set are isomorphic, too, but
of course not isomorphic to Proj. Any clone homomorphically maps to this trivial clone. 4

Example 8.31. Using Proposition 6.19, it is easy to see that there exists a clone homomor-
phism from Pol(K3) to Proj. 4

The following definition plays an important role throughout the later sections in this text.

Definition 8.32 (Star composition). Let l,m ∈ N and n = lm. We write f ∗ g as a shortcut
for

compln(f, compmn (g, πn1 , . . . , π
n
m), . . . , compmn (g, πn(l−1)m+1, . . . , π

n
n)) .

Note that if f : Al → A and g : Am → A, then f ∗ g denotes the operation from Alm → A
given by

(x1,1, . . . , xl,m) 7→ f
(
g(x1,1, . . . , x1,m), . . . , g(xl,1, . . . , xl,m)

)
.

8.7 Clone Formulation of Birkhoff’s Theorem

One can translate back and forth between varieties and abstract clones.

Definition 8.33 (Var(C)). For any abstract clone C, the variety Var(C) is defined as follows.
We use the elements of C as a functional signature τ , where the elements of C(n) are n-ary
function symbols. We consider the set Σ of τ -identities defined as follows. If f ∈ C(k) and
g0, g1, . . . , gk ∈ C(m) are such that C |= (g0 = compkm(f, g1, . . . , gk)), then we add the identity
g0(y1, . . . , ym) ≈ f(g1(y1, . . . , ym), . . . , gk(y1, . . . , ym)) to Σ. Moreover, we add the identities
πni (y1, . . . , yn) ≈ yi to Σ. Then Var(C) denotes the class of τ -algebras that satisfy Σ.

Conversely, to every variety V we may associate the clone Clo(V) := Clo(FV({x1, x2, . . . }))
of the algebra FV({x1, x2, . . . }) which is free for V over countably many generators.

Proposition 8.34. Let C be an abstract clone. Then Clo(Var(C)) is isomorphic to C.

Proof. Let V := Var(C), and let Σ be the set of τ -identities that defines V. Let F :=
FV({x1, x2, . . . }) and let D := Clo(F).

Claim 1. The map ξ that sends f ∈ C(n) to fF ∈ D(n) is a clone homomorphism C→ D:

• It clearly preserves arities.

• If i ∈ [n] then Σ contains πni (y1, . . . , yn) ≈ yi. Since F |= Σ we have (πni )F(a1, . . . , an) =
ai for all a1, . . . , an ∈ F . Hence, ξ((πni )C) = (πni )F = (πni )D.

• If n,m ≥ 1, f ∈ C(n), g1, . . . , gn ∈ C(m), and g0 = f(g1, . . . , gn), then Σ contains
g0(y1, . . . , ym) ≈ f(g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)), and since F |= Σ it follows that
ξ(g0) = ξ(f)(ξ(g1), . . . , ξ(gn)).

Claim 2. ξ is surjective. Every element of D is of the form tF, for some τ -term t. It can
be shown by induction over the term structure that there exists s ∈ τ such that sF = tF, and
hence ξ(s) = tF.

Claim 3. ξ is injective. Suppose that ξ(f) = ξ(g) for some f, g ∈ C(n). Then fF = gF

and hence F |= f(y1, . . . , yn) ≈ g(y1, . . . , yn). By Lemma 8.24, f(y1, . . . , yn) ≈ g(y1, . . . , yn)
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holds in all algebras of V. By Theorem 8.25 we have that (f(y1, . . . , yn), g(y1, . . . , yn)) is in
the smallest compatible fully invariant equivalence relation E that contains Σ. We show by
induction on the structure of E that if there are h ∈ τ and τ -terms t1, . . . , tk, s with variables
from y1, . . . , ym such that E contains

(s, h(t1, . . . , tk))

and ξ(q) = s, ξ(p1) = tF1 , . . . , ξ(pk) = tFk , then

q = compkm(h, p1, . . . , pk).

In particular, if t1 = y1, . . . , tk = yk, and s = h′(y1, . . . , yk), so that E in fact contains
(h′(y1, . . . , yk), h(y1, . . . , yk)), then h′ = compkm(h, πk1 , . . . , π

k
k) = h, because ξ(πni ) = (yi)

F.

• If s is of the form g0(y1, . . . , ym) and ti is of the form gi(y1, . . . , ym) for each i ∈
{1, . . . , k}, then the statement is true by the definition of Σ.

• If s is of the form h(s1, . . . , sk) for τ -terms s1, . . . , sk, and (s1, t1), . . . , (sk, tk) ∈ E,
then choose q1, . . . , qk such that ξ(qi) = sFi , which exist by the surjectivity of ξ. We
further distinguish for each i ∈ {1, . . . , k} whether ti or si is a variable of the form
h′(r1, . . . , ru). If one is of the form h′(r1, . . . , ru), then (si, ti) ∈ E and the inductive
assumption implies that pi = qi. If both si and ti are a variable, then it must be the
same variable yi, and since ξ(πmi ) = (yi)

F we have that pi = πmi = qi in this case as
well. Hence, q = compkm(h, q1, . . . , qk) = compkm(h, p1, . . . , pk).

• If s is of the form h′(p1, . . . , pk) and (h′(x1, . . . , xk), h(x1, . . . , xk)) ∈ E, then h′ = h by
the inductive assumption. Hence, q = compkm(h′, p1, . . . , pk) = compkm(h, p1, . . . , pk).

Since (f(y1, . . . , yn), g(y1, . . . , yn)) ∈ E, we therefore have f = g. This proves the injectivity
of ξ.

Proposition 8.34 in particular shows the following, which can be seen as an analog of
Cayley’s theorem for clones.

Corollary 8.35. Every abstract clone is isomorphic to an operation clone.

Proposition 8.34 has a converse; to state it, we need the following definition.

Definition 8.36. Let V, W be varieties with signatures σ and ρ, respectively. An interpre-
tation of V in W is a map I from σ to ρ-terms such that V contains {I(A) | A ∈ W} where
I(A) is the σ-algebra with domain A and the operation I(f)A for f ∈ σ.

The following lemma is straightforward from the definitions.

Lemma 8.37. Let V and W be varieties. Then there is an interpretation of V in W if and
only if there exists a clone homomorphism from Clo(V) to Clo(W).

Proposition 8.38. Let V be a variety. Then Var(Clo(V)) and V mutually interpret each
other.
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Proof. Let σ be the signature of V and let ρ be the signature of W := Var(Clo(V)). Let
F := FV({x1, x2, . . . }). The identities that hold in every algebra of V are precisely those that
hold in F by Lemma 8.24. Then the map that sends f ∈ σ of arity k to fF(x1, . . . , xk), viewed
as a ρ-term, is an interpretation of V in W.

Conversely, every f ∈ ρ has been introduced for an element of F which equals tF(xi1 , . . . , xin)
for some i1, . . . , in ∈ N and some σ-term t(y1, . . . , yn). The map J that sends f to t(y1, . . . , yn)
is an interpretation of W in V.

The following proposition links the existence of clone homomorphisms with the language
of algebras, and in particular identities and (pseudo-) varieties.

Proposition 8.39. Let C and D be operation clones on finite sets. Then the following are
equivalent.

1. There is a surjective clone homomorphism from C to D ;

2. there are algebras A and B with the same signature τ such that Clo(A) = D , Clo(B) =
C , and all universal conjunctive τ -sentences that hold in B also hold in A;

3. there are algebras A and B with the same signature such that Clo(A) = D , Clo(B) = C ,
and A ∈ HSPfin(B) (equivalently, A ∈ HSP(B)).

Moreover, the following are equivalent.

• There is a clone isomorphism between C and D .

• there are algebras A and B with the same signature such that Clo(A) = D , Clo(B) = C ,
and HSPfin(A) = HSPfin(B) (equivalently: HSP(A) = HSP(B)).

In the study of the complexity of CSPs, the equivalence between (1) and (3) in the above
is the most relevant, since (3) is related to our most important tool to prove NP-hardness
of CSPs (because of the link between pseudovarieties and primitive positive interpretations
from Theorem 8.18), and since (1) is the universal-algebraic property that will be used in the
following (see e.g. Theorem 9.15 below). The following lemma is central for our applications
of abstract clones when studying the complexity of CSPs; it applies to all operation clones F
on a finite set.

Lemma 8.40. Let C be a clone and let F be the clone that has finitely many elements of
each sort such that there is no clone homomorphism from C to F. Then there is a primitive
positive sentence in the language τ of (abstract) clones that holds in C but not in F.

Proof. Let E be the expansion of C by constant symbols such that every element e of E is
named by a constant ce. Let V be the set of atomic sentences that hold in E. Let U be the
first-order theory of F. Suppose that U ∪ V has a model M. There might be elements in M
outside of

⋃
iM

(i). But the τ -reduct of the restriction of M to
⋃
iM

(i) must be isomorphic
to F, since each of the M (i) is finite; we identify it with F. Note that for all constants ce we
have that cMe ∈ F. Since M satisfies all atomic formulas that hold in E, we have that the
mapping e 7→ cMe , for e an element of E, is a homomorphism from C to F, in contradiction
to our assumptions.

So U∪V is unsatisfiable, and by compactness of first-order logic there exists a finite subset
V ′ of V such that V ′ ∪U is unsatisfiable. Replace each of the new constant symbols in V ′ by
an existentially quantified variable; then the conjunction of the resulting sentences from V is
a primitive positive sentence, and it must be false in F.
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A set of identities Σ is called trivial if there exists an algebra A that satisfies Σ and
Clo(A) is isomorphic to Proj.

Corollary 8.41. Let A be an algebra. If there is no clone homomorphism from Clo(A) to
Proj, then there exists a non-trivial finite set of identities that holds in A.

Remark 8.42. Recall from Remark 6.1 that there are uncountably many clones on a three-
element set. In fact, there are uncountably many even when considered up to homomorphic
equivalence [31].

8.8 Clone Homomorphisms and Primitive Positive Interpretations

Clone homomorphisms can be linked to pseudovarieties of algebras, and pseudo-varieties of
polymorphism algebras can be linked to primitive positive interpretations; in this section, we
present shortcuts that directly link the existence of clone homomorphisms of polymorphism
clones with primitive positive interpretations. The proofs will be merely combinations of
previous results, but the combinations are often easier to cite and this will be convenient
later in the text.

Corollary 8.43. A finite structure A has a primitive positive interpretation in a finite struc-
ture B if and only if there exists a clone homomorphism from Pol(B) to Pol(A).

Proof. The proof is a straightforward combination of Theorem 8.18 with Proposition 8.39.
Let B be a polymorphism algebra of B. If A has a primitive positive interpretation in
B then by Theorem 8.18 there exists A ∈ HSPfin(B) such that Clo(A) ⊆ Pol(A). Then
Proposition 8.39 implies that there exists a surjective clone homomorphism from Clo(B) to
Clo(A), which is a clone homomorphism from Pol(B) to Pol(A). Conversely, suppose that
there exists a clone homomorphism from Pol(B) to Pol(A). Let C ⊆ Pol(A) be the image of
this clone homomorphism. Then by Proposition 8.39 there are algebras A and B with the
same signature such that Clo(A) = C, Clo(B) = Pol(B), and A ∈ HSPfin(B). This in turn
means that A has a primitive positive interpretation in B by Theorem 8.18.

Corollary 8.44. Two finite structures A and B are primitively positively bi-interpretable if
and only if Pol(A) and Pol(B) are isomorphic as abstract clones.

Proof. Combine Proposition 8.19 and the second part of Proposition 8.39.

8.9 Hardness from Factors

An algebra is called idempotent if all of its operations are idempotent. For idempotent algebras
A there is another characterisation for the existence of a clone homomorphism to Proj by
Bulatov and Jeavons [38, Proposition 4.14] (Corollary 8.46 below). We present a slightly
strengthened version of their result by Zhuk [95, Lemma 4.2].

Theorem 8.45. Let B be an idempotent algebra and suppose that A ∈ HSPfin(B) has at least
two elements. Then HS(B) contains a subalgebra A′ of A with at least two elements.

Proof. Suppose that C ∈ S(Bd) for some d ∈ N has a congruence K such that A := C/K has
at least two elements. We show the statement by induction on d. For d = 1 there is nothing
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to be shown because we can choose A′ := A. If for any two equivalence classes E1 and E2 of
K the intersection π1(E1) ∩ π1(E2) is empty, then let

C := π1(C)

K ′ := {(π1(a), π1(b)) | (a, b) ∈ K}.

Then C ′ is the universe of a subalgebra C′ of C, K ′ is a congruence of C′, and C′/K ′ is
isomorphic to C/K = A. Again, we have A ∈ HS(B).

Now suppose that K has two equivalence classes E1 and E2 such that π1(E1)∩π1(E2) 6= ∅.
Let a ∈ π1(E1) ∩ π1(E2) and define

C ′ := π{2,...,n}(S ∩ ({a} ×Ad−1)

K ′ := {((b2, . . . , bd), (c2, . . . , cd)) | ((a, b2, . . . , bd), (a, c2, . . . , cd)) ∈ K}.

Since B and C are idempotent, the set C ′ is the universe of a subalgebra C′ of C, and K ′

is a congruence of C′. The algebra C′/K ′ has at least two elements and is isomorphic to a
subalgebra of C/K = A. Thus, the statement follows from the inductive assumption.

Corollary 8.46. Let B be an idempotent algebra. Then HSPfin(B) contains an algebra with
at least two elements all of whose operations are projections if and only if HS(B) does.

Proof. If all operations A of an algebra are projections, then the same applies to all subalge-
bras of A. Therefore the statement follows from Theorem 8.45.

Since the size of the algebras in HS(B) is bounded by the size of B, this leads to an
algorithm that decides whether a given finite structure B satisfies the equivalent conditions
in Theorem 9.15. We summarise various equivalent conditions for finite idempotent algebras
that were treated in this chapter.

Corollary 8.47. Let B be a finite idempotent algebra. Then the following are equivalent.

1. There is no homomorphism from Clo(B) to Proj.

2. B satisfies some non-trivial finite set of identities.

3. HSP(B) does not contain an at least 2-element algebra all of whose operations are
projections.

4. HS(B) does not contain an at least 2-element algebra all of whose operations are pro-
jections.

Proof. The equivalence of (1) and (2) follows from Corollary 8.41. The equivalence of (1) and
(3) follows from Proposition 8.39. The equivalence of (3) and (4) follows from Theorem 8.20
combined with Theorem 8.45.

9 Minions

(Abstract) minions generalise (abstract) clones, and function minions generalise operation
clones. The name has been introduced in 2018 when it became clear that function minions over
finite domains capture the complexity of so-called promise CSPs, which generalise CSPs [9].

96



This text does not cover promise CSPs; however, we still introduce minions, because minion
homomorphisms play an important role when studying clones as well (see, e.g., [17, 29, 31]).
In particular, minion homomorphisms can be used to characterise the operator HI from the
second formulation of the tractability theorem, Theorem 5.28.

9.1 Minors and Minions

Let A,B be sets and k, l ∈ N≥1. Let f : Ak → B be a function and let α : [k]→ [m]. Then fα
denotes the function g : Am → B given by g(x1, . . . , xm) := f(xα(1), . . . , xα(k)). A minor of f
is a function of the form fα, for some α : [k]→ [m]. Note that

• if α : [k]→ [m] and β : [m]→ [n], then

(fα)β = fβ◦α,

so the minor relation is transitive.

• if α : [k]→ [m] then (πki )α = πmα(i).

• if f and g are idempotent operations on A, then for all α1, . . . , αk : [m] → [n] there
exists β : [km]→ [n] such that

f(gα1 , . . . , gαk
) = (f ∗ g)β (recall Definition 8.32).

Definition 9.1. A function minion is a subset M of
⋃
k≥1B

Ak
, where A and B be sets,

which is closed under taking minors.

Note that every operation clone is a function minion where A = B and where we addi-
tionally require the presence of the projections and closure under composition. A minion is
the abstract version of a function minion, analogously as clones can be viewed as the abstract
version of operation clones.

Definition 9.2. An (abstract) minion is a multi-sorted algebra M with sorts M (1),M (2), . . .
and for each α : [n] → [m] the operation α : M (n) → M (m) such that for every σ : [n] → [m]
and ρ : [m]→ [k] and f ∈M (n)

(fσ)ρ = fρ◦σ.

Clearly, every function minion gives rise to a minion in the obvious way. This statement
has a converse, which is analogous to Cayley’s theorem for groups (see Proposition 8.34 for
the corresponding statement for clones); see Exercise 157.

Definition 9.3. Let M and N be minions.

• A minion homomorphism from M to N is a map ξ : M → N such that for every n ∈ N
and f ∈ M (n) we have ξ(f) ∈ D(n) and for every m,n ∈ N and α : [n] → [m] and
f ∈M (n) we have ξ(fα) = ξ(f)α.

• A minion isomorphism is a bijective minion homomorphism ξ : M → N such that ξ−1

is a minion homomorphism as well. In this case, M and N are called isomorphic.
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Similarly as for clones in Lemma 8.40, we may apply the compactness theorem of first-
order logic to characterise the existence of minion homomorphisms to function minions on
finite sets.

Lemma 9.4. Let M be a minion and let F be a minion with finitely many elements of each
sort. If there is no minion homomorphism from M to F, then there exists a primitive positive
sentence over the signature of (abstract) minions that holds in M but not in F.

Exercises.

152. Let C and D be clones. Show that ξ : C → D is a minion homomorphism if and only if

• ξ preserves arities, i.e., ξ(C(i)) ⊆ D(i) for all i ∈ N, and

• ξ preserves composition with projections, that is, for all n, k ≥ 1
and f ∈ C(k)

ξ(f
(
(πni1)C, . . . , (πnik)C

)
) = ξ(f)

(
(πni1)D), . . . , (πnik)D

)
.

153. Let α : [k]→ [m]. Write down a primitive positive formula φ(x, y)
in the language of clones such that for every operation clone C and
all f, g ∈ C we have C |= φ(f, g) if and only if g = fα.

154. Let M be a minion. Show that for every injective α : [n]→ [m]
the operation f 7→ fα from M (n) to M (m) is injective, and for every
surjective α : [n]→ [m] the operation f 7→ fα from M (n) to M (m)

is surjective.

155. (For readers familiar with basic category theory) Let Set denote the category of all set
and mappings between them, and let FinOrd denote the category of finite ordinals and
mappings between them.

• Explain how minions can be viewed as functors from FinOrd to Set. Show that
natural transformations between such functors are minion homomorphisms.

• Explain how minions can be viewed as Set-endofunctors F which are finitary : that
is, if X is a set, then F (X) is the union of the sets {F (i)(u) | u ∈ U}, where U
is a finite subset of X and i : U → X is the inclusion map. Show that natural
transformations between Set-endofunctors are minion homomorphisms.

9.2 Reflections

In Section 8.4 we have seen that the HSPfin operator is the algebraic counterpart to full
primitive positive interpretations. This section treats a relatively new universal-algebraic
operator, for forming reflections (introduced in [17]), which can be used to characterise the
structure-building operator HI. Recall from Section 5.9 that HI is the operator that is most
relevant for constraint satisfaction.

Definition 9.5. Let B be a τ -algebra, let A be a set, and let h : B → A and g : A → B be
two maps. Then the reflection of B with respect to (h, g) is the τ -algebra A with domain A
where for all a1, . . . , an ∈ A and f ∈ τ of arity n we define

fA(a1, . . . , an) := h(fB(g(a1), . . . , g(an))) .

The class of reflections of a class of τ -algebras C is denoted by Refl(C).
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As for the other operators on algebras, we write Refl(B) instead of Refl({B}). The
following is an analog to the HSP-lemma (Lemma 8.17).

Lemma 9.6 (from [17]). Let C be a class of τ -algebras.

• The smallest class of τ -algebras that contains C and is closed under Refl, H, S, and P
equals Refl P(C).

• The smallest class of τ -algebras that contains C and is closed under Refl, H, S, and Pfin

equals Refl Pfin(C).

Proof. For the first statement, it suffices to prove that Refl P(C) is closed under Refl, H, S,
P, and for the second that Refl Pfin(C) is closed under Refl, H, S, Pfin. For the operator Refl
this follows from the simple fact that Refl Refl(K) = Refl(K) for any class K.

To prove that Refl P(C) and Refl Pfin(C) are closed under H, we show that H(K) ⊆ Refl(K)
for any class K. Let B ∈ K and h : B → A be a surjective homomorphism to an algebra A.
Pick any function g such that h ◦ g is the identity on A. Then h and g witness that A is a
reflection of B since

h(fB(g(x1), . . . , g(xn)) = fA(h ◦ g(x1), . . . , h ◦ g(xn)) (since h is a homomorphism)

= fA(x1, . . . , xn) (by the choice of g).

To prove that Refl P(C) and Refl Pfin(C) are closed under S, we show that S(K) ⊆ Refl(K)
for any class K. Let B ∈ K and suppose that A is a subalgebra of B. Let g : A→ B be the
identity on A, and h : B → A be any extension of g to B. Then h and g show that A is a
reflection of B since

h(fB(g(x1), . . . , g(xn)) = fB(x1, . . . , xn) = fA(x1, . . . , xn) .

Let I be an arbitrary set, (Bi)i∈I be algebras from P(C), and suppose that Ai is a reflection
of Bi for every i ∈ I, witnessed by functions hi : Bi → Ai and gi : Ai → Bi. Then the map
h :
∏
i∈I Bi →

∏
i∈I Ai that sends (bi)i∈I to (hi(bi))i∈I and the map g :

∏
i∈I Ai →

∏
i∈I Bi

that sends (ai)i∈I to (gi(ai))i∈I witness that
∏
i∈I Ai is a reflection of

∏
i∈I Bi. This shows

that P(Refl P(C)) ⊆ Refl P(C) and likewise that Pfin(Refl Pfin(C)) ⊆ Refl Pfin(C).

Theorem 9.7. Let B,C be finite relational structures and let C be a polymorphism algebra
of C. Then

1. B ∈ H(C′) for some structure C′ which is primitively positively definable in C if and
only if there is an algebra B ∈ Refl(C) such that Clo(B) ⊆ Pol(B).

2. B ∈ HI(C) if and only if there is an algebra B ∈ Refl Pfin(C) such that Clo(B) ⊆ Pol(B).

Proof. To show (1), first suppose that B ∈ H(C′) for some C′ which is pp definable in C;
let h : C′ → B and g : B → C′ be homomorphisms witnessing homomorphic equivalence of
B and C′. Let C′ be an expansion of C which is a polymorphism algebra of C′. Let B′

be the reflection of C′ with respect to (h, g). Every operation of Clo(B′) is obtained as a
composition of homomorphisms, so preserves all the relations of B, so Clo(B′) ⊆ Pol(B). Let
B be the reduct of B′ where we only keep the operations for the signature of C, and note
that B ∈ Refl(C) is such that Clo(B) ⊆ Pol(B).
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Conversely, suppose that the reflection B of C at h : C → B and g : B → C is such that
Clo(B) ⊆ Pol(B). Let C′ be the structure with domain C and the same signature as B which
contains for every k-ary relation symbol R of B the relation

RC′ := {(f(g(b11), . . . , g(b`1)), . . . , f(g(b1k), . . . , g(b`k)))

| f ∈ Pol(C), (b11, . . . , b
1
k), . . . (b

`
1, . . . , b

`
k) ∈ RB}.

These relations are preserved by Pol(C), so they are pp definable in C by Theorem 6.6, and
hence C′ ∈ Red(C). Clearly, g is a homomorphism from B to C′. We claim that h is a homo-
morphism from C′ to B. Indeed, if b1, . . . , bk ∈ B are such that (f(g(b1), . . . , g(bk))) ∈ RC′ ,
then h(f(g(b1), . . . , g(bk))) ∈ RB because the operation (x1, . . . , xk) 7→ h(f(g(x1), . . . , g(xk)))
is an operation of B′ ∈ Refl(C) and hence a polymorphism of B since Clo(B′) ⊆ Pol(B).
Thus, B ∈ H(C′).

Item (2) is a combination of item (1) with Theorem 8.18: First suppose that B ∈ HI(C).
Then there exists a structure D ∈ I(C) such that B ∈ H(D). By Theorem 8.18 there is
an algebra D ∈ HSPfin(C) such that Clo(D) ⊆ Pol(D), and by item (1) there is an algebra
B ∈ Refl(D) such that Clo(B) ⊆ Pol(B). This proves the statement since

B ∈ Refl(D) ⊆ Refl HSPfin(C)

= Refl Pfin(C) (by Lemma 9.6).

