
Combinatorics
Course Notes

July 7, 2024

Manuel Bodirsky, Institut für Algebra, TU Dresden

—
Disclaimer: this is a draft and probably contains many typos and mistakes.

Please report them to manuel.bodirsky@tu-dresden.de.

Contents

Preface 7

Chapter 1. Graphs 1
1.1. Undirected Graphs 1
1.2. Connectivity 2
1.3. Colorability 3
1.4. Trees 4
1.5. Matchings 4

Chapter 2. Duality 9
2.1. Duality in Linear Algebra 9
2.2. Weighted Matchings 10
2.2.1. Maximum matching as an integer linear program 10
2.2.2. A relaxation 10
2.3. The Duality Theorem 12
2.3.1. Example first 12
2.3.2. The dual linear program in general 13
2.3.3. Optimality via feasibility 15
2.3.4. Fourier-Motzkin elimination 16
2.3.5. The Farkas lemma 17
2.3.6. Proving the duality theorem 19
2.3.7. The dualization recipe 20
2.4. Applications 21
2.4.1. Flows in networks 21
2.4.2. The easychair problem 22
2.4.3. The Markov Decision Problem 23
2.4.4. Von Neumann Minimax Theorem 27
2.4.5. Simple stochastic games 30

Chapter 3. The Probabilistic Method 35
3.1. Tournaments 35
3.2. Asymptotic Growth 36
3.2.1. O-notation 36
3.2.2. The exponential function 37
3.3. Random Graphs 38
3.3.1. Introducing random graphs 38
3.3.2. The Erdős-Rényi evolution 40
3.3.3. The first moment method 40
3.3.4. The second moment method 41
3.3.5. The void 43
3.3.6. The k-th day 43
3.3.7. Day ω 44
3.3.8. The double jump 44

3

4 CONTENTS

3.3.9. Past the double jump 44
3.3.10. Connectivity 45
3.3.11. Beyond connectivity 47
3.3.12. Powers of n 48
3.4. High Girth and High Chromatic Number 48
3.5. Extremal Graph Theory 49

Chapter 4. Ramsey Theory 53
4.1. The Pigeonhole Principle 53
4.2. Kőnig’s Tree Lemma 53
4.3. Ramsey’s Theorem 54
4.4. A Probabilistic Lower Bound 55
4.5. Applications 56
4.5.1. Number Theory 56
4.5.2. Geometry 57
4.6. The Theorem of Hales-Jewett 58
4.6.1. Positional games 58
4.6.2. The [n]d game 60
4.6.3. The Hales-Jewett Theorem 61
4.6.4. Application: van der Waerden’s theorem 62
4.6.5. Application: monochromatic copies of graphs 62

Chapter 5. Generating Functions 65
5.1. Motivating Generating Functions 65
5.2. The Idea 66
5.3. Formal Power Series 67
5.3.1. Defining power series 68
5.3.2. The reciprocal power series 68
5.3.3. The derived power series 69
5.3.4. Composing power series 69
5.3.5. The partial fraction decomposition 71
5.3.6. The Fibonacci numbers 71
5.4. Regular Languages 73
5.4.1. Deterministic finite automata 73
5.4.2. Regular expressions 73
5.4.3. The generating function of a regular language 75
5.5. Analytic Combinatorics 76
5.5.1. From formal power series to functions: convergence 76
5.5.2. From functions to power series: Taylor expansion 81
5.6. The Catalan Numbers 84
5.6.1. A recursion formula 84
5.6.2. Generating trees uniformly at random 85
5.6.3. A closed expression 86
5.6.4. Further correspondences 87
5.7. Exponential Generating Functions 88
5.7.1. Labelled enumeration 89
5.7.2. The exponential generating function 89
5.7.3. Dictionary for labelled combinatorial constructions 90
5.7.4. The Bell numbers 91
5.7.5. 2-regular graphs 92
5.7.6. Permutations and Stirling’s formula 92
5.7.7. Labelled graphs and labelled connected graphs 94

CONTENTS 5

5.8. The Lagrange Inversion Formula 94
5.8.1. Laurent series 94
5.8.2. Lagrange inversion 95
5.8.3. Labelled trees 95
5.8.4. Binary trees revisited 97
5.9. Unlabelled Enumeration 98
5.9.1. Relational structures 98
5.9.2. Cycle index sums 98
5.9.3. Basics of permutation groups 100
5.9.4. Combinatorial constructions and cycle index sums 101
5.9.5. Unlabelled rooted trees 104
5.9.6. Unlabelled trees 105

Bibliography 109

Appendix A. Basics from Calculus 111
A.1. Divergence and Convergence Tests 111
A.2. Inequalities 112

Appendix B. Some Basics from Complexity Theory 115
B.1. Turing Machines 115
B.2. Complexity 116
B.3. A Logic Perspective 117
B.4. The P Versus NP Problem 117

Preface

These are course notes for a course offered at TU Dresden for bachelor students
of mathematics in their third year and computer science diploma students who study
mathematics as their second subject. Combinatorics is a vast field and there is no
canonical selection of material. When selecting material, I have focussed on methods
rather than attempting some encyclopaedic approach. For each method, I try to
identify prototypical results, which I then prove in the simplest possible form that
still reveals the idea. In many applications that the students might encounter in the
future, stronger forms of the results will be needed; for such situations, I always give
references to more advanced textbooks.

The text starts with a short introduction to graphs, since graphs are a great
playground on which we may test our methods. Each of the remaining chapters is
about one particular method in combinatorics. Our second chapter is about duality,
with the linear programming duality theorem at its core. This is a topic that is often
taught in optimisation or in theoretical computer science because of its computational
consequences. Our focus is on the mathematical consequences of LP duality: many
other results, e.g. in graph theory, can be derived from it in one way or the other. I
illustrate this with results about matchings in graphs, or the minimax theorem of von
Neumann for zero-sum games, or finding the winner in Condon’s simple stochastic
games.

The next chapter is about the probabilistic method in combinatorics and its many
stunning applications. Our warm-up application is an extremely simple probabilistic
existence proof for so-called k-paradoxical tournaments. A more advanced application
is the proof of Erdős that for all k, ` ∈ N there exists a finite graph that has chromatic
number k but no cycles of length at most `. This result itself has many (generalisations
and) applications. Interestingly, the simplest known proof of this theorem is via the
probabilistic method (despite the fact that there is no probability in the formulation
of the result). The probabilistic proof requires random graphs with a carefully chosen
edge probability. If you are exposed for the first time to this proof the choice of the
edge probability might ‘fall from heaven’. Therefore, before proving Erdős’s theorem,
we first give an introduction to random graphs to gain some intuition. This is why
the chapter first treats the landscape of the so-called Erdős-Rényi evolution of the
random graph G(n, p) with n vertices and edge probability p. Here, p is a function
that depends on n! Depending on the asymptotic growth of p the random graph
G(n, p) may have various properties that hold almost surely, for n tending to infinity.
Many of these properties have a sharp threshold : the probability that these properties
hold for large n jumps from 0 to 1. When discussing these properties, we concentrate
on two types of arguments, the first moments method and the second moment method
(there are many more advanced techniques but they are out of the scope of this short
introduction).

The chapter on Ramsey theory contains another application of the probabilistic
method, for proving Ramsey lower bounds. But Ramsey theory itself is an extremely
useful tool in many other areas of combinatorics and mathematics in general so that

7

8 PREFACE

it might also qualify as a method and has its own chapter. We focus on two results:
Ramsey’s theorem, which I prove via its infinite version. The finite version is then
derived by a typical compactness argument. To keep things simple, I only give the
proof of the graph version of Ramsey’s theorem, but I state (and use!) the theorem
in its general version later. Two applications of Ramsey’s theorem, in number theory
and in geometry, are discussed. The second big result of the chapter is the theorem
of Hales-Jewett, which plays a central role in Ramsey theory. Historically, it has been
motivated by positional games, which is a beautiful topic in combinatorics that also
creates some links with what we have earlier learned about matchings. I present two
more applications of Hales-Jewett, namely a proof of the famous van der Waerden
theorem about the existence of monochromatic arithmetic progressions, and another
Ramsey-type theorem for graphs (and many more applications can be found in the
exercises).

The fourth method that I present are generating functions, used in enumera-
tive combinatorics. Generating functions can be viewed as formal power series and
treated algebraically, or they can be viewed as functions over the complex numbers
and treated analytically. Both perspectives have their advantages. In almost all the
applications that we present (including more advanced topics, such as the Lagrange
inversion formula) we have found purely algebraic treatments (those tend to be more
elementary). However, I do not neglect the links to the analytic approach since these
links can provide intuition and also connect well to other courses that the students
have followed or will follow. With the generating function method, I can then treat
very efficiently much of the material that would take central space in many combina-
torics courses, namely counting

• words of a given length in a regular language (Chomsky-Schützenberger),
• binary trees of a given size (Catalan),
• equivalence relations on a given set of elements (Bell numbers and Dobiński’s

formula),
• labelled connected graphs with a given set of vertices,
• rooted labelled trees with a given set of vertices (Cayley’s formula), and
• permutations of n elements (Stirling’s formula).

I thank the participants of the course in the winter semester 2018/19 for their feed-
back, in particular Benedikt Bartsch, Janik Fechtelpeter, Paul Senf, Manuel Thieme,
and Tony Zorman, and in particular Andrés Aranda who was teaching assistant. The
course notes contain some definitions and fundamental facts that were not covered
in detail in class because the participants had already seen these concepts in other
courses. I have still added them to the notes because our goal was to keep the notes
self-contained (for the convenience of the reader; it is always easy to skip these parts!).
Thus, please also let me know if there are gaps, missing definitions and missing ex-
planations, I am happy to fill them. The text contains 94 exercises; the ones with a
star are harder.

Dresden, July 7, 2024
Manuel Bodirsky

CHAPTER 1

Graphs

There are directed und undirected graphs. We start with undirected graphs.

1.1. Undirected Graphs

We mostly follow the notation of the text book “Graph Theory” of Reinhard
Diestel [12], which has both an English and a German version. For a set S we write(
S
k

)
for the set of all subsets of M with k elements (also called k-subsets of S). The

notation is motivated by the identity∣∣∣∣(Sk
)∣∣∣∣ =

(
|S|
k

)
.

Definition 1.1.1. A (simple1, undirected) graph G is a pair (V,E) where V =

V (G) is a set, called the vertex set and where E = E(G) ⊆
(
V
2

)
is called the edge set .

The elements of the vertex set of a graph G are also called the vertices or the
nodes of G. A graph G is called finite if V (G) is finite. If {u, v} ∈ E(G) then u and
v are called adjacent , and v is called a neighbour of u.

The number of neighbours of x in G is called the degree of x. We give a couple
of examples of fundamental graphs along with their names. Let n ∈ N be a positive
natural number.

• Kn denotes the graph (V,E) with V := {1, 2, . . . , n} and E :=
(
V
2

)
. This

graph is called the n-element clique (or the complete graph).
• In denotes the graph ({1, 2, . . . , n}, ∅) and is called independet set (or stable

set) of size n.
• Pn, for n ≥ 2, denotes the path of length n, that is, the graph (V,E) with
V := {1, . . . , n} and E := {{1, 2}, {2, 3}, . . . , {n− 1, n}}. Warning: in some
books and articles Pn denotes the graph with n edges, and not, as here, the
path with n nodes.
• Cn, for n ≥ 3, denotes the graph(

{0, 1, . . . , n− 1},
{
{i, j} | (i− j) ≡ 1 (modn)

})
called cycle (with n nodes und n edges).

The complement of a graph G = (V,E) is the graph G = (V,
(
V
2

)
\ E). For

instance the complement of In is Kn. Obviously, (G) = G.

Definition 1.1.2 (Isomorphism). Two graphs G and H are called isomorphic
if there exists a bijection f : V (G) → V (H) such that {u, v} ∈ E(G) if and only if
{f(u), f(v)} ∈ E(H).

For example the complement of C5 is isomorphic to C5.

1For the moment, our graphs also don’t have loops; graphs without multiple edges or loops
(whatever this is) are called simple.

1

2 1. GRAPHS

Definition 1.1.3 (subgraph). A graph H is called a subgraph of G if V (H) ⊆
V (G) and E(H) ⊆ E(G) ∩

(
V (H)

2

)
. An induced subgraph of G is a graph H with

V (H) ⊆ V (G), and E(H) = E(G) ∩
(
V (H)

2

)
.

For V ⊂ V (G) we write G[V] for the (uniquely determined) induced subgraph
of G with vertex set V , and call G[V] the subgraph of G induced by V . A sequence
(u1, u2, . . . , ul) of nodes of a graph G is called a walk from u1 to ul in G if {ui, ui+1} ∈
E(G) for all i ∈ {1, . . . , l − 1}. We allow the case l = 1; in this case the walk has
only one vertex and no edges. A walk (u1, u2, . . . , ul) is called closed if u1 = ul, and
otherwise open. A walk (u1, u2, . . . , ul) is called a path from u1 to ul if ui 6= uj for
distinct i, j ∈ {1, . . . , l}. Note that if there is a walk from u to v then clearly there is
also a path from u to v.

A cycle is a walk (u0, u1, . . . , ul−1, ul) with u0 = ul, l ≥ 3 and ui 6= uj for all
distinct i, j ∈ {1, . . . , l − 1}. Note that a graph contains a cycle if and only if it
contains a subgraph isomorphic to Cn for some n ≥ 3.

Exercises.

(1) Let G be a graph, and for u ∈ V (G) let du be the degree of u. Show that

|E(G)| = 1

2

∑
u∈V (G)

du.

(2) Suppose that a graph has 12 edges and 6 vertices, each of which has degree
3 or 5. How many vertices are there of each degree?

(3) Show that if a graph G is not connected, then its complement is connected.

Definition 1.1.4. A directed graph (short digraph) is a pair (V,E) where V =
V (G) is a vertex set and where E = E(G) ⊆ V 2 is a set of (directed) edges.

Edges of the form (u, u) for u ∈ V are called loops. A directed graph is called
symmetric if for every (u, v) ∈ E we have (v, u) ∈ E. There is an natural bijection
between symmetric directed graphs without loops, and undirected graphs, which is
why directed graphs may be viewed as a generalisation of undirected graphs. Directed
(and therefore also undirected) graphs may be represented by its adjacency matrix
A = (ai,j)i,j∈V where for all vertices u, v ∈ V the entry au,v is one if there is an edge
from u to v, and zero otherwise.

1.2. Connectivity

A graph G is called connected if for all s, t ∈ V (G) there is a walk from s to t
in G. Let G = (U,E) and H = (V, F) be two graphs with disjoint vertex sets. Then
G]H denotes the graph (U ∪ V,E ∪ F), called the disjoint union of G and H. The
following is easy to see.

Lemma 1.2.1. A graph G is connected if and only if it cannot be written as H1]H2

for graphs H1, H2 with at least one vertex.

A connected component of a graph G is a connected induced subgraph C of G
such that for any v /∈ C, the graph G[C ∪ {v}] is not connected. Clearly, every graph
can be written as a disjoint union of its connected components.

More generally, a graph G = (V,E) is k-connected, for k ≥ 1, if for any S ⊆ V
with |S| = k−1 the graph G[V \S] is connected. So we see that a graph is connected
if and only if it is 1-connected. We state the following without proof; three different
proofs can be found in [12]. Two paths (u1, . . . , uk) and (v1, . . . , vl) from a = u1 = v1

to b = uk = vl are called independent if {u1, . . . , uk} ∩ {v1, . . . , vl} = {a, b}.

1.3. COLORABILITY 3

Theorem 1.2.2 (Menger’s theorem). A finite graph G = (V,E) is k-connected,
for k ≥ 1, if and only if for all a, b ∈ V there are at least k pairwise independent paths
from a to b.

Exercises.

(4) If a graph G has p vertices, and the degree of every vertex is at least
⌈
p−1

2

⌉
,

then G is connected.

1.3. Colorability

A k-colouring of a graph G is a function

f : V (G)→ {0, 1, . . . , k − 1}
such that f(u) 6= f(v) for all {u, v} ∈ E(G). A graph G is called k-colorable (or
k-partite) if there exists a k-colouring of G. When is a graph 2-colorable?

Proposition 1.3.1. A finite graph G is 2-colorable if and only if it contains no
odd cycles (i.e., cycles of odd size).

Proof. Odd cycles are certainly not 2-colourable, and neither are graphs that
contain odd cycles. So suppose that G = (V,E) has no odd cycles. Note that G is
2-colourable if and only if all its connected components are 2-colourable. We color a
connected component C of G as follows:

(1) Select an arbitrary vertex u in C and define f(u) := 0.
(2) For all v ∈ N(u) define f(v) := 1.
(3) If f(v) is defined for all v ∈ C then f is the desired colouring.
(4) Otherwise, suppose that f(w′) = i ∈ {0, 1} and w ∈ N(w′).

Define f(w) := 1− i.
(5) Continue with step 3.

Since C is finite, this procedure terminates after finitely many steps, and we have
found the desired colouring. �

Note that the proof shows that there exists an efficient algorithm (which performs
at most linearly many operations in n+m) that determines for a given graph whether
it is 2-colorable.

Two-colorable graphs are also called bipartite. In other words, a graph G is
bipartite if its vertex set can be partitioned into two independent sets A and B. The
set {A,B} is called a bipartition of G, and A und B are called partition classes (or
colour classes).

Example 1. Kn,m denotes the complete bipartite Graph with partition classes
P1 := {1, . . . , n} and P2 := {n+ 1, . . . ,m+ n}, that is,

Kn,m = (P1 ∪ P2,
{
{u, v} | u ∈ P1, v ∈ P2

}
).

4

When is a graph 3-colourable? For this we do not have a similarly elegant descrip-
tion as in Proposition 1.3.1. It is an (important) open problem (in fact, it is one of
the Millenium Problems of the Clay Mathematics Institute; http://www.claymath.
org/millennium-problems/p-vs-np-problem) whether there exists an efficient al-
gorithm that tests for a given graph whether it is 3-colourable (the problem is NP-
complete; see Appendix B).

http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem

4 1. GRAPHS

Figure 1.1. The Clebsch graph (see Exercise 5).

Exercises.

(5) Show that the Clebsch graph (see Figure 1.1) is 4-colourable, but not 3-
colourable.

1.4. Trees

A tree is a connected graph (V,E) with at least one vertex and without cycles.
More generally, a graph without cycles is called a forest. Clearly, from what we have
learned in Section 1.2, every forest is a disjoint union of trees (so the degenerate graph
without any vertex is considered to be a forest: it contains no cycles, and it is the
union of 0 trees). Proposition 1.3.1 implies that trees (and forests) are 2-colourable.

A node in a tree with degree one is called a leaf. The following statements are
easy to prove and left for the reader.

Lemma 1.4.1. Every finite tree with at least two nodes has a leaf.

We write G− x for the subgraph of G induced by V (G) \ {x}.

Lemma 1.4.2. Let G = (V,E) be a finite connected graph with at least one node.
Then the following are equivalent:

(1) G is a tree.
(2) |E| = |V | − 1.
(3) |E| ≤ |V | − 1.

Lemma 1.4.3. Let G be a graph. Then the following are equivalent.

(1) G is a tree.
(2) G has maximally many edges without containing a cycle.
(3) G has minimally many edges with the property of being connected.
(4) Between any two nodes in G there exists a unique path.

1.5. Matchings

Let G be a graph. A matching (in G) is a subset M of E(G) of pairwise disjoint
edges: that is, for all u, v ∈ M we have u ∩ v = ∅. A perfect matching is a matching
M with 2|M | = |V |. If {x, y} ∈ M then y is called the partner of x. If S ⊆ V (G)
then M is a matching of S if every element of S appears in an edge of M .

How can we find in G a matching of maximal size? Let M be any matching in G.
A path in G whose edges alternate between edges from E \M and edges from M is
called an alternating path. An alternating path P is called augmenting with respect
to M if both the first and the last vertex of P have no partner in M . Augmenting
paths can be used to obtained larger matchings than M . To formalise this we need
the notion of a symmetric difference of two sets A and B: this is the set

A∆B := {x ∈ A ∪B | x /∈ A ∩B} .

1.5. MATCHINGS 5

Lemma 1.5.1. Let M1 and M2 be matchings in G = (V,E). Then the graph
(V,M1∆M2) consists of a disjoint union of cycles of even length and of paths.

Let M ′ be the symmetric difference of M and the augmenting path P . Then M ′

is again a matching and |M ′| > |M |.

Lemma 1.5.2 (Lemma of Berge). Let G be a finite graph. A matching M in G is
of maximal size if and only if there is no augmenting path with respect to M in G.

Proof. We have already seen that a matching with an augmenting path cannot
be of maximal size. To prove the converse, suppose that G has a matching M ′ in
G with |M ′| > |M |. Since |M ′| > |M | the graph (V,M ′∆M) has a component with
more edges from M ′ than from M . By Lemma 1.5.1 such a component must be an
augmenting path with respect to M . �

If S ⊆ V we write N(S) for {n ∈ V | {n, s} ∈ E, for some s ∈ S}, the neighbor-
hood of S in G. An obvious necessary condition for the existence of a matching of
S ⊆ V in G is |N(S)| ≥ |S|. This condition is in general not sufficient (example?).
Theorem 1.5.3 presents a necessary and sufficient condition for the existence of a
matching of S in G in bipartite (i.e., two-colorable) graphs.

In the following, let G = (V,E) be a bipartite graph with a fixed bipartition A,B,
so that A ∪B = V and A,B are independent sets.

Theorem 1.5.3 (Hall’s marriage theorem). A bipartite graph G has a matching
of A ⊆ V (G) if and only if |N(S)| ≥ |S| for all S ⊆ A.

Proof. Let M be a matching of G such that a0 ∈ A remains without partner.
We will construct an augmenting path with respect to M . Let a0, b1, a1, b2, a2, . . . be
a sequence of maximal length of distinct vertices ai ∈ A and bi ∈ B such that

(1) {bi, ai} ∈M , and
(2) bi has an edge to a vertex af(i) ∈ {a0, . . . , ai−1}.

Note that the i nodes a0, . . . , ai−1 together have at least i neighbours in B, so we can
always find an edge {a, b} ∈ E such that a ∈ {a0, . . . , ai−1} and b ∈ B \{b1, . . . , bi−1}.
So the maximality of the sequence implies that the sequence cannot end in a vertex
from A. Let bk ∈ B be the last vertex of this sequence. Because of the two properties
(1) and (2)

P := bkaf(k)bf(k)af2(k)bf2(k) . . . afr(k)

with fr(k) = 0 is an alternating path.
We claim that bk has no partner in M . If a would be a partner of bk and a = ai

for an i ∈ {1, . . . , k−1}, then bk = bi, since M is a matching, contradiction. If a 6= ai
for all i ∈ {1, . . . , k − 1}, then ak := a would prolong our sequence, contradicting its
maximality. Hence, bk is without partner and P is an augmenting path. �

Exercises.

(6) The goal of this exercise is to show that the marriage theorem is false for
infinite bipartite graphs. Let G be the graph with vertex set Z and edge set

{{a,−a} | a ∈ Z \ {0}} ∪ {{0, a} | a ∈ N \ {0}}.
Show that the conditions in Hall’s marriage theorem are satisfied for A :=
{a ∈ Z | a ≤ 0}, but that A has no matching in G.

(7) Let G be a finite bipartite graph with partition classes A and B, and let
A′ ⊆ A and B′ ⊆ B. Suppose that A′ has a matching in G and B′ has a
matching in G. Prove that there exists a matching of A′ ∪ B′ in G. Does
this statement hold if G is infinite? Does it hold if G is not bipartite?

6 1. GRAPHS

Definition 1.5.4. A graph G is called k-regular if every node in G has degree k.

The marriage theorem has the following elegant consequence.

Corollary 1.5.5. For k ≥ 1 any bipartite k-regular graph has a perfect matching.

Proof. Every subset S ⊆ A has exactly k|S| edges into N(S). Together there
are k|N(S)| edges to vertices in N(S). Therefore k|S| ≤ k|N(S)| and |S| ≤ |N(S)|.
The Marriage Theorem gives us a matching of A in G. In regular bipartite graphs we
clearly have |A| = |B|. Hence we have found a perfect matching for G. �

Another consequence of the marriage theorem is the important theorem of Kőnig.
(In fact, it is also possible to derive the marriage theorem from Kőnig’s theorem; this
is Exercise 8.) Let G = (V,E) be a graph. A set U ⊆ V is called a covering of G if
every edge of G contains a vertex from U .

Theorem 1.5.6 (Kőnig). Let G be a finite bipartite graph. Then the maximal
size of a matching of G equals the minimum size of a covering of G.

Proof. Let U be a covering of G of minimal size. Let M be a matching of G.
We need at least |M | nodes to cover M . Hence, |U | ≥ |M |. We will prove that
there exists a matching of size |U | in G. Let U1 := U ∩ A and U2 := U ∩ B. To
verify the marriage condition for U1 in the bipartite graph G1 := G[U1 ∪ B \ U2],
we have to show for an arbitrary S ⊆ U1 that |S| ≤ |N(S)|. Otherwise, we could
have replaced the set S in U by the smaller set N(S), and would still have a cover
of G, contradicting the minimality of U . The Marriage Theorem (Theorem 1.5.3)
gives us a matching M1 of U1 in G1. Analogously, we obtain a matching M2 of
U2 in the graph G2 := G[U2 ∪ A \ U1]. Then M1 ∪ M2 is a matching in G, and
|M1 ∪M2| = |U1|+ |U2| = |U |. �

Another useful combinatorial presentation of the marriage theorem is as follows.
Let F be a finite family of finite subsets of a finite set X where the members of F
are counted with multiplicity (i.e., the same set might appear several times in F). A
transversal (or system of distinct representatives) for F is the image of an injective
function f from F to X such that f(S) ∈ S for every S ∈ F . In other words, f
selects one representative from each set in F in such a way that no two sets from S
get the same representative. We are interested in characterising the situation when
F has such a transversal.

The collection F satisfies the marriage condition if for each subfamily S ⊆ F

|S| ≤ |
⋃
A∈S

A|.

Clearly, if the marriage condition fails then there cannot be a transversal f of F . The
following is basically a reformulation of Hall’s marriage theorem.

Theorem 1.5.7. Let F be a family of finite subsets of a set X. Then F has a
transversal if and only if F satisfies the marriage condition.

Proof. Let F = {A1, A2, . . . , An}. Let G be the bipartite graph with colour
classes F and X and with and edge between Ai ∈ F and y ∈ X if y ∈ Ai. The
marriage condition for F implies that for any S ⊆ F we have |N(S)| ≥ |S|, so Hall’s
marriage theorem for bipartite graphs implies that F has a a matching of F in G.
The matching is the graph of a transversal of F , proving the statement. �

Exercises.

(8) Deduce Theorem 1.5.3 (Hall’s marriage theorem finite bipartite graphs) from
Theorem 1.5.7.

1.5. MATCHINGS 7

(9) A Latin square of order n is matrix A ∈ {1, . . . , n}n×n such that each symbol
appears exactly once in each row and each column. If A ∈ {1, . . . , n}m×n for
m < n is such that each symbol appears at most once in every row and every
column then A is called a Latin rectangle. Use Hall’s marriage theorem to
prove that any m × n Latin rectangle can be extended to an n × n Latin
square.

(10) A partially ordered set is a pair (P,≤) where P is a set and ≤ is a binary
relation on P that satisfies for all p, q, r ∈ P :
(a) p ≤ p,
(b) if p ≤ q and q ≤ p, then p = q, and
(c) if p ≤ q and q ≤ r, then p ≤ r.

Two elements p, q of P are called comparable if p ≤ q or q ≤ p, and incom-
parable otherwise. A subset S of P is called
• a chain if all pairs of elements of S are comparable.
• an antichain if distinct elements of S are incomparable.

Use Kőnig’s theorem to prove Dilworth’s theorem: if (P,≤) is a finite partial
order, then the size of the largest antichain of P equals the minimal k such
that there are chains C1, . . . , Ck in P that cover P , i.e., P = C1 ∪ · · · ∪ Ck.

(11) (from [12]) Find a partially ordered set that has no infinite antichain but
cannot be covered by finitely many chains.

(12) Consider the following two-person game played on an undirected graph G =
(V,E). There are two players, A and B, that play alternatingly. At step 0
the first player chooses an arbitrary edge. Then each player in turn chooses
a previously unchosen edge such that the set of chosen edges forms a simple
path. The first player who is unable to make a legal move looses. Prove: if
G has a perfect matching, then the first player has a winning strategy.

(13) Consider the following variant of the game of the previous exercise. This
time, the players alternatingly pick a vertex. At the first move, the choice
can be arbitrary. After that, the picked vertex must always be adjacent to
the previously picked vertex. Prove that the second player has a winning
strategy if and only if every connected component of the graph has a perfect
matching.

(14) (∗) Show that every 3-regular graph (V ;E) contains a subgraph (V ;E′) all
of whose vertices have degree 1 or 2.

(15) (from [12]) Let k be an integer. Show that any two partitions of a finite set
into k-sets admit a common choice of representatives.

CHAPTER 2

Duality

Proposition 1.3.1 is an example of a duality : for every graph G, either it is 2-
colourable, which is easy to verify once we are given the 2-colouring f : V (G)→ {0, 1},
or it contains an odd cycle, which is easy to verify, too. Even Lemma 1.2.1 can be
viewed as a (baby-) duality: either a graph has a decomposition as a disjoint union
of non-trivial smaller graphs, or for every pair of vertices u, v ∈ V (G) there exists a
path from u to v in G. The marriage theorem of Hall and the theorem of Kőnig are
further examples of dualities.

One way to formalise the similarities in these statements has been proposed by
Jack Edmonds. A class of finite graphs C (or a class of more general mathematical
structures) is said to have a good characterisation if

• C is in the complexity class NP (i.e., there exists a polynomial-time nonde-
terministic Turing machine that decides membership in C, and
• the complement of C is in the complexity class NP, too, i.e., C is in the

complexity class coNP.

Typically, if a class is in NP ∩ coNP, it is also in the complexity class P, i.e., it can
be solved in polynomial time. Hence, a good characterisation for C can be taken as
an indication that an efficient algorithm for membership in C exists.

In this section we first revisit a well-known duality from linear algebra. We then
find a common generalisation of Kőnig’s theorem for matchings and linear algebra du-
ality, namely linear programming duality. In Section 2.4 we will see many applications
of this principle with many algorithmic consequences.

2.1. Duality in Linear Algebra

Let A ∈ Qm×n and b ∈ Qm. If Ax = b has a solution, then this can be shown
by simply presenting a solution from Qn for the vector of unknowns. There also
simple proofs for unsatisfiability of Ax = b (even simpler than performing Gaussian
elimination):

Theorem 2.1.1 (Duality). Let A ∈ Qm×n, x = (x1, . . . , xn) an n-tuple of vari-
ables, and b ∈ Qm. Then Ax = b is unsatisfiable if and only if the system

(A|b)>y = (0, . . . , 0, 1)> (1)

is satisfiable.

Proof. Let z1, . . . , zm be the rows of A|b. The back direction is the easier
direction. Suppose that (A|b)>y = (0, . . . , 0, 1)> has a solution y ∈ Qm. Then
y1z1 + · · · + ymzm = (0, . . . , 0, 1), i.e., (0, . . . , 0, 1) ∈ 〈z1, . . . , zm〉. So we can derive
the row (0, . . . , 0, 1) from A|b by elementary row transformations. This means that
Ax = b implies 0x1 + · · · + 0xn = 1, which is unsatisfiable. Hence, Ax = b must be
unsatisfiable.

The direction ⇒ is also easy to show using the row echelon form. Use row
transformations to bring the matrix (A|b) into row echelon form (C|d). If Ax = b
is unsatisfiable, then Cx = d is unsatisfiable, and r := rank(C) < rank(C|d) by

9

10 2. DUALITY

well-known linear algebra. In particular zr+1 = (0, . . . , 0, dr+1) with dr+1 ∈ Q \ {0}.
Replace zr+1 by d−1

r+1zr+1 = (0, . . . , 0, 1). Since this row has been derived from
(A|b) by row transformations, we have (0, . . . , 0, 1) ∈ 〈z1, . . . , zm〉. Hence, the system
(A|b)>y = (0, . . . , 0, 1)> has a solution. �

2.2. Weighted Matchings

We would like to find a common generalisation of dualities for matchings and
the duality of linear algebra that we have just seen in the previous section. In our
first step from matchings towards algebra we consider in this section the weighted
matching problem. In this problem, we are given a bipartite graph G with partition
classes A and B where each edge e ∈ E(G) is decorated by a weight we ∈ Q. We are
interested in finding a matching M of A in G whose weight

w(M) :=
∑
e∈M

we

is maximal. This problem has numerous applications.

2.2.1. Maximum matching as an integer linear program. We will refor-
mulate the weighted matching problem for G as a linear optimisation problem over
a system of linear inequalities. We introduce a variable xe for each edge e ∈ E(G);
the variable xe can attain values 0 or 1. They encode the desired matching M , where
xe = 1 means e ∈M and xe = 0 means e /∈M . Then

∑
e∈M we can be written as

w(x) :=
∑

e∈E(G)

wexe

where x is a tuple listing all the variables; w(x) will be called the objective function.
The requirement that a vertex v ∈ V appears in at most one edge from M can be
expressed by ∑

e∈E(G),v∈e

xe ≤ 1.

More generally, a set of linear inequalities over the integers together with a linear
objective function is called an Integer Linear Program (ILP). Unfortunately, there is
in general no efficient algorithm known that decides whether a given ILP has a feasible
solution (this problem is another example of an NP-hard problem; see Appendix B).
However, if the ILP comes from a weighted matching problem as described above, we
are lucky and can always find optimal integer solutions, as we will see in the next
subsection.

2.2.2. A relaxation. If we leave out the integrality conditions, i.e., if we allow
each variable xe to attain all values in the interval [0, 1], we obtain the following:

Maximize
∑
e∈E

wexe

subject to
∑

e∈E,v∈e
xe ≤ 1 for each v ∈ V and (2)

0 ≤ xe ≤ 1 for each e ∈ E.

Such an optimisation problem is called a linear program; they can be solved efficiently,
and are extremely important in optimisation and theoretical computer science. There
is a notion of a dual of a linear program, and this notion of duality has many appli-
cations in combinatorics, as we will see in later sections. For more background on

2.2. WEIGHTED MATCHINGS 11

linear programming, we recommend [28], which we have freely used to prepare the
following subsections.

Linear programs that are obtained from integer linear programs as described
above are called LP relaxations. A linear program might not have any solution at all
(if the set of linear inequalities is unsatisfiable); if this happens for an LP relaxation,
then the original integer linear problem does not have a solution as well. For example,
this might happen if we consider the integer linear program for a bipartite graph which
does not have a perfect matching.

Let us now assume that the LP relaxation has an optimal solution s ∈ Qn, i.e.,
a solution where the value of the objective function is largest possible. Certainly s
provides an upper bound for the objective function of the original integer program.
This is because every feasible solution of the integer program is also a feasible solution
of the LP relaxation. In the case that we started with the integer program for the
weighted matching problem is that this upper bound is also tight: it provides an
optimal solution of the original problem!

Theorem 2.2.1. Let G = (V,E) be a finite bipartite graph with rational edge
weights we. Then the LP relaxation (2) has an integral optimal solution. This solution
is an optimal solution for the integer program as well, and hence provides a maximum
weight matching of G.

Proof. Clearly, the LP relaxation has a feasible solution since we may set all
variables to 0. Let s be an optimal solution of the LP relaxation, and let w(s) =∑
e∈E wese be the value of the objective function at s. Let

E′ := {e ∈ E | 0 < s(e) < 1}.

We show the statement by induction on E′. If |E′| = 0 there is nothing to be shown.
Otherwise, consider the case that E′ contains a cycle C = (c0, c1, . . . , cl−1) (which
must have even length). Let a be the minimum of se over all edges e on C, and let b
be the maximum of se over all edges e on C. Define ε as the minimum of a and 1− b,
and define s′e for e ∈ E as follows:

s′e :=

s{ci,ci+1} − ε for e = {ci, ci+1} and i even

s{ci,ci+1} + ε for e = {ci, ci+1} and i odd

se otherwise.

