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4.4. Oligomorphic Endomorphism Monoids 118
4.5. Countably Categorical Model-Complete Cores 119
4.6. Existential Positive Ryll-Nardzewski 123
4.7. Constructing Countably Categorical Structures 126

Chapter 5. Examples 131
5.1. Phylogeny Constraints and Homogeneous C-relations 131
5.2. Branching-Time Constraints and Semilinear Orders 134
5.3. Set Constraints and the Atomless Boolean Algebra 137
5.4. Spatial Reasoning 138
5.5. Finite Relation Algebras from Countably Categorical Structures 140
5.6. Fragments of Existential Second-Order Logic 141

3



4 CONTENTS

5.7. Examples with Doubly Exponential Orbit Growth 144
5.8. CSPs in SNP without a Countably Categorical Template 145

Chapter 6. Universal Algebra 147
6.1. Operation Clones 149
6.2. The Boolean Domain 164
6.3. Algebras and Pseudo-Varieties 167
6.4. Reflections 173
6.5. Varieties, Abstract Clones, and Birkhoff’s Theorem 175
6.6. Idempotent Algebras and Taylor Terms 183
6.7. Minor-preserving Maps and Height-one Identities 187
6.8. Siggers Operations 194
6.9. Weak Near-Unanimity Operations 198

Chapter 7. Equality Constraint Satisfaction Problems 205
7.1. Independence of Disequality 206
7.2. Three-transitive Templates 208
7.3. Square Embeddings 209
7.4. Classification 211
7.5. Essential Injectivity 212
7.6. Injectivity in One Direction 213

Chapter 8. Datalog 215
8.1. Introducing Datalog 216
8.2. The Expressive Power of Datalog 218
8.3. Datalog and Primitive Positive Interpretations 225
8.4. Arc Consistency 228
8.5. Strict Width and Quasi Near-Unanimity Operations 231
8.6. Datalog Inexpressibility Results 238
8.7. Fixed-Point Logic 244
8.8. Datalog for Finite Templates 247

Chapter 9. Topology 251
9.1. Topological Spaces 252
9.2. Topological Groups 257
9.3. Oligomorphic Groups 265
9.4. Topological Clones 268
9.5. The Topological Birkhoff Theorem 271
9.6. Uniformly Continuous Minor-preserving Maps 280

Chapter 10. Oligomorphic Clones 285
10.1. Pseudo Minor Conditions 286
10.2. Pseudo-Siggers Operations 292
10.3. Equivalence of Two Conjectures 298
10.4. The Model-complete Core Assumption 301
10.5. Clones of Canonical Operations 302

Chapter 11. Ramsey Theory 313
11.1. Ramsey Classes 314
11.2. Extremely Amenable Groups 317
11.3. Transfer Principles for the Ramsey Property 324
11.4. Canonisation 326
11.5. Application: Preservation of Pseudo-minor Conditions 332



CONTENTS 5

11.6. Application: Decidability Results for Meta-Problems 333

Chapter 12. Temporal Constraint Satisfaction Problems 339
12.1. Endomorphisms and Cameron’s Theorem 341
12.2. Hard Temporal CSPs 346
12.3. Definability of the Order 347
12.4. Lex-closed Constraints 348
12.5. Shuffle-closed Constraints 351
12.6. The Fundamental Case Distinction 360
12.7. Syntactic Descriptions 362
12.8. Polynomial-time Algorithms 372
12.9. Equational Descriptions 380
12.10. The Classification 384

Chapter 13. Non-Dichotomies 387
13.1. Arithmetical Templates 388
13.2. CSPs in SNP 389
13.3. coNP-intermediate Countably Categorical Templates 390

Chapter 14. Conclusion and Outlook 395
14.1. Future Research Directions 396
14.2. Open Problem List 398

Bibliography 405

Index 419



Introduction

Model Theory

Countable 
Categoricity

Examples

Primitive Positive 
Interpretations

Universal Algebra

Oligomorphic Clones

Equality CSPs

Topology

Ramsey Theory

Datalog

Non-dichotomies

Temporal CSPs



CHAPTER 1

Introduction to Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a computational problem where we
are given a finite set of variables and a finite set of constraints and where the task is
to decide whether values can be assigned to the variables so that all the constraints
are satisfied. Well-known examples of CSPs are the satisfiability problem for systems
of linear equations over the two-element field, the satisfiability problem for systems
of linear inequalities over the rational numbers, and the three-colouring problem for
undirected graphs, just to name three. CSPs appear in almost every area of theoreti-
cal computer science, for instance in artificial intelligence, scheduling, computational
linguistics, optimisation, computational biology, and verification. Many computa-
tional problems studied in those areas can be modelled by appropriately choosing a
set of constraint types, the constraint language (or template), that are allowed in the
input instance of a CSP. In the last decade, huge progress was made to find general
criteria for constraint languages that imply that the corresponding CSP can be solved
efficiently.

The complexity of CSPs became a topic that vitalises the field of universal al-
gebra as it turned out that questions about the computational complexity of CSPs
translate to important universal-algebraic questions about algebras that can be asso-
ciated to CSPs. This approach is now known as the algebraic approach to constraint
satisfaction complexity. The algebraic approach has raised questions that are of cen-
tral importance in universal algebra. The so-called dichotomy conjecture of Feder
and Vardi [177] stated that every CSP with a finite domain is either polynomial-
time tractable (i.e., in P) or NP-complete. According to a well-known result by
Ladner, it is known that there are NP-intermediate computational problems, i.e.,
problems in NP that are neither tractable nor NP-complete (unless P = NP). But
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the known NP-intermediate problems are extremely artificial. It would be interest-
ing from a complexity theoretic perspective to discover more natural candidates for
NP-intermediate problems. Two positive solutions to the dichotomy conjecture, both
using the universal-algebraic approach, have been announced in 2017 by Bulatov and
by Zhuk [116,358].

The problems in the literature that can be described by specifying a constraint
language over a finite domain, and that have been studied independently from the
CSP framework, are quite limited, and mostly focussed on specialised graph theoretic
problems or Boolean satisfiability problems. If we consider the class of all problems
that can be formulated by specifying a constraint language over an infinite domain, the
situation changes drastically. Many problems that have been studied independently
in temporal reasoning, spatial reasoning, phylogenetic reconstruction, and computa-
tional linguistics can be directly formulated as CSPs over an infinite domain. Also
feasibility problems in linear (and also non-linear, or tropical) programming (over the
rationals, the integers, or other domains) can be cast as CSPs.

In this book we present a generalisation of the universal-algebraic approach to
infinite domains. It turns out that this is possible when the constraint language,
viewed as a relational structure B with an infinite domain, is ω-categorical (or count-
ably categorical), i.e., its first-order theory has at most one countable model up to
isomorphism. An alternative characterisation of ω-categoricity of B which is most
useful in our context is in terms of the automorphism group of B: a structure B
is ω-categorical if and only if the automorphism group of B is oligomorphic, i.e.,
for every n ∈ N the automorphism group of B has only finitely many orbits in its
componentwise action on n-tuples of elements of B. Many of the CSPs in the men-
tioned application areas can be formulated with ω-categorical constraint languages
— in particular, problems coming from so-called qualitative calculi in artificial in-
telligence tend to have formulations with ω-categorical constraint languages. While
ω-categoricity is quite a strong assumption from a model-theoretic point of view (and,
for example, constraint languages for linear programming cannot be ω-categorical),
the class of computational problems that can be formulated with ω-categorical con-
straint languages is still a very large generalisation of the class of finite-domain CSPs.
This will be amply demonstrated by examples of ω-categorical constraint languages
from many different areas in computer science in Chapter 5.

There are several general results for ω-categorical structures that are important
when studying the computational complexity of the respective CSPs. We highlight
some of these general results, providing pointers into the text where all the involved
technical terms will be gently introduced.

• Every finite or countably infinite ω-categorical structure is homomorphically
equivalent to a finite or countably infinite ω-categorical structure which is
model complete and a core (Section 2.6). Model-complete cores have many
good properties: for example, they have quantifier elimination once ex-
panded by all primitively positively definable relations. Moreover, they can
be expanded by finitely many singleton relations {a} without changing the
complexity of the CSP. Since homomorphically equivalent structures have
the same CSP, we can therefore focus on structures having these properties.
• The so-called polymorphism clone of an ω-categorical structure B fully cap-

tures the computational complexity of the corresponding CSP (Chapter 6).
Every polymorphism clone gives rise to a topological clone with respect to
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the pointwise convergence topology. Topological clones are defined analo-
gously to topological groups and are a promising new subject in mathemat-
ics. We will see that the complexity of the CSP is already captured by the
polymorphism clone viewed as a topological clone (Section 9.4).
• Finally, if the expansion of an ω-categorical model-complete core by finitely

many singleton relations does not interpret primitively positively all fi-
nite structures, then it must have a pseudo-Siggers polymorphism (see Sec-
tion 10.2). For finite domains, the existence of such polymorphisms turned
out to be the dividing line between the polynomial-time tractable and the
NP-hard CSPs.

Despite all these general results for ω-categorical structures, the class of all ω-
categorical structures is still too large to hope for a complete complexity classification.
It is easy to see that there are ω-categorical structures B whose CSP is undecidable,
and, as we will see in Chapter 13, there are CSPs of various other complexities: for
example there are ω-categorical structures with a coNP-complete CSP, or with a CSP
that is contained in coNP but neither coNP-hard nor in P.

However, there is a natural subclass of the class of all ω-categorical structures
that might exhibit a complexity dichotomy as well. Formally, we consider the CSPs
for reducts of finitely bounded homogeneous structures; these notions will be intro-
duced in the text. Such structures have a finite representation and their CSPs are
always in NP. The class of CSPs of reducts of finitely bounded homogeneous struc-
tures contains all CSPs over finite domains, but also contains many additional CSPs
from the mentioned application areas. Moreover, every CSP in the complexity class
MMSNP (for Monotone Monadic Strict NP, treated in Section 5.6.2) can be formu-
lated in this way. It follows from general principles that if the model-complete core
template for such a CSP does not have a pseudo-Siggers polymorphism, then the CSP
is NP-hard. We conjecture that otherwise, the CSP ought to be in P, and refer to this
as the infinite-domain tractability conjecture. This conjecture has been confirmed in
numerous special cases:

• For all finite-domain CSPs [116,358];
• For all first-order reducts of

– (Q;<) [73] (see Chapter 12),
– the countable random graph [95],
– the model companion of the class of all C-relations [68],
– the universal homogeneous poset [249],
– all homogeneous undirected graphs [85],
– all unary structures [86];

• for all CSPs in the complexity class MMSNP [80].

Any outcome of the infinite-domain dichotomy conjecture for reducts of finitely
bounded homogeneous structures is significant: a negative answer might provide rel-
atively natural NP-intermediate problems, which would be of interest for complexity
theorists. A positive answer probably comes with a criterion which describes the
NP-hard CSPs, and it would probably provide algorithms for the polynomial-time
tractable CSPs. But then we would have a fascinatingly rich catalogue of compu-
tational problems where the computational complexity is known. Such a catalogue
would be a valuable tool for deciding the complexity of computational problems: since
CSPs for finitely bounded homogeneous structures are abundant, one may derive al-
gorithmic results by reducing the problem of interest to a known tractable CSP, and
one may derive hardness results by reducing a known NP-hard CSP to the problem
of interest.
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An important feature of the universal-algebraic approach is that the tractability
of a CSP can be linked to the existence of polymorphisms of the constraint language.
This link can be exploited in several directions: first, if we already know that a
constraint language of interest has a polymorphism satisfying good properties, then
this polymorphism can guide the search for an efficient algorithm for the corresponding
CSP. Another direction is that we already have an algorithm (or an algorithmic
technique), and that we want to know for which CSPs the algorithm is a correct
decision procedure: again, polymorphisms are the key tool for this task. Finally, we
may use the absence of polymorphisms with good properties to prove that a CSP is
NP-hard. There are several instances where these three directions of the algebraic
approach have been used very successfully for CSPs with finite domain constraint
languages [23,116,118,132,220,358] or ω-categorical constraint languages [68,73,
85,95].

Another tool that becomes useful specifically for polymorphisms over infinite do-
mains is Ramsey theory (Chapter 11). The basic idea here is to apply Ramsey theory
to show that polymorphisms must act canonically on large parts of their domain. If
we are working over a homogeneous structure with finite relational signature, then
there are only finitely many behaviours of canonical functions of a given arity, and
so this technique allows to perform combinatorial analysis when proving classification
results. With this approach we can also show that, under further assumptions on
B, many questions about the expressive power of B become decidable, such as the
question whether a given quantifier-free first-order formula is in B equivalent to a
primitive positive formula.

In Chapter 12 we use polymorphisms to classify the computational complexity of
a large family of constraint satisfaction problems, namely temporal CSPs, i.e., CSPs
for first-order reducts of (Q;<) which includes many CSPs in qualitative temporal
reasoning and scheduling. Our classification confirms the mentioned infinite-domain
tractability conjecture for this family. The class of temporal CSPs is particularly im-
portant because it often provides counterexamples for naive generalisations of known
facts for finite-domain constraint satisfaction; moreover, the polynomial-time algo-
rithms are particularly interesting in this class. Similar classifications have also been
obtained for the countable homogeneous universal poset [249], the model companion
of the class of C-relations [68], and for all homogeneous graphs [85].

Finally, in Chapter 13, we present results that show that the CSPs for certain
natural classes of infinite structures do not have a complexity dichotomy.

Chapter outline. Constraint satisfaction problems can appear in different forms,
because there are several ways to formalise CSPs. The differences in formalising CSPs
are related to the way that instances are coded and to the way that the problem itself
is described. In the next sections we present four formalisations; each of them is
attached to different lines of research. In later sections some arguments are more nat-
ural from one perspective than from the other, so it will be convenient to have them
all discussed here. Figure 1.1 shows the relationships among the four perspectives in
tabular form.

1.1. The Homomorphism Perspective

A relational signature τ is a set of relation symbols R each of which has an
associated finite arity k ∈ N. A relational structure A over the signature τ (also
called τ -structure) consists of a set A (the domain or base set) together with a relation
RA ⊆ Ak for each relation symbol R ∈ τ of arity k. It causes no harm and will be
convenient to allow structures whose domain is empty.
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Perspective Instance Problem Description Section

Homomorphism Structure Structure 1.1
Sentence Evaluation Sentence Structure 1.2
Satisfiability Sentence Sentences 1.3
Existential Second-Order Structure Sentence 1.4

Figure 1.1. The four perspectives on the definition of CSPs.

A homomorphism from a τ -structure A with domain A to a τ -structure B with
domain B is a function h : A → B that preserves all relations; that is, if R ∈ τ has
arity k and (a1, . . . , ak) ∈ RA, then (h(a1), . . . , h(ak)) ∈ RB. If a structure A has
a homomorphism to B we also that that A is homomorphic to B or that A maps
homomorphically to B. An isomorphism is a bijective homomorphism h such that
the inverse map h−1 : B → A, which sends h(x) to x, is a homomorphism, too.

In this text, a constraint satisfaction problem (CSP) is a computational problem
that is specified by a single structure with a finite relational signature, called the
template (or the constraint language; the name ‘constraint language’ is typically used
in the context of the second perspective on CSPs that we present in Section 1.2).
Such problems are sometimes also called non-uniform CSPs because B is not part of
the input, but fixed.

Definition 1.1.1 (CSP(B)). Let B be a (possibly infinite) structure with a
finite relational signature τ . Then CSP(B) is the computational problem of deciding
whether a given finite τ -structure A maps homomorphically to B.

CSP(B) can be considered to be a class — the class of all finite τ -structures that
map homomorphically to B. A homomorphism from a given τ -structure A to B is
called a solution of A for CSP(B). It is in general not clear how to represent solutions
for CSP(B) on a computer; however, for the definition of the problem CSP(B) we
do not need to represent solutions, since we only have to decide the existence of
solutions. To represent an input structure A of CSP(B) we fix a representation of
the relation symbols in the signature τ (the precise choice of the representation is
irrelevant because of the assumption that τ is finite). Thus, CSP(B) is a well-defined
computational problem for any infinite structure B with finite relational signature.

Example 1.1.2 (Digraph acyclicity). Next, consider the problem CSP(Z;<).
Here, the relation < denotes the strict linear order of the integers Z. An instance
A of this problem is a finite {<}-structure, which can be viewed as a directed graph
(also called digraph), potentially with loops. It is easy to see that A maps homomor-
phically to (Z;<) if and only if there is no directed cycle in A (loops are considered
to be directed cycles, too). It is easy to see and well known that this can be tested in
linear time, for example by performing a depth-first search on the digraph A. 4

Example 1.1.3 (Betweenness). The so-called Betweenness Problem [305] can be
modelled as CSP(Z; Betw) where Betw is the ternary relation

{(x, y, z) ∈ Z3 | (x < y < z) ∨ (z < y < x)} .
This problem is one of the NP-complete problems listed in the book of Garey and
Johnson [183]. 4

Example 1.1.4 (Cyclic ordering). The Cyclic-ordering Problem [181] can be
modelled as CSP(Z; Cycl) where Cycl is the ternary relation

{(x, y, z) ∈ Z3 | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)} .
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This problem is again NP-complete and can be found in [183]. 4

Example 1.1.5 (H-colouring problems). Let H be an (undirected) graph. We
view undirected graphs as τ -structures where τ contains a single binary relation sym-
bol E, which denotes a symmetric relation; in our setting, it is natural and useful
to allow loops, i.e., edges of the form (x, x). Then the H-colouring problem is the
computational problem to decide for a given finite graph G whether there exists a
homomorphism from G to H. For instance, if H is the complete graph on three ver-
tices K3 without loops, then the H-colouring problem is the famous 3-colorability
problem (see e.g. [183]). Similarly, for every fixed k, the k-colorability problem can
be modelled as CSP(Kk), where Kk is the complete graph with k vertices, also called
a k-clique. 4

The next lemma (Lemma 1.1.8) is a useful test to determine whether a compu-
tational problem can be formulated as CSP(B) for some relational structure B.

Definition 1.1.6. An (induced) substructure of a τ -structure A is a τ -structure
B with B ⊆ A and RB = RA ∩ Bn for each n-ary R ∈ τ ; we also say that B is
induced on B by A, and write A[B] for B.

The union of two τ -structures A,B is the τ -structure A ∪B with domain A ∪B
and the relation RA∪B := RA∪RB for every R ∈ τ . The intersection A∩B of A and B
is defined analogously. A disjoint union of A and B is the union of isomorphic copies
of A and B with disjoint domains. As disjoint unions are unique up to isomorphism,
we usually speak of the disjoint union of A and B, and denote it by A ] B. The
disjoint union of a set of τ -structures C is defined analogously (and the disjoint union
of an empty set of structures is the τ -structure with empty domain). A structure
is called connected if it is not the disjoint union of two non-empty structures. A
maximal connected substructure of B (i.e., a connected substructure of B such that
every substructure of B with a larger domain is not connected) is called a connected
component of B.

Definition 1.1.7. We say that a class C of relational structures is

• closed under homomorphisms if whenever A ∈ C and A maps homomorphi-
cally to B we have B ∈ C;
• closed under inverse homomorphisms if whenever B ∈ C and A maps homo-

morphically to B we have A ∈ C;
• closed under (finite) disjoint unions if whenever A,B ∈ C the disjoint union

of A and B is also in C.