Conversely, suppose that there exists B ∈ Refl Pfin(C) such that Clo(B) ⊆ Pol(B). Then
there exists D ∈ Pfin(C) such that B ∈ Refl(D). Let D be the structure with the same
domain as D which contains all the relations preserved by all operations of Clo(D). Then
D ∈ I(C). Moreover, by item (1) there exists D′ which is pp definable in D such that
B ∈ H(D′). Clearly, D′ ∈ I(C) and hence B ∈ HI(C).

We now characterise in many different ways the hardness condition from the second for-
mulation of the tractability theorem (Theorem 5.28); quite remarkably, we do not need to
assume that the involved polymorphism algebra is idempotent.

Corollary 9.8. Let B be a structure with a finite domain and let B be a polymorphism
algebra of B. Then the following are equivalent.

1. HI(B) contains K3;

2. HI(B) contains all finite structures;

3. HI(B) contains ({0, 1}; NAE);

4. Refl Pfin(B) contains an algebra of size at least 2 all of whose operations are projections.

5. Refl Pfin(B) contains for every finite set A an algebra on A all of whose operations are
projections.

If these condition apply then B has a finite-signature reduct with an NP-hard CSP.

Proof. The implication from 1. to 2. follows from the fact that I(K3) contains all finite struc-
tures (Theorem 5.17), and that I H I(B) ⊆ HI(B) by Theorem 5.26. The implication from 2.
to 3. is trivial. The equivalence of 3. and 4. follows from the fact that all polymorphisms of
({0, 1}; NAE) are essentially unary (Exercise 121) and Theorem 9.7. We leave the proof of
the equivalence of 5. to the reader. The final statement follows from Corollary 5.16.
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Exercises.

156. Prove the equivalence of 5. with the other items of Corollary 9.8.

9.3 Birkhoff’s Theorem for Height-One Identities

A height-one identity is an identity s ≈ t where the involved terms s and t have height one,
i.e., each term involves exactly one function symbol. Three examples of properties that can
be expressed by finite sets of height-one identities are listed below.

f(x, y) ≈ f(y, x) (f is symmetric)

f(x, x, y) ≈ f(x, y, x) ≈ f(y, x, x) ≈ f(x, x, x) (f is quasi majority)

f(x, x, y) ≈ f(y, x, x) ≈ f(y, y, y) (f is quasi Maltsev)

A non-example is furnished by the Maltsev identities f(x, x, y) ≈ f(y, x, x) ≈ y because the
term y involves no function symbol. Identities where each term involves at most one function
symbol are called linear ; so the Maltsev identities are an example of a set of linear identities.
An example of a non-linear identity is the associativity law

f(x, f(y, z)) ≈ f(f(x, y), z).

If A is a τ -algebra, then we write Minion(A) for the smallest function minion that con-
tains {fA | f ∈ τ}. If A and B are τ -algebras then there exists a minion homomorphism
ξ : Minion(B)→ Minion(A) that maps fB to fA if and only if for all f, g ∈ τ of arity k and
l and all m-ary projections p1, . . . , pk, q1, . . . , ql we have that fA(p1, . . . , pk) = gA(q1, . . . , ql)
whenever fB(p1, . . . , pk) = gB(q1, . . . , ql). If this map exists it must be surjective and we call
it the natural minor-preserving map from Minion(B) to Minion(A). The following theorem
is a variant of Birkhoff’s theorem (Theorem 8.20) for height-one identities.

Theorem 9.9 (cf. Proposition 5.3 of [17]). Let A and B be τ -algebras such that Minion(A)
and Minion(B) are operation clones. Then the following are equivalent.

1. The natural minor-preserving map from Minion(B) to Minion(A) exists.

2. All height-one identities that hold in B also hold in A.

3. A ∈ Refl P(B).

Moreover, if A and B are finite then we can add the following to the list:

4. A ∈ Refl Pfin(B).

Proof. The equivalence of 1. and 2. is straightforward from the definitions, as in the proof of
Theorem 8.20.

The proof that 2. implies 3. is similar to the proof of Theorem 8.20. For every a ∈ A,
let πAa ∈ BBA

be the function that maps every tuple in BA to its a-th entry. Let S be the

subalgebra of BBA
generated by {πAa | a ∈ A}. Define h : S → A as

h(fB(πAa1 , . . . , π
A
an)) := fA(a1, . . . , an).
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Similarly as in the proof of Theorem 8.20 one can show that h is well defined using that all
height-one identities that hold in B also hold in A. Note that h is defined on all of S because
Minion(B) is an operation clone.

Let g : A → S be the mapping which sends every a ∈ A to πAa . Then h and g show that
A ∈ Refl(S) ⊆ Refl S P(B) = Refl P(B): for all a1, . . . , an ∈ A

fA(a1, . . . , an) = h(fB(g(a1), . . . , g(an))).

If A and B are finite, then BA is finite and hence S ∈ S Pfin(B), so the proof implies that
A ∈ Refl Pfin(B).

3. implies 2. If A ∈ P(B) then the statement follows from Theorem 8.20. Now suppose
that A is a reflection of B via the maps h : B → A and g : A → B. Let φ be the identity
∀x1, . . . , xn : f1(xi1 , . . . , xik) = f2(xj1 , . . . , xjl) for f1, f2 ∈ τ and suppose that B |= φ. For all
a1, . . . , an ∈ A we have

fA1 (ai1 , . . . , aik) = h(fB1 (g(ai1), . . . , g(aik)))

= h(fB2 (g(aj1), . . . , g(ajl))) = fA2 (aj1 , . . . , ajl).

Since a1, . . . , an were chosen arbitrarily, we have that A |= φ.

Exercises.

157. Prove a minion version of Cayley’s theorem: show that every minion
is isomorphic to a function minion.

158. Let Σ be a finite set of height-one identities.
Assume that there exists an algorithm with the following properties:

• it takes as input two finite τ -structures A and B;

• if the algorithm returns ‘no’ then A 6→ B;

• it runs in polynomial time in the size of A and B;

• if the polymorphisms of B satisfy Σ, and the algorithm returns ‘yes’, then A→ B.

Show that:

(a) if Σ expresses the existence of a majority operation, then the path consistency
procedure PCH provides an example for such an algorithm A (viewing the graph
H as part of the input of PCH);

(b) if there is such an algorithm A for Σ, then there exists a polynomial-time algorithm
that decides for a given finite τ -structure B whether B has polymorphisms that
satisfy Σ.

9.4 Minion Homomorphisms and Primitive Positive Constructions

We have characterised primitive positive constructions in terms of polymorphism algebras and
the reflection operator, and then we have characterised varieties that are additionally closed
under reflection in terms of minion homomorphisms. In this section we present straightforward
combinations of these links that are elegant and convenient for later use. The following is
analogous to Corollary 8.43 for primitive positive constructions and clone homomorphisms.
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(Abstract) Clone (Abstract) Minion

Operation Clone Function Minion

Identity Height-one Identity

Clone Homomorphism Minion Homomorphism

HSP Refl P

HSPfin Refl Pfin

Primitive Positive Interpretation Primitive Positive Construction

Corollary 8.35 Exercise 157

Figure 15: A dictionary between corresponding notions.

Corollary 9.10. Let B and A be finite structures. Then A ∈ HI(B) if and only if there
exists a minion homomorphism from Pol(B) to Pol(A).

Proof. Combine Theorem 9.7 with Theorem 9.9.

Corollary 9.11. Let B be a finite structure. Then there exists a minion homomorphism
from Pol(B) to Proj if and only if K3 ∈ HI(B).

Proof. Let B be an algebra such that Minion(B) = Pol(B). Corollary 9.8 states that K3 ∈
HI(B) if and only if Refl Pfin(B) contains an algebra of size at least 2 all of whose operations
are projections, and whose clone is therefore Proj. Theorem 9.9 implies that this is equivalent
to the existence of a minor-preserving map to Proj.

Proposition 9.12. For every operation clone C on a finite set there exists an idempotent
operation clone D on a finite set such that there exists a minion homomorphism from C to
D and from D to C .

Proof. Let B be a structure such that Pol(B) = C (such a B exists by Proposition 6.4).
Let C be the core of B (which exists by the generalisation of Proposition 2.7 to relational
structures). Let D be the expansion of C by all unary singleton relations. We have that
D ∈ HI(B) by Proposition 5.25. It follows from Corollary 9.10 that there exists a minion
homomorphism from C = Pol(B) to the idempotent clone D := Pol(D). Conversely, we have
that D ⊆ Pol(C), and Pol(C) has a minion homomorphism to Pol(B) = C since B ∈ H(C)
and again by Corollary 9.10.

Exercises.

159. Show that every finite structure B with totally symmetric polymorphisms
of all arities can be pp-constructed in ({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {0}, {1}).

Hints: Exercise 120, Lemma 6.26, Corollary 9.10, Theorem 3.15,
Theorem 3.12.
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9.5 Taylor Terms

The following goes back to Walter Taylor [92]. We slightly deviate from the historic definition
in that we do not require idempotence – this allows us to give stronger formulations of several
results in the following.

Definition 9.13 (Taylor operations). A function f : Bn → B, for n ≥ 2, is called a Taylor
operation if for every i ∈ [n] there are α, β : [n]→ [2] such that fα = fβ and α(i) 6= β(i).

Examples for Taylor operations are binary commutative operations, majority operations,
and Maltsev operations. Since we do not insist on idempotence, also quasi majority operations
(Exercise 62) are examples of Taylor operations.

A Taylor term of a τ -algebra B is a τ -term t(x1, . . . , xn), for n ≥ 2, such that tB is a
Taylor operation. Note that t is a Taylor term if and only if it satisfies a set of n height-one
identities that can be written as

t



x ? ? · · · ?

? x ?
...

... ?
. . .

. . .
...

...
. . . x ?

? · · · · · · ? x


≈ t



y ? ? · · · ?

? y ?
...

... ?
. . .

. . .
...

...
. . . y ?

? · · · · · · ? y


where t is applied row-wise and ? stands for either x or y.

Walter Taylor did not just introduce Taylor operations, but he also found a beautiful
statement about their existence (Theorem 9.15). In the proof of this statement, we need the
following important observation about the star product in idempotent algebras.

Lemma 9.14. For n ∈ N, let (A; f1, . . . , fn) be an idempotent algebra. Then there exists
g ∈ Clo(A) such that for every f ∈ {f1, . . . , fn} there exists α such that gα = f .

Proof. The statement is clear if n ≤ 1. First consider the case that n = 2. Let m be the arity
of f1 and let l be the arity of f2. Note that

Clo(A) |=
(
f1 = compmlm (f1 ∗ f2, π

m
1 , . . . , π

m
1︸ ︷︷ ︸

l times

, πm2 , . . . , π
m
2︸ ︷︷ ︸

l times

, . . . , πmm, . . . , π
m
m︸ ︷︷ ︸

l times

)
)

(23)

and Clo(A) |=
(
f2 = compmll (f1 ∗ f2, π

l
1, . . . , π

l
l︸ ︷︷ ︸

m times

, πl1, . . . , π
l
l︸ ︷︷ ︸

m times

, . . . , πl1, . . . , π
l
l︸ ︷︷ ︸

m times

)
)

(24)

since A is idempotent. The general case can be shown easily by induction on n.

Theorem 9.15. Let B be an idempotent algebra. Then the following are equivalent.

(1) B has a Taylor term t.

(2) there is no minion homomorphism from Clo(B) to Proj.

Proof. To show that (1) implies (2), suppose for contradiction that there is a minion homo-
morphism ξ from Clo(B) to Proj. By definition of Proj we have ξ(tB) = πnl for some l ≤ n.
By assumption, there are α, β : [n] → [2] such that (tB)α = (tB)β and α(l) 6= β(l). Since
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ξ(tB) = πnl and ξ is a minion homomorphism, we therefore obtain that π2
1 = π2

2, which does
not hold in Proj, a contradiction.

To show the converse implication, suppose that B does not have a Taylor term. We have
to show that Clo(B) has a minion homomorphism to Proj. By Lemma 9.4, it suffices to show
that every primitive positive sentence φ in the language of minions that holds in Clo(B) also
holds in Proj. If g1, . . . , gm are the existentially quantified variables in φ, then by Lemma 9.14
there exists g ∈ Clo(B)(n), for some n, such that every gi, i ∈ [m], is a minor gαi of g. Hence,
it suffices to define a minion homomorphism from Minion(B; g) to Proj. By assumption, g
is not a Taylor term, so there exists an argument i such that for all α, β : [n] → [2] we have
α(i) = β(i) or gα 6= gβ. For α : [n] → [k], define ξ(gα) := πkα(i). This map is well-defined

because if gα = gβ for α, β : [n] → [k], then (gα)γ = (gβ)γ for all γ : [k] → [2], and hence
γ ◦α(i) = γ ◦β(i) for all γ : [k]→ [2], which implies that α(i) = β(i). Moreover, ξ is a minion
homomorphism because ξ(gα) = πkα(i) = (πni )α = ξ(g)α.

Remark 9.16. The original statement of Taylor is Theorem 9.15 with clone homomorphism
instead of minion homomorphism; the version with minion homomorphisms in Theorem 9.15
is the statement we really care about in this course and leads to an easier proof.

The following lemma should be clear from the results that we have already seen.

Lemma 9.17. Let B and C be homomorphically equivalent structures. Then B has a Taylor
polymorphism if and only if C has a Taylor polymorphism.

Proof. Let h be a homomorphism from B to C, and g be a homomorphism from C to
B. Suppose that f is a Taylor polymorphism for B of arity n. Then (x1, . . . , xn) 7→
h(f(g(x1), . . . , g(xn))) is a Taylor polymorphism of C.

Corollary 9.18. Let B be a finite structure. Then the following are equivalent.

1. K3 /∈ HI(B).

2. B has a Taylor polymorphism.

3. Pol(B) has no minion homomorphism to Proj.

If these condition don’t apply then B has a finite-signature reduct with an NP-hard CSP.

Proof. The equivalence of 1. and 3. is Corollary 9.11. Now suppose that K3 /∈ HI(B). If
B′ is the core of B, and C is the expansion of B′ by all unary singleton relations, then
C(H(B)) ⊆ HI(B) implies that K3 is not pp constructible in C. Hence, the idempotent clone
Pol(C) does not have a minion homomorphism to Proj. Theorem 9.15 shows that C and
thus also B′ must have a Taylor polymorphism. Lemma 9.17 implies that B has a Taylor
polymorphism.

Note that the existence of Taylor polymorphisms is preserved by minion homomorphisms,
and since Proj does not have a Taylor operation we have that 2. implies 3.

The final statement follows from Corollary 5.16.

Theorem 9.19 (Tractability Theorem, Version 3). Let B be a relational structure with fi-
nite domain and finite signature. If B has a Taylor polymorphism, then CSP(B) is in P.
Otherwise, CSP(B) is NP-complete.

105



Proof. An immediate consequence of Corollary 9.18 and Theorem 5.28.

A clone is said to be Taylor if it has a Taylor operation, and an algebra is called Taylor
if it has a Taylor term operation.

Remark 9.20. We will from now on often use the formulation ‘let A be a finite Taylor algebra’
instead of ‘let A be a finite algebra such that Clo(A) does not have a minion homomorphism
to Proj’, even if we can avoid in the proofs the use of Taylor operations alltogether. The
reason is that the assumption is shorter to state, and equivalent by the results of this section
(see Exercise 159).

Exercises.

159. Show that the assumption in Theorem 9.15 that B is idempotent
can be replaced by the assumption that its domain is finite.

9.6 Arc Consistency Revisited

In this section we revisit the arc consistency procedure from Section 3, generalised to arbitrary
relational structures with finite domain and finite signature, in the light of minions and
primitive positive constructions.

Definition 9.21. The minion MAC is defined as follows. For n ≥ 1, the set M
(n)
AC consists of

the set of all non-empty subsets of {1, . . . , n}. For α : [n] → [m] and f ∈ M (n)
AC , we define fα

to be
{
α(a) | a ∈ f}.

Note that MAC is isomorphic to Pol({0, 1}; {0}, {1}, {0, 1}3 \ {1, 1, 0}) (see Exercise 123).
For a finite structure B, we write ACB for the generalisation of the arc-consistency procedure
ACH from digraphs H to general relational structures B (Exercise 84). We already know the
following.

Theorem 9.22. Let B be a finite structure. Then the following are equivalent.

1. CSP(B) is solved by ACB.

2. Pol(B) has totally symmetric polymorphisms of all arities.

3. MAC has a minion homomorphism to Pol(B).

4. B has a primitive positive construction in ({0, 1}; {0}, {1}, {0, 1}3 \ {(1, 1, 0)}.

Proof. 1⇔ 2 was already shown in Theorem 3.12.
2 ⇒ 3: let sk ∈ Pol(B) be a totally symmetric operation of arity k. Then the map

which sends for every n ∈ N and k ≤ n the element {i1, . . . , ik} ∈ M
(n)
AC to the operation

(x1, . . . , xn) 7→ sk(xi1 , . . . , xik) is a minion homomorphism ξ : MAC → Pol(B): if α : [n]→ [m]
for some n,m ∈ N, then

ξ({i1, . . . , ik}α) = ξ({α(i1), . . . , α(ik)})
= ((x1, . . . , xm) 7→ sk(xα(i1), . . . , xα(ik))

= ((x1, . . . , xn) 7→ sk(xi1 , . . . , xik)α

= ξ({i1, . . . , ik})α.
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3 ⇒ 2: let ξ be the minion homomorphism from MAC to Pol(B). Then the operation
sn := ξ({1, . . . , n}) ∈ Pol(B) is totally symmetric and of arity n. Indeed, suppose that
a1, . . . , an, b1, . . . , bn ∈ B are such that {a1, . . . , an} = {b1, . . . , bn} = {c1, . . . , cm} for some
m ≤ n such that c1, . . . , cm are pairwise distinct. Then there are α1, α2 : [n]→ [m] such that
α1(i) = α2(i) ∈ {1, . . . ,m} for every i ∈ [n]. Note that sn(a1, . . . , an) = (sn)α1(c1, . . . , cm) =
(sn)α2(b1, . . . , bn).

3⇔ 4: Corollary 9.10.

Exercises.

159. Verify that MAC (Definition 9.21) is indeed a minion.

10 Undirected Graphs

This section contains a proof of the dichotomy for finite undirected graphs of Hell and Nešetřil,
Theorem 2.6. We prove something stronger, namely that the tractability theorem (Theo-
rem 5.28) is true for finite undirected graphs B [34]. More specifically, the following is true.

Theorem 10.1. Let B be a finite undirected graph. Then either

• B is bipartite (i.e., homomorphic to K2) or has a loop, or

• HI(B) contains all finite structures.

Note that in combination with Corollary 5.16, this theorem implies the tractability theo-
rem (Theorem 5.28) for the special case of finite undirected graphs. This theorem also has a
remarkable consequence in universal algebra, whose significance goes beyond the study of the
complexity of CSPs, and which provides a strengthening of Taylor’s theorem (Theorem 9.15),
discovered by Siggers in 2010 (see Section 10.2).

10.1 The Hell-Nešetřil Theorem

The graph K4 − {0, 1} (a clique with four vertices where one edge is missing) is called a
diamond. A graph is called diamond-free if it does not contain a copy of a diamond as a
(not necessarily induced) subgraph. For every ` ∈ N, the graph (K3)` is an example of a
diamond-free graph.

Lemma 10.2. Let B be a finite undirected loopless graph which is not bipartite. Then B
pp-constructs a diamond-free core containing a triangle.

Proof. We may assume that

1. HI(B) does not contain a non-bipartite loopless graph with fewer vertices than B, since
otherwise we could replace B by this graph. In particular, B must then be a core.

2. B = (V ;E) contains a triangle: if the length of the shortest odd cycle in B is k, then
(B;Ek−2) is a graph and contains a triangle, so it can replace B.
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a1 ak+1

uk+1

vk+1

an-1

u1

v1

a0 an

Figure 16: Diagram for the proof of Lemma 10.2.

Claim 1. Every vertex of B is contained in a triangle: Otherwise, we can replace B by
the subgraph of B induced by set defined by the primitive positive formula

∃u, v
(
E(x, u) ∧ E(x, v) ∧ E(u, v)

)
which still contains a triangle, contradicting our first assumption.

Claim 2. B does not contain a copy of K4. Otherwise, if a is an element from a copy
of K4, then the subgraph of B induced by the set defined by the primitive positive formula
E(a, x) is a non-bipartite graph A, which has strictly less vertices than B because a /∈ A.
Moreover, Theorem 5.26 implies that expansions of cores by constants can be pp-constructed,
and hence that B pp-constructs A, contrary to our initial assumption.

Claim 3. The graph B must also be diamond-free. To see this, let R be the binary
relation with the primitive positive definition

R(x, y) :⇔ ∃u, v
(
E(x, u) ∧ E(x, v) ∧ E(u, v) ∧ E(u, y) ∧ E(v, y)

)
and let T be the transitive closure of R. The relation T is clearly symmetric, and since every
vertex of B is contained in a triangle, it is also reflexive, and hence an equivalence relation of
B. Since B is finite, for some n the formula ∃u1, . . . , un

(
R(x, u1)∧R(u1, u2)∧ · · · ∧R(un, y)

)
defines T , showing that T is primitively positively definable in B.

We claim that the graph B/T (see Example 5.13) does not contain loops. It suffices to
show that T ∩ E = ∅. Otherwise, let (a, b) ∈ T ∩ E. Choose (a, b) in such a way that the
shortest sequence a = a0, a1, . . . , an = b with R(a0, a1), R(a1, a2), . . . , R(an−1, an) in B is
shortest possible; see Figure 16. This chain cannot have the form R(a0, a1) because B does
not contain K4 subgraphs. Suppose first that n = 2k is even. Let the vertices u1, v1, uk+1

and vk+1 be as depicted in Figure 16. Let S be the set defined by

∃x1, . . . , xk
(
E(uk+1, x1) ∧ E(vk+1, x1) ∧R(x1, x2) ∧ · · · ∧R(xk−1, xk) ∧ E(xk, x)

)
.

Note that a0, u1, v1 ∈ S form a triangle. If an ∈ S then we obtain a contradiction to the
minimal choice of n. Hence, the subgraph induced by the primitively positively definable set
S is non-bipartite and strictly smaller than B, in contradiction to the initial assumption.

If n = 2k + 1 is odd, we can argue analogously with the set S defined by the formula

∃x1, . . . , xk
(
R(ak+1, x1) ∧R(x1, x2) ∧ · · · ∧R(xk−1, xk) ∧ E(xk, x)

)
and again obtain a contradiction. So we conclude that B/T does not contain loops. It also
follows that B/T contains a triangle, because B contains a triangle.

Thus, the initial assumption on B then implies that T must be the equality relation on
B, which in turn implies that B does not contain any diamonds.
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Figure 17: Diagram for the proof of Lemma 10.3.

Lemma 10.3 (from [34]). Let B be a diamond-free undirected graph and let h : (K3)k → B
be a homomorphism. Then the image of h is isomorphic to (K3)m for some m ≤ k.

Proof. Let I ⊆ {1, . . . , k} be maximal such that ker(h) ⊆ ker(πI). Note that πI is defined
even if I = ∅ (Definition 6.30). Such a set exists, because ker(π∅) is the total relation. We
claim that ker(h) = ker(πI); this clearly implies the statement.

By the maximality of I, for every j ∈ {1, . . . , k} \ I there are x, y ∈ (K3)k such that
h(x) = h(y) and xj 6= yj . We have to show that for all z1, . . . , zk, z

′
j ∈ {0, 1, 2}

h(z1, . . . , zj , . . . , zk) = h(z1, . . . , zj−1, z
′
j , zj+1, . . . , zk).

We may suppose that zj 6= xj and z′j = xj . To simplify notation, we assume that j = k. As

we have seen in Exercises 7 and 8, any two vertices in (K3)k have a common neighbour.

• Let r be a common neighbour of x and (z, zk) := (z1, . . . , zk). Note that r and (z, z′k)
are adjacent, too.

• For all i 6= k we choose an element si of K3 that is distinct from both ri and yi. Since
xk is distinct from rk and yk we have that (s, xk) := (s1, . . . , sk−1, xk) is a common
neighbour of r and y.