Then s′ satisfies for every v ∈ V the condition
∑
e∈E,v∈e s

′
e = 1. The objective

function evaluated at s′ is

w(s′) =
∑
e∈E

wes
′
e = w(s) + ε

l−1∑
i=0

(−1)iw{ci,ci+1}.

Note that s′ is still feasible, and that s′e is integral for at least one edge on C. Since

s is optimal, we must have ∆ :=
∑l−1
i=0(−1)iw{ci,ci+1} = 0 since otherwise we could

achieve w(s′) > w(s) by choosing ε > 0 for ∆ > 0 and by choosing ε < 0 for ∆ < 0.
This means that s′ is another feasible optimal solution with strictly more integer
values than s. Similarly, if E′ is acylic, we can increase the number of integer values
by picking a maximal path in (V,E′) and proceeding similarly. �

Exercises.

(16) Show that Theorem 2.2.1 is false for general finite (not necessarily bipartite)
graphs.

12 2. DUALITY

2.3. The Duality Theorem

This section presents an extremely powerful and useful duality result that im-
plies many of the dualities that we have seen previously, and many more results in
combinatorics.

2.3.1. Example first. Let us start with a concrete example. Consider the linear
program (see Figure 2.1)

maximize x1 + x2

subject to 3x1 − x2 ≤ 0 (3)

− x1 + x2 ≤ 4

2x1 + 4x2 ≤ 40

x1, x2 ≥ 0

Since x1, x2 ≥ 0 we obtain that

x1 + x2 ≤ 2x1 + 4x2 ≤ 40

so the optimum is bounded by 40. We can obtain a better bound by first dividing
the third inequality by two:

x1 + x2 ≤ x1 + 2x2 ≤ 20.

We can do even better by adding the second and two times the third inequality:

x1 + x2 = (3x1 − x2) + (−2x1 + 2x2) ≤ 8.

More generally, from the constraints we are trying to derive an inequality of the form
c1x1 + c2x2 ≤ h where c1, c2 ≥ 0 and h is as small as possible. We derive inequalities
by choosing nonnegative coefficients y1, y2, y3, obtaining

y1(3x1 − x2) + y2(−x1 + x2) + y3(2x1 + 4x2) ≤ y24 + y340

which can be rewritten to

(3y1 − y2 + 2y3)x1 + (−y1 + y2 + 4y3)x2 ≤ 4y2 + 40y3

and thus c1 = 3y1 − y2 + 2y3, c2 = −y1 + y2 + 4y3, and h = 4y2 + 40y3. Finding such
y1, y2, y3 is again a linear program, namely

minimize 4y2 + 40y3

subject to 3y1 − y2 + 2y3 ≥ 1 (4)

− y1 + y2 + 4y3 ≥ 1

y1, y2, y3 ≥ 0

Clearly, the optimum of the new linear program, which is called the dual linear pro-
gram, provides an upper bound for the optimum of the original linear program. Note
that in the dual LP, we have one variable for each constraint of the original LP, and
one constraint for each variable of the original LP.

In fact, the upper bound from the dual is tight! This can be seen from the
observation that the maximum of the original linear program is at least 8, because 4
is attained for x1 = 2 and x2 = 6. The minimum of the dual is at most 8, because
8 is attained for y1 = 1, y2 = 2, and y3 = 0. So the maximum of the original linear
program equals the minimum of the dual linear program.

2.3. THE DUALITY THEOREM 13

x1

x2

Figure 2.1. An illustration of the linear program 3.

2.3.2. The dual linear program in general. Let A be a matrix with m rows
and n columns and entries from Q (the same results hold for R instead of Q). Consider
the linear program

maximize c>x subject to Ax ≤ b and x ≥ 0 (P)

which we call the primal linear program in the following. Similarly as in Section 2.1, we
are trying to combine the m inequalities of the system Ax ≤ b with some nonnegative
coefficients y1, . . . , ym so that

• the resulting inequality has the j-th coefficient at least cj , and
• the right-hand side is as small as possible.

This leads to the dual linear program

minimize b>y subject to A>y ≥ c and y ≥ 0. (D)

The following is clear from the way we constructed the dual linear program:

Proposition 2.3.1. For each feasible solution t of the dual linear program (D)
the value b>t provides an upper bound on the maximum of the objective function of
the primal (P).

Note that this implies that if (P) is unbounded (from below), then (D) must be
infeasible, and if (D) is unbounded (from above) then (P) is infeasible. The following,
on the other hand, requires proof.

Theorem 2.3.2 (LP duality). Exactly one of the following possibilities occurs.

(1) Neither (P) nor (D) has a solution.
(2) (P) is unbounded and (D) has no solution.
(3) (P) has no solution and (D) is unbounded.
(4) Both (P) and (D) have a solution, and if s is an optimal solution to (P)

and t is an optimal solution to (D) then

c>s = b>t.

Example 2. The problem of finding small vertex covers can also be formulated
as an integer linear program, namely as

minimize
∑
v∈V

yv

subject to yv ≥ 0 for all v ∈ V (5)∑
v∈e

yv ≥ 1 for all e ∈ E.

14 2. DUALITY

Note that the linear program for matchings that we have already seen for the weighted
case

maximize
∑
e∈E

xe

subject to xe ≥ 0 for all e ∈ E∑
e∈E,v∈e

xe ≤ 1 for all v ∈ V

is precisely the dual of the linear program for the vertex cover problem! Moreover,
similarly as for matchings it turns out that for bipartite graphs the LP relaxation (5)
provides the optimum also for the integer linear program. To see this, let t be an
optimal solution to the LP relaxation (5). If for some v ∈ V we have tv > 1 then
we may set tv to 1 while fixing all other values of t, which still meets the boundary
conditions but reduces the objective function, contrary to the optimality assumption
on t. Let V ′ be the set of vertices v such that tv is strictly between 0 and 1. We show
the statement by induction on |V ′|. If |V ′| = 0 then we are done. Define

ε := min{tv, 1− tv | v ∈ V ′}
and note that ε > 0 by our assumptions. Let V1, V2 be the color classes of the bipartite
graph G such that |V1| ≤ |V2|. Define t′ as follows:

t′v :=

tv + ε if v ∈ V1 ∩ V ′,
tv − ε if v ∈ V2 ∩ V ′,
tv otherwise.

Then t′ is again a feasible solution to (5):

• t′v ≥ 0 holds for all v ∈ V by the choice of ε;
•
∑
v∈e t

′
v ≥ 1 holds for all e ∈ E because if u = {u, v} and tv = 1 then t′v = 1

and the statement holds, and if tv = 0 then tu = 1 = t′u and the statement
holds, so we may suppose that u ∈ V1 ∩ V ′ and v ∈ V2 ∩ V ′, or v ∈ V1 ∩ V ′
and u ∈ V2 ∩ V ′; in both cases, ε cancels out and hence t′u + t′v ≥ 1.

Moreover,
∑
v∈V t

′
v ≤

∑
v∈V tv by our choice of t′ because |V1| ≤ |V2|. Finally, there

is at least one v ∈ V where tv is fractional and t′v is integral, so the statement follows
from the inductive assumption.

Therefore, linear programming duality implies Kőnig’s theorem! 4

2.3. THE DUALITY THEOREM 15

Exercises.

(17) Suppose that G = (V,E) is a bipartite graph with a rational edge weight
we for every e ∈ E. Write down a linear program for the maximum weight
perfect matching in G. Does the LP always have a feasible solution? Is it
true that if it has a feasible solution, then there is also an integer solution?
What is the relation between the value of the LP and the size of the maximal
matching?

(18) A serious dietician wishes to design a minimal-cost diet to meet some mini-
mum daily requirements, and draws the following table.

Potatoes Oats Requirements per dish
Vitamin C [mg/kg] 150 10 15 mg
Fibre [g/kg] 20 100 4 mg
Protein [g/kg] 20 120 20 mg
Cost [Euro/kg] 1 3

Formulate the problem of finding a minimum-cost diet as a linear program.
Find a good lower bound to the minimum cost. What is the meaning of
optimal solutions to the dual problem?

(19) (Learning linear classifiers from data.) Suppose we are given a finite set of
black points B ⊆ Qn and a finite set of while points W ⊆ Qn (the learning
data), and we would like to know whether there exists a linear halfspace of
Qn (the classifier) that contains all the while points from W but no black
point from B. Show that this task can be modelled by linear programming.

(20) You want to install a circular irrigation system on your piece of land. Your
land has the shape of a convex n-gon. What is the maximum radius that you
can choose for your irrigation system? Model this task as a linear program.

(21) Consider the following 2-player game played on a directed graph (V,E).
We assume that V is finite and partitioned in two subsets V1 and V2, and
E ⊆ V1 × V2 ∪ V2 × V1. Player i, for i ∈ {1, 2}, chooses a probability
distribution pi on Vi.

2.3.3. Optimality via feasibility. In this section we use the duality theorem
to reduce the task of deciding whether a given linear program (P) has an optimal
solution to the task of deciding whether a set of linear inequalities has any solution.
We simply combine the constraints from (P), the constraints from (D), and add an
inequality between the objective functions, obtaining the following system of linear
inequalities:

Ax ≤ b

A>y ≥ c

c>x ≥ b>y
x, y ≥ 0

For each feasible solution (s, t) for the variables (x, y) of this system, s is an optimal
solution of the linear program (P).

The satisfiability problem for systems of linear equalities (see Section 2.3.3) can
be solved in polynomial time. The historically first algorithm for this problem is due
to Khachiyan [25]. Another method is the simplex algorithm, which works quite well
in practise, but has an exponential running time in general. We refer to [19] and [38]
for a more detailed treatment of the subject.

16 2. DUALITY

Exercises.

(22) A function f : Qn → Q is called convex if for all x, y ∈ Qn and α ∈ [0, 1]
we have that f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). Show that functions
of the form x 7→ max(f1(x), . . . , fk(x)), for linear functions f1, . . . , fk, are
convex.

(23) Prove that for given linear functions f1, . . . , fk there is a polynomial-time
algorithm for deciding whether

inf
x∈Qn

(max(f1(x), . . . , fk(x))

equals −∞. Also show that if inf(max(f1(x), . . . , fk(x)) is finite, then we
can compute in polynomial time a x0 ∈ Qn such that

inf
x∈Qn

(max(f1(x), . . . , fk(x)) = max(f1(x0), . . . , fk(x0)).

(24) The computational complexity of deciding whether two given finite graphs
G and H are isomorphic is a famous open problem in theoretical computer
science. Let G and H be two finite graphs with V := V (G) = V (H) and
adjacency matrices A and B, respectively. Then G and H are called frac-
tionally isomorphic if there exists a doubly stochastic matrix D such that
AD = DB. A quadratic matrix D ∈ Rn×n is called doubly stochastic if all
entries are non-negative and the sum of the entries in each row and column
is equal to 1.
• Show that fractional isomorphism defines an equivalence relation on

finite graphs.
• Show that two graphs that are isomorphic are also fractionally isomor-

phic.
• (*) Find an example that shows that the converse of the previous state-

ment is false.
• Show that fractional isomorphism can be decided in polynomial time.

2.3.4. Fourier-Motzkin elimination. Our proof of LP duality uses the lemma
of Farkas, which in turn we prove using Fourier-Motzkin elimination. Fourier-Motzkin
elimination is a systematic procedure for eliminating variables from systems of linear
inequalities. If we eliminate all variables from the system, we might end up with an
inequality of the form a ≤ b for a value a which is strictly larger than b, a contradiction.
In this case we know that the original system was infeasible, and otherwise the original
system was feasible. Geometrically speaking, we compute in each step a system that
describes the projection of the solution space of the system to a subset of the variables.
The way this is done is very similar in spirit to Gaussian elimination that we already
used in Section 2.1. We first look at an example:

x− y ≤ 0

−x− 3y ≤ −6

y + x ≤ 2

−x+ 3y ≤ 0

2.3. THE DUALITY THEOREM 17

To eliminate the variable y, we collect lower bounds on y in terms of x, and upper
bounds on y in terms of x, so we rewrite the equation system into:

y ≥ x (6)

y ≥ 2− 1

3
x (7)

y ≤ 2− x (8)

y ≤ 1

3
x (9)

Note that each upper bound must be larger than each lower bound, so the system
implies that

x ≤ 2− x (combining (6) and (8))

x ≤ 1

3
x (combining (6) and (9))

2− 1

3
x ≤ 2− x (combining (7) and (8))

2− 1

3
x ≤ 1

3
x (combining (7) and (9))

Rewriting, we obtain

x ≤ 1

x ≤ 0

x ≤ 0

x ≥ 3

Again combining lower with upper bounds, we obtain a contradiction, so the original
system was unsatisfiable. Motzkin’s theorem states that if we cannot derive a con-
tradiction by this procedure, then the original system was satisfiable. This simply
follows from the observation that at each step of the procedure, any solution to the
new system can be extended to a solution to the old system (by picking any value
that lies between the lower and the upper bounds).

The Fourier-Motzkin procedure is not very efficient: in each step, the number
of inequalities can grow quadratically, which might lead to an exponential growth
in general. However, our current goal is theoretical: we want to prove the duality
theorem, and do not care about efficiency. Because of the simplicity of the procedure,
it is a very good starting point for proving LP duality.

We mention that the results in this section have straightforward generalisations
to the situation where some of the inequalities are strict.

2.3.5. The Farkas lemma. We use Fourier-Motzkin Elimination to prove the
following important lemma, the lemma of Farkas. There are numerous variants of
this lemma; we give two. They are easily seen to be equivalent. The first variant is
the more natural one to be proven using Fourier-Motzkin elimination. The second
variant is the one needed in our proof of the LP duality theorem.

Lemma 2.3.3 (Lemma of Farkas in two variants). Let A ∈ Qm×n and let b ∈ Qm.

(1) The system Ax ≤ b has a solution if and only if every nonnegative y ∈ Qm
with y>A = 0> also satisfies y>b ≥ 0.

(2) The system Ax ≤ b has a nonnegative solution if and only if every nonneg-
ative y ∈ Qm with y>A ≥ 0 also satisfies y>b ≥ 0.

18 2. DUALITY

Proof. We prove variant (1) using Motzkin, and then derive (2) from (1).
First we prove the easy direction of variant (1). If Ax ≤ b has some solution x̃,

and y ≥ 0 satisfies y>A = 0>, we get y>b ≥ y>Ax̃ = 0>x̃ = 0. For the interesting
direction of (1) we assume that Ax ≤ b has no solution. Our task is to construct a
vector y ≥ 0 satisfying y>A = 0> and y>b < 0. We find such a witness of infeasibility
by induction on the number of variables. In the base case the system Ax ≤ b has no
variables, so it is of the form 0 ≤ b with bi < 0 for some i ≤ m. Then y = ei (the i-th
unit vector) clearly satisfies the requirements for y. If x ≤ b has at least one variable,
we perform a step of the Fourier-Motzkin elimination. This yields an infeasible system
A′x′ ≤ b′ with one variable less. So inductively we find an unfeasibility witness y′ for
it. Recall that all inequalities of A′x′ ≤ b′ are positive linear combinations of original
inequalities; equivalently, there is an m ×m matrix M with all entries nonnegative
and (0|A′) = MA, b′ = Mb. We claim that y = M>y′ is a witness of infeasibility
for the original system Ax ≤ b. Indeed, we have y>A = y′>MA = y′>(0|A′) = 0>

and y>b = y′>Mb = y′>b′ < 0 since y′ is a witness of infeasibility for A′x′ ≤ b′. The
condition y ≥ 0 follows from y′ ≥ 0 by the nonnegativity of M .

To prove that (1) implies (2) we have to find an equivalent condition for Ax ≤ b

having a nonnegative solution. Let Ā =
(
A
−In

)
, where In is the n × n-unit matrix,

and b̄ =
(
b
0

)
. Note that Ax ≤ b has a nonnegative solution if and only if Āx ≤ b̄ has

any solution. The latter is equivalent, by (1), to the condition that all ȳ ≥ 0 with
ȳ>Ā = 0> satisfy ȳ>b̄ ≥ 0. Writing ȳ =

(
y
y′

)
where y is a vector with m components,

we have

ȳ ≥ 0 and ȳ>Ā = 0> if and only if y ≥ 0 and y′> = y>A ≥ 0>.

Moreover, ȳ>b̄ = y>b. Hence, Ax ≤ b has a nonnegative solution if and only if all
y ≥ 0 with y>A ≥ 0> satisfy y>b ≥ 0, which is what we had to show. �

Exercises.

(25) Let A ∈ Qn×p, B ∈ Qn×q, b ∈ Qp, and c ∈ Qq. The following are equivalent
(Motzkin’s transposition theorem [38, Corollary 7.1k]):
• There exists x ∈ Qn with Ax < b and Bx ≤ c.
• For every y ∈ Qp and z ∈ Qq

if yA+ zB = 0 then yb+ zc ≥ 0, and

if yA+ zb = 0 and y 6= 0 then yb+ zc > 0.

Hint: first identify and prove the instructive easy direction.
(26) Prove the following (Lemma 6.1 in [7]). Let n, s, t ∈ N, (ai,j) ∈ Qn×(s+t),

and (bj) ∈ Qs+t. Then exactly one of the following holds.
• Either there exists (xi) ∈ Qn and d ∈ Q such that

xi ≥ 0 for every i ∈ {1, . . . , n}
n∑
i=1

ai,jxi ≥ bj + d for every j ∈ {1, . . . , s}

n∑
i=1

ai,jxi = bj + d for every j ∈ {s+ 1, . . . , s+ t}.

2.3. THE DUALITY THEOREM 19

• Or else there exists (yj) ∈ Qr+s such that∑
j∈{1,...,s+t}

yj = 0 (10)

yj ≥ 0 for every j ∈ {1, . . . , s} (11)∑
j∈{1,...,s+t}

yjai,j ≤ 0 for every i ∈ {1, . . . , n} (12)

∑
j∈{1,...,s+t}

yjbj > 0. (13)

2.3.6. Proving the duality theorem.

Proof of Theorem 2.3.2. Let us assume that the linear program (P) has an
optimal solution x∗. We show that the dual (D) has an optimal solution as well, and
that the optimum values of both programs coincide. Let γ = c>x∗ be the optimum
value of (P). Then we know that the system of inequalities

Ax ≤ b and c>x ≥ γ (14)

has a nonnegative solution, but for any ε > 0, the system

Ax ≤ b, c>x ≥ γ + ε (15)

has no nonnegative solution. If we define an ((m + 1) × n)-matrix Â and a vector

b̂ε ∈ Qm+1 by

Â :=

(
A

−c>

)
and b̂ε :=

(
b

−γ − ε

)
then (14) is equivalent to Âx ≤ b̂0 and (15) is equivalent to Âx ≤ b̄ε.

We now apply variant (2) of the Farkas lemma and conclude that there is a

nonnegative vector ŷ = (u, z) ∈ Qm+1 such that ŷ>Â ≥ 0> but ŷ>b̂ε < 0. These
conditions boil down to

A>u ≥ zc and b>u < z(γ + ε). (16)

Applying the Farkas lemma for the case ε = 0 we see that the very same vector ŷ

must satisfy ŷ>b̂0 ≥ 0, and this is equivalent to

b>u ≥ zγ.

It follows that z > 0, since z = 0 would contradict the strict inequality in (16). But
then we may set v := 1

zu ≥ 0, and (16) gives

A>v ≥ c and b>v < γ + ε.

In other words, v is a feasible solution of (D), with the value of the objective function
smaller than γ + ε.

We have already observed that every feasible solution of (D) has value of the
objective function at least γ. Hence (D) is a feasible and bounded linear program,
and so we know that it has an optimal value y∗. Its value b>y∗ is between γ and γ+ ε
for every ε > 0, and thus it equals γ. �

Corollary 2.3.4 (Complementary Slackness). Let x be a feasible solution to an
LP and y a feasible solution to its dual. A necessary and sufficient condition for x

20 2. DUALITY

and y to be both optimal is that for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

xi > 0⇒
∑

k∈{1,...,n}

Ai,kyk = bi

∑
k∈{1,...,n}

Ai,kyk < bi ⇒ xi = 0

yj > 0⇒
∑

k∈{1,...,m}

Ak,jxk = cj

∑
k∈{1,...,m}

Ak,jxk < cj ⇒ yj = 0

Exercises.

(27) Prove Corollary 2.3.4.

2.3.7. The dualization recipe. The linear program (P) in the duality theorem,
Theorem 2.1.1, has a very particular shape: all variables must be nonnegative, and
we only have inequality conditions, no equalities. We can easily transform a general
linear program into a program of this shape: for each variable x, we introduce two new
x+ and x−, add the constraints x+ ≥ 0 and x− ≥ 0, and we substitute x by x+ − x−
everywhere. Moreover, an equality a>x = b can be rewritten as a conjunction of two
inequalities, a>x ≤ b and a>x ≥ b. Finally, inequalities of the form a>x ≥ b can be
turned by using −a>x ≤ −b instead. So we can transform every linear program into
one that has the shape as in the duality theorem, and then apply the duality theorem.
However, it is always possible to read off the dual LP directly from the original LP,
without doing the transformation. For this, we use the following recipe (details can
be worked by the readers themselves):

Primal Dual
Variables x1, . . . , xn y1, . . . , ym
Matrix A A>

Right-hand side b c
Objective function max c>x min b>y
Constraints i-th constraint ≤ yi ≥ 0

i-th constraint ≥ yi ≤ 0
i-th constraint = yi ∈ Q
xj ≥ 0 j-th constraint ≥
xj ≤ 0 j-th constraint ≤
xj ∈ Q j-th constraint =

A minimisation problem can be turned into a maximisation problem by changing the
sign of the objective function. Hence, we can compute the dual of the dual if the dual
is phrased as a maximisation problem. It is then an easy observation that the dual
of the dual equals the primal!

Exercises.

(28) Let (ai,j,k)i,j,k∈{1,...,n} be rational numbers and c ∈ Qn, b ∈ Qn×n. Compute
the dual of the linear program

min c>x subject to
∑

k∈{1,...,n}

ai,j,kxk ≤ bi,j for all i, j ∈ {1, . . . , n}.

(29) Let (ai,j,k)i,j,k∈{1,...,n} be rational numbers and c ∈ Qn, b ∈ Qn×n. Compute
the dual of the linear program (in comparison to the previous exercise just

2.4. APPLICATIONS 21

one index changed)

min c>x subject to
∑

k∈{1,...,n}

ai,j,kxi ≤ bi,j for all i, j ∈ {1, . . . , n}.

2.4. Applications

Linear programming has many applications in combinatorics and the theory and
practise of computations; besides matchings, we have already seen applications in
economy (Exercise 18), machine learning (Exercise 19), and discrete geometry (Exer-
cise 20). in this section we present applications for flows in networks, Markov decision
processes, zero-sum games, and stochastic games. Further applications will be covered
in the exercises.

2.4.1. Flows in networks. A network (V,E, s, t, c) consists of

• a set of nodes V ;
• a set of directed edges E ⊆ V 2;
• a source s ∈ V (there are no incoming edges (u, s) ∈ E);
• a sink t ∈ V (there are no outgoing edges (t, u) ∈ E);
• a non-negative capacity function

c : E → Q≥0 .

Definition 2.4.1 (Flows). A flow in a network (V,E, s, t, c) is a non-negative
function

f : E → R≥0

such that for every v ∈ V \ {s, t}:∑
(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u) (‘What flows in needs to flow out’)

A flow is admissible if f(u, v) ≤ c(u, v) for every (u, v) ∈ E. If f is a flow and
U ⊆ V \ {s, t}, then summing over the elements in U yields∑

(u,v)∈E,u/∈U,v∈U

f(u, v) =
∑

(v,u)∈E,v∈U,u/∈U

f(v, u) (‘Flow preservation’).

Choosing U = V \ {s, t} we obtain in particular that what leaves the source is what
enters the sink: ∑

(s,u)∈E

f(s, u) =
∑

(u,t)∈E

f(u, t) .

This amount is written ||f || and called the strength of the flow f .

Definition 2.4.2. A cut in a network (V,E, s, t, c) is a set S ⊆ E such that the
directed graph (V,E \ S) does not have a directed walk from s to t.

In other words, S is a cut if every walk from the source to the sink contains at
least one edge from S. The capacity of a cut S is defined as

c(S) :=
∑
e∈S

c(e) .

Lemma 2.4.3. Let S be a cut in a finite network (V,E, s, t, w) and f an admissible
flow, then ||f || ≤ c(S).

Theorem 2.4.4 (Ford and Fulkerson; Max Flow = Min Cut). Let (V,E, s, t, w)
be a finite network. Then

max
f admissible flow

||f || = min
S cut

c(S)

22 2. DUALITY

s
t

100

100 100

100

1

Figure 2.2. A small network.

In words: the strength of the biggest admissible flow equals the capacity of the
smallest cut.

Exercises.

(30) Write the max-flow problem as an ILP.
(31) Write the min-cut problem as an ILP.
(32) Show that the LP for the max-flow problem is the dual of the LP relaxation

of an LP for the min-cut problem.

The translation of the max-flow problem into linear programming is very robust in
the sense that it can be adapted to also capture generalisations of the flow problem, for
instance the generalisation where each edge e ∈ E does not only have a capacity c(e),
but also a payoff p(e); the payoff of the flow is then defined to be

∑
e∈E p(e)f(e). We

want to find a flow with maximum payoff (rather than a flow with maximum strength∑
e∈E,s∈e f(e)). The LP program for the flow problem can be easily adapted to this

problem.

2.4.2. The easychair problem. Suppose you are the chair of a scientific con-
ference with peer reviewed submissions of papers; you are leading a program com-
mittee whose task is to select 80 papers from the submissions that will be admitted
for presentation at the conference. Suppose that 400 papers have been submitted.
Each paper will be assigned to at least 3 program committee (PC) members for peer
review. Your program committee consists of 60 experts, so that each expert has to
write 20 reports (all these numbers are quite realistic). The PC members can select
for each paper one of the following responses.

(0) No: I don’t want to review this paper (I don’t feel qualified).
(1) Maybe: I might review this paper.
(2) Yes: I would like to review this paper.

(This is how things actually happen e.g. within the easychair system). We would
like to find an assignment of at least 3 PC members to each paper such that the
the number of papers that are assigned to a PC member who voted ‘Maybe’ or ‘Yes’
for that paper is maximised. If there are several optimal solutions, the number of
papers assigned to a PC member who voted ‘Yes’ should be maximised among all
these optimal solutions.

To turn this into a flow problem we create the following network N where
each edge has a payoff value as described at the end of the previous section (taken
from http://corner.mimuw.edu.pl/?p=811). Besides the source s and the sink t
we have a node for each paper and for each PC member. The edges in E are defined
as follows.

http://corner.mimuw.edu.pl/?p=811

2.4. APPLICATIONS 23

• The source s is connected with each PC member with an edge of capacity
20 and payoff 0;
• Each PC member is connected with each paper with an edge of capacity 1

and payoff 1 for ‘No’, payoff 10000 for ‘Maybe’, and payoff 10001 for ‘Yes’.
• Each paper is connected with the sink t with an edge of capacity 3 and

payoff 0.

We are interested in a flow with maximum payoff (again, see the remarks at the end
of the previous section for the variant of the maximum flow problem with payoffs).
An integral flow of size 1 from a PC member to a paper means that the PC member
has to write a report for the paper. The payoffs are chosen so that the maximum
flow assigns as many papers as possible to PC members who chose ‘Yes’ or ‘Maybe’
for that paper. If there are several flows that are equally good with respect to this
condition, it prefers flows that have more papers assigned to PC member that chose
‘Yes’ rather than ‘Maybe’.

Note that just optimising the flow for the (global) payoff can lead to very unfair
assignments: some PC members might receive many papers that were labelled by
‘No’, while others have none. This can be addressed as well; we refer to the discussion
in http://corner.mimuw.edu.pl/?p=811.

2.4.3. The Markov Decision Problem. A Markov decision process (MDP) is
a discrete-time stochastic control process that can be used to model certain optimi-
sation problems where outcomes are partly random and partly under the control of a
decision maker. They are sometimes viewed as “1.5 player game” since the controller
is viewed as one player and nature (randomness) is viewed as half a player.

Let S be a finite set. A probability distribution on S is a function P : S → [0, 1] ⊂
R such that

∑
s∈S P (s) = 1 for all s ∈ S.

Definition 2.4.5. A Markov decision process is a tuple (S,A, Ps,a, Rs,a) where

• S is a finite set, called the states,
• A is a finite set, called the actions,
• Ps,a is a probability distribution on S for each s ∈ S and a ∈ A, and
• Rs,a ∈ Q is called the reward for each s ∈ S and a ∈ A.

At each time step, the process is in some state s ∈ S and the decision maker may
choose any action a ∈ A. The process responds at the next time step by randomly
moving into a new state s′ ∈ S according to the probability distribution Ps,a, and
giving the decision maker a corresponding reward Rs,a. A policy function π is a
(potentially probabilistic) mapping from S to A. A fixed policy π and a start state
s0 gives rise to a so-called Markov chain: to each sequence s0, s2, . . . , sn we can
associate a probability that this sequences arises if for every i ∈ {0, . . . , n − 1} the
state si+1 is chosen independently at random according to the distribution Psi,π(si).
We are interested in finding a policy π for the decision maker that maximises the
expected total reward, i.e., if the process starts in vertex s0 the goal is to maximise
the expectation of

∞∑
t=0

Rst,π(st). (17)

However, note that in general this expectation might not be finite. In this text,
we work in a setting with so-called discounting, i.e., future rewards are discounted
according to some constant factor β ∈ [0, 1). The motivation is that discounting

(1) applies directly to many economic problems,
(2) has an elegant theory, and

http://corner.mimuw.edu.pl/?p=811

24 2. DUALITY

(3) allows for efficient computation of optimal policies using linear programming.

The expected discounted payoff for some discount factor β ∈ [0, 1), start state s0, and
policy π is defined to be the expectation of

vβπ(s0) :=

∞∑
t=0

βtRst,π(st). (18)

We say that a policy π∗ is β-discount optimal, for β ∈ [0, 1), if vβπ∗(s) ≥ vβπ(s) for every
s ∈ S and every policy π. Using LP duality, we will show that there always exists
such an optimal policy. The task to compute such an optimal policy is sometimes
also referred to as the Markov decision problem (with discounting).

Remark 2.4.6. Note that we may also consider Rs,a as a cost instead of a reward;
in this case, we are interested in minimizing the quantity in (18); clearly, by negating
all the values in R we can computationally translate between the two settings.

Remark 2.4.7. The discount factor β < 1 is necessary for formulating the Markov
decision problem as an LP. The reason is that some policies might lead to Markov
chains that are not ergodic, and in such a situation the expected discounted payoff
cannot be described so easily via a linear program. The idea that linear programming
can be used in the discounting case is due to d’Epenoux [11].

To present alternative descriptions of the values of vβπ we need the following
observation.

Lemma 2.4.8. Let P ∈ [0, 1]n×n be a square matrix and β ∈ [0, 1). Then the
matrix I − βP is invertible and

(I − βP)−1 =

∞∑
t=0

βtP t.

Proof. Note that for each t ∈ N we have that

(I − βP)(I + βP + · · ·+ (βP)t) = I − (βP)t+1

and limt→∞(βP)t = 0; this implies the statement of the lemma. �

Let π be a policy for a given MDP. We view vβπ as a vector whose entries are
indexed by S. Let Pπ be the square matrix whose entry at row s and column s′

equals Ps,π(s)(s
′) =

∑
a∈A Ps,a(s′)π(s, a). Likewise, Rπ denotes the vector whose

entry at position s equals Rs,π(s) =
∑
a∈ARs,aπ(s, a). Then vβπ can be written as

vβπ =

∞∑
t=0

βtP tπRπ

= (I − βPπ)−1Rπ (by Lemma 2.4.8).

Definition 2.4.9. The β-discounted value vector of the MDP is defined to be

vβ := sup
π
vβπ .

So a policy π∗ is β-discount optimal if vβπ∗ = vβ . A central role in the theory of
discounted MDPs is a certain optimality equation, which is also called the Bellman
equation (Equation (19)).

Proposition 2.4.10. If π∗ is β-discount optimal, then

vβ = Rπ∗ + βPπ∗v
β (19)

2.4. APPLICATIONS 25

Proof.

vβ = vβπ∗ =

∞∑
t=0

βtP tπ∗Rπ∗ = Rπ∗ + βPπ∗v
β
π∗ = Rπ∗ + βPπ∗v

β . �

The following can be seen as a converse to Proposition 2.4.10.

Proposition 2.4.11. Let v : S → R be such that

v(s) ≥ Rs,a + β
∑
s′∈S

Ps,a(s′)v(s′) (20)

holds for all s ∈ S and a ∈ A. Then for every policy π we have v ≥ vβπ .

Proof. Multiplying each inequality 20 by π(s, a) and summing them over all
a ∈ A yields

v(s) ≥ Rπ(s) + β
∑

s′∈S,a∈A
Ps,a(s′)π(s, a) = Rπ(s) + β

∑
s′∈S

Ps,π(s)

which can be written in matrix form as follows.

v ≥ Rπ + βPπv (21)

Note that (21) applied k times shows that

v ≥ Rπ + βPπRπ + β2P 2
πRπ + · · ·+ βkP kπ v

holds for all k ∈ N, which implies that

v ≥
∑
t∈N

βtP tπRπ = vβπ .

MORE DETAIL NEEDED! �

Exercises.

(33) Let β ∈ [0, 1) be a discount factor. Show how to transform an arbitrary
MDP into a new MDP such that the expected total payoff of the new MDP
equals the expected β-discounted payoff of the original MDP. This is meant
in the following sense: the new MDP contains the state space S of the old
MDP, and
• for any policy π for the old MDP there exists a policy ρ of the new

MDP such that vβπ(s) equals the expected total payoff of the new MDP
for policy ρ, for every start state s ∈ S, and conversely

• for every strategy ρ of the new MDP there exists a strategy π for the
old MDP such that vβπ(s) equals the expected total payoff for ρ, for
every start state s ∈ S.

The optimality equation motivates the following linear program.

Minimise
∑
s∈S

vs
n

(22)

subject to vs ≥ Rs,a + β
∑
s′∈S

Ps,a(s′)vs′ for all s ∈ S and a ∈ A.

The dual program is as follows (following the dualisation recipe from Section 2.3.7).

26 2. DUALITY

Maximize
∑

s∈S,a∈A
Rs,axs,a (23)

subject to
∑
a∈A

xs′,a −
∑

s∈S,a∈A
βPs,a(s′)xs,a = 1/n for every s′ ∈ S

xs,a ≥ 0 for all s ∈ S, a ∈ A.

Let x0 be a solution to (23). For s ∈ S, define x0
s :=

∑
a∈A x

0
s,a. Note that x0

s > 0

and that for every s ∈ S and a ∈ A we have x0
s,a/x

0
s ∈ [0, 1]. Therefore, the map π

that sends s to a with probability x0
s,a/x

0
s may be viewed as a probabilistic policy for

the MDP. The following is taken from [15].

Theorem 2.4.12. For a given MDP, the expected discounted payoff of an optimal
policy equals the optimal value of the LP (22).

Proof. We first show that the given LP has a feasible solution with a finite
value. Define m := mins∈S,a∈ARs,a and M := maxs∈S,a∈ARs,a. Note that setting vs
to M

1−β satisfies all the constraints in (22):(
1− β

∑
s′∈S

Ps,a(s′)
) M

1− β
= M ≥ Rs,a.

We show that the value of every feasible solution (vs)s∈S to (22) is bounded below
by m

1−β . Let s̃ ∈ S be such that vs̃ ≤ vs′ for all s′ ∈ S. Then for all a ∈ A

vs̃ ≥ Rs̃,a + β
∑
s′∈S

Ps̃,a(s′)vs̃ = Rs̃,a + βvs̃

and hence vs̃ ≥ Rs̃,a

1−β and

vs ≥ vs̃ ≥
1

1− β
Rs̃,a ≥

m

1− β
.