Note that a class C of τ -structures is closed under inverse homomorphisms if and
only if its complement in the class of all τ -structures is closed under homomorphisms.
When a class is closed under inverse homomorphisms, or closed under homomor-
phisms, it is in particular closed under isomorphisms.

Let F be a class of τ -structures. We say that a structure A is F-free if no
B ∈ F maps homomorphically to A (so F denotes the homomorphically forbidden
structures). The class of all finite F-free structures we denote by Forbhom(F). The
following is a simple, but fundamental lemma for CSPs.

Lemma 1.1.8. Let τ be a finite relational signature and let C a class of finite
τ -structures. Then the following are equivalent.

(1) C = CSP(B) for some τ -structure B.
(2) C = Forbhom(F ) for a class of finite connected τ -structures F .
(3) C is closed under disjoint unions and inverse homomorphisms.
(4) C = CSP(B) for a countable τ -structure B.
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Triangle-Freeness
INSTANCE: An undirected graph G.
QUESTION: Is G triangle-free?

Acyclic-Bipartition
INSTANCE: A digraph G.
QUESTION: Is there a partition V = V1 ] V2 of the vertices V of G such that
both G[V1] and G[V2] are acyclic?

No-Mono-Tri
INSTANCE: An undirected graph G.
QUESTION: Is there a partition V = V1 ] V2 of the vertices V of G such that
both G[V1] and G[V2] are triangle-free?

Figure 1.2. Three computational problems that are closed under
disjoint unions and inverse homomorphisms.

Proof. It suffices to prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4). For the
implication from (1) to (2), let F be the class of all finite connected τ -structures
that do not map homomorphically to B. If a structure A maps homomorphically
to B then no C ∈ F can map homomorphically to A because of the transitivity of
the homomorphism relation. Conversely, if A does not map homomorphically to B,
then already one of the connected components of A does not map homomorphically
to B. This connected component is in F , which shows that a structure from F maps
homomorphically to A.

(2) implies (3). Suppose (2), and let A1 and A2 be two structures from Forbhom(F ).
Since every C ∈ F is connected, every homomorphism from C to A1 ] A2 must al-
ready be a homomorphism to A1 or to A2, which is impossible. Hence, Forbhom(F ) is
closed under disjoint unions. Closure under inverse homomorphisms follows straight-
forwardly from the transitivity of the homomorphism relation.

(3) implies (4). Suppose that C is a class of relational structures that is closed
under disjoint unions and inverse homomorphisms. Let C′ be a subclass of C where
we select one structure from each isomorphism class of structures in C. Let B be
the (countable) disjoint union over all structures in C′ (if C′ is empty then B is by
definition the empty structure1). Clearly, every structure in C maps homomorphically
to B. Now, let A be a finite structure with a homomorphism h to B. By the
construction of B, the set h(A) is contained in the disjoint union C of a finite set of
structures from C′. Since C is closed under disjoint unions, C is in C. Clearly, A maps
homomorphically to C, and because C is closed under inverse homomorphisms, A is
in C as well. �

Example 1.1.9. The computational problems in Figure 1.2 are closed under
disjoint unions and inverse homomorphisms. Hence, Lemma 1.1.8 shows that they
can be formulated as CSP(B) for some relational structure B. It is easy to see that
none of those three problems can be formulated as CSP(B) for a finite structure B.

We verify this for the problem of Triangle-freeness. For a fixed n, consider the
graph that contains vertices x1, . . . , xn, and that contains for every pair i, j with 1 ≤

1Structures with an empty domain are often forbidden in model theory. Lemma 1.1.8 is one of
the places that motivates our decision to allow them in this text.
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i < j ≤ n two additional vertices ui,j , vi,j and the edges (xi, ui,j), (ui,j , vi,j), (vi,j , xj).
The resulting graph is clearly triangle-free. But note that every homomorphism f
from this graph to a graph H with strictly less than n vertices must identify at least
two of the vertices x1, . . . , xn. So suppose that f(xi) = f(xj). Then (f(xi), f(ui,j)),
(f(ui,j), f(vi,j)), and (f(vi,j), f(xj)) are edges in H because f is a homomorphism.
Hence, H either contains a triangle or a loop. In both cases, H cannot be the template
for Triangle-Freeness. We have thus ruled out all templates of size n − 1, which
concludes the proof since n was chosen arbitrarily. 4

The central conjecture for finite-domain constraint satisfaction problems was the
dichotomy conjecture, due to Feder and Vardi [177], which states that for every
structure B with a finite relational signature and a finite domain, CSP(B) is in P
or NP-complete.. A solution to the dichotomy conjecture has been announced by
Bulatov [116] and, independently, by Zhuk [358]. Before, it has been verified for
many classes of structures B, for instance

• for structures B with a two-element domain (Schaefer’s theorem [328]; see
Section 6.2);

• structures over a 3-element domain [113];
• for finite undirected graphs B (the theorem of Hell and Nešetřil [202]; see

Section 6.8);
• finite digraphs without sources and sinks [27];
• finite structures B that contain a unary relation symbol for each subset of

the domain of B, due to [111] (see also [17] and [115]).

There are many equivalent descriptions of the border between polynomial-time tractable
and NP-complete finite-domain CSPs; see Sections 3.7, 6.3.5, 6.6, 6.9.

We close this section with an important concept for finite structures B, the notion
of a core; generalisations to infinite structures B are presented in Section 2.6.2. The
motivation for this concept is that for every finite-domain CSP has a template of
minimal size which is unique up to isomorphism, and this template has many pleasant
properties. To formalise this, we need the following definitions. Two structures A and
B are called homomorphically equivalent if there exists a homomorphism from A to
B and vice versa. An embedding of A into B is an injective map f : A→ B such that
(a1, . . . , ak) is in RA if and only if (f(a1), . . . , f(ak)) is in RB. An endomorphism of
a structure B is a homomorphism from B to B.

Definition 1.1.10. A structure B is a core if all its endomorphisms are embed-
dings2. For structures A,B of the same signature, the structure B is called a core of
A if B is a core and homomorphically equivalent to A.

In fact, we speak of the core of a finite structure A, due to the following fact,
whose proof is easy and left to the reader.

Proposition 1.1.11. Let A be a finite structure. Then A has a core, and all
cores of A are isomorphic.

Core structures B have many pleasant properties when it comes to studying the
computational complexity of CSP(B) (see for instance Proposition 1.2.11 below).
Clearly, when A and B are homomorphically equivalent, then CSP(A) = CSP(B).
Therefore, and because of Proposition 1.1.11, we can assume without loss of generality

2For finite structures B, injective self-maps must be bijective, and in fact every injective endo-
morphism of a structure B must be an automorphism. For infinite structures, however, this need

not be true, and for reasons that become clear in Chapter 4 we choose the present formulation of
the definition.
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that a finite structure B is a core when studying CSP(B). We finally remark that
structures with a one-element core have a trivial CSP.

Proposition 1.1.12. Let B be a relational structure with a finite relational sig-
nature and a one-element core. Then CSP(B) is in P.

Proof. Let C be the core of B, and let c be the unique element of C. The
problem CSP(B) can be solved as follows. Let A be an input structure of CSP(B). If
there is (t1, . . . , tn) ∈ RA such that (c, . . . , c) /∈ RC, then reject. Otherwise accept. �

1.2. The Sentence Evaluation Perspective

Let τ be a relational signature. A first-order τ -formula φ(x1, . . . , xn) is called
primitive positive if it is of the form

∃xn+1, . . . , xm(ψ1 ∧ · · · ∧ ψl)
where ψ1, . . . , ψl are atomic τ -formulas, i.e., formulas of the form R(y1, . . . , yk) with
R ∈ τ and yi ∈ {x1, . . . , xm}, of the form y = y′ for y, y′ ∈ {x1, . . . , xm}, or of the
form ⊥ or > for false and true.3 As usual, formulas without free variables are called
sentences. Primitive positive formulas also play an important role in database theory,
where they are known under the name of conjunctive queries.

From a model-checking perspective, CSPs are defined as follows. We will see (in
Propositions 1.2.4 and 1.2.5) that this definition is essentially the same definition as
Definition 1.1.1, and that the differences are a matter of formalisation.4

Definition 1.2.1. Let B be a (possibly infinite) structure with a finite relational
signature τ . Then CSP(B) is the computational problem to decide whether a given
primitive positive τ -sentence φ is true in B.

The given primitive positive τ -sentence φ is also called an instance of CSP(B).
The conjuncts of an instance φ are called the constraints of φ. A mapping from the
variables of φ to the elements of B that is a satisfying assignment for the quantifier-free
part of φ is also called a solution to φ.

Some authors omit the (existential) quantifier-prefix in instances φ of CSP(B),
and the question is then whether φ is satisfiable over B. Clearly, this is just re-
phrasing the problem above, but it explains the terminology of satisfiable and unsat-
isfiable (rather than true and false) instances of CSP(B).

Example 1.2.2 (Boolean satisfiability problems). There are many Boolean sat-
isfiability problems that can be cast as CSPs. Well-known examples are 3SAT (see
Figure 1.3) and the restricted versions of 3SAT called 1-in-3-3SAT and Not-All-Equal-
3SAT [183]. These three problems are NP-complete. An interesting feature of the
last two problems is that they remain NP-complete even when all clauses in the input
only contain positive literals. With this additional restriction, the problems are called
Positive-1-in-3-3SAT and Positive-Not-All-Equal-3SAT, and their definition can be
found in Figure 1.3.

3Note that ⊥ can be thought of as a symbol for the empty relation of arity 0, and > as a symbol
for the non-empty relation of arity 0; this relation contains the element (), even if the domain is
empty. Note that if the domain is non-empty then we do not need a symbol > for true, since we can

use the primitive positive sentence ∃x : x = x to express it.
4A small difference between the homomorphism perspective and the sentence evaluation problem

results from the fact that we do allow equality in primitive positive formulas; as we will see in
Lemma 1.2.6, adding equality to the constraint language does not affect the complexity of the CSP

up to log-space reductions. There is research, though, that studies the complexity of CSPs up to an
even finer level than log-space reducibility, and there equality might not automatically be allowed in
the input to a constraint satisfaction problem (cf. [262]).
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3SAT
INSTANCE: A propositional formula in conjunctive normal form (CNF) with
at most three literals per clause.
QUESTION: Is there a Boolean assignment for the variables such that in each
clause at least one literal is true?

Positive 1-in-3-3SAT
INSTANCE: A propositional 3SAT formula with only positive literals.
QUESTION: Is there a Boolean assignment for the variables such that in each
clause exactly one literal is true?

Positive Not-All-Equal-3SAT
INSTANCE: A propositional 3SAT formula with only positive literals.
QUESTION: Is there a Boolean assignment for the variables such that in each
clause neither all three literals are true nor all three are false?

Figure 1.3. Three Boolean satisfiability problems from the list of
NP-complete problems of [183] that can be formulated as CSP(B)
for appropriate B.

All of these problems can be formulated as CSP(B), for an appropriate 2-element
structure B. Positive-1-in-3-3SAT can be formulated as CSP(B) for the template

B = ({0, 1}; 1IN3) where 1IN3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} ,
and Positive-Not-All-Equal-3SAT as CSP(B) for the template

B = ({0, 1},NAE) where NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} .

These problems can also be formulated as CSPs if we do not impose the restriction
that all literals are positive; the corresponding problems are then called 1-in-3-3SAT
and Not-All-Equal-3SAT, respectively. The idea is to use a different ternary relation
for each of the eight ways that three distinct variables in a clause with three literals
may be negated. In this way, we can also model the classical problem of 3SAT (again,
see Figure 1.3) as a CSP. Clauses of the type x ∨ y ∨ ¬z in the 3SAT problem will
then be viewed as constraints R++−(x, y, z), where R++− = {0, 1}3 \{(0, 0, 1)} (here,
x, y, z are not necessarily distinct variables). Similarly, the well-known 2SAT problem
can be viewed as CSP({0, 1};R++, R+−, R−+, R−−) where

R++ = {(0, 1), (1, 0), (1, 1)},
R+− = {(0, 0), (1, 1), (1, 0)},
R−+ = {(1, 1), (0, 0), (0, 1)}, and

R−− = {(1, 0), (0, 1), (0, 0)} . 4

Example 1.2.3 (Disequality constraints). Consider the problem CSP(N; =, 6=).
An instance of this problem can be viewed as an (existentially quantified) set of
variables, some linked by equality, some by disequality5 constraints. Such an instance
is false in (N; =, 6=) if and only if there is a path x1, . . . , xn from a variable x1 to
a variable xn that uses only equality edges, i.e., ‘xi = xi+1’ is a constraint in the

5We deliberately use the word disequality instead of inequality, since we reserve the word in-
equality for the relation x ≤ y.
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instance for each 1 ≤ i ≤ n − 1, and additionally ‘x1 6= xn’ is a constraint in the
instance. Clearly, it can be tested in linear time in the size of the input instance
whether the instance contains such a path. 4

1.2.1. Canonical conjunctive queries. To every finite relational τ -structure
A we can associate a τ -formula, called the canonical conjunctive query of A, and
denoted by Q(A). The variables of this sentence are the elements of A; the formula
is the conjunction of all atomic formulas of the form R(a1, . . . , ak) for R ∈ τ and
(a1, . . . , ak) ∈ RA.

For example, the canonical conjunctive query Q(K3) of the complete graph K3

with the three vertices {u, v, w} is the formula

E(u, v) ∧ E(v, u) ∧ E(v, w) ∧ E(w, v) ∧ E(u,w) ∧ E(w, u) .

The following proposition follows straightforwardly from the definitions.

Proposition 1.2.4. Let B be a structure with finite relational signature τ , and
let A be a finite τ -structure. Then there is a homomorphism from A to B if and only
if Q(A) is satisfiable in B.

1.2.2. Canonical databases. To present a converse of Proposition 1.2.4, we
define the canonical database D(φ) of a primitive positive τ -formula, which is a rela-
tional τ -structure defined as follows. We require that φ does not contain the symbols
⊥ and =. Then the domain of D(φ) is the set of variables (both the free variables and
the existentially quantified variables) that occur in φ. There is a tuple (v1, . . . , vk)
in a relation R of D(φ) iff φ contains the conjunct R(v1, . . . , vk). The following is
similarly straightforward as Proposition 1.2.4.

Proposition 1.2.5. Let B be a structure with signature τ , and let φ be a primitive
positive τ -sentence that does not contain the symbols = and ⊥. Then φ is true in B
if and only if D(φ) maps homomorphically to B.

Note that the canonical database of the canonical query of a structure A equals A.
Conversely, the canonical query of the canonical database of a quantifier-free primitive
positive formula φ is equivalent to φ. Also note that from an instance φ of CSP(B)
that contains the symbol = we can easily compute an equivalent instance which does
not, by replacing every occurrence of y by x if φ contains the conjunct x = y, and
then removing this conjunct.

Due to Proposition 1.2.5 and Proposition 1.2.4, we may freely switch between the
homomorphism and the logic perspective whenever this is convenient. In particular,
instances of CSP(B) can from now on be either finite structures A or primitive positive
sentences φ, whichever is more convenient.

1.2.3. Expansions. Let A be a τ -structure, and let A′ be a τ ′-structure with
τ ⊆ τ ′. If A and A′ have the same domain and RA = RA′ for all R ∈ τ , then A is
called the τ -reduct (or simply reduct) of A′, and A′ is called a τ ′-expansion (or simply
expansion) of A. If A is a structure, and R is a relation over the domain of A, then
we denote the expansion of A by R by (A, R).

When A is a τ -structure, and φ(x1, . . . , xk) is a formula with k free variables
x1, . . . , xk, then the relation defined by φ is the relation

{(a1, . . . , ak) | A |= φ(a1, . . . , ak)} .
If the formula is primitive positive, then this relation is called primitively positively
definable. Primitive positive definitions are an important concept in mathematics,
either explicitly or implicitly; for instance, the famous theorem of Davis, Matiyasevich,
Putnam, and Robinson [291] can be phrased as follows: a subset of Z is recursively
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enumerable if and only if it has a primitive positive definition in (Z; +, ∗, 1). Also
note that if A is a relational structure with domain R whose relations are convex and
if R is primitively positively definable in A, then R must be convex, too.

The following lemma says that we can expand structures by primitively positively
definable relations without changing the complexity of the corresponding CSP. Hence,
primitive positive definitions are an important tool to prove NP-hardness: to show
that CSP(B) is NP-hard, it suffices to show that there is a primitive positive definition
of a relation R such that CSP(B, R) is already known to be NP-hard. Stronger tools
to prove NP-hardness of CSPs will be introduced in Section 6.3.5.

Lemma 1.2.6 (Jeavons, Cohen, Gyssens [224]). Let B be a structure with finite
relational signature, and let R be a relation that has a primitive positive definition in
B. Then CSP(B) and CSP(B, R) are linear-time equivalent. They are also equivalent
under log-space reductions.

Proof. It is clear that CSP(B) reduces to the new problem. So suppose that φ
is an instance of CSP(B, R). Replace each conjunct R(x1, . . . , xl) of φ by its primitive
positive definition ψ(x1, . . . , xl). Move all quantifiers to the front, so that the resulting
formula is in prenex normal form and hence primitive positive. Finally, equalities can
be eliminated one by one: for an equality x = y, remove y from the quantifier prefix,
and replace all remaining occurrences of y by x. Let ψ be the formula obtained in
this way.

It is straightforward to verify that φ is true in (B, R) if and only if ψ is true in B,
and it is also clear that ψ can be constructed in linear time in the representation size
of φ. For the observation that the reduction is in log-space we need the recent result
that undirected reachability can be decided in deterministic log-space [322]. �

Example 1.2.7. The edge relation of the 5-element clique K5 = ({0, 1, 2, 3, 4}; 6=)
can be defined primitively positively over the undirected 5-element cycle C5, i.e., the
graph ({0, 1, 2, 3, 4};E) for E = {(x, y) | x − y ∈ {1,−1} mod 5}. The primitive
positive definition is

∃u1, u2

(
E(x, u1) ∧ E(u1, u2) ∧ E(u2, y)

)
which states the existence of a path with three edges between x and y; note that
from every vertex x of C5 every other vertex is reachable via a path of length three,
except for x itself. Hence, the relation defined by the formula is the edge relation of
the 5-element clique. 4

A typical application of Lemma 1.2.6 is the following.

Corollary 1.2.8. Let B be a structure with domain {0, 1} such that the relation
NAE (see Example 1.2.2) has a primitive positive definition in B. Then CSP(B) is
NP-hard.

Proof. By Lemma 1.2.6, there is a polynomial-time (even log-space) reduction
from CSP({0, 1}; NAE) to CSP(B). The problem CSP({0, 1}; NAE) is positive Not-
All-Equal-3SAT (see Example 1.2.2), which is NP-hard [183]. �

An automorphism of a structure B with domain B is an isomorphism between
B and itself. When applying an automorphism α to an element b from B we omit
brackets, that is, we write αb instead of α(b). The set of all automorphisms α of B is
denoted by Aut(B), and α−1 denotes the inverse map of α.