• The tuple (r, zk) := (r1, . . . , rk−1, zk) is a common neighbour of both x and (s, xk).

• Finally, for i 6= k choose ti to be distinct from zi and ri, and choose tk to be distinct
from zk and from z′k. Then t := (t1, . . . , tk−1, tk) is a common neighbour of (z, zk), of
(z, z′k), and of (r, zk).

The situation is illustrated in Figure 17. Since B is diamond-free, h(x) = h(y) implies that
h(r) = h(r, zk) and for the same reason h(z, zk) = h(z, z′k) which completes the proof.

Lemma 10.4 (from [34]). If a finite diamond-free graph B contains a triangle, then for some
k ∈ N there is a primitive positive interpretation of (K3)k with constants in B.

Proof. We construct a strictly increasing sequence of subgraphs G1 ⊂ G2 ⊂ · · · of B such that
Gi is isomorphic to (K3)ki for some ki ∈ N. Let G1 be any triangle in B. Suppose now that Gi
has already been constructed. If the domain of Gi is primitively positively definable in B with
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constants, then we are done. Otherwise, there exists an idempotent polymorphism f of B and
v1, . . . , vk ∈ Gi such that f(v1, . . . , vk) /∈ Gi. The restriction of f to Gi is a homomorphism
from (K3)ki to the diamond-free graph B. Lemma 10.3 shows that Gi+1 := f((Gi)

k) induces
a copy of (K3)ki+1 for some ki+1 ≤ k. Since f is idempotent, we have that Gi ⊆ Gi+1, and
by the choice of f the containment is strict. Since B is finite, for some m the set Gm must
have a primitive positive definition in B with constants.

Proof of Theorem 10.1. Let B be a finite undirected graph that is not bipartite. Then B
interprets primitively positively a graph that is homomorphically equivalent to a diamond-
free core C containing a triangle, by Lemma 10.2. We may now apply Lemma 10.4 to C
and obtain that for some k ∈ N there is a primitive positive interpretation of (K3)k with
constants in C. Since C is a core, and since (K3)k is homomorphically equivalent to K3, it
follows that there is a primitive positive interpretation of a structure that is homomorphically
equivalent to K3 in C. The structure K3 interprets all finite structures primitive positively
(Theorem 5.17), so Theorem 5.26 implies that H(I(B)) contains all finite structures.

10.2 Siggers Terms of Arity 6

An operation s : B6 → B is called Siggers operation (of arity six8) if for all x, y, z ∈ B

s(x, y, x, z, y, z) = s(y, x, z, x, z, y).

As usual, if A is an algebra and t is a term such that tA is a Siggers operation, we call t a
Siggers term.

Theorem 10.5 (from [91]). Let B be a finite structure. Then either B primitively positively
interprets all finite structures up to homomorphic equivalence, or B has a Siggers polymor-
phism.

Proof. Pick k ≥ 1 and a, b, c ∈ Bk such that {(ai, bi, ci) | i ≤ k} = B3. Let R be the binary
relation on Bk such that (u, v) ∈ R if and only if there exists a 6-ary s ∈ Pol(B) such that
u = s(a, b, a, c, b, c) and v = s(b, a, c, a, c, b). We make the following series of observations.

• The vertices a, b, c ∈ Bk induce in (Bk;R) a copy of K3: each of the six edges of K3 is
witnessed by one of the six 6-ary projections from Pol(B).

• The relation R is symmetric: Suppose that (u, v) ∈ R and let s ∈ Pol(B) be such that
u = s(a, b, a, c, b, c) and v = s(b, a, c, a, c, b). Define s′ ∈ Pol(B) by s′(x1, . . . , x6) :=
s(x2, x1, x4, x3, x6, x5); then

v = s(b, a, c, a, c, b) = s′(a, b, a, c, b, c)

u = s(a, b, a, c, b, c) = s′(b, a, c, a, c, b)

and hence s′ witnesses that (v, u) ∈ R.

• If the graph (Bk;R) contains a loop (w,w) ∈ R, then there exists a 6-ary s ∈ Pol(B)
such that

s(a, b, a, c, b, c) = w = s(b, a, c, a, c, b) .

8We stress the arity here since there is also a notion of Siggers operations for arity four, which is a similar
but stronger result, see Section 14.3.
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The operation s is Siggers: for all x, y, z ∈ B there exists an i ≤ k such that (x, y, z) =
(ai, bi, ci), and the above implies that

s(ai, bi, ai, ci, bi, ci) = s(bi, ai, ci, ai, ci, bi)

and we are done in this case.

So we may assume in the following that (Bk;R) is a simple (i.e., undirected and loopless)
graph that contains a copy of K3. The relation R (as a 2k-ary relation over B) is preserved
by Pol(B), and hence (Bk;R) has a primitive positive interpretation in B. By Theorem 10.1
applied to the undirected graph (Bk;R), there is a primitive positive interpretation in (Bk;R)
of all finite structures up to homomorphic equivalence, and hence also in B, and this concludes
the proof.

Theorem 10.6 (Tractability Theorem, Version 4). Let B be a relational structure with fi-
nite domain and finite signature. If B has a Siggers polymorphism, then CSP(B) is in P.
Otherwise, CSP(B) is NP-complete.

Proof. An immediate consequence of Theorem 10.5 and Theorem 5.28.

Exercises.

160. A Taylor clone C is called minimal Taylor if every proper subclone of C
is not Taylor. Show that every Taylor clone on a finite set
contains a minimal Taylor clone.

11 Congruences

The study of congruences of algebras and varieties is one of the central topics in universal
algebra. In Section 11.1 we present some basic facts about congruences that will be used later
in the text. Section 11.2 about congruence permutability and Section 11.3 about congruence
distributivity will not be used later in the text and can be skipped by the hasty reader.

11.1 The Congruence Lattice

Let A be a τ -Algebra. We write Con(A) for the set of all congruences of A (Definition 8.10).
Clearly, Con(A) is closed under arbitrary intersections. On the other hand, the union of two
congruences is in general not a congruence.

Lemma 11.1. Let A be an algebra. Then (Con(A),⊆) is a complete lattice (Example 8.5).

Proof. Let (Ei)i∈I be a sequence of congruences of A. Define (recall the definition of the
relational product, Definition 5.7)∨

i∈I
Ei =

⋃{
Ei1 ◦ · · · ◦ Eik | i1, . . . , ik ∈ I, k ∈ N

}
Note that this is the smallest (with respect to inclusion) equivalence relation that contains all
the Ei. Let f ∈ τ be n-ary and (a1, b1), . . . , (an, bn) ∈ E. Then there are i1, . . . , ik ∈ I such
that for all j ∈ {1, . . . , n}

(aj , bj) ∈ Ei1 ◦ · · · ◦ Eik .
Hence, (f(a1, . . . , an), f(b1, . . . , bn)) ∈ Ei1 ◦ · · · ◦ Eik and E ∈ Con(A).
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Every algebra has the following two congruences.

• ∆A: the diagonal relation {(a, a) | a ∈ A}.

• ∇A: the universal relation A2.

Congruences that are different from ∇A and ∆A are called proper.

Definition 11.2. Algebras A without proper congruences are called simple.

Example 11.3. Groups that are simple in the sense of group theory are simple in the more
general sense of Defintion 11.2. 4

Example 11.4. Let G be a permutation group on the set A. Let A be the algebra with
domain A and signature G, und define gA := g for all g ∈ G. Then A is simple if and only if
G is primitive as a permutation group. 4

Definition 11.5. Let A be an algebra and let B be the expansion of A by all constant
operations. A polynomial over A is a term in the signature of B. A polynomial operation of
A is a term operation of B.

Definition 11.6. Two algebras A1,A2 with the same domain A are called polynomially
equivalent if they have the same polynomial operations.

Note that polynomially equivalent algebras have the same congruences.

Lemma 11.7. Let B be an algebra and X ⊆ B2. Then the smallest congruence of B that
contains X, denoted by CgB(X), equals the symmetric transitive closure of

T := {(p(a), p(b)) | (a, b) ∈ X, p a unary polynomial operation of B}. (25)

Proof. Let C be the symmetric transitive closure of T . Clearly, if (a, b) ∈ X and p is a unary
polynomial operation of B, then (p(a), p(b)) ∈ CgB(X) since congruences are preserved by
term operations and are reflexive. Since CgB(X) is transitive and reflexive we obtain that
C ⊆ CgB(X). To prove that CgB(X) ⊆ C it suffices to prove that S is a congruence of B
that contains X. Since S is preserved by all constant operations, we have reflexivity of S,
and we clearly have that X ⊆ S. We are left with the verification that S is a congruence. If
(u1, v1), . . . , (uk, vk) ∈ S and f is an operation of B of arity k, then for each i ∈ {1, . . . , k}
there exists a path of edges in T that starts in ui and ends in vi. By the reflexivity of T we
may duplicate elements on these paths such these paths all have the same length, and for all
`, the `-th edge is a forward edge on all paths, or it is a backward edge on all paths. Hence,
we obtain a path of edges in T between u0 := f(u1, . . . , uk) and v0 := f(v1, . . . , vk), showing
that (u0, v0) ∈ S are we are done.

Exercises.

161. Show that the algebra from Example 7.4 is simple.

162. Show that if A is an idempotent algebra and C a congruence of A, then every congruence
class of C is a subalgebra of A.

163. Prove the remark after Definition 11.6.
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164. Let A be an algebra. Show that an equivalence relation R ⊆ A2 is a congruence of A
if and only if it is preserved by all unary polynomials of A. Which properties of an
equivalence relation do you need in the proof?

165. Let A be an algebra. Then a relation R ⊆ An is called

• reflexive if (a, . . . , a) ∈ R for every a ∈ A.

• transitive if for all (aij)i,j∈{1,...,n} ∈ An×n whose rows and columns are from R, we
have that (a11, . . . , ann) ∈ R.

Show that a reflexive and transitive R is preserved by Clo(A) if and only if it is preserved
by all unary polynomial operations of A.

166. Show that A is polynomially complete, i.e., the clone of polynomial operations of A
equals the set of all operations on A, if and only if the discriminator operation d : A3 →
A is a polynomial operation of A, which is defined as follows:

d(x, y, z) :=

{
z x = y

x x 6= y.

167. Let A be an algebra on a finite set and R ≤ A2 be subdirect. Then
⋃
i∈N(R−1 ◦R)i is

a congruence of A.

11.2 Congruence Permutability

Two congruences C1, C2 ∈ Con(A) permute if

C1 ◦ C2 = C2 ◦ C1.

An algebra A is called congruence permutable if all pairs of congruences of A permute. In
the following, it will be convenient to write a0C1a1C2a2 · · · anCnan as a shortcut for a1C1a2

and a2C2a3 and · · · an−1Can.

Lemma 11.8. Let A be an algebra such that Clo(A) contains a Maltsev operation p. Then
A is congruence permutable.

Proof. Let C,E ∈ Con(A) and let (a, b) ∈ C ◦ E. Then there exists c ∈ A with (a, c) ∈ C
und (c, b) ∈ E. Note that

b = pA(c, c, b) C pA(a, c, b) E pA(a, b, b) = a

and thus (b, a) ∈ C ◦ E and (a, b) ∈ E ◦ C.

Note that most classical algebras, such as groups, rings, fields, etc., do have a Maltsev
term operation, and hence are congruence permutable. A variety is congruence permutable
if all algebras in the variety are congruence permutable.

Theorem 11.9 (Maltsev). Let K be a class of τ -algebras. Then HSP(K) is congruence
permutable if and only if there exists a τ -term t(x, y, z) such that every algebra in K satisfies
t(y, x, x) ≈ t(x, x, y) ≈ y.
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Proof. “⇐”. If every algebra in K has a Maltsev term operation, then so does HSP(K), and
hence the statement follows from Lemma 11.8.

“⇒”. Let F := FK({x, y, z}). For F := FK(X) und u, v ∈ {x, y, z} we write C(u, v) for
the smallest congruence of F that contains (u, v). Let C1 := C(x, y) ∈ Con(F) and C2 :=
C(y, z) ∈ Con(F). Since (x, z) ∈ C1 ◦ C2 = C2 ◦ C1 there exists b ∈ F with (x, b) ∈ C2 and
(b, z) ∈ C1. Since F is generated by {x, y, z}, there is a τ -term p(x, y, z) with b = pF(x, y, z).
We will show that K |= ∀x, y. p(x, x, y) = y. Let A ∈ K and u, v ∈ A. Let f : F → A be a
homomorphism with f(x) = u, f(y) = u, and f(z) = v. Then f(pF(x, y, z)) = pA(u, u, v).
Since (x, y) ∈ Ker(f) we have C1 ⊆ Ker(f). Thus, (b, z) ∈ Ker(f) and

v = f(z) = f(b) = f
(
pF(x, y, z)

)
= pA(u, u, v).

K |= p(y, x, x) ≈ y can be shown similarly.

Recall that in Section 4.4 we proved that digraphs with a Maltsev polymorphism are
rectangular, and in Theorem 4.19 we characterised the existence of Maltsev polymorphisms
of digraphs using total rectangularity. The following corollary clarifies the connection between
rectangularity and Maltsev terms.

Proposition 11.10. Let A be an algebra. Then A has a Maltsev term if and only if every
R ≤ B2, for every algebra B ∈ HSP(A), is rectangular.

Proof. Clearly, if A has a Maltsev term, then every algebra B in HSP(A) has a Maltsev term,
and hence every R ≤ B2 is rectangular. Conversely, let B ∈ HSP(A) be the free algebra for
HSP(A) over {x, y}, and let R be the subuniverse of B2 generated by {(x, x), (x, y), (y, y)}.
Since R is rectangular, we have that (x, y) ∈ R. Hence, there exists a term t such that
f((x, x), (x, y), (y, y)) = (y, x). Then t satisfies t(x, x, y) ≈ y and t(x, y, y) ≈ x in every
algebra of HSP(A), (Lemma 8.24), and hence A has a Maltsev term.

11.3 Congruence Distributivity

A lattice (P ;∧,∨, 0, 1) is called distributive if it satisfies

(x ∧ y) ∨ z ≈ (x ∨ z) ∧ (y ∨ z)
and (x ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z).

An example of a distributive lattice is the set of subsets of a set S, ordered by inclusion:
(P(S);⊆). If the congruence lattice of A is distributive, we call A congruence distributive.

Lemma 11.11. Every algebra with a majority term operation is congruence distributive.

Proof. Let C,D,E ∈ Con(A) and (a, b) ∈ C ∧ (D ∨ E). Then there are c1, . . . , cn such that

aDc1Ec2Dc3 . . . cnEb.

Since (a, b) ∈ C, we have for all c ∈ A that

mA(a, c, b)CmA(a, c, a) = a.

Thus, for all c1, c2 ∈ A we obtain

mA(a, c1, b)C aC m
A(a, c2, b). (26)
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Therefore,

a = mA(a, a, b)(C ∧D)mA(a, c1, b) (by (26))

(C ∧ E)mA(a, c2, b)

· · ·
(C ∧D)mA(a, cn, b)

(C ∧ E)mA(a, b, b) = b.

We conclude that (a, b) ∈ (C ∧D) ∨ (C ∧ E).

As in the case of congruence permutability, there is even an equational characterisation
of congruence distributivity of varieties.

Theorem 11.12 (Jónsson). HSP(K) is congruence distributive if and only if there exists
n ∈ N and τ -terms p0, . . . , pn such that

K |= pi(x, y, x) ≈ x for i ∈ {1, . . . , n}
p0(x, y, z) ≈ x
pi(x, x, y) ≈ pi+1(x, x, y) for i even

pi(x, y, y) ≈ pi+1(x, y, y) for i odd

pn(x, y, z) ≈ z

Proof. “⇒”. Let F := FK({x, y, z}). We have

C(x, z) ∧
(
C(x, y) ∨ C(y, z)

)
=
(
C(x, z) ∧ C(x, y)

)
∨
(
C(x, z) ∧ C(y, z)

)
hence (x, z) ∈

(
C(x, z)∧C(x, y)

)
∨
(
C(x, z)∧C(y, z)

)
in F. Thus, there are p1, . . . , pn−1 ∈ F

such that each of (x, p1), (p1, p2), . . . , (pn−1, z) is in C(x, z) ∧ C(x, y) or in C(x, z) ∧ C(y, z).
By padding the sequence p1, . . . , pn−1 with repeated entries, we may even suppose that

x
(
C(x, z) ∧ C(x, y)

)
p1 (27)

p1

(
C(x, z) ∧ C(y, z)

)
p2 (28)

...

pn−1

(
C(x, z) ∧ C(y, z)

)
z (29)

From (27) we obtain that
x = p1(x, y, x) = p1(x, x, y).

From (28) we obtain

p1(x, y, x) = p2(x, y, x)

and p1(x, y, y) = p2(x, y, y)

and from (29) that pn−1(x, y, x) = pn−1(x, y, y) = z. Similarly, all other identities from the
statement can be derived from the sequence (28)-(29).

“⇐”. Let C1, C2, C3 ∈ Con(A) for A ∈ HSP(K). It suffices to show that

C1 ∧ (C2 ∨ C3) ⊆ (C1 ∧ C2) ∨ (C1 ∧ C3)
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since the converse inclusion holds in every lattice. Let (a, b) ∈ C1 ∧ (C2 ∨C3). That is, there
are c1, . . . , ct with

aC2c1C3c2C2 · · · ctC3b.

For i ∈ {1, . . . , n}

pi(a, a, b)C2pi(a, c1, b)C3pi(a, c2, b) · · ·C3pi(a, b, b)

and since pi(a, c, b)C1pi(a, c, a) = a

pi(a, a, b)(C1 ∧ C2)pi(a, c1, b)(C1 ∧ C3)pi(a, c2, b) · · · (C1 ∧ C3)pi(a, b, b).

Therefore,
pi(a, a, b)

(
(C1 ∧ C2) ∨ (C1 ∧ C3)

)
pi(a, b, b)

We conclude that a
(
(C1 ∧ C2) ∨ (C1 ∧ C3)

)
b.

If the variety is generated by the polymorphism clone of a finite structure B with finite
relational signature, this condition has drastic consequences for CSP(B), similarly as in the
previous section for congruence permutable varities. Barto [7] proved that in this case B
must also have a near unanimity polymorphism and hence can be solved in polynomial time
by the methods that will be presented in Section 15.

Exercises

168. Show that SH(K) ⊆ HS(K), PS(K) ⊆ SP(K), and PH(K) ⊆ HP(K).

169. Let f : A→
∏
i∈I Ai be a homomorphism. Show that

Ker(f) =
⋂
i∈I

Ker(πi ◦ f)

170. Show that the variety of all lattices is congruence distributive, but not congruence
permutable.

171. Show that the variety of Boolean algebras is both congruence permutable and congru-
ence distributive.

172. Show that a lattice satisfies the two identities

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)

if and only if it satisfies one of those identities.
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12 Abelian Algebras

Modules (Example 8.3) have many strong properties and are very well understood. Affine
algebras are ‘essentially’ modules and introduced in Section 12.1. The relevance of affine
algebras in the context of constraint satisfaction is that core structures with more than one
element and whose polymorphism algebra is idempotent and affine can pp-construct (Zp; +, 1),
for some prime p (Section 12.2). We have seen in Theorem 7.2 that the CSP of such structures
cannot be solved by k-consistency, for any k.

Abelian algebras are defined more abstractly (Section 12.3). It turns out that under fairly
general conditions, abelian algebras must be affine; this is the content of the fundamental
theorem of abelian algebras which will be presented in Section 12 (Theorem 12.12) and gen-
eralised later in Section 13.4. Section 12.4 presents other useful characterisations of abelian
algebras in terms of congruences.

12.1 Affine Algebras

An algebra A is called affine if A is polynomially equivalent (Definition 11.6) to a module
(Example 8.3). Clearly, every module M has a Maltsev term operation, namely (x, y, z) 7→
x − y + z, so every affine algebra has a Maltsev polynomial operation. Something stronger
holds.

Lemma 12.1. If A is affine, then (x, y, z) 7→ x − y + z is the unique Maltsev polynomial
operation of A.

Proof. Suppose that A is polynomially equivalent to module M over the ring R. Let
m(x, y, z) = αx + βy + γz + d, for α, β, γ ∈ R and d ∈ M , be a Maltsev polynomial op-
eration of A. Since m(0, 0, 0) = 0 we must have d = 0. Moreover, for all x ∈ M we have
x = m(x, 0, 0) = αx and analogously we obtain x = γx. Finally, m(x, x, 0) = x+βx = 0, and
therefore βx = −x. We conclude that m(x, y, z) = x− y + z.

Remark 12.2. The operation (x, y, z) 7→ x−y+z is an affine Maltsev operation as defined in
Section 7.1. An algebra whose term operations are generated by an affine Maltsev operation
is called an affine Maltsev algebra (also see Exercise 143). Note that affine Maltsev algebras
are affine in the sense defined above.

Example 12.3. Every commutative group is affine: let R be the ring of integers Z, and
define scalar multiplication n · x as x+ · · ·+ x︸ ︷︷ ︸

n times

. 4

Definition 12.4. Let A be an algebra. An operation m : Ak → A is called central in A if m
is a homomorphism from Ak → A.

Remark 12.5. Note that m is central in A if and only if every operation of A preserves the
graph of m (see Exercise 92). Hence, if A = Pol(A) for some finite structure A, then m is
central in A if and only if its graph has a primitive positive definition in A.

Lemma 12.6. Let A be affine. Then the operation (x, y, z) 7→ x− y + z is central.
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Proof. Let f be a basic operation of A of arity n. Since A is affine we can write f as∑
i=1 αixi + c. Then

f(x̄)− f(ȳ) + f(z̄)) =
∑

i∈{1,...,n}

αixi + c−

(∑
i=1

αiyi + c

)
+
∑
i=1

αizi + c

=
∑

i∈{1,...,n}

αi(xi − yi + zi) + c

= f(x1 − y1 + z1, . . . , xn − yn + zn).

Exercises.

173. Let A be an affine conservative algebra. Show that |A| = 2.

12.2 Structures with an Idempotent Affine Polymorphism Clone

In this section we show that if a finite structure of size at least two has an idempotent affine
polymorphism algebra, it can simulate systems of linear equations over a finite field.

Proposition 12.7. Let B be a finite structure with at least two elements and let A be an
affine idempotent algebra such that Clo(A) = Pol(B). Then there exists a prime number p
such that B pp-constructs (Zp; +, 1).

Proof. Since the operation m : (x, y, z) 7→ x− y + z is central in A (Lemma 12.6), and since
A is idempotent, the addition operation +: A2 → A which is given by m(x, 0, y) is central
as well, and hence primitively positively definable in B. Every element a ∈ A of the abelian
group (A; +,−, 0) generates a cyclic group, and some a ∈ A must have prime order p; choose
a ∈ A such that p is smallest possible. An element of (A; +,−, 0) satisfies the formula

x+ · · ·+ x︸ ︷︷ ︸
p times

= 0

if and only if it is 0 or has order p. The set of all these elements forms a subgroup Ap ≤
(A; +,−, 0). By elementary group theory (see, e.g., Theorem 5 in Chapter 5 of [50]) there is
an isomorphism i between Ap and (Zp)k, for some k ≥ 1. Let b := i−1(1, 0, . . . , 0). It suffices
to show that (Ap; +, b) is homomorphically equivalent to (Zp,+, 1). The homomorphism from
(Ap; +, b) to (Zp,+, 1) is given by π1 ◦ i, and the homomorphism from (Zp,+, 1) to (Ap,+, b)
is given by x 7→ i(x, 0, . . . , 0).

12.3 The Term Condition

We will see that affine algebras satisfy a general ‘universal-algebraic’ condition, abelianness.

Definition 12.8. An algebra A is abelian if it satisfies the term condition, i.e., for every
term t of arity k + 1, all a, b ∈ A and tuples c, d ∈ Ak

t(a, c) = t(a, d)⇒ t(b, c) = t(b, d).