It follows from LP duality (Theorem 2.3.2) that both the LP (22) and its dual (23)
have a (finite, optimal) solution. Moreover, by complementary slackness (Corol-
lary 2.3.4), if (v∗s)s∈S is an optimal solution to (22) and (x∗s,a)s∈S,a∈A is an optimal
solution to (23), then

v∗s = Rs,a + β
∑
s′∈S

Ps,a(s′)v∗s′ (24)

for all s ∈ S and a ∈ A such that x∗s,a > 0. From the constraints of the dual LP we
obtain that for every s′ ∈ S∑

a∈A
x∗s,a = 1/n+ β

∑
s∈S,a∈A

Ps,a(s′)x∗s,a > 0.

Let π∗ be the policy of the MDP defined from x∗ as explained earlier. Then mul-
tiplying (24) by x∗s,a/

∑
a∈A x

∗
s,a ≥ 0 and summing over all a ∈ A yields, in vector

notation,

v∗ = Rπ∗ + β
∑
s′∈S

Px∗(s
′)v∗s′ = Rπ∗ + βPπ∗v

∗. (25)

Hence, Proposition 2.4.11 implies that

v∗ = vβπ∗ = vβ . �

Exercises.

(34) Show that for γ = 1 the LP (22) is infeasible.

2.4. APPLICATIONS 27

(35) Show that (23) is indeed the dual of (22).
(36) Modify the definitions and statements in this section so that the reward

function R(s, a) not only depends on the present state s and the action a
which was taken, but additionally also on the next state s′ (which is chosen
from S with probability p(a, s, s′)).

(37) Show that the modified setting where in each state s ∈ S a potentially
different finite set of actions A(s) is available reduces to the present setting.

(38) (Freely following and simplifying [11]) Let us consider an enterprise which
produces, stocks, and sells a single item. The quantities demanded per day
are independent random variables with the same known probability distri-
bution (see Section 3.3.3 for definitions of basic concepts from probability
theory); those demands which are not immediately satisfied are lost per-
manently. The existing relationship between cost and output is taken for
granted; in other words, we ignore the possibility of adapting the company’s
equipment more closely to the actual environment. The production rate
is adjusted daily to the current situation. One wants to find the optimal
sequential decision rule, defined as the one which minimizes the expected
future costs of the enterprise. Discuss how to formally model the task.

2.4.4. Von Neumann Minimax Theorem. In this section we consider games
with two players; each player has a finite set of strategies. The payoff for each of the
players is determined by the strategies chosen by both players. We focus on zero sum
games which are games in which the payoff to the second player is the negative payoff
to the first, so the sum of their payoffs is zero. We also refer to the first player as the
row player and to the second player as the column player.

Example 3. The Paper-Scissor-Stone game is the game which is given by the
following payoff table for the first player.

Column Player
Paper Scissor Stone

Paper 0 -1 1
Row Player Scissor 1 0 -1

Stone -1 1 0

4

If the row player plays strategy i, and the column player plays strategy j, the
payoff to the row player is ai,j . If the row player plays first, she can obtain the profit

max
i

min
j
ai,j .

If the row player plays last, she can obtain the profit

min
j

max
i
ai,j .

In our concrete game Paper-Scissor-Stone, we have that for all strategies j for the
column player

max
i
ai,j = 1

and for all strategies i for the row player we have

min
j
ai,j = −1

So it is a big advantage to play second in the above game.
Now we change the game. Each of the players has to expose a probability dis-

tribution ∆ = {x ∈ R3 | x ≥ 0,
∑
xi = 1} on the strategies; these are called mixed

28 2. DUALITY

strategies. Is it still an advantage to play second in the game? If the row player plays
first, her expected profit is

P1 := max
x∈∆

min
y∈∆

∑
i,j

xiyjai,j .

If the row player plays second, her expected profit is

P2 := min
y∈∆

max
x∈∆

∑
i,j

xiyjai,j .

Clearly, P1 ≤ P2.

Example 4. In the Paper-Scissor-Stone game, the row player can play the mixed
strategy that assigns probability 1/3 to each of the three options, and hence we have

P1 ≥ min
y∈∆

∑
i,j

yi
3

= 0.

On the other hand, if the row player assigns, for example, to stone the probability
1/2 and to paper and scissors the probability 1/4, then column player may assign
probability 1 to paper. In this case, the payoff for the row player is −1 with probability
p, it is 0 with probability 1/4, and it is 1 with probability 1/4. Hence, the expected
payoff is −1/4. It is easy to see that the expected payoff is smaller than 0 whenever
the row player assigns to one of the options a probability that is larger than 1/3.
Hence, we have P1 = 0. A similar argument, with the role of the players exchanged,
applies if the row player plays second, so we have P2 = 0 as well. 4

We will show that P1 = P2 holds in general. For compact notation, we write
A = (ai,j) for the payoff matrix, so that the expected payoff

∑
i,j xiyjai,j can be

written as x>Ay.

Theorem 2.4.13 (Von Neumann Min-Max Principle). Let A = (ai,j) ∈ Qm×n be
a two-person zero-sum game. Let Γ,∆ be the set of all mixed strategies for row and
column player, respectively. Then there are x̃ ∈ Γ and ỹ ∈ ∆ such that

max
x∈Γ

min
y∈∆

x>Ay = min
y∈∆

max
x∈Γ

x>Ay = x̃>Aỹ.

The following terminology is important and will help us to give a clear presenta-
tion of the proof. For simplicity, we call player one Alice (the row player) and player
two Bob (the column player). The worst-case payoff for a mixed strategy x ∈ Γ for
Alice is defined to be

α(x) := min
y∈∆

x>Ay

and likewise the worst-case payoff for a mixed strategy y ∈ ∆ for Bob is

β(y) := min
x∈Γ

x>Ay.

These are well-defined functions since ∆ and Γ are compact sets (and this is why we
chose R instead of Q in the definition of mixed strategies; we will see below that both
settings are equivalent in the sense that the probabilities in the mixed strategies x̃
and ỹ in Theorem 2.4.13 can be chosen to be rational, as we will see in the proof). A
pair (x̃, ỹ) such that

α(x̃) = x̃>Aỹ = β(ỹ)

is called a mixed Nash equilibrium. Alice’s mixed strategy x̃ is called worst-case
optimal if α(x̃) = maxx∈Γ α(x), and we make the analogous definition for a mixed
strategy of Bob.

2.4. APPLICATIONS 29

Proof. We first show how worst-case optimal mixed strategies x̃ for Alice and ỹ
for Bob can be found by linear programming. Then we prove that α(x̃) = β(ỹ) holds.

First notice that Bob’s best response to a fixed mixed strategy x of Alice can
be found by solving a linear program. That is, α(x), with x a concrete vector of
m numbers, is the optimal value of the following linear program in the variables
y1, . . . , yn:

Minimize x>Ay

subject to

n∑
j=1

yj = 1

y ≥ 0

In particular, it follows that if x is rational then α(x) is rational, too. Unfortunately,
α(x) is not a linear function, so we cannot directly formulate the maximisation of
α(x) as a linear program. Fortunately, we can circumvent this issue by using LP
duality. The dual of the above LP can be computed via the dualization recipe from
Section 2.3.7: first we have to write the primal as a maximisation problem by changing
the sign of the objective function. Also replacing

∑n
j=1 yj = 1 by −

∑n
j=1 yj = −1,

we obtain for the dual

Minimize − x0

subject to − x01 ≥ −(x>A)>.

Note that this LP has just one variable! It can be rewritten to

Maximize x0

subject to A>x ≥ 1x0.

By the duality theorem, the optimal value of the dual LP equals α(x). In order to
maximise α(x) over all mixed strategies x of Alice, we derive a new LP from the dual
in which x1, . . . , xm are now regarded as variables.

Maximize x0

subject to A>x ≥ x01 (26)
m∑
i=1

xi = 1

x ≥ 0

Clearly, there exist feasible solutions to this LP. If (x̃0, x̃) denotes an optimal solution,
we have by construction that

x̃0 = α(x̃) = max
x∈Γ

α(x).

Symmetrically, we can construct an LP for computing a worst-case optimal mixed
strategy ỹ for Bob:

Minimize y0

subject to A>y ≥ y01 (27)
n∑
j=1

yj = 1

y ≥ 0

30 2. DUALITY

If (ỹ0, ỹ) denotes an optimal solution to this LP, then ỹ0 = β(ỹ) = miny∈∆ β(y). Now
observe that the two linear programs (26) and (27) are dual to each other! By LP
duality we obtain that x̃0 = ỹ0 and hence α(x̃) = β(ỹ), as required. �

A general (not necessarily zero-sum) 2-player game is given by two matrixes A
and B, one for the payoff for the first player, and one for the payoff for the second
player. Zero-sum games are then the special case where A = −B.

Remark 2.4.14. Nash equilibria also exist for general 2-player games [29], but
this is outside the scope of this course. Finding a Nash equilibrium for such game
is a very interesting problem which is not known to be in P, but believed not to be
NP-hard (since if it were NP-hard, then NP=coNP). On the other hand, there is also
some evidence that the problem might not be in P; see [10] and the references therein.

Exercises.

(39) Find a mixed Nash equilibrium for the game “Papers-Scissors-Stone-Well”
which is the modification of Papers-Scissors-Stone where an additional pure
strategy “Well” has been added, which wins against Stone and Scissors, but
looses against paper.

(40) Where in the proof of Theorem 2.4.13 did we use the assumption that A is
a zero-sum game? Where does the same argument fail for general 2-player
games?

(41) Consider a three-player zero-sum game, given by three reward matrices
A,B,C ∈ Qn1×n2×n3 in which the rewards of the three players always sum
to zero, A + B + C = 0. Show that finding a Nash equilibrium in such a
game is at least as hard as the same problem for general (not necessarily
zero-sum) two-player games.

(42) Consider the following 2-player game. We are given a directed graph (A ∪
B,E) where A ∩ B = ∅ and E ⊆ (A × B) ∪ (B × A). First player chooses
a probability distribution p on A, second player independently chooses a
probability distribution q on B. The first player wins if∑

(a,b)∈E∩A×B

p(a)q(b)−
∑

(b,a)∈E∩B×A

q(b)p(a) > 0;

otherwise second player wins. Show how to determine in polynomial time
in the size of a given digraph which player has a winning strategy.

2.4.5. Simple stochastic games. A simple stochastic game (SGG) is a special
case of a stochastic game as introduced by Shapley in 1953 (a grad school friend of
Nash from the previous section). They are played on a directed graph G = (V,E)
whose vertices are partitioned into three disjoint sets Vmax, Vmin, Vstoch, called max-,
min-, and stochastic vertices, respectively. Moreover, there is a distinguished start
vertex s, and two distinguished terminal vertices tmax and tmin. Each vertex has at
least one outgoing edge, except for tmax and tmin, which have no outgoing edge (they
are sinks).

The game is played by two players, called the max player and the min player. At
the start of the game, a token is placed on the start vertex. In each round, the token
is moved from a vertex v along some of the outgoing edges at v. When the token
is positioned on a max vertex, then player max decides along which edge the token
is moved, and when the token is on a min vertex then player min decides. When
the token is on a stochastic vertex, then each outgoing edge is chosen with equal
probability (so in some sense there is a third player, randomness; for this reason,
this type of game is also called a 2 1

2 -player game). The game ends when the token

2.4. APPLICATIONS 31

reaches tmax or tmin; in the first case, player max wins, and in the second case, player
min wins. If the play continues forever then player min wins. See Figure 2.3 for an
example.

A (positional) strategy σ : Vmax → E for player max is a function that selects for
each vertex u ∈ Vmax one outgoing edge (u,w). Corresponding to a strategy σ is a
subgraph Gσ of G obtained from G by removing from each max vertex the outgoing
edges of vertices in Vmax that are not selected by σ. Strategies τ : Vmin → E for player
min are defined analogously. If σ is a strategy for max and τ is a strategy for min,
then Gσ,τ is the subgraph of G where for each vertex in Vmax ∪ Vmin the graph only
contains the outgoing edge selected by the strategies. Note that the game for Gσ,τ
can be viewed as a Markov chain. We say that the SGG halts with probability 1 if
for all pairs of strategies σ, τ every vertex in Gσ,τ has a path to a sink vertex. It
can be shown that if a player can win, it can win following such a positional strategy
(see [9]).

The value vσ,τ (u) of u ∈ V with respect to σ and τ is the probability that the
pebble reaches tmax starting from u in the Markov chain given by Gσ,τ . The optimal
value v(u) of a vertex u ∈ V is defined to be

max
σ

min
τ
vσ,τ (u).

The value of the game is defined to be v(s). The following result does not follow from
the Minimax theorem since the players have to play pure strategies.

Theorem 2.4.15 (of [39] and [9]). Let G be a simple stochastic game that halts
with probability one. Then we have

max
σ

min
τ
vσ,τ (s) = min

τ
max
σ

vσ,τ (s).

3
stoch

2
min

s
max t-max

1
stoch

4
stoch

5
stoch

1/2

1/4

0

0
0

1/4
1

t-min
0

Figure 2.3. An example of a simple stochastic game with the value
of each vertex in red.

The primary question about a simple stochastic game is the question: what is
its value? There is no polynomial-time algorithm known that solves this problem.
In particular, we will be interested in the decision problem whether the value of the
game is at least 1/2 (i.e., we decide whether min has a greater winning probability
than max if min plays optimally).

32 2. DUALITY

Definition 2.4.16. A solution to a SSG is an assignment x̃ : V → [0, 1] that
satisfies

• x̃(tmax) = 1, x̃(tmin) = 0,
• x̃(u) = max(u,w)∈E x̃(w) for u ∈ Vmax,
• x̃(u) = min(u,w)∈E x̃(w) for u ∈ Vmin, and

• x̃(u) = x̃(w1)+···+x̃(wk)
k for u ∈ Vstoch with out-neighbours w1, . . . , wk.

SSGs might in general not have unique solutions.

Exercises.

(43) Present a SGG with infinitely many solutions.
(44) Show that the assumption that G is stopping is necessary in Theorem 2.4.15.

However, it can be shown that computing the value of an SGG can be (efficiently)
reduced to the case where the solutions of the SGG are unique; this is technical and
out of the scope of this text. We refer to [9] for details. If a game has a unique solution
and contains no max vertices, then the solution can be found by the following linear
program.

minimise
∑
u∈V

xu

subject to xu ≤ xw if u ∈ Vmin and (u,w) ∈ E

xu ≤
xw1

+ · · ·+ xwk

k
if u ∈ Vstoch

and w1, . . . , wk are the out-neighbours of u

xu ≤ 1 u ∈ V
xtmax

= 1, xtmin
= 0.

Theorem 2.4.17. The LP above has an optimal solution, (x∗u)u∈V , and x∗u = v(u)
as defined above.

Proof. It is clear that xu := v(u), for all u ∈ V , is a solution to the game. It
is also clear that every solution to the game gives a valid solution to the LP. Since
all variables are upper bounded by 1 and the objective is to maximize

∑
u∈V xu it

follows that the LP has an optimal solution x∗.
We claim that every optimal solution x∗ to the LP gives a solution to the

game. Suppose otherwise that for some u ∈ Vmin we have x∗u < x∗w for all out-
neighbours w of u. Then we construct a better solution x′ to the LP as follows:
x′(u) := min(u,w)∈E(x∗w) and x′(w) := x∗(w) for all w ∈ V \ {u}. The new solution
satisfies all the constraints but has a strictly larger objective function, contradicting
the maximality of x∗. Now suppose for contradiction that for some u ∈ Vstoch with

out-neighbours w1, . . . , wk we have x∗u <
x∗w1

+···+x∗wk

k . Then similarly as above we can
construct a solution with a strictly larger objective function. It follows that if the
game has a unique solution, then x∗ = v(u). �

This shows that deciding whether the value of a game is larger than a given
threshold is in the complexity class NP: we simply guess an outgoing edge for each
v ∈ Vmax, remove all other outgoing edges from v, and turn v into a min vertex. This
corresponds to selecting one strategy for max. The resulting game has no more max
vertices and we can find an optimal counter-strategy for min by the LP above.

We now want to argue that the problem is also in coNP. Theorem 2.4.15 shows
that in order to compute v(s) we can therefore swap the roles of the players, and solve
a very similar linear program for in the case that the game has no min-nodes:

2.4. APPLICATIONS 33

maximise
∑
u∈V

xu

subject to xu ≥ xw if u ∈ Vmax and (u,w) ∈ E

xu ≥
xw1

+ · · ·+ xwk

k
if u ∈ Vstoch

and w1, . . . , wk are the out-neighbours of u

xu ≥ 0 u ∈ V
xtmax

= 1, xtmin
= 0

This shows that deciding the winner in a simple stochstic game is in NP ∩ coNP
(a result of Condon [9]).

CHAPTER 3

The Probabilistic Method

For further reading with advanced material, we recommend [3]. For more intro-
ductory texts, see [23,27].

3.1. Tournaments

In this section we present one of the historically first applications of the proba-
bilistic method, due to Erdős [13], solving a problem of the logician Schütte.

A tournament is a directed graph (V,E) such that for any two distinct vertices
x, y ∈ V we have either (x, y) ∈ E or (y, x) ∈ E (but not both). We can imagine
this as a soccer tournament with teams V where every team plays once against every
other team; each game has precisely one winner, and there is an edge (x, y) ∈ E if x
wins against y.

Clearly, there are tournaments such that for every team x there exists another
team y such that (y, x) ∈ E; we call such tournaments 1-paradoxical. More generally, a
tournament (V,E) is called k-paradoxical if for all vertices x1, . . . , xk ∈ V there exists
a vertex y ∈ V such that (y, x1), . . . , (y, xk) ∈ E. Our question is: does there exist
for every k ≥ 1 a k-paradoxical tournament? The construction of a 1-paradoxical
tournament is trivial, and a 2-paradoxical tournament is still easy to construct by
hand.

Exercises.

(43) Construct such a tournament for k = 2.

For k ≥ 3, it seems quite difficult to explicitly construct finite k-paradoxical
tournaments – but using the probabilistic method, it will be quite easy to show their
existence.

Theorem 3.1.1. For every k there exists a k-paradoxical finite tournament.

Proof. For notational simplicity, we present the proof only for k = 3, but the
general case can be shown analogously.

Let us consider a random tournament, i.e. we imagine that between any two
distinct vertices x, y ∈ V we toss a fair coin to decide whether we add the edge (x, y)
or the edge (y, x).

Let x, y, z ∈ V . The probability that another vertex w ∈ V \{x, y, z} wins against
all three of them is 2−3 = 1

8 . Thus, the probability that w loses against one of them is

1− 1
8 = 7

8 . The probability that each of the n− 3 other players loses against at least

one of x, y, z is
(

7
8

)n−3
because the results of all the involved matches with x, y, z are

mutually independent.
The set {x, y, z} can be selected in

(
n
3

)
many ways. Now we need the elementary

fact that the probability of a sum of events is at most the sum of the probabilities of
the events. Equality occurs only when the events are disjoint, which will not be the
case in our situation. The computation of the probability of the union can be quite
complicated (involving for example so-called ‘inclusion-exclusion arguments’) but sur-
prisingly often the crude bound above will suffice. We obtain the probability that for

35

36 3. THE PROBABILISTIC METHOD

at least one of those sets no player beats all three elements x, y, z simultaneously is
at most (

n

3

)(
7

8

)n−3

.

With a standard computer calculator one can compute that for n = 90 this bound
is still larger than 1, but for n = 91 it is 121485 · 0.00000788331 . . . = 0.957704 . . .
Therefore, there exists at least one tournament with 91 players in which any 3 players
are simultaneously beaten by some other player. �

We see that the key point in the proof of this theorem is that the exponential

decay of 7
8

n−3
wins against the polynomial growth of

(
n
3

)
. In fact, we have shown

something stronger: instead of the existence of k-paradoxical tournaments, we have
shown that for large n almost all tournaments with n vertices are k-paradoxical!1

In this next section we introduce powerful notation to keep more complex argu-
ments about asymptotic growth of functions notationally manageable.

What is the smallest k-paradoxical tournament? Clearly, we need 3 vertices for
k = 1. For k = 2, you already have some bound because you solved Exercise (43)
above. For k = 3, we have seen that 91 vertices suffice for k = 3, but it seems clear
from the crude union bound in the proof that most likely smaller tournaments exist.
In fact, there is the following lower bound (which to the best of our knowledge could
be sharp!), which is not hard to show by induction on k.

Proposition 3.1.2. If (V,E) is a k-paradoxical tournament, then |V | ≥ 2k+1−1.

3.2. Asymptotic Growth

In the application of the probabilistic method that we have seen in the previous
section, the key point in the proof was that some probability was tending to zero
because it was a product of polynomial with a function with exponential decay. We
can already guess that asymptotic growth plays an important role in this chapter. We
introduce very useful notation to compare functions with respect to their asymptotic
growth, going back to Bachman and Landau. Then we recall some basic estimate
that will be useful later.

3.2.1. O-notation. The letters o and O stand for the order of growth of the
function. The big-O notation is used to express asymptotic upper bounds, and the
little-o notation to express that functions are asymptotically negligible when compared
to other functions. We mention that there exists related notation to describe other
kinds of bounds on asymptotic growth, e.g., Θ, Ω, ω, of which we only need Θ in this
text, so we skip the definitions of the others (in particular since there are competing
definitions for Ω, one from number theory and one from complexity theory).

Let g : R → R (we use R for convenience; the same definition applies to other
domains such that as N and Q, etc). Then O(g) is the set of all functions f : R→ R
such that there exists c, x0 ∈ R such that |f(x)| ≤ c|g(x)| for all x ≥ x0. Note that

f ∈ O(g)⇔ lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞. (28)

We mention that similar definitions are used if ∞ is replaced by some a ∈ R. In
typical usage, the formal definition of O(g) is not used directly; rather, we first use
the following simplification rules:

1This shows that not only finding a needle in a haystack, but also that finding hay in a haystack
can be difficult [4].

3.2. ASYMPTOTIC GROWTH 37

• if g(x) is a sum of several terms, if there is one with largest growth rate,
then we drop all other terms;
• if g(x) = c · f(x) and c is a constant that does not depend on x, then c can

be omitted.

When we write O(g), we typically choose g to be as simple as possible. O-notation
can also be used within arithmetic terms. For example, h + O(g) denotes the set of
functions of the form h+ f for f ∈ O(g). In other words, k ∈ h+O(g) is equivalent
to k − h ∈ O(G).

We write o(g) for the set of all functions f : R → R such that for every ε ∈ R>0

there exists x0 ∈ R such that |f(x)| ≤ ε|g(x)| for all x ≥ x0. Informally, f ∈ o(g)
means that asymptotically, the growth of f is negligible compared to the growth of g.
For example, x 7→ 2x is in o(x 7→ x2), and x 7→ 1/x is in o(1). Note that o(g) ⊆ O(g),
and that

f ∈ o(g)⇔ lim
x→∞

f(x)

g(x)
= 0. (29)

Similarly as in the case of the O-notation we may use the o-notation in arithmetic
expressions. Note that if f ∈ o(g) and c is a constant, then cf ∈ o(g). Frequent
notation is to write f � g (or g � f) if f ∈ o(g).

We write Θ(g) for the set of all functions f such that there are constants c, C > 0
and x0 ∈ R such that cg(x) ≤ |f(x)| ≤ C|g(x)| for every x ≥ x0. In other words,
f ∈ Θ(g) if f ∈ O(g) and g ∈ O(f).

Finally, we write f ∼ g if

lim
x→∞

f(x)

g(x)
= 1

and we say that f and g are asymptotically equivalent (for x→∞). Clearly, if f ∼ g
then f ∈ O(g) and g ∈ O(f), so Θ(g) = Θ(f).

Exercises.

(44) Prove the statement in (28) and in (29).
(45) Show that if f1 ∈ O(f2) and f2 ∈ O(f3), then f1 ∈ O(f3).
(46) Show that if f1 ∈ o(f2) and f2 ∈ o(f3), then f1 ∈ o(f3).
(47) Show that if a < b, then ax ∈ o(bx).
(48) Find an example of functions f and g such that Θ(g) = Θ(h), but not f ∼ g.

3.2.2. The exponential function. The following bound is very crude, but
nonetheless it often turns out to be sufficient for approximately comparing the growth
of functions. We need the definition of the exponential function exp: R→ R given by

exp(x) :=

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+ · · ·

Recall that for all x, y ∈ R

exp(x+ y) = exp(x) · exp(y).

So with e := exp(1) ∈ R we see that for n ∈ N

exp(n) = exp(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = en

and from calculus we know that the identity exp(x) = ex holds for arbitrary x ∈ R.
In particular, for every x ∈ R

ex ≥ 1 + x. (30)

38 3. THE PROBABILISTIC METHOD

This is obvious for non-negative x and for x ≤ −1, and for −1 < x < 0 it follows from
the definition of exp by grouping and bounding the terms in pairs. Geometrically this
can be explained as follows. The line defined by y = x + 1 is the tangent to y = ex

for x = 0; since ex is convex, it always remains above its tangent lines. Phrased
differently (and this is how it will be applied frequently):

1− x ≤ e−x. (31)

Also note that if we view x as a function from o(1), then

1− x ∈ e−x+O(x2). (32)

Exercises.

(49) Show that logb(x) ∼ ln(x) for every b ∈ R (where ln(x) := loge(x) and
logb(x) is the unique c ∈ R such that bc = x).

(50) Most complexity functions f(n) that we encounter in practice are monotonic,
i.e., they satisfy f(n) ≤ f(n+ 1) for all n ∈ N. Show that the following pair
of monotonic functions are incomparable with respect to asymptotic growth.

f(n) = (2b(n+ 1)/2c − 1)!

g(n) = (2bn/2c)!
The functions are constructed so that they cross each other periodically in
such a way that neither is asymptotically bounded by the other.

n 1 2 3 4 5
f(n) 1 1 6 6 120
g(n) 1 2 2 24 24

(51) Show that the class of functions constructed from the identity function and
constants using addition, subtraction, multiplication, division, logarithm,
and exponentiation is totally ordered by asymptotic growth (i.e., for any
two functions in this class, f ∈ O(g), or g ∈ O(f), or both).

3.3. Random Graphs

In the proof of Theorem 3.1.1, we used random tournaments to prove the existence
of tournaments with some very specific combinatorial property. We would like to pick
up this idea in the context of simple graphs as introduced in Chapter 1. To that end,
we will introduce a famous fundamental model for random graphs, namely G(n, p).
The presentation is inspired by the text-book The strange logic of random graphs by
Joel Spencer [40] which I would recommend to master students.

3.3.1. Introducing random graphs. On an intuitive level, G(n, p) is a graph
with vertex set V := {1, . . . , n} obtained as follows: for each two-element subset

{u, v} ∈
(
V
2

)
we decide whether to make u and v adjacent in the graph based on

flipping a biased coin: the coin comes up heads with probability p, and in this case
we add the edge {u, v}, and otherwise there is no edge between u and v.

More formally, G(n, p) is the probability space whose elements are all the 2(n
2)

graphs with vertex set V . As usual, subsets of the probability space are called events.
The probability distribution is determined by the requirement that for all u, v ∈ V ,
the probability that u and v are adjacent is p, i.e.,

Pr({(V,E) | {u, v} ∈ E) = p,

and that these events are for all pairs of vertices mutually independent, that is, if
e1, e2 ∈

(
V
2

)
then

Pr({(V,E) | e1 ∈ E and e2 ∈ E}) = Pr({(V,E) | e1 ∈ E}) · Pr({(V,E) | e2 ∈ E})

3.3. RANDOM GRAPHS 39

Alternatively, the probability space can be defined as follows. If H = (V,E)

with |E| = m, then the probability of the event {H} is Pr({H}) = pm(1 − p)(
n
2)−m.

However, the first description is the better one when working with G(n, p) since it
stresses the independence of the edge probabilities. Luckily, our probability space is
finite and hence every set has a measure; no measure theory is needed in what follows.

We will be interested in properties of random graphs: e.g., what is the probabil-
ity that a graph from G(n, p) is connected, that it contains K3 as a subgraph, etc.
Formally, and in the language of probability theory, a property A is a set of graphs
(the set of all graphs that satisfy the property). If a graph G is in A we say that
G has property A. The probability that a graph from G(n, p) has the property A is
denoted by Pr(G(n, p) ∈ A). If p = 1/2, then Pr(G(n, p) ∈ A) is simply the fraction
of all graphs (V,E) ∈ A in the set of all graphs with vertex set V .

Definition 3.3.1. A property A holds in G(n, p) asymptotically almost surely
(a.a.s.) if

lim
n→∞

Pr(G(n, p) ∈ A) = 1.

Instead of a.a.s., many scholars use whp. (for with high probability). For G(n, p),
the situation where p = 0 or p = 1 are trivial. Otherwise, if p is a constant strictly
between 0 and 1, it turns out that G(n, p) asymptotically almost surely satisfies a
strong property, called the extension property.

Definition 3.3.2. Let r, s ∈ N. The r, s-extension property, denoted by Ar,s, is
the property that for all disjoint sets of vertices {x1, . . . , xr} and {y1, . . . , ys} there
exists a distinct vertex z that is adjacent to all of x1, . . . , xr and to none of y1, . . . , ys.

Theorem 3.3.3. For all r, s ∈ N and 0 < p < 1 the property Ar,s holds in G(n, p)
a.a.s.

Proof. For given vertices x1, . . . , xr, y1, . . . , ys let noz(x̄, ȳ) be the event that
there is no valid witness z for the extension property.

Claim. Pr(noz(x̄, ȳ)) = (1 − pr(1 − p)s)n−r−s. There are n − r − s potential
witnesses for a valid extension z. Each has probability pr(1− p)s of being a witness
since r+s coin tosses must come up in a particular way. The events ‘z is not a witness’
are mutually independent of the z’s as they involve disjoint sets of coin tosses. Thus
the probability that no z is a witness is (1− pr(1− p)s)n−r−s.

There are a
(
n
r

)(
n−r
s

)
many choices for x̄ and ȳ. The probability that G(n, p) does

not satisfy noz(x̄, ȳ) for some x̄, ȳ is bounded by(
n

r

)(
n− r
s

)
(1− pr(1− p)s)n−r−s,

which is in o(1). Hence, Ar,s holds a.a.s. �

Exercises.

(52) Show that for every constant p ∈ R, 0 < p < 1, the random graph G(n, p)
a.a.s. contains a triangle.

(53) Show that for every constant p ∈ R, 0 < p < 1, the random graph G(n, p)
a.a.s. is connected.

(54) Is there a single graph that satisfies Ar,s for every r, s?
(55) Prove that for every constant p ∈ R, 0 < p < 1 and every k ∈ N, the random

graph G(n, p) is a.a.s. k-connected.
(56) Discuss: if f(p) denotes the probability of some event in G(n, p), does the

expression ‘f ∈ o(1) holds a.a.s.’ make sense? Is this expression really
defined unambiguously?

40 3. THE PROBABILISTIC METHOD

3.3.2. The Erdős-Rényi evolution. As p goes from 0 to 1, the random graph
G(n, p) evolves from the empty graph to Kn. We will study properties that hold a.a.s.
in G(n, p) as p increases. Paul Erdős and Alfred Rényi started the area of random
graphs with the discovery that for many natural graph properties A there exists a
narrow range for p where the probability that A holds in G(n, p) a.a.s. moves from
0 to 1. That range is typically not a constant, but a function that depends on n. A
graph property A is called monotone if for every H ∈ A, all subgraphs of H are also
in A.

Definition 3.3.4. Let A be a monotone graph property and let t, p : N→ [0, 1].
Then t is called a threshold function for A if

lim
n→∞

Pr[G(n, p) ∈ A] =

{
1 if t ∈ o(p)
0 if p ∈ o(t).

Example 5. Let A be the graph property “containing a triangle”. This property
is clearly monotone. There are

(
n
3

)
potential triangles and each has probability p3 of

being a triangle, so the expected number of triangles is
(
n
3

)
p3. When p(n) � 1

n (for

example, if p = n−1.001) then the expected number of triangles is in o(1) (i.e., it tends
to 0). In this case, it follows from the so-called first moment method (presented in
the next section) that the probability that G(n, p) a.a.s. does not contain a K3. On
the other hand, if p(n) � 1

n (for example, if p = n0.99) then the expected number
of triangles goes to infinity. It follows from the so-called second moment method
(presented in Section 3.3.4) that G(n, p) a.a.s. does contain a K3. Jointly, these two
observations prove that the threshold function for containing a K3 is 1/n. 4

3.3.3. The first moment method. One of the most basic probabilistic notions
is the expected value of a random variable X. Intuitively, it is the value that we would
expect to obtain if we repeated a random experiment many times and took the average
of the outcomes of X. More formally, a random variable is a function that maps every
element of the probability space S to a value, typically from R. For i ∈ R we write
X = i as a shortcut for {s ∈ S | X(s) = i}; the shortcuts X ≥ i, X ≤ i, X > i, X < i
are defined analogously. Two random variables X and Y are called independent if
the events X ≤ i and Y ≤ y are independent.

The expectation of X is defined as

E[X] :=
∑
i

i · Pr(X = i)

where the sum is over all values i in the range of X. The following properties of
expectation can be easily verified; for a full introduction to probability theory, we
refer to Schilling [37]. The first is linearity of expectation. Let X1 and X2 be random
variables. Then

E[X1 +X2] = E[X1] + E[X2].

If X1 and X2 are independent, i.e., if for every i and j the events X ≤ i and Y ≤ j
are independent, then

E[X1 ·X2] = E[X1] · E[X2].

Exercises.

(57) Let π be a permutation of {1, . . . , n}. An element k ∈ {1, . . . , k} is called a
fixed point of π if π(k) = k. What is the expected number of fixed points of
π if π is drawn uniformly at random from all permutations on {1, . . . , n}?

(58) A Hamiltonian path in a directed graph is a directed path that visits every
vertex exactly once. Show that for every n ∈ N there is a tournament with
n vertices and at least n!/2n−1 Hamiltonian paths.

3.3. RANDOM GRAPHS 41

(59) Show that every tournament contains a Hamiltonian path.

The use of expectation in existence proofs is based on the following pigeonhole
property of expectation: a random variable cannot always be smaller (or always
greater) than its expectation.

Theorem 3.3.5 (Markov’s Inequality). Let X be a random variable such that
Pr(X ≥ 0) = 1 and let t ∈ R be positive. Then

Pr(X ≥ t) ≤ E[X]

t
.

Proof.

E[X] =
∑
x

x · Pr(X = x) =
∑
x≥0

x · Pr(X = x)

≥
∑
x≥t

t · Pr(X = x) = t · Pr(X ≥ t) �

If X is integer, we even have the following consequence

Pr(X > 0) ≤ E[X]. (33)

We refer to applications of (33) as the first moment method. Here is an example:

Proposition 3.3.6. Let p(n)� 1/n. Then G(n, p) a.a.s. does not contain a K3.

Proof. Let X be the number of triangles in G(n, p). As we have seen above
E[X] ∈ o(1). Equation 33 implies that

lim
n→∞

Pr[X = 0] = lim
n→∞

(1− Pr[X > 0]) = 1. �

3.3.4. The second moment method. The second moment property provides
a condition which implies that X “almost always” equals E[X], i.e., the values of X
are concentrated around its expectation.

Let X be a random variable. The variance of X is defined as

Var[X] := E[(X − E[X])2].

Note that
Var[X] = E(X2 − 2XE[X] + E[X]) = E[X2]− E[X]2.

Theorem 3.3.7 (Chebyshev’s Inequality). Let X be a random variable. Then for
any positive t ∈ R

Pr(|X − E[X]| ≥ t) ≤ Var[X]

t2
.

Proof. Let Y be the random variable defined by Y = (X − E[X])2 and apply
Markov’s inequality:

Pr(|X − E[X]|) ≥ t) ≤ Pr(Y ≥ t2) ≤ E[Y]

t2
=

Var[X]

t2
�

If E[X] > 0, then by setting t = E[X], Chebychev’s inequality implies

Pr(X = 0) ≤ Pr
(
|X − E[X]| ≥ E[X]

)
≤ Var[X]

E[X]2
. (34)

Applying (34) is often called the second moment method. Clearly, to apply (34) we
need good tools to compute or bound the variance of a random variable X. If X is
a sum of random variables, then the variance can be computed using the covariance
(see formula 36 below), which is defined as

Cov[X,Y] := E[(X − E[X])(Y − E[Y])].