Definition 1.2.9. Let (b1, . . . , bk) be a k-tuple of elements of B. A set of the
form S = {(αb1, . . . , αbk) | α ∈ Aut(B)} is called an orbit of k-tuples under Aut(B)
(the orbit of (b1, . . . , bk)).
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Lemma 1.2.10. Let B be a structure with a finite relational signature and do-
main B, and let R = {(b1, . . . , bk)} be a k-ary relation that only contains one tuple
(b1, . . . , bk) ∈ Bk. If the orbit of (b1, . . . , bk) under Aut(B) is primitively positively
definable, then there is a polynomial-time reduction from CSP(B, R) to CSP(B).

Proof. Let φ be an instance of CSP(B, R) with variable set V . If φ contains
two constraints R(x1, . . . , xk) and R(y1, . . . , yk), then replace each occurrence of y1 in
φ by x1, then each occurrence of y2 by x2, and so on, and finally each occurrence of
yk by xk. We repeat this step until all constraints that involve R are imposed on the
same tuple of variables (x1, . . . , xk). Replace R(x1, . . . , xk) by the primitive positive
definition θ of its orbit under Aut(B). Finally, move all quantifiers to the front and
remove equalities as in the proof of Lemma 1.2.6, so that the resulting formula ψ is
in prenex normal form and thus an instance of CSP(B). Clearly, ψ can be computed
from φ in polynomial time. We claim that φ is true in (B, R) if and only if ψ is true
in B.

Suppose there is a map s : V → B showing that φ holds in (B, R). Let s′ be the
restriction of s to the variables of V that also appear in ψ. Since (b1, . . . , bk) satisfies
θ, we can extend s′ to the existentially quantified variables of θ to obtain a solution
for ψ. In the opposite direction, suppose that s′ is a solution to ψ over B. Let s be the
restriction of s′ to V . Because (s(x1), . . . , s(xk)) satisfies θ it lies in the same orbit as
(b1, . . . , bk). Thus, there exists an automorphism α of B that maps (s(x1), . . . , s(xk))
to (b1, . . . , bk). Then the extension of the map x 7→ αs(x) that maps variables yi of φ
that have been replaced by xi in ψ to the value bi is a solution to φ over (B, R). �

Recall from Section 1.1 that every finite structure C is homomorphically equivalent
to a core structure B, which is unique up to isomorphism.

Proposition 1.2.11. Let B be a finite core structure. Then orbits of k-tuples
under Aut(B) are primitively positively definable.

Proposition 1.2.11 has a simple proof for finite structures B; however, the same
fact is true for a large class of infinite structures, and is presented in Theorem 4.5.1,
so we omit the proof of Proposition 1.2.11 at this point. Proposition 1.2.11 and
Lemma 1.2.10 have the following well-known consequence.

Corollary 1.2.12. Let B be a finite core structure with elements b1, . . . , bn
and finite signature. Then CSP(B) and CSP(B, {b1}, . . . , {bn}) are polynomial-time
equivalent.

1.3. The Satisfiability Perspective

Yet another perspective on the constraint satisfaction problem translates not only
the instances, but also the template of the CSP into logic. This leads to a natural
perspective for various model-theoretic considerations in Chapter 2.

We use the opportunity to introduce some essential terminology from logic. We
assume that the reader is already familiar with basic terminology of first-order logic;
a highly recommended textbook is Hodges [214]. A (first-order) theory is a set of
first-order sentences. If the first-order sentences are over the signature τ , we also say
that T is a τ -theory . A model of a τ -theory T is a τ -structure B such that B satisfies
all sentences in T . Theories that have a model are called satisfiable.

Definition 1.3.1. Let τ be a finite relational signature, and let T be a τ -theory.
Then CSP(T ) is the computational problem to decide for a given primitive positive
τ -sentence φ whether T ∪ {φ} is satisfiable.
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The satisfiability perspective on CSPs stresses the fact that the problem CSP(B)
is fully determined by the (universal negative) first-order theory of B, that is, by the
theory that consists of the (universal negative) sentences that are true in B. In fact,
it is already determined by the primitive positive sentences that are false in B.

Example 1.3.2. Let T be the theory that consists of the following sentences.

∀x, y, z
(
(x < y ∧ y < z)→ x < z

)
(transitivity)

∀x, y ¬(x < x) (irreflexivity)

∀x, y, z
(
(x < y) ∨ (y < x) ∨ (x = y)

)
(totality)

It is straightforward to verify that CSP(T ) equals CSP(Z;<) (Example 1.1.2). 4

When T is a theory and φ a sentence, we say that T entails φ, in symbols T |= φ,
if every model of T satisfies φ. The following is clear from the definitions.

Proposition 1.3.3. Let τ be a finite relational signature, and let T be a τ -theory.
Suppose that T entails exactly those negations of primitive positive sentences φ such
that B 6|= φ. Then CSP(T ) and CSP(B) are the same problem.

We have already seen that two structures that are homomorphically equivalent
have the same CSP; the following provides a necessary and sufficient condition that
describes when two theories have the same CSP. Its proof is simple once the relevant
notions from logic are introduced, and will be given in Section 2.1.9.

Proposition 1.3.4. Let T and T ′ be two first-order theories. Then the following
are equivalent.

• CSP(T ) equals CSP(T ′).
• Every model of T ′ has a homomorphism to some model of T , and every

model of T has a homomorphism to some model of T ′.
• T and T ′ entail the same negations of primitive positive sentences.

We now present a couple of basic observations relating the definition of CSP(T )
for a theory T with the definition of CSP(B) for a relational structure B. We start
with the observation that there are theories T such that CSP(T ) cannot be formulated
as CSP(B) for a single structure B.

Example 1.3.5. Let τ be the signature {R,G}, where R and G are unary relation
symbols, and let T be the τ -theory {∀x, y ¬(R(x) ∧ G(y))}. There is no structure
B such that CSP(B) equals CSP(T ). To see this, observe that T ∪ {∃x : R(x)} is
satisfiable, and T ∪ {∃x : G(x)} is satisfiable. But any structure B that satisfies both
∃x : R(x) and ∃x : G(x) also satisfies ∃x, y (R(x) ∧ R(y)), which shows that CSP(B)
and CSP(T ) are different. 4

We next characterize those satisfiable theories T that have a model B such that
CSP(B) and CSP(T ) are the same problem.

Proposition 1.3.6. Let τ be a finite relational signature, and let T be a satisfiable
first-order τ -theory. The following are equivalent.

(1) There is a structure B such that CSP(B) and CSP(T ) are the same problem.
(2) There is a model B of T such that CSP(B) and CSP(T ) are the same

problem.
(3) For all primitive positive τ -sentences φ1 and φ2, if T ∪ {φ1} is satisfiable

and T ∪ {φ2} is satisfiable then T ∪ {φ1, φ2} is satisfiable as well.
(4) T has the Joint Homomorphism Property (JHP), that is, when T has models

A and B, then it also has a model C such that both A and B map homo-
morphically to C.
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We defer the proof of this fact to Section 2.1.9 when we have some more concepts
from logic available.

1.4. The Existential Second-Order Perspective

By a famous result of Fagin, which will be reviewed below, the complexity class NP
corresponds exactly to those problems that can be formulated in existential second-
order logic (ESO). An important fragment of ESO that is particularly natural when
it comes to the formulation of CSPs is the logic called SNP (for strict NP, see [308]
and [177]), introduced by Kolaitis and Vardi under the name strict Σ1

1 [244]. An
existential second-order sentence is in SNP if its first-order part is universal. There
are many links between constraint satisfaction and the complexity class SNP; many
of those go back to [177] and [178], some others that we present here are new.

The logic SNP is often a convenient way to specify CSPs. However, not every
problem in SNP is a CSP. In this section we present a natural syntactic condition
that implies that an SNP sentence describes a problem of the form CSP(B) for an
infinite structure B (Corollary 1.4.12). Conversely, if an SNP sentence describes a
CSP, then there is an equivalent SNP sentence that satisfies our syntactic condition.

The special case in which all existentially quantified relations are unary, known
as monadic SNP , deserves special attention, and will be discussed at the end of this
section.

1.4.1. Fagin’s theorem. We start by reviewing Fagin’s theorem (see e.g. [169]).
Fix a finite relational signature τ . Let C be a class of finite τ -structures that is closed
under isomorphisms (that is, if B ∈ C, and A is isomorphic to B, then A ∈ C). We
say that C is in NP when there exists a non-deterministic polynomial-time algorithm
that accepts exactly the structures from C (here we fix some standard way to code
relational structures as finite strings so that they can be given as an input to a Turing
machine, see again [169]).

A sentence of the form ∃R1, . . . , Rm : φ where φ is a first-order sentence with
signature τ ∪{R1, . . . , Rm} is called an existential second-order τ -sentence (or simply
ESO-sentence). When a structure A satisfies Φ (and this is defined in the obvious
way, see e.g. [169]), we write A |= Φ.

Theorem 1.4.1 (Fagin’s Theorem, see e.g. [169]). An isomorphism-closed class
of finite τ -structures is in NP if and only if there exists an existential second-order
sentence Φ that describes C in the sense that

A ∈ C if and only if A |= Φ .

It would be great to have an algorithm that determined for a given ESO sentence
Φ whether Φ describes a problem that can be solved in polynomial time. Alas, it
turns out that such an algorithm cannot exist (unless, of course, P = NP).

Theorem 1.4.2. If P 6= NP, then the problem of deciding whether a given ESO
sentence describes a problem in P is undecidable.

Proof. Trakhtenbrot’s theorem [349] asserts that the problem of deciding whether
a given first-order sentence is valid over finite structures is undecidable. We reduce
Trakhtenbrot’s problem to the complement of our problem. Let ϕ be an arbitrary
first-order sentence with signature R1, . . . , Rr. We first construct a universal second-
order sentence Φ such that A |= Φ if and only if B |= ∀R1, . . . , Rr : ψ for every
induced substructure B of A. The sentence Φ is

∀U ∀ R1, . . . , Rr : ψ
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where ψ is obtained from ϕ by replacing each expression of the form ∃x : χ(x) by
∃x (¬U(x) ∧ χ(x)) and each expression of the form ∀x : χ(x) by ∀x (U(x) ∨ χ(x)).

Let Θ be an ESO sentence expressing SAT. By construction, Φ⇒ Θ is equivalent
to an ESO sentence because ¬Φ is equivalent to an ESO sentence. We reduce the
validity problem in the finite for ϕ to the computational question whether Φ⇒ Θ is
in P or NP-complete (assuming P 6= NP).

• If ϕ is true on all finite structures then Φ⇒ Θ expresses SAT and is therefore
NP-complete.
• Otherwise, there exists a c ∈ N such that Φ is false for all structures with

more than c elements. Hence, Φ ⇒ Θ expresses the problem “the input
structure encodes a satisfiable instance of SAT with strictly less than c ele-
ments or it has c or more elements”. Since c is a constant, this problem is
clearly in P.

We have therefore established a reduction from Trakhtenbrot’s problem to the com-
plement of our problem. It follows from Trakhtenbrot’s theorem that our problem is
also undecidable. �

1.4.2. SNP. An SNP (τ -) sentence is an existential second-order sentence with
a universal first-order part, i.e., a sentence of the form

∃R1, . . . , Rk ∀x1, . . . , xn : φ

where φ is quantifier-free and over the signature τ ∪ {R1, . . . , Rk}. The class of
problems that can be described by SNP sentences is called SNP, too.

Example 1.4.3. The problem CSP(Z;<) can be described by the following SNP
sentence.

∃T ∀x, y, z
(
(x < y ⇒ T (x, y))

∧
(
(T (x, y) ∧ T (y, z))⇒ T (x, z)

)
∧ ¬T (x, x)

)
4

Example 1.4.4. The Betweenness Problem CSP(Z; Betw) from Example 1.1.3
can be described by the following SNP sentence.

∃T ∀x, y, z
(
¬T (x, x) ∧

(
(T (x, y) ∧ T (y, z))⇒ T (x, z)

)
∧
(

Betw(x, y, z)⇒
(
(T (x, y) ∧ T (y, z)) ∨ (T (z, y) ∧ T (y, x))

))
4

Example 1.4.5. The problem whether a given undirected graph (V ;E) can be
partitioned into two triangle-free graphs (this problem has been called No-Mono-Tri
in Example 1.1.9) can be described by the following SNP sentence.

∃M ∀x, y, z
(
¬
(
M(x) ∧M(y) ∧M(z) ∧ E(x, y) ∧ E(y, z) ∧ E(z, x)

)
∧¬
(
¬M(x) ∧ ¬M(y) ∧ ¬M(z) ∧ E(x, y) ∧ E(y, z) ∧ E(z, x)

))
4

The following fundamental lemma for SNP is due to Feder and Vardi [178], and
an easy consequence of the compactness theorem (Theorem 2.1.6).

Lemma 1.4.6 (Feder and Vardi [178]). Let A be an infinite structure, and Φ an
SNP sentence. Then A |= Φ if and only if A′ |= Φ for all finite substructures A′ of A.

Since every finite substructure of B maps homomorphically to B, and therefore
satisfies Φ, we have the following consequence.

Corollary 1.4.7. Let Φ be an SNP sentence that describes CSP(B) for a struc-
ture B. Then B itself satisfies Φ.
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1.4.3. SNP and CSPs. We say that two SNP sentences Φ and Ψ are equivalent
if for all structures (equivalently: all finite structures) A we have A |= Φ if and only
if A |= Ψ. We assume in the following that the quantifier-free part φ of Φ is written
in conjunctive normal form (CNF), i.e., it is a conjunction of disjunctions of literals,
which are either atomic formulas or negated atomic formulas. The disjunctions of
literals are also called clauses and often treated as finite sets of literals.

Definition 1.4.8. Let Φ be an SNP τ -sentence with quantifier-free part φ in
CNF. Then Φ is called monotone if each literal of φ with a symbol from τ ∪ {=} is
negative, that is, of the form ¬R(x̄), for R ∈ τ ∪ {=}.

In particular, monotone SNP sentences do not contain literals of the form x = y.6

We also assume that monotone SNP sentences do not contain literals of the form
x 6= y. This is without loss of generality, since every monotone SNP sentence is
equivalent to one which does not contain literals of the form x 6= y. To obtain the
equivalent sentence, we remove literals of the form x 6= y and replace all occurrences
of y in the same clause by x. Note that the SNP sentences given in Example 1.4.3,
1.4.4, and 1.4.5 can be easily re-written into equivalent monotone SNP sentences.

The class of structures that satisfy a given monotone SNP sentence is clearly
closed under inverse homomorphisms (Definition 1.1.7). The converse is a result by
Feder and Vardi [178]; it shows that for SNP, the semantic restriction of closure under
inverse homomorphisms and the syntactic restriction of monotonicity match.

Theorem 1.4.9 (Feder and Vardi [178]). Let Φ be an SNP sentence. Then the
class of structures that satisfy Φ is closed under inverse homomorphisms if and only
if Φ is equivalent to a monotone SNP sentence.

Proof. We only have to prove the forward direction. Introduce a new binary
existentially quantified relation symbol E and conjuncts that imply that E is an
equivalence relation, and replace each subformula of the form x = y by E(x, y). For
each R ∈ τ of arity k in Φ let R′ be a new existentially quantified relation symbol
of arity k. Replace each occurrence of R in Φ by R′, and then add the conjuncts
R(x1, . . . , xn) ⇒ R′(x1, . . . , xn) for new universally quantified variables x1, . . . , xn.
Moreover, for each i ≤ n we add the conjunct(

E(xi, y) ∧R′(x1, . . . , xn)
)
⇒ R′(x1, . . . , xi−1, y, xi+1, . . . , xn).

The resulting SNP sentence Ψ is clearly a monotone SNP sentence. If a structure A
satisfies Φ, then it also satisfies Ψ, because we may find an expansion of A where E
denotes the equality relation and R and R′ denote the same relation, for every relation
R in Φ, and which shows that A satisfies Ψ. Conversely, suppose that A satisfies Ψ.
Then there exists an expansion A′ of A that satisfies the quantifier-free part of Ψ. Let
A′′ be the structure obtained from A′ by

• factoring by EA′ ; i.e., the elements of A′′ are the equivalence classes of EA′

and if (a1, . . . , ak) ∈ RA′ then (a1/E, . . . , ak/E) ∈ RA′′ .
• renaming each relation symbol R′ to R and dropping the relation E.

Note that A′′ satisfies Φ. Also note the map that sends an element a ∈ A to its
equivalence class a/E ∈ A/E is a homomorphism from A to A′′. Since the class of
all structures that satisfy Φ is closed under inverse homomorphisms, A satisfies Φ as
well. �

6In the terminology of Feder and Vardi [177], we work here with monotone SNP without in-
equality; the reason why Feder and Vardi add the attribute without inequalities is that for them, the

quantifier-free part of SNP sentences is written in negation normal form, so forbidding literals of the
form x = y amounts to forbidding inequalities in negation normal form.
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We now introduce another syntactic restriction on SNP sentences which plays an
important role in the context of CSPs.

Definition 1.4.10 (Connected SNP). Let ψ be a clause of a first-order σ-formula
φ in conjunctive normal form, and let C be the σ-structure whose vertices are the
variables of ψ, and where (x1, . . . , xn) ∈ RC if and only if ψ contains a negative literal
of the form ¬R(x1, . . . , xn). Then ψ is connected if C is connected. An SNP sentence
Φ is connected if every clause of the first-order part φ of Φ is connected.

Note that the SNP sentences in Example 1.4.3 and Example 1.4.4 are connected.

Proposition 1.4.11. Let Φ be an SNP sentence. Then the class of structures that
satisfy Φ is closed under disjoint unions if and only if Φ is equivalent to a connected
SNP sentence.

Proof. Let Φ be of the form ∃R1, . . . , Rk ∀x1, . . . , xl : φ where φ is a quantifier-
free first-order formula over the signature σ = (τ ∪ {R1, . . . , Rk}).

Suppose first that Φ is connected, and that A1 and A2 both satisfy Φ. In other
words, there is a σ-expansion A∗1 of A1 and a σ-expansion A∗2 of A2 such that these
expansions satisfy ∀x̄ : φ. We claim that the disjoint union A∗ of A∗1 and A∗2 also
satisfies ∀x̄ : φ; otherwise, there would be a clause ψ in φ and elements a1, . . . , aq
of A1 ∪ A2 such that ψ(a1, . . . , aq) is false in A∗. Since A∗1 and A∗2 satisfy ∀x̄ : ψ,
there must be i, j such that ai ∈ A1 and aj ∈ A2. But then ψ is disconnected, a
contradiction.

For the opposite direction of the statement, assume that the class of struc-
tures that satisfy Φ is closed under disjoint unions. Consider the SNP sentence
Ψ = ∃R1, . . . , Rk, E ∀x1, . . . , xl : ψ where ψ is the conjunction of the following clauses
(we assume without loss of generality that l ≥ 3).

• For each relation symbol R ∈ τ , say of arity p, and each i < j ≤ p, add the
conjunct ¬R(x1, . . . , xp) ∨ E(xi, xj) to ψ.

• Add the conjunct ¬E(x1, x2) ∨ ¬E(x2, x3) ∨ E(x1, x3) to ψ.
• Add the conjunct ¬E(x1, x2) ∨ E(x2, x1) to ψ.
• For each clause φ′ of φ with variables y1, . . . , yq ⊆ {x1, . . . , xl}, add to ψ the

conjunct

φ′ ∨
∨

i<j≤q

¬E(yi, yj) .