We also say that in Definition 12.8 the term condition is applied to the first argument of t;
since we can permute arguments of t it is clear what is meant by applying the term condition
to other arguments of t.
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Example 12.9. Every algebra all of whose operations are unary is abelian. 4

Example 12.10. A group G = (G; ◦,−1 , e) (Example 8.1) is abelian if and only if multipli-
cation is commutative, i.e., G satisfies x ◦ y ≈ y ◦ x. Let us consider the term operation

[z1, z2] := z−1
1 ◦ z

−1
2 ◦ z1 ◦ z2

(the commutator from group theory) and let x, y ∈ G. Then [e, y] = e = [e, e]. The term
condition implies that we can exchange e in the first argument of the term by x, and obtain
[x, y] = [x, e] = e. Thus, [x, y] = x−1y−1xy = e which implies that xy = yx. The converse
direction follows from Lemma 12.11. 4

Lemma 12.11. Every affine algebra A is abelian.

Proof. To verify the term condition of A, let t be a term operation. By assumption, t can be
written as t(x, y1, . . . , yn) = α0x+

∑
i∈{1,...,n} αiyi + c. Now, if a, b ∈ A and u, v ∈ An then

t(a, u) = t(a, v)⇔
∑

i∈{1,...,n}

αiui =
∑

i∈{1,...,n}

αivi

⇔ t(b, u) = t(b, v).

The following result was found by H. P. Gumm and, independently, J. D. H. Smith.

Theorem 12.12 (Fundamental theorem of abelian algebras; see [82]). Let A be an algebra
with a Maltsev term m. Then the following are equivalent.

(1) A is abelian.

(2) A is affine.

(3) There exists an abelian group (A; +,−, 0) such that the operation (x, y, z) 7→ x− y + z
is central in A and in Clo(A).

(4) m is central.

Proof. We prove these implications in cyclic order.
For the implication from (1) to (2), we need to construct a module M that is polynomially

equivalent to A. Arbitrarily fix 0 ∈ A. Define x +M y := m(x, 0, y) and −Mx := m(0, x, 0).
The ring R has the domain

R = {r ∈ AA | r unary polynomial operation such that r(0) = 0}

and the operations:

• r1 ·R r2 is defined as x 7→ r1(r2(x));

• r1 +R r2 is defined as x 7→ m(r1(x), 0, r2(x));

• 0R is the unary polynomial operation which is constant 0;

• 1R is the unary polynomial operation x 7→ x.
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For r ∈ R we define fMr (a) := r(a); in the following, we just write ra instead. The algebra
M thus defined is indeed a module:

• For every x ∈ A = M we have x + 0 = m(x, 0, 0) = x = m(0, 0, x) = 0 + x, so 0 is the
neutral element in M.

• For associativity, consider the term t(x1, x2, x3, x4) given by ((x1 + x2) + (x3 + x4)).
Note that t(0, 0, b, c) = t(0, b, 0, c) for all b, c ∈ A. Applying the term condition to
the first argument of t, we obtain t(a, 0, b, c) = t(a, b, 0, c) for any a ∈ A. Hence,
a+ (b+ c) = (a+ b) + c.

• For any a, b ∈ A we have m(a, a, b) = m(b, a, a); the term condition applied to the
middle argument yields m(a, 0, b) = m(b, 0, a), showing that a+ b = b+ a.

• To see that −a = m(0, a, 0) is the inverse of a, consider the polynomial t(x, u1, u2) =
u1 +m(x, u2, 0). For every a ∈ A we then have t(a, a, a) = t(a, 0, 0). Applying the term
condition to the first argument, we get t(0, a, a) = t(0, 0, 0); showing that a+ (−a) = 0.

• To show (17), let r ∈ R and consider the term t(x, y) := r(x + y) − r(x) − r(y). Let
a, b ∈ A. Note that t(0, b) = 0 = t(0, 0), and applying the term condition to the
first argument yields t(a, b) = t(a, 0) = 0, which proves that scalar multiplication by r
distributes over addition.

• Let r, s ∈ R and a ∈ A. Note that (r + s)(a) = m(ra, 0, sa) = ra + sa, showing (18).
Moreover, r(s(a)) = rs(b) by definition, showing (19).

To show that A and M are polynomially equivalent, first observe that every operation of
M has been defined by a polynomial over A. Conversely, let p be an operation of arity n
of A. We prove by induction on n that p is a polynomial operation of M. If n = 1 then
consider the unary polynomial operation r(x) := p(x) − p(0). We have r ∈ R, and thus see
that p(x) = rx + p(0) is indeed a polynomial operation of M. If n > 1, let t(x1, . . . , xn) be
the polynomial

p(x1, x2, . . . , xn)− p(0, x2, . . . , xn)− p(x1, 0, . . . , 0) + p(0, 0, . . . , 0).

We have t(0, a2, . . . , an) = 0 = t(0, 0, . . . , 0) for all a2, . . . , an ∈ A, and by the term condition
we get that t(a1, a2, . . . , an) = t(a1, 0, . . . , 0) = 0. So

p(x1, x2, . . . , xn) = p(0, x2, . . . , xn) + p(x1, 0, . . . , 0)− p(0, 0, . . . , 0);

the three polynomials on the right have less variables and by the induction hypothesis can be
written as polynomials over M, which shows that p can be written as a polynomial over M
as well.

(2) implies (3). We assume that there exists an abelian group (A; +,−, 0) such that in
particular the operation m : (x, y, z) 7→ x− y+ z is a polynomial operation in A. We have to
show that m is not only a polynomial operation, but even a term operation of A. Let t be a
term such that tA(x, y, z, a1, . . . , an) = x− y + z for some constants a1, . . . , an ∈ A. Since A
is affine, tA can be written in the form

(x, y, z, a1, . . . , an) 7→ x− y + z +
n∑
i=1

λiai + λ0
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for λ0, λ1, . . . , λn ∈ A. Now consider the term

s(x, y, z) := t(x, t(y, y, y, y, . . . , y), z, y, . . . , y).

Note that

sA(x, y, z) = x− (y +
∑

λiy + λ0) + z +
∑

λiy + λ0

= x− y + z.

so indeed m ∈ Clo(A). Lemma 12.6 states that m is central.
(3) implies (4). We first prove that for every f ∈ Clo(A) there exist a ∈ A and endomor-

phisms e1, . . . , en of (A; +,−, 0) such that for all x1, . . . , xn ∈ A

f(x1, . . . , xn) =

n∑
i=1

ei(xi) + a.

Define a := f(0, . . . , 0) and ei(x) := f(0, . . . , 0, x, 0, . . . , 0)− a for every i ∈ {1, . . . , n} and all
x ∈ A. Then ei is indeed an endomorphism of (A; +,−, 0), because by the assumption that
(x, y, z) 7→ x− y + z is central we have that

ei(x− y) = f(0, . . . , 0, x− y, 0, . . . , 0)− a
= f(0, . . . , 0, x, 0, . . . , 0)− f(0, . . . , 0, y, 0, . . . , y) + f(0, . . . , 0)− a
= ei(x)− ei(y).

Moreover,

f(x1, . . . , xn) = f(x1, 0, . . . , 0)− f(0, . . . , 0) + f(0, x2, . . . , xn) = e1(x1) + f(0, x2, . . . , xn)

and by induction it follows that f(x1, . . . , xn) =
∑
ei(xi) + a. In particular, m(x, y, z) =

e1(x) + e2(y) + e3(z) + a, for some endomorphisms e1, e2, e3 of (A; +,−, 0). We now proceed
as in the proof of Lemma 12.1: we have m(0, 0, 0) = 0, and hence a = 0. Moreover, for all
x ∈ A we have x = m(x, 0, 0) = e1(x), and thus e1 is the identity endomorphism. Analogously
we have that e3 must be the identity endomorphism. Finally, m(x, x, 0) = x+ e2(x) = 0, and
therefore e2(x) = −x. Hence, m(x, y, z) = x − y + z. So the assumptions imply that m is
central.

(4) implies (1). Suppose that m is central. We verify that A satisfies the term condition.
Let t be a term operation of A and let x, y ∈ A and u, v ∈ An be such that t(x, u) = t(x, v).
We have to show that t(y, u) = t(y, v). And indeed,

t(y, u) = m(t(y, u), t(x, u), t(x, v)) (since m is Maltsev)

= t(m(y, x, x),m(u1, u1, v1), . . . ,m(un, un, vn)) (centrality)

= t(y, v).

Exercises.

174. Show that subalgebras of abelian algebras are abelian.

175. Show that a semilattice (L;∧) (Example 8.4) is abelian if and only if |L| = 1.

176. Show that subalgebras of affine algebras are affine.121



177. A ring R (Example 8.2) is abelian in the sense of Definition 12.8
if and only if for all x, y ∈ R we have x · y = 0.

178. Show that in the definition of the term condition (Definition 12.8),
we could have equivalently phrased the condition for polynomial operations instead of
term operations t. However, show that it is not sufficient to require the condition only
for the operations of the algebra.
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179. Show that (Q; (x, y) 7→ x+y
2 ) is idempotent abelian,

but has no Maltsev polynomial.

180. Let (A,+,−, 0) be a group. Show that (x− y + z) 7→ x− y + z
is central in A if and only if {(x, y, u, v) ∈ A4 | x+ y = u+ v}
is a subalgebra of A4.

181. Let (A,+,−, 0) be a group. Show that (x, y, z) 7→ x−y+ z is central in A if and only if
for every f ∈ Clo(A) there exist a ∈ A and endomorphisms e1, . . . , en
of (A; +,−, 0) such that for all x1, . . . , xn ∈ A

f(x1, . . . , xn) =

n∑
i=1

ei(xi) + a.

182. Let (A,+,−, 0) be a group. Show that (x, y, z) 7→ x − y + z is a polymorphism of the
relation {(a, b, c) ∈ A3 | a+ b = c} if and only if the group is abelian.

12.4 The Congruence Condition

We close with a relational characterisation of abelianess (which for some authors is the official
definition of abelianness). Recall that ∆A denotes {(a, a) | a ∈ A}, and that CgA(X) denotes
the smallest congruence of A that contains X (see Lemma 11.7).

Theorem 12.13. Let A be an algebra and ∆ := ∆A. Then the following are equivalent.

1. A is abelian.

2. ∆ is a congruence class of CgA2(∆2).

3. ∆ is a congruence class of a congruence of A2.

Proof. The implication (2) ⇒ (3) is trivial. For the implication (3) ⇒ (2), suppose that C
is a congruence of A2 where ∆ is a congruence class. Since C ′ := CgA2(∆2) contains ∆2 we
have that ∆ is contained in a congruence class of C ′. But since C ′ ⊆ C, this congruence class
must be ∆.

For the equivalence between (1) and (2), recall from Lemma 11.7 that CgA2(∆2) equals
that symmetric transitive closure of

{(p(u), p(v)) | u, v ∈ ∆, p a unary polynomial operation of A2}.

Note that every unary polynomial operation p(x) of A2, can be written as

f(x,

(
c1

d1

)
, . . . ,

(
cn
dn

)
)

for some c1, d1, . . . , cn, dn ∈ A,n ∈ N and f ∈ Clo(A). Hence, ∆ is a congruence class of
CgA2(∆2) if and only if for all a, b ∈ A, c1, d1, . . . , cn, dn ∈ A,n ∈ N and every term t

tA
2
(

(
a

a

)
,

(
c1

d1

)
, . . . ,

(
cn
dn

)
) ∈ ∆ if and only if tA

2
(

(
b

b

)
,

(
c1

d1

)
, . . . ,

(
cn
dn

)
) ∈ ∆;

this is exactly the term condition for A applied to the first argument of t.
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Example 12.14. Let n ≥ 1. Let A be the algebra (Zn;m), where m : Z3
n → Zn is given by

(x, y, z) 7→ x− y + z. Then A2 has the congruence θ defined as follows:

((x1, x2), (y1, y2)) ∈ θ ⇔ (x1 − x2 = y1 − y2)

and clearly {(a, a) | a ∈ A} is a congruence class of θ. 4

Proposition 12.15. Let A be an algebra with R ≤ A3 such that for every a ∈ A and
i ∈ {1, 2, 3} the binary relation defined by ∃xi(R(x1, x2, x3) ∧ xi = a) is the graph of an
automorphism of A. Then A is abelian.

Proof. Note that the assumptions imply that R is the graph of a surjective binary operation
f : A2 → A. Also note that f is central, i.e., f : A2 → A is a homomorphism, because
R ≤ A3. Arbitrarily pick a ∈ A. Then f−1(a) is the graph of an automorphism α of A. Then
(x, y) 7→ f(x, α(y)) is central and its kernel C is a congruence of A2. The congruence class
(a, a)/C equals ∆A and the statement follows from Theorem 12.13.

13 Absorption

“The notion of absorption is, in a sense, complementary to abelianness”
(Barto and Kozik [13])

Absorption theory is an important topic in universal algebra, developed by Marcin Kozik and
Libor Barto, which has powerful applications for the study of homomorphism problems. It
can be seen as a tool to show the existence of certain solutions in instances of a CSP. This
section covers material that stems from [8,12,15].

Definition 13.1 (Absorbing subalgebras). Let A be an algebra and f ∈ Clo(A) of arity n.
A subalgebra B of A is called an absorbing subalgebra of A with respect to f , in symbols
B Cf A, if for all i ∈ {1, . . . , n}

f(B ×B × A︸︷︷︸
i

×B × · · · ×B) ⊆ B,

i.e., if for all a1, . . . , an ∈ A we have f(a1, . . . , an) ∈ B whenever all but at most one out of
a1, . . . , an are from B. If such an f exists we say that B absorbs A, and write B C A. A
subalgebra B of A is called n-absorbing if B Cf A for some f ∈ Clo(A) of arity n.

Since subalgebras are uniquely determined by their domain, we also use the notation
B C A if B is the domain of an absorbing subalgebra B of A. Note that if A is idempotent,
then B is 1-absorbing if and only if A = B. We say that A is absorption-free if A has no
proper absorbing subuniverse.

Example 13.2. The subuniverse {0} of the algebra ({0, 1};∧) is absorbing with respect to
the operation ∧. More generally, if A = (A;∧) where A is finite and ∧ is a semilattice
operation, then {

∧
A} C A. 4

Example 13.3. If A = ({0, 1}; majority) then both {0} C A and {1} C A. More generally,
in any algebra A with a near unanimity term t (see Section 6.6), every one-element subalgebra
is absorbing with respect to tA. 4
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Example 13.4. Let p be a prime, and let A = ({0, . . . , p − 1};m) be the algebra where
m(x, y, z) := x− y+ z and where + and − are the usual addition and subtraction modulo p.
Then the only absorbing subuniverses are ∅ and A, so A is absorption-free. Indeed, we already
know that the only proper subuniverses of A are of the form {a}, for a ∈ A (Exercise 144).
However, if t it an {m}-term, then by induction on the term structure one can show that
t(a, . . . , a, x, a, . . . , a) = x, which shows that {a} is not absorbing with respect to tA, and
hence {a} ≤ A is not absorbing. 4

Following the presentation in [13], we will prove in Proposition 13.7 below a converse to
the statement from Example 13.3.

Lemma 13.5. If B,C C A then A has a term operation f such that B,C Cf A.

Proof. If B Cs A and C Ct B for some s, t ∈ Clo(A), choose f := s ∗ t (Definition 8.32).

Remark 13.6. If B is n-absorbing, then it is also n+ 1-absorbing.

Proposition 13.7. Let A be a finite algebra. If every one-element subset is the domain of
an absorbing subalgebra of A, then A has a near unanimity term.

Proof. Since A is finite we can use Lemma 13.5 to construct a single term operation h such
that B Ch A for every one-element subalgebra B. But then h must be a near unanimity
operation.

An operation f : V n → V is called (fully) symmetric if f(x1, . . . , xn) ≈ f(xρ(1), . . . , xρ(n))
for every permutation ρ ∈ Sym({1, . . . , n}). The following example from [72] shows a structure
which has fully symmetric polymorphisms of all arities, but not totally symmetric polymor-
phisms of arity 3.

Example 13.8. Let A be the algebra on the domain A = {−1, 0, 1} which has for every
k ≥ 1 the k-ary operation sk defined as follows:

sk(x1, . . . , xn) =


0 if x1+···+xn

n ∈ (−1
3 ,

1
3)

1 if x1+···+xn
n ≥ 1

3

−1 otherwise.

Note that sk is fully symmetric and idempotent. Note that for every k ≥ 1, the operation sk
preserves the following two relations

R+ := {(a1, a2, a3) ∈ A | x1 + x2 + x3 ≥ 1}
R− := {(a1, a2, a3) ∈ A | x1 + x2 + x3 ≤ −1}

Suppose for contradiction that there exists a totally symmetric operation t : A3 → A which
preserves R+ and R−. Then

t(1, 1,−1) = t(1,−1, 1) = t(−1, 1, 1) = t(1,−1,−1) = t(−1, 1,−1) = t(−1,−1, 1) =: c.

If we apply t to the three tuples (1, 1,−1), (1,−1, 1), (−1, 1, 1) ∈ R+ we obtain (c, c, c) ∈ R+,
hence c = 1. The same argument applied to R− instead of R+ shows that c = −1, a
contradiction.

Note that A has the proper subalgebras {−1}, {0}, {1}, {−1, 0}, {0, 1}. All of them are
absorbing, witnessed by sk for some large enough k. 4
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13.1 Absorption Transfer

We start with some warm-up exercises concerning absorption.

Lemma 13.9. If C /B /A then C /A.

Proof. If B /t A for some t ∈ Clo(A) and C /s B for some s ∈ Clo(B), then C /s∗t A.

Corollary 13.10. If B /A and C /A then (B ∩ C) /A.

Proof. Note that (B ∩ C) / C with respect to the same term as B / A. Now the statement
follows from Lemma 13.9.

Lemma 13.11. Let ∼ be a congruence of A and suppose that B C A/∼. Then
⋃
B C A.

Proof. If B CtA/∼ (A/∼) for some term t(x1, . . . , xn) and b1, . . . , bn ∈ A are such that all but
one are from ∪B, then tA(b1, . . . , bn)/∼ = tA/∼(b1/∼, . . . , bn/∼) ∈ B. Hence,

⋃
B CtA A.

Example 13.12. Consider the Maltsev operation m on the set {0, 1, 2} from Example 7.4.
We claim that ({0, 1, 2};m) is absorption-free. By symmetry, if {0, 1} would be absorbing,
then {1, 2} would be as well, and by Lemma 13.11 the subalgebra {1} would be absorbing.
The argument that {1} is not absorbing is as in Example 13.4. Again by symmetry, this
shows that all proper subalgebras are not absorbing. 4

Lemma 13.13. If R ≤ A×B and S Cf R, then π1(S) Cf π1(R).

Proof. Suppose that a1, . . . , an ∈ π1(S), c ∈ π1(R), and i ∈ {1, . . . , n}. Then there are
b1, . . . , bn ∈ B and d ∈ B such that (a1, b1), . . . , (an, bn) ∈ S and (c, d) ∈ R. Since S Cf R we
have

f((a1, b1), . . . , (ai−1, bi−1), (c, d), (ai+1, bi+1), . . . , (an, bn)) ∈ S,

and hence f(a1, . . . , ai−1, c, ai+1, . . . , an) ∈ π1(S), which proves that π1(S) Cf π1(R).

Lemma 13.14. Let A be an idempotent algebra and suppose that A2 has a proper n-absorbing
subalgebra. Then A has a proper n-absorbing subalgebra as well.

Proof. Suppose that B is a proper non-empty subset of A2 such that B Cf A2 for some
f ∈ Clo(A)(n). Note that π1(B) Cf A by Lemma 13.13, and that π1(B) is non-empty.
Hence, if π1(B) 6= A then we are done, so suppose that π1(B) = A. Since B 6= A2, there
exists an a ∈ A such that B′ := π2

(
B ∩ ({a} × A)

)
6= A. Since π1(B) = A we have that

B′ 6= ∅, so it suffices to show that B′ Cf A. Let b1, . . . , bn ∈ B′, i ≤ n, and c ∈ A. We
have to show that d := f(b1, . . . , bi−1, c, bi+1, . . . , bn) ∈ B′. By the definition of B′ we have
(a, b1), . . . , (a, bn) ∈ B. Then

f((a, b1), . . . , (a, bi−1), (a, c), (a, bi+1), . . . , (a, bn))

= (f(a, . . . , a), f(b1, . . . , bi−1, c, bi+1, . . . , bn)) = (a, d) ∈ B

since B Cf A, hence d ∈ B′.
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Exercises.

183. Let A and B be two algebras of the same signature, and let R be the domain of a
subalgebra of A×B. For X ⊆ A we define

X +R := {b ∈ B | ∃a ∈ X : R(a, b)}.

Prove that

• if X ≤ A then (X +R) ≤ B;

• if R ≤ A×B is subdirect and X /f A, then (X +R) /f B.

184. Let A be a finite relational τ -structure and φ a primitive positive τ -formula.
Let A′ be a τ -structure on the same domain such that for each R ∈ τ we have
RA′ C RA. If φ defines S in A and defines S′ in A′, then S′ C S.

13.2 Essential Relations

This section presents a relational characterisation of absorption that will be needed in Sec-
tion 13.6 and in Section 14.2. The following material is mostly from Barto and Kazda [10].

Definition 13.15. Let B ≤ A and n ≥ 1. Then R ≤ An is B-essential if for every
i ∈ {1, . . . , n}

R ∩ (B × · · · ×B × A︸︷︷︸
i

×B × · · · ×B) 6= ∅

and R ∩Bn = ∅.

Note that if B ≤ A is a proper subuniverse and A is idempotent, then {a} is B-essential
for every a ∈ A \B.

Lemma 13.16. Let B ≤ A. If there is no B-essential relation of arity m, then for every
n ≥ m there is no B-essential relation of arity n.

Proof. If R ≤ An is B-essential, then π1,...,n−1(R ∩ (An−1 ×B)) is B-essential.

Lemma 13.17. Let A be an algebra with a term operation t of arity m such that B Ct A.
Then there are no B-essential relations R ≤ Am.

Proof. Suppose for contradiction that R ≤ Am is B-essential. Then there are a1, . . . , am ∈ Am
such that {ai1, . . . , aim}\{aii} ⊆ B for every i ∈ {1, . . . ,m}. Therefore, t(a1, . . . , am) ∈ R∩Bm,
because B Ct A, contrary to our assumptions.

Proposition 13.18. Let B ≤ A and R ≤ An for n ≥ m − 1. Suppose that A has no
B-essential relation of arity m and for every I ∈

({1,...,n}
m−1

)
we have πI(R) ∩Bm−1 6= ∅. Then

R ∩Bn 6= ∅.
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Proof. The proof is by induction on n ≥ m − 1. The base case n = m − 1 is immediate by
the assumption applied for I = {1, . . . , n}. For the inductive step, suppose that n ≥ m. For
every i ∈ {1, . . . , n} define

Ri := π[n]\{i}(R) ≤ An−1

and note that πI(Ri) ∩ Bm−1 6= ∅ for every I ⊆
({1,...,n}\{i}

m−1

)
. Hence, by the inductive

assumption we have that
Ri ∩Bn−1 6= ∅.

Since R is not essential by Lemma 13.16 we therefore must have R ∩Bn 6= ∅.

Corollary 13.19. Let t ∈ Clo(A)(m) be such that B Ct A and let R ≤ An for n ≥ m − 1.
Suppose that for every I ∈

({1,...,n}
m−1

)
we have πI(R) ∩Bm−1 6= ∅. Then

R ∩Bn 6= ∅.

Proof. Combine Lemma 13.18 with Lemma 13.17.

Lemma 13.17 has a converse (Proposition 16 in [10]); also see [94,95].

Theorem 13.20. Let m ≥ 1. A subalgebra B ≤ A m-absorbs A if and only if there are no
B-essential relations R ≤ Am.

Proof. The forward implication is Lemma 13.17. For the converse, suppose that A has no
B-essential relations of arity m. Let F ≤ AAm

be the free algebra generated by x1, . . . , xm
in HSP(A) (see Section 8.5). For i ∈ {1, . . . ,m}, let Xi := Bi−1 × (A \ B) × Bm−i, and let
X := X1 ∪ · · · ∪Xm, which will be used as index set of the relation R defined as follows:

R := πX(F ) ≤ AX1 × · · · ×AXm .

Let I ⊆
(
X
m−1

)
. We claim that πI(R) ∩Bm−1 6= ∅: indeed, by the pigeon-hole principle there

exists i ∈ {1, . . . ,m} such that I ∩Xi = ∅. Since F contains πmi we have

R ∩ (BX1 × · · · ×BXi−1 ×AXi ×BXi+1 × · · · ×BXm) 6= ∅

which shows the claim.
Therefore, Proposition 13.18 implies that R ∩ Bn 6= ∅. By definition, any element of

R∩BX can be extended to an element t ∈ F, and any such t is a term operation of A of arity
m which absorbs B.