42 3. THE PROBABILISTIC METHOD

The expression for the covariance can be simplified.

Cov[X,Y] = E[(X − E[X])(Y − E[Y])]

= E[XY −XE[Y]− E[X]Y + E[X]E[Y]]

= E[XY]− E[XE[Y]]− E[E[X]Y] + E[E[X]E[Y]] (linearity of E[.])

= E[XY]− E[X]E[Y]− E[X]E[Y] + E[X]E[Y] (E[const] = const)

= E[XY]− E[X]E[Y] (35)

In particular, if X and Y are independent, then Cov[X,Y] = 0, since we then have

E[XY] =
∑
i

(
i · Pr(XY = i)

)
=
∑
k,l

(
kl · Pr(X = k and Y = l)

)
=
∑
k,l

(
kl · Pr(X = k) Pr(Y = l)

)
(X and Y are independent)

= E[X]E[Y].

Note that Var[X] = Cov[X,X] = E[X2]− E[X]2. Also note that

Var[X + Y] = E[(X + Y − E[X + Y])2]

= E[((X − E[X]) + (Y − E[Y]))2]

= Cov[X,X] + Cov[Y, Y] + 2 Cov[X,Y].

More generally, if X =
∑
i∈{1,...,n}Xi for indicator variables X1, . . . , Xn then we have

the formula

Var[X] =
∑

i,j∈{1,...,n}

Cov[Xi, Xj] (36)

=

n∑
i=1

Var[Xi] +
∑
i 6=j

Cov[Xi, Xj]

≤ E[X] +
∑
i 6=j

Cov[Xi, Xj] (37)

where the inequality holds because Var[Xi] = E[X2
i]−E[Xi]

2 ≤ E[Xi] since Xi is an
indicator variable and hence X2

i = Xi. Our first application of the second-moment
method is the following.

Proposition 3.3.8. Let p(n)� 1/n. Then G(n, p) a.a.s. contains a K3.

Proof. For a subset S of three vertices, let AS be the event that S induces a K3

in G(n, p), let XS be the indicator variable of AS , and let X :=
∑
S∈(V

3)XS . Clearly,

Pr(XS = 1) = p3 and E[X] ∈ O(n3p3).
Our goal is to show that Pr(X = 0) ∈ o(1). By the second moment method,

Pr(X = 0) ≤ Var[X]

E[X]2

so we only need a good upper bound for the variance. By (37), the variance can be
bounded by

Var[X] =
∑
S

E[XS] +
∑
S 6=T

Cov[XS , XT]. (38)

3.3. RANDOM GRAPHS 43

To estimate the second sum we analyse the contribution of a pair (S, T) of distinct
subsets. If AS and AT are independent, then Cov[XS , XT] = 0, and this pair con-
tributes nothing. The events AS and AT are dependent if and only if S and T share
common pairs of vertices, that is, if and only if |S ∩ T | = 2. There are O(n4) pairs
S, T with |S ∩ T | = 2 and for each of these

Cov[XS , XT] ≤ E[XSXT] = p5

because there are five edges that have to be present. So the total contribution of these
pairs is in O(n4p5) ∈ o(1). Putting this together we obtain

Var[X] ∈ O(n3p3 + n4p5) = O(n3p3) ∈ o(E[X]2).

Therefore, Pr(X = 0) ∈ o(1) and hence G(n, p) a.a.s. contains a K3. �

3.3.5. The void. Suppose that p � n−2. Then asymptotically almost surely
there are no edges.

3.3.6. The k-th day. When p(n) reaches Θ(n−2) then edges appear. They form
a matching until p(n) reaches Θ(n−3/2). Let 1 ≤ k ∈ N.

• When p(n) reaches Θ(n−1−1/k) then a.a.s. trees on k + 1 vertices appear.
• When p(n) reaches Θ(n−1) then a.a.s. cycles appear.

We can zoom a bit further on the night between day number k and day number k+1.
For the remainder of this section we assume that

n−
k+1
k = n−1− 1

k � p(n)� n−1− 1
k+1 = n−

k+2
k+1 .

Lemma 3.3.9. G(n, p) has a.a.s. no components with k + 2 (or more) vertices.

Proof. There are O(nk+2) choices of k+2 vertices and O(1) choices of a tree on
those vertices. With probability pk+1 we have those edges. So the expected number

of such trees is O(nk+2pk+1) which is in o(1) since p ∈ o(n−
k+2
k+1) (check!). Again, the

statement follows from the first moment method. �

Lemma 3.3.10. G(n, p) has a.a.s. no cycles.

Proof. From the previous lemma it follows that G(n, p) has a.a.s. no cycles with
more than k+2 vertices. There are O(nl) choices of l ≤ k+2 vertices and O(1) choices
for a cycle, which appears with probability pl. So the expected number of l-cycles is
O((np)l) which is in o(1) as p � n−1. The statement follows from the first moment
method. �

The first moment method is not sufficient to prove the following; here we need
the second moment method.

Lemma 3.3.11. For every r, every tree T on at most k+ 1 vertices appears a.a.s.
at least r times as a component of G(n, p).

Proof. There are Θ(nr) choices of r vertices, at least one way of placing a
given tree T on those vertices and probability pr−1 of having the tree edges. The
probability that there are no further edges involving those r vertices is bounded by
(1 − p)r(n−1) ≤ e−rp(n−1) which is asymptotically one because p(n) � n−1. So the
expected number of tree components T is in Θ(nrpr−1). One can use the second-
moment method to prove that almost surely there are at least r components T for
any fixed r.

44 3. THE PROBABILISTIC METHOD

For S ∈
(
V
k+1

)
, let XS the the indicator random variable that S induces the tree

T in G(n, p). Then the total number of trees is X :=
∑
S∈(V

k+1)
XS and we need to

bound its variance. We have

Var[X] =
∑

S∈(V
k+1)

∑
S′⊆S

∑
T∈V \Sk+1−|S′|

Cov[XS , XS′∪T]

We have Cov[XS , XS′∪T] = 0 if S′ ≤ 1. If S′ > 1, then

Cov[XS , XS′∪T] ≤ E[XSSS′∪T] ≤ p2k−(|S′|−1).

Hence,

Var[X] ∈ O

(∑
l>1

n2k+2−`p2k+1−`

)
⊆ o

(
(E[X] + r)2

)
.

By Chebychev’s Inequality (Theorem 3.3.7) we have

Pr(X < r) ≤ Var[X]

(E[X] + r)2
∈ o(1). �

3.3.7. Day ω. Suppose now that p(n)� n−1−ε for every ε > 0 but p(n)� n−1.
This includes functions such as p(n) = 1

n logn . For such functions, the following

properties hold a.a.s.:

(1) there are no cycles.
(2) for every r, every finite tree T occurs at least r times as a component.

The proofs are similar to the ones for day k.

Exercises.

(60) Show that if p(n)� n−1 then G(n, p) is a.a.s. not connected.

3.3.8. The double jump. The random graph undergoes a critical transition
at p(n) ∈ Θ(n−1). We do not prove the claims in this section since they require
methods that are out of the scope of this course (see [22]); however, we want to
state the result since it is an important part of the overall picture of the Erdös-Rényi
evolution. Suppose that p(n) = c/n.

• c < 1: the largest component has log n vertices.
• c = 1: the size of the largest component jumps to approximately n2/3.
• c > 1: the size of the largest component approaches n.

Thus, p = 1/n is the threshold for a dramatic double-jump in the size of the largest
component.

3.3.9. Past the double jump. In this section we assume

1

n
� p(n)� lnn

n
.

At this stage cycles have appeared, but still small subgraphs only have at most one
cycle. The following properties hold a.a.s:

(1) For every k there are no k vertices with at least k + 1 edges.
(2) For every r and every k > 3 there are at least r cycles of size k.
(3) For every s, d and every k ≥ 3 there does not exist a cycle of size k and a

vertex of degree d at distance s from the cycle.
(4) For every r and every finite tree T there are at least r components isomorphic

to T .

3.3. RANDOM GRAPHS 45

The first property can be proved by the first moment method, similarly as in 3.3.10
but using that p(n)� lnn

n . The second property can be shown by the second moment
method, similarly as in Proposition 3.3.8, using that 1/n � p(n). To see the third
property, set u := k+ s+d−1. There are O(nu) choices for selecting u vertices, O(1)
ways to place a k-cycle, a path of length s from it to a vertex v, and d − 1 further
neighbours of v. These edges are present with probability pu. The probability that
v is not adjacent to any other vertex is (1 − p)n−1−d. The expected number of such
configurations is

nupu(1− p)n−1−d ≤ (np)ue−p(n−1−d) (using (31))

∈ O((np)ue−np) ⊆ o(1) (since np→∞).

The fourth property can be shown as in Lemma 3.3.11.

3.3.10. Connectivity. In this section we prove that lnn
n is a threshold function

for the connectivity ofG(n, p). This happens to be also a threshold function for loosing
all isolated vertices. This fact play an important role in the proof. The intuition is
that large components are more likely to merge than smaller ones. Let Xk be the
random variable for the number of connected components of size exactly k. So X1 is
the number of isolated vertices.

Theorem 3.3.12. lnn
n is a threshold for the existence of isolated vertices in

G(n, p).

Proof. It will be convenient to prove something stronger. Instead of considering

the two cases that p� lnn
n and that lnn

n � p, we write p = lnn+c(n)
n and distinguish

the cases that c(n)→∞ and c(n)→ −∞. In the first case, we prove that G(n, p) has
a.a.s. no isolated vertices, and in the second case we prove that a.a.s. it has. Since
having no isolated vertices is a property that is stable under the addition of edges,
we may assume that |c(n)| � lnn.

Let Zi be the indicator variable for i ∈ {1, . . . , n} being isolated. Then we may
write the random variable for the number of isolated vertices as X1 =

∑
i∈{1,...,n} Zi

and by the linearity of expectation we have

E[X1] =
∑

i∈{1,...,n}

E[Zi] = n(1− p)n−1

= exp(lnn+ n ln(1− p)− ln(1− p))
= exp(lnn− np+ p+O(np2)) (using (32))

∈ exp(−c(n) + p+O(np2))

⊆ (1 + o(1)) exp(−c(n)) (since |c(n)| � log n).

It follows that if c(n) → ∞ then E[X1] → 0, and by the first moment method we
obtain that in this case G(n, p) a.a.s. does not contain isolated vertices.

If c(n) → −∞ then E[X1] → ∞. To prove the existence of isolated vertices we
need to apply the second moment method. For i 6= j, the random variables Zi and
Zj are not independent, but we can compute the covariance using (35):

Cov[Zi, Zj] = Pr(Zi = Zj = 1)− Pr(Zi = 1) Pr(Zj = 1)

= (1− p)2n−3 − (1− p)2n−2

= p(1− p)2n−3.

46 3. THE PROBABILISTIC METHOD

We obtain

Var[X1]

E[X1]2
≤ E[X1]

E[X1]2
+
n(n− 1)p(1− p)2n−3

2n2(1− p)2(n−1)

≤ 1

E[X1]
+

p

1− p
∈ o(1)

since p tends to 0 and E[X1] tends to ∞. By (34) it follows that X1 > 0 a.a.s. �

Clearly, if a graph has isolated vertices, then it is not connected. In Lemma 3.3.14
below we show that a.a.s. G(n, lnn

n) has no connected components of ‘intermediate’
size. Again, a first moment argument suffices.

Lemma 3.3.13. E(Xk) ≤
(
n
k

)
kk−2pk−1(1− p)k(n−k).

Proof sketch. Use the fact that there are kk−2 trees with vertex set {1, . . . , k}
(Theorem 5.8.3) and the union bound. �

Lemma 3.3.14. If p = log n/n then

bn/2c∑
k=2

Pr(Xk > 0) ∈ o(1).

Proof. Using Markov’s inequality we get

bn/2c∑
k=2

Pr(Xk > 0) ≤
bn/2c∑
k=2

E[Xk] (Theorem 3.3.5)

≤
bn/2c∑
k=2

(
n

k

)
kk−2pk−1(1− p)k(n−k) (by Lemma 3.3.13). (39)

With the bounds
(
n
k

)
≤ (enk)k (see Example 25) and 1− p ≤ e−p (see (31)) we obtain(

n

k

)
kk−2pk−1(1− p)k(n−k) ≤

(en
k

)k
kk−2

(
lnn

n

)k−1

e−pk(n−k)

≤ nek(lnn)k−1ek
2 lnn/n−k lnn

= exp(lnn+ k + (k − 1) ln lnn+ k2 lnn/n− k lnn)

∈ O(exp((ln lnn− lnn)(k − 1))

⊆ O

((
lnn

n

)k−1
)
⊆ o(1).

This expression tends to 0 even if we sum over finitely many k. But the bound is not
strong enough to show that (39) tends to 0. However, for k ≤ n/2 we may also obtain
another bound. Observe that k ≤ n/2 implies k(n−k) = kn−k2 ≥ kn/2. We obtain
that (

n

k

)
kk−2pk−1(1− p)k(n−k) ≤ nek(lnn)k−1e−pkn/2

∈ O

(
n

(
lnn√
n

)k)
⊆ O

(
n

(
lnn√
n

)5
)
.

3.3. RANDOM GRAPHS 47

The advantage of this bound is that it tends to 0 even if we multiply it with n, and
hence can be used to bound (39):

bn/2c∑
k=2

Pr(Xk > 0) =

4∑
k=2

Pr(Xk > 0) +

bn/2c∑
k=5

Pr(Xk > 0)

∈ O

((
lnn

n

)k−1

+ n2

(
lnn√
n

)5
)
⊆ o(1). �

Theorem 3.3.15. lnn
n is a threshold for connectivity of G(n, p).

Proof. If p� lnn/n then a.a.s. G(n, p) has isolated vertices by Theorem 3.3.12
and hence is not connected.

Now suppose that lnn/n � p. Then a.a.s. there are no isolated vertices by

Theorem 3.3.12. With Lemma 3.3.14 we obtain that
∑bn/2c
k=1 Pr(Xk > 0) ∈ o(1) and

hence G(n, p) is a.a.s. connected. �

3.3.11. Beyond connectivity. Assume that p(n) is such that for every ε > 0

lnn

n
� p(n)� n−1+ε.

Then the following holds:

(1) For every k, there are a.a.s. no k vertices with at least k + 1 edges.
(2) For every r and every k ≥ 3 there exist a.a.s. (at least) r cycles of size k.
(3) For every d a.a.s. all vertices have at least d neighbours (in particular, there

are no trees left).

Again, the first property can be shown with the first moment method and the second
property with the second moment method. For the third property, the expected
number of vertices of degree precisely i is

n

(
n− 1

i

)
pi(1− p)n−1−i ≤ n(np)ie−np (using (31)).

With np� lnn the term e−np dominates and it follows that the expected number is
in o(1).

Exercises.

(61) Prove Claim (1) in Section 3.3.11.
(62) Prove Claim (3) in Section 3.3.11.
(63) For c < 1, give an algorithm that (always) computes the chromatic number

of G(n, c/n) and has an expected polynomial running time.2

(64) Prove that if a graph has for all k no k-element subgraph with at least k+ 1
edges, then every component of the graph has at most one cycle.

(65) Please argue why the following statements are not in contradiction:
• G(n, p) is a.a.s. connected, and
• G(n, p) contains a.a.s at least two cycles, and
• For every connected graph H with at least two cycles, G(n, p) does not

contain H as a subgraph a.a.s.

2This has been pushed much further; see [8].

48 3. THE PROBABILISTIC METHOD

1

2

3
4

5

0

7

8

9

6

10

Figure 3.1. The Grötzsch graph: a triangle-free graph which is not
3-colorable.

3.3.12. Powers of n. So far, all properties of the random graph were a.a.s.
either true or false. When the edge probability is a rational power of n, for instance
p = n−1/3, then there are very natural properties of G(n, p) whose probability does
neither tend to 0 nor to 1 as n tends to infinity. Take a graph H with n vertices and
m edges such that n/m = 1/3, for example, take H = K7. The number X of copies
of H in G(n, p) has the expected value(

n

7

)
p21 =

n(n− 1) · · · (n− 6)

7!
n−7

which tends to 1/7! as n tends to infinity. It can be shown using the second moment
method that Pr(X = 0) tends to e−1/7!, which is certainly neither 0 nor 1. Irrational
powers behave better in this respect; we again refer to [40].

3.4. High Girth and High Chromatic Number

Let G = (V,E) be a graph. The girth of G is the size of its shortest cycle. We
write

• α(G) for the size of the largest stable set in G;
• χ(G) for the chromatic number of G, i.e., the smallest number k such that
G is k-colourable.

The smallest graph of girth 4 with chromatic number 4 is shown in Figure 3.1.
Let c : V → {1, . . . , k} be a k-colouring of G. Since the pre-image of a colour

under c is a stable set, we have that k · α(G) ≥ |V |. It follows that χ(G) ≥ |V |
α(G) .

Therefore, for a fixed number of vertices we can obtain a lower bound for χ(G) by
obtaining an upper bound for α(G).

The probability that S ⊆ V = {1, . . . , n} is a stable set in G(n, p) is (1− p)(
|S|
2).

The probability that G has a stable set of size x is at most(
n

x

)
(1− p)(

x
2).

Theorem 3.4.1 (Erdős). For all k, l ∈ N there exists a graph with girth at least
` and χ(G) ≥ k.

3.5. EXTREMAL GRAPH THEORY 49

Proof. Fix 0 < ε < 1/` and let G be drawn from G(n, p) with p = n−1+ε. Let
X be the number of cycles of size at most `. Then

E[X] =
∑̀
i=3

n(n− 1) · · · (n− i+ 1)

2i
pi

≤
∑̀
i=3

nεi

2i
∈ o(n) (since ε` < 1).

By Markov’s inequality (Theorem 3.3.5)

Pr(X ≥ n/2) ∈ o(1). (40)

The probability to have a stable set of size at least x can be bounded as follows.

Pr(α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) ≤ nxe−p

x−1
2 x (using (31))

≤
(
ne−p

x−1
2

)x
.

Hence, setting x := d 3
p lnne we obtain

Pr(α(G) ≥ x) ∈ o(1). (41)

Let n be sufficiently large so that both events (40) and (41) have probability less than
1/2. Then there exists a specific G with less than n/2 cycles of length at most ` and
with α(G) < x ≤ d3n1−ε lnne. Remove from G a vertex from each cycle of length at
most `. This gives a graph G∗ with at least n/2 vertices, girth greater than `, and
α(G∗) ≤ α(G). Thus

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n/2

d3n1−ε lnne
≥ nε

6 lnn
.

To complete the proof, let n be sufficiently large so that this value is at least k. �

Remark 3.4.2. Lovász was the first who gave deterministic constructions of
graphs with arbitrarily large girth and chromatic number; another construction was
given by Nešetřil and Rödl [31]. A recent reference is [2]. A powerful generalisation
of Theorem 3.4.1 in the world of graph homomorphisms can be found in [32], and
is called the sparse incomparability lemma; a further generalisation concerns homo-
morphism problems between general relational structures, also known as constraint
satisfaction problems (see Theorem 5 in [14]).

3.5. Extremal Graph Theory

In the previous section, we have seen an application of the probabilistic method to
prove that certain finite graphs exist. The probabilistic method can also be applied to
show that every graph must have certain properties. We present an example of such
an application for proving a complement version of Turan’s theorem, which is one of
the cornerstones of a research area called extremal graph theory. We will deduce this
theorem from another theorem which provides a lower bound on the largest stable set
in a graph in terms of the degree sequence of the graph.

Theorem 3.5.1. Let G = ({1, . . . , n}, E) be a graph and for i ∈ V (G) let di
denote the degree of i in G. Then

α(G) ≥
n∑
i=1

1

di + 1
.

50 3. THE PROBABILISTIC METHOD

Example 6. For example, if G is 1-regular (i.e., a perfect matching) then α(G) ≥
n
2 , if it is 2-regular (i.e., a disjoint union of cycles) then α(G) ≥ n

3 , and more generally
if G is k-regular then α(G) ≥ n

k+1 . Also note that all these bounds are tight, as

demonstrated by a disjoint union of (k + 1)-cliques. 4

Proof. Let π : V (G)→ V (G) be a random permutation chosen from the uniform
distribution, i.e., each permutation is drawn with probability 1/n!. For i ∈ V (G), let
Ai be the event that π(i) < π(j) for all di neighbours of i. There are

(
n

di+1

)
possibilities

to choose a set S ⊆ V (G) with di + 1 elements that are the π-images of i and all its
di neighbours. Moreover, there are di! many possibilities to arrange the images of the
neighbours of i under π, and (n− di − 1)! possibilities to arrange the vertices outside
S. Thus,

Pr(Ai) =

(
n

di + 1

)
di!(n− di − 1)!

n!
=

1

di + 1
.

Let U be the set of all vertices i such that Ai holds. By linearity of expectation,

E[|U |] =

n∑
i=1

Pr(Ai) =

n∑
i=1

1

di + 1
.

Thus, for some permutation π we have |U | ≥
∑n
i=1

1
di+1 . Finally, note that U is

a stable set: Let {i, j} ∈ E. If π(i) < π(j) then j /∈ U , and if π(j) < π(i) then
i /∈ U . �

Theorem 3.5.2 (Turan’s Theorem, complement version). Let G be a graph with
n vertices and at most nk/2 edges. Then α(G) ≥ n

k+1 .

Example 7. Again, the bound in theorem 3.5.3 is tight: if (k + 1)|n then the
disjoint union G of n

k+1 many (k + 1)-cliques has n vertices, α(G) = n
k+1 , and the

number of edges is
n

k + 1
(k + 1)k/2 = nk/2. 4

Proof. Clearly, we may assume that the number of edges is exactly nk/2. The
intuition for using Theorem 3.5.1 is that the sum

∑n
i=1

1
di+1 is minimised if the di’s

are equal. Formally, we apply the Cauchy-Schwarz inequality (Lemma A.2.2) setting
xi :=

√
di + 1 and yi := 1/xi and obtain

n2 =

(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
=

(
n∑
i=1

(di + 1)

)(
n∑
i=1

1

di + 1

)
.

Since
∑n
i=1 di equals twice the total number of edges (Exercise 1),

n∑
i=1

1

di + 1
≥ n2/(n+ nk) = n/(k + 1).

We then conclude

α(G) ≥
n∑
i=1

1

di + 1
Theorem 3.5.1

≥ n

k + 1
. �

We state without proof the stronger (‘primal’) version of Turan’s theorem.

3.5. EXTREMAL GRAPH THEORY 51

Theorem 3.5.3 (Turan’s theorem). Let G be a graph with n vertices and more
than (1− 1

k)n2/2 edges. Then G must contain an (k + 1)-clique.

Exercises.

(66) Construct a graph that shows that Theorem 3.5.3 is tight. I.e., construct a
graph without (k + 1)-cliques and (1 − 1

k)n2/2 edges. First treat the case
that (k + 1)|n, then the general case.

(67) Derive Theorem 3.5.2 from Theorem 3.5.3.
(68) Derive Mantel’s theorem: if a graph on 2n vertices contains n2 + 1 edges,

then G contains a triangle.
(69) Let G = (V,E) be a graph with |V | = 10 such that for any S ∈

(
V
3

)
we have

E ∩
(
S
2

)
6= ∅. What is the best lower bound that you can prove on |E|?

(70) Can you also derive Theorem 3.5.3 from Theorem 3.5.2?

CHAPTER 4

Ramsey Theory

Ramsey theory seeks regularity within disorder: general conditions for the exis-
tence of substructures with regular properties. Many questions in Ramsey theory are
of the form: “how many elements must a structure have to guarantee that a particular
property holds?”

4.1. The Pigeonhole Principle

If n pigeons fly to fewer than n holes, there must be one hole that got more than
one pigeon. There is an important infinite version of the statement: if infinitely many
pigeons fly to finitely many holes, one hole must have gotten infinitely many pigeons.
This triviality will be used (and later greatly generalised) in the next tools that we
present. We mention that the first moment method can be seen as a probabilistic
version of this principle: if the pigeons fly randomly to the holes, then not all holes
can have more pigeons than the expected number of pigeons for that hole.

Exercises.

(71) Prove that every finite graph with at least two vertices contains two vertices
of the same degree.

4.2. Kőnig’s Tree Lemma

Kőnig’s tree lemma is a simple but important tool to translate between statements
in finite combinatorics and statements in infinite combinatorics. Often, a nice feature
of the statements in infinite combinatorics is that they may have fewer quantifiers
than their finite counterparts; so sometimes it is easier to prove a statement in infinite
combinatorics and to derive the finite counterpart via Kőnig’s lemma (we see such an
application in Section 4.3).

Lemma 4.2.1 (Kőnig’s Tree Lemma). Let (V,E) be a tree such that V is infinite
and every vertex in V has finite degree. Then (V,E) contains an infinite path.

Proof. Arbitrarily choose v0 ∈ V . Since the degree of v0 is finite, there exists a
neighbour v1 of v0 such that the connected component of v1 in (V,E)−v0 is infinite (by
the infinite pigeonhole principle). We construct the infinitely long path by induction.
Suppose we have already found a path v0, v1, . . . , vi in (V,E) such that the connected
component T of vi in (V,E)−{v0, v1, . . . , vi−1} is infinite. Note that T is a tree, and
since the degree of vi is finite, vi must have a neighbour vi+1 in T which lies in an
infinite connected component of T − vi. In this way, we define an infinitely long path
v0, v1, v2, . . . in (V,E). �

Note that even if a tree contains arbitrarily long finite paths, it might not contain
infinitely long paths, as can be seen from Figure 4.1. The following proposition
illustrates one of the many uses of Kőnig’s tree lemma.

Proposition 4.2.2. A countably infinite graph G is k-colourable if and only if
every finite subgraph of G is k-colourable.

53

54 4. RAMSEY THEORY

Figure 4.1. A tree with arbitrarily long paths, but no infinite paths.

Proof. To prove the non-trivial direction of the statement we assume that every
finite subgraph of G is k-colourable. Let u1, u2, . . . be an enumeration of V (G). For
n ∈ N, let Xn be the set of all proper k-colourings of the subgraph induced by
{u1, . . . , un} in G. We consider the following tree with vertex set X :=

⋃
n∈NXn. We

connect x, y ∈ X if y is the extension of x by one element. Clearly, this defines a
tree which has infinitely many vertices by assumption. Moreover, every vertex of this
graph has finite degree since there are only finitely many maps {u1, . . . , un+1} → [k].
By Kőnig’s tree lemma there exists an infinite path v0, v1, v1, . . . with vi ∈ Xi for all
i ∈ N. Define f : V (G)→ [k] by f(ui) := vi(ui) for all i ≥ 1. Then f is a k-colouring
of G. �

We mention that the proposition also holds for graphs with uncountably many
vertices, but then Kőnig’s tree lemma is not enough for the proof. Sometimes, proofs
as the proof of the proposition above are called compactness arguments, and indeed
there is an associated topology which is compact. We refer to courses on general
topology or model theory for more about this topic.

4.3. Ramsey’s Theorem

The set {0, . . . , n − 1} is sometimes denoted by [n]. We refer to mappings

χ :
(
M
s

)
→ [c] as a colouring of

(
M
s

)
(with the colours [c]). In Ramsey theory, one

writes

L→ (m)sc

if for every χ :
(
L
s

)
→ [c] there exists an M ∈

(
L
m

)
which is χ-monochromatic, i.e., χ

is constant on
(
M
s

)
. Note the following.

• For all c ∈ N we have [c+ 1]→ (2)1
c : this is the pigeonhole principle.

• For all c ∈ N we have N→ (N)1
c : this is the infinite pigeonhole principle.

Theorem 4.3.1 (Ramsey’s theorem). For all c,m, s ∈ N there is an l ∈ N such
that [l]→ (m)sc.

For c,m, s ∈ N, the smallest l such that [l]→ (m)sc is denoted by Rsc(m). We first
prove a variant of Ramsey’s theorem; we write ℵ0 for the cardinality of N.

Theorem 4.3.2. N→ (ℵ0)2
2.

This statement has the following interpretation in terms of undirected graphs:
every countably infinite undirected graph either contains an infinite clique (a complete
subgraph) or an infinite independent set.

4.4. A PROBABILISTIC LOWER BOUND 55

Proof. Let χ :
(N

2

)
→ [2] be a 2-colouring of

(N
2

)
. We define an infinite sequence

x0, x1, . . . of numbers from N and an infinite sequence V0 ⊇ V1 ⊇ · · · of infinite
subsets of N. Start with V0 := N and x0 = 0. By the infinite pigeonhole principle,
there is a c0 ∈ [2] such that {v ∈ V0 | χ(x0, v) = c0} =: V1 is infinite. We now repeat
this procedure with any x1 ∈ V1 and V1 instead of V0. Continuing like this, we obtain
sequences (ci)i∈N, (xi)i∈N, (Vi)i∈N.

Again by the infinite pigeonhole principle, there exists c ∈ [2] such that ci = c for
infinitely many i ∈ N. Then P := {xi | ci = c} has the desired property. To see this,
let i < j be such that xi, xj ∈ P . Then χ({xi, xj}) = ci = c. �

We now state the infinite version of Ramsey’s theorem; the proof is similar to the
proof of Theorem 4.3.2 shown above.

Theorem 4.3.3 (Ramsey’s theorem). Let s, c ∈ N. Then N→ (ℵ0)sc.

A proof of Theorem 4.3.3 can be found in [21] (Theorem 5.6.1); for a broader
introduction to Ramsey theory see [18]. Ramsey’s theorem is a consequence of the
infinite version via Kőnig’s tree lemma, similarly as in Proposition 4.2.2.

Proof of theorem 4.3.1. Let (∗)l,χ be the property that for all m-subsets M

of [l] the mapping χ is not constant on
(
M
s

)
. Our proof is by contradiction: suppose

that there are positive integers c,m, s such that for all l ∈ N there is a χ :
(

[l]
s

)
→ [c]

such that (∗)l,χ.

We construct a tree as follows. The vertices are the maps χ :
(

[l]
s

)
→ [c] that

satisfy (∗)l,χ. We make the vertex χ :
(

[l]
s

)
→ [c] adjacent to χ′ :

(
[l+1]
s

)
→ [c] if χ is a

restriction of χ′. Clearly, every vertex in the tree has finite degree. By assumption,
there are arbitrarily long paths that start in the vertex χ0 where χ0 is the map with
the empty domain. By Lemma 4.2.1, the tree contains an infinite path χ0, χ1, . . . We
use this to define a map χN :

(N
s

)
→ [c] as follows. For every x ∈ N, there exists a

c0 ∈ [c] and an i0 ∈ N such that χi(x) = c0 for all i ≥ i0. Define χN(x) := c0. Then
χN satisfies (∗)N,χ, a contradiction to Theorem 4.3.3. �

Exercises.

(72) Let R(k, `) denote the smallest number n such that if we colour the edges
of Kn in red and blue, the resulting edge-coloured graph always contains a
red Kk or a blue K`. Show that

R(k, `) ≤ R(k, `− 1) +R(k − 1, `)

and use R(`, 2) = R(2, `) to prove that

R(k, `) ≤
(
k + `− 1

k − 1

)
.

4.4. A Probabilistic Lower Bound

The proof of Ramsey’s theorem in Section 4.3 was non-constructive: it derived
the statement from the infinite version via an application of Kőnig’s tree lemma; in
particular, we did not learn anything about the size of Rsc(m), the minimal l ∈ N
such that [l] → (m)sc. We now present a probabilistic proof of a lower bound (for
simplicity again only for c = s = 2; the general case is similar).

Theorem 4.4.1. For any m ≥ 3 we have R2
2(m) > b2m/2c.

56 4. RAMSEY THEORY

Proof. We claim that if ` := b2m/2c then with positive probability G(`, 1/2) has

no clique of size m and no stable set of size m. For S ∈
(
V
m

)
, let AS be the event that

S forms a clique or a stable set in G(`, 1/2). We have Pr(AS) = 2(1
2)(

m
2) = 21−(m

2).

Since there are
(
`
m

)
possible choices for S, the probability that at least one of the

events AS occurs is at most(
`

m

)
21−(m

2) <
`m

m!
21−m2

2 + m
2

=
21+ m

2

m!
· `m

2m2/2
< 1 (since ` = b2m/2c). �

4.5. Applications

Ramsey theory has numerous applications in many fields, e.g. in topological dy-
namics [24], set theory, model theory [21], just to name a few. Further applications
in number theory, harmonic analysis, geometry, and theoretical computer science are
surveyed in [35]. Here, we only give some of the very basic applications of Ramsey’s
theorem.

4.5.1. Number Theory. We start with a result motivated by number theory
which in fact pre-dates Ramsey’s theorem.

Theorem 4.5.1 (Schur’s theorem, 1917). Let c be a positive integer. Then there
exists an s = s(c) ∈ N such that for every colouring f : {1, . . . , s} → [c] there exist
x, y, z ∈ {1, . . . , s} such that

• x+ y = z;
• x, y, z is monochromatic (i.e., f is constant on x, y, z).

Example 8. For the map f : {1, 2, 3, 4} → {0, 1} given by f(1) = f(4) = 0 and
f(2) = f(3) = 1 there are no elements x, y, z ∈ {1, . . . , 4} such that f(x) = f(y) =
f(z) and x+ y = z.

Let f : {1, . . . , 5} → {0, 1}. Suppose for contradiction that there are no x, y, z ∈
{1, . . . , 5} such that f(x) = f(y) = f(z) and x+ y = z. Without loss of generality we
may suppose that f(1) = 0. Since 1 + 1 = 2 we must have f(2) = 1. Since 2 + 2 = 4
we must have f(4) = 0. Since 1 + 3 = 4 and f(1) = 0 we must have f(3) = 1. Since
3 + 2 = 5 and f(2) = 1 we must have f(5) = 0. But 4 + 1 = 5 and f(4) = f(1) = 0
implies that f(5) = 1, a contradiction. 4

Proof. Let s = s(c) be R2
c−1(3). Let f : {1, . . . , s} → [c]. From f , we define a

(c− 1)-colouring h of the edges of Ks:

h({a, b}) := f(|a− b|) ∈ {1, . . . , c− 1}.
By the choice of s, there is an h-monochromatic 3-element subset {u, v, w} of V (Ks).
Without loss of generality, u > v > w. We claim that x := u − v, y := v − w, and
z := u− w gives the desired subset of {1, . . . , s}:

• f(x) = h({u, v}) = h({v, w}) = f(y), since {u, v, w} is h-monochromatic;
• likewise, f(x) = f(z);
• x+ y = u− w = z. �

The famous equation of Fermat is

xn + yn = zn.

Here we study a ‘local’ version of Fermat’s problem, i.e., the question when Fermat’s
equation has a non-trivial solutions modulo a prime p. A solution is trivial if x = z
mod p (and y = 0 mod p) or y = z mod p (and x = 0 mod p).

4.5. APPLICATIONS 57

Corollary 4.5.2. Let n ∈ N. Then there exists q ∈ N such that for all primes
p ≥ q, the equation xn + yn = zn has a non-trivial solution in Zp.

Proof. Take q := s(n)+1, where s(n) is taken from Schur’s theorem. Let p ≥ q.
Then Gn := {xn | x ∈ Z∗p} is a subgroup of the multiplicative group Z∗p := Zp \ {0} of
Zp, so we can partition Z∗p into cosets a1Gn, . . . , arGn. Note that r ≤ n: this follows
from the fact that x 7→ xn is a homomorphism from Z∗p to Gn. Since r equals the
size of the kernel of this homomorphism, it is the number of roots of the polynomial
xn − 1 in the field Zp, hence r ≤ n.

Colour the elements of aiGn with colour i. Since r ≤ n and since

|Z∗p| = p− 1 ≥ q − 1 = s(n),

Schur’s theorem implies the existence of a monochromatic triple (x, y, z) ∈ (Z∗p)3 with
x+ y = z. Hence, there are i ≤ r and x̃, ỹ, z̃ ∈ Z∗p such that

aix̃
n + aiỹ

n = aiz̃
n mod p.