We claim that the connected monotone SNP sentence Ψ is equivalent to Φ. Suppose
first that A is a finite structure that satisfies Φ. Then there is a σ-expansion A′ of A
that satisfies ∀x̄ : φ. The expansion of A′ by the relation E = A2 shows that A also
satisfies ∀x̄ : ψ.

Now suppose that A is a finite structure that satisfies Ψ. Then there is a (σ∪{E})-
expansion A′ of A that satisfies ∀x̄ : ψ. Write A as A1 ] · · · ] Am for connected τ -
structures A1, . . . ,Am. Note that the clauses of ψ force that EA′ contains A2

i , for
each i ≤ m. Then A′[Ai] satisfies ∀x̄ : φ, because if there was a clause φ′ from φ not
satisfied in A′[Ai] then the corresponding clause in ψ would not be satisfied in A′[Ai].
Hence, Ai |= Φ for all i ≤ m, and since Φ is closed under disjoint unions, we also have
that A |= Φ. �

Theorem 1.4.9 combined with the previous result shows the following.

Corollary 1.4.12. An SNP sentence Φ describes a problem of the form CSP(B)
for an infinite structure B if and only if Φ is equivalent to a monotone and connected
SNP sentence Ψ.
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Proof. Suppose first that Φ is a monotone SNP sentence with connected clauses.
To show that Φ describes a problem of the form CSP(B) we can use Lemma 1.1.8.
It thus suffices to show that the class of structures that satisfy Φ is closed under
disjoint unions and inverse homomorphisms. But this has already been observed in
Theorem 1.4.9 and Theorem 1.4.11.

For the implication in the opposite direction, suppose that Φ describes a problem
of the form CSP(B) for some infinite structure B. In particular, the class of struc-
tures that satisfy Φ is closed under inverse homomorphisms. By Theorem 1.4.9, Φ is
equivalent to a monotone SNP sentence. Moreover, the class of structures that satisfy
Φ is closed under disjoint unions, and hence Φ is also equivalent to a connected SNP
sentence. By inspection of the proof of Theorem 1.4.11, we see that if Φ is already
monotone, then the connected SNP sentence in the proof of Theorem 1.4.11 will also
be monotone. It follows that Φ is also equivalent to a connected monotone SNP
sentence. �

1.4.4. Monotone Monadic SNP. If we further restrict monotone SNP by only
allowing unary existentially quantified relations, the corresponding class of problems,
called montone monadic SNP (or, short, MMSNP), gets very close to finite domain
constraint satisfaction problems. Indeed, Feder and Vardi showed that the class MM-
SNP exhibits a complexity dichotomy if and only if the class of all finite domain CSPs
exhibits a complexity dichotomy (that is, if the dichotomy conjecture mentioned in
the introduction is true). In one direction, this is obvious since MMSNP obviously
contains CSP(B) for all finite structures B (we may use a unary relation symbol for
each element of B). In the other direction, Feder and Vardi showed that every prob-
lem in MMSNP is equivalent under randomised Turing reductions to a finite domain
constraint satisfaction problem. The reduction has subsequently been derandomised
by Kun [257].

In order to present the details of the link between MMSNP and CSPs, we start
with the following fundamental observation.

Proposition 1.4.13 (of [177]; see also [285]). Let Φ be an MMSNP sentence.
Then Φ is equivalent to a finite disjunction of connected MMSNP sentences.

Proof. Suppose that the first-order part φ of Φ contains a disconnected clause
ψ. Since the positive literals of ψ must be unary, ψ is equivalent to ψ1 ∨ ψ2 for non-
empty clauses ψ1 and ψ2. Let φ1 be the formula obtained from φ by replacing ψ by
ψ1, and let φ2 be the formula obtained from φ by replacing ψ by ψ2.

Let P1, . . . , Pk be the existential monadic predicates in Φ, and let τ be the input
signature of Φ. It suffices to show that a (τ ∪{P1, . . . , Pk})-expansion A′ of A satisfies
φ if and only if A′ satisfies φ1 or φ2. If the universally quantified variables can be
instantiated so that A′ falsifies a clause of φ, there is nothing to show since then A′

satisfies neither φ1 nor φ2. Conversely, suppose that A′ satisfies neither φ1 nor φ2.
It it does not satisfy a clause of φ other than ψ1 ∨ ψ2, then A′ does not satisfy φ.
Otherwise, the universally quantified variables can be instantiated so that A′ falsifies
ψ1 and they can be instantiated so that A′ falsifies ψ2. Since the variables of ψ1 and ψ2

are distinct we can then also instantiate the variables so that A′ falsifies ψ1∨ψ2. This
shows that A′ does not satisfy φ. Iterating this process for each disconnected clause
of φ, we eventually arrive at a finite disjunction of connected MMSNP sentences. �

We now show that we can reduce the complexity classification for MMSNP to
the classification for connected MMSNP. We first prove a general result about finite
unions of CSPs; the homomorphism perspective on the CSP is most natural to present
this result.
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Proposition 1.4.14. Let τ be a finite relational signature and let B1, . . . ,Bk be
τ -structures whose CSPs are pairwise incomparable with respect to inclusion. Then
for each i ≤ k the problem CSP(Bi) has a polynomial-time reduction to CSP(B1) ∪
· · · ∪ CSP(Bk). Conversely, if each of CSP(Bi) can be solved in polynomial time,
then CSP(B1) ∪ · · · ∪ CSP(Bk) can be solved in polynomial time as well.

Proof. Let i ∈ {1, . . . , k}. By assumption, for every j ∈ {1, . . . , k} \ {i} there
exists a finite τ -structure Aj that maps homomorphically to Bi, but does not map
to Bj . To reduce CSP(Bi) to CSP(B1) ∪ · · · ∪ CSP(Bk), execute for a given finite
τ -structure A an algorithm for CSP(B1) ∪ · · · ∪ CSP(Bk) on A′ := A ]

⊎
j 6=i Aj . We

claim that A′ ∈ CSP(B1)∪ · · · ∪CSP(Bk) if and only if A maps homomorphically to
Bi. First suppose that A maps homomorphically to Bi. Since for every j 6= i there is a
homomorphism from Aj to Bi, and since CSP(Bi) is closed under disjoint unions, we
have that A′ has a homomorphism to Bi as well. For the opposite direction, suppose
that A′ is in CSP(B1) ∪ · · · ∪CSP(Bk). Since Aj does not map homomorphically to
Bj for all j distinct from i, there is no homomorphism from A′ to Bj either. Hence,
A′ and therefore also A must be homomorphic to Bi.

If for every i ≤ k there is a polynomial-time algorithm Ai that solves CSP(Bi),
then CSP(B1) ∪ · · · ∪ CSP(Bk) can be solved in polynomial time by running each
of the algorithms A1, . . . , Ak on the input, and accepting if one of the algorithms
accepts. �

Corollary 1.4.15. Every problem in MMSNP is in P or NP-complete if and
only if every problem in connected MMSNP is in P or NP-complete.

Proof. The forward direction of the statement holds trivially. For the back-
wards direction, assume that every connected MMSNP sentence is either in P or NP-
complete. Let Φ be an MMSNP sentence. By Proposition 1.4.13 there are connected
MMSNP sentences Φ1, . . . ,Φk so that Φ is logically equivalent to the disjunction
Φ1 ∨ · · · ∨ Φk. By Corollary 1.4.12, each of the Φi describes a constraint satisfac-
tion problem CSP(Bi). We may assume that the Bi are pairwise homomorphically
incomparable. The statement now follows from Proposition 1.4.14. �

The following has been shown with randomised Turing-reductions by Feder and
Vardi [177] (see also [283]); the reductions have been derandomised later by Kun [257].

Theorem 1.4.16 (of [177] and [257]). Every problem in monotone monadic SNP
is polynomial-time Turing equivalent to CSP(B) for a finite structure B.

Similarly as in the previous section, we may ask for a syntactic characterisation
of those monadic SNP sentences that describe a CSP. Note that this does not di-
rectly follow from the statement of Corollary 1.4.12, since the reductions used there
introduce additional existentially quantified relations that are not monadic.

Theorem 1.4.17 (Theorem 3 in [178]). Let Φ be a monadic SNP sentence. Then
the class of structures that satisfy Φ is closed under inverse homomorphisms if and
only if Φ is equivalent to a monotone monadic SNP sentence.

Moreover, one can show the following monadic version of Proposition 1.4.11.

Proposition 1.4.18. Let Φ be a monadic SNP sentence. Then the class of struc-
tures that satisfy Φ is closed under disjoint unions if and only if Φ is equivalent to a
connected monadic SNP sentence.

Proof. Let V be the set of variables of the first-order part φ of Φ, let P1, . . . , Pk
be the existential monadic predicates in Φ, and let τ be the input signature so that
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Figure 1.4. Fragments of NP related to CSPs.

φ has signature {P1, . . . , Pk} ∪ τ . If Φ is connected, then it describes a problem that
is closed under disjoint unions; this follows from Proposition 1.4.11.

For the opposite direction, suppose that Φ describes a problem that is closed
under disjoint unions. We can assume without loss of generality that Φ is minimal in
the sense that if we remove literals from some of the clauses the resulting SNP sentence
is inequivalent. We shall show that then Φ must be connected. Let us suppose that
this is not the case, and that there is a clause ψ in φ that is not connected. The
clause ψ can be written as ψ1 ∨ ψ2 where the set of variables X ⊂ V of ψ1 and the
set of variables Y ⊂ V of ψ2 are non-empty and disjoint. Consider the formulas
ΦX and ΦY obtained from Φ by replacing ψ by ψ1 and ψ by ψ2, respectively. By
minimality of Φ there is a τ -structure A1 that satisfies Φ but not ΦX , and similarly
there exists a τ -structure A2 that satisfies Φ but not ΦY . By assumption, the disjoint
union A of A1 and A2 satisfies Φ. So there exists a τ ∪ {P1, . . . , Pk}-expansion A′

of A = A1 ] A2 that satisfies the first-order part of Φ. Consider the substructures
A′1 and A′2 of A′ induced on A1 and A2, respectively. We have that A′1 does not
satisfy ψ1 (otherwise A1 would satisfy ΦX). Consequently, there is an assignment
s1 : V → A1 of the universal variables that falsifies ψ1. By similar reasoning we
can infer that there is an assignment s2 : V → A2 that falsifies ψ2. Finally, fix any
assignment s : V → A1 ∪ A2 that coincides with s1 over X and with s2 over Y (such
an assignment exists because X and Y are disjoint). Clearly, s falsifies ψ and A does
not satisfy Φ, a contradiction. �

Similarly as in Corollary 1.4.12 for SNP, the conditions of closure under inverse
homomorphisms and closure under disjoint unions can be combined, arriving at the
following.

Corollary 1.4.19. A monadic SNP sentence Φ describes a problem of the form
CSP(B) for an infinite structure B if and only if Φ is equivalent to a connected
monotone monadic SNP sentence.
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The problems that can be described by connected monotone monadic SNP sen-
tences are exactly the problems called forbidden patterns problems in the sense of
Madelaine [281].

Example 1.4.20. CSP(Z;<) is not in MMSNP. Indeed, suppose that Φ is an
MMSNP sentence which is true on all finite directed paths. We assume that the
quantifier-free part of Φ is in conjunctive normal form. Let ρ be the existentially
quantified unary relation symbols of Φ, let k := |ρ|, and let l be the number of variables
in Φ. A directed path of length (2kl + 1)l, viewed as a {<}-structure, satisfies Φ, and
therefore it has a ({<} ∪ ρ)-expansion A that satisfies the first-order part of Φ. Note
that there are L := 2kl different ({<}∪ρ)-expansions of a path of length l, and hence
there must be i, j ∈ {0, . . . , L} with i < j such that the substructures of A induced
on il+1, il+2, . . . , il+ l and by jl+1, jl+2, . . . , jl+ l are isomorphic. We then claim
that the directed cycle (i+1)l+1, (i+1)l+2, . . . , jl+1, . . . , jl+ l, (i+1)l+1 satisfies
Φ: this is witnessed by the ({<} ∪ ρ)-expansion inherited from A which satisfies the
quantifier-free part of Φ. Hence, Φ does not express digraph acyclicity. 4

We summarise the landscape of classes of computational problems from this sec-
tion in Figure 1.4.

1.5. CSPs and Relation Algebras

Many interesting infinite-domain CSPs, in particular in spatial and temporal
reasoning, have been studied in the context of relation algebras; many examples will
be given in Section 1.6 and Chapter 5. In Artificial Intelligence, relation algebras
are used as a framework to formalise and study qualitative reasoning problems [166,
210, 259]. From the perspective of this book, the relation algebra approach does
not bring substantially new tools, and Section 1.5 can be safely skipped. We give an
introduction to this research direction in order to link the relation algebra terminology
with the satisfiability perspective on the CSP (Section 1.5.3).

1.5.1. Proper relation algebras. Relation algebras are designed to handle
binary relations in an algebraic way; we follow the presentation in [210].

Definition 1.5.1. A proper relation algebra is a set D together with a set R of
binary relations over D such that

(1) Id := {(x, x) | x ∈ D} ∈ R;
(2) If R1 and R2 are from R, then R1 ∨R2 := R1 ∪R2 ∈ R;
(3) 1 :=

⋃
B∈RB ∈ R;

(4) 0 := ∅ ∈ R;
(5) If B ∈ R, then −B := 1 \B ∈ R;
(6) If B ∈ R, then B` ∈ R, where B` is the converse of B defined by

B` := {(x, y) | (y, x) ∈ B};

(7) If R1 and R2 are from R, then R1◦R2 ∈ R, where R1◦R2 is the composition
of R1 and R2 defined by

R1 ◦R2 :=
{

(x, z) | ∃y
(
(x, y) ∈ R1 ∧ (y, z) ∈ R2

)}
.

We want to point out that in this standard definition of proper relation algebras
it is not required that 1 denotes D2. However, in most examples that we encounter,
1 indeed denotes D2, and those proper relation algebras are called square. The
minimal non-empty elements of R with respect to set-wise inclusion are called the
basic relations of R.
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Example 1.5.2 (The Point Algebra). Let B = Q be the set of rational numbers,
and consider

R = {∅,=, <,>,≤,≥, 6=,Q2} .
Those relations form a proper relation algebra (with atoms <,>,=, and where 1
denotes Q2) which is one of the most fundamental relation algebras and known under
the name point algebra. 4

When R is finite, every relation in R can be written as a finite union of basic
relations, and we abuse notation and sometimes write R = {B1, . . . , Bk} for R ∈ R
and B1, . . . , Bk basic relations such that R = B1 ∪ · · · ∪ Bk. Note that composition
of basic relations determines the composition of all relations in the relation algebra,
since

R1 ◦R2 =
⋃

B1∈R1,B2∈R2

B1 ◦B2 .

1.5.2. Abstract relation algebras. An abstract relation algebra is an algebra
with signature {∨,−, 0, 1, ◦,` , Id} that satisfies some of the laws that hold for these
operators in every proper relation algebra.

Definition 1.5.3 (Compare [166, 210, 259]). An (abstract) relation algebra A
is an algebra with domain A and signature {∨,−, 0, 1, ◦,` , Id} such that

• the structure (A;∨,∧,−, 0, 1) is a Boolean algebra where ∧ is defined by
(x, y) 7→ −(−x ∨ −y) from − and ∨;

• ◦ is an associative binary operation on A, called composition;
• ` is a unary operation, called converse;
• (a`)` = a for all a ∈ A;
• Id ◦ a = a ◦ Id = a for all a ∈ A;
• a ◦ (b ∨ c) = a ◦ b ∨ a ◦ c;
• (a ∨ b)` = a` ∨ b`;
• (−a)` = −(a`);
• (a ◦ b)` = b` ◦ a`;
• (a ◦ b) ∧ c` = 0 ⇔ (b ◦ c) ∧ a` = 0.

A representation (R, i) of A consists of a proper relation algebra R and a map-
ping i from the domain A of A to R such that i is an isomorphism with respect to
the functions (and constants) {∨,−, 0, 1, ◦,` , Id}. In this case, we also say that A is
the abstract relation algebra of R. The representation is called countable if the base
set of R is countable. There are finite relation algebras that do not have a represen-
tation [276]. A relation algebra that has a representation is called representable.

We define x ≤ y by x ∧ y = x. Note that if (R, i) is a representation of A, then
i(a) is a basic relation of R if and only if a 6= 0, and for every b ≤ a we have b = a or
b = 0; we call a an atom of A. Using the axioms of relation algebras, it can be shown
that the composition operator is uniquely determined by the composition operator
on the atoms. Similarly, the converse of an element a ∈ A is the disjunction of the
converses of all the atoms below a.

Example 1.5.4. The (abstract) point algebra is a relation algebra with 8 elements
and 3 atoms, =, <, and >, and can be described as follows. The composition operator
of the basic relations of the point algebra is shown in the table of Figure 1.5. By the
observation we just made, this table determines the full composition table. The
converse of < is >, and Id denotes = which is its own converse. This fully determines
the relation algebra. The point algebra with domain Q presented in Example 1.5.2
gives a representation of this relation algebra. 4



30 1. INTRODUCTION TO CONSTRAINT SATISFACTION PROBLEMS

◦ = < >

= = < >
< < < 1
> > 1 >

Figure 1.5. The composition table for the basic relations in the
point algebra.

1.5.3. Network satisfaction problems. The central computational problems
that have been studied for relation algebras are network satisfaction problems [166,
210, 259], defined as follows. Let A be a relation algebra. An (A-) network N =
(V ; f) consists of a finite set of nodes V and a function f : V × V → A. Two types
of network satisfaction problems have been studied for A-networks. The first is the
network satisfaction problem for a (fixed) representation of A, defined as follows.

Definition 1.5.5. Let (R, i) be a representation of a finite relation algebra A
where R has the domain B. Then the network satisfaction problem for (R, i) is the
computational problem to decide whether a given A-network N = (V ; f) is satisfiable
in (R, i), that is, whether there exists a mapping s : V → D such that for all u, v ∈ V

(s(u), s(v)) ∈ i(f(u, v)).

The second problem is the (general) network satisfaction problem for A.

Definition 1.5.6. Let A be a finite relation algebra. Then the network satis-
faction problem for A is the computational problem to decide whether for a given
A-network N there exists a representation (R, i) of A such that N is satisfiable in
(R, i).

Note that the network satisfaction problem for relation algebras that are not
representable is trivial. Every network satisfaction problem for a fixed representation,
but also the general network satisfaction problem, is closely related to a corresponding
constraint satisfaction problem. To present this link between network satisfaction
problems and CSPs we need the following notation. Let τA be a signature consisting
of a binary relation symbol Ra for each element a ∈ A. If (R, i) is a representation
of A where R is over the domain B, then this gives rise to a τA-structure BR,i in a
natural way:

• the domain of the structure is B, and
• the relation symbol Ra is interpreted by i(a).

We can associate to each A-network N = (V ; f) a primitive positive τA-sentence φN
in the following straightforward way:

• the variables of φN are V , and
• φN contains the conjunct Ra(u, v) if and only if f(u, v) = a.