13.3 The Absorption Theorem

The presentation of this section is based on the lecture notes of Libor Barto. The goal of this
section is to show that finite idempotent Taylor algebras (see Remark 9.20) must have some
form of absorption; this idea will be formalised in the absorption theorem, Theorem 13.33
below, which is from [12].

Definition 13.21. Let A be an algebra. A subset B ⊆ A is called projective in A (in
some papers called cube term blocker [81]) if for every f ∈ Clo(A) of arity n there exists
i ∈ {1, . . . , n} such that

f(A,A, . . . , A, B︸︷︷︸
position i

, A, . . . , A) ⊆ B;

as usual, the term on the left stands for {f(x1, . . . , xn) | x1, . . . , xn ∈ A, xi ∈ B}.
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Note that subsets of A that are projective in A are subuniverses of A. Recall the definition
of minion homomorphisms from Section 9.1. Our starting point is the following theorem.

Theorem 13.22. Let A be an algebra such that there is no minion homomorphism from
Clo(A) to Proj and let B ⊆ A. Then B 2-absorbs A, or is not projective.

Proof. Suppose that B is projective, so for every f ∈ Clo(A) of arity n there exists if ∈ [n]
such that

f(A, . . . , A, B︸︷︷︸
if

, A, . . . , A) ⊆ B. (30)

If if is unique for every f ∈ Clo(A), then Clo(A) → Proj given by f 7→ πnif is a minion

homomorphism: indeed, let α : [n] → [k] and f ∈ Clo(A) and suppose that there exists a
unique i ∈ [n] such that (30) holds. Then fα is an operation of arity k such that

fα(A, . . . , A, B︸︷︷︸
α(i)

, A, . . . , A) ⊆ f(A, . . . , A, B︸︷︷︸
i

, A, . . . , A) ⊆ B

and by assumption α(i) is the only index j ∈ [k] such that fα(A, . . . , A, B︸︷︷︸
j

, A, . . . , A) ⊆ B.

Hence,
ξ(fα) = πkα(i) = (πni )α = ξ(f)α

and ξ is a minion homomorphism.
So there exists f ∈ Clo(A) and i 6= j such that

f(A, . . . , A, B︸︷︷︸
i

, A, . . . , A) ⊆ B and f(A, . . . , A, B︸︷︷︸
j

, A, . . . , A) ⊆ B

Define r(x, y) := f(x, . . . , x, y︸︷︷︸
j

, x, . . . , x) and observe that B Cr A.

If A does not have proper projective subuniverses, then in exchange it must have a term
operation satisfying the following strong condition.

Definition 13.23. An operation t : An → A is called transitive if for every a ∈ A and
i ∈ {1, . . . , n} we have

t(A, . . . , A, {a}︸︷︷︸
i

, A, . . . , A) = A.

Clearly, if |A| > 1, then a transitive operation must have arity at least two.

Theorem 13.24. Let A be a finite idempotent algebra without proper projective subuniverses.
Then Clo(A) contains a transitive operation.

Proof. By assumption, for every proper subset B of A there exists tB ∈ Clo(A) of arity n
such that for every i ∈ {1, . . . , n}

tB(A, . . . , A, B︸︷︷︸
i

, A, . . . , A) 6⊆ B.
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A BR A BR

C

Figure 18: Illustrations of R ≤ A × B with non-empty left center C (left side), and of
R ≤ A×B which is linked (right side); none of the two examples is subdirect.

Using the star product and the idempotence of A, Lemma 9.14 implies that we may suppose
that there exists a single term t that works for all proper B ⊂ A. Then u := t ∗ · · · ∗ t︸ ︷︷ ︸

|A| times

is

transitive, because for every a ∈ A and j ∈ {1, . . . , |A|}

| t ∗ · · · ∗ t︸ ︷︷ ︸
j times

(A, . . . , A, {a}︸︷︷︸
i

, A, . . . , A)| ≥ j

and hence u(A, . . . , A, {a}︸︷︷︸
i

, A, . . . , A) = A.

Corollary 13.25. Let A be a finite idempotent Taylor algebra. Then A has a proper 2-
absorbing subuniverse, or Clo(A) contains a transitive operation.

Proof. Since A is Taylor, there is no minion homomorphism from Clo(A) to Proj (Theo-
rem 9.15; Remark 9.20). If A has a proper projective subuniverse B, then B 2-absorbs A by
Theorem 13.22 and we are done. Otherwise, all proper subuniverses of A are not projective,
and Clo(A) contains a transitive operation by Theorem 13.24.

We will now explore consequences of having a transitive term operation for the existence
of proper absorbing subuniverses. Let A and B be algebras, and let R ⊆ A×B be a relation.

Definition 13.26 (left centre9). The left centre of R is the set

{a ∈ A | (a, b) ∈ R for every b ∈ B}.

See Figure 18, left side.

Proposition 13.27. Let A and B be idempotent algebras with the same signature and let
R ≤ A × B with left centre C be such that for every a ∈ A there exists b ∈ B such that
(a, b) ∈ R. If there exists a term such that tB is transitive, then C CtA A.

9There is no connection with the notion of centrality from Definition 12.4.

130



Proof. If C is empty, then the statement is trivial, so suppose that C is non-empty. Since B
is idempotent, C ≤ A. Let i ∈ [n], z1, . . . , zi−1, zi+1, . . . , zn ∈ C, a ∈ A, and

a′ := tA(z1, . . . , zi−1, a, zi+1, . . . , zn).

To show that C CtA A we need to show that a′ ∈ C, i.e., (a′, b) ∈ R for every b ∈ B. Arbitrar-
ily choose b ∈ B. By assumption, there exists c ∈ B such that (a, c) ∈ R. By the transitivity
of tB there are d1, . . . , di−1, di+1, . . . , dn ∈ B such that tB(d1, . . . , di−1, c, di+1, . . . , dn) = b.
Note that (z1, d1), . . . , (zi−1, di−1), (zi+1, di+1), . . . , (zn, dn) ∈ R since z1, . . . , zi−1, zi+1, . . . , zn
are from the left center of R. Since R ≤ A×B, we have that

(a′, b) =
(
tA(z1, . . . , zi−1, a, zi+1, . . . , zn), tB(d1, . . . , di−1, c, di+1, . . . , dn)

)
∈ R

and the proof is complete.

Corollary 13.28. Let A and B be finite idempotent algebras with the same signature such
that B is Taylor. Let R ≤ A×B with left centre C be such that for every a ∈ A there exists
b ∈ B such that (a, b) ∈ R. Then B has a proper 2-absorbing subuniverse or C C A.

Proof. Suppose that B does not have a proper 2-absorbing subuniverse. Then Corollary 13.25
implies that B has a transitive term operation t. Hence, Proposition 13.27 implies that
C Ct A.

The relation R can be viewed as the edge relation of a bipartite graph GR with color
classes A and B (this perspective was already presented in Section 8.3).

Definition 13.29 (Linked relations). R ⊆ A×B is linked if GR is connected after removing
isolated vertices.

See Figure 18 on the right. Note that if R is a subdirect subalgebra of A × B (Defini-
tion 8.16) then GR has no isolated vertices. Also note that if R has a non-empty left centre,
then it is linked (but not necessarily subdirect). Recall the definition of R−1 from Exercise 94.

Proposition 13.30. Let A and B be finite idempotent algebras with the same signature and
let R ≤ A × B be with empty left centre and such that R−1 ◦ R = B2. Then there exists a
subdirect R′ ≤ B2 whose left centre is a proper subuniverse of B.

Before we go into the proof we consider an example.

Example 13.31. Suppose that B has domain B = {1, 2, 3} and B2 has the subuniverse
R := {(u, v) ∈ B2 | u 6= v}. Clearly, the left centre of R is empty. Then

R′ := {(x, y) | ∃a(R(a, x) ∧R(a, y) ∧R(a, 1))} = {(1, 1), (1, 2), (1, 3), (2, 1), (3, 1)}

is a subuniverse of B2 (we use that {1} is a subuniverse), is subdirect, and has the left centre
{1}. 4

Proof of Proposition 13.30. For D = {d1, . . . , dk} ⊆ B define

SD :=
{

(x, y) ∈ B2 | ∃a
(
R(a, x) ∧R(a, y) ∧R(a, d1) ∧ · · · ∧R(a, dk)

)}
.

Then
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Figure 19: An illustration for the definition of SE in the proof Proposition 13.30.

• SD ≤ B2 by the idempotence of B,

• S∅ = R−1 ◦R = B2 by assumption, and

• SB = ∅ because the left centre of R is empty.

Let D be maximal such that SD = B2, and let E ⊆ B and b ∈ B be a set such that
E \D = {b}. See Figure 19. Let C be the left centre of SE .

• C contains b and hence is non-empty: indeed, for any y ∈ B there exists a ∈ A
witnessing that (b, y) ∈ SD = B2, i.e., R(a, b), R(a, y), and R(a, d) for every d ∈ D.
Hence, (b, y) ∈ SE and b ∈ C.

• SE ≤ B2 is subdirect: since C is non-empty, for every y ∈ B there is c ∈ C such that
(y, c) ∈ SE and (c, y) ∈ SE .

• C is a proper subset of B. Otherwise, the centrality of C would imply that SE = B2,
contrary to the choice of D and E.

Therefore, R′ := SE meets the requirements.

Proposition 13.32. Let A,B be finite idempotent algebras with the same signature and let
R ≤ A×B be subdirect and linked such that R 6= A× B. Then at least one of the following
cases applies.

• R has a non-empty left centre.

• there exists a subdirect R′ ≤ B2 whose left centre is a proper subuniverse of B.

Proof. Suppose that the left centre C of R is empty. If R−1 ◦ R = B2 then the statement
follows from Proposition 13.30. Otherwise, R−1 ◦ R ≤ B2 is subdirect, proper, and linked
(Exercise 186), so we may replace A by B and R by R−1 ◦R. Since R is linked and subdirect,
we have that (R−1 ◦ R)n = B2 for some n ∈ N. Hence, if we repeat the argument, we
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eventually find a proper, subdirect, and linked subuniverse R of B2 such that R−1 ◦R = B2.
If the left centre of R is non-empty it is a proper subalgebra of B and we are done. Otherwise,
the statement again follows from Proposition 13.30.

Theorem 13.33 (Absorption theorem [12]). Let A,B be finite idempotent algebras such that
B is Taylor. Then for every linked and subdirect R ≤ A×B one of the following is true:

1. R = A×B;

2. A has a proper absorbing subuniverse.

3. B has a proper absorbing subuniverse.

Proof. Suppose that R 6= A × B because otherwise item 1 of the theorem holds and we are
done. Let C be the left centre of R. Note that C 6= A because R 6= A×B.

Suppose also that B is absorption-free, because otherwise item 3 of the theorem holds.
Corollary 13.28 then implies that C C A. If C is non-empty, then we have found a proper
absorbing subuniverse of A and item 2 of the theorem holds. Otherwise, Proposition 13.32
implies that there exists a subdirect R′ ≤ B2 whose left centre is a proper subuniverse of B.
In this case, B has a proper absorbing subuniverse by Corollary 13.28, in contradiction to the
assumption above.

Exercises.

185. Let A and B be idempotent algebras and R ≤ A×B. Show that
the left center of R is a subalgebra of A.

186. Show that if R ≤ A×B is linked, then R−1 ◦R ≤ B2 is linked, too.

187. Suppose that A is a simple algebra. Then every subdirect R ≤ A2

is linked or the graph of an automorphism of A.
Hint. Consider

⋃
i∈N(R ◦R−1)i.

188. Let A be a finite algebra and B ⊆ A. Then B is a projective in A
if and only if Clo(A) preserves for every n the relation B[n] := An \ (A \B)n.

189. Let A,B be a algebras and let R ≤ A × B be subdirect. Let θA be the kernel of
π1 : R→ A and let θB be the kernel of π2 : R→ B. Show that R is linked if and only if
θA ∨ θB = 1R.

13.4 Abelianness Revisited

The fundamental theorem of abelian algebras (Theorem 12.12) implies that every abelian
algebra with a Maltsev term is affine. In this section we considerably strengthen this theorem
for finite idempotent algebras by replacing the assumption of having a Maltsev term by having
a Taylor term (Corollary 13.39). This result follows from tame congruence theory (Hobby
and McKenzie [63]; see the discussion in [15]); the new proof based on absorption that we
present here is from [15]; the presentation follows lecture notes of Libor Barto.

Definition 13.34. An algebra A is called hereditarily absorption-free (HAF) if no subalgebra
of A has a proper absorbing subalgebra, i.e., whenever C is a non-empty absorbing subalgebra
of an subalgebra B of A, then C = B.
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We will first prove that ‘HAF and Taylor implies Maltsev’ (Theorem 13.37), and then
that ‘abelian implies HAF’ (Theorem 13.38). First we prove that HAF is closed under taking
direct products.

Lemma 13.35. Let A,B be idempotent hereditarily absorption-free algebras with the same
signature. Then A×B is hereditarily absorption-free.

Proof. Suppose that S C R ≤ A × B is non-empty. We have to show that S = R. Let
(a, b) ∈ R and consider the subalgebras D ≤ C ≤ B given by

C := {b′ | (a, b′) ∈ R} ≤ B (since B is idempotent)

and D := {b′ | (a, b′) ∈ S} ≤ C (since B is idempotent).

Claim 1. D 6= ∅. Note that π1(S) ≤ π1(R) ≤ A (for the notation, see the comments
after Definition 6.30). We even have π1(S) C π1(R) (Lemma 13.13). Since A is HAF, we
get π1(S) = π1(R). Since a ∈ π1(R), there must be b′ ∈ B such that (a, b′) ∈ S. Therefore,
b′ ∈ D 6= ∅.

Claim 2. D C C. By assumption, there exists a term operation f ∈ Clo(R)(n) such
that S Cf R. Let b1, . . . , bn ∈ C be such that all but one of them are from D. Then
f((a, b1), . . . , (a, bn)) = (a, f(b1, . . . , bn)) ∈ S since A is idempotent and S Cf R. It follows
that f(b1, . . . , bn) ∈ D.

By the assumption that B is HAF, we must have D = C and hence (a, b) ∈ S. Since
(a, b) ∈ R was chosen arbitrarily, this implies that R = S.

Corollary 13.36. The class of idempotent HAF algebras of fixed signature τ forms a pseudo-
variety.

Proof. By definition of HAF, the class is closed under subalgebras. Closure under finite
products has been established in Lemma 13.35. Closure under homomorphic images is by
Lemma 13.11.

Theorem 13.37 (Theorem 1.4 in [15]). Let A be a finite idempotent Taylor algebra. If A is
hereditarily absorption-free, then A has a Maltsev term.

Proof. Let F ∈ HSPfin(A) be the free algebra over two generators x, y (see Section 8.5). It
follows from Corollary 13.36 that F is HAF. Let R be the subalgebra of F2 generated by
(x, y), (x, x), and (y, x).

Claim 1. R ≤ F2 is subdirect. Every element of F can be written as t(x, y) for some
term t, and since (x, y) ∈ R and (y, x) ∈ R we have that (tF(x, y), tF(y, x)) ∈ R. A similar
statement holds for the second argument of R. This shows that R is a subdirect subalgebra
of F2.

Claim 2. R is linked. Every element of R can be written as

sR((x, y), (x, x), (y, x)) = (sF(x, x, y), sF(y, x, x))

for some term s. Since (x, x), (y, x) ∈ R we have that (sF(x, x, y), sF(x, x, x)) ∈ R and since
(x, y), (x, x) ∈ R we have (sF(x, x, x), sF(y, x, x)) ∈ R. Note that sF(x, x, x) = x by the
idempotence of A and F, and thus between any two elements of F there is a path of length
at most three in the bipartite graph GR of R, which proves the claim.
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Since F ∈ SP(A) (Proposition 8.23) and Clo(A) has no minion homomorphism to Proj,
neither has F (Proposition 8.39). Since F has no proper non-empty absorbing subalgebra,
Theorem 13.33 implies that R = F ×F . Let m be a term such that mF((x, y), (x, x), (y, x)) =
(y, y). Then mA is a Maltsev operation.

The following is a special case of Lemma 4.1 in [15].

Theorem 13.38. Let A be a finite idempotent algebra. If A is abelian then A is hereditarily
absorption-free.

Proof. Since every subalgebra of an abelian algebra is abelian (Exercise 174), it suffices to
show that if B C A, then B = A. We will show that if B Ct A for some n-ary term operation
t ∈ Clo(A), for n ≥ 2, then B Cs A for some n− 1-ary s. This is enough, because if B Cs A
and s is unary, then s must be the identity by the idempotence of A, hence B = A. Define
the term tm(x̄, y), where x̄ = (x1, . . . , xn−1), as follows

tm(x̄, y) := t(x̄, t(x̄, . . . , t(x̄︸ ︷︷ ︸
m times

, y))).

Note that B Ctm A for every m ≥ 1.

Claim 1. For m = |A|! we have

tm(x̄, tm(x̄, y)) = tm(x̄, y). (31)

To see this, define rx̄ : A→ A by rx̄(y) := t(x̄, y). Then note that

tm(x̄, y) = rx̄ ◦ · · · ◦ rx̄︸ ︷︷ ︸
m times

(y)

and observe that (see Exercise 115)

rx̄ ◦ · · · ◦ rx̄︸ ︷︷ ︸
2m times

(y) = rx̄ ◦ · · · ◦ rx̄︸ ︷︷ ︸
m times

(y).

Claim 2. B Cs A for s : An−1 → A defined by

s(x1, . . . , xn−1) := tm(x1, . . . , xn−1, xn−1).

Let a ∈ A and b1, . . . , bn−2 ∈ B. Clearly, s(b1, . . . , bi, a, bi+1, . . . , bn−2) ∈ B for all i < n − 1,
since B Ct A. We have to verify that s(b1, . . . , bn−2, a) ∈ B. From (31) we obtain that

tm(b1, . . . , bn−2, bn−1, tm(b1, . . . , bn−2, bn−1, a)) = tm(b1, . . . , bn−2, bn−1, a)

and since A is abelian, we may apply the term condition to the term tm at the (n − 1)-st
argument and obtain

tm(b1, . . . , bn−2, a, tm(b1, . . . , bn−2, bn−1, a)) = tm(b1, . . . , bn−2, a, a).

The right hand side of this equation equals s(b1, . . . , bn−2, a), and the left hand side is con-
tained in B since B Ctm A.

Corollary 13.39. Let A be a finite idempotent abelian Taylor algebra. Then A is affine.

Proof. If A is abelian, then by Theorem 13.38 it is hereditarily absorption-free. Theorem 13.37
implies that A has a Maltsev term m. Then Theorem 12.12 implies that A is affine.
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Exercises.

190. Let A := (A,+,−, 0) be a group for A = {a1, . . . , an}. Show that CSP(A; +, a1, . . . , an)
is in P if A is abelian, and is NP-hard otherwise.10

13.5 Paper, Scissors, Stone

This section describes a fundamental example of a three-element algebra which shows some
interesting behaviour and which provides important intuition for the abstract results in the
following sections. On the one hand, it is absorption-free, but on the other hand it is not
hereditarily absorption-free.

Definition 13.40 (Paper-Scissors-Stone algebra). Let A be the algebra
with the domain A := {0, 1, 2} and let · : A2 → A be the binary operation
given by the multiplication table on the right.

· 0 1 2

0 0 1 0
1 1 1 2
2 0 2 2

Paper
0

Scissors
1

Stone
2

Note that A has the automorphism

ρ : x 7→ x+ 1 mod 3.

Let C3 := {(a, ρ(a)) | a ∈ A} be the binary relation on A
which denotes the graph of ρ. All three 2-element subsets of A
are subuniverses of the algebra A = (A; ·), and in each of the
corresponding subalgebras the operation · denotes a semilattice
operation; however, · itself is not a semilattice operation. We will see below (see Remark 13.44)
that none of the proper subalgebras of A is absorbing. However, {1} is a proper absorbing
subuniverse of the subalgebra of A with domain {0, 1}, so A is not HAF, and in particular
not Abelian 13.38. Note that for any a, b ∈ A

(a · ρ−1(b)) · b = b. (32)

The algebra A is simple. Indeed, if C is a congruence which contains (0, 1), then it must
also contain (0, 1) · (2, 2) = (0, 2), and therefore also (1, 0) and (2, 0) by symmetry. By similar
reasoning we conclude that C = A2, which shows that A has no proper congruences.

We first present an interesting relational description of Clo(A). Note that Inv(A) also
contains the relation

R=
3 :=

{
(x, y, z) ∈ A3 | x ∈ {0, 1} ∧ (x = 0⇒ y = z)

}
.

The relation R=
3 ≤ A3 is not subdirect, because the first argument cannot take value 2.

Lemma 13.41. Let R ≤ An, for n ≥ 1, be subdirect. Then R can be defined by a conjunction
of atomic formulas over (A;C3).

Proof. Our proof is by induction on n. For n = 1 we have R = A and hence R can be defined
by x = x. If n = 2, then R is the graph of an automorphism of A or linked, because A is
simple (Exercise 187). In the first case, either C3(x, y), C3(y, x), or x = y defines R, and we
are done, so let us assume that R is linked.

10This result is due to Goldmann and Russell [58]; it can be derived relatively easily from the results in this
text. Hint: Combine Exercise 182, Theorem 7.1, Proposition 12.15, Corollary 9.18, and Corollary 13.39.
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Claim. R = A2. Indeed, if (u, v) ∈ A2, then the linkedness of R implies that (u, v) ∈ R or
there exists a path p1, . . . , p2k ∈ A for k ≥ 1 such that (u, p1), (p2, p1), (p2, p3), . . . , (p2k, v) ∈ R.
In the first case there is nothing to be shown. Otherwise, choose k as small as possible. If
k = 1, we may assume that p2 6= u and p1 6= v, because otherwise we are in the first case. Let
a, b ∈ A be such that {u, p2, a} = A = {v, p1, b}. Since R is subdirect, there exist a′, b′ ∈ A
such that (a, a′), (b′, b) ∈ R.

Note that (u, p1) · (p2, v) ∈ {(u, v), (u, p1), (p2, p1), (p2, v)}. If (u, p1) · (p2, v) = (u, v) then
(u, v) ∈ R, contrary to the minimal choice of k. If (u, p1) · (p2, v) = (p2, v), we consider the
following subcases.

1. a′ = v. Then (a, a′) · (u, p1) = (u, a′) = (u, v) ∈ R, contradiction.

2. a′ = p1. Then (a, a′) · (p2, v) = (a, v) ∈ R, and we are in the first subcase.

3. a′ = b. Then (a, a′) · (p2, p1) = (a, p1) ∈ R and we are in the second subcase.

The case that (u, p1)·(p2, v) = (u, p1) is similar. Finally, suppose that (u, p1)·(p2, v) = (p2, p1).
Again, we break into subcases.

1. a′ = v and b′ = u. Then (a, a′) · (b′, b) = (u, v) ∈ R, a contradiction.

2. a′ = p1 and b′ = p2. Then (a, a′) · (b′, b) = (a, b) and (a, b) · (p2, v) = (a, v) ∈ R.
Moreover, (u, p1) · (a, b) = (u, b) ∈ R. Hence, (a, v) · (u, b) = (u, v) ∈ R, and we are
done.

3. a′ = v and b′ = p2. Then (p2, p1) · (a, a′) = (a, p1) ∈ R and we are in subcase 2.

4. a′ = p1 and b′ = u. Then (b′, b) · (p2, p1) = (p2, b) ∈ R and we are again in subcase 2.

5. a′ = b. Then (a, a′) · (p2, v) = (a, v) ∈ R and (a, a′) · (u, p1) = (u, a′) ∈ R, and we are in
subcase number one.

Finally, if k ≥ 2, then we may assume that {u, p2, p4} = A = {v, p1, p3}. Then either
(u, p1) · (p4, p3) or (u, p1) · (p4, v) is from {(u, v), (u, p3), (p4, p1)}, and in each case we obtain
a contradiction to the minimal choice of k. This concludes the proof of the claim.