Since ai is not divisible by p it follows that x̃n + ỹn = z̃n mod p. The solution x̃, ỹ, z̃
is non-trivial since x̃, ỹ, and z̃ are pairwise incongruent modulo p. �

4.5.2. Geometry. Now a geometric application. We say that ` points p1, . . . , p`
in R2 are in general position if no three of them are collinear. A subset S of R2 is
called convex if for all x, y ∈ S

{αx+ βy | α, β ∈ R, α+ β = 1, α, β ≥ 0} ⊆ S.

The convex hull of S is the smallest convex subset of R2 that contains S. A convex
n-gon is a set of n points in R2 such that none of the points lies in the convex hull
of the other points. A convex quadrilateral in R2 is a convex 4-gon. The happy end
problem1 is the following:

Proposition 4.5.3. Let S be a set of 5 points in general position in R2. Then S
contains four points which form a convex quadrilateral.

Proof. If two points a, b are in the convex hull of the three other points c, d, e,
then two out of these three points must lie on the same side as the line connecting
a and b. Then these two points together with a, b forms a convex quadrilateral.
Otherwise, there are at least four of the points on the boundary of the convex hull,
and hence form a convex quadrilateral. �

So far, no Ramsey theory is involved. This changes with the next statement. We
will present two proofs, both based on Ramsey theory.

Theorem 4.5.4 (Erdős-Szekeres 1935). For every n ∈ N there exists an L ∈ N
such that any set of L points in general position in R2 contains the vertices of a convex
n-gon.

Original proof of Erdős and Szekeres. The statement is trivial for n ≤ 3.
Let L := R4

2(n), so that [L] → (n)4
2. Let V = {s0, . . . , sL−1} be a set of L points in

general position in R2. Let S ∈
(
V
4

)
, and colour S blue if the points in S are in convex

position, and red otherwise. By Theorem 4.3.1, there is a monochromatic subset M
of V of size n. We have already seen in the happy ending problem that not all sets
in
(
M
4

)
can be red. Hence, all four-element subsets of M are in convex position, and

it is easy to see that then all points in M must be in convex position. �

1A name given by Erdős since it lead to the marriage of George Szekeres and Esther Klein.

58 4. RAMSEY THEORY

Another proof. Let L := R3
2(n), so that [L] → (n)3

2. Let V = {s0, . . . , sL−1}
be a set of ` points in general position in R2. Let {si, sj , sk} ∈

(
V
3

)
and assume

without loss of generality that i < j < k. Colour this set according to the following
rule:

• blue if going from si to sj to sk is a clockwise movement, and
• red otherwise.

By Theorem 4.3.1, there is a monochromatic subset S of V of size n, say of colour blue
(the other case is symmetric). Suppose for contradiction that s` ∈ S lies in the convex

hull of {si, sj , sk} ∈
(
S\{s`}

3

)
. Without loss of generality, suppose that i < j < k so

that {si, sj , sk} is coloured blue. Then {si, s`, sk} is blue, so we have i < ` < k. If
` < j then i < ` < j and the set {si, s`, sj} should be coloured red, and if ` > j then
j < ` < k and the set {sj , s`, sk} should be coloured red. In both cases we reached a
contradiction. �

Exercises.

(73) Formulate and prove an infinite version of Schur’s theorem. Show that for
every χ : N → [c] there exist infinitely many triples a, b, c ∈ N such that
a+ b = c and χ(a) = χ(b) = χ(c).

(74) Derive Schur’s theorem from the statement in the previous exercise.
(75) Let (P,≤) be a countably infinite partially ordered set. Then (P ;≤) either

contains an infinite chain or an infinite antichain (see Exercise (10)).
(76) A generalisation of the previous exercise: prove that for any infinite directed

graph there exists an infinite subset of the vertices that induces one of the
following:
• a clique,
• a clique where additionally all vertices have loops,
• an independent set,
• loops at each vertex and otherwise no edges,
• a strict linear order,
• a weak linear order.

(77) Prove that for every n ∈ N there exists ` ∈ N such that any directed graph
without loops of size at least ` contains a clique, a stable set, or a linear
order with n vertices as an induced subgraph.

(78) (Meta-mathematical exercise) What constitutes a constructive proof ? Is
the proof of Theorem 4.3.1 constructive? Is the proof of Theorem 4.4.1 con-
structive? Are constructive proofs more satisfactory than non-constructive
proofs?

4.6. The Theorem of Hales-Jewett

One of the original motivations of the Hales-Jewett theorem [20] is an applica-
tion for so-called positional games to show that certain games cannot end in a draw.
The theorem became one of the most useful theorems in Ramsey theory. Graham,
Rothschild, and Spencer in their classical textbook [18] write: “(The Hales-Jewett
theorem) is a focal point from which many results can be derived and acts as a cor-
nerstone for much of the more advanced work. Without this result, Ramsey theory
would more properly be called Ramseyian theorems.”

4.6.1. Positional games. A hypergraph is a pair (V,H) where

• V is a set (again, the elements of V are called the vertices), and
• H ⊆ P(V) is a set of subsets of V , called the (hyper-)edges.

4.6. THE THEOREM OF HALES-JEWETT 59

A (strong) positional game (or a maker-maker game) is given by a hypergraph (V,H)
and played by two players, called W und S (there are obvious generalisations to
positional n-player games). Player W starts the game and colours one of the vertices
white. Then player S colours one of the other vertices black. They alternatingly
continue to colour previously uncoloured vertices with their respective color until

• all of the vertices of one of the hyperedges are coloured with white, in which
case W wins;
• all of the vertices of one of the hyperedges are coloured with black, in which

case B wins;
• all vertices are coloured without a monochromatic hyperedge, in which case

the game ends in a draw.

This game is a finite perfect information zero-sum 2-player game, so either one of
the players has a winning strategy, or both players can force a draw. The most famous
of such positional games is Tic-Tac-Toe, where the hypergraph has the vertices [3]2

(a three by three grid) and the hyperedges are the 3 rows, the 3 columns, and the two
2 diagonals.

The following famous idea has already been used by Nash around 1940, and is
called strategy stealing argument. We write W (x) (and B(x)) if x has been coloured
white (black) during the game.

Theorem 4.6.1. Let (V ;H) be a strong positional game. Then the player B who
plays second cannot have a winning strategy.

Proof. Suppose for contradiction that B has a winning strategy σ. We now
specify a strategy for W . Arbitrarily select x ∈ V (but don’t colour it yet!). Let
y ∈ V be the response of B according to σ if W would have played x. Then player
W plays y. By assumption, B can force a win for the game where W (x) and B(y)
and where it is W ’s turn. Symmetrically, W can force a win if B(x), W (y), and if it
is B’s turn. But then, W can force a win if W (y) and if it is B’s turn, even if x has
not been coloured (since additionally coloured vertices can only help B to win). This
contradicts that fact that B has a winning strategy for the game W has just started
against σ (where W (x) and it is B’s turn). �

We have here a real proof by contradiction; note that from the proof we gain
no insight how B should play in order to force a draw or to win. In the case of
Tic-Tac-Toe, it can be checked by an elementary case distinction that both players
can force a draw. We will not go into the details here but rather discuss the obvious
generalisation of Tic-Tac-Toe where we play on a n by n board, rather than a 3 by 3
board. Formally, the game n × n is the positional game whose vertices are the grid
[n]× [n] and where we have n hyperedges of size n for the n rows, the n hyperedges
of size n for the n columns, and two diagonals.

To decide whether B can force a draw there is a powerful condition that sometimes
works. The idea even has a (Japanese) name in the world of go: B tries to cover each
hyperedge with a pair of vertices that are miai.

Definition 4.6.2. A pairing strategy for (V ;H) is given by a matching M on
the complete graph with vertices V such that every hyperedge contains at least one
edge from M .

For example, the following represents a pairing strategy for the game 5×5: entries
with the same number are joint by a matching edge.

60 4. RAMSEY THEORY

1 2 3 2 4
5 7 7 8 9
10 6 ∗ 8 10
5 6 11 11 9
4 12 3 12 1

Proposition 4.6.3. If (V ;H) has a pairing strategy, then B can force a draw.

Proof. If W plays one of the endpoints of a matching edge, then B responds
with the other end. Since every edge is covered by some hyperedge, none of the
hyperedges will be coloured monochromatically, and the game ends in a draw. �

Note that there is no pairing strategy for the game 4×4: there are 10 hyperedges,
but only 16 vertices; hence, at most 8 hyperedges can be covered by some matching.

Exercises.

(79) Prove that B can force a draw in the game 4× 4.
Hint. Check that for each of the possible first moves of W there is a response
for B such that B has a pairing strategy.

(80) The game Sim is played by the two players white and black on a hypergraph
(V,H) where

• V =
(

[6]
2

)
.

• H =
{
{{a, b}, {b, c}, {a, c}} | a, b, c ∈ [6]

}
.

White begins. The players alternatingly color the elements of V by their
color. If one player creates a monochromatic hyperedge, she looses. Prove
that one of the players has a winning strategy. Determine which of the
players has a winning strategy.

4.6.2. The [n]d game. In the following, we will be interested in a d-dimensional
generalisation of the game n×n, which is called the nd game. The vertex set in this this
game is [n]d. The hyperedges are of size n and defined as follows: {α1, . . . , αn} with
αi = (ai,1, . . . , ai,d) ∈ [n]d is a hyperedge if for each j ≤ d the tuple (a1,j , . . . , an,j)
has one of the following forms:

(1, . . . , 1)

(2, . . . , 2)

· · ·
(n, . . . , n)

(n, n− 1, . . . , 1)

(1, 2, . . . , n)

If n = 4, d = 3 then there are for instance the hyperedges

{113, 112, 111, 110},
{020, 121, 222, 323}, and

{031, 131, 231, 331}.

Sometimes, pairing strategies are guaranteed to exist because of the marriage
theorem of Hall, in the form of Theorem 1.5.7. For example, we have the following.

Lemma 4.6.4. Let (V ;H) be a hypergraph and let s be the size of the smallest
hyperedge in H. Let g := maxx∈V |{h ∈ H | x ∈ h}|. If s ≥ 2g then B has a pairing
strategy in the game (V ;H).

4.6. THE THEOREM OF HALES-JEWETT 61

Proof. Let F be the family of finite subsets where we add each hyperedge from
H twice. Note that pairing strategies in the game on (V,H) are in one-to-one corre-
spondence to transversals of F : by construction, each hyperedge will have two distinct
representatives a, b in a transversal, and {a, b} will be part of the desired matching
for the pairing strategy. Theorem 1.5.7 states that is suffices to verify the marriage
condition for F . Let S ⊆ F .

|N(S)| =

∣∣∣∣∣ ⋃
A∈S

A

∣∣∣∣∣ (by the definition of G)

(∗)
≥ s|S|

2g

≥ |S| (since s ≥ 2g).

The inequality (∗) holds since we have at least s|S| edges leaving S, and each vertex
in
⋃
A∈S A has at most 2g neighbours in S. �

Corollary 4.6.5. For n ≥ 3d − 1 both players can force a draw in the game nd.

Proof. Note that any point is contained in at most (3d−1)/2 many hyperedges
(and this bound is achieved for odd k at the center point): for each coordinate,
we have to decide whether the entries are constant, increasing, or decreasing. Not all
hyperedges can be constant, so we have to subtract one. Finally, if we flip all increasing
coordinates to decreasing ones, and vice versa, we obtain the same hyperedge, so
we divide by 2. Hence, if n ≥ 3d − 1, then Lemma 4.6.4 applies and implies the
statement. �

The result in the following section shows that for every n ∈ N there exists a d ∈ N
so that [n]d cannot end in a draw, and hence, by Theorem 4.6.1, W has a winning
strategy.

4.6.3. The Hales-Jewett Theorem. In the Hales-Jewett theorem, we color
the elements of [m]d with c colours, and we look for a monochromatic combinatorial
line.

Definition 4.6.6. A combinatorial line in [m]d is a set of points {α1, . . . , αm} ⊆
[m]d with αi = (ai,1, . . . , ai,d) ∈ [m]d for all i ≤ m, such that for each j ≤ d we have
that either

a1,j = · · · = am,j

or
ai,j = i.

Hence, combinatorial lines are defined as the hyperedges {α1, . . . , αm} of the game
md with the exception that we no longer have the option that α1,j = m + 1 − j. So
there are fewer combinatorial lines; for example in the game Tic-Tac-Toe, we have
the hyperedge {(0, 2), (1, 1), (2, 0)} which is not a combinatorial line.

Combinatorial lines can be represented as words over the alphabet [m]∪{∗} with
at least one occurrence of ∗. The letter i at the j-th position indicates that in the
combinatorial line

{(a1,1, . . . , a1,d), . . . , (am,1, . . . , am,d)}
we have a1,j = · · · = am,j = i, and the letter ∗ at the j-th position indicates that
ai,j = i for all i ∈ {1, . . . , d}. It follows that the number of combinatorial lines in [m]d

is (m+ 1)d −md.

Theorem 4.6.7. For all c,m ∈ N there exists d = HJ(c,m) ∈ N such that for
all colourings f : [m]d → [c] there exists a monochromatic combinatorial line in [m]d.

62 4. RAMSEY THEORY

For example, if c = 2 and m = 2 then HJ(c,m) = 2 is the smallest d ∈ N that
satisfies the statement of the theorem.

Corollary 4.6.8. For every n ∈ N there exists a d ∈ N such that player W wins
the game nd.

Proof. Choosing d = HJ(c, n), the game nd cannot end in a draw since every
combinatorial line in [n]d is a hyperedge in the game nd, and if we have a monochro-
matic hyperedge then one of the two players wins. Since player S cannot have a
winning strategy by Theorem 4.6.1, player W must have a winning strategy. �

4.6.4. Application: van der Waerden’s theorem. An arithmetic progres-
sion of length m (m-AP) is a sequence (a0, a1, . . . , am−1) of integers of the form

a0, a0 + b, a0 + 2b, . . . , a0 + (m− 1)b.

Theorem 4.6.9 (van der Waerden, 1927). For all m, c ∈ N there is an w =
W (m, c) ∈ N such that for every colouring

χ : {1, . . . , w} → [c]

there exists a monochromatic arithmetic progression of length m.

Proof. Let d = HJ(m, c), and define w := (m − 1)d + 1. Let f : [m]d →
{1, . . . , w} be the map that sends (p1, . . . , pd) to p1 + · · ·+pd+ 1. Given a c-colouring
χ of {1, . . . , w}, define a c-colouring χ′ of [m]d by setting χ′(p) := χ(f(p)) for p ∈
[m]d. By the theorem of Hales-Jewett (Theorem 4.6.7), there exists a monochromatic
line q = (q0, . . . , qm−1) in [m]d. We claim that f(q0), . . . , f(qm−1) is an m-AP. Let
a0 := f(q0) and let b be the number of ∗’s in the word that corresponds to the line q.
Then f(qi) = a0 + ib for i ∈ [m]. So we found the monochromatic m-AP

a0, a0 + b, . . . , a0 + (m− 1)b. �

4.6.5. Application: monochromatic copies of graphs.

Theorem 4.6.10. For every c ∈ N and every finite graph H there exists a graph
G such that for every colouring χ : V (G)→ [c] there exists a monochromatic subgraph
H ′ of G which is isomorphic to H.

Proof. Let m := |V (H)| and choose d = HJ(c,m). Let G be the graph with
vertex set [m]d where the edges are defined in such a way that for each combinatorial
line {(α1,1, . . . , α1,d), . . . , (αm,1, . . . , αm,d)} in [m]d induces a copy of H: this is well-
defined since any two combinatorial lines intersect in at most one element of [m]d.
Clearly, monochromatic lines in [m]d then correspond to monochromatic copies of H
in G. �

The following exercises follow pretty much the same idea.

Exercises.

(81) Prove that for every c ∈ N and every finite metric space M there exists
a metric space L such that for every colouring χ : L → [c] there exists a
monochromatic subspace of L which is isometric to M .

(82) Prove that for every c ∈ N and every finite partially ordered set (M,≤) there
exists a partially ordered set (L,≤) such that for every colouring χ : L→ [c]
there exists a monochromatic subposet of (L,≤) which is isomorphic to
(M,≤).

(83) Prove that for every c ∈ N and every finite tournament S there exists a finite
tournament T such that for every colouring χ : V (T) → [c] there exists a
monochromatic subtournament of T which is isomorphic to S.

4.6. THE THEOREM OF HALES-JEWETT 63

Remark. One of the important directions into which Ramsey theory has devel-
oped is that instead of just colouring single elements as in the theorem of Hales-Jewett
and its applications that we have seen above, we colour entire copies of of some fixed
(‘small’) structure S in some (‘large’) structure L. The goal is to find conditions that
imply that no matter how the copies of S in L are coloured, we find a copy of some
(‘medium-size’) structure M in S such that all copies of S in M have the same colour.
This is similar to the statement of Ramsey’s theorem, except that for Ramsey’s the-
orem there were just sets and subsets, rather than structures and substructures. For
more on this topic, we refer to [30]. Another important topic in Ramsey theory is the
question how big structures need to be so that infinite monochromatic objects can be
found.

CHAPTER 5

Generating Functions

In combinatorics, we often want to count the objects of size n in a given set
of combinatorial structures. For example, we want to count the number of graphs,
trees, etc. that have certain properties, as a function in the number of vertices. Or we
would like to count the number of words in some language depending on the number
of letters in the word. There are numerous reasons why we might want to count.
One important application is the probabilistic method where probability theory is
mostly a fancy (and powerful!) language for arguments that are essentially counting
arguments. Another application is in theoretical computer science, where we are
sometimes interested in typical properties of large random objects (the large random
objects might actually be the input to your computer program). So we sometimes
might want to efficiently sample large combinatorial objects from some distribution;
efficient counting is very important in this context. The corresponding research field
is called enumerative combinatorics.

This section does not attempt to give an overview of enumerative combinatorics,
which would be a challenging task, but rather to highlight one very powerful method
in enumerative combinatorics, namely the usage of generating functions. This method
has strong links with algebra, but also with analysis of complex functions (in German
Funktionentheorie); the respective research area is often called analytic combinatorics.
This section is inspired by the famous introduction of Wilf with the title generating-
functionology [41] (which is suited for mathematics undergraduate students) and the
monumental book of Flajolet and Sedgewick [16]. However, we also try to be self-
contained in what concerns the facts concerning the fundamental link between power
series and complex-valued functions.

5.1. Motivating Generating Functions

Suppose we have a problem whose answer is a sequence of numbers, a0, a1, a2, . . .
Ideally, we would like to obtain a simple formula for the n-th number, something like
an = 2n2 + 7n− 2, for example. But sometimes, such a simple formula might simply
not exist. In such situations we would still like to know whether the n-th number
can be somehow computed (as efficiently as possible!), or we might want to know the
asymptotic growth of the an, or good and simple bounds on the asymptotic growth.
Or you might want to prove that two sequences are equal. For all these possible tasks
(and many more) generating functions might be the right method.

Example 9. The Fibonacci numbers f0, f1, f2, . . . are inductively defined as fol-
lows: f0 = 0, f1 = 1, and for n ≥ 1 we have

fn+1 := fn + fn−1.

The sequence begins with

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

65

66 5. GENERATING FUNCTIONS

Using generating functions, one can prove that for every n ∈ N

fn =
1√
5

(rn+ − rn−). (42)

where r+ := (1 +
√

5)/2 is the golden ratio (sectio aurea, proportio divina) and

r− := (1−
√

5)/2. By any means, this is a formula that is easy to compute (by hand,
or efficiently even for gigantic numbers n by a computer). Note that for large n, since

|r−| < 1, the second term rn−/
√

5 in (42) will be tiny when compared to the first. So,
in particular,

fn ∼

(
1 +
√

5

2

)n
. 4

5.2. The Idea

We start with a very simple example to illustrate the idea. The Fibonacci num-
bers and Catalan numbers will be more interesting examples that follow later. A for-
mal treatment of the involved tool, namely formal power series, and more advanced
analytic techniques follow later.

Let a0, a1, . . . be the integer sequence that is given by a0 := 0, and recursively
for all n ≥ 0

an+1 := 2an + 1. (43)

The sequence starts with 0, 1, 3, 7, 15, 31, . . . In this example it is still possible to
somehow guess an explicit formula for the sequence and then prove it by induction
on n. This is not our approach (the guess and check approach might be quite tough
in more advanced examples – would you have guessed the answer in Example 9?).

Step 1: turn the sequence into a power series A(x). The starting point of
the approach via generating functions is to turn the sequence (an)n∈N into a single
object, namely the (formal) power series∑

n∈N
anx

n (44)

where x is a variable. This object has two possible interpretations:

• The formal/syntactic perspective, where (5.5) is just viewed as a formal
power series. More on that in Section 5.3.
• A function from a subset of C to C, mapping x to

∑
n∈N anx

n. More on
that in Section 5.5.

Step 2: translate the given data into statements about A(x). Our next
step is the interpretation of the recurrence relation (43) in terms of (44). Multiplying
both sides of the recurrence relation by xn, and then summing over all n ∈ N (for all
of them the recurrence relation is true) we obtain∑

n≥0

an+1x
n =

∑
n≥0

(2an + 1)xn. (45)

On the left-hand-side of (45) we have∑
n≥0

an+1x
n =

∑
n≥0 an+1x

n+1

x
+
a0x

0

x︸ ︷︷ ︸
=0

=
A(x)

x
.

5.3. FORMAL POWER SERIES 67

To simplify the right-hand-side, recall that (this will be revisited in Section 5.3)

1

1− x
= 1 + x+ x2 + · · · =

∑
n∈N

xn. (46)

It is the result of performing the (infinite) polynomial division

1 : (1− x) = 1 + x+ x2 + · · ·
1 −x

x −x2

x2 −x3

· · ·

Hence, the right-hand-side of (45) can be rewritten as∑
n≥0

2anx
n +

∑
n≥0

xn = 2A(x) +
1

1− x
. (47)

Step 3: obtain a simple expression for A(x) by algebraic manipulations.
If we now put the left-hand side expression and the right hand side expression together
and obtain

A(x)

x
= 2A(x) +

1

1− x
Solving for A(x) we obtain

A(x) =
x

(1− x)(1− 2x)
.

Step 4: read off the coefficients. In general, if B(x) is a power series, then
we write [xn]B(x) for the coefficient of xn. In our case, we have [xn]A(x) = an. The
value of an for a given specific value of n can be computed by performing a polynomial
division for n steps until we know an.

To obtain a formula for an, we first compute the partial fraction decomposition
of A(x). That is, we want to write the fraction x

(1−x)(1−2x) as

P

1− x
+

Q

1− 2x

for appropriate polynomials P and Q. In our case, it is possible to guess P = −x and
Q = 2x (a general method to find P and Q will be revisited in Section 5.3.5):

−x
1− x

+
2x

1− 2x
= x
−(1− 2x) + 2(1− x)

(1− x)(1− 2x)
=

x

(1− x)(1− 2x)
.

We have already seen in (46) that [xn](1
1−x) = 1 for all n ∈ N, and similarly

[xn]
1

1− 2x
= 2n. (48)

Putting these together, we obtain that

an = [xn]A(x) = [xn−1]

(
2

1− 2x
− 1

1− x

)
= 2 · 2n−1 − 1 = 2n − 1.

5.3. Formal Power Series

To introduce formal power series, we need a commutative ring R (such as Z, Q,
R, and C) and a formal variable, x. We first define the ring of formal power series
R[[x]] by defining the elements of R[[x]] and how to add and how to multiply elements
of R[[x]].

68 5. GENERATING FUNCTIONS

5.3.1. Defining power series. We define R[[x]] as the set of infinite sequences
of elements of R, indexed by the natural numbers N (including 0; otherwise, we write
N+). Let (ai)i∈N and (bi)i∈N be two elements of R[[x]]. We define

(ai)i∈N + (bi)i∈N := (ai + bi)i∈N

(ai)i∈N · (bi)i∈N :=

n∑
k=0

(akbn−k)n∈N

It is straightforward to verify that R[[x]] with these operations forms a ring. Clearly,
the multiplicative unit is the identity series 1 := (1, 0, 0, . . .).

The definition of the product is called the Cauchy product of (ai)i∈N and (bi)i∈N,
and it is clearly useful for combinatorial enumeration, for the following reason: often,
in order to construct an object of size n in some class of combinatorial objects C, we
have to take an object of size i from some class A and an object of size n−i from some
other class B and put them together in some unique way (a concrete example of such a
class is given in Section 5.6). So the number of all objects of size n equals

∑n
i=0 aibn−i,

where ai, bi is the number of objects of size i in A and B, respectively. And this sum
is precisely the sum that appears in the definition of the Cauchy product.

We view the set R[x] of polynomials over R with one variable x as a subset
of R[[x]], identifying (a0, a1, . . . , an, 0, 0, . . .) with

∑n
i=0 aix

i. We adopt a similar
notation for the general case: instead of (ai)i∈N we write

∑∞
n=0 anx

n. If A(x) =∑∞
n=0 anx

n ∈ R[[x]] we also write [xn]A(x) instead of an.

Remark 5.3.1. Of course, we can consider formal power series S[[x]] where S
itself is a ring of formal power series, S = R[[y]]. If we iterate this n times with
the formal variables x1, . . . , xn, starting with the ring R, we directly use the obvious
notation R[[x1, . . . , xn]] for the resulting object.

5.3.2. The reciprocal power series. A formal power series B(x) is a reciprocal
of A(x) if A(x)B(x) = 1; that is, B(x) is the multiplicative inverse of A(x) in the
ring R[[x]]. However, we prefer the term ‘reciprocal’ since the ‘inverse power series’
is used for something else in Section 5.3.4. For an example of a power series without
a reciprocal, take R = Z and consider 2 ∈ R[x] ⊆ R[[x]].

Lemma 5.3.2. A series A(x) ∈ R[[x]] has a reciprocal in R[[x]] if and only if
[x0]A(x) is invertible in R. In this case the reciprocal is unique.

Proof. If A(x) =
∑∞
n=0 anx

n has the reciprocal B(x) =
∑∞
n=0 bnx

n ∈ R[[x]],
then

1 = [x0](1) = [x0](A(x) ·B(x)) = a0b0

and hence a0 has the inverse b0 in R. Moreover, from the definition of A(x)B(x) = 1
it follows that for n ≥ 1 we have

∑n
k=0 akbn−k = 0, which implies that

bn = − 1

a0

∑
k≥1

akbn−k (49)

which, by induction, defines b1, b2, . . . uniquely.
Conversely, if a0 has the inverse b0 inR, then we can determine b1, b2, . . . from (49)

and the series B(x) :=
∑
n∈N bnx

n is the reciprocal series for A(x). �

If A(x) has a reciprocal B(x), then we also write A(x)−1 for B(x). An important
special case is the identity

(1− cx)−1 =
∑
n∈N

cnxn (50)

5.3. FORMAL POWER SERIES 69

which we have already encountered in (46) for c = 1 and later for c = 2 in (48). Here,

[xn](1− cx)−1 = −
n∑
i=1

aibn−i (by (49))

= −a1bn−1 (since ai = 0 for i ≥ 2)

= cn (since a1 = −c and inductively bn−1 = cn−1).

It is important to note that for Equation (50) we do not care about convergence issues;
x is just a formal variable, and not a number. On both sides we have a formal power
series, and they are equal.

5.3.3. The derived power series. The derivative of a formal power series
A(x) =

∑
n∈N anx

n is the series

A′(x) :=
∑
n∈N+

nanx
n−1.

The usual rules for the derivative also hold in the formal setting:

(A(x) +B(x))′ = A′(x) +B′(x)

(A(x)B(x))′ = A′(x)B(x) +A(x)B′(x) (Leibniz rule) (51)

Proposition 5.3.3. Let A ∈ R[[x]] be such that A′(x) = 0. Then A(x) = c for
some c ∈ R.

Proof. A′(x) = 0 means precisely that [xn]A′(x) = 0 for all n ∈ N+. �

Recall from Section 3.2.2 that exp(x) was defined as the formal power series∑
n∈N

xn

n!
;

note that this definition makes sense for every ring R.

Proposition 5.3.4. Let A ∈ R[[x]] be such that A′(x) = A(x). Then A(x) =
c exp(x) for some c ∈ R.

Proof. If A′ = A then an := [xn]A = [xn]A′ and hence (n + 1)an+1 = an, for
all n ≥ 0. Therefore, an+1 = an

n+1 , and by induction on n we obtain that an = a0
n! , so

A(x) = a0 exp(x). �

Integration is defined analogously to derivation.

Exercises.

(84) Prove the Leibniz rule (51) for the derivative of products of formal power
series.

5.3.4. Composing power series. Let A(x) =
∑n
k=0 akx

k be a polynomial over
the ring R. As with polynomials B(x) ∈ R[x], we can define the composition of A(x)
with a formal power series B(x) ∈ R[[x]] by

A(B(x)) :=

n∑
k=0

ak(B(x))k.

Example 10. Clearly, A(0) :=
∑n
k=0 ak0k = a0. More generally, we can recover

an as A(n)(0) using the formal derivative from the previous section and composition
with 0 as follows. To denote higher derivatives, we define A(0)(x) := A(x) and for
n ∈ N

A(n+1)(x) := (An(x))′.

70 5. GENERATING FUNCTIONS

It is now easy to check that

an =
A(n)(0)

n!
. (52)

4

Now suppose that A(x) is in R[[x]] instead of R[x]. We would like to use the same
definition, but we need that [x0]B(x) = 0 because then

A(B(x)) =
∑
n∈N

an(B(x))n

can be given formal meaning by defining

[xn]A(B(x)) :=
∑

k∈N,j1,...,jk∈N+,j1+···+jk=n

akbj1 · · · bjk . (53)

We also write (A ◦B)(x) instead of A(B(x)).

Example 11. The expression exp(exp(x)−1) is a well-defined formal power series

since [x0](exp(x)−1) = [x0]
∑
n∈N

xn

n! −1 = 1−1 = 0. On the other hand, exp(exp(x))
is not defined, at least not by the general definition of composition of formal power
series. 4

Remark 5.3.5. So we now have defined composition in two different situations:
polynomials A ∈ K[x] with arbitrary power series B ∈ K[[x], or arbitrary power series
A ∈ K[[x]] with power series B ∈ K[[x]] having constant term 0. We mention that
using the notion of summable power series allows for a common generalisation of the
two situations [36].

Composition of power series is of great use in combinatorial enumeration: often,
an object of size n in a class of combinatorial objects C is obtained in a unique way by
taking a structure with k elements from one class A, and by replacing each element
by an non-empty object Oi from some other class B such that the sizes of O1, . . . , Ok
add up to n. Hence, the number of objects of size n in C equals∑

k∈N,j1,...,jk∈N+,j1+···+jk=n

akbj1 · · · bjk .

As in calculus, we have the chain rule for computing the derivative of the com-
position A(B(x)):

A(B(x))′ = A′(B(x))B′(x). (54)

An inverse of a series A(x), if it exists, is a power series B(x) such that

A(B(x)) = B(A(x)) = x.

Proposition 5.3.6. Let A ∈ R[[x]] be such that [x0]A(x) = 0. Then A(x) has
an inverse if and only if [x1]A(x) has a (multiplicative) inverse in R. In this case the
inverse is unique.

Proof. Suppose that A(x) =
∑
n∈N anx

n has the inverse B(x) =
∑
n∈N bnx

n

in R[[x]]. Let r, s ∈ N be smallest such that ar 6= 0 and bs 6= 0. Then the smallest
n such that [xn]A(B(x)) 6= 0 equals rs, and since A(B(x)) = x we must have that
rs = n = 1, and hence r = s = 1. Moreover, a1b1 = 1, and hence [x1]A(x) = a1 is
invertible. Moreover, b1 ∈ R is uniquely determined. The identity A(B(x)) = x and
(53) implies that

[x2]A(B(x)) = a1b2 + a2b
2
1 = 0

5.3. FORMAL POWER SERIES 71

and hence b2 is uniquely determined in terms of the A(x) and b1. Likewise,

[x3]A(B(x)) = a1b3 + 2a2b1b2 + a3b
3
1 = 0

and hence b3 is uniquely determined in terms of the A(x) and b1, b2. Similarly, by
induction, bn is uniquely determined for all n ∈ N.

Conversely, if a1 has the inverse b1 in R, then we choose b0 = 0 and b2, b3, . . . as
above and then the series B(x) :=

∑
n∈N bnx

n is the inverse series for A(x). �

Note that the proof also shows that if A(B(x)) = x, then this implies that
B(A(x)) = x. If R is a field of characteristic 0 one can use the so-called Lagrange
inversion formula to compute the bi’s explicitly. This will be treated in Section 5.8.2.

Exercises.

(85) Prove the chain rule (54).

5.3.5. The partial fraction decomposition. Quotients p(x)
q(x) of two polyno-

mials p, q ∈ R[x] are called rational functions. A partial fraction decomposition of a
rational function is an expression of the form

p(x)

q(x)
=

k∑
j=1

pj(x)

qj(x)

where q1, . . . , qk are factors of q that have smaller degree than q. In the full decom-
position (formally defined in Theorem 5.3.7) each of the qj is irreducible.

For getting the idea why such a decomposition exists, suppose that q = q1q2 ∈
K[x] for some field K such that q1 and q2 are coprime. By Bézout’s theorem, which
applies since K[x] is a principal ideal domain (German ‘Hauptidealring’), there are
c, d ∈ K[x] such that cq1 + dq2 = 1 (recall that if K is the rational numbers then c
and d can be found efficiently using the extended Euclidean algorithm). Thus,

1

q
=
cq1 + dq2

q1q2
=

c

q2
+

d

q1
.

Hence,
p

q
=
cp

q2
+
dp

q1
.

Following these ideas, one can show the following.

Theorem 5.3.7. Let K be a field and let p, q ∈ K[x]. Write q as a product

of powers of distinct irreducible polynomials, q =
∏k
i=1 q

ni
i . Then there are unique

polynomials b, a1,1, . . . , a1,n1
, . . . , ak,1, . . . , ak,nk

∈ K[x] such that the degree of ai,j is
smaller than the degree of pi and

p

q
= b+

k∑
i=1

ni∑
j=1

ai,j

qji

which is called the full partial fraction decomposition of p
q . If the degree of f is

smaller than the degree of g, then b = 0.

5.3.6. The Fibonacci numbers. We now apply the generating function method
to the Fibonacci numbers (Example 9). The first step is automatic: we turn the
sequence f0, f1, f2, . . . into the generating function

F (x) :=
∑
n∈N

fnx
n.

72 5. GENERATING FUNCTIONS

The second step is to express the recurrence relation

fn+1 = fn + fn−1

in terms of the generating function. Multiplying the left hand side by xn and summing
over n ≥ 1 we obtain (using that f0 = 0 and f1 = 1):∑

n∈N+

fn+1x
n =

∑
n∈N+ fn+1x

n+1

x

=

∑
n≥2 fnx

n + x− x
x

=
F (x)− x

x
.

Doing the same on the right hand side we get (using that f0 = 0)∑
n∈N+

fnx
n +

∑
n∈N+

fn−1x
n = F (x) + x

∑
n∈N+

fn−1x
n−1

= F (x) + x
∑
n∈N

fnx
n

= F (x) + xF (x).

It follows that F (x)−x
x = F (x) + xF (x). In the third step we solve the equation for

F (x), and obtain

F (x) =
x

1− x− x2
.

In the fourth step we try to get a formula for the coefficients of F (x). As in our
initial example in Section 5.2, we compute the partial fraction decomposition of F (x).
First, we factor the denominator: 1− x− x2 has the roots

r± :=
1

2
±
√

1

4
+ 1 = (1±

√
5)/2

and we obtain

(1− r−x)(1− r+x) = 1− (r+ + r−)x+ (r−r+)x2 = 1− x− x2.

To find the partial fraction expansion, we have to find a, b ∈ K[x] such that

x

(1− r−x)(1− r+x)
=

a

1− r−x
+

b

1− r+x
.