Conversely, we associate to each primitive positive τA-sentence φ with variables V
finitely many A-networks as follows. Let D1, . . . , Dk(φ) be the connected components
of the canonical database D(φ) of φ. For j ∈ {1, . . . , k(φ)}, let Nφ,j be the network
whose nodes Vj are the elements of Dj . Let u, v ∈ Vj , and list by a1, . . . , am all
those a ∈ A such that φ contains the conjunct Ra(u, v). Then define f(u, v) = a for
a = (a1 ∧ a2 ∧ · · · ∧ am); if m = 0, then f(u, v) = 1.

The following link between the network satisfaction problem for a fixed represen-
tation (R, i) of A, and the constraint satisfaction problem for BR,i is straightforward
from the definitions.

Proposition 1.5.7. Let A be a relation algebra with a representation (R, i).
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(1) An A-network N is satisfiable in (R, i) if and only if BR,i |= φN .
(2) Conversely, BR,i satisfies a primitive positive τA-sentence φ if and only if

each of the networks Nφ,1, . . . , Nφ,k(φ) defined above is satisfiable in (R, i).

Proof. A map s : V → B shows that the A-network N = (V ; f) is satisfiable
in (R, i) if and only if s shows that the sentence φN is satisfiable in BR,i. For the
second statement, let φ be a primitive positive τA-sentence with variables V and let
s : V → B be a map. Then s shows that φ is true in BR,i if and only if for each
j ∈ {1, . . . , k} the restriction of s to the nodes of Nφ,j shows that Nφ,j is satisfiable
in (R, i). �

Note that the canonical database of φN has only one component, and hence
NφN ,1 = N .

Corollary 1.5.8. Let A be a finite relation algebra with a representation (R, i).
Then there is a polynomial-time many-one reduction from the network satisfaction
problem for (R, i) to CSP(BR,i). Conversely, there is a polynomial-time Turing re-
duction from CSP(BR,i) to the network satisfaction problem for (R, i). If (R, i) is a
square representation, then the Turing reduction can be replaced by a polynomial-time
many-one reduction.

Proof. All statements except the last follow from Proposition 1.5.7. For the
last statement, it suffices to observe that Nφ,1, . . . , Nφ,k(φ) are satisfiable in a square
representation (R, i) if and only if the network Nφ obtained from the disjoint union of
Nφ,1, . . . , Nφ,k(φ) by setting f(u, v) = 1 for u ∈ Vj1 , v ∈ Vj2 , and j1 6= j2, is satisfiable
in (R, i). �

Proposition 1.5.7 and Corollary 1.5.8 show that network satisfaction problems for
fixed square representations essentially are constraint satisfaction problems, and that
the differences are only a matter of formalisation. To also relate the general network
satisfaction problem for a finite relation algebra A to a constraint satisfaction problem,
we need the following definitions.

Definition 1.5.9. Let A be a relation algebra. An A-network N = (V ; f) is
called

• closed (transitively closed in [210]) if for all a, b, c ∈ V

f(a, c) ≤ f(a, b) ◦ f(b, c) (1)

and Id ≤ f(a, a); (2)

• atomic7 if the image of f only contains atoms of A.

A representation (R, i) of A is called

• universal (again we follow the terminology of Hirsch [209], which is different
from the one of Christiani and Hirsch [150]) if every satisfiable A-network
is satisfiable in (R, i);

• fully universal if every closed atomic A-network is satisfiable in (R, i).

Clearly, if (R, i) is a universal representation of A, then the network satisfaction
problem for (R, i) equals the general network satisfaction problem for A.

Proposition 1.5.10. If a representation (R, i) of a relation algebra A is fully
universal, then it is also universal.

7For Hirsch [209], an atomic network satisfies additionally the property of being closed.
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TA :=
{
∀x, y(¬0(x, y) ∧ (Id(x, y)⇔ x = y))

}
(3)

∪
{
∀x, y(1(x, y)⇔

∨
a∈A

Ra(x, y))
}

(4)

∪
⋃
a∈A

{
∀x, y(Ra`(x, y)⇔ Ra(y, x) ∧ (R−a(x, y)⇔ ¬Ra(x, y))

}
(5)

∪
⋃
a,b∈A

{
∀x, y(Ra∨b(x, y)⇔ (Ra(x, y) ∨Rb(x, y)))

}
(6)

∪
⋃
a,b∈A

{
∀x, z

(
Ra◦b(x, z)⇔ ∃y(Ra(x, y) ∧Rb(y, z))

)}
(7)

Figure 1.6. The definition of the τA-theory TA.

Proof. Let N = (V ; f) be an A-network. Suppose that N is satisfiable in some
representation (S, j) of A, where S is over the base set B, and let s : V → B be
a mapping witnessing this. Let N ′ = (V, f ′) be the network given by f ′(u, v) = a,
where a is an atom of A such that (s(u), s(v)) ∈ j(a). Then N ′ is atomic, and
satisfiable in (S, j) and therefore closed. Hence, N ′ is satisfiable in (R, i). Since
f ′(u, v) ≤ f(u, v) for all u, v ∈ V it follows that N is satisfiable in (R, i), too. This
proves the statement. �

The point algebra is an example of a relation algebra with a fully universal square
representation. Note that if A has a fully universal representation, then the network
satisfaction problem for A is decidable in NP: for a given network (V, f), simply
select for each x ∈ V 2 an atom a ∈ A with a ≤ f(x), replace f(x) by a, and then
exhaustively check condition (2). We mention that a finite relation algebra has a fully
universal representation if and only if the so-called path consistency procedure (see
Section 8.2.1) decides satisfiability of atomic A-networks (see, e.g., [66]). However,
not every finite relation algebra has a fully universal representation, as the following
example shows.

Example 1.5.11. There is a relation algebra with 4 atoms, called B9 in [270],
which is universal but not fully universal. A representation of B9 with domain
{0, 1, . . . , 6} is given by the basic relations {R0, R1, R2, R3} where Ri = {(x, y) :
|x − y| = i mod 7}, for i ∈ {0, 1, 2, 3}. In fact, every representation of B9 is iso-
morphic to this representation. Let N be the network (V, f) with V = {a, b, c, d},
f(a, b) = f(c, d) = R3, f(a, d) = f(b, c) = R2, f(a, c) = f(b, d) = R1, f(i, i) = R0 for
all i ∈ V , and f(i, j) = f(j, i) for all i, j ∈ V . Then N is atomic and closed but not
satisfiable. 4

We will now show that every representable relation algebra has a universal repre-
sentation. Figure 1.6 contains the definition of a first-order τA-theory TA (as in [210],
Section 2.3). The models of TA correspond to the representations of A, as described
in the following.

Proposition 1.5.12. Let A be a finite relation algebra and let B be a model of
TA. Let R be the relations of B and let i : A → R be given by i(a) := RB

a . Then
(R; i) is a representation of A. Conversely, for every representation (R, i) of A the
τA-structure BR,i is a model of TA.

Proof. The proof is straightforward by matching the sentences in TA with the
items of Definition 1.5.1. �
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It is easy to see that TA has the Joint Homomorphism Property (JHP, introduced
in Proposition 2.1.16); in fact, the disjoint union of two models of TA is again a model
of TA.

Proposition 1.5.13. Every finite representable relation algebra has a countable
universal representation.

Proof. Let A be a finite representable relation algebra. Then by Proposi-
tion 1.5.12 the theory TA is satisfiable. Since TA also has the JHP, we can apply
Proposition 2.1.16 to obtain a countable model B of TA such that CSP(B) and
CSP(TA) are the same problem. Then Proposition 1.5.12 shows that A has a rep-
resentation (R, i). We claim that (R, i) is universal: if N is an A-network that is
satisfiable in some representation (R′, i′), then φN holds in BR′,i′ |= TA (Proposi-
tion 1.5.7), and hence B |= φN . This in turn implies that N is satisfiable in (R, i)
(see Proposition 1.5.7 and the comment after this proposition). �

Corollary 1.5.14. Let A be a finite representable relation algebra. Then there
exists a countable A-structure B such that the network satisfaction problem for A is
polynomial-time Turing equivalent to CSP(B).

Proof. By Proposition 1.5.13 the relation algebra A has a countable universal
representation (R, i), and hence the network satisfaction problem for A equals the net-
work satisfaction problem for (R, i). By Corollary 1.5.8, this problem is polynomial-
time Turing equivalent to CSP(B) for the countable structure B := BR,i. �

When we later discuss examples of constraint satisfaction problems that are in-
troduced as the network satisfaction problem for some representation (R, i) of a finite
relation algebra A (for example in Section 1.6) then we identify this representation
with the relational A-structure BR,i.

1.5.4. Discussion. We close this section by discussing the weaknesses of the
relation algebra approach to constraint satisfaction. First of all, the class of problems
that can be formulated as a network satisfiability problem for some finite relation
algebra A is severely restricted. The relations that we allow in the input networks
are closed under unions; this introduces a sort of restricted disjunction that quickly
leads to NP-hardness, and indeed only a few exceptional situations have a polynomial-
time tractable network satisfiability problem [210]. The typical work-around here is
to introduce another parameter, which is a subset A′ of the domain of A, and to study
the network satisfaction problem for networks N = (V ; f) where the image of f is
contained in A′. Such subsets A′ are often called a fragment of A. Note that such an
additional parameter is not necessary for CSPs as studied here: with the techniques
of this section, we can also formulate the network satisfaction problems for fragments
of A as CSPs. Also note that the network satisfaction problem is restricted to binary
relations, whereas many important CSPs can only be formulated in a natural way
with relations of higher arity (see e.g. Section 1.6.2 or Section 1.6.8).

Every network satisfaction problem can be formulated as CSP(B) for an appro-
priate infinite structure B (as we have seen in Proposition 1.5.13), but as the above
remarks show, only a very small fraction of CSPs can be formulated as a network
satisfaction problem for a finite relation algebra A. Despite this, there are hardly any
additional techniques available for studying network satisfaction problems. The tools
we have for network satisfaction also apply more generally to constraint satisfaction
problems.

The study of composition of relations in the context of the network satisfiability
problem is usually justified by the fact that a network with constraints that involve
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the relation R ◦ S can be simulated by networks using constraints that involve the
relations R and S and adding extra nodes. To study the computational complexity
of the network satisfaction problem for a fragment B of a relation algebra A, one
therefore typically computes the closure of B under the operations of the relation
algebra. But note that every binary relation in the closure of B is also primitively
positively definable in any representation of A and that the converse of this statement
is false.8 Since the computational complexity is preserved also for expansions by prim-
itively positively definable relations (see Lemma 1.2.6), primitive positive definitions
therefore appear to be the more appropriate tool for studying network satisfaction
problems. Apart from being more powerful, primitive positive definability has another
advantage in comparison to closure in relation algebras: while the latter is intricate
and not well understood, we can offer a powerful Galois theory to study primitive
positive definability of relations (see Chapter 6).

1.6. Examples

This section presents computational problems that have been studied in various
areas of theoretical computer science, and that can be formulated as constraint satis-
faction problems in the sense of Section 1.1, 1.2, 1.3, or 1.4. Each problem is described
from the perspective in which the computational first appeared in the literature. Our
list is by far not exhaustive; computational problems that can be exactly formulated
as CSP(B) for an infinite structure B are abundant in almost every area of theoretical
computer science.

1.6.1. Allen’s interval algebra. Allen’s Interval Algebra [10] is a formalism
that is famous in artificial intelligence, and which has been introduced to reason about
intervals and about the relationships between intervals.

Formally, Allen’s interval algebra is a proper relation algebra (see Section 1.5);
we can also view it as a structure with a binary relational signature. The domain is
the set I of all closed intervals [a, b] of rational numbers, where a, b ∈ Q and a < b.
When x = [a, b] is an interval, then −x denotes the interval [−b,−a]. For R ⊆ I2
we write R− for the relation {(−x,−y) | (x, y) ∈ R}. Recall that in proper relation
algebras R` denotes the relation {(y, x) | (x, y) ∈ R}.

Relation Symbol Definition Explanation
P {([a, b], [c, d]) | b < c} [a, b] precedes [c, d]
M {([a, b], [c, d]) | b = c} [a, b] meets [c, d]
O {([a, b], [c, d]) | a < c < b < d} [a, b] overlaps with [c, d]
S {([a, b], [c, d]) | a = c and b < d} [a, b] starts [c, d]
D {([a, b], [c, d]) | c < a < b < d} [a, b] is during [c, d]
E {([a, b], [c, d]) | a = c, b = d} [a, b] equals [c, d]

Figure 1.7. The definitions for the basic relations of Allen’s interval algebra.

The basic relations of Allen’s interval algebra are the 13 relations P,M,O, S,D,E
(defined in Figure 1.7), P−,M−, O−, S−, and the converse of S, D, and S−, denoted
by S`, D`, and (S−)`, respectively. Note that these 13 relations are pairwise disjoint,
that their union equals I2, and that they are closed under composition. Recall our
convention that when R is a subset of the basic relations, we write xRy if (x, y) ∈⋃
R∈RR. For example, x{P, P−}y signifies that the intervals x and y are disjoint.

8An example that shows this for a fragment of Allen’s Interval Algebra (cf. Section 1.6.1) is
described by Krokhin, Jeavons, and Jonsson [256], Section 4.2.2).
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The 213 relations that arise in this way will be called the relations of Allen’s interval
algebra.

An important computational problem for Allen’s interval algebra is the network
satisfaction problem for Allen’s interval algebra. We will see in Exampe 5.5.5 that
Allen’s interval algebra is a fully universal representation of its abstract relation al-
gebra A, so the network satisfaction problem for Allen’s Interval Algebra equals the
general network satisfaction for A (cf. Proposition 1.5.10). As explained in Corol-
lary 1.5.8 this problem can be viewed as CSP(A) where A is a structure with domain
I and a signature containing 213 binary relation symbols. More on this structure can
be found in Chapter 2, Example 2.4.2. The name Allen’s interval algebra may refer
to either A or A, depending on the context.

The problem CSP(A) is NP-complete [10] (this follows also from Theorem 3.4.3).
The complexity of the CSP for (binary) reducts of Allen’s interval algebra has been
completely classified in [256].

1.6.2. Phylogenetic reconstruction problems. In modern biology it is be-
lieved that in the course of their evolution, the various species have developed in
a tree-like fashion. That is, any species derives predominantly from a single prior
species, and all species share a common ancestor. The goal of phylogenetic recon-
struction is to determine the evolutionary tree from given partial information about
the tree. This motivates the computational problem of rooted triple satisfiability (also
called rooted triple consistency), defined below. In 1981, Aho, Sagiv, Szymanski, and
Ullman [9] presented a quadratic time algorithm for this problem, motivated inde-
pendently from computational biology by questions in database theory.

A tree (in the sense of graph theory) is a connected acyclic graph. Let T be a
tree with vertex set T and with a distinguished vertex r, the root of T. Vertices that
are distinct from r and have degree one, i.e., that have exactly one neighbour in T,
are called leaves. For u, v ∈ T , we say that u lies below v if the path from r to u
passes through v. We say that u lies strictly below v if u lies below v and u 6= v.
The youngest common ancestor (yca) of two vertices u, v ∈ T is the node w such that
both u and v lie below w and w has maximal distance from the root r.

Rooted-Triple Satisfiability
INSTANCE: A finite set of variables V , and a set of triples xy|z for x, y, z ∈ V .
QUESTION: Is there a rooted tree T with leaves L and a mapping s : V → L such
that for every triple xy|z the yca of s(x) and s(y) lies strictly below the yca of s(x)
and s(z) in T?

Another famous problem that has been studied in this context is the quartet
satisfiability problem, which is NP-complete [341].

Quartet Satisfiability
INSTANCE: A finite set of variables V , and a set of quartets xy:uv with x, y, u, v ∈ V .
QUESTION: Is there a tree T with leaves L and a mapping s : V → L such that for
every quartet xy:uv the shortest path from x to y is disjoint from the shortest path
from u to v?

It is straightforward to check that the class of positive instances (viewed as rela-
tional structures) of each of these two computational problems is closed under disjoint
unions and inverse homomorphisms. By Lemma 1.1.8, both the rooted triple satis-
faction problem and the quartet satisfaction problem can be formulated as CSP(B)
for an infinite structure B. We come back to these CSPs in Section 5.1.
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◦ = < > |
= = < > |
< < < {<,=, >} {<, |}
> > 1 > |
| | | {>, |} 1

Figure 1.8. The composition table for the basic relations in the
left-linear point algebra from Section 1.6.3.

1.6.3. Branching-time constraints. An important model in temporal reason-
ing is branching time, where for every point in time the past is linearly ordered, but
the future is only partially ordered.

This motivates the so-called left-linear point algebra [166,210], which is a relation
algebra with four basic relations, denoted by =, <, >, and |. Here, x|y signifies that
x and y are incomparable in time, and ‘x < y’ signifies that x is earlier in time than
y, and to the left of y when we draw points in the plane; this motivates the name left
linear point algebra. The composition operator on these four basic relations is given
in Figure 1.8. The converse of < is >, Id denotes =, and | is its own converse. The
relation algebra is uniquely given by this data.

As explained in Section 1.5, the network satisfaction problem for a representable
relation algebra can be viewed as CSP(B) for an appropriate infinite structure. In
any such structure, < must denote a dense partial order which is semilinear9, i.e.,
for every x the set {y | y < x} is linearly ordered by <. The network satisfaction
problem of the left-linear point algebra is polynomial-time equivalent to the following
problem, called the branching-time satisfiability problem.

Branching-Time Satisfiability
INSTANCE: A finite relational structure A = (A;≤, ‖, 6=) where ≤, ‖, and 6= are
binary relations.
QUESTION: Is there a rooted tree T and a mapping s : A → T such that in T the
following is satisfied:

• if (x, y) ∈ ≤A, then s(x) lies above s(y);
• if (x, y) ∈ ‖A, then neither s(x) lies strictly above s(y), nor s(y) strictly

above s(x);
• if (x, y) ∈ 6=A, then s(x) 6= s(y).

The polynomial-time equivalence of branching-time satisfiability and the network
satisfaction problem of the left-linear point algebra can be explained by the fact that
in any representation of the left-linear point algebra, the relation x{<,>,=}y has the
primitive positive definition

∃z (x{<,=}z ∧ y{<,=}z)

and the relation x{<, |,=}y has the primitive positive definition

∃z (x{<,=}z ∧ z{|,=}y);

we can then use Theorem 1.2.6 (for details, see [78]).
The branching-time satisfiability problem can be formulated as CSP(C) for the

structure with domain C := {0, 1}∗ and relations ≤, ‖, and 6=, where ≤ denotes the

9In some publications, a semilinear order is also required to have for all elements x, y an element
z such that z < x and z < y; we do not require this.
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◦ = < > ≺ �
= = < > ≺ �
< < < {<,>} {<,≺} {<,�}
> > 1 > ≺ �
≺ ≺ ≺ {>,≺} ≺ 1
� � � {>,�} 1 �

Figure 1.9. The composition table for the basic relations of Cor-
nell’s tree algebra C from Section 1.6.4.

relation
{(u, v) ∈ C2 | u is a prefix of v} .