Now consider the case n ≥ 3. If R(x1, . . . , xn) implies C3(xi, xj) for some {i, j} ∈
(

[n]
2

)
,

then R has the definition C3(xi, xj) ∧ ψ in A, where ψ is the definition of π[n]\{j}(R) in A,
which exists by inductive assumption. Similarly we can treat the case that xi = xj is implied
instead of C3(xi, xj). Otherwise, we will show that R = An. Let t ∈ An. For any a ∈ A, the
(n− 1)-ary relation Ra := {x̄ | (x̄, a) ∈ R} is is preserved by ·. Moreover, we will prove that
it is subdirect. Indeed, let b ∈ A. Note that the binary relation π2,3(R) equals A2 by the case
n = 2, and hence in particular contains (b, a). Therefore, there exists c′ ∈ An−2 such that
(c′, b, a) ∈ R, and thus (c′, b) ∈ Ra. Similar arguments apply to the other arguments of Ra,
showing that Ra ≤ An−1 is subdirect.

First consider the case n = 3. Since Rt3 ≤ A3 is subdirect, by the case n = 2 the
formula Rt3 equals A2, =A, C3, or {(y, x) | (x, y) ∈ C3}. In any case, Rt3 contains (t1, t

′
2)

and (t′1, t2) for some t′1, t
′
2 ∈ A. If t′1 = t1 or t′2 = t2, then t ∈ R and we are done. If

t′1 = ρ−1(t1) and t′2 = ρ−1(t2), then (t′1, t2, t3) · (t1, t′2, t3) = t ∈ R and we are again done.
Hence, up to reordering the arguments of R we may assume that t′2 = ρ(t2), and since Rt3
is preserved by ρ−1 we get that (ρ−1(t1), t2) ∈ Rt3 . Therefore, t′ := (ρ−1(t1), t2, t3) ∈ R.
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By similar reasoning with the relation {(x, y) | (t1, x, y) ∈ R} instead of Rt3 we obtain that
t′′ := (t1, ρ

−1(t2), t3) ∈ R or t′′ := (t1, t2, ρ
−1(t3)) ∈ R. Applying · to t′, t′′ ∈ R, we again

obtain t ∈ R.
Finally, consider the case n > 3. Then for i, j ∈

(
[n−1]

2

)
we have that πi,j,n(R) = A3 by

the case n = 3. Hence, for any a ∈ A we have πi,j(Ra) = A2, and it follows from the case
n− 1 that Ra = An−1. This means that R = An.

Definition 13.42. A pss-Horn clause is a formula of the form∧
i∈[k]

xi ∈ {ai, ρ(ai)} ∧ ((
∧
i∈[k]

xi = ai)⇒ ψ)

where a1, . . . , ak ∈ A are constants, x1, . . . , xk are variables, and where ψ is

• of the form y ∈ {c, d}, for c, d ∈ A and a variable y,

• of the form C3(y, z) for variables y and z, or

• of the form y = z for variables y and z.

Note that k = 0 is permitted and some variables may be equal.

Proposition 13.43. For every R ⊆ An, the following are equivalent.

1. R is preserved by ·;

2. R can be defined by a conjunction of pss-Horn clauses;

3. R has a primitive positive definition in the structure ({0, 1, 2};C3, R
=
3 ).

Proof. For the implication from 1. to 2., suppose that R is preserved by ·. Let φ(x1, . . . , xn)
be the conjunction over all pss-Horn clauses that are implied by R(x1, . . . , xn). We prove
that φ defines R. Suppose that t satisfies φ. Let {i1, . . . , ik} ⊆ [n] be maximal such that
R(x1, . . . , xn) implies

xi1 ∈ {ti1 , ρ(ti1)}
∧ xi1 = ti1 ⇒ xi2 ∈ {ti2 , ρ(ti2)}
∧ (xi1 = ti1 ∧ xi2 = ti2)⇒ xi3 ∈ {ti3 , ρ(ti3)}

· · · ∧ (xi1 = ti1 ∧ · · · ∧ xik−1
= tik−1

)⇒ xik ∈ {tik , ρ(tik)}.

For the sake of notation, we assume that i1 = n, . . . , ik = n− k + 1, which is without loss of
generality, because otherwise we may reorder the arguments of R accordingly. Define

R′ := {(x1, . . . , xn−k) | (x1, . . . , xn−k, tn−k+1, . . . , tn) ∈ R} ≤ An−k.

Note that if πi(R
′) = {a, ρ(a)}, for a ∈ A and i ∈ {m + 1, . . . , n − k}, then R(x1, . . . , xn)

implies that (xn−k+1 = tn−k+1 ∧ · · · ∧ xn = tn) ⇒ xi ∈ {a, ρ(a)}. If a = ti we obtain a
contradiction to the maximality of k. Hence, we must have ti = ρ(a).

Also note that R′ 6= ∅ because otherwise the following pss-Horn clause is implied by
R(x1, . . . , xn).

∧
i∈{n−k+1,...,n}

xi ∈ {ti, ρ(ti)} ∧

 ∧
i∈{n−k+1,...,n}

xi = ti

⇒ C(xn, xn)
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But this formula is false for t, contrary to the assumptions that t satisfies φ. By further
reordering the arguments of R we may additionally assume that there exists m ∈ {0, . . . , n−k}
such that πi(R

′) = A for i ∈ [m] and |πi(R′)| ≤ 2 for i ∈ {m+ 1, . . . , n− k}.
If m ≥ 1, then π[m](R

′) is subdirect in Am. Hence, Lemma 13.41 implies that π[m](R
′)

can be defined by a conjunction of atomic formulas ψ over (A;C3). Then for every conjunct
χ of ψ we have that R(x1, . . . , xn) implies the pss-Horn clause

∧
j∈{n−k+1,...,n}

xj ∈ {tj , ρ(tj)} ∧

 ∧
j∈{n−k+1,...,n}

xj = tj

⇒ χ.

It follows that (t1, . . . , tm) ∈ π[m](R
′) satisfies ψ, and hence (ρ−1(t1), . . . , ρ−1(tm)) ∈ π[m](R

′)
since C3 is preserved by ρ−1. So (t1, . . . , tm) and (ρ−1(t1), . . . , ρ−1(tm)) can be extended to
tuples p, q ∈ R′, respectively. If m = 0, then we pick p, q ∈ R′ arbitrarily.

For i ∈ [n−k], let si ∈ R′ be such that sii = ti. Define s := sm+1 ·(· · ··(sn−k−1 ·sn−k) · · · ) ∈
R′, and note that si = sii = ti for all i ∈ {m+ 1, . . . , n−k}. Observe that (si ·ρ−1(ti)) · ti = ti
for i ∈ [m] using (32). Also observe that si · qi = si = ti and that si · pi = si = ti for
i ∈ {m+ 1, . . . , n− k}, because pi, qi ∈ {ρ−1(ti), ti} = πi(R

′). Therefore,

(s · q) · p =
(
(s1 · ρ−1(t1)) · t1, . . . , (sm · ρ−1(tm)) · tm, sm+1, . . . , sn−k

)
= (t1, . . . , tm, tm+1, . . . , tn−k) ∈ R′.

This in turn shows that t ∈ R and concludes the proof of the implication from 1 to 2.
For the implication from 2. to 3. it suffices to show that every pss-Horn clause has a

primitive positive definition in ({0, 1, 2};C3, R
=
3 ). Note that

• {0, 1} has the primitive positive definition ψ(x) given by

∃y, z.R=
3 (x, y, z);

• {1, 2} has the primitive positive definition

∃y
(
C3(y, x) ∧ y ∈ {0, 1}

)
;

• similarly, {2, 0} and hence also {0}, {1}, and {2} are primitively positively definable.

Next, for every k ≥ 1, the relation

R=
k+2{(x1, . . . , xk, y, z) ∈ {0, 1}k ×A2 | x1 = · · · = xk = 0⇒ y = z}

has the following primitive positive definition

∃u1, . . . , uk+1

(
R=

3 (x1, y, u1) ∧R=
3 (x2, u1, u2) ∧ · · · ∧R=

3 (xk−1, uk−1, uk) ∧R=
3 (xk, uk, z)

)
.

This allows us to define for every a1, . . . , ak ∈ A the relation

R=
a1,...,ak

:=

{
(x1, . . . , xk, y, z) ∈ Ak+2 |

k∧
i=1

xi ∈ {ai, ρ(ai)} ∧

((
k∧
i=1

xi = ai

)
⇒ y = z

)}
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by the formula

∃u1, . . . uk

(
R=
k+2(u1, . . . , uk, y, z) ∧

k∧
i=1

φi(xi, ui)

)
,

where

φi :=


xi = ui if ai = 0;

C3(ui, xi) if ai = 1;

C3(xi, ui) if ai = 2.

Finally, let c, d ∈ A. The pss-Horn clause

k∧
i=1

xi ∈ {ai, ρ(ai)} ∧

((
k∧
i=1

xi = ai

)
⇒ y ∈ {c, d}

)

can be defined by
∃u (R=

a1,...,ak
(x1, . . . , xk, y, u) ∧ u ∈ {c, d})

and the pss-Horn clause

k∧
i=1

xi ∈ {ai, ρ(ai)} ∧

((
k∧
i=1

xi = ai

)
⇒ C3(y, z)

)

by
∃u
(
R=
a1,...,ak

(x1, . . . , xk, y, u) ∧ C3(u, z)
)
.

Finally, for the implication from 3. to 1. we verify that C3 and R=
3 are preserved by ·. For

C3, this is immediate from the fact that ρ is an automorphism of A. If (x1, y1, z1), (x2, y2, z2) ∈
R=

3 , we have to show that (x0, y0, z0) := (x1 · x2, y1 · y2, z1 · z2) ∈ R=
3 . We have x1, x2 ∈ {0, 1}

and hence x0 = x1 ·x2 ∈ {0, 1}. If x0 = 1, then (x0, y0, z0) ∈ R=
3 and we are done. Otherwise,

we must have that x1 = x2 = 0, and hence y1 = z1 and y2 = z2. But then y0 = y1 · y2 =
z1 · z2 = z0 and again (x0, y0, z0) ∈ R=

3 . Hence, if R has a primitive positive definition in
({0, 1, 2};C3, R

=
3 ), it is preserved by ·, proving that 3. implies 1.

Remark 13.44. The algebra A is absorption free. First note thatB = {0, 1} is not absorbing.
Indeed, for every n ≥ 1 the relation

R := {(x1, . . . , xn−1, y) ∈ An | x1, . . . , xn−1 ∈ {1, 2} ∧ x1 = · · · = xn−1 = 1⇒ y = 2}

can be defined by a pss-Horn clause and hence is a subalgebra of An, and is B-essential: for
every i ∈ {1, . . . , n− 1} we have

R ∩ (Bi ×A×Bn−i−1) = {(1, . . . , 1, 2, 1, . . . , 1, 0), (1, . . . , 1, 2, 1, . . . , 1, 1)}
R ∩ (Bn−1 ×A) = {(1, . . . , 1, 2)}, but

R ∩Bn = ∅.

Hence, Lemma 13.17 implies that B is not absorbing. The same argument shows that C = {1}
is not absorbing. Every other proper subuniverse is symmetric to B or C via ρ.

Algorithms to solve CSP({0, 1, 2};C3, R
=
3 ) will be discussed in Section 15.
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Exercises.

190. Show that CSP({0, 1, 2};C3, R
=
3 ) can be solved by the 3-consistency

procedure (see Exercise 87).

191. Let A = ({0, 1, 2, 3, 4}; ◦) be the idempotent algebra where ◦ is given by
the rock, paper, scissors, lizzard, spock game:

• spock smashes scissors and vaporises rock,

• scissors cuts paper and decapitates lizard,

• paper disproves spock and covers rock,

• rock crushes scissors and rock, and

• lizard eats paper and poisons spock.

Determine the proper subalgebras and proper congruences of A. Which subalgebras
are absorbing? Is A Taylor, Abelian, absorption-free? Is A subdirectly complete?

192. Is there a structure A with a finite relational signature such that
a relation R ⊆ An is preserved by the operation ◦ from the previous exercise
if and only if R has a primitive positive definition in A?

13.6 Ternary Absorption

It will be convenient later to work with ternary absorbing (i.e., 3-absorbing) subalgebras
instead of absorbing subalgebras with respect to terms of unbounded arity; this will in par-
ticular help in some applications of the absorption theorem in Section 14. The results in this
section are from [95] and the presentation is based on [94].

Definition 13.45. We say that an absorbing subalgebra C of A is centrally absorbing, written
C CZ A, if

(a, a) /∈ 〈({a} × C) ∪ (C × {a})〉A2

for every a ∈ A \ C.

Example 13.46. The absorbing subuniverse {0} of A := ({0, 1}; majority) (Example 13.2)
is centrally absorbing, because

(1, 1) /∈ 〈(0, 1), (1, 0)〉A2 = {(0, 1), (1, 0)}.

The absorbing subuniverse {0} of B := ({0, 1};∧) (Example 13.3) is centrally absorbing,
because (1, 1) /∈ 〈(0, 1), (1, 0)〉B2 = {(0, 0), (0, 1), (1, 0)}. 4

The next example shows an algebra with an absorbing subuniverse which is not centrally
absorbing.

Example 13.47. Let A := ({0, 1};∧,∨)2 be the square of the 2-element lattice (Exam-
ple 8.5). Note that {(0, 0)} is absorbing with respect to ∧; however, 〈{(0, 1), (1, 0)}〉 = {0, 1}2,
so {(0, 0)} is not centrally absorbing. 4

One source of centrally absorbing subalgebras is the following proposition.
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Proposition 13.48. Let A and B be finite idempotent and such that B is Taylor and has
no proper 2-absorbing subuniverses. Let R ≤ A×B with left center C be such that for every
a ∈ A there exists b ∈ B such that (a, b) ∈ R. Then C CZ A.

Proof. By Corollary 13.28 we have that C C A. If C is not centrally absorbing, then for
some n,m ∈ N there exists a ∈ A \ C and a term operation t of A of arity n + m and
c1, . . . , cm, d1, . . . , dn ∈ C such that

t(a, . . . , a, c1, . . . , cm) = a = t(d1, . . . , dn, a, . . . , a).

Note that {a} + R (using the terminology from Exercise 183) is a proper subalgebra of B:
we have {a}+R 6= B because a /∈ C, and {a}+R 6= ∅ by assumption. Moreover, {a}+R is
2-absorbing with respect to f given by

f(x, y) := t(x, . . . , x︸ ︷︷ ︸
n

, y, . . . , y︸ ︷︷ ︸
m

) :

if b ∈ {a}+R and u ∈ B, note that (c1, u), . . . , (cm, u) ∈ R and (a, b) ∈ R, and hence

f(b, u) = t(b, . . . , b, u, . . . , u)

∈ {t(a, . . . , a, c1, . . . , cm)}+R = {a}+R.

Similarly, f(u, b) = t(u, . . . , u, b, . . . , b) ∈ {t(d1, . . . , dn, a, . . . , a)} + R = {a} + R. This con-
tradicts the assumption that B has no proper 2-absorbing subuniverses.

Interestingly, centrally absorbing subalgebras are 3-absorbing (Proposition 13.50). To
prove this result, we need the following lemma about essential relations (Definition 13.15).

Lemma 13.49 (Essential doubling). Let A be finite idempotent and let C CZ A. Suppose
that R ≤ An, for n ≥ 3, is C-essential. Then there exists R′ ≤ A2n−2 which is C-essential.

Proof. From all relations R that satisfy the assumptions given in the lemma for fixed n, choose
R such that B ≤ A given by

B := πn(R ∩ (Cn−1 ×A))

has minimal size. Note that B is non-empty and disjoint from C by the assumption that R
is C-essential. Also note that for every b ∈ B we have that B′ := 〈C ∪ {b}〉A contains B. To
see this, suppose for contradiction that d ∈ B \B′. Then we could replace R by the relation
R̃ := R ∩ (An−1 × B′). Note that R̃ is C-essential, and that πn(R̃ ∩ (Cn−1 × A)) ⊆ B′ does
not contain d, in contradiction to the choice of R and B.

Pick b ∈ B and define
S := 〈({b} × C) ∪ (C × {b})〉A2 .

Finally, let R′ ≤ A2n−2 be given as the set of all tuples (x1, . . . , xn−1, y1, . . . , yn−1) that satisfy

∃xn, yn
(
R(x1, . . . , xn) ∧ S(xn, yn) ∧R(y1, . . . , yn)

)
. (33)

We verify that R′ is C-essential. First, for i ∈ [2n− 2], we need to show that

R′ ∩ (Ci−1 ×A× C2n−2−i) 6= ∅. (34)
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If i ∈ [n− 1], we may choose (x1, . . . , xn) ∈ R∩ (Ci−1×A×Cn−i) since R is C-essential, and
we may choose (y1, . . . , yn) ∈ R∩ (Cn−1 ×{b}) since b ∈ B. Note that (xn, yn) = (xn, b) ∈ S,
so (x1, . . . , xn, y1, . . . , yn) satisfies the quantifier-free part of (33), which proves (34). If i ∈
{n, . . . , 2n− 2} then the proof is analogous.

Second, we need to show that
R′ ∩ C2n−2 = ∅,

which is equivalent to
S ∩B2 = ∅.

Suppose for contradiction that there is (b1, b2) ∈ S ∩ B2. As we have observed earlier,
b ∈ 〈C∪{b1}〉A. Hence, for some k ≥ 1 there exists f ∈ Clo(A)(k) and d2, . . . , dk ∈ C such that
b = f(b1, d2, . . . , dk). Let b′2 := f(b2, b, . . . , b) ∈ B. Since (b1, b2) ∈ S and (d2, b), . . . , (dk, b) ∈
S we have that (b, b′2) ∈ S. We also have b ∈ 〈C ∪ {b′2}〉A by the same argument as above,
and hence there exists f ′ ∈ Clo(A)(`) and e2, . . . , e` ∈ C such that b = f ′(b′2, e2, . . . , e`).
Since (b, b′2), (b, e2), . . . , (b, e`) ∈ S we have that (f ′(b, b, . . . , b), f ′(b′2, e2, . . . , e`)) = (b, b) ∈ S.
This contradicts the assumption that C CZ A, which completes the verification that R′ is
C-essential.

Proposition 13.50. Let A be finite idempotent such that C CZ A. Then C 3-absorbs A.

Proof. Suppose for contradiction that C does not 3-absorb A. Then there exists a C-essential
relation R ≤ A3 by Theorem 13.20. Applying Lemma 13.49 sufficiently many times we may
obtain C-essential relations of arbitrarily large arity. Then Theorem 13.20 implies that C is
not absorbing, contrary to our assumptions.

Combining these results with the proof from Section 13.3, we obtain a strengthened form
of the Absorption Theorem (Theorem 13.33).

Theorem 13.51. Let A and B be finite idempotent algebras with the same signature such
that B is Taylor. Then for every linked and subdirect R ≤ A×B one of the following is true:

1. R = A×B;

2. A has a proper 3-absorbing subuniverse.

3. B has a proper 3-absorbing subuniverse.

Proof. Suppose that R 6= A × B, because otherwise item 1 of the theorem holds and we are
done. Let C be the left centre of R. Note that C 6= A because R 6= A×B.

If B has a proper 2-absorbing subuniverse, then item 3 of the theorem holds, so suppose
that it does not. Corollary 13.28 implies that C C A. If C is non-empty, then by Proposi-
tion 13.48 we have found a proper absorbing subuniverse of A which is centrally absorbing.
In this case, Proposition 13.50 implies that C 3-absorbs A and item 2 of the theorem holds.

Otherwise, if C = ∅, then Proposition 13.32 implies that there exists a subdirect R′ ≤ B2

whose left centre C ′ is a proper absorbing subuniverse of B. Then Proposition 13.48 implies
that C ′ is centrally absorbing, Hence, C ′ 3-absorbs B by Proposition 13.50 and item 3 of the
theorem holds.
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13.7 Zhuk’s Cases

The property of the paper-scissors-stone algebra established in Lemma 13.41 is of general
importance when studying finite idempotent Taylor algebras (i.e., Clo(A) does not have a
minion homomorphism to Proj, see Theorem 9.15).

Definition 13.52. Let A be an algebra and let A be the relational structure with the same
domain as A whose relations are the graphs of the automorphisms of A. Then A is called sub-
directly complete if every subdirect R ≤ An, for every n ∈ N, can be defined by a conjunction
of atomic formulas over A.

We state a consequence of the Absorption Theorem for finite simple algebras. This result
is known as ‘Zhuk’s four cases’ but we have combined two cases with absorption into one,
so we only show three cases here. The presentation is based on the lecture notes of Brady
Zarathustra [94], who cites [95].

Theorem 13.53. Let A be a simple finite idempotent Taylor algebra. Then at least one of
the following cases applies.

1. A has a proper 3-absorbing subuniverse.

2. A is affine.

3. A is subdirectly complete.

Proof. Suppose that A has no proper 3-absorbing subuniverse and is not affine.
We prove by induction on n ≥ 1 that every subdirect R ≤ An has a definition by a

conjunction of atomic formulas in the structure A whose relations are the graphs of the
automorphisms of A. If n = 1, then R = A since R is subdirect, and there is nothing
to be shown. If n = 2, then R is linked or the graph of an automorphism of A, by the
simplicity of A (see Exercise 187). In the latter case we are done, so suppose that R is linked.
If R = A2, then we are also done. Otherwise, the Absorption Theorem in its strengthend
version (Theorem 13.51) implies that A has a proper 3-absorbing subuniverse, which is a
contradiction to our assumptions.

Now suppose that n ≥ 3. We first consider the case that for some {i, j} ∈
(

[n]
2

)
the relation

R′ := πi,j(R) is the graph of an automorphism of A. For the sake of notation, suppose that j =
n. Then the relation π[n−1](R) is subdirect and by the inductive assumption has a definition
φ(x1, . . . , xn−1) by a conjunction of atomic formulas over A. Then φ(x1, . . . , xn−1)∧R′(xi, xj)
is a definition of R over A and we are done. Therefore, we may assume that for every
{i, j} ∈

(
[n]
2

)
the relation R′ := πi,j(R) is not the graph of an automorphism, and hence

R′ = A2 by the case n = 2. We have to show that R = An.
Note that for every a ∈ A the (n− 1)-ary relation

Ra := {x̄ | (a, x̄) ∈ R}

is a subuniverse of An−1 because A is idempotent. Moreover, Ra is subdirect. Indeed, let
b ∈ A. Note that the binary relation π1,2(R) equals A2 by the case n = 2, and hence in
particular it contains (a, b). Hence, there exists c′ ∈ An−2 such that (a, b, c′) ∈ R, and thus
(b, c′) ∈ Ra. Similar arguments apply to the other arguments of Ra, showing that Ra ≤ An−1

is subdirect.
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We first consider the case n = 3. Since Ra ≤ A2 is subdirect, by the case n = 2 it is
either the graph of an automorphism of A or it equals A2. First suppose that there exists an
a ∈ A such that Ra = A2. Then a is an element of the left center C of R if R is considered
as a subalgebra of A × A2. If C = A then R = A3 and we are done. Otherwise, C is a
proper subuniverse of A. Clearly, A2 is Taylor since A is Taylor. Lemma 13.14 implies that
A2 does not have proper 2-absorbing subuniverses because A has no 3-absorbing, and hence
no 2-absorbing, subuniverses. Since R is subdirect, Proposition 13.48 implies that C CZ A.
Therefore, C is a (proper) 3-absorbing subuniverse of A by Proposition 13.50, contrary to
our assumptions.

Otherwise, for every a ∈ A the relation Ra is the graph of an automorphism of A. A
similar argument applies to R after permuting the arguments. So we may assume that for
every a ∈ A and every i ∈ {1, 2, 3} the relation defined by ∃xi(R(x1, x2, x3) ∧ xi = a) is the
graph of an automorphism of A. Then A is abelian by Proposition 12.15, contrary to our
assumptions.

Finally, suppose that n > 3. Then for i, j ∈
({2,...,n}

2

)
we have that π{1,i,j}(R) = A3 by the

case n = 3. Hence, for any a ∈ A we have π{i,j}(Ra) = A2, and it follows from the case n− 1
that Ra = An−1. This means that R = An.

Exercises.