To find a, b we rewrite

a

1− r−x
+

b

1− r+x
=

(1− r+x)a+ (1− r−x)b

(1− r+x)(1− r−x)

=
(a+ b− (r−b− r+a)x

(1− r+x)(1− r−x)
;

so we must have a+ b = 0 and r−b− r+a = 1. Substituting the first equation into the
second we obtain r−a− r+(−a) = 1 and hence b = 1

r+−r− and b = −a. Therefore,

x

1− x− x2
=

x

(1− r+x)(1− r−x)
=

ax

1− r+x
+

bx

1− r−x

=
1

r+ − r−

(
1

1− r+x
− 1

1− r−x

)
=

1√
5

(∑
n∈N

rn+x
n −

∑
n∈N

rn−x
n

)
.

Therefore, fn = 1√
5
(rn+ − rn−) as announced earlier in (42).

5.4. REGULAR LANGUAGES 73

5.4. Regular Languages

In this section we study how to compute the number of words of length n in a
given regular language. For example: how many ASCII texts of length 400 are there
that contain the word ‘combinatorics’, but not the word ‘generating function’? The
answer to this question and other questions of this type can be easily computed.

5.4.1. Deterministic finite automata. A deterministic finite automaton (DFA)
A is a 5-tuple

A = (Q,Σ, δ, s, F)

consisting of

• a finite set of states Q;
• a finite set of input symbols called the alphabet Σ;
• a transition function δ : Q× Σ→ Q;
• an initial or start state s ∈ Q;
• a set of accepting states F ⊆ Q.

Let w = (w1, . . . , wn) ∈ Σn be a word (also called string ; see Appendix B) of length
n over the alphabet Σ. Then A accepts w if there exists a sequence of states s =
s0, s1, s2, . . . , sn such that si+1 = δ(si, wi+1) and sn ∈ F .

Example 12. It is easy to specify a finite automaton A that accepts precisely
the ASCII texts that contain the word ‘combinatorics’. It is also easy to specify an
automaton B that accepts precisely the ASCII texts that do not contain the word
‘generating function’. It is a classic fact that for any two finite automata A andB there
exists an automaton A×B (the so-called product automaton) that accepts a word w
precisely when A accepts w and B accepts w. Hence, there exists a finite automaton
that accepts precisely the ASCII texts that contain the word ‘combinatorics’ but that
do not contain the word ‘generating function’. The automaton would be too huge to be
drawn here, so we present the automaton for two shorter words than ‘combinatorics’
and ‘generating function’ in the next example. 4

Example 13. Following the strategy in the previous example, we explicitly con-
struct an automaton that accepts all words that contain the subword ‘abb’, but not
the subword ‘aa’; see Figure 5.1. 4

In this section we study the question: how many words of length n are accepted
by a finite automaton A? Let us write an for this number. We first describe how to
translate A into a so-called regular expression.

5.4.2. Regular expressions. A regular expression (over the alphabet Σ) is an
expression that is defined inductively:

(1) ∅, ε, and all symbols from Σ are regular expressions.
(2) if e is a regular expression, then so is e∗ (the Kleene star);
(3) if e1, e2 are regular expressions, then so are e1e2 (concatenation) and e1∪ e2

(alternation).

A regular expression e over the alphabet Σ describes a formal language L(e) ⊆ Σ∗:

(1) L(∅) = ∅ (the empty language).
(2) L(ε) = {ε} (the language that just contains the empty word).
(3) L(s) = {s} for any s ∈ Σ.
(4) L(e∗) := {w1 . . . wn | w1, . . . , wn ∈ L(e), n ∈ N}.
(5) L(e1e2) := {w1w2 | w1 ∈ L(e1), w2 ∈ L(e2)}.
(6) L(e1 ∪ ee) := L(e1) ∪ L(e2).

74 5. GENERATING FUNCTIONS

a b b a,b
a

b

a

b a

a

a,b

b

s

s

s

a

b

b
b

a

b

a

a

a,b

b

a

b

ba

a

Figure 5.1. An illustration of the construction of an automaton
accepting all words that contain ‘abb’, but not the subword ‘aa’.
Edges from states that can never be reached from the start vertex
are not drawn since they don’t matter anyway.

We also write Ln(e) instead of L(e)∩Σn. In general, a regular expression e might
be ambiguous in the sense the same word w ∈ L(e) can be derived in many different
ways. For instance, if e = (a∪ aa)∗ then the word aaaa ∈ L(e) can be ‘parsed’ in five
different ways, indicated by the brackets as follows:

aaaa, aa(aa), (aa)aa, a(aa)a, (aa)(aa)

If every word in L(e) has exactly one parse with respect to e, then we say that e is
an unambiguous regular expression. For example, e = (ab ∪ abb)∗ is unambiguous.
Ambiguity for regular expressions can be defined formally by induction as follows1:

(1) ∅, ε, and all symbols in Σ are unambiguous.
(2) if e1 and e2 are unambiguous, and |Ln(e1 ∪ e2)| = |Ln(e1)|+ |Ln(e2)| for all

n ∈ N, then e1 ∪ e2 is unambiguous.
(3) if e1 and e2 are unambiguous, and |Ln(e1e2)| =

∑n−1
k=1 |Lk(e1)| · |Ln−k(e2)|,

then e1 ∪ e2 is unambiguous.
(4) if e is unambiguous, and |Ln(e∗)| = 1+ |Lk1(e)|+ |Lk2(ee)|+ |Lk3(eee)|+ · · ·

such that k1 + k2 + · · · = n, then e∗ is unambiguous.

Proposition 5.4.1. For every deterministic finite automaton A there exists an
unambiguous regular expression e such that w ∈ L(e) if and only if A accepts w.

Proof. Let {1, . . . , n} be the state space of A. We define an unambiguous regular
expression R(i, j, k) describing all words w that take state i to state j while using
intermediate states 1 to k only:

• R(i, j, 0) is x1∪x2∪. . . where x1, x2, . . . are the symbols x such that δ(i, x) =
j. Clearly, this expression is unambiguous.
• R(i, i, 0) is defined similarly but including ε in the union.
• for k > 0 we define R(i, j, k) to be

R(i, j, k − 1) +R(i, k, k − 1)R(k, k, k − 1)∗R(k, j, k − 1).

1Thanks to Florian Starke for pointing this out.

5.4. REGULAR LANGUAGES 75

That is, any string that takes state i to state j using intermediate states up
to k either goes from i to j without going through k, or can be divide into
a word that goes from i to k, a word that goes from k back to itself, and
then a word that goes from k to j. Again, it is easy to see that R(i, j, k) is
an unambiguous regular expression.

The entire language accepted by A can then be described as
⋃
i∈F R(1, i, n), which

is again an unambiguous regular expression since any word w accepted by the deter-
ministic automaton there is exactly one i such that w ∈ L(R(1, i, n)). �

We mention that conversely, it holds that for every regular expression e there
exists a DFA that accepts precisely the words in L(e) (unfortunately, in general the
size of the DFA might be exponentially large). It follows that for every regular
expression there exists an unambiguous regular expression that describes the same
language.

5.4.3. The generating function of a regular language. Coming back to
our original task, namely the task of finding a formula for the sequence (ai)i∈N, we
describe how to translate an unambiguous regular expression e into a generating
function Ae(x).

(1) A∅(x) := 0.
(2) Aε(x) = 1.
(3) If s ∈ Σ then As(x) := x.
(4) Ae1∪e2(x) := Ae1(x) +Ae2(x).
(5) Ae1e2(x) := Ae1(x) ·Ae2(x).
(6) if e = e∗ then Ae∗(x) := 1

1−Ae
.

Lemma 5.4.2. Let e be an unambiguous regular expression. Then

Ae(x) =
∑
n∈N
|Ln(e)|xn.

Proof. The proof is more or less obvious from the definition of unambiguity.
The most interesting translation step is perhaps item (6). To see that this is correct,
recall that 1

1−x = 1 +x+x2 +x3 + · · · . Moreover, using composition of formal power

series, we get 1
1−Ae(x) = 1 + Ae(x) + Ae(x)2 + Ae(x)3 + · · · . Since Ae(x)k is the

generating function for words composed of k words in e, unambiguity gives us that
[xn] 1

1−Ae(x) = |Ln(e∗)|. �

Example 14. Let e = (a∗b)∗. Then we have

Ae =
1

1−Aa∗b(x)
=

1

1− x
1−x

=
1− x
1− 2x

=
1

2
+

1

2(1− 2x)

and hence an = 1 if n = 0 and an = 2n−1 for n > 0. 4

In general, to obtain an explicit formula for an we can compute the partial fraction
expansion (see Section 5.3.5).

Example 15. Let e = (aa|bb)∗. Then we have

Ae =
1

1−Aaa|bb(x)
=

1

1− 2x2
.

The polynomial 1−2x2 can be factored as (1−
√

2x)(1 +
√

2x). For a partial fraction
expansion, we are looking for a, b such that

(1 +
√

2x)a+ (1−
√

2x)b = 1

76 5. GENERATING FUNCTIONS

and thus a+ b = 1 and a− b = 0. Therefore, a = b = 1/2. We then have

Ae =
1

2

(
1

1−
√

2x
+

1

1 +
√

2x

)
and hence

[xn]Ae =
1

2

(√
2
n
−
√

2
n
)

=

{
2n/2 for even n

0 for odd n.
4

Remark 5.4.3. It is straightforward to adapt Lemma 5.4.2 to obtain a generat-
ing function in several variables (also see Remark 5.3.1) that takes into account the
number of a’s, b’s, etc. in the word.

5.5. Analytic Combinatorics

For certain values of x ∈ C a given power series A(x) =
∑
n∈N anx

n (say, with
coefficients ai in Z, Q, R, or even C) might converge; the set of all x ∈ C where A(x)
converges might tell us a lot about the asymptotic growth of the an. We recommend
the following video for motivation of the use of complex numbers in combinatorics

https://www.youtube.com/watch?v=bOXCLR3Wric.

Some of the necessary concepts from calculus are introduced in Appendix A.

5.5.1. From formal power series to functions: convergence.

Definition 5.5.1. Let A(x) =
∑
n∈N anx

n ∈ C[[x]] and let z ∈ C. We say that

• A(z) converges if the limit limn→∞
∑n
i=0 aiz

i ∈ C exists; in this case, we
also use the notation

∑
n∈N aiz

i for the limit;
• A(z) diverges, otherwise;
• A(z) converges absolutely if limn→∞

∑n
i=0 |ai|zi ∈ C exists.

Hence, if S ⊆ C is such that A(z) converges for all z ∈ S, then A(x) defines
a function S → C mapping z ∈ S to A(z). Absolute convergence is important for
the study of infinite series because it occurs often but behaves nicely; in particular,
rearrangements do not change the value of the limit. This is not true for convergent
series in general:∑

n∈N

(−1)n

n+ 1
= 1− 1

2 + 1
3 −

1
4 + 1

5 −
1
6 + · · · = ln 2 (see (61) below)

which is smaller than 1. However, the rearrangement2

1 + (− 1
2 + 1

3 + 1
5) + (− 1

4 + 1
7 + 1

9) + (− 1
6 + 1

11 + 1
13) + · · ·

is larger than 1 since each of the three-term sums is positive.
We say that a series

∑
n∈N an is unconditionally convergent if all rearrangements

of the series converge to the same value, i.e., for every permutation π : N→ N we have
that

∑
n∈N aπ(n) converges. Since the topology of C is complete, absolute convergence

implies unconditional convergence. In fact, we even have equivalence, by the Riemann
rearrangement theorem, but we do not need this in the further course. However, what
is heavily used is the following.

Lemma 5.5.2 (Weierstrass). Any absolutely convergent series
∑
n∈N an = a in C

is unconditionally convergent.

2The recipe to form the triples is: enumerate the even numbers and the odd numbers in parallel;

the first entry of the triple is − 1
n

for the next even number, and the second and third entries of a

triple are 1
m

and 1
m+2

for the next two odd numbers m and m+ 2. Clearly, this gives a bijection to

the terms in (61).

5.5. ANALYTIC COMBINATORICS 77

Proof. Let π : N→ N be a permutation and let ε > 0. By the absolute conver-
gence of

∑
n∈N an we can find a k ∈ N such that

∑∞
n=k |an| < ε. Let m ∈ N be such

that {a0, . . . , ak−1} ⊆ {aπ(1), . . . , aπ(m)}. Then for all ` ≥ m we have∣∣∣∣∣−∑̀
n=0

aπ(n) +
∑
n∈N

an

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
n=k

an

∣∣∣∣∣ (*)

≤
∞∑
n=k

|an| (triangle inequality)

≤ ε (by the choice of k).

To see why the inequality in line (∗) holds, observe that the terms a0, . . . , ak−1 appear

in both
∑`
n=0 aπ(n) and

∑
n∈N an and thus get cancelled (some more terms might get

cancelled so we might not have equality). �

We recall one of the basic divergence and convergence tests.

Lemma 5.5.3 ((d’Alembert’s) ratio test). Let (an)n∈N be a sequence of real num-
bers and let

` := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then

∑
n∈N an converges absolutely if ` < 1, and diverges if ` > 1.

Proof. Suppose that ` < 1. Let r := `+1
2 . Then ` < r < 1 and there exists an

m ∈ N such that |an+1| < r|an| for every n ≥ m. We conclude∑
i∈N
|ai+m| <

∑
i∈N

ri|am| = |am|
∑
i∈N

ri = |am|
1

1− r
<∞.

Now suppose that ` > 1. Then there exists an m ∈ N so that |an+1| > |an| for all
n ≥ m, and hence the series diverges by the term test. �

Example 16. The ratio test implies that exp(x) =
∑
n∈N

1
n!x

n converges abso-
lutely for all z ∈ C, because

lim
n→∞

∣∣∣∣ n!zn+1

(n+ 1)!zn

∣∣∣∣ = limn→∞

∣∣∣∣ z

n+ 1

∣∣∣∣ = 0 < 1. 4

Theorem 5.5.4 (Cauchy-Hadamard). Let A(x) ∈ C[[x]]. Then there exists a
non-negative number r ∈ R ∪ {+∞}, called the radius of convergence, such that the
series A(z) converges for all z ∈ C with |z| < r and diverges for all z ∈ C with |z| > r.
Moreover,

lim sup
n→∞

|an|1/n =
1

r

where 1
+∞ is meant to be 0 and 1

0 is meant to be +∞. In particular, an ∈ O
(
(1/r)n

)
.

Proof. Let z ∈ C and

r :=
1

lim supn→∞ |an|1/n
.

First suppose that |z| < r. We have to show that A(z) converges. Pick ε > 0 such
that

|z| < r

1 + εr
which is the case if and only if

α := |z| · (1/r + ε) < 1.

78 5. GENERATING FUNCTIONS

Since lim supn→∞ |an|1/n = 1/r there exists an n ∈ N such that for all m > n

|am|1/m < 1/r + ε.

Hence,

|am| · |z|m <
(
|z| · (1/r + ε)

)m
= αm.

We have that
∑
m∈N α

m converges absolutely by the ratio test (Lemma 5.5.3), and
hence A(z) =

∑
n∈N anz

n converges absolutely, too.
Now suppose that |z| > r. We will show that anz

n for n→∞ does not converge
to 0, which implies in particular that

∑
n∈N anz

n diverges. Choose ε > 0 such that

θ := |z/r − εz| > 1. Since lim supn→∞ |an|1/r = 1
r there exists an n such that for all

m ≥ n

|am|1/m >
1

r
− ε.

Hence,

|amzm| >
∣∣∣∣(1

r
− ε
)
z

∣∣∣∣m = θm

which tends to ∞ for m → ∞ since θ > 0. The cases where r ∈ {0,∞} are similar
and left to the reader. �

Theorem 5.5.4 shows how to obtain some asymptotic information about an from
the radius of convergence of the corresponding series A(x). Much more detailed
information can be obtained via a method called singularity analysis which is beyond
the scope of this lecture. An introduction to this technique can be found in [16] and
Sections 5.7.5 and 5.7.6 give illustrations of what can be shown with it.

Example 17. The formal power series
∑
n∈N n!xn ∈ Z[[x]] diverges for every

x ∈ C \ {0}, and hence its radius of convergence is 0. Hence, Theorem 5.5.4 does
not provide any interesting bound for the growth of the coefficients. An approach to
analyse sequences that have such a fast growth will be presented in Section 5.7. 4

For r ∈ R+ we write Dr for the set {x ∈ C : |x| < r}, the open disc centered at 0.

Definition 5.5.5. Let A ∈ C[[x]] be a formal power series with radius of conver-
gence r ∈ R+. Then fA : Dr → C defined by z 7→ A(z) is called the function described
by A.

Recall that absolute convergence implies unconditional convergence (Lemma 5.5.2),
so we can rearrange the order of summation in the proof of the following proposition.

Proposition 5.5.6. Let A,B ∈ C[[x]] be power series with convergence radius
r ∈ R+ and s ∈ R+, respectively; suppose that r ≤ s. Then

(1) A(x)+B(x) has convergence radius at least r and describes the function fA+
fB;

(2) A(x)·B(x) has convergence radius at least r and describes the function fAfB.

Proof. Concerning (1), let z ∈ Dr, and compute:

fA(z)fB(z) =
∑
k∈N

akz
` +

∑
`∈N

b`z
` (absolute convergence)

=
∑
n∈N

(an + bn)zn (Lemma 5.5.2))

= fA+B(z) (by the definition of A+B).

5.5. ANALYTIC COMBINATORICS 79

Concerning (2), let z ∈ Dr, and compute:

fA(z)fB(z) = fA(z)
∑
`∈N

b`z
`

=
∑
`∈N

fA(z)b`z
`

=
∑
`∈N

∑
k∈N

akb`z
k` (have absolute convergence)

=
∑
n∈N

(∑
k+l=n

akb`

)
zn (Lemma 5.5.2))

= fA·B(z) (by the definition of A ·B). �

We finally also treat composition of power series analytically. Not surprisingly,
composition of functions matches the definition of composition of formal power series
in the following sense.

Proposition 5.5.7. Let A,B ∈ C[[x]] be power series with convergence radius
r ∈ R+ and s ∈ R+, respectively; suppose that r ≤ s. If [x0]B(x) = 0 so that A(B(x))
is defined, then A(B(x)) has a positive radius of convergence t ≤ r and describes the
function fA ◦ fB : Dt → C.

Proof. Let S := {z ∈ Ds | B(z) ∈ Dr}. Note that this set is non-empty since
0 ∈ S. Since fB is continuous by Lemma 5.5.8, we have that S is the intersection
of the open set Ds with the open pre-image of Dr under fB , and hence open, and
therefore contains Dt for some t ∈ R+. Let z ∈ Dt. Then

fA(fB(z))

=
∑
n∈N

an

(∑
k∈N

bkz
k

)n
(have absolute convergence)

=
∑
n∈N

an
∑

k∈N,m1,...,mk∈N
+,

m1+···+mk=n

|bm1
· · · bmk

|zn (use Prop. 5.5.6 (2) several times)

= fA(B(x))(z) (by definition of A(B(x))). �

A function f : Dr → C is called holomorphic if f is (complex-) differentiable at
every point z ∈ Dr, i.e.,

f ′(z) := lim
a→z

f(a)− f(z)

a− z
exists (by purpose, we use the same notation as for the formal derivative in (5.3.3)).
The next lemma shows that if A ∈ K[[x]] has a positive radius of convergence r ∈ R+,
then the function fA : Dr → C is holomorphic (and in particular continuous). The
derivative f ′A is given by the formal derivative A′; in other words, the derivative can
be computed ‘term by term’. The proof here is slightly more difficult than the easy
facts from Proposition 5.5.6.

Lemma 5.5.8. Suppose that A =
∑
n∈N anx

n ∈ C[[x]] has convergence radius r ∈
R and let fA : Dr → C be given by z 7→ A(z). Then A′(x) has radius of convergence
r and describes f ′A.

Proof. To prove that A′(z) converges for z ∈ Dr, pick s ∈ R such that

|z| < s < r.

80 5. GENERATING FUNCTIONS

Since A(s) converges, the terms |ansn| are bounded above, say by b. Then

n|an|zn = n|ansn|(z/s)n ≤ nb(z/s)n.

The series
∑
n∈N nb(z/s)

n converges absolutely by the ratio test. Therefore, by the

comparison test, the series A′(z) =
∑
n∈N+ n|an|zn−1 converges absolutely. It follows

that A′(x) has the same radius of convergence as A(x).

To prove that f ′A(z) = A′(z) we use the identity

(p− q)(pn−1 + pn−2q + · · ·+ pqn−2 + qn−1) = pn − pn−1q + pn−1q − · · ·+ qn

= pn − qn (55)

to compute

f ′A(z) = lim
a→z

f(a)− f(z)

a− z
= lim
a→z

∑
n∈N

an(an − zn)

a− z

= lim
a→z

∑
n∈N

an(an−1 + an−2z + · · ·+ azn−2 + zn−1) (56)

This already looks quite close to
∑
n∈N annz

n−1, but in general we cannot just ex-
change the order of a limit and an infinite sum. So we choose the following approach:
it suffices to prove that

lim
a→z

fA(a)− fA(z)

a− z
− fA′(z) = 0 (57)

the advantage being that the left hand side can be broken into three parts that can

be analysed separately. Write Sk(x) for the polynomial
∑k
n=1 anx

n and Ek(x) for
the series

∑∞
n=k+1 anx

n so that A(x) = Sk(x) + Ek(x) (and we think of Sk(x) as an
approximation to A(x) and the Ek(x) as the error we make with the approximation).
The expression in (57) can now be rewritten:

Ek(a)− Ek(z)

a− z
+

(
Sk(a)− Sk(z)

a− z
− S′k(z)

)
+ (S′k(z)− fA′(z)). (58)

To show that this term goes to 0 as a tends to z, let ε > 0 be given. The first term in
(58) can be analysed as above: since |z| < s and a → ∞ the triangle inequality will
give us eventually∣∣∣∣Ek(a)− Ek(z)

a− z

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=k+1

an(an−1 + an−2z + · · ·+ zn−1)

∣∣∣∣∣ ≤
∞∑

n=k+1

|an|nsn−1. (59)

Note that this is just the tail A′(s) which converges (Lemma A.1.4), so this term must
approach 0 for k → ∞. That is, we can find a k1 ∈ N and a δ1 > 0 such that for all
k > k1 and for all a such that |a− z| < δ1 we have that (59) ≤ ε/3.

The other two terms are even easier to bound: Sk(x) is a polynomial, so

lim
a→z

Sk(a)− Sk(z)

a− z
− S′k(z) = 0.

In other words, we can find a δ2 > 0 such that for all a with |a− z| < δ2 the second
term is smaller than ε/3.

For the third term, we know that S′k(z) → fA′(z) as k → ∞ because A′(z)
converges absolutely for |z| < r and S′k(z) is just the k-th partial sum of this power
series. Hence, we can find a k3 ∈ N and a δ3 > 0 such that for all k > k3 and a with
|a − z| < δ3 we have S′k(z) − fA′(z) < ε/3. Now select any k0 > max(k1, k3) and
δ := min(δ1, δ2, δ3) and the triangle inequality gives us that the expression in (58) is
smaller than ε, which is what we wanted to show. �

5.5. ANALYTIC COMBINATORICS 81

Remark 5.5.9. A posteriori, the deeper reason why the limit and the infinite sum
in (56) can be exchanged is that the polynomials Sk(x) converge uniformly against
A(x) within Ds; we do not further elaborate on this, but refer to more advanced
calculus classes.

5.5.2. From functions to power series: Taylor expansion. The correspon-
dence between power series and functions is a two-way correspondence; when we talk
about generating functions, we always have this double perspective in mind. The
following definition is the central notion to produce a power series from a function.

Definition 5.5.10. Let f be a real-valued or complex-valued function that is
infinitely differentiable at a real or complex number a. Then the Taylor expansion of
f at a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n.

In the following we work mostly in a setting where the correspondence between
functions and power series is simplest to describe, namely for functions over the
complex numbers. One of the major theorems in complex analysis says that every
holomorphic function f is analytic, i.e., can be expressed as a converging power series
(with a positive radius of convergence). We do not need this result in this course
(since in analytic combinatorics we start with the power series and analyse it using
holomorphic functions, not the other way round) but we want to mention the theorem
here to give the full picture.

Theorem 5.5.11. Let r ∈ R+ and let f : Dr → C be a holomorphic function.
Then for all z ∈ Dr

f(z) =
∑
n∈N

f (n)(0)

n!
zn

that is, f(z) equals the Taylor series of f at 0 evaluated at z.

Proof. This is outside the scope of this course, and publicity for the complex
analysis courses offered at TU Dresden . . . �

Why do we need to work over the complex numbers? Well, a naive variant of the
statement for the real numbers is simply wrong, as the following example shows.

Example 18. There are non-constant functions f : R → R that are infinitely
often differentiable at each z ∈ D1, but their Taylor expansion at 0 is the series that
is identically 0. Namely, we consider the function given by

z 7→

{
0 if z = 0

e−
1
z2 otherwise.

Note that if we consider the function defined by the same expression over the complex

numbers instead, then by choosing a ∈ R+ sufficiently small the value of f(ai) = e
1
a2

can be made arbitrarily large, and hence lima→0
f(ai)−f(0)

ai−0 does not exist. Therefore,
f : C→ C is not holomorphic. 4

Lemma 5.5.12 below implies that, informally, when we start from a formal power
series A(x) with positive radius of convergence r and turn it into a function fA : Dr →
C, then the Taylor expansion of fA gives back A(x).

82 5. GENERATING FUNCTIONS

Lemma 5.5.12. Let A(x) =
∑
n∈N anx

n ∈ C[[x]] be a formal power series with a
positive radius of convergence r ∈ R+ ∪ {+∞}. Then the function fA : Dr → C given
by z 7→ A(z) is holomorphic, and

an =
f

(n)
A (0)

n!
. (60)

Proof.

an =
A(n)(0)

n!
(see (52))

=
f

(n)
A (0)

n!
(Lemma 5.5.8)

and hence A is the Taylor expansion of fA at 0. �

Corollary 5.5.13. Let r ∈ R+, let f, g : Dr → C be holomorphic, and let A,B ∈
C[[x]] be the Taylor expansions of f and g at 0. Then

(1) f + g is holomorphic and has the Taylor expansion A(x) +B(x) at 0.
(2) fg is holomorphic and has the Taylor expansion A(x) ·B(x) at 0.
(3) If g(0) = 0, then f ◦ g is holomorphic with Taylor expansion A(B(x)) at 0.

Proof. The first fact can easily be proven directly: it is easy to verify that f +g
is holomorphic, and by Theorem 5.5.11 it equals its Taylor expansion at 0, which is∑

n∈N

(f + g)(n)(0)

n!
xn =

∑
n∈N

f (n)(0) + g(n)(0)

n!
xn = A(x) +B(x).

Here is an alternative argument: we have f + g = fA + fB = fA+B by Proposi-
tion 5.5.6, and this function is holomorphic and has the Taylor expansion A(x)+B(x)
by Lemma 5.5.8. The advantage of this argument is that the second statement can
be shown in complete analogy (while it seems more tedious to me to determine the
Taylor expansion of f · g). Also the third statement can be shown in the same way:
we have f ◦ g = fA ◦ fB = fA◦B by Proposition 5.5.7, which is holomorphic with
Taylor expansion A(B(x)) by Lemma 5.5.8. �

We will illustrate the use of the correspondence between power series and real-
valued functions by Newton’s theorem (Theorem 5.5.16 below). The following fact
about polynomials is well-known to the reader.

Theorem 5.5.14 (Binomial theorem). Let z ∈ N and x ∈ C (or any other field
instead of C). Then

(1 + x)z =

z∑
k=0

(
z

k

)
xk .

We would like to generalise the binomial theorem to the situation where the
exponent z is a real number. Note that for n ∈ N the expression (1 + x)n is a well-
defined formal power series (even a polynomial), but for non-integer z we have not
defined (1 +x)z as a formal power series. However, x 7→ (1 +x)z is certainly for every
z ∈ R a well-defined function from D1 → C.

We recall the definition of bz for b, z ∈ C, b > 0 for the reader:

• For z = −n with n ∈ N, we define bz := (bn)−1.

• For z = p
q we define bz :=

(
b

1
q

)p
where b

1
q is the unique real r such that

rq = b.

5.5. ANALYTIC COMBINATORICS 83

• For z ∈ R and positive b, we choose an arbitrary sequence e1, e2, . . . of
rational numbers with limn en = z, and define

bz := lim
n→∞

ben .

We also generalise the binomial coefficients.

Definition 5.5.15. Let z be a real (or complex) number, and k ∈ N. Define(
z

k

)
:=

z(z − 1)(z − 2) · · · (z − k + 1)

k!
.

In particular,
(
r
0

)
= 1.

Theorem 5.5.16 (Newton). Let x ∈ C with |x| < 1 and z ∈ R. Then

(1 + x)z =
∑
n∈N

(
z

n

)
xn .

Proof. The function f : C→ C given by x 7→ (1 +x)z is holomorphic, and from
calculus courses you know that the derivative is z(1+x)z−1 (the proof for holomorphic
functions is analogous to the corresponding proof for real-valued functions). The n-th
derivative of f is

z(z − 1)(z − 2) · · · (z − n+ 1)(1 + x)z−n.

Hence, the Taylor expansion of f at 0 is∑
n∈N

f (n)(0)

n!
xn =

∑
n∈N

(
z

n

)
xn.

The statement now follows from Theorem 5.5.11. �

Example 19. The Taylor expansion of
√

1− x is∑
n∈N

(
1/2

n

)
(−x)n = 1− 1

2
x− 1

8
x2 − · · · 4

The natural logarithm is the function ln: R+ → R which maps x > 0 to the
unique element y ∈ R such that ey = x. Applying the chain rule from calculus to
ln(ey) = y gives ln′(ey)ey = 1, and substituting ey by x gives ln′(x) = 1

x .
The function (−1, 1)→ R : x 7→ ln(1 +x) is infinitely often differentiable in 0 and

we can compute its Taylor expansion: we have

ln(1 + x)′ =
1

1 + x
=
∑
n∈N

(−1)nxn

and ln(1 + x)(n)(0) = (−1)n−1(n− 1)! for n ≥ 1

and therefore the Taylor expansion of ln(1 + x) at 0 is

ln(1 + x) =
∑
n∈N

ln(1 + x)(n)(0)

n!
xn =

∑
n∈N+

(−1)n−1

n
xn (61)

= x− x2

2
+
x3

3
− · · ·

This series converges for all z ∈ C with |z| < 1 and diverges for z = −1, so it has radius
of convergence 1. The function from Dr → C described by the series is holomorphic
(Lemma 5.5.12) and extends the function ln(1 + x) : (−1, 1)→ R.

We will now show that exponentiation and logarithm are also inverses of each
other as formal power series. First, note that the composition exp(ln(1 + x)) is well-
defined as a formal power series since [x0] ln(1 + x) = 0.

84 5. GENERATING FUNCTIONS

Proposition 5.5.17. exp(ln(1 + x)) = 1 + x.

Proof sketch. We use the chain rule (54) to compute the derivative of the
left-hand side of the equation:

exp(ln(1 + x))′ = exp(ln(1 + x)) · 1

1 + x
.

So exp(ln(1 + x)) is a solution for H in the differential equation

H ′ =
H

1 + x

with the initial condition H(0) = exp(ln(1)) = 1. Clearly, H(x) = 1 + x is a solution
to the same differential equation. There is a formal version of the Picard-Lindelöf (aka
Cauchy-Lipschitz) theorem which asserts the uniqueness of solutions to such ordinary
differential equations, and we conclude that exp(ln(1 + x)) = 1 + x. �

How about the converse, i.e., inverting exp(x) with the help of a logarithm? Note
that we have not defined ln(x) as a formal power series, but we may define ln(exp(x))
as the composition ln(exp(x)) := ln(1 + (exp(x)− 1)) which is well-defined.

Proposition 5.5.18. log(exp(x)) = ln(1 + (exp(x)− 1)) = x.

Proof. We proceed similarly as in Corollary 5.5.17.

ln(1 + (exp(x)− 1))′ = ln′(1 + (exp(x)− 1))(exp(x) + 1)′ (by the chain rule (54))

=
exp′(x)

exp(x)
= 1

So log(exp(x)) is a solution to the ordinary differential equation H(x)′ = 1 with the
initial condition H(0) = ln(exp(0)) = ln(1) = 0. The obvious unique solution to this
differential equation is H(x) = x and so we must have ln(exp(x)) = x. �

5.6. The Catalan Numbers

A binary tree is defined recursively:

• the empty set is a binary tree, and
• if B1 and B2 are binary trees, then (B1, B2) is a binary tree.

Let B be a binary tree. Then the size |B| of B is also defined recursively: the binary
tree ∅ has size 0, and (B1, B2) has size |B1| + |B2| + 1. We can associate in the
obvious way to each binary tree B a tree in the sense of graph theory (Section 1.4):
if B has size n, then this tree has 2n+ 1 vertices, and each vertex has either degree 1,
2, or 3. Instead of formally defining the translation, we simply illustrate this simple
connection by a picture in Figure 5.2.

There is at most one vertex which can have degree two, and this vertex is called
the root of the tree. Such a degree-2 vertex does not exist precisely if the tree has only
one vertex, and in this special case the root is defined to be this vertex. Conversely,
every rooted tree with the properties above can be naturally associated to a binary
tree.

5.6.1. A recursion formula. Directly from the definition of binary trees we
obtain a formula for the number c(n) of all binary trees of size n ∈ N:

c(0) = 1 (62)

c(n+ 1) =

n∑
i=0

c(i)c(n− i) (63)

5.6. THE CATALAN NUMBERS 85

∅ ∅∅ ∅

(∅,∅) (∅,∅)

((∅,∅),(∅,∅))∅

(∅,((∅,∅),(∅,∅)))

Figure 5.2. A binary tree and the corresponding rooted tree.

In this way, the values of c(n) can be computed relatively quickly. We show the
values for n ∈ {0, . . . , 9}.

n 0 1 2 3 4 5 6 7 8 9
c(n) 1 1 2 5 14 42 132 429 1430 4862

These initial terms suffice to match our sequence with sequence A000108 in the
Online Encyclopedia of Integer Sequences, the so-called Catalan Numbers.

5.6.2. Generating trees uniformly at random. The recursion formula (69)
can be used to generate a binary tree of a given size n uniformly at random, that
is, every binary tree of size n should be generated with equal probability. Random
generation of combinatorial objects have several applications. For example, you might
empirically test a conjecture concerning typical properties of binary trees (such as the
depth of the tree, etc), by generating many of those objects for large n and verify the
property of interest.

To generate a binary tree of size n uniformly at random, we follow the recursive
definition of binary trees:

• if we have to generate a binary tree of size 0, this tree must be the binary
tree ∅, and there is no randomness involved: we simply output ∅.
• If we have to generate a binary tree of size n ≥ 1, then this tree must have

the shape (B1, B2). We want to first generate B1 and B2 recursively. To do
this, we have to make a decision: what should be the size i of B1? The size
of B2 is fixed by this decision: it must be n− i− 1.

There are exactly cicn−i binary trees (B1, B2) of size n + 1 where |B1| = i, for
i ∈ {0, . . . , n}. The fraction of binary trees within the set of all binary trees of size
n+ 1 is therefore exactly

p :=
cicn−i
cn+1

.

Our algorithm chooses this particular i with probability p (this is a primitive opera-
tion in most programming languages). Since the Catalan numbers can be computed
efficiently, the value of p can be computed efficiently as well. To summarise, we

86 5. GENERATING FUNCTIONS

Procedure BTree.
Input: n ∈ N.
Output: a binary tree of size n uniformly at random.
If n = 0 return ∅ aus.
If n > 0, compute c1, . . . , cn.
Choose an integer from {1, . . . , cn} uniformly at random.
Set b := 0.
Loop over i = 0 to n− 1:

If p ∈ {b, . . . , b+ cicn−i−1}
Return (BTree(i),BTree(n− i− 1)).

b := b+ cicn−i−1.