The relation 6= is the disequality relation, and u ‖ v holds if u and v are equal or
incomparable with respect to≤. Let< denote the intersection of≤ and 6=. Other tem-
plates for the branching-time satisfiability problem that have better model-theoretic
properties will be discussed in Section 5.2. Note that the structure C cannot be used
to obtain a representation of the left-linear point algebra, since (<) ◦ (<) does not
equal <. A fully universal square representation of the left-linear point algebra will
be presented in Example 5.5.6.

The first polynomial-time algorithm for the branching-time satisfiability problem
(and therefore also for the network satisfaction problem of the left-linear point alge-
bra) is due to Hirsch [210], and has a worst-case running time in O(n5). This has
been improved by Broxvall and Jonsson [109], who presented an algorithm running
in O(n3.376) (this algorithm uses an O(n2.376) algorithm for fast integer matrix mul-
tiplication). A simpler algorithm which does not use fast matrix multiplication and
runs in O(nm) has been found in [77].

1.6.4. Cornell’s tree description constraints. Motivated by problems in
computational linguistics, Cornell [145] introduced a computational problem10 which
is equivalent to the general network satisfaction problem for the relation algebra
C with atoms =, <, >, ≺, and � which is given by the composition table in Fig-
ure 1.9. This is a strictly more expressive problem than the branching-time satisfiabil-
ity problem from the previous section, and was introduced independently from [210]
and [109]. The idea is that < denotes a dense semilinear order (see Section 1.6.3),
and ≺ ∪ < denotes a linear order. The way these relations arise in natural language
grammar formalisms like dependency grammars is that < represents the syntactic
structure of a natural language sentence whereas ≺ ∪ < stands for the word order.

Similarly as in Section 1.6.3, all 25 relations of C can be obtained by repeated
compositions and intersections of the four relations {<,=}, {≺,=}, {≺,�,=}, and
{<,>,≺,�}; for details, see [78]. The algorithm presented for the general network
satisfaction problem for C in [145] (which is the so-called path consistency algorithm;
see Section 8.2.1) is not complete (in fact, as a consequence of Lemma 8.6.6 the
problem cannot even be solved by Datalog). A polynomial-time algorithm has been
given in [78].

1.6.5. Set constraints. Many fundamental problems in artificial intelligence,
knowledge representation, and verification involve reasoning problems about relations
between sets that can be modelled as constraint satisfaction problems. A fundamental
problem of this type is the following. We denote the set of all subsets of N by P(N).

10I feel personally committed to Cornell’s problem since it was the first CSP with an ω-
categorical template I encountered.
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◦ DR PO PP PPI EQ
DR 1 PP ∪DR ∪ PO PP ∪DR ∪ PO DR DR
PO PPI ∪DR ∪ PO 1 PP ∪ PO PPI ∪ PO PO
PP DR PP ∪DR ∪ PO PP 1 PP
PPI PPI ∪DR ∪ PO PPI ∪ PO PP ∪ PPI ∪ PO ∪ EQ PPI PPI
EQ DR PO PP PPI EQ

Figure 1.10. The composition table for the basic relations of RCC5.

Basic Set Constraint Satisfiability
INSTANCE: A finite set of variables V , and a set φ of constraints of the form x ⊆ y,
x || y, or x 6= y, for x, y ∈ V .
QUESTION: Is there a mapping s : V → P(N) such that
a) If x ⊆ y is in φ, then s(x) is contained in s(y);
b) If x || y is in φ, then s(x) and s(y) are disjoint sets;
c) If x 6= y is in φ, then s(x) and s(y) are distinct sets.

This problem has the shorter description CSP(P(N);⊆, ||, 6=) where ⊆, ||, 6= are
binary relations over P(N), standing for the binary relations containment, disjointness,
and inequality between sets. Drakengren and Jonsson [160] showed that basic set
constraint satisfiability can be decided in polynomial time. They also showed that
a generalisation of this problem can be solved in polynomial time in which each
constraint has the form

x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ x0Ry0

where R is either ⊆, ||, or 6=, and where x0, . . . , xk, y0, . . . , yk are not necessarily
distinct variables. Set constraint languages will be revisited in Section 5.3.

1.6.6. Spatial reasoning. Qualitative spatial reasoning is concerned with rep-
resentation formalisms that are considered close to conceptual schemata used by hu-
mans for reasoning about their physical environment—in particular, about processes
or events, and about the spatial environment in which they are situated. An approach
in qualitative spatial reasoning is to develop relational schemata that abstract from
concrete metrical data of entities (for example coordinate positions or distances) by
subsuming similar metric or topological configurations of entities under one qualita-
tive representation.

There are many formalisms for qualitative spatial reasoning. In particular, several
relation algebras (see Section 1.5) have been studied in this context. A basic example
is the RCC5 relation algebra (with 5 atoms; the RCC5 relation algebra is also known
under the name containment algebra [40,166]), and the RCC8 relation algebra (with
8 atoms). In both formalisms, the variables denote ‘non-empty regions’. In RCC5,
the five atoms are denoted by DR, PO, PP, PPI, EQ, and they stand for disjointness,
proper overlap, proper containment (proper-part-of), its converse (also called inverse
in this context), and equality, respectively. In RCC8, we further distinguish the way
the ‘boundaries’ of two regions relate to each other. We do not further discuss RCC8;
for details, see [104,166].

There are many equivalent ways to formally define RCC5. Every relation algebra
is uniquely given by the composition table for its atomic relations. The table for RCC5
is given in Figure 1.6.6. More elegant descriptions require concepts from model theory
and will be presented in Section 5.4.
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The network satisfaction problem for RCC5 is NP-complete [323]; the compu-
tational complexity of the CSPs for the (binary) reducts of B has been classified
in [228]. A polynomial-time tractable case of particular interest is the network sat-
isfaction problem for the basic relations of RCC5 [323], i.e., the network satisfaction
problem for RCC5 if the input is restricted to networks N = (V ; f) where the image
of f only contains atoms of RCC5.

In any representation of RCC5, the atomic relations satisfy the following set of
axioms T . We use P(x, y) as a shortcut for PP(x, y) ∨ EQ(x, y) and PI(x, y) as a
shortcut for PPI(x, y) ∨ EQ(x, y).

T :=
{
∀x, y, z

(
DR(x, y) ∧ P(z, y)→ DR(x, z)

)
(8)

∀x, y, z
(
PO(x, y) ∧ P(y, z)→ (PO(x, z) ∨ PP(x, z))

)
(9)

∀x, y, z
(
PP(x, y) ∧ PP(y, z)→ PP(x, z)

)
(10)

∀x, y, z
(
PI(x, y) ∧ P(y, z)→ ¬DR(x, z)

) }
(11)

It follows from the results in Section 5.4 that the network satisfaction problem for
the basic relations of RCC5 is the same problem as CSP(T ), where T is the first-order
theory defined as above. It can be checked that T satisfies item (2) in the statement
of Proposition 1.3.6, and hence there exists an infinite structure B such that CSP(B)
equals the satisfiability problem for RCC5. We will give more explicit descriptions of
such an infinite structure B in Section 5.4 (and it turns out that there are close links
with the basic set constraints problem from Section 1.6.5).

1.6.7. Horn-SAT. The Horn-SAT problem is an important computational prob-
lem that can be solved in linear time in the size of the input [159]. It is complete
for polynomial time under log-space reductions [124]. A propositional formula in
conjunctive normal form is called Horn if each clause is a Horn clause, i.e., has at
most one positive literal.

Horn-SAT
INSTANCE: A propositional Horn formula.
QUESTION: Is there a Boolean assignment for the variables such that in each clause
at least one literal is true?

We cannot model this problem as CSP(B) for a finite signature structure B;
however, note that a clause ¬x1 ∨ · · · ∨ ¬xk ∨ x0 is equivalent to

∃y1, . . . , yk−2

(
(¬x1 ∨ ¬x2 ∨ y1) ∧ (¬y1 ∨ ¬x3 ∨ y2) ∧ · · · ∧ (¬yk−2 ∨ ¬xk ∨ x0)

)
.

Hence, by introducing new variables, there is a straightforward reduction of Horn-
SAT to the restriction of Horn-SAT where every clause has at most three literals. This
restricted problem, which we call Horn-3SAT, can be formulated as CSP(B) for

B =
(
{0, 1};{(x, y, z) | (x ∧ y)⇒ z}, {(x, y, z) | ¬x ∨ ¬y ∨ ¬z},

{(x, y) | x⇒ y}, {(x, y) | ¬x ∨ ¬y}, {0}, {1}
)
.

1.6.8. Precedence constraints in scheduling. The following problem has
been studied in scheduling [294]: given is a finite set of variables V , and a finite set
of constraints of the form ∨

i∈{1,...,k}

xi < x0 (12)

for x0, x1, . . . , xk ∈ V . The question is whether there exists an assignment V → Q
(equivalently, we can replace Q by Z, or any other infinite linearly ordered set) such
that all these constraints are satisfied.
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As in the case of Horn-SAT, we cannot directly model this problem as CSP(B)
for a finite signature structure B. However, note that Formula (12) is equivalent to

∃y1, . . . , yk−1

(
(x1 < x0 ∨ y1 < x0)∧
(x2 < y1 ∨ y2 < y1) ∧ · · · ∧ (xk−1 < yk−1 ∨ xk < yk−1)

)
.

This shows that and/or precedence constraints can be translated into conjunc-
tions of constraints of the form x1 < x0 ∨ x2 < x0 by introducing new existentially
quantified variables. Hence, the problem whether a given set of and/or precedence
constraints is satisfiable reduces naturally to CSP(Q;Rmin

< ) where

Rmin
< := {(a, b, c) | b < a ∨ c < a}.

Note that Rmin
< holds on exactly those triples (a, b, c) where a is larger than the

minimum of b and c. The problem CSP(Q;Rmin
< ) can be solved in polynomial time;

this is essentially due to [294]. For more expressive constraint languages over Q that
contain the relation Rmin

< and whose CSP can still be solved in polynomial time, see
Section 12.4.1, Section 12.5.2, and Section 12.5.3.

1.6.9. Ord-Horn constraints. In this section we work with first-order formulas
over the signature {<}. We write x ≤ y as a shortcut for (x < y) ∨ (x = y) (recall
our convention that equality is part of first-order logic). A formula over the signature
{<} and with variables V is called Ord-Horn if it is a conjunction of disjunctions of
the form

x1 6= y1 ∨ · · · ∨ xk 6= yk ∨R(x0, y0)

where x0, x1, . . . , xk, y0, y1, . . . , yk ∈ V , and R is either ≤, <, 6=, or =.

Ord-Horn Satisfiability
INSTANCE: A finite set of variables V , and a finite set of Ord-Horn formulas with
variables from V .
QUESTION: Is there an assignment V → Q that satisfies all the given formulas over
(Q;<)?
Nebel and Bürckert [297] showed that Ord-Horn Satisfiability can be solved in poly-
nomial time. If we use a linear-time algorithm for computing the strongly connected
components in a directed graph, one can easily obtain an algorithm that runs in
time O(nm) where n is the number of variables and m is the number of constraints.
Recently, Bernstein, Dudeja, and Pettie [42] found an incremental algorithm for com-
puting the strongly connected components of digraphs with an overall amortized
update and query time in Õ(m4/3). The fastest such algorithms for dense graphs can
be found in [39]. This gives in particular algorithms for Ord-Horn which are faster
than the quadratic running time mentioned above.

A relation R ⊆ Qk is called Ord-Horn if it is definable by an Ord-Horn formula
over (Q;<). As in the case of Horn-SAT and of and/or precedence constraints, there
are structures B with finitely many Ord-Horn relations such that all Ord-Horn re-
lations have a primitive positive definition in B. Similarly as in the previous two
sections, it is easy to see that the following structure has this property:

(
Q;≤, 6=, {(x, y, u, v) | (x = y)⇒ (u = v)}

)
In Section 12.4.1 we present a constraint language that contains and/or prece-

dence constraints and Ord-Horn constraints and that can still be solved in polynomial
time.
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1.6.10. Ord-Horn interval constraints. For some (binary) reducts B of Allen’s
interval algebra CSP(B) can be solved in polynomial time. The most important of
these reducts has been introduced by Nebel and Bürkert [297] under the name Ord-
Horn interval constraints. It consists of all the relations R of Allen’s interval algebra
such that the relation

{
(x, y, u, v) | ([x, y], [u, v]) ∈ R

}
is Ord-Horn (see Section 1.6.9).

Now it is not hard to see that satisfiability for Ord-Horn interval constraints has a
polynomial-time reduction to Ord-Horn satisfiability. This type of reduction will be
studied in Section 6.3.5.

1.6.11. Linear program feasibility. Linear Programming is a computational
problem of outstanding theoretical and practical importance (see e.g. [335]). It is
known to be computationally equivalent to the problem to decide whether a given set
of linear (non-strict) inequalities is feasible, i.e., defines a non-empty set.

Linear Program Feasibility
INSTANCE: A finite set of variables V ; a finite set of linear inequalities of the form
a1x1 + · · · + akxk ≤ a0 where x1, . . . , xk ∈ V and a0, . . . , ak are rational numbers
where numerator and denominator are represented in binary.
QUESTION: Does there exist an x ∈ R|V | that satisfies all inequalities?

Khachyian showed in [240] that Linear Program Feasibility can be solved in
polynomial time. It is clearly not possible to formulate this problem as CSP(B)
for a structure B with a finite relational signature. However, it is polynomial-time
equivalent to CSP(R; {(x, y, z) | x + y = z}, {1},≤). For this, we need the following
lemma.

Lemma 1.6.1 (Lemma 2.11 in [70]). Let n0, . . . , nl ∈ Q be arbitrary rational
numbers. Then the relation {(x1, . . . , xl) | n1x1 + . . . + nlxl = n0} is primitively
positively definable in (R; {(x, y, z) | x + y = z}, {1}). Furthermore, the primitive
positive formula that defines the relation can be computed in polynomial time.

The idea of the proof is the use of iterated doubling to define large numbers by
small primitive positive formulas. By extending the previous result to inequalities,
one can prove the following.

Proposition 1.6.2 (from [70]). The linear program feasibility problem for linear
programs is polynomial-time equivalent to CSP(R; {(x, y, z) | x+ y = z}, {1},≤).

Clearly, we could have chosen Q instead of R to formulate the linear program
feasibility problem. However, if we replace the domain by Z we obtain the NP-
complete integer linear program feasibility problem [335] (cf. Section 1.6.14).

1.6.12. The Max-atom problem. In our list of problems from the literature
that can be formulated as CSP(B), we also want to include one problem in NP for
which it is not known whether CSP(B) is in P. The problem in question is a variant of
the following problem, which has been introduced in [43] and, independently, in [294],
and which is not itself of the form CSP(B) for a structure B with a finite relational
signature.

The Max-atom Problem
INSTANCE: A finite set of variables V ; a finite set of constraints of the form

x0 ≤ max(a1 + x1, . . . , ak + xk)

where x0, x1, . . . , xk ∈ V are variables and a0, . . . , ak ∈ Z are coefficients that are
represented in binary.
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QUESTION: Does there exist an x ∈ Q|V | that satisfies all inequalities?

The Max-atom problem is known to be contained in NP ∩ coNP; this was proved
by Möhring, Skutella, and Stork [294], with another proof given by Bezem, Nieuwen-
huis and Rodŕıguez-Carbonell [43]. They also show that the problem is in P when the
coefficients in the input are represented in unary. It is not known whether the problem
is in P. The problem is polynomial-time equivalent to the famous problem of deciding
the winner in mean-payoff games [294]. Mean-payoff games generalise so-called Par-
ity games (see [191]), which in turn are equivalent to the satisfiability problem for
the propositional µ-calculus [172]. A recent breakthrough result is that the winner
in a Parity game can be decided in quasi-polynomial time [126]; it appears to be
difficult to generalise this complexity result to prove that the Max-atom problem can
be decided in quasi-polynomial time. The Max-atom problem is also polynomial-time
equivalent to an intensively studied problem in an area called max/+ algebra [43].

As in the case of linear program feasibility, the Max-atom problem cannot be
formulated as CSP(B) for a structure B with a finite relational signature. The
problem we consider in its place is

CSP(Q; {(x, y) | y = x+ 1}, {(x, y) | y = 2x}, Rmin
≤ )

where Rmin
≤ = {(x, y, z) | y ≤ x ∨ z ≤ x} is a variant of the relation Rmin

< from
Section 1.6.8. The Max-atom problem can be reduced to the latter problem: namely,
we replace expressions of the form xi + ai by a new variable yi, and add a primitive
positive formula φ(x, y) that defines yi = xi + ai and can be computed in polynomial
time in the input size of the Max-atom problem. We do not know how to prove
hardness for the CSP above, and rather think that the problem might well be in P.

1.6.13. Unification. Unification (and unification modulo equational theories)
is a field in its own right in computational logic, and the complexity of the unification
problem has been studied in numerous variants [15]. Many unification problems can
be viewed as CSP(B), for an appropriate infinite structure B, as we will see in the
following. We start with the most fundamental unification problem.

Let τ := {f1, . . . , fk} be a finite set of function symbols, and let x be a variable
symbol. Then F(x) denotes the set of all terms that can be constructed from τ and
the variable x. The unnested unification problem over τ is the following problem11.

Unnested Unification Problem over τ
INSTANCE: a finite set of variables V , and a finite set of ‘un-nested’ term equations,
i.e., expressions of the form y0 ≈ f(y1, . . . , yk) for y0, y1, . . . , yk ∈ V and f ∈ τ .
QUESTION: is there an assignment s : V → F(x) such that for every expression
y0 ≈ f(y1, . . . , yk) in the input we have s(y0) = f(s(y1), . . . , s(yk))?

For fixed τ as above, let T = (F(x);F1, . . . , Fk) be the structure where Fi is the
relation {(t0, t1, . . . , tr) ∈ (F(x))r+1 | t0 = fi(t1, . . . , tr)} (here, r is the arity of fi).
It is clear that the unnested unification problem over τ can be described as CSP(T).
In a similar way, equational unification problems (see [15]) can be viewed as CSPs.

1.6.14. CSPs over the integers. The structure (Z; Succ) of the integers with
the successor relation Succ = {(x, y) ∈ Z2 | x = y+ 1} constitutes one of the simplest
structures with a finite signature that is not ω-categorical. In Section 5.8 we will show
that CSP(Z; Succ) can be expressed in connected monotone SNP. It is natural to ask
which expansions of (Z; Succ) have a CSP that can still be solved in polynomial time.

11This problem is known to be equivalent to the standard unification problem where the input
is a single equation t1 ≈ t2 for ‘nested’ terms t1, t2 ∈ F(x).
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Difference Logic
INSTANCE: A finite set of variables V ; a finite set of constraints, each of the form

x− y ≤ c

where x, y ∈ V are variables and c ∈ Z is a constant represented in binary.
QUESTION: Does there exist an x ∈ Q|V | that satisfies all inequalities?

This problem can be solved in polynomial time by the algorithm of Bellman-
Ford [144]. More expressive fragments of integer linear programming quickly become
NP-hard: for example, satisfiability of systems of linear inequalities with at most two
variables per inequality over the integers is NP-complete [261]. Even more expressive
is the following famous problem.