193. Use Theorem 13.53 to give another proof of Lemma 13.41.

194. Show that a subdirect relation R ⊆ {0, 1, 2}n is preserved by the Maltsev operation m in
Example 7.4 if and only if R can be defined by a conjunction of graphs of permutations
{(0, 1), (1, 2), (2, 3)} and {(0, 0), (1, 2), (2, 1)}.
Hint. Use a similar proof architecture as in the proof of Theorem 13.53. In the
situation where we can apply Proposition 12.15, we obtain that A is abelian and by
Theorem 12.12, A is affine with a central Maltsev operation m′. However, m′ 6= m, a
contradiction (Exercise 132).

195. Show that a subdirect relation R ⊆ {0, 1, 2}n is preserved by the Maltsev
operation m in Example 7.4 if and only if R can be defined primitively
positively from the graphs of permutations {(0, 1), (1, 2), (2, 3)} and
{(0, 0), (1, 2), (2, 1)} and from {(x, y, z) ∈ {0, 1}3 | x+ y + z = 0 mod 2}.

Hints. First prove the following substeps:

• Reduce the general case to the case that |πi(R)| ≥ 2 for every i ∈ {1, . . . , n}.
• Reduce the general case to the case that πi(R) = {0, 1} whenever |πi(R)| = 2 for

some i ∈ {1, . . . , n}.
• Reduce the general case to the case where R = R′×{0, 1, 2}m where R′ ⊆ {0, 1}n.

• Show by induction on m that a relation R as in the previous item can be defined
by a conjunction of linear equations over {0, 1} (the most interesting step).

• Express linear equations over two-element subsets with primitive positive formulas
over the given relations.

196. Show that a relation R ⊆ {0, 1, 2}n is preserved by the Maltsev operation m in Exam-
ple 7.5 if and only if it can be defined from the unary relations, H, and L.
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14 Cyclic Terms

An operation c : An → A, for n ≥ 2, is cyclic if it satisfies for all a1, . . . , an ∈ A that
c(a1, . . . , an) = c(a2, . . . , an, a1). Cyclic operations are in particular Taylor operations. Con-
versely, a result of Barto and Kozik (Theorem 14.4 below) implies that every Taylor operation
on a finite set generates a cyclic operation.

We start with some easy but useful observations about cyclic terms. The cyclic composi-
tion s 	 t of s and t is the operation (or term) of arity q defined by

(x1, . . . , xq) 7→ s
(
t(x1, . . . , xq), t(x2, . . . , xq, x1), . . .

)
.

The following is easy to see.

Lemma 14.1. Let s : Ak → A and t : Al → A be operations.

• If s is arbitrary and t is cyclic then s 	 t is cyclic.

• If s is cyclic, t is arbitrary, and l divides k then s 	 t is cyclic.

Exercises.

197. Show that if A = ({0, 1}; min) and f ∈ Clo(A)(k) is cyclic, then

f(x1, . . . , xk) = min(x1, . . . , xk).

198. If s and t are cyclic operations or arity k and l, respectively,
then star product s ∗ t (Definition 8.32) is cyclic
after reordering the arguments, i.e., there is a permutation α of [kl]
such that (s ∗ t)α is cyclic.

199. Suppose that A = ({0, 1}; majority) and f ∈ Clo(A)(k) is cyclic.
Show that

• k ≥ 3;

• if r > k/2 and c ∈ Ak is such that ci = a for i ≤ r and ci = b otherwise, then
f(c) = a;

• if r, s, t are such that r + s > t, s+ t > r, and t+ r > s, then the function

(x, y, z) 7→ f(x, . . . , x︸ ︷︷ ︸
r

, y, . . . , y︸ ︷︷ ︸
s

, z, . . . , z︸ ︷︷ ︸
t

) (35)

is the ternary majority operation on {0, 1}.

200. Suppose that p is a prime and A = ({0, . . . , p − 1};m) where m : A3 → A is given by
m(x, y, z) = x − y + z mod p and that f ∈ Clo(A)(k) is cyclic. Show that if r, s, t are
such that r = t = k mod p and s = −k mod p, then the ternary function defined in
(35) equals x− y + z mod p.

201. Does the previous exercise remain true if we drop the assumption that p is prime?
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Figure 20: Diagram for the proof of Lemma 14.3.

14.1 Cyclic Relations

When a = (a0, a1, . . . , ak−1) is a k-tuple, we write ρ(a) for the k-tuple (a1, . . . , ak−1, a0).

Definition 14.2. An n-ary relation R on a set A is called cyclic if for all a ∈ Ak

a ∈ R⇒ ρ(a) ∈ R .

Lemma 14.3 (from [12]). A finite idempotent algebra A has a k-ary cyclic term if and only
if every nonempty cyclic subalgebra of Ak contains a constant tuple.

Proof. Let τ be the signature of A. For the easy direction, suppose that A has a cyclic τ -term
t(x1, . . . , xk). Let a = (a0, a1, . . . , ak−1) be an arbitrary tuple in a cyclic subalgebra R of Ak.
As R is cyclic, ρ(a), . . . , ρk−1(a) ∈ R, and since R is a subalgebra

b := tA(a, ρ(a), . . . , ρk−1(a)) ∈ R.

Since t is cyclic, the k-tuple b is constant.
To prove the converse direction, we assume that every nonempty cyclic subalgebra of Ak

contains a constant tuple. For a τ -term f(x0, x1, . . . , xk−1), let S(f) be the set of all a ∈ Ak
such that fA(a) = fA(ρ(a)) = · · · = fA(ρk−1(a)). Choose f such that |S(f)| is maximal
(here we use the assumption that A is finite). If |S(f)| = |Ak|, then fA is cyclic and we are
done. Otherwise, arbitrarily pick a = (a0, a1, . . . , ak−1) ∈ Ak \ S(f). For i ∈ {0, . . . , k − 1},
define bi := f(ρi(a)), and let B := {b, ρ(b), . . . , ρk−1(b)}.

We claim that the smallest subalgebra C of Ak that contains B is cyclic. So let c ∈ C
be arbitrary. Since C is generated by B, there exists a τ -term s(x0, x1, . . . , xk−1) such that
c = sA(b, ρ(b), . . . , ρk−1(b)). Then ρ(c) = sA(ρ(b), ρ2(b), . . . , ρk−1(b), b) ∈ C, proving the
claim.

Since C is cyclic, by our assumption it contains a constant tuple d. Then there exists a
τ -term r(x0, . . . , xk−1) such that d = rC(b, ρ(b), . . . , ρk−1(b)). Note that

rA(b) = rA(ρ(b)) = · · · = rA(ρk−1(b))

since d is constant. It follows that b ∈ S(r).
Now consider the τ -term t(x0, x1, . . . , xk−1) defined by

t(x) := r 	 f = r(f(x), f(ρ(x)), . . . , f(ρk−1(x))).
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where x := (x0, x1, . . . , xk−1). We claim that S(f) ⊆ S(t). Let e ∈ S(f). To show that
e ∈ S(t), note that for all i ∈ {0, . . . , k − 1}

tA(ρi(e)) = rA
(
fA(ρi(e)), fA(ρi+1(e)), . . . , fA(ρi−1(e))

)
= rA

(
fA(e), fA(ρ1(e)), . . . , fA(ρk−1(e))

)
(since e ∈ S(f))

= tA(e).

Moreover, a ∈ S(t), because

tA(ρi(a)) = rA
(
fA(ρi(a)), fA(ρi+1(a)), . . . , fA(ρi−1(a))

)
= rA(bi, bi+1, . . . , bi−1)

= rA(ρi(b))

is constant for all i by the choice of r. We obtain a contradiction to the maximality of
|S(f)|.

Exercises.

202. Show that the digraph C++
2 from Exercise 76 has a ternary cyclic polymorphism.

14.2 The Cyclic Terms Theorem

In this section we prove the following theorem of Barto and Kozik [12].

Theorem 14.4 (of [12]). Let A be a finite algebra. Then the following are equivalent.

1. A has a Taylor term;

2. A has a cyclic term;

3. for all prime numbers p > |A|, the algebra A has a p-ary cyclic term.

Proof. The implication from 3 to 2 and from 2 to 1 are trivial. For the implication from 1
to 3, let p > |A| be prime. Our proof is by induction on |A|. We may assume that A is
idempotent (see Lemma 9.12). For |A| = 1 the statement is trivial. For the induction step,
we use Lemma 14.3. Let R ≤ Ap be non-empty and cyclic. We have to show that R contains
a constant tuple. We may assume that R is subdirect: indeed, if πi(R) is a proper subuniverse
of A, for some i ∈ [p], then R ≤ πi(R)p contains a constant tuple by the inductive assumption.

If there is {i, j} ∈
(

[p]
2

)
such that πi,j(R) (Definition 6.30) is the graph of an automorphism

α of A, then πj,2j−i(R) is the graph of α as well, because R is cyclic, and the same applies
to π2j−i,3j−2i(R), etc. Moreover, αp = idA since R is cyclic and of arity p. Since p > |A| is a
prime, we must have α = idA. This shows that R contains for every a ∈ A the constant tuple
(a, . . . , a): by subdirectness, there exists a tuple t = (t1, . . . , tp) ∈ R such that ti = a; by what
we have seen above, tj = a, t2j−i = a, etc, and since p is prime we obtain that t = (a, . . . , a).

So we may suppose that for every {i, j} ∈
(

[p]
2

)
, the relation πi,j(R) is not the graph of an

automorphism of A.
Suppose that A has a proper congruence C. Let h be the homomorphism from A to

A/C. Since C is proper, |A/C| is strictly smaller than |A|. Let h∗ be the homomor-
phism from Ap to (A/C)p obtained by applying h componentwise. Then h∗(R) ≤ (A/C)p
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(Lemma 8.15) is cyclic, so the inductive assumption implies that h∗(R) contains a constant
tuple (a/C, . . . , a/C). Note that a/C is a nonempty proper subalgebra of A since A is idem-
potent and C is proper. Then R ∩ (a/C)p ≤ Ap is non-empty and cyclic, and hence contains
a constant tuple by the inductive assumption. Thus, if A is not simple we are done.

Now suppose that A is simple. Therefore, one of the Zhuk cases from Theorem 13.53
applies. First we consider the case that A is subdirectly complete. By assumption, for every
{i, j} ∈

(
[p]
2

)
, the relation πi,j(R) is not the graph of an automorphism of A, and by subdirect

completeness equals A2. In particular, R contains a constant tuple.
If A is affine with underlying abelian group (A; +,−, 0), then for all k ≥ 1 and a1, . . . , ak ∈

Z such that a1 + · · · + ak ≡ 1 mod |A| the operation (x1, . . . , xk) 7→ a1x1 + · · · + akxk is a
term operation of A (combine Theorem 12.12 and Exercise 143). Since p > |A| is prime,
there exists i such that ip = 1 mod |A|. In particular, (x1, . . . , xp) 7→ ix1 + · · · + ixp is a
term operation of A, and clearly cyclic.

Finally, suppose that A has a proper 3-absorbing subalgebra U .11 Define a directed graph
D whose vertices are pairs (i, B) where i ∈ [p] and B C A is proper 3-absorbing, and whose
edges are the pairs ((i, B), (j, B′)) for distinct i, j ∈ [p] with B + πi,j(R) ⊆ B′ (the notation
has been introduced in Exercise 183). Clearly, the edge relation of D is transitive. Also note
that if B C A is 3-absorbing, then B + πi,j(R) C A is 3-absorbing as well (Exercise 183).

Claim. If D contains the edge ((i, B), (j, B′)), then ((j, B′), (i, B)) is not an edge. So
suppose that i, j ∈ [p] are distinct such that B + πi,j(R) ⊆ B′. If B′ + πj,i(R) ⊆ B, then this
is in contradiction to the fact that πi,j(R) is linked: indeed, by assumption, πi,j(R) is not the
graph of an automorphism of A. Since R is subdirect, so is πi,j(R). Hence, the simplicity of
A implies that πi,j(R) is linked (Exercise 187).

The claim together with the transitivity of the edge relation implies that D is acyclic.
Since D is finite, non-empty, and acyclic, it must contain a sink (i, B). Note that B is a
proper 3-absorbing subuniverse of A such that B + πi,j(R) = A for all j ∈ [p]. Since R is

cyclic, this implies that πI(R) ∩ B2 6= ∅ for all I ∈
(

[p]
2

)
. Hence, R′ := R ∩ Bp is non-empty

by Corollary 13.19, because B is 3-absorbing. Since |B| < |A|, we obtain a constant tuple in
R′ ⊆ R by the inductive assumption.

Theorem 14.5 (Tractability Theorem, Version 5). Let B be a relational structure with finite
domain and finite signature. If B has a cyclic polymorphism, then CSP(B) is in P. Otherwise,
CSP(B) is NP-complete.

Proof. An immediate consequence of Theorem 14.4 and Theorem 5.28.

Exercises.

203. Show that if A and B are finite algebras, each with a cyclic term,
then A×B has a cyclic term as well. How about the same statement
for Taylor terms?

204. Use the results presented in the text to show that a finite idempotent algebra A has a
cyclic term if and only if it has a weak near unanimity term of arity n ≥ 2, i.e., a an
idempotent term t such that A satisfies

f(x, . . . , x, y) ≈ f(x, . . . , x, y, x) ≈ · · · ≈ f(y, x, . . . , x).
11The author thanks Michael Pinsker for a suggestion how to simplify the argument in this case.
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205. Show that a finite structure has a cyclic term if and only if it has a quasi weak near
unanimity term of arity n ≥ 2, which is defined exactly as weak near unanimity term
except that we drop the idempotence assumption.

206. Give an immediate proof (without using results from the text) that K3 does not have
quasi weak near unanimity polymorphisms.

207. Find a cyclic term in the algebra (Zp;m) where m is given by (x, y, z) 7→ x− y + z.

14.3 Siggers Terms of Arity 4

Interestingly, whether a finite algebra has a Taylor term (equivalently: a weak near unanimity
term, or a cyclic term) can be tested by searching for a single 4-ary term s that satisfies

s(x, x, y, z) ≈ s(y, z, z, x),

a so-called 4-ary Siggers term. Note that this definition comes in numerous variants, because
we may permute the arguments of s and rename the variables of the identity and obtain
equivalent conditions. One such variant is

t(a, r, e, a) ≈ t(r, a, r, e) .

Siggers originally found a 6-ary term (see Section 10.2), which has been improved later to
the 4-ary term given above. The observation that this condition can be obtained by equating
variables of a cyclic term of sufficiently high arity is from [71]; the proof below is based on a
variant from [94] of their proof.

Theorem 14.6. A finite algebra has a cyclic term if and only if it has a 4-ary Siggers term.

Proof. Suppose that A has a cyclic term. Let c(x1, . . . , xp) be a cyclic term of A for some
p ≥ 2. Then there are numbers a, b ∈ N be such that 2a+ 3b = m, and we define s(x, y, z, w)
to be the term

s(x, y, z, w) := c(x, . . . , x︸ ︷︷ ︸
b

, y, . . . , y︸ ︷︷ ︸
a

, z, . . . , z︸ ︷︷ ︸
b

, w, . . . , w︸ ︷︷ ︸
a+b

).

Then

s(x, x, y, z) = c(x, . . . , x︸ ︷︷ ︸
b

, x, . . . , x︸ ︷︷ ︸
a

, y, . . . , y︸ ︷︷ ︸
b

, z, . . . , z︸ ︷︷ ︸
a+b

)

≈ c(y, . . . , y︸ ︷︷ ︸
b

, z, . . . , z︸ ︷︷ ︸
a

, z, . . . , z︸ ︷︷ ︸
b

, x, . . . , x︸ ︷︷ ︸
a+b

) = s(y, z, z, x).

Conversely, a Siggers term is a Taylor term, and therefore the other direction follows from
Theorem 14.4.

The previous result is optimal in the sense that there is no equivalent characterisation using
a single ternary Taylor term [69, 71]. However, there is also a system of equations involving
only ternary terms that characterises the existence of a Taylor term [67]. Computationally,
checking whether a given finite structure has polymorphisms satisfying these identities is
easier than checking for a 4-ary Siggers polymorphism (for computer experiments, see [25]).

150



Proposition 14.7 (from [67]). Let A be a finite algebra. Then A has a Taylor term if and
only if A has terms p, q satisfying the following identities (‘p-q-terms’).

q(y, x, x) ≈ q(x, x, y) (36)

q(x, x, y) ≈ p(x, y, y) (37)

p(x, y, x) ≈ q(x, y, x) (38)

Proof. First suppose that A has a Taylor term and therefore a 4-ary Siggers term. Define

p(x, y, z) := s(x, x, y, z) and q(x, y, z) := s(y, z, x, x)

and observe that they p and q satisfy the equations from the statement.

q(y, x, x) = s(y, y, x, x) ≈ s(x, x, x, y) = q(x, x, y)

q(x, x, y) = s(x, x, x, y) ≈ s(y, y, x, x) = p(x, y, y)

p(x, y, x) = s(y, x, x, x) ≈ s(x, x, y, x) = q(x, y, x)

Conversely, let A be a algebra that satisfies (36), (37) and (38). Then there is no ξ : Clo(A)→
Proj, because otherwise

ξ(q) = π3
2 (because of 36)

ξ(p) = π3
1 (because of 37)

ξ(p) = π3
2 (because of 38)

which is a contradiction unless |A| = 1.

Exercises.

208. Show that every algebra with a Maltsev term has a 4-ary Siggers term (directly, without
using other results).

14.4 Summary of Equivalent Dichotomy Formulations

In the following we list all the equivalent conditions on a finite structure B with finite rela-
tional signature that imply that CSP(B) is in P. If B does not satisfy these conditions, then
CSP(B) is NP-complete.

Corollary 14.8. Let B be a finite structure with core C, let D be the expansion of C by all
singleton unary relations, and let D be a polymorphism algebra of D. Then the following are
equivalent.

1. K3 does not have a primitive positive interpretation in D;

2. HSP(D) does not contain an at least 2-element algebra all of whose operations are
projections;

3. HS(D) does not contain an at least 2-element algebra all of whose operations are pro-
jections (Corollary 8.47);

4. there is no clone homomorphism from Pol(D) to Proj (Corollary 8.47);
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5. D satisfies some non-trivial finite set of identities (Corollary 8.47);

6. B does not pp-construct K3, i..e., K3 /∈ HI(B) (Corollary 8.47);

7. there is no minion homomorphism from Pol(B) to Proj (Corollary 9.18);

8. Pol(B) contains a Taylor operation (Theorem 9.15);

9. Pol(B) has a 6-ary Siggers operation (Theorem 10.5);

10. Pol(B) has a cyclic operation (Theorem 14.4);

11. Pol(B) has for all prime numbers p > |B| a cyclic operation of arity p (Theorem 14.4);

12. Pol(B) has a 4-ary Siggers operation (Theorem 14.6);

13. Pol(B) has p-q-operations (Proposition 14.7).

14.5 Undirected Graphs Revisited

As another application of the cyclic term theorem, we obtain another proof (from [16]) of the
classification of the complexity of H-colouring for finite undirected graphs H (Theorem 2.6).

Proof. If the core G of H equals K2 or has just one vertex, then CSP(H) can be solved in
polynomial time, e.g. by the Path Consistency Procedure, Section 4. Otherwise, G is not
bipartite and there exists a cycle a0, a1, . . . , a2k, a0 of odd length in H. If H has no Taylor
polymorphism, then by Theorem 9.18 CSP(H) is NP-hard.

Otherwise, if H has a Taylor polymorphism, then Theorem 14.4 asserts that there exists
a p-ary cyclic polymorphism c of H where p is a prime number greater than max{2k, |A|}.
Since the edges in H are undirected, we can also find a cycle a0, a1, . . . , ap−1, a0 in H. Then
c(a0, a1, . . . , ap−1) = c(a1, . . . , ap−1, a0), which implies that H contains a loop, a contradiction
to the assumption that the core of H has more than one element.

This proof naturally generalises to smooth digraphs that are strongly connected. In fact,
the assumption that H is strongly connected can be dropped.

Theorem 14.9 (Barto, Kozik, Nieven [14]). Let H be a smooth digraph. If H has a Taylor
polymorphism, then H is homomorphically equivalent to a cycle.

In the proof we need the concept of algebraic length of a graph. It is the minimum number
k ≥ 1 such that the graph contains a cycle of net length k.

Proof. We only present a proof for the special case where H is strongly connected. Let p be
a prime larger than |V (H)|. If any two paths in G that start and end in the same vertex have
the same net length modulo n, then H → ~Cn (Exercise 14) and we are done. Otherwise, H
has algebraic length one, and since H is strongly connected we find a directed cycle of length
p. Theorem 14.4 asserts that there exists a p-ary cyclic polymorphism c of H. As in the proof
above, we have c(a0, a1, . . . , ap−1) = c(a1, . . . , ap−1, a0), which implies that H contains a loop
and hence is homomorphically equivalent to a loop.

Corollary 14.10 (Loop Lemma). Let A be a finite Taylor algebra and let R ≤ A2 be subdi-
rect. If the digraph (A,R) has a connected component of algebraic length one, then R has a
loop.
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Figure 21: The smooth digraph leading to the Siggers terms of arity four.

Proof. The digraph (A,R) has no sources and sinks because R is subdirect and has the Taylor
term operation of A as a polymorphism. Hence, Theorem 14.9 implies that (A,R) is homo-
morphically equivalent to a disjoint union of cycles. The only cycle that is homomorphically
equivalent to a digraph of algebraic length one is the loop, so (A,R) is homomorphically
equivalent to a structure that contains a loop, so it must contain a loop.

If a graph H is homomorphically equivalent to a disjoint union of cycles, then CSP(H)
is in P (e.g., we can use the algorithm PCH to solve it; see Section 4). On the other hand,
a digraph without a Taylor polymorphism has an NP-hard CSP. Therefore, Theorem 14.9
shows that the Feder-Vardi conjecture is true for digraphs without sources and sinks: their
CSPs are in P or NP-complete.

As another consequence we present a second proof that Taylor algebras have a 4-ary
Siggers term, which is the original proof from [69].

Second proof of Theorem 14.6. Let F be the free algebra with three generators x, y, z in the
variety generated by A (see Section 8.5). Let R ≤ F2 be generated by{(

x

y

)
,

(
y

z

)
,

(
z

x

)
,

(
x

z

)}
.

Then R is subdirect and (F,R) is a smooth digraph of algebraic length 1 (see Figure 21 for
the restriction of this digraph to {x, y, z}). Hence, the Loop Lemma (Corollary 14.10) implies
that R contains a pair (f, f), so there exists a term t(x1, x2, x3, x4) such that

tF
2
(

(
x

y

)
,

(
y

z

)
,

(
z

x

)
,

(
x

z

)
) =

(
f

f

)
.

Thus, tF satisfies t(x, y, z, x) = f = t(y, z, x, z).

Exercises.

209. Let G and H be finite smooth digraphs. Show that if CSP(G×H) can be
solved in polynomial time, then CSP(G) or CSP(H) can be solved
in polynomial time as well (so we cannot use them to solve Exercise 27).

210. Let G := ({1, 2, 3, 4};E) be the digraph given by

E := {(1, 2), (1, 3), (2, 3), (3, 2), (2, 4), (3, 4)}.

Show that every finite structure has a primitive positive interpretation in G.
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15 Bounded Width

This section is under construction. Equipped with the universal-algebraic approach, we come
back to one of the questions that occupied us at the beginning of the course: which H-
colouring problems can be solved by the path-consistency procedure (PCH , introduced in
Section 4)? We have seen in Section 4.2 that if H has a majority or a semilattice poly-
morphism, then PCH solves the H-colouring problem. But these were just sufficient, not
necessary conditions.

A necessary and sufficient polymorphism condition for solvability by PCH has been found
by Barto and Kozik [11]. Their result is much stronger: it characterises not just the strength
of PCH , but more generally of k-consistency (introduced in Section 4), and not just for
H-colouring, but for CSPs of finite structures in general. Before we state their result in
Theorem 15.8 below, it is convenient to use a more flexible terminology to discuss the idea of
k-consistency for general relational structures more precisely (Section 15.1). It turns out that
if CSP(B) for a finite structure B can be solved by k-consistency, for some k, then it can
already be solved by a particularly natural algorithm, namely by the singleton arc consistency
(SAC) procedure. SAC is weaker than 3-consistency in the sense that if the SAC procedure
detects that an instance is unsatisfiable, then so does the 3-consistency procedure.12

15.1 k-Consistency

When generalising 3-consistency for the H-colouring problem to k-consistency for CSPs of
arbitrary finite structures B, there are two essential parameters:

• the first is the arity l of the relations maintained for all l-tuples of variables in the
instance. For PCH , for instance, we have l = 2.