Figure 5.3. Generation of a binary tree of size n, drawn uniformly
at random, with the recursive method.

show in Figure 5.3 the entire algorithm in pseudocode. This method works for many
combinatorial classes, and is called the recursive method.

5.6.3. A closed expression. An even faster method to compute the values of
cn is the following theorem.

Theorem 5.6.1 (Euler 1751). For all n ∈ N

cn =
1

n+ 1

(
2n

n

)
.

Theorem 5.6.1 can be proved by specifying an appropriate bijection (between
certain words) and binary trees; see [17]. This bijection is also the key to more
efficient methods to generate binary trees uniformly at random. Here we will present
a different, algebraic proof (historically the first) of Theorem 5.6.1.

Proof of Theorem 5.6.1. Step 1. We consider the power series

C(x) :=

∞∑
n=0

cnx
n.

Step 2. Multiplying the left hand side of (69) by xn and summing over all n ∈ N
we obtain∑

n∈N
cn+1x

n =

∑
n∈N cn+1x

n+1 + 1− 1

x
=

∑
n∈N cnx

n − 1

x
=
C(x)− 1

x

Doing the same with the right hand side of (69) yields

∞∑
n=0

n∑
i=0

cicn−ix
n = C(x)2

by the very definition of the Cauchy product C(x)2 = C(x)C(x). Hence,

C(x)− 1

x
= C(x)2

and reformulating we obtain

xC(x)2 − C(x) + 1 = 0 (64)

5.6. THE CATALAN NUMBERS 87

Step 3. We can now solve for C(x):

C(x) =
1±
√

1− 4x

2x
. (65)

If x tends to 0, then C(x) tends to 1, but the expression 1+
√

1−4x
2x tends to infinity.

So we choose the solution
1−
√

1− 4x

2x
.

This is already sufficient to determine the asymptotic growth of the sequence (cn)n∈N:
C(x) converges for |x| < 1

4 and diverges for x = 1
4 , so Theorem 5.5.4 implies that

cn ∈ O(4n).

Step 4. The obtain a precise formula for cn, we continue as follows.

C(x) =
1−
√

1− 4x

2x

=
1

2x
− 1

2x
(1− 4x)1/2

)
(rewriting)

=
1

2x
− 1

2x

∑
n∈N

(
1/2

n

)
(−4x)n (Newton, Theorem 5.5.16)

=
1

2x
+
∑
n∈N+

(
1/2

n

)
(−4)n

−2
xn−1 +

(
1/2

0

)
(−4)0

−2
x−1 (rewriting)

=
∑
n∈N

(
1/2

n+ 1

)
(−4)n+1

−2
xn (simplifying, index change).

We now read off the coefficients and obtain that

cn =

(
1/2

n+ 1

)
(−4)n+1

−2

=
1
2 (1

2 − 1)(1
2 − 2) · · · (1

2 − n)

(n+ 1)!
· (−4)n+1

−2
(Definition 5.5.15)

=
(2 · 1− 1) · (2 · 2− 1) · · · (2(n− 1)− 1) · (2n− 1)

(n+ 1)!
· 2n+1

2
(rewriting)

=
1

n+ 1

(2n− 1) · (2n− 3) · · · 3 · 1
n!

· 2n (rewriting)

=
1

n+ 1

2n(2n− 1)(2n− 2) · · · 3 · 2 · 1
n!n!

(rewriting)

=
1

n+ 1

(
2n

n

)
(by definition). �

Note that we can use Stirling’s formula (Section 5.7.6) to obtain formulas for the
asymptotic growth of the Catalan numbers. Another proof of Theorem 5.6.1 based on
the so-called Lagrange inversion formula can be found in Section 5.8.4.

5.6.4. Further correspondences. There are many classes of combinatorial ob-
jects where the objects with n elements are in bijective correspondence with binary
trees of size n.

• We have defined convex n-gons already in Section 4.5.2. Every convex n-
gon {p1, . . . , pn} has exactly c(n) partitions of the convex hull of p1, . . . , pn
in triangles with endpoints from p1, . . . , pn (also called triangulations). In
Figure 5.4 are depicted c(3) = 5 partitions of a convex 5-gon.

88 5. GENERATING FUNCTIONS

0

4

1

2
3

0

4

1

2
3

0

4

1

2
3

0

4

1

2
3

0

4

1

2
3

Figure 5.4. The five possible triangulations of a convex 5-gon.

• There are c(n) possible bracketings of a product with n + 1 factors (and
n multiplications). For example, we have c(3) = 5 such bracketings of the
factors x1, . . . , x4:

(x1x2)(x3x4),

(x1(x2x3))x4,

x1((x2x3)x4),

((x1x2)x3)x4,

and x1(x2(x3x4))

• There are c(n) sequences a1, . . . , a2n with ai ∈ {1,−1} such that
∑2n
i=1 ai = 0

and
∑k
i=1 ai ≥ 0 for all k ≤ n. Here we have for n = 3 precisely the following

five sequences

(1, 1, 1,−1,−1,−1)

(1, 1,−1, 1,−1,−1)

(1, 1,−1,−1, 1,−1)

(1,−1, 1, 1,−1,−1)

(1,−1, 1,−1, 1,−1).

Exercises.

(86) Find a formula for the number of ways to write a non-commutative non-
associative product of n-terms. For example, there are 12 ways to write a
product of 3 terms, namely

(ab)c, (ac)b, (ba)c, (bc)a, (ca)b, (cb)a, a(bc), a(cb), b(ac), b(ca), c(ab), c(ba).

(87) Prove that there are (2n− 3)!! ways to write a commutative non-associative
product of n-terms. That is, we identify (ab)c with (ba)c, c(ab), and c(ba).
Hence, for n = 1 and n = 2 there is only one way, for n = 3 there are three
ways, and for n = 4 there are 15 ways.

5.7. Exponential Generating Functions

The generating functions that we have seen so far are also called ordinary gener-
ating functions, to distinguish them from other generating functions that exist, such

5.7. EXPONENTIAL GENERATING FUNCTIONS 89

as exponential generating functions or Dirichlet generating functions. Depending on
the enumeration problem that we want to study, those might be more appropriate. To
give you an idea how to vary what we have learned about ordinary generating func-
tions, we discuss the equally important exponential generating functions and their
applications in this section.

5.7.1. Labelled enumeration. How many graphs are there with n vertices?
This question needs to be formulated more carefully, since we have not yet specified
the vertex set of the trees, so phrased like this the answer would be: infinitely many.
There are two different ways to turn this question into a meaningful question.

The first is: how many graphs with n vertices are there up to isomorphism? That
is, we want to count the number of equivalence classes of the equivalence relation
induced by graph isomorphism (Definition 1.1.2) on the class of all trees. Clearly, for
each n this number un will be finite. We also say that un is the number of unlabelled
graphs with n vertices.

The second way is to count the number of graphs with the vertex set [n]. This
number can be bigger than un and will be denoted by ln. For instance, for n = 3
we have u3 = 4, but l3 = 8. We say that ln is the number of labelled graphs with n
vertices.

The same distinction can be made for counting the structures of size n in various
classes of combinatorial objects, like hypergraphs, directed graphs, etc. There is no
general simple way to translate between the two settings. For illustration, we describe
two extreme situations.

Example 20. There is precisely one labelled independent set of size 1, and there is
precisely one independent set of size 1 up to isomorphism; so for counting the number
of independent sets, there is no difference between the labelled and the unlabelled
count. 4

Example 21. Up to isomorphism, there is precisely one linear order with n
elements. However, there are n! many linear orders on the set [n]. So, for linear
orders we have the maximal possible difference between the labelled and the unlabelled
count. 4

Typically, for labelled enumeration problems the exponential generating function
is more appropriate.

5.7.2. The exponential generating function. The exponential generating
function (EGF) of a sequence (an)n∈N is the formal power series

A(x) =
∑
n∈N

an
xn

n!
.

We can recover the coefficients of an EGF A(x) in the obvious way, by the formula

an = n! · [xn]A(x).

Example 22. For every n ∈ N, the number of linear orders on [n] is n!, and the
corresponding EGF is ∑

n∈N

n!

n!
xn =

1

1− x
. 4

Example 23. For every n ∈ N, the number of directed cycles on [n] is (n − 1)!:
we choose a first element on the cycle, then from the remaining elements we choose

90 5. GENERATING FUNCTIONS

the next, and so on. In this way we have counted each directed cycle n times since
we do not care where the cycle starts. The EGF for these numbers is∑

n∈N

(n− 1)!

n!
xn =

∑
n∈N

1

n
xn = ln

1

1− x
.

Concerning the last equation, observe that ln 1
1−x = ln(1) − ln(1 − x) = − ln(1 − x)

and recall from (61) that ln(1 + x) =
∑
n∈N+

(−1)n−1

n xn, so

ln(1− x) =
∑
n∈N+

−1

n
xn

and the equation follows. 4

Example 24. For every n ∈ N, the number of cliques on [n] is 1. The EGF for
the sequence 1 = a0 = a1 = · · · is∑

n∈N

1

n!
xn = exp(x). 4

5.7.3. Dictionary for labelled combinatorial constructions. Clearly, if
A(x) is the EGF for (an)n∈N and B(x) is the EGF for (bn)n∈N, then A(x) + B(x) is
the EGF for (an + bn)n∈N. This formula is useful when we want to count classes of
combinatorial objects that are composed from two disjoint classes of structures.

5.7.3.1. Multiplication. Recall that

[xn]A(x)B(x) =
∑

k∈{0,...,n}

ak
k!

bn−k
(n− k)!

which shows that A(x)B(x) is the EGF for ∑
k∈{0,...,n}

(
n

k

)
akbn−k

n∈N

. (66)

As we will see, in many contexts this sequence has an interesting combinatorial inter-
pretation. Instead of formulating a general lemma we will illustrate this by examples
later.

5.7.3.2. Differentiation. Note that

A′(x) =
∑
n∈N+

nan
xn−1

n!
=
∑
n∈N+

an
xn−1

(n− 1)!
=
∑
n∈N

an+1
xn

n!

is the EGF for (an+1)n∈N. Compare this with the ordinary generating function of
(an+1)n∈N, which is

A(x)−A(0)

x
.

5.7.3.3. Composition. Note that

[xn]A(B(x)) =
∑
k∈N

ak
k!

∑
j1,...,jk∈N+,j1+···+jk=n

bj1
j1!
· · · bjk

jk!

which shows that A(B(x)) is the EGF for∑
k∈N

ak
k!

∑
j1,...,jk∈N+,j1+···+jk=n

(
n

j1, . . . , jk

)
bj1 · · · bjk

n∈N

5.7. EXPONENTIAL GENERATING FUNCTIONS 91

where (
n

j1, . . . , jk

)
:=

n!

j1! · · · jk!

is the so-called multinomial coefficient counting the number of partitions of [n] into
sets of size j1, . . . , jk.

5.7.4. The Bell numbers. Let bn be the number of partitions of [n] (equiva-
lently, the number of equivalence relations on the set [n]); these numbers are called
the Bell numbers. They satisfy the following recurrence formula:

bn+1 =
∑

k∈{0,...,n}

(
n

k

)
bk. (67)

The reason is that in order to form a partition, we choose for some k the k elements
that do not lie in the equivalence class containing the largest element, and multiply
with the number of elements to form a partition with those elements.

Let B(x) be the exponential generating function for (bn)n∈N. In Theorem 5.7.1
we present a stunningly simple description of B(x) with two proofs:

• the first proof translates the recurrence for bn into an differential equation
and solves it;
• the second proof uses the general dictionary for labelled combinatorial con-

structions.

Theorem 5.7.1.

B(x) = exp(exp(x)− 1)

Proof number 1. We multiply both sides of the recurrence formula (67) with
xn

n! and sum over all n ∈ N. On the left hand side, we obtain B′(x). On the right
hand side, we obtain exp(x)B(x) since exp(x) is the exponential generating function
for the constant-one sequence (recall (66)). Hence, we get the differential equation

B′(x) = exp(x)B(x)

which has the unique solution B(x) = c exp(exp(x)). Since B(0) = 1 we must have
c = e−1, so B(x) = exp(exp(x)− 1). �

Proof number 2. What is the series exp(exp(x) − 1)? It is a composition of
exp(x) with exp(x)− 1, so it can be interpreted according to the dictionary for com-
position of labelled objects: exp(x)−1 is the series for cliques with at least one vertex,
and hence n![xn] exp(exp(x)− 1) counts the number of disjoint unions of cliques with
vertex set [n], i.e., the number of ways in which we can partition [n]. �

Now, bn can be computed as follows (Dobiński’s formula). Let g : R→ R be the
function x 7→ ee

x

. Note that g′(x) = exee
x

. Then

bn = n![xn] exp(exp(x)− 1)

=
1

e
g(n)(0)

=
1

e

∑
k∈N

(
ekx

k!

)(n)

(0)

=
1

e

∑
k∈N

kn

k!
.

92 5. GENERATING FUNCTIONS

5.7.5. 2-regular graphs. A graph is 2-regular if all its vertices have degree
two; note that such a tree is a disjoint union of cycles. In this section we want to
count the number of labelled 2-regular graphs with n vertices. For n ≤ 2 there are no
undirected cycles at all. For n ≥ 3, there are (n− 1)!/2 many cycles with vertex set
[n]: we choose a first vertex, under the remaining vertices we choose a second, etc.
This gives us n!, but we have over-counted since we do not care where to start the
cycle, and we do not care about the direction of the cycle, so we have to divide by 2n
which gives the formula.

Therefore, the exponential generating function C(x) for labelled cycles is

C(x) =
∑
n≥3

(n− 1)!

2n!
xn

=
1

2

∑
n≥3

1

n
xn =

1

2
(ln

1

1− x
− x− x2

2
).

The exponential generating function for 2-regular graphs is

exp(C(x)) = exp

(
1

2
(ln

1

1− x
− x− x2

2
)

)
=

(
1

1− x
· e−x · e−x

2/2

)1/2

=
e−x/2−x

2/4

√
1− x

.

The radius of convergence is r = 1 (we see that the function is singular at x = 1 where
it has a branch point). By a technique called singularity analysis (we refer to [16] for
this more advanced topic) one can show that

[xn]C(x) =
e−

3
4

√
πn
− 5e−3/4

8
√
πn3

+O

(
1

n5/2

)
.

5.7.6. Permutations and Stirling’s formula. A permutation of [n] is a bi-
jection between [n] and itself; there are n! many permutations of [n]. Permutations
of [n] can be thought of as a directed graph with vertex set [n] where each vertex has
indegree one (precisely one predecessor) and outdegree one (precisely one successor).
Clearly, such digraphs are disjoint unions of directed cycles (loops are allowed). La-
belled directed cycles have been counted already in Example 23, and they have the
EGF ln(1

1−x). We conclude that the EGF for the number of permutations is

exp
(

ln

(
1

1− x

))
=

1

1− x
=
∑
n∈N

xn

as we have seen already in Example 22.
Stirling’s formula is an approximation for n!, and in one of the formulations states

that

n! ∈
(n
e

)n√
2πn

(
1 +O

(
1

n

))
or, phrased differently,

n! ∼
(n
e

)n√
2πn.

This approximation has an excellent quality, as the following table shows; the
error is below 1% already for n = 10.

n 1 2 5 10 100 1000
n!

nne−n
√

2πn
1.084437 1.042207 1.016783 1.008365 1.000833 1.000083

5.7. EXPONENTIAL GENERATING FUNCTIONS 93

We give a simple proof of a weaker version, namely that for all n ≥ 2 we have

n lnn− n < ln(n!) < n lnn

and therefore

ln(n!) ∼ n lnn.

The inequality ln(n!) < n lnn is a consequence of the trivial inequality n! < nn. For
the other inequality, we use the power series expansion of ex,

ex =
∑
n∈N

xn

n!

Comparing en to the n-th term in the series gives nn

n! < en, so nn

en < n!. Therefore
n lnn− n < ln(n!). Dividing the inequalities n lnn we obtain

1− 1

lnn
<

ln(n!)

n lnn
< 1

and hence ln(n!) ∼ n lnn. This formula is already sufficient for many applications
where we need an asymptotic bound for the factorial.

The known proofs of Stirling’s formula in the stronger formulation above are sub-
stantially more involved; several very different proofs (one of them using singularity
analysis) can be found in Flajolet and Sedgewick [16].

Via the binomial coefficients, Stirling’s formula for the factorial enters in many
asymptotic estimations.

Example 25. By Stirling’s formula(
n

k

)
≤ nk

k!
≤ nk

(k/e)k
=
(en
k

)k
. 4

Example 26. Recall that the Catalan numbers cn are given by

cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

(2n)!

n!n!
.

We can now use Stirling’s formula to obtain

cn ∼
1

n

(2n)2ne−2n
√

4πn

n2ne−2n2πn
∼ 4n√

πn3

(and the error is for n ≥ 100 below 1%). 4

Exercises.

(88) Prove by induction that(n
e

)n
≤ n! ≤ en

(n
e

)n
for all n ∈ N.

(89) A derangement is a permutation with no fixed points. Let D(x) be the
exponential generating function of the number of derangements. Show that

1

1− x
= exp(D(x)).

(90) Let an be the number of (not necessarily perfect) matchings of Kn; in other
words, we count the number of graphs with maximum degree 1 on the vertex
set [n].
• Find a rekursive formula for an.
• Determine the convergence radius of

∑
n∈N anx

n.

94 5. GENERATING FUNCTIONS

5.7.7. Labelled graphs and labelled connected graphs. Clearly, there are

2(n
2) labelled graphs with n vertices. How many connected labelled graphs with n

vertices are there? Let G(x) be the exponential generating function for the number
dn of labelled graphs on n vertices, and let C(x) be the exponential generating function
for the number cn of labelled connected graphs with n vertices. Note that G(x) does
not converge for any x 6= 0 (dn simply grows too rapidly) so we cannot apply analytic
techniques here, but G(x) and C(x) are perfectly well-defined formal power series.
We have

G(x) = exp(C(x))

since every graph is uniquely given as the disjoint union of connected graphs.
It follows that the number of connected labeled graphs with n vertices satisfies

n2(n
2) =

∑
k∈N

(
n

k

)
kck2(n−k

2).

Solving this equation for cn in terms of ck for k < n, we obtain a recurrence formula
from which we can compute cn for small values of n: the sequence starts with

1, 1, 4, 28, 728, 26704, 1866256, 251548592, . . .

5.8. The Lagrange Inversion Formula

The Lagrange inversion formula can be used to access the coefficients of generating
functions that are implicitly given. We will use it to prove Cayley’s formula for the
number of labelled trees with n vertices. In its simplest form, the Lagrange inversion
formula expresses the n-th coefficients of the inverse of a power series A(x) in terms
of the reciprocal of an n-th power of A(x). If A(x) is invertible then [x0]A(x) = 0
and hence A(x) and powers of A(x) do not have a reciprocal in R[[x]] even if R is a
field. However, A(x) has a multiplicative inverse in the larger ring R((x)) of formal
Laurent series that will be introduced in the next section.

5.8.1. Laurent series. Informally, the ring R((x)) of formal Laurent series com-
pares to the ring R[[x]] of formal power series in the same way as the ring R(x) of
rational functions compares to the ring R[x] of polynomials. Formally, a Laurent
series is a formal expression of the form

A(x) =
∑
i∈Z

aix
i

where ai = 0 for all but finitely many negative i. We define [xi]A(x) := ai for all i ∈ Z.
Addition and multiplication, differentiation, and composition can be defined similarly
as for formal power series and behave as expected. For example, for A,B ∈ R((x))
the product A ·B is defined by putting, for k ∈ Z,

[xk]A(x)B(x) :=
∑
i∈Z

[xi]A[xk−i]B.

For A 6= 0 we write ord(A) for the smallest i ∈ Z such that ai 6= 0. Note that every
Laurent series A(x) ∈ R((x)) can be written as p(x−1) +B(x) where B ∈ R[[x]] and
p is a polynomial (of degree ord(A)).

The coefficient of x−1 in a Laurent series A(x) is of particular interest, as we see
in the following lemma; it is called the formal residue of A(x).

Lemma 5.8.1. Let K be a field of characteristic 0 and let A,B ∈ K((x)).

(1) [x−1]A′(x) = 0.
(2) [x−1]A ·B′ = −[x−1]A′ ·B.
(3) [x−1]A′/A = ord(A) if A 6= 0.

5.8. THE LAGRANGE INVERSION FORMULA 95

(4) [x−1](A ◦B) ·B′ = [x−1]A if ord(B) > 0.

Proof. (1) is clear from the definition of differentiation. To see (2), note that
0 = [x−1](A ·B)′ = [x−1](AB′ +A′B) and the statement follows.

We show (3). Any non-zero A ∈ R((x)) can be written as A = xmC for m :=
ord(A) ∈ Z and some C ∈ R((x)) where ord(C) = 0. Then

A′

A
=

(xmC)′

xmC
=
mxm−1C + xmC ′

xmC
=
m

x
+
C ′

C
.

Since ord(C) = 0 we have

[x−1]
C ′

C
=
∑
i∈Z

[xi]C ′[x−1−i]C−1 = 0

and it follows that

[x−1]
A′

A
= [x−1]mx−1︸ ︷︷ ︸

=m

+ [x−1]
C ′

C︸ ︷︷ ︸
=0

= m = ord(A).

We show (4). Let a−1 := [x−1]A(x). First note that A = a−1x
−1 + C ′ for some

C ∈ K[[x]]. Hence,

[x−1](A ◦B)B′

= [x−1]
(
a−1(x−1 ◦B)B′ + [x−1](C ′ ◦B) ·B′

)
= a−1[x−1]B−1B′ + [x−1](C ◦B)′

= a−1[x−1]B′/B (using (1))

= a−1 (using (3), ord(B) = 1). �

5.8.2. Lagrange inversion. We now prove the Lagrange inversion formula for
obtaining the coefficients of the inverse B(x) of A(x) (there exist more general for-
mulations of the Lagrange inversion formula). The typical proof heavily relies on
results from complex analysis (Funktionentheorie); we prefer an algebraic treatment
here since it is entirely elementary.

Theorem 5.8.2. Suppose that A ∈ K[[x]] has an inverse B. Then

[xn]B =
1

n
[x−1]A−n.

Proof.

[xn]B = [x−1]B · x−n−1

= [x−1]((B · x−n−1) ◦A) ·A′ (Lemma 5.8.1, item (4))

= [x−1](B ◦A) ·A−n−1 ·A′

= [x−1]xA−n−1A′ (since B(A(x)) = x)

= − 1

n
[x−1]x(A−n)′ (definition of derivation)

=
1

n
[x−1]A−n (Lemma 5.8.1, item (2)). �

5.8.3. Labelled trees. For n ∈ N, let tn be the number of trees with vertex set
[n]. Since trees are required to have at least one vertex, we have t0 = 0, and clearly
t1 = 1. Using the Lagrange inversion formula, we will prove Cayley’s formula; there
are now different, more direct combinatorial proofs of the formula, e.g. via Prüfer
codes (from 1918). Let us point out that the symbolic proof via generating functions
was found first!

96 5. GENERATING FUNCTIONS

Theorem 5.8.3 (Cayley 1889). For every n ∈ N+

tn = nn−2.

To prove this result we use an important idea in combinatorial enumeration: the
idea to root objects. A rooted tree is a tree with one distinguished vertex, the root.
A finite rooted tree can be obtained recursively as follows: we recursively construct
a set of smaller rooted trees T1, . . . , Tk with vertex sets [n1], . . . , [nk], respectively,
such that n1 + · · · + nk = n − 1. Note that k = 0 is allowed; this will be the base
case of the recursive description. We then rename the vertices of T1, . . . , Tk such that
V (T1) ∪ · · · ∪ Tk = [n − 1], and create a tree T with vertex set [n] and root n by
joining n with each of the roots of T1, . . . , Tk. Let rn be the number of rooted trees
with vertex set [n]; clearly, rn = n · tn for all n ∈ N.

Let R(x) :=
∑
n∈N

rn
n! x

n be the exponential generating function for (rn)n∈N. With
a bit of practice, it can be seen directly from the recursive description above that

R(x) = x exp(R(x)) (68)

(recall the interpretation of composition presented in Section 5.7.3.3, and the fact
that exp(x) is the exponential generating function for sets; alternatively, use the
description above to write down a recurrence formula for rn, multiply with xn, and
sum over all n ∈ N to then obtain the equation, as we have practiced numerous times
by now).

The central idea to use the Lagrange inversion formula here is the observation
that R(x) can be viewed as the inverse of S(x) := x

exp(x) since then the identity

S(R(x)) = x is equivalent to (68). To access the coefficients of R(x), we can therefore
use Lagrange inversion (Theorem 5.8.2):

[xn]R(x) =
1

n
[x−1]S(x)−n =

1

n
[x−1]

(
ex

x

)n
=

1

n
[xn−1]enx

=
1

n
[xn−1]

∑
k∈N

(nx)k

k!

=
1

n

nn−1

(n− 1)!

=
nn−1

n!
.

Hence, we have

rn = n![xn]R(x) = nn−1

and

tn =
rn
n

= nn−2

which concludes the proof of Theorem 5.8.3.

Exercises.

(91) Let E(x) be the exponential generating function for the number of functions
from [n]→ [n]. Show that E(x) = 1

1−R(x) where R(x) is the EGF for rooted

trees. Hint: View a function from [n] → [n] as a digraph. How does the
resulting digraph look like? Also see Example 22.

5.8. THE LAGRANGE INVERSION FORMULA 97

(92) Let V (x) be the exponential generating function of labelled trees with two
(not necessarily distinct) distinguished vertices. Show that

V (x) =
1

1−R(x)
− 1.

Hint: Find a bijection with non-empty permutations of rooted trees. Again
see Example 22.

(93) Use the the previous two exercises and an explicit formula for the number
of functions from [n]→ [n] to derive a new proof of Cayley’s formula.

(94) Find an algorithm that outputs for a given n ∈ N+ a labelled tree with
vertex set [n] uniformly at random and whose running time is polynomial
in n.

5.8.4. Binary trees revisited. The Lagrange inversion formula can also be
applied for unlabelled enumeration and ordinary generating functions. We present a
second proof that binary trees of size n are counted by the Catalan numbers, cn =

1
n+1

(
2n
2

)
(Theorem 5.6.1). Recall from (64) that the (ordinary) generating function

C(x) :=
∑
n∈N cnx

n satisfies

C(x) = 1 + xC(x)2. (69)

Note that a binary tree of size n is constructed from n pairs of brackets applied to
n+ 1 leaves, so has 2n+ 1 vertices in total if we draw the binary tree as in Figure 5.2.
Let bn be the number of binary trees with n vertices in total; so cn = b2n+1. Let
B(z) =

∑
n∈N bnz

n be the corresponding ordinary generating function; the reason we
consider B(z) instead of C(x) is that the computations come out more easily when
applied to B(z). Equation (69) implies that

B(z) = z + zB(z)2 (70)

which has an immediate combinatorial explanation: a binary tree either consists of a
single vertex, or otherwise is constructed from a left binary tree and a right binary
tree that jointly have one vertex less (to account for the internal vertex created for
combining the two subtrees). To compute the coefficients of B(x) we use the Lagrange
inversion formula.

Let D(u) := u
1+u2 . Note that [x0]D(u) = 0 and that

D(B(z)) =
B(z)

1 +B(z)2
=

B(z)

1 + B(z)−z
z

(by (70))

= z

and hence D is the inverse of B. We can therefore apply the Lagrange inversion
formula and obtain

bn =
1

n
[u−1]D(u)−n

=
1

n
[u−1]

(1 + u2)n

un

=
1

n
[un−1]

n∑
k=0

(
n

k

)
u2k

=

{
0 if n is even
1
n

(
n

(n−1)/2

)
if n is odd.

98 5. GENERATING FUNCTIONS

Hence,

cn = b2n+1 =
1

2n+ 1

(
2n+ 1

n

)
=

1

2n+ 1

(2n+ 1)!

(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
.

5.9. Unlabelled Enumeration

For labelled enumeration, we have seen a powerful dictionary between combinato-
rial construction principles and basic operations on exponential generating functions,
such as addition, Cauchy product, derivation, and composition (Section 5.7.3). Is
there a similar dictionary for unlabelled enumeration and ordinary generating func-
tions (OGFs)? This is true for the formation of disjoint unions, which still corresponds
to addition of OGFs, and for the formation of ordered pairs, which still corresponds
to the product of OGFs. However, the composition operation poses problems, due
to potential symmetries that the composed object might have. For the same reason,
taking the derivative and multiplying with the formal variable no longer corresponds
to rooting the object.3 This deficiency can be solved by Polya theory and cycle index
sums. Our main application will be a proof of a formula for the number of unlabelled
trees with n vertices. There is a great variety of classes of combinatorial structures
that can be treated similarly.

5.9.1. Relational structures. We work with the general concept of (relational)
structures which generalises directed graphs, but also hypergraphs, directed graphs
with several types of edges, or with distinguished subsets of the vertices, etc. Even
if we are only interested in enumerating unlabelled graph classes (such as unlabelled
trees), we still need a more powerful concept than graphs to develop a general theory
of unlabelled enumeration. Another approach is to use the concept of so-called comp-
inatorial species, which has been developed by Joyal and is based on concepts from
category theory [5].

A relational signature is a set of relation symbols R, each equipped with an arity
ar(R) ∈ N. A τ -structure A consists of a set A, called the domain of A, and a
relation RA ⊆ Aar(k) for each relation symbol R ∈ τ . A structure is called finite if its

domain is finite. Relational structures are often written like (A;R
A
1 , R

A2
2 , . . .), with

the obvious interpretation; for example, (Q;<) denotes the structure whose domain
is the set of rational numbers Q and which carries a single binary relation < which
denotes the usual strict linear order o the rationals. Following common practice, we
sometimes do not distinguish between the symbol R for a relation and the relation
RA itself, in situations where this does not lead to confusion. We do allow structures
with an empty domain.4 Directed graphs are viewed as τ -structures for the signature
τ = {E}, where E is a binary relation symbol that denotes the edge relation of a
digraph.

5.9.2. Cycle index sums. Cycle index sums of classes of combinatorial objects
are formal power series that incorporate information about the symmetries of the
objects in the class. Symmetry is formalised by the concept of an automorphism,
which we define now.

Let τ be a relational signature and let A and B be two τ -structures. A function
f : A→ B is a homomorphism if for every R ∈ τ of arity k and for every (a1, . . . , ak) ∈
RA it holds that (f(a1), . . . , f(ak)) ∈ RB . An isomorphism i from A to B is a bijective

3The reason that this issue did not show up for binary trees, which can be viewed as unlabelled

objects, is that binary trees do not have non-trivial automorphisms; and indeed, the recursive de-

scription of the corresponding ordinary generating function only involves addition and multiplication.
4Warning: in particular in many (but not all) logic text books the authors use the convention

that structures have non-empty domains).

5.9. UNLABELLED ENUMERATION 99

homomorphism from A to B such that i−1 is a homomorphism as well. A permutation
α of the domain of a structure A is called an automorphism if it is an isomorphism
between A and A.

Clearly, the set of all automorphisms of a structure A contains the identity and
is closed under composition and taking the inverse, and hence forms a group with
respect to composition (a permutation group).

Definition 5.9.1. Let α be a permutation of a set of size n. The weight of α is
defined as

wα :=
1

n!

n∏
i=1

s
ci(α)
i

where si is a formal variable and ci(α) is the number of cycles of α of length i.

Let A be a class of finite structures which is closed under isomorphisms, i.e., if
A ∈ A and B is isomorphic to A, then B ∈ A. We write An for the set of all structures
in A with domain {1, . . . , n}. The following definition goes back to Polya [34].

Definition 5.9.2 (Cycle Index Sum). The cycle index sum of A, denoted by
ZA(s1, s2, . . .), is the formal power series

∑
n∈N

 ∑
A∈An

 ∑
α∈Aut(A)

wα

 .

We present several important examples, all over the signature τ = {E} of directed
graphs.

Example 27. Let L be the class of all finite τ -structures where E denotes a linear
order. Note that every structure A ∈ L has just a single automorphism, namely the

identity map. If |A| = n then the identity map has weight
sn1
n! . Note that Ln has

exactly n! elements, and hence the cycle index sum of L is

ZL =
∑
n∈N

sn1 =
1

1− s1
. 4

Example 28. Let K be the class that consists of all finite complete digraphs
(including the digraph with an empty vertex set). Note that Aut(Kn) is the full
symmetric group on n elements. Hence, for example for n = 3 we have

ZK3
=

1

6
(s3

1 + 3s1s2 + 2s3).

In general, the cycle index sum for K is simply the exponential generating series for
all permutations where each cycle of length r is marked by the formal variable sr.

ZK =
∑
n∈N

∑
α∈Aut(Kn)

wα =
∑
n∈N

1

n!

∑
r≥1

sr
r

n

= exp

∑
r≥1

sr
r

Recall that

∑
r≥1

xr

r is the exponential generating function for labelled directed cy-

cles (Example 23) and that exp(
∑
r≥1

xr

r) is the exponential generating function for

labelled permutations (Section 5.7.6). 4

Example 29. Let C be the class of all finite directed cycles (we assume that
they contain at least one element). If (v0, . . . , vn−1) is a directed cycle Cn in Cn, for
n ≥ 1, then the map that sends vi to vi+m, where m ∈ {0, . . . , n − 1} and indices
are considered modulo n, is an automorphism of Cn. Every automorphism of Cn is
of this form. Such an automorphism consists of n/r cycles of length r, where r is

100 5. GENERATING FUNCTIONS

the order of m in Zn. For each divisor r of n, there are φ(r) elements of order r in
Zn. Here, φ is the Euler totient function, which returns for given r the number of
elements in {1, . . . , n − 1} that are pairwise prime with r. Since there are (n − 1)!
cycles with the vertices {1, . . . , n}, the cycle index sum of Cn is

ZCn = (n− 1)!
∑

α∈Aut(Cn)

wα =
1

n

∑
r|n

φ(r)sn/rr

and the cycle index sum of C is

ZC =
∑
n∈N

ZCn =
∑
r≥1

∑
n≥1, r|n

φ(r)

n
sn/rr =

∑
r≥1

φ(r)

r

∑
m≥1

smr
m

=
∑
r≥1

φ(r)

r
log

1

1− sr
. 4

Let an be the number of structures with n vertices in A, up to isomorphism,
and let A(x) :=

∑
n∈N anx

n be the corresponding ordinary generating function. The
following lemma shows that the cycle index sum of A incorporates all the information
of A(x).

Lemma 5.9.3. ZA(x, x2, x3, . . .) = A(x).

To prove this fundamental fact, we need Burnside’s lemma from permutation
group theory presented in the next section.

5.9.3. Basics of permutation groups. Let G be a permutation group on a
set X. For α ∈ G, the set of fixed points of α is defined to be

Fix(α) := {x ∈ X | α(x) = x}.

For x ∈ X, the stabiliser of x in G is the subgroup of G defined as

Gx := {α ∈ G | α(x) = x}.

The orbit of x in G is the set

G.x := {α(x) | α ∈ G}

Note that the orbits of G partition {1, . . . , n}. We write X/G for the set of all orbits
of G.

Lemma 5.9.4 (Orbit-Stabiliser Lemma). Let G be a permutation group on {1, . . . , n}
and x ∈ {1, . . . , n}. Then |G| = |Gx| · |G.x|.

Lemma 5.9.5 (Burnside’s orbit-counting lemma). Let G be a permutation group
on a finite set X. Then

|X/G| = 1

|G|
∑
α∈G
|Fix(α)|.

In other words, the number of orbits of G equals the average number of fixed
points of the elements of G.

5.9. UNLABELLED ENUMERATION 101

Proof. Burnside’s lemma is a consequence of the orbit-stabiliser lemma via an
easy double counting argument:∑

α∈G
|Fix(α)| = |{(α, x) | α ∈ G, x ∈ X,α(x) = x}|

=
∑
x∈X
|Gx|

=
∑
x∈X

|G|
G.x

(Lemma 5.9.4)

= |G|
∑

O∈X/G

∑
x∈O

1

|O|

= |G|
∑

O∈X/G

1 = |G| · |X/G|

and the statement follows. �

We can now prove that the cycle index sum indeed specialises to the ordinary
generating function.

Proof of Lemma 5.9.3. To prove that [xn]ZA(x, x2, x3, . . .) = an we apply
Burnside’s lemma with respect to the permutation group G defined as follows. The
domain of G is the finite set An which consists of all structures in A with vertex set
{1, . . . , n}. For every permutation α of {1, . . . , n} the group G contains the permu-
tation of An which maps S ∈ An to the isomorphic copy of S in An obtained by
renaming u ∈ S with α(u). Note that an equals the number of isomorphism classes
of structures in A, hence, equals the number of orbits of G. Also note that |G| = n!.
We have

wα(x, x2, . . . , xn) =
1

n!

n∏
i=1

xi·ci(α) =
1

n!
xc1(α)+2c2(α)+···+ncn(α) =

xn

n!
.

Hence,

∑
S∈An

 ∑
α∈Aut(S)

wα

 (x, x2, x3, . . . , xn) =
∑
S∈An

|Aut(S)| · x
n

n!

=
1

n!

∑
α∈G
|Fix(α)| · xn

= |An/G| · xn (by Lemma 5.9.5).

It follows that [xn]ZA(x, x2, x3, . . .) = |An/G| = an. �

5.9.4. Combinatorial constructions and cycle index sums. In this section
develop we a dictionary between combinatorial constructions and the corresponding
algebraic operations on cycle index sums.

Let τ be a relational signature and let A be a τ -structure. We start by defining
some general basic terminology for relational structures.

Definition 5.9.6 (Reduct and Expansion). If τ ′ ⊆ τ and A′ is a τ ′-structure

with the same domain as A and RA = RA
′

for all R ∈ τ ′, then A′ is called the τ ′-
reduct (or simply reduct) of A, and A is called a τ -expansion (or simply expansion)
of A′.

102 5. GENERATING FUNCTIONS

Definition 5.9.7 (Substructure and Extension). A τ -structure B is is called a
substructure of A if B ⊆ A and for every R ∈ τ of arity k we have that RB = RA∩Bk.
In this case, we say that A is an extension of B. We also say that B is the substructure
induced by A on B.

5.9.4.1. Disjoint union. Let A and B be two disjoint classes of τ -structures. Then

ZA∪B = ZA + ZB.

5.9.4.2. Product. Let A and B be two classes of structures with disjoint relational
signatures τ1 and τ2. The (partitional) product A · B consists of all τ1 ∪ τ2 ∪ {P}-
structures S, where P is a new unary relation symbol, such that the τ1-reduct A of the
substructure of S with domain PS is from A, and the τ2-reduct B of the substructure
of S with domain S \ PS is from B. Note that if γ is an automorphism of S, then
the restriction of γ to PS is an automorphism of A and the restriction of γ to S \PS
is an automorphism of B. Conversely, if α is an automorphism of A and β is an
automorphism of B, then the permutation of S that agrees with α on PS and with β
on S \ PS is an automorphism of S. This shows the following.

Proposition 5.9.8.

ZA·B = ZA · ZB.

5.9.4.3. Substitution. Let A and B be two classes of structures with disjoint re-
lational signatures τ1 and τ2 such that B does not contain empty structures. The
composite of B in A, denoted by A ◦ B, is the class of all τ1 ∪ τ2 ∪ {E}-structures S,
where E is a new binary relation symbol, such that

• ES is an equivalence relation on S; the equivalence class of s ∈ S with
respect to ES is denoted by [s].
• there is a structure A ∈ A, called the template structure, and a bijection b

between the equivalence classes of ES and A such that for every R ∈ τ1 of
arity k and for every (s1, . . . , sk) ∈ Sk we have (s1, . . . , sk) ∈ RS if and only
if (b([s1]), . . . , b([sk])) ∈ RA.
• for each equivalence class {s1, . . . , sn} of ES there exists an isomorphism

between the τ2-reduct of the structure induced by S on {s1, . . . , sn} and a
structure B ∈ B (a component structure).

Let σ be an automorphism of S. Since σ preserves E, it induces a permutation τ of
the equivalence classes of E, and τ must be an automorphism of A because σ preserves
all the relations from τ1. Now consider an equivalence class B = {s1, . . . , sn} of ES

and let B the τ2-reduct of the structure induced by S on B. Let k be the length of
the cycle of τ that contains B. Then σk maps B to B, so the restriction of σk to B
is an automorphism of B.

Conversely, automorphisms of the template structure from A and the component
structures from B give rise to automorphisms of the composite; see Figure 5.5 for an
illustration.

Proposition 5.9.9. Let A and B be classes of finite relational structures with
disjoint signatures. Then

ZA◦B = ZA ◦ ZB := ZA(ZB(s1, s2, . . .), ZB(s2, s4, . . .), ZB(s3, s6, . . .), . . .). (71)

Proof. TODO. �

Remark 5.9.10. The composition of the formal power series ZA and ZB in (71)
is called plethystic substitution. A treatment of the content of Proposition 5.9.9 in the
context of combinatorial species can be found in [5].

5.9. UNLABELLED ENUMERATION 103

Figure 5.5. A substitution operation and some cycles of automorphisms.

5.9.4.4. Pointing (Rooting). When computing the number of labelled trees, it was
useful to instead count rooted trees. Counting labelled trees and counting rooted la-
belled trees is essentially the same because every labelled structure of size n gives rise
to exactly n rooted objects. Unfortunately, the same is false for unlabelled enumer-
ation. Adding a root adds a bias in the sense that if we generate a rooted structure
with domain {1, . . . , n} uniformly at random and then drop the root, structures with
a small automorphism group are more likely than they are in the uniform distribution.

Let A be a class of τ -structures and let A(x) be the ordinary generating function
for the number of unlabelled structures of size n in A. Then A• is the class of all
(τ ∪ {P})-structures B where |PB | = 1. The rooting operation has an effect on the
corresponding ordinary generating function for the number of unlabelled structures
in the class that cannot be described on the level of ordinary generating functions
alone; we need to look at cycle index sums instead (which then provide the ordinary
generating functions via Lemma 5.9.3).

Proposition 5.9.11. ZA•(s1, s2, s3, . . .) = s1(∂
∂s1

ZA)(s1, s2, s3, . . .)

Proof. TODO. �

5.9.4.5. Cycle Pointing. Instead of rooting a structure A at a vertex we may add
a cycle which is the cycle of an automorphism of A. This operation, which is called
cycle pointing, is unbiased (see previous section), as we will see in Theorem 5.9.12.
The advantage of working with cycle pointed objects is that the distinguished cycle
may serve as the starting point in a recursive decomposition of the structures in the
class, similarly as rooting the trees is useful when enumerating labelled trees.

Let A be a class of τ -structures. Then the cycle-pointed class of A, denoted by
A◦, consists of all expansions of structures A ∈ A by a new relation C which denotes
the edge relation of a cycle (a0, . . . , a`−1) of elements of A which is the cycle of some
automorphism α of A.

Let A(x) =
∑
n∈N anx

n be the ordinary generating function for the number an
of structures in An up to isomorphism, and let A◦(x) =

∑
n∈N a

◦
nx

n be the ordinary
generating function for the number a◦n of structures in A◦n up to isomorphism.

Theorem 5.9.12 (Unbiased pointing [6]). Let n ∈ N. For each unlabelled struc-
ture S of size n in An there are exactly n non-isomorphic structures (S,C) in A◦n.
Hence,

A◦(x) = xA′(x).

104 5. GENERATING FUNCTIONS

Figure 5.6. An unlabelled tree of size 4 yields 4 unlabelled cycle-
pointed trees.

Proof. TODO. �

See Figure 5.6.

Remark 5.9.13. Theorem 5.9.12 can be translated into the language of permu-
tation groups, where it is known as Parker’s lemma.

5.9.4.6. Cycle-pointed Substitution. LetA and B be two classes of relational struc-
tures with disjoint signatures τ1 and τ2 and assume that B does not contain the empty
structure. Let P be a structure from (A◦B)◦ and let (c1, . . . , ck) be the cycle marked
by CS . Let S ∈ A ◦ B be the τ1 ∪ τ2-reduct of P , and let A ∈ A be the tem-
plate structure for S. Then (c1, . . . , ck) is the cycle of an automorphism of S, and
this automorphism induces a cycle on the equivalence classes of ES . Consider the
{P} ∪ τ1-expansion of A where P denotes this cycle; note that this expansion is from
A◦, and we call it the template structure of S.

For P ⊆ A◦ we define the class P } B as the class of all structures S in (A ◦ B)◦

where the template structure is from P. Note that

(A ◦ B)◦ = A◦ } B.
The cycle index sum of P }B can be computed systematically, similarly as in Propo-
sition 5.9.9 for A ◦ B. However, the details are technical and we refer the interested
reader to [6].

Remark 5.9.14. To avoid clumsy expressions with many brackets, we make the
convention that with respect to binding strength, the symbols are ordered as follows:
+ (lowest binding strength), ·, the binary composition operations ◦ and }, and the
unary pointing operation ◦ (strongest binding strength).

5.9.5. Unlabelled rooted trees. In Section 5.9.6 we will reduce the task to
counting unlabelled trees to counting rooted unlabelled trees R, i.e., trees with a
single distinguished vertex, considered up to isomorphisms that preserve the root.
Rooted trees are easier to count. The reason is that rooted trees can be decomposed
recursively at the root into several rooted trees, similarly as in Section 5.8.3.

Let X denote the class of structures over the empty signature that just contains
all one-element structures. Note that ZX = s1. The idea of the decomposition of R
can then be expressed recursively as follows (such equations can be formalised, which
goes beyond the scope of this course; we refer to [6]).

R ≡ X · K ◦ R (72)

Theorem 5.9.15. If rn is the number of rooted unlabelled trees with at least one
vertex and let R(x) =

∑
n∈N rnx

n be the corresponding ordinary generating function.
Then

R(x) = x exp

∑
i≥1

R(xi)

i

 . (73)

5.9. UNLABELLED ENUMERATION 105

Proof. Recall from Example 28 that ZK = exp
(∑

r≥1
sr
r

)
. Using the rule of

computing the cycle index sum of substitutions (Proposition 5.9.9) we obtain

ZK◦R = exp

∑
i≥1

ZR(si, s2i, . . .)

i

 .

Using the rule of computing the cycle index sum of products (Section 5.9.4.2) we
obtain that

ZX·K◦R = s1 · exp

∑
i≥1

ZR(si, s2i, . . .)

i

 .

Specialising via Lemma 5.9.3 yields

R(x) = ZX·K◦R(x, x2, x3, . . .) = x · exp

∑
i≥1

ZR(xi, x2i, . . .)

i

= x · exp

∑
i≥1

R(xi)

i

 . �

Remark 5.9.16. Equation (73) allows for an efficient computation of rn; this can
for instance be done using the computer algebra system Maple.

5.9.6. Unlabelled trees. In this section we present a formula for the num-
ber tn of unlabelled trees (i.e., connected acyclic graphs) with n vertices and the
corresponding ordinary generating function T (x) =

∑
n∈N tnx

n. We use the results
about rooted unlabelled trees from the previous section, and in particular we use the
ordinary generating function R(x).

Theorem 5.9.17 (from [6]). xT ′(x) = R(x) + x2R′(x2) +R(x)
∑
`≥2 x

`R′(x`)

Remark 5.9.18. In combination with Theorem 5.9.15 and Remark 5.9.16 this
theorem allows for an efficient computation of tn.

To prove Theorem 5.9.17 we present a recursive decomposition for the class T of
all finite trees structures. Our strategy is as follows.

(1) By Theorem 5.9.12, the enumeration task is equivalent to the task of enu-
merating unlabelled cycle-pointed trees, T ◦.

(2) We now distinguish whether the marked cycle in an element A ∈ T ◦ has
length one or length greater than one.

(3) If the cycle has length one, we view the element of the cycle as a root, and
hence reduced the situation to the rooted case.

(4) If the cycle has length greater than one, then we call A symmetric. The class
of all symmetric elements of T ◦ will be denoted by S. A key observation for
the description of S is that there exists either a unique vertex or a unique
edge which we call the center of symmetry, and which may serve as a starting
point for a decomposition (Proposition 5.9.19). See Figure 5.7.

The following proposition can be shown easily by induction, removing simulta-
neously all leaves of the tree until the tree is reduced to a single vertex or a single
edge.

Proposition 5.9.19. Let A be a finite tree and let (c0c1 · · · ck−1) be a cycle from
an automorphism of A. Then there exists either

106 5. GENERATING FUNCTIONS

Figure 5.7. Decomposition of a tree at its center of symmetry (in
the case that the center of symmetry is a vertex).

• a unique vertex v ∈ A such that for every i ∈ {0, . . . , k − 1} the (unique)
path P from vi to vi+1 (indices modulo k) has odd length and v is the middle
vertex of P , or
• a unique edge e of A such that for every i ∈ {0, . . . , k− 1} the (unique) path
P from vi to vi+1 (indices modulo k) has even length and e is the middle
edge on P .

To formally specify the recursive definition of T ◦, we again introduce two basic
classes of structures that serve as building blocks.

Definition 5.9.20. The class

• E denotes the class of cycle pointed trees with two vertices where the marked
cycle has size exactly two.
• K(≥2) denotes the class of cycle-pointed complete digraphs with an arbitrary

number of vertices such that the marked cycle has size at least two. Note
that K(≥2) ⊆ K◦ where K has been introduced in Example 28.

Similarly as in (73), the idea of the strategy to decompose T that we explained
above may be phrased recursively as follows.

T ◦ ≡ R+ S (74)

S ≡ E }R+ X · (K(≥2) }R) (75)

Proof sketch of Theorem 5.9.17. We write T ◦(x) for the ordinary generat-
ing function of T ◦ and S(x) for the ordinary generating function of S. By Theo-
rem 5.9.12 we have xT ′(x) = T ◦(x). Clearly, T ◦(x) = R(x) + S(x) (see (74) and
Section 5.9.4.1).

It can be shown that the ordinary generating function for E } R is x2 · R′(x2),
and that the ordinary generating function for X · (K(≥2) }R) is∑

`≥2

x`R′(x`)

 ·R(x).

Putting these together (see (75)) we obtain that

xT ′(x) = R(x) + S(x)

= R(x) + x2R′(x2) +R(x)
∑
`≥2

x`R′(x`). �

5.9. UNLABELLED ENUMERATION 107

Remark 5.9.21. Otter [33] proved with a similar, but different approach that

T (x) = R(x)− R(x)2 −R(x2)

2
.

Remark 5.9.22. The description of R(x) in Theorem 5.9.15 and of T (x) in The-
orem 5.9.17 combined with results from analytic combinatorics can be used to obtain
the precise growth rates for rn and tn; details can be found in [6]. We just mention
that

rn ∼ c−3/2ρ−n

tn ∼ (2πc3)n−5/2ρ−n

for constants c ≈ 0.43922 and ρ ≈ 0.33832.

Bibliography

[1] S. Aaronson. P=?NP. Electronic Colloquium on Computational Complexity (ECCC), 24:4, 2017.

[2] N. Alon, A. Kostochka, B. Reiniger, D. B. West, and X. Zhu. Coloring, sparseness, and girth,

2015. Preprint available at Arxiv:1412.8002.
[3] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience Series in Discrete

Mathematics and Optimization. John Wiley & Sons, Inc., New York, 2000.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 594 pages.

[5] F. Bergeron, G. Labelle, and P. Leroux. Théorie des espèces et combinatoire des structures
arborescentes. LaCIM, Montréal, 1994. English version: Combinatorial Species and Tree-like

Structures, Cambridge University Press (1998).

[6] M. Bodirsky, É. Fusy, M. Kang, and S. Vigerske. Boltzmann samplers, Pólya theory, and cycle

pointing. SIAM J. Comput., 40(3):721–769, 2011.

[7] D. A. Cohen, M. C. Cooper, P. Creed, P. G. Jeavons, and S. Zivny. An algebraic theory of
complexity for discrete optimization. SIAM J. Comput., 42(5):1915–1939, 2013.

[8] A. Coja-Oghlan and A. Taraz. Exact and approximative algorithms for coloring G(n,p). Random

Struct. Algorithms, 24(3):259–278, 2004.
[9] A. Condon. The complexity of stochastic games. Information and Computation, 96(2):203 –

224, 1992.

[10] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

[11] F. d’Epenoux. A probabilistic production and inventory problem. Management Science,
10(1):98–108, 1963.

[12] R. Diestel. Graph Theory. Springer–Verlag, New York, 2005. Third edition.

[13] P. Erdős. On a problem in graph theory. The Mathematical Gazette, 47(361):220–223, 1963.
[14] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and con-

straint satisfaction: a study through Datalog and group theory. SIAM Journal on Computing,

28:57–104, 1999.
[15] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, New York, 1996.

[16] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[17] E. Fusy. Random generation. MPRI Lecture Notes, 2011. available at
http://www.lix.polytechnique.fr/Labo/Eric.Fusy/Teaching/notes.pdf.

[18] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory. Wiley-Interscience Series

in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York, 1990. Second
edition.

[19] M. Grötschel, L. Lovász, and L. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tion. Springer, Heidelberg, 1994. Second edition.

[20] A. W. Hales and R. I. Jewett. Regularity and positional games. Transactions of the AMS,

106:222–229, 1993.
[21] W. Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.

[22] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. John Wiley and Sons, New York, 2000.
[23] S. Jukna. Extremal Combinatorics (With Applications in Computer Science). Springer-Verlag,

2001.

[24] A. Kechris, V. Pestov, and S. Todorčević. Fräıssé limits, Ramsey theory, and topological dy-

namics of automorphism groups. Geometric and Functional Analysis, 15(1):106–189, 2005.
[25] L. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR,

244:1093–1097, 1979.
[26] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[27] J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford University Press, 1998.

[28] J. Matoušek and B. Gärtner. Understanding and Using Linear Programming. Springer, 2007.
[29] J. Nash. Non-cooperative games. Annals of Mathematics, 54:289–295, 1951.

109

110 BIBLIOGRAPHY

[30] J. Nešetřil. Ramsey classes and homogeneous structures. Combinatorics, Probability & Com-
puting, 14(1-2):171–189, 2005.

[31] J. Nešetřil and V. Rödl. A short proof of the existence of highly chromatic hypergraphs without

short cycles. J. Comb. Theory, Ser. B, 27(2):225–227, 1979.
[32] J. Nešetřil and V. Rödl. Chromatically optimal rigid graphs. J. Combin. Theory Ser. B, 46:133–

141, 1989.

[33] R. Otter. The number of trees. Annals of Math., 49:583–599, 1948.
[34] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische

Verbindungen. Acta Mathematica, 68(1):145–254, 1937.

[35] V. Rosta. Ramsey theory applications. Electronic Journal of Combinatorics, 2004. Dynamic
Survey D13.

[36] J. M. Ruiz. The Basic Theory of Power Series. Advanced Lectures in Mathematics. Springer,
1993.

[37] R. Schilling. Wahrscheinlichkeit. De Gruyter Studium, 2017.

[38] A. Schrijver. Theory of Linear and Integer Programming. Wiley - Interscience Series in Discrete
Mathematics and Optimization, 1998.

[39] S. Shapley. Stochastic games. Proceedings of the national Academy of Sciences, USA, 39:1095–

1100, 1953.
[40] J. H. Spencer. The strange logic of random graphs. Springer, 2001.

[41] H. S. Wilf. generatingfunctionology. Academic Press, Inc., 1990. Free internet edition.

APPENDIX A

Basics from Calculus

We first recall the formal definition of convergence. Let (P,≤) be a partially
ordered set. A upper (lower) bound of S ⊆ P is an element p ∈ P that is larger
(smaller) than all elements of S. An upper bound b is called a supremum (infimum)
of S if b larger than all other upper bounds of S in P , and written by sup(S). Suprema
and infima do not necessarily exist. But every non-empty subset S of the real numbers
R has a supremum and an infimum (by the definition of R).

Definition A.0.1. Let (an)n∈N be a sequence of numbers in R.

• Then the limit superior of (an)n∈N is an element of R ∪ {−∞,+∞} defined
as

lim sup
n→∞

an := inf
n→∞

(sup
m≥n

xm).

• The limit inferior of (an)n∈N is an element of R ∪ {−∞,+∞} defined as

lim sup
n→∞

an := sup
n→∞

(inf
m≥n

xm).

• (an)n∈N converges if

lim sup
n→∞

an = lim inf
n→∞

=: lim
n→∞

an ∈ R;

equivalently, lim(an)n∈N if and only if for every ε > 0 there exists an m > 0
such that for all n ≥ m |f(an)− f(a)| < ε.

Let S ⊆ R, let z ∈ S, and f : S → R. We write lima→z f(a) = b if for every ε > 0
there exists δ > 0 such that for all a ∈ S with |a− z| < δ we have |f(a)− f(z)| < ε.
The definitions for complex-valued functions are analogous. It is a basic lemma in
calculus that limits in C can be evaluated componentwise: we identify C with R2.
Then (ai)n∈N converges against a ∈ C if the sequence of real parts converges against
the real part of a and the sequence of imaginary parts converges against the imaginary
part of a.

A.1. Divergence and Convergence Tests

We recall some of the basic divergence and convergence tests.

Lemma A.1.1 (term divergence test). If limn→∞ an does not exist or limn→∞ 6= 0
then

∑
n∈N an diverges.

Proof. We show the contrapositive: if
∑
n∈N an converges, then limn→∞ an = 0.

Writing sn for
∑n
i=0 ai and ` for limn→∞ sn, we have

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = `− ` = 0. �

Lemma A.1.2 (comparison test). If
∑
n∈N bn converges, and there exists an m ∈ N

such that 0 ≤ an ≤ bn for all n ≥ m, then
∑
n∈N an converges, too.

111

112 A. BASICS FROM CALCULUS

Proof. Let sn :=
∑n
i=0 an. Then sn−1 = an+1 ≥ 0 for all n ≥ m. So sn+1 ≥ sn

which means that sn is non-decreasing. It is one of the fundamental properties of real
numbers that a non-decreasing sequence converges if it has an upper bound. Such an
upper bound exists since

sn = a0 + a1 + · · ·+ an ≤ b0 + b1 + · · ·+ bn

≤ b0 + b1 + · · ·+ bn + bn+1 + · · · �

A sequence (an)n∈N of real or complex numbers is called a Cauchy sequence if
and only if for every ε > 0 there exists an n0 ∈ N such that for all n,m ≥ n0 we have
|am−an| < ε. Since the real and complex numbers are complete a sequence converges
if and only if it is a Cauchy sequence. This condition is useful since we do not need to
know the limit of the sequence in order to prove convergence. It gives the following
convergence test for series.

Lemma A.1.3 (Cauchy’s convergence test).
∑
n∈N ai is convergent if and only if

for every ε > 0 there exists an n0 ∈ N such that |an+1 + an+2 + · · ·+ an+p| < ε for all
n > n0 and p ∈ N.

Proof. Let sn :=
∑n
m=0 am. By definition, the series

∑
n∈N ai is convergent if

and only if (sn)n∈N is convergent, which is the case if and only if (sn)n∈N is a Cauchy
sequence. Writing out this last condition we arrive at the statement. �

And we have a further divergence test.

Lemma A.1.4 (tail of convergent series tends to zero). Let
∑
n∈N an be a conver-

gent series. Then bm :=
∑∞
n=m an converges and limm→∞ bm = 0.

Proof. The convergence of
∑∞
n=m an follows immediately from Cauchy’s test.

We have
∑
n∈N an =

∑m
n=0 am + bm. Since limm→∞

∑m
n=0 am =

∑
n∈N an we have

that limm→∞ bm = 0. �

A.2. Inequalities

Lemma A.2.1 (inequality of arithmetic and geometric means). Let x1, . . . , xn be
non-negative real numbers. Then

x̄a :=
x1 + x2 + · · ·+ xn

n
≥ n
√
x1 · x2 · · ·xn =: x̄g

and equality holds if and only if x1 = x2 = · · · = xn.

Proof. Apply (30) to xi/x̄a − 1, and we obtain

exp(xi/x̄a − 1) ≥ xi/x̄a.
Multiplying all of these inequalities for all i ∈ {1, . . . , n} we obtain

exp

(
n∑
i=1

xi/x̄a − n

)
≥
∏
i

xi/x̄a

and hence
1 = exp(n− n) ≥ x̄ng /x̄na

and finally

x̄na ≥ x̄ng . �

Lemma A.2.2 (Cauchy-Schwarz). Let x, y ∈ Rn. Then(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
. (76)

A.2. INEQUALITIES 113

Proof. We use the usual notation 〈x, y〉 for the scalar product
∑n
i=1 xiyi and

||x|| :=
√
〈x, x〉 for the associated norm; then (76) can be written as 〈x, y〉 ≤ ||x||·||y||.

Note that for every λ ∈ R we have

0 ≤ 〈λy, λy〉 = 〈x, x〉 − 2λ〈x, y〉+ λ2〈y, y〉.

Choosing λ := 〈x,y〉
〈y,y〉 we obtain

0 ≤ 〈x, x〉 − 2
〈x, y〉2

〈y, y〉
+
〈x, y〉2

〈y, y〉
= 〈x, x〉 − 〈x, y〉

2

〈y, y〉
and hence 〈x, y〉2 ≤ 〈x, x〉·〈y, y〉. We obtain the statement by taking square roots. �

APPENDIX B

Some Basics from Complexity Theory

For a set A, we write A∗ for the set of all words over the alphabet A. A word
over A can be seen as a function from {1, . . . , n} → A, for some n ∈ N. We write ε
for the empty word (i.e., for the function with the empty domain).

The most classical setting of complexity theory is the study of the computational
complexity of functions f from {0, 1}∗ → {0, 1}. Alternatively, we may view f as
a set of words, namely that set of words w such that f(w) = 1; such sets are also
called formal languages. There are several mathematically rigorous machine models to
formalise the set of such functions that are computable or efficiently computable. The
first insight is that most of these machine models lead to the same, or to closely related
classes of functions. Complexity theory maps out the landscape of the resulting classes
of functions. Typically the first machine model that is introduced in introductory
courses are Turing machines.

B.1. Turing Machines

Turing machines strike a good balance between the following two (almost contra-
dictory!) requirements that a theoretician has for these machine models:

• the model should be relatively simple, so that it is easy to show that it can
be simulated by many other machine models.
• the model should be relatively powerful, so that it is easy to show that it

can simulate many other machine models.

Turing machines are simple, but still the definition does not easily fit into a few
lines. On the other hand, today academics are most likely to already have a very
good idea of what a computer program can do (in polynomially many steps); and this
coincides with what a Turing machine M can do (in polynomially many computational
steps). In a nutshell, a Turing machine

• has an unboundedly large memory containing values from {−1, 0, 1} (the
symbol −1 will be called the blank symbol);
• has finitely many states Q;
• has a read- and write head;
• has a finite transition function δ : Q× {−1, 0, 1} → Σ×Q× {l, r};
• has a accept state y ∈ Q.
• has a start state s ∈ Q.

Initially, the memory just contains the word w ∈ {0, 1}∗, i.e., in the first cell there
is w1, in the second cell there is w2, etc, and in all further memory cells there is −1,
and the machine is in state s. Depending on its state u ∈ Q and the tape content c
under the read-write head, let (v, d,m) := δ(u, c); then

(1) the machine changes to state v;
(2) the tape content under the read-write head is changed from c to d,
(3) the read-write tape moves one cell to the left if m = l, and one to the right

if m = r.

115

116 B. SOME BASICS FROM COMPLEXITY THEORY

If the machine reaches state y it accepts. Every Turing machine describes a formal
language, namely the function f : {0, 1}∗ → {0, 1} such that f(w) = 1 if and only
if when running the machine on input w it eventually accepts. We also say that M
computes f , and we then sometimes write M(f) instead of f(w). More generally,
Turing machines can be used to describe functions f from {0, 1}∗ to {0, 1}∗ where
f(w), for a given word w, is the string that is written on the output tape when the
Turing machine accepts (here we require that the machine terminates on every input
after finitely many steps, and again we say that M computes f).

So we will pretend in the following that the reader already knows what Turing
machines M are. It turns out that despite the simplicity of Turing machines, they
can simulate most of the other machine models, and they can simulate any machine
that humans ever constructed (even when neglecting the restriction that we one have
some fixed finite maximal memory size in this universe).

B.2. Complexity

In complexity theory we are interested in the number of computation steps that
M needs to perform to compute f(w), which corresponds to computation time. For
example, we say that a Turing machine runs in polynomial time if the number of
computation steps is in O(|w|k) for some k ∈ N. The class of such functions is
denoted by P .

Coding. In the combinatorics course we have met computational complexity for
example in the section about colorability. We mentioned that 2-colorability is in P
and that k-colorability, for k ≥ 3, is NP-hard. But these were problems about finite
graphs, whereas in the above we only treated formal languages. But this is just a
matter of coding. We first observe that we can simulate any alphabet by our alphabet
{0, 1}, by just grouping bits together to represent a richer alphabet. In particular, we
will typically use the letter # to separate different numbers in the input. One way to
represent a graph as a word is to first write the number n of vertices, followed by the
symbol #, followed by a sequence of n2 bits for the adjacency matrix.

The second most important complexity class is NP.

Definition B.2.1. NP (for nondeterministic polynomial time) stands for the class
of all functions f : {0, 1}∗ → {0, 1} such that there exists a polynomial-time Turing
machine M and a d ∈ N such that for every w ∈ {0, 1}∗ there exists a a ∈ {0, 1}∗
with |a| ∈ O(nd) such that f(w) = M(w#a).

It is a famous open problem whether P = NP, and it is widely conjectured that
P 6= NP. To explain the significance of this conjecture, we need a couple of more
concepts. Let f1, f2 : {0, 1}∗ → {0, 1}. A reduction from f1 to f2 is a function
g : {0, 1}∗ → {0, 1}∗ such that f1(w) = f2(g(w)). A reduction g is polynomial-time if
g can be computed a Turing machine that runs in polynomial time.

Definition B.2.2. A function f : {0, 1}∗ → {0, 1} is NP-hard if every function g
in NP has a polynomial-time reduction to f . A function is called NP-complete if it is
in NP and NP-hard.

The class coNP is dual to NP: it is the class of all functions f such that 1−f is in
NP. There is an analogous definition for any complexity class K: a function is in co-K
if 1 − f is in K. Clearly, every function in P is both in NP and in coNP. There are
some problems that are simultaneously in NP and in coNP, but that are not known
to be in P: we have seen some examples in Chapter 2.

B.4. THE P VERSUS NP PROBLEM 117

B.3. A Logic Perspective

A class of finite graphs C is in NP if there exists a formal language in NP such that
each word in the language codes a graph in C (say in the way we described above),
and every graph in C is coded by some word in the language. Unlike the class P, it is
possible to define the class of all graph classes in NP transparently and fully formally
in a few lines (without any reference to Turing machines).

Theorem B.3.1 (Fagin). A class of finite graphs C is in NP if and only if there
exists an existential second-order sentence Φ such that for every finite graph G we
have

G ∈ C if and only if G |= Φ.

We do not define existential second-order logic here. The interested reader is
referred to a textbook on finite model theory to learn more about such connections
between logic and complexity theory, e.g. [26].

B.4. The P Versus NP Problem

We now return to the question why most researchers believe that P 6= NP. In
order to show that P=NP is suffices to provide for any of the known NP-complete
problems a polynomial-time algorithm. There are many NP-complete problems that
are of central importance in optimisation, scheduling, cryptography, bioinformatics,
artificial intelligence and many more areas. If P=NP, then this would mean a simul-
taneous breakthrough in all of these areas. It is fair to say that every day, thousands
of researchers are directly or indirectly working on proving that P=NP (since they
work on things that are related to the better understanding of some NP-complete
problem). The fact that nobody has succeeded (not even came close to) is one of the
reasons why we believe that P cannot be equal to NP. A world where P = NP would
probably be drastically different from the world we live in. On the other hand, we
also have no clue on how to possibly prove that P 6= NP. And quite a bit is known
about approaches to proving P 6= NP that must fail (see [1]).

	Preface
	Chapter 1. Graphs
	1.1. Undirected Graphs
	1.2. Connectivity
	1.3. Colorability
	1.4. Trees
	1.5. Matchings

	Chapter 2. Duality
	2.1. Duality in Linear Algebra
	2.2. Weighted Matchings
	2.2.1. Maximum matching as an integer linear program
	2.2.2. A relaxation

	2.3. The Duality Theorem
	2.3.1. Example first
	2.3.2. The dual linear program in general
	2.3.3. Optimality via feasibility
	2.3.4. Fourier-Motzkin elimination
	2.3.5. The Farkas lemma
	2.3.6. Proving the duality theorem
	2.3.7. The dualization recipe

	2.4. Applications
	2.4.1. Flows in networks
	2.4.2. The easychair problem
	2.4.3. The Markov Decision Problem
	2.4.4. Von Neumann Minimax Theorem
	2.4.5. Simple stochastic games

	Chapter 3. The Probabilistic Method
	3.1. Tournaments
	3.2. Asymptotic Growth
	3.2.1. O-notation
	3.2.2. The exponential function

	3.3. Random Graphs
	3.3.1. Introducing random graphs
	3.3.2. The Erdos-Rényi evolution
	3.3.3. The first moment method
	3.3.4. The second moment method
	3.3.5. The void
	3.3.6. The k-th day
	3.3.7. Day
	3.3.8. The double jump
	3.3.9. Past the double jump
	3.3.10. Connectivity
	3.3.11. Beyond connectivity
	3.3.12. Powers of n

	3.4. High Girth and High Chromatic Number
	3.5. Extremal Graph Theory

	Chapter 4. Ramsey Theory
	4.1. The Pigeonhole Principle
	4.2. Konig's Tree Lemma
	4.3. Ramsey's Theorem
	4.4. A Probabilistic Lower Bound
	4.5. Applications
	4.5.1. Number Theory
	4.5.2. Geometry

	4.6. The Theorem of Hales-Jewett
	4.6.1. Positional games
	4.6.2. The [n]d game
	4.6.3. The Hales-Jewett Theorem
	4.6.4. Application: van der Waerden's theorem
	4.6.5. Application: monochromatic copies of graphs

	Chapter 5. Generating Functions
	5.1. Motivating Generating Functions
	5.2. The Idea
	5.3. Formal Power Series
	5.3.1. Defining power series
	5.3.2. The reciprocal power series
	5.3.3. The derived power series
	5.3.4. Composing power series
	5.3.5. The partial fraction decomposition
	5.3.6. The Fibonacci numbers

	5.4. Regular Languages
	5.4.1. Deterministic finite automata
	5.4.2. Regular expressions
	5.4.3. The generating function of a regular language

	5.5. Analytic Combinatorics
	5.5.1. From formal power series to functions: convergence
	5.5.2. From functions to power series: Taylor expansion

	5.6. The Catalan Numbers
	5.6.1. A recursion formula
	5.6.2. Generating trees uniformly at random
	5.6.3. A closed expression
	5.6.4. Further correspondences

	5.7. Exponential Generating Functions
	5.7.1. Labelled enumeration
	5.7.2. The exponential generating function
	5.7.3. Dictionary for labelled combinatorial constructions
	5.7.4. The Bell numbers
	5.7.5. 2-regular graphs
	5.7.6. Permutations and Stirling's formula
	5.7.7. Labelled graphs and labelled connected graphs

	5.8. The Lagrange Inversion Formula
	5.8.1. Laurent series
	5.8.2. Lagrange inversion
	5.8.3. Labelled trees
	5.8.4. Binary trees revisited

	5.9. Unlabelled Enumeration
	5.9.1. Relational structures
	5.9.2. Cycle index sums
	5.9.3. Basics of permutation groups
	5.9.4. Combinatorial constructions and cycle index sums
	5.9.5. Unlabelled rooted trees
	5.9.6. Unlabelled trees

	Bibliography
	Appendix A. Basics from Calculus
	A.1. Divergence and Convergence Tests
	A.2. Inequalities

	Appendix B. Some Basics from Complexity Theory
	B.1. Turing Machines
	B.2. Complexity
	B.3. A Logic Perspective
	B.4. The P Versus NP Problem