Integer Program Feasibility
INSTANCE: A finite set of variables V ; a finite set of linear inequalities of the form

a1x1 + · · ·+ akxk ≤ 0

where x1, . . . , xk ∈ V are variables and a1, . . . , ak ∈ Z are integer constants repre-
sented in binary.
QUESTION: Does there exist an x ∈ Z|V | that satisfies all inequalities?

Note that all of the problems mentioned above cannot be modelled as CSP(B) for
some fixed structure B with a finite relational signature (see the discussion on infinite
signatures in Section 1.7.1). However, similarly as for Linear Program Feasibility,
there exists a structure with finite relational signature whose CSP is polynomial-time
equivalent to Integer Program Feasibility, namely

(Z; {(x, y, z) | x+ y = z}, {1},≤).

1.6.15. Expansions of Linear Program Feasibility. Linear Programming is
a computational problem of outstanding theoretical and practical importance. As we
have seen in Section 1.6.11, it is computationally equivalent to CSP(R; {(x, y, z) | x+
y = z}, {1},≤). It is natural to ask which expansions of this structure still have a
polynomial-time solvable CSP. It has been shown in [70] that every first-order expan-
sion of this structure is contained in a class called Horn-DLR [227] and polynomial-
time tractable, or otherwise NP-hard.

An important class of relations over the real numbers that generalises the class
of relations defined by linear inequalities is the class of all semi-algebraic relations,
i.e., relations with a first-order definition in (R; +, ∗). By the fundamental theorem
of Tarski and Seidenberg it is known that a relation S ⊆ Rn is semi-algebraic if and
only if it has a quantifier-free first-order definition in (R; +, ∗, 0, 1,≤). Geometrically,
we can view semi-algebraic sets as unions of intersections of the solution sets of strict
and non-strict polynomial inequalities. The classification of the computational com-
plexity of CSPs for real-valued semi-algebraic constraint languages is an ambitious
research project, and has important links to semidefinite programming: every semi-
definite representable set is semi-algebraic and convex. There are many fundamental
questions in this area that are wide open, for instance the complexity of semidefinite
programming feasibility (see e.g. Section 6.4.4 in [354], or [321]). The conjecture
that every convex semi-algebraic set is semidefinite representable [205], i.e., primi-
tively positively definable over the structure that has as its relations all the solution
spaces of semidefinite programs, has been refuted recently [330]. These important
questions from real algebraic geometry are outside the scope of this text.
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1.7. Topics Not Covered

When choosing the material for this book, certain restrictive choices had to be
made. We comment on some related lines of research or facets of the area that we
had to omit. There are for example the following fields of research.

(1) Finding optimal solutions to valued constraint satisfaction problems [247,
248,253,347], even over infinite domains [83].

(2) Studying the complexity of CSPs for random instances [2, 143]; often it is
interesting to determine the threshold of the density where such instances
are with high probability satisfiable or with high probability unsatisfiable.
Also this topic has also been studied for constraint satisfaction problems
over infinite domains [188,189,216].

(3) Counting the number of solutions to a CSP [114,117,167,168], exactly or
approximately.

(4) Enumerating the solutions to a CSP, for instance with the goal to find a
polynomial-delay algorithm [119],

(5) studying the complexity of CSPs not only relative to the set of allowed
constraints, but also with restrictions on the possible input instances. This
is modelled by fixing a class of structures K and allowing only structures from
K in the input, sometimes referred to as left-hand side restriction (since we

restrict the left-hand side in the homomorphism problem A
?→ B); see [196].

(6) the recent topic of promise CSPs, where the task is to distinguish an instance
which is satisfiable in A from an instance which is not even satisfiable in B,
for two relational structures A,B with the same signature [123].

(7) Exact time complexity of the (NP-hard) CSPs. In this context, primitive
positive definability is too powerful, but weaker forms of definability exist
that are still useful for complexity classification. The universal-algebraic
approach can be adapted to this setting using partial clones instead of clones;
we refer to the recent survey of Couceiro, Haddad, and Lagerkvist on this
topic [146].

In each of these fields, techniques that will be presented in this book have been applied
fruitfully to obtain systematic understanding of the complexity of the respective com-
putational problems. In the following, we comment in more detail on three further
topics: infinite signatures, complexity classes within NP, and quantified CSPs.

1.7.1. Infinite signatures. Several natural computational problems could be
formulated as CSP(B) if we allow the structure B to have a countably infinite sig-
nature. For example, we may view the feasibility problem for linear programs (Sec-
tion 1.6.11) as CSP(B) where B contains all relations of the form {(x1, . . . , xk) | a1x1+
· · ·+ akxk ≤ a0}, for all rational numbers a0, a1, . . . , ak. Indeed, some general results
for constraint satisfaction that we present here carry over to infinite signatures. How-
ever, if we wanted to extend the present definition of CSP(B) to structures B with an
infinite signature, we are faced with the problem of specifying how the constraints in
input instances of CSP(B) are represented. When B has a finite signature, this causes
no difficulties, since we can fix any representation for the finite number of relation
symbols; as B is fixed, the precise choice of the representation is irrelevant.

When B has an infinite signature, a good choice of encoding for the constraints in
the input very much depends on the structure B. In the example of linear program-
ming feasibility, for instance, we may represent the constraint a1x1 + · · ·+ akxk ≤ a0

by specifying the coefficients a0, a1, . . . , ak in binary. Note that the issue of finite
versus infinite constraint languages is not specific to infinite domains, but becomes
relevant already for finite domains. Typically, for infinite constraint languages over



1.7. TOPICS NOT COVERED 45

a finite domain each constraint in the input is represented by listing all tuples of
the corresponding relation in the constraint language. But this is not the only, and
sometimes not even the most natural way to represent the constraints. For instance
for the Horn-SAT problem (see Section 1.6.7), the most natural way to present the
constraints is by writing them as conjunctions of Horn clauses. In the general setting,
several representations have been proposed, some of which are more concise than
listing all tuples [134], and some of which are less concise [290]. It turns out that
typically when a CSP with an infinite constraint language is computationally hard,
then there is a finite set of relations in this language such that the CSP for this sub-
language is already NP-hard. For infinite constraint languages over a finite domain,
and assuming that each constraint is represented by explicitly listing all satisfying
assignments for the variables, it has even been conjectured [120] that this might be
true in general; that is, when CSP(B) is NP-hard under this representation, then B
has a finite signature reduct with an NP-hard CSP.

We have decided to keep the focus on CSPs for finite constraint languages. The
main reason is that we can then work with the same definition of the computational
problem CSP(B) for all infinite structures B; for finite languages, there is no need
for discussions of how the input to the constraint satisfaction problem is represented.
Moreover, for all of the algorithms presented in this book it will be immediately clear
for which representation of the input they can be generalised to infinite languages;
we will illustrate this with the algorithms given in Chapter 12. Working with finite
signatures does not prevent us from stating relevant mathematical facts in full gener-
ality when they also hold for structures with an infinite signature; only when it comes
to statements about CSP(B), do we insist that B has finite relational signature.

1.7.2. Complexity classes below P. Besides the mentioned progress on the
complexity dichotomy for finite domain CSPs, there has been considerable research
activity to localise the exact complexity of CSPs inside the complexity class P, or
with respect to definability in certain logics. By definability of CSP(B) we mean that
there exists a sentence Φ in some logic (typically extensions of first-order logic and
restrictions of second-order logics; some appear in Chapter 8) such that A |= Φ if and
only if A maps homomorphically to B (in this case it is most natural to work with
the definitions of the CSP presented in Section 1.1 and in Section 1.4).

One motivation for studying the computational complexity within P is the ques-
tion whether it is possible to solve problems faster in parallel models of computation.
Another motivation is the goal to better understand the scope of existing algorith-
mic techniques to solve CSPs (such as Datalog, or restrictions of Datalog). In this
line of research, the computational complexity of CSP(B) has been completely clas-
sified if B is a two-element structure [11]. Each problem in this class is complete
for one of the complexity classes NP, P, ⊕L, NL, L, and AC0 under AC0 isomor-
phisms. For general finite domains, several universal-algebraic conditions are known
that imply hardness for various complexity classes [14, 28, 263]. Concerning defin-
ability of CSPs, there are precise characterisations of those CSPs that are definable
by a first-order sentence [13,262]. Moreover, if CSP(B) is not first-order definable,
then it is L-complete under AC0-reductions [263] (see also [152,171]). For infinite-
domain constraint satisfaction, apart from a characterisation of first-order definable
CSPs [65,326], there are no general results about pinpointing the complexity of CSPs
within the complexity class P yet. We would like to mention that already for some
concrete and model-theoretically well-behaved structures B the precise complexity of
CSP(B) within P is open.
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Example 1.7.1. Consider the problem

CSP(Q; 6=, {(x, y, z) | (x = y ⇒ y ≤ z) ∧ x ≤ y) .

This problem is hard for the complexity class non-deterministic logspace (NL) since
there is an easy reduction from directed reachability to this problem, and directed
reachability is an NL-complete problem. However, the precise complexity of this
problem is not known; it might be that the problem is contained in NL, but it might
also be P-hard. 4

1.7.3. Quantified CSPs. Let B be a structure with a finite relational signature.
Then the quantified constraint satisfaction problem for B, denoted QCSP(B), is the
computational problem to decide for a given first-order sentence φ in prenex normal
form and without disjunction and negation symbols whether φ is true in B. The
difference of QCSP(B) from CSP(B) as we have presented it in Section 1.1 is that
universal quantification is permitted in the input sentences φ.

The additional expressiveness often comes at the price of higher computational
complexity; whereas for finite structures B, the CSP for B is always in NP, there
are finite structures B where QCSP(B) is PSPACE-complete. But quite surpris-
ingly, several constraint languages with a polynomial-time tractable CSP also have
a polynomial-time tractable QCSP. This is for instance the case for 2SAT [12] (see
Example 1.2.2), or for Horn-3SAT [233] (see Section 1.6.7). Similarly, it can be
shown that the temporal constraint languages presented in Section 12.5.2 and Sec-
tion 12.5.4 are not only tractable for the CSP, but also for the QCSP. These are
attractive results, since they assert that we can solve an even more expressive com-
putational problem than the CSP for the same constraint language without loosing
polynomial-time tractability. From a methodological point of view, we remark that
the universal-algebraic approach can also be applied to study the complexity of the
QCSP [107]; as in the case of the CSP, the computational complexity of QCSP(B) is
captured by the (surjective) polymorphisms of B (see Chapter 6). Classifications of
the QCSP often rely on the corresponding classification for the CSP. In particular,
any hardness result for the CSP immediately translates into a hardness result for the
QCSP. Moreover, in the cases where the CSP(B) is tractable, the algorithmic insight
is often the starting point for further investigations of QCSP(B).

However, complexity classifications for QCSPs are typically harder to obtain than
the corresponding complexity classifications for CSPs. One of the reasons is that
several relevant universal-algebraic facts require the assumption that the algebra be
idempotent. The complexity of the QCSP, however, is not preserved by homomorphic
equivalence, thus when we study QCSP(B) we cannot pass to the core of B. Hence,
in general we cannot make the assumption that the polymorphism clone of B is idem-
potent. For CSP(B), a powerful way of proving NP-hardness is to give a primitive
positive interpretation of a Boolean template with a hard CSP (see Section 6.3.5).
For the QCSP, there are other sources of hardness. There are for example 3-element
templates B such that QCSP(B) is PSPACE-complete [107] and B has a semilattice
polymorphism so that no NP-hard Boolean CSP can be interpreted in B (not even up
to homomorphic equivalence; see Section 6.7). Finally, we would like to mention that
PSPACE-hardness proofs for the QCSP are often more difficult than NP-hardness
proofs for the CSP [56,107]. In view of the above it is not surprising that a full clas-
sification of the QCSP complexity for three-element structures is still open. Similarly,
there is no classification of the QCSP for the class of temporal constraint languages
presented in Chapter 12. There are concrete temporal constraint languages for which
the QCSP is of unknown computational complexity, for instance the QCSP for(

Q; {(x, y, z) | x = y ⇒ y ≥ z}
)
.
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For this problem, we do not know hardness for any complexity class above P, and do
not know containment in any complexity class below PSPACE.





CHAPTER 2

Model Theory

Hodges [214] writes that “model theory is about the classification of mathemati-
cal structures, maps and sets by means of logical formulas”. This book is about the
computational complexity of constraint satisfaction problems for infinite structures
B — and since the constraint satisfaction problem for B (and in particular its com-
plexity) is fully determined by the first-order theory of B, it is not surprising that
model theory has a great deal to say about constraint satisfaction problems.

We focus in this chapter on those classical themes from model theory that become
relevant for constraint satisfaction; these are in particular saturation, various preser-
vation theorems, and the direct limit construction. Compared to ‘classical model
theory’ we have to make one important twist here: since negation is not permitted
in constraint satisfaction, the results we present here will be concerned with positive
logic. Consequently, the prominent notion of embedding in model theory will be re-
placed by homomorphism, existential definability by existential positive definability,
limits of chains by direct limits, etc. Positive logic is topic of independent interest in
model theory [38]. It is important to note that the positive results in model theory
imply the corresponding classical results: we only have to add a symbol for the nega-
tion of each atomic formula to the signature, and apply the result for positive logic,
to obtain the corresponding classical result.
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When we present applications of the findings of this chapter to the study of CSPs,
it is natural to take the Satisfiability Perspective on the CSP, that is, we consider prob-
lems of the form CSP(T ) for a first-order theory T (see Section 1.3). The main theme
of this chapter is methods for constructing models of T with good properties such
that CSP(B) = CSP(T ). Important in this context is the notion of (first-order) types
and primitive positive types (Section 2.2). Models with a rich automorphism group
and good model-theoretic properties can be constructed from classes of finite struc-
tures via Fräıssé-amalgamation (Section 2.3), or via first-order interpretations from
known structures (Section 2.4). Section 2.5 presents algebraic characterisations of
good model-theoretic properties (so-called preservation theorems), Section 2.6 studies
theories that have good model-theoretic properties (namely model-complete theories
and core theories), and Section 2.6 explains how in some situations a theory may
be replaced by a theory that has good model-theoretic properties (model companions
and core compansions).

2.1. Preliminaries in Logic

This section collects some basic terminology and facts from logic. The notation
mostly follows Hodges’ textbook [213, 214], so many readers may safely skip this
section. The section can be consulted later, if needed, for particular concepts that
we introduce here. At some rare occasions, we use the concepts ordinal , cardinal ,
well-order , transfinite induction, and axiom of choice (cf. [213,214]); however, these
concepts are only needed for strongest possible formulations of the results or in some
side remarks. The readers who feel uneasy about set theoretic foundations can resort
to the countable setting, which is sufficient for most applications. The smallest infinite
ordinal is denoted by ω and the smallest infinite cardinal by ℵ0.

2.1.1. Basic Conventions. In this text, N = {0, 1, 2, . . . } denotes the set of
natural numbers including 0. If A is a set, a = (a1, . . . , an) ∈ An, and i ∈ {1, . . . , n},
then we also use the notation a[i] to denote the i-th entry ai of the tuple a.

2.1.2. Structures. In Section 1.1 we have already defined relational structures;
we now give the general definition of structures that may also contain functions, since
we need those later. One occasion where we need functions rather than relations is in
Chapter 6 where we consider algebras, i.e., structures with a purely functional signa-
ture, which are an important tool in the study of the complexity of CSPs. Another
occasion where we need function symbols is to conveniently define several important
templates of CSPs, e.g. in Section 5.3. Most definitions go in parallel for functional
and relational signatures, so we give them together in this section.

A signature τ is a set of relation and function symbols, each equipped with an
arity. A τ -structure A is a set A (the domain of A) together with a relation RA ⊆ Ak
for each k-ary relation symbol in τ and a function fA : Ak → A for each k-ary function
symbol in τ ; here we allow the case k = 0 to model constant symbols. Unless stated
otherwise, A,B,C, . . . denote the domains of the structures A, B, C, . . . , respectively.
We sometimes write (A;RA

1 , R
A
2 , . . . , f

A
1 , f

A
2 , . . . ) for the relational structure A with

relations RA
1 , R

A
2 , . . . and functions fA1 , f

A
2 , . . . When there is no danger of confusion,

we use the same symbol for a function and its function symbol, and for a relation and
its relation symbol. The cardinality of a structure is defined to be the cardinality of
its domain. By countable we mean at most countable; if we want to exclude finite
sets, we use the formulation countably infinite.
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The most important special cases of structures that appear in this text are re-
lational structures, that is, structures with a purely relational signature, and alge-
bras, that is, structures with a purely functional signature. Algebras with domain
A,B,C, . . . are typically denoted by A, B, C, . . .

When working with function symbols, it is sometimes convenient to work with
multi-sorted structures, where we have distinguished unary predicates, called sorts,
that define a partition of the domain, and where function symbols may only be defined
on some of the sorts (that is, the function symbols may not be defined on some of
the elements). We are sloppy with the formal details since they can always be worked
out easily. Two-sorted structures will be denoted by (A,B) — here one sort induces
the structure A, and the other sort induces the structure B.

2.1.3. Expansions and reducts. Let σ, τ be signatures with σ ⊆ τ . If A is a
σ-structure and B is a τ -structure, both with the same domain, such that RA = RB

for all relations R ∈ σ and fA = fB for all functions and constants f ∈ σ, then A is
called a reduct of B, and B is called an expansion of A. We also write Bσ for the
reduct of B with signature σ. An expansion B of A is called first-order if all new
relations in B are first-order definable over A. A reduct of a first-order expansion of
A is called a first-order reduct of A (in some articles, first-order reducts are simply
called reducts; we do not follow this convention, since we also need the classical notion
of reduct in this text).

We also write (A, R) (and, similarly, (A, f)) for the expansion of A by a new
relation R (a new function or constant f , respectively). If A is a τ -structure and
(ai)i∈I a sequence of elements of A indexed by I, then (A; (ai)i∈I) is the natural
(τ ∪ {ci | i ∈ I})-expansion of A with |I| new constants, where ci is interpreted by
ai for every i ∈ I. If S ⊆ A we also write AS for any expansion of A by constant
symbols such that for every a ∈ S there is a constant symbol c in the expansion that
denotes a.

2.1.4. Extensions and substructures. A τ -structure A is a substructure of a
τ -structure B iff

• A ⊆ B,
• for every R ∈ τ of arity n and ā ∈ An we have that ā ∈ RA iff ā ∈ RB, and
• for every f ∈ τ of arity n and ā ∈ An we have that fA(ā) = fB(ā).

In this case, we also say that B is an extension of A, and write A ≤ B. Substructures
A of B and extensions B of A are called proper if the domains of A and B are distinct.

Note that for every subset S of the domain of B there is a unique smallest
substructure of B whose domain contains S, which is called the substructure of B
generated by S, and which is denoted by B[S]. Note that every element of B[S] can
be written as tB(b1, . . . , bk) for some k ≥ 1, a k-ary τ -term t, and b1, . . . , bk ∈ S. We
say that B is finitely generated if B = B[S] for a finite set S of elements. Recall
that we have defined algebras as structures with a purely functional signature. In
particular, we may use the notation B[S] and A ≤ B for algebras. A subalgebra A
of an algebra B (generated by S) is simply a substructure of B (generated by S).

Example 2.1.1. A group is an algebra G with a binary function symbol · for
composition, a unary function symbol −1 for the inverse, and a constant 1 for the
identity element of G, satisfying the sentences

∀x, y, z : x · (y · z) = (x · y) · z, (associativity)

∀x : x · x−1 = 1,

and ∀x : 1 · x = x · 1 = x.
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In this signature, the subgroups of G are precisely the subalgebras of G as defined
above. The subgroup of G consisting of the identity element only is called trivial,
and subgroups of G that are distinct from G are called proper. We typically omit the
function symbol · and write fg for the product of elements f, g of G. Such groups will
also be called abstract groups to distinguish them from permutation groups; a permu-
tation group (over a set X) is a set of permutations of X closed under composition
and inverse, and containing the identity. 4

Example 2.1.2. A meet-semilattice S is a {≤}-structure with domain S such
that ≤S denotes a partial order where any two u, v ∈ S have a (unique) greatest
lower bound u ∧ v, i.e., an element w such that w ≤ u, w ≤ v, and for all w′ with
w′ ≤ u and w ≤ v we have w′ ≤ w. Dually, a join-semilattice is a partial order
with least upper bounds, denoted by u ∨ v. A semilattice is a meet-semilattice or a
join-semilattice where the distinction between meet and join is either not essential or
clear from the context.

Semilattices can also be characterised as {∧}-algebras where ∧ is a binary oper-
ation that must satisfy the following axioms

∀x, y, z : x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity)

∀x, y : x ∧ y = y ∧ x (commutativity)

∀x : x ∧ x = x (idempotency, or idempotence).

Clearly, the operation ∧S, defined as above in a semilattice S viewed as a partially
ordered set (poset), satisfies these axioms. Conversely, if (S;∧) is a semilattice, then
the formula x ∧ y = x defines a partial order on S which is a meet-semilattice (and
x ∧ y = y defines a partial order on S which is a join-semilattice).

Note that the two ways of formalising semilattices differ when it comes to the no-
tion of a substructure; a subsemilattice is referring to the substructure of a semilattice
when formalised as an algebraic structure. 4

Example 2.1.3. A lattice L is a {≤}-structure with domain L such that ≤L

denotes a partial order such that any two u, v ∈ L have a largest lower bound u ∧ v
and a least upper bound, denoted by u∨v. Lattices can also be characterised as {∧,∨}-
algebras where ∧ and ∨ are semilattice operations (Example 2.1.2) that additionally
satisfy

∀x, y : x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption).

If L is a lattice and the operations ∧ and ∨ are defined as above for semilattices,
then these two operations also satisfy the absorption axiom. Conversely, if (L;∧,∨)
satisfies the axioms described above, then the formula x ∧ y = x (equivalently, the
formula x ∨ y = y) defines a partial order on L which is a lattice. Of course, there is
potential danger of confusion of the symbols for lattice operations ∧ and ∨ with the
propositional connectives ∧ for conjunction and ∨ for disjunction (which can be seen
as lattice operations on the set {0, 1}) which luckily should not cause trouble here. A
lattice L = (L;∧,∨) is called distributive if it satisfies

∀x, y : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributivity). 4

Example 2.1.4. A Boolean algebra B is a {∧,∨,¬, 0, 1}-structure with domain
B such that (B;∧,∨) is a distributive lattice and (B;∧,∨,¬, 0, 1) satisfies

∀x : x ∨ ¬x = 1

∀x : x ∧ ¬x = 0. 4

The following concept is only defined for relational structures.
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Definition 2.1.5. The Gaifman graph of a relational structure B is the undi-
rected graph whose vertex set equals the domain B of B, and which has an edge
between distinct elements x, y ∈ B if and only if there is a tuple in one of the rela-
tions of B that has both x and y as entries.

A relational structure B is readily seen to be connected (in the sense of Sec-
tion 1.1) if and only if its Gaifman graph is connected (in the usual graph-theoretic
sense).

2.1.5. Products. Let A and B be two structures with domains A and B, and
the same signature τ . Then the (direct, or categorical) product C = A × B is the
τ -structure with domain A × B, which has for each k-ary R ∈ τ the relation that
contains a tuple

(
(a1, b1), . . . , (ak, bk)

)
if and only if R(a1, . . . , ak) holds in A and

R(b1, . . . , bk) holds in B. For each k-ary f ∈ τ the structure C has the operation
that maps

(
(a1, b1), . . . , (ak, bk)

)
to (f(a1, . . . , ak), f(b1, . . . , bk)). The direct product

A×A is also denoted by A2, and the k-fold product A× · · · ×A, defined analogously,
by Ak.

We generalise the definition of products in the obvious way to infinite products.
For a sequence of τ -structures (Ai)i∈I , the direct product B =

∏
i∈I Ai is the τ -

structure on the domain
∏
i∈I Ai such that for R ∈ τ of arity k(

(a1
i )i∈I , . . . , (a

k
i )i∈I

)
∈ RB iff (a1

i , . . . , a
k
i ) ∈ RAi for each i ∈ I ,

and for f ∈ τ of arity k, we have

fB
(
(a1
i )i∈I , . . . , (a

k
i )i∈I

)
=
(
fAi(a1

i , . . . , a
k
i )
)
i∈I .

If Ai = A for all i ∈ I, we also write AI instead of
∏
i∈I Ai, and call it the I-th power

of A.

2.1.6. Functions and preservation. Throughout the text, we use the follow-
ing conventions. If f : A→ B is a function, and S is a subset of A, then f(S) denotes
the set {f(s) | s ∈ S} ⊆ B. If t = (t1, . . . , tk) is a k-tuple of elements of A, then
f(t) denotes the tuple (f(t1), . . . , f(tk)). Moreover, we use the same convention for
functions of higher arity f : Bm → B: if t1, . . . , tm are k-tuples of elements of B,
then f(t1, . . . , tm) denotes the k-tuple (f(t11, . . . , t

m
1 ), . . . , f(t1k, . . . , t

m
k )) (that is, the

k-tuple is computed componentwise).
If h : A → B is a map, then the kernel of h is the equivalence relation E on A

where (a, a′) ∈ E if h(a) = h(a′). For a ∈ A, we denote by a/E the equivalence class
of a in E, and by A/E the set of all equivalence classes of elements of A.

In the following, let A be a τ -structure with domain A and B a τ -structure with
domain B. A homomorphism h from A to B is a function from A to B that preserves
each function and each relation for the symbols in τ ; that is,

• if (a1, . . . , ak) is in RA, then (h(a1), . . . , h(ak)) must be in RB;
• fB(h(a1), . . . , h(ak)) = h(fA(a1, . . . , ak)).

If A,B are algebras with the same signature and domain A,B, respectively, and f
is a homomorphism from A to B, then f(A) induces a subalgebra of B, and this
subalgebra is called a homomorphic image of A.

If a mapping h preserves a relation R, we also say that R is invariant under h.
A homomorphism from A to B is called a strong homomorphism if it also preserves
the complements of the relations from A. An injective strong homomorphism e from
A to B is called an embedding , and denoted as e : A ↪→ B. Surjective embeddings
are called isomorphisms. A homomorphism from a substructure of A to B is called
a partial homomorphism from A to B. An embedding from a substructure of A into
B is called a partial isomorphism between A and B.
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Homomorphisms and isomorphisms from B to itself are called endomorphisms
and automorphisms, respectively. When f : A → B and g : B → C, then g ◦ f
denotes the composed function x 7→ g(f(x)). Clearly, the composition of two ho-
momorphisms (embeddings, automorphisms) is again a homomorphism (embedding,
automorphism). Let Aut(A) and End(A) be the sets of automorphisms and endomor-
phisms, respectively, of A. The set Aut(A) can be viewed as a group, and End(A) as
a monoid with respect to composition; more on that can be found in Section 4.2 and
Section 4.4.

2.1.7. Formulas and theories. We assume familiarity with basic concepts of
classical first-order logic; see for example [170]. In particular, we will use the concepts
of atomic τ -formula (where τ is a fixed signature), free and bound variable, and τ -
term.

We always allow the first-order formula x = y (for equality), ⊥ (for ‘false’), and
> (for ‘true’) independently of the signature, unless stated otherwise. A formula
without free variables will be called a sentence. A (first-order) τ -theory is a set of
(first-order) τ -sentences. A τ -structure B is a model of a τ -sentence φ (or a theory
T ) if φ (all sentences in T , respectively) holds true in B; in this case we write B |= φ
(B |= T ). If C is a class of τ -structures and φ is a τ -sentence, we say that φ holds in
C if every structure in C is a model of φ.

The set of all first-order τ -sentences that are true in a given τ -structure B is
called the first-order theory of B, and denoted by Th(B). Similarly, the first-order
theory of a class of τ -structures is the set of all τ -sentences that holds in all structures
in the class. When the reference to a particular signature τ is clear or not important,
we omit the specification of τ in the terminology introduced above. If a sentence or
a theory has a model, we call it satisfiable.

Theorem 2.1.6 (Compactness; see Theorem 5.1.1 in [214]). Let T be a first-order
theory. If every finite subset of T is satisfiable then T is satisfiable.

If T is a theory and φ a sentence, we say that T entails φ, in symbols T |= φ, if
every model of T satisfies φ. Analogously we define T1 |= T2 for two theories. Two
theories T1, T2 are said to be (logically) equivalent if T1 |= T2 and T2 |= T1; we apply
analogous definitions for logical equivalence of single sentences and for other logics
than first-order logic.

Lemma 2.1.7 (Lemma 2.3.2 in [214]). Let T be a first-order τ -theory, and φ a
first-order τ -formula with free variables x1, . . . , xn. Let c1, . . . , cn be distinct constants
that are not in τ . Then T |= φ(c1, . . . , ck) if and only if T |= ∀x1, . . . , xn : φ.

2.1.8. Syntactic restrictions. There is a series of syntactic restrictions of first-
order logic that are important for the applications of model theory in this text. A
first-order τ -formula φ is said to be

• primitive positive (pp) if it is of the form ∃x1, . . . , xn (ψ1 ∧ · · · ∧ψm), where
ψ1, . . . , ψm are atomic (primitive positive formulas are of central importance
in the entire text);

• quantifier-free (qf) if it does not contain any quantifiers; that is, it is built
from the logical connectives ∧,∨,¬, the binary relation =, the (free) vari-
ables, and the symbols from τ only;

• quantifier-free primitive positive (qfpp) if it contains neither quantifiers, nor
negation, nor disjunction; that is, it is built from the logical connectives ∧,
the binary relation =, the (free) variables, and the symbols from τ only;

• positive if φ does not contain any negation symbol ¬;
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• in prenex normal form if it is of the formQ1x1 . . . Qnxn : ψ whereQi ∈ {∀,∃}
and ψ is quantifier-free;
• Horn if it is written in conjunctive normal form and every clause has at

most one positive literal (Horn formulas appear e.g. in Section 7.3);
• existential if it is of the form ∃x1, . . . , xn : ψ where ψ is quantifier-free (ex-

istential formulas appear e.g. in Section 2.6.1);
• universal if is of the form ∀x1, . . . , xn : ψ where ψ is quantifier-free;
• existential positive (∃+) if it is existential and positive;
• universal negative (∀−) if it is of the form ∀x1, . . . , xn : ¬ψ where ψ is posi-

tive quantifier-free (such formulas have also been called h-universal in [38]);
• universal conjunctive if it is universal and if the quantifier-free part of φ

does not contain any negation or disjunction symbols (universal conjunctive
formulas appear e.g. in Section 6.5);
• forall-exists (∀∃) if it is of the form ∀y1, . . . , ym : ψ where ψ is existential

(forall-exists formulas appear e.g. in Section 2.6.1; they are sometimes also
called inductive [214]);
• h-inductive (∀∃+) if they are conjunctions of formulas of the form

∀x̄
(
∃ȳ : φ(x̄, ȳ)⇒ ∃z̄ : ψ(x̄, z̄)

)
where φ and ψ are positive quantifier-free formulas. Such formulas appear
throughout Section 2.6; they have been studied first by Ben Yaacov and
Poizat [38].

Clearly, every existential positive formula is equivalent to a finite disjunction of prim-
itive positive formulas. An important property of primitive positive sentences φ is
that A×B |= φ iff A |= φ and B |= φ.

There are several descriptions of h-inductive formulas up to equivalence; the name
comes from a semantic characterisation of such formulas that will be presented later
(Theorem 2.5.5).

Proposition 2.1.8. Let φ be a formula. Then the following are equivalent.

• φ is h-inductive;
• φ is equivalent to a conjunction of universally quantified disjunctions of

primitive positive formulas and negated atomic formulas.
• φ is equivalent to a formula of the form ∀ȳ : φ(ȳ) where φ(ȳ) is a positive

boolean combination of quantifier-free formulas and existential positive for-
mulas (such formulas were called positively restricted forall-exists formulas
in [65]);

A first-order theory T is said to be existential if all sentences in T are existential.
Analogously, we define universal, existential positive, and universal negative theories.
If T is a theory, then T∃ denotes the set of all existential sentences implied by T . The
theories T∃+ , T∀, T∀− , T∀∃+ , Tqf, Tpp, Tqfpp are defined analogously.

2.1.9. Formulas and preservation. Let B be a τ -structure. If φ is a first-
order τ -formula and x1, . . . , xn is an ordered list such that all free variables in φ come
from x1, . . . , xn, then φ(x1, . . . , xn) defines over B the relation

{(b1, . . . , bn) ∈ Bn | B |= φ(b1, . . . , bn)}.

If two structures A and B have the same domain and all relations and functions from
A have a first-order definition in B, then we say that A is (first-order) definable in
B. Two structures A,B over the same domain are (first-order) interdefinable if A is
definable in B and vice versa.
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Definition 2.1.9. Let A and B be τ -structures and let φ(x1, . . . , xn) be a τ -
formula. Then a function h : A→ B preserves φ if B |= φ(h(a1), . . . , h(an)) whenever
A |= φ(a1, . . . , an).

Note that homomorphisms preserve all existential positive formulas. Also note
that partial isomorphisms preserve quantifier-free formulas, embeddings preserve ex-
istential formulas, and isomorphisms preserve all first-order formulas. The following
is straightforward from the definitions, and sometimes called the diagram lemma (see
Lemma 1.4.2 in [214]).

Lemma 2.1.10. Let A and B be τ -structures. Then the following are equivalent.

(1) There is an expansion B′ of B such that B′ |= Th(AA)qfpp;
(2) There is a homomorphism from A to B.

Embeddings that preserve all first-order formulas are called elementary . If B is an
extension of A such that the identity map from A to B is an elementary embedding, we
say that B is an elementary extension of A, and that A is an elementary substructure
of B.

Theorem 2.1.11 (Löwenheim-Skolem; see Corollary 3.1.4 in [214]). Let A be a
τ -structure, X a set of elements of A, and λ an infinite cardinal such that |τ |+ |X| ≤
λ ≤ |A|. Then A has an elementary substructure B of cardinality λ with X ⊆ B.

We will need the following lemma.

Lemma 2.1.12. Let A and B be τ -structures and suppose that every primitive pos-
itive sentence true in A is also true in B. Then there exists an elementary extension
C of B and a homomorphism g : A→ C.

Proof. It suffices to show that the theory T := Th(AA)qfpp ∪ Th(BB) has a
model C′, since Lemma 2.1.10 then asserts the existence of a homomorphism from A
to the τ -reduct C of C′, which will be an elementary extension of B.

If T has no model, then by the compactness theorem there is a τ -formula φ
such that φ(c̄) ∈ Th(AA)qfpp and {φ(c̄)} ∪ Th(BB) has no model, and in particular
B |= ¬∃ȳ : φ(ȳ). Since ∃ȳ : φ(ȳ) is primitive positive, the assumptions imply that
A |= ¬∃ȳ : φ(ȳ). This contradicts that AA |= φ(c̄). �

The following example shows that moving to an elementary extension of B is
necessary, because in general there need not be a homomorphism from A to B.

Example 2.1.13. Let A be a countably infinite clique, and B a countable disjoint
union of finite cliques of arbitrary large size. Then every primitive positive sentence
over the signature of graphs which is true in A is also true in B, but there is no
homomorphism from A to B. 4

Proposition 2.1.14. Let S and T be τ -theories. The following are equivalent.

(1) Every model of S has a homomorphism to a model of T .
(2) Every universal negative consequence of T is also a consequence of S, i.e.,

T∀− ⊆ S∀− .
(3) For every primitive positive sentence φ, if S∪{φ} is satisfiable then T ∪{φ}

is satisfiable.
(4) T ∪ {φ | S ∪ {φ} is satisfiable} is satisfiable.

Proof. To prove the implication from (1) to (2) let φ be a universal negative
sentence implied by T , and let C be a model of S. By (1), there is a homomorphism
from C to a model B of T , which satisfies in particular φ. Since ¬φ is equivalent to
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an existential positive sentence, it is preserved by homomorphisms, so we must have
C |= φ. Thus, φ ∈ S∀− .

(2)⇒ (3): if S ∪ {φ} is satisfiable, then ¬φ is universal negative, so can not be a
consequence of T by (2). Hence, T ∪ {φ} has a model.

(3)⇒ (4) is by compactness.
(4) ⇒ (1). Let A be a model of S, and let S′ be the existential positive theory

of A. By assumption, T ∪ S′ has a model B. Then B satisfies the assumptions from
Lemma 2.1.12, so there exists an elementary extension C of B and a homomorphism
h : A→ C. �

We can now prove a generalisation of the condition given in Proposition 1.3.4
from Section 1.3 that characterises when two theories have the same CSP.

Corollary 2.1.15. Let S and T be τ -theories. The following are equivalent.

(1) Every model of S has a homomorphism to a model of T , and every model of
T has a homomorphism to a model of S.

(2) S and T imply the same universal negative sentences, i.e., S∀− = T∀− .

This indeed proves Proposition 1.3.4, because theories that imply the same uni-
versal negative sentences obviously have the same CSP. It is now also easy to prove
Proposition 1.3.6 from Section 1.3, characterising those theories T for which there
exists a structure B such that CSP(T ) = CSP(B). We first show the following.

Proposition 2.1.16. For any satisfiable theory T , the following are equivalent.

(1) There exists a structure B such that for every existential positive sentence
φ the theory T ∪ {φ} is satisfiable if and only if B |= φ.

(2) T has a model B that satisfies every existential positive sentence φ for which
T ∪ {φ} is satisfiable.

(3) For all existential positive sentences φ1 and φ2, if T ∪{φ1} is satisfiable and
T ∪ {φ2} is satisfiable, then T ∪ {φ1, φ2} is satisfiable as well.

(4) T has the Joint Homomorphism Property (JHP – cf. Proposition 1.3.6).

Proof. We prove (1) ⇔ (2), (2) ⇔ (3), (3) ⇔ (4). The implications (2) ⇒ (1)
and (2)⇒ (3) are obvious.

We first prove (1) ⇒ (2). If (1) holds, then the implication (3) ⇒ (1) in Propo-
sition 2.1.14 shows that there is a homomorphism from B to a model C of T . This
model C has the desired property: if φ is existential positive such that T ∪ {φ} is
satisfiable, then B satisfies φ, and since homomorphisms preserve existential positive
formulas, C satisfies φ as well.

(3) ⇒ (2). Let P be the set of all existential positive sentences φ such that
T ∪ {φ} is satisfiable. By the assumption that T is satisfiable, and by (3), all finite
subsets