• the second is the number of variables considered at a time within the main loop of the
algorithm. For PCH , for instance, we have k = 3.

Hence, for each pair (l, k) ∈ N2, we obtain a different form of consistency, called (l, k)-
consistency.

Note that it is easy to come up with finite structures B whose CSP cannot be solved by
(l, k)-consistency when B might contain relations of arity larger than k (there is no possibility
of the (l, k)-consistency algorithm to take constraints into account that are imposed on more
than k variables). We say that CSP(B) has width (l, k) if it can be solved by (l, k)-consistency,
and that is has bounded width) if it has width (l, k) for some l, k ∈ N. We mention that a CSP
has bounded width if and only if unsatisfiability of an instance of CSP(B) can be detected
by a Datalog program (see [55]).

The following lemma suggests that the universal-algebraic approach can be used to study
the question for which structures B the problem CSP(B) has bounded width.

Lemma 15.1. Let A and B be structures with finite relational signature such that A ∈ HI(B).
If CSP(B) has bounded width, then so does CSP(A).

Proof. Let τ be the signature of A and σ the signature of B. Suppose that CSP(B) has
width (l, k). Let d be the dimension of the primitive positive interpretation I of A in B,
let δI(x1, . . . , xd) be the domain formula, and let h : D → A be the coordinate map where

12The converse of this statement in general does not hold, so SAC is strictly weaker than 3-consistency.
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D := {(b1, . . . , bd) ∈ Bd | B |= δI(b1, . . . , bd)}. Let φ be an unsatisfiable instance of CSP(A)
with variable set U = {x1, . . . , xn}. From φ we construct an unsatisfiable instance ψ of
CSP(B). This instance will be used as a “guide” when we inductively show that (l, k)-
consistency derives false on φ.

For fresh and pairwise distinct variables V := {yij | 1 ≤ i ≤ d, 1 ≤ j ≤ n} let ψ1 be∧
1≤i≤n

δI(y
1
i , . . . , y

d
i ) .

Let ψ2 be the conjunction of the formulas θI(y
1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) over all conjuncts

θ = R(xi1 , . . . , xik) of φ. By moving existential quantifiers to the front, the sentence

∃y1
1, . . . , y

d
n (ψ1 ∧ ψ2)

can be re-written to a primitive positive σ-formula ψ.
We claim that ψ is unsatisfiable in B. Suppose for contradiction that f : V → B satisfies

all conjuncts of ψ in B. By construction of ψ, if φ has a conjunct θ = R(xi1 , . . . , xik), then

B |= θI((f(y1
i1), . . . , f(ydi1)), . . . , (f(y1

ik
), . . . , f(ydik))) .

By the definition of interpretations, this implies that

A |= R(h(f(y1
i1), . . . , f(ydi1)), . . . , h(f(y1

ik
), . . . , f(ydik))) .

Hence, the mapping g : U → A that sends xi to h(f(y1
i ), . . . , f(ydi )) satisfies all conjuncts of

φ in A, in contradiction to the assumption that φ is unsatisfiable.
Since CSP(B) has width (l, k) we consequently have that the (l, k)-consistency procedure

applied to ψ derives false. This derivation can be used to show that the (l, k)-consistency
procedure applied to φ derives false, too. We leave the details to the reader.

15.2 Singleton AC

For n, l ∈ N, a matrix M ∈ {0, 1}n×l is called skeleton if for every j ∈ [n], either the j-th row
only contains 0 entries, or some column of M is the j-th standard unit vector.

Definition 15.2. The minion MSAC is defined as follows. For n ≥ 1, the set M
(n)
SAC consists

of all columns of matrices M ∈ {0, 1}n×l, for some l ∈ N, such that the following properties
are satisfied:

• there is at least one 1 in every column of M , and

• M is skeleton.

For α : [n]→ [m] and f = (a1, . . . , an) ∈M (n)
AC , we define fα to be (aα(1), . . . , aα(n)).

Note that if M is skeleton, then for every α : [n] → [m], the matrix with the columns
{fα | f column of M} is skeleton as well. Moreover, the property to contain at least one 1 is
preserved as well.

Definition 15.3. A tuple t ∈ Anl is called conservative if for every entry a there exists a
block consisting of a entirely.
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Definition 15.4. An operation f : Bnl → B is called weak l-block totally symmetric poly-
morphism if

• it is symmetric on consecutive blocks of size l, and

• for every conservative tuple (ā1, . . . , ān) we have that

f(ā1, . . . , ān) = g({ai1 | i ∈ [l]}, . . . , {ain | i ∈ [l]})

for some function g : P(A)n → A.

Theorem 15.5. Let B be a relational structure with finite signature and finite domain. Then
the following are equivalent.

• SAC solves CSP(B).

• there exists a minion homomorphism from MSAC to Pol(B).

• For every n, l ∈ N there exists a weak totally symmetric polymorphism of B.

Exercises.

211. Verify that MSAC (Definition 15.4) is indeed a minion.

15.3 Weak Near Unanimity Operations

A weak near unanimity operation is an operation that satisfies

∀x, y. w(x, . . . , x, y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x) .

We write WNU(k) for the k-ary weak near unanimity operations. Again, we warn the reader
that many authors additionally assume that weak near unanimity operations are idempotent;
we do not make this assumption since it gives us more flexibility of the terminology.

Example 15.6. The algebra An := ({0, . . . , n − 1};m) where m(x, y, z) := x − y + z (see
Exercise 143) has an WNU(k) term if and only if gcd(k, n) = 1:

• if gcd(k, n) = 1 then there is an a ∈ {0, . . . , n − 1} such that ak ≡ 1 mod n. Hence,∑
i axi ∈WNU(k) and we have

∑
i a = ka = 1 so this operation is in Clo(An).

• Conversely, let g ∈ WNU(k). In particular, we have

g(0, . . . , 0, 1) = ak

≡ g(1, 0, . . . , 0) = a1

and it follows that a := a0 ≡ · · · ≡ ak−1 mod n. But 1 =
∑

i ai = ka mod n, which
implies that n and m are pairwise prime.

For example, Clo(A6) has a WNU(5) term, but not WNU(k) term for k ≤ 4. 4

Theorem 15.7. Let A be a finite idempotent algebra. Then the following are equivalent.

• A has for every k ≥ 3 a weak near unanimity operation of arity k.

• HS(A) does not contain an affine algebra.
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Exercises.

212. Let (A; +,−, 0) be a finite Abelian group. Then every idempotent weak near-unanimity
operation that preserves the relation defined by y1 + y2 = y3 + y4 is of the form
(x1, . . . , xn) 7→ t · (x1 + · · ·+ xn) for some t ∈ N≥1.

15.4 The Bounded Width Theorem

Theorem 15.8. Let B be a finite structure. Then the following are equivalent.

1. CSP(B) has width (l, k) for some l, k ∈ N.

2. for every prime number p, the structure (Zp; +, 1) does not have a primitive positive
construction in B.

3. B does not pp-construct a structure C with at least two elements such that there exists
an idempotent affine algebra A with Clo(A) = Pol(C).

4. CSP(B) can be solved by singleton linear arc-consistency (SLAC) which will be intro-
duced below.

5. CSP(B) has width (2, k) where k is the maximal arity of B.

6. B has 3-4 weak near unanimity polymorphisms, i.e., operations f ∈ WNU(3) and
g ∈WNU(4) satisfying

∀x, y. f(y, x, x) = g(y, x, x, x) .

7. B has a binary polymorphism f2 and polymorphisms fn ∈WNU(n) for every n ≥ 3 and

∀x, y. fn(x, y, . . . , y) = f2(x, y) .

8. B has ternary polymorphisms p, q such that p ∈WNU(3) and

∀x, y
(
p(x, x, y) = q(x, y, x) ∧ q(x, x, y) = q(x, y, y)

)
.

Item 3. mentions a procedure that we only introduce informally here, called Singleton
Linear Arc Consistence (SLAC). It comes close to strategies that humans perform when
solving Sudoku puzzles. First, Linear Arc Consistency (LAC) is the restriction of the arc
consistency procedure for arbitrary relational signatures where, informally, each inference
uses at most one fact that has been derived previously. SLAC is the extension of LAC which
performs the following with an instance I of CSP(B):

1. Run LAC on I; if LAC derives false, return No.

2. Create a copy I ′ of I.

3. Pick some variable x of I ′ and some value v from B; set x := v.

4. If LAC derives false on I ′, remove v from the list for x in I.

5. Otherwise, do nothing (I is unchanged).
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We repeat these steps until for no pair (x, v) a value can be removed from I, in which case
we return Yes.

We do not give a complete proof of the important Theorem 15.8, but only show some of the
easy implications, and we explain how to deduce the remaining implications from statements
that can be found explicitly in the literature.

Proof. 1.⇒ 2.: By Lemma 15.1, it suffices to show that CSP(Zp;R+, {1}) does not have width
(l, k). Two proof sketches of this fact can be found in [55]. A stronger non-expressibility can
be found in [5] (the given CSP is not even expressible in least fixed point logic with counting
quantifiers).

The implication from 2. ⇒ 1. was open for a while, has been conjectured by Larose and
Zadori [76] (and in equivalent form, by Feder and Vardi [55]; also see [75]), and was proven by
Barto and Kozik [11]; the proof requires several important concepts, e.g., Prague strategies
and absorption theory (Section 13).

For the implication from 2. to 3., suppose that B pp-constructs a structure C with at least
two elements such that there exists an idempotent affine algebra A with Clo(A) = Pol(B).
Since pp-constructions compose, it suffices to show that C pp-constructs (Zp; +, 1) for some
prime p; this has been shown in Proposition 12.7.

The (unexpected) implication from 2.⇒ 4. is from [70]. There it is shown that if A is finite,
idempotent, and has no affine factors with more than one element, and Clo(A) = Pol(C), then
CSP(C) can be solved by SLAC. To use their result, let C be the expansion of the core of B
by all singleton unary sets; by Proposition 5.25, C has a pp-construction in B. If A has an
affine factor with more than one element, then C pp-constructs a structure with at least two
elements and an idempotent affine polymorphism algebra. Composing pp-constructions, we
obtain a contradiction to 2. Otherwise, CSP(C) can be solved by SLAC, and it immediately
follows that CSP(B) can be solved by SLAC as well.

The implication from 4. to 5. is easy: a derivation of false by SLAC can be simulated by
a derivation of false by (2, k)-consistency where k is the maximal arity of the relations in B.

The implication from 5. to 6. has an elegant short proof, see [71]. The equivalences between
the final three items when we additionally require idempotency for the terms has been shown
in [67] (e.g., for 7., see Proposition 4.1 in [67]). But since a structure has polymorphism
satisfying an equation without nesting (and the equations under consideration are of this
type) if and only if its core does, and since a core has such a polymorphism if and only
if it has a polymorphism that is additionally idempotent, the idempotent case implies the
statement as given in the theorem.

The implication from 7. to 2. is easy: first note that if B has a WNU(k)-polymorphism,
then so do have all structures in H(I(B)) (recall that we do not require that the operations in
WNU(k) are idempotent). But the structure (Zp; +, 1) does not have WNU(k) polymorphisms
for both k = 3 and k = 4 (see Example 15.6).

In the following we point out some immediate consequences of Theorem 15.8.

Corollary 15.9. Let H be a finite digraph. Then strong path consistency solves CSP(H) if
and only if H has weak near unanimity polymorphisms f and g satisfying

∀x, y. g(y, x, x) = f(y, x, x, x)

Another remarkable consequence is that for the H-colouring problem, (2, 3)-consistency
is as powerful as (2, k)-consistency for all k ≥ 3 (we already stated this in Theorem 4.2). One
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technical step of the proof of Theorem 15.8 is to reduce the argument to an argument about
the strength of (2, 3)-consistency via Corollary 5.24.

16 Open Problems

The Feder and Vardi dichotomy conjecture [55] has been the outstanding open problem in
the field; it was solved in 2017 by Bulatov [36] and, independently, by Zhuk [96]. The
boarder between polynomial and NP-hard cases has numerous equivalent logical and algebraic
characterisations, for example characterisations based on primitive positive constructability
and characterisations based on identities that are satisfied by the polymorphism clone (see
Corollary 14.8).

There are many interesting problems in the field that are still left open. We start with
open research problems where all the relevant concepts have already been introduced in the
course.

1. Is there a uniform algorithm for finite-domain CSPs, i.e., is there a polynomial-time
algorithm that takes as input a pair (A,B) of finite structures with the same finite
relational signature, where B is promised to have a Taylor polymorphism (for equivalent
promises, see Corollary 14.8), that decides whether there is a homomorphism from A
to B. This question is also open if we replace ‘Taylor polymorphism’ by ‘Maltsev
polymorphism’.

2. Is there a polynomial-time algorithm to determine whether a given core structure B
has a Siggers polymorphism? Is this true for the special case where B is a digraph or
an orientation of a tree? This problem is known to be NP-complete if B is not required
to be a core structure [44]. This problem is known to be in P if B is a core and there
is a uniform algorithm for finite-domain CSPs (as in the previous question; see [44]).

3. Is the class of all finite structures, ordered by pp-constructability and factored by the
respective equivalence relation, a lattice [28–30]? Is it countably infinite or uncountably
infinite? Are there infinite ascending chains?

4. What is the computational complexity of determining whether a given finite core struc-
ture H has tree duality? Is this problem in P? Is it in P if H is a digraph or even an
orientation of a tree?

5. (Buĺın [40]) Is is true that the CSP of an orientation of a tree is in P if and only if it
can be solved by Datalog?

6. Is it true that most orientations of finite trees are hard, i.e., is it true that the probability
that an orientation of a tree drawn uniformly at random from the set of all such trees
with vertex set {1, . . . , n} is NP-hard tends to 1 as n tends to infinity [25]? The answer
is yes if we ask the question for random labelled digraphs instead of random labelled
trees [79].

7. Determine the smallest trees whose CSP is P-hard (assuming that NL 6= P). It is
known that they must have at least 16 vertices, since all smaller trees have a majority
polymorphism and thus are in NL [25].
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8. Is the CSP of most digraphs with a Taylor polymorphism P-hard?

9. Is the CSP of most digraphs with a Taylor polymorphism not in Datalog?

We continue with some open problems that require knowledge of concepts that have not been
covered in this course; however, references are provided where these concepts are defined
formally.

1. Prove that a finite-domain CSP is in P if and only if it can be expressed in Choiceless
Polynomial Time [20].

2. (Dalmau [47]) Is it true that if CSP(H) is in NL, then CSP(H) is in linear Datalog? Is
this at least true for digraphs H? The same question would already be interesting for
orientations of trees.

3. (Egri-Larose-Tesson [51]) Is it true that if CSP(H) is in L, then CSP(H) is in symmetric
Datalog? Is this at least true for digraphs H? It would already be interesting for
orientations of trees.

4. (Larose-Tesson [74]) Is it true that if the polymorphism algebra of H generates a con-
gruence join-semidistributive variety, then CSP(H) is in linear Datalog? Is this at least
true for digraphs H? It would already be interesting for orientations of trees.

5. Is it true that if CSP(H) is not P-hard under logspace reductions, then it is in NC? It is
known that NC is closed under logspace reductions, and it is believed that P is different
from NP. Moreover, the CSP for the structure ({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {0}, {1}) is
P-hard (see Exercise 120). Is it true that if CSP(H) does not pp-construct this structure
then CSP(H) is in NC?

Finally some curious questions for concrete finite digraphs where we do not know the
answer.

1. Is the CSP of the orientation of a tree displayed on the right
in NL [25]?

2. What are the smallest digraphs with a Taylor polymorphism that
cannot be solved by Datalog?

For CSPs over infinite domains, there are numerous open problems,
and I invite the reader to have a look at [21].
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A O-notation

The letters o and O stand for the order of growth of the function. The big-O notation is used
to express upper bounds, and the little-o notation to express lower bounds. We mention that
there exists related notation to describe other kinds of bounds on asymptotic growth, e.g., Θ,
Ω, ω, of which we only need Θ in this text, so we skip the definitions of the others.

Let g : R→ R (we use R for convenience; similar definitions exist for other domains such
as N and Q, etc). Then O(g) is the set of all functions f : R → R such that there exists
c, x0 ∈ R such that |f(x)| ≤ cg(x) for all x ≥ x0. Note that

f ∈ O(g)⇔ lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
In typical usage, the formal definition of O(g) is not used directly; rather, we first use the
following simplification rules:

• if g(x) is a sum of several terms, if there is one with largest growth rate, then we drop
all other terms;

• if g(x) = c · f(x) and c is a constant that does not depend on x, then c can be omitted.

When we write O(g), we typically choose g to be as simple as possible. O-notation can also
be used within arithmetic terms. For example, h + O(g) denotes the set of functions of the
form h+ f for f ∈ O(g). In other words, k ∈ h+O(g) is equivalent to k − h ∈ O(G).

We write o(g) for the set of all functions f : R → R such that for every ε ∈ R>0 there
exists x0 ∈ R such that |f(x)| ≤ εg(x) for all x ≥ x0. Informally, f ∈ o(g) means that g grows
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much faster than f . For example, x 7→ 2x is in o(x 7→ x2), and x 7→ 1/x is in o(1). Note that
o(g) ⊆ O(g), and that

f ∈ o(g)⇔ lim
x→∞

f(x)

g(x)
= 0.

Similarly as in the case of the O-notation we may use the o-notation in arithmetic expressions.
Note that if f ∈ o(g) and c is a constant, then cf ∈ o(g). Frequent notation is to write f � g
(or g � f) if f ∈ o(g).

We write Θ(g) for the set of all functions f such that there are constants c, C and x0 ∈ R
such that cg(x) ≤ f(x) ≤ Cg(x) for every x ≥ x0. In other words, f ∈ Θ(g) if f ∈ O(g) and
g ∈ O(f).

Finally, we write f(x) ∼ g(x) if

lim
x→∞

f(x)

g(x)
= 1

and we say that f and g are asymptotically equivalent (for x→∞).

B Basics of Complexity Theory

For a set A, we write A∗ for the set of all words over the alphabet A. A word over A can be
seen as a function from {1, . . . , n} → A, for some n ∈ N. We write ε for the empty word (i.e.,
for the function with the empty domain).

The most classical setting of complexity theory is the study of the computational com-
plexity of functions f from {0, 1}∗ → {0, 1}. Alternatively, we may view f as a set of words,
namely that set of words w such that f(w) = 1; such sets are also called formal languages.
There are several mathematically rigorous machine models to formalise the set of such func-
tions that are computable or efficiently computable. The first insight is that most of these
machine models lead to the same, or to closely related classes of functions. Complexity the-
ory maps out the landscape of the resulting classes of functions. Typically the first machine
model that is introduced in introductory courses are Turing machines. They strike a good
balance between the following two (almost contradictory!) requirements that a theoretician
has for these machine models:

• the model should be relatively simple, so that it is easy to show that it can be simulated
by many other machine models.

• the model should be relatively powerful, so that it is easy to show that it can simulate
many other machine models.

Turing machines are simple, but still the definition does not easily fit into a few lines.
On the other hand, today academics are most likely to already have a very good idea of
what a computer program can do (in polynomially many steps); and this coincides with what
a Turing machine M can do (in polynomially many computational steps). In a nutshell, a
Turing machine

• has an unboundedly large memory containing values from {−1, 0, 1} (the symbol −1
will be called the blank symbol);

• has finitely many states Q;
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• has a read/write head;

• has a finite transition function δ : Q× {−1, 0, 1} → Σ×Q× {l, r};

• has a accept state y ∈ Q.

• has a start state s ∈ Q.

Initially, the memory just contains the word w ∈ {0, 1}∗, i.e., in the first cell there is w1, in
the second cell there is w2, etc, and in all further memory cells there is −1, and the machine
is in state s. Depending on its state u ∈ Q and the tape content c under the read-write head,
let (v, d,m) := δ(u, c); then

1. the machine changes to state v;

2. the tape content under the read-write head is changed from c to d,

3. the read-write tape moves one cell to the left if m = l, and one to the right if m = r.

If the machine reaches state y it accepts. Every Turing machine describes a formal language,
namely the function f : {0, 1}∗ → {0, 1} such that f(w) = 1 if and only if when running the
machine on input w it eventually accepts. We also say that M computes f , and we then
sometimes write M(f) instead of f(w). More generally, Turing machines can be used to
describe functions f from {0, 1}∗ to {0, 1}∗ where f(w), for a given word w, is the string
that is written on the output tape when the Turing machine accepts (here we require that
the machine terminates on every input after finitely many steps, and again we say that M
computes f).

So we will pretend in the following that the reader already knows what Turing machines
M are. It turns out that despite the simplicity of Turing machines, they can simulate most of
the other machine models, and they can simulate any machine that humans ever constructed
(even when neglecting the restriction that we one have some fixed finite maximal memory
size in this universe).

In complexity theory we are interested in the number of computation steps that M needs
to perform to compute f(w), which corresponds to computation time. For example, we say
that a Turing machine runs in polynomial time if the number of computation steps is in
O(|w|k) for some k ∈ N. The class of such functions is denoted by P .

Coding. In the main text we have met computational complexity for example for com-
putational problems for finite graphs, whereas in the above we have only treated formal
languages. But this is just a matter of coding. We first observe that we can simulate any
alphabet by our alphabet {0, 1}, by just grouping bits together to represent a richer alphabet.
In particular, we will typically use the letter # to separate different numbers in the input.
One way to represent a graph as a word is to first write the number n of vertices, followed by
the symbol #, followed by a sequence of n2 bits for the adjacency matrix.

The second most important complexity class is NP.

Definition B.1. NP (for nondeterministic polynomial time) stands for the class of all func-
tions f : {0, 1}∗ → {0, 1} such that there exists a polynomial-time Turing machine M and a
d ∈ N such that for every w ∈ {0, 1}∗ there exists a a ∈ {0, 1}∗ with |a| ∈ O(nd) such that
f(w) = M(w#a).
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It is a famous open problem whether P = NP, and it is widely conjectured that P 6=
NP. To explain the significance of this conjecture, we need a couple of more concepts. Let
f1, f2 : {0, 1}∗ → {0, 1}. A reduction from f1 to f2 is a function g : {0, 1}∗ → {0, 1}∗ such that
f1(w) = f2(g(w)). A reduction g is polynomial-time if g can be computed a Turing machine
that runs in polynomial time.

Definition B.2. A function f : {0, 1}∗ → {0, 1} is NP-hard if every function g in NP has a
polynomial-time reduction to f . A function is called NP-complete if it is in NP and NP-hard.

The class coNP is dual to NP: it is the class of all functions f such that 1 − f is in NP.
There is an analogous definition for any complexity class K: a function is in co-K if 1− f is
in K. Clearly, every function in P is both in NP and in co-NP.

A class of finite graphs C is in NP if there exists a formal language in NP such that each
word in the language codes a graph in C (say in the way we described above), and every graph
in C is coded by some word in the language. Unlike the class P, it is possible to define the
class of all graph classes in NP transparently and fully formally in a few lines (without any
reference to Turing machines).

Theorem B.3 (Fagin). A class of finite graphs C is in NP if and only if there exists an
existential second-order sentence Φ such that for every finite graph G we have

G ∈ C if and only if G |= Φ.

We do not define existential second-order logic here. The interested reader is referred to
a textbook on finite model theory to learn more about such connections between logic and
complexity theory, e.g. [78].

We now return to the question why most researchers believe that P 6= NP. In order to show
that P=NP is suffices to provide for any of the known NP-complete problems a polynomial-
time algorithm. There are many NP-complete problems that are of central importance in
optimisation, scheduling, cryptography, bioinformatics, artificial intelligence and many more
areas. If P=NP, then this would mean a simultaneous breakthrough in all of these areas. It
is fair to say that every day, thousands of researchers are directly or indirectly working on
proving that P=NP (since they work on things that are related to the better understanding
of some NP-complete problem). The fact that nobody has succeeded (not even came close
to) is one of the reasons why we believe that P cannot be equal to NP. A world where
P = NP would probably be drastically different from the world we live in. On the other
hand, we also have no clue on how to possibly prove that P 6= NP. Quite a bit is known
about approaches to proving P 6= NP that must fail (see [1]; great read, free download
at https://www.scottaaronson.com/papers/pnp.pdf).
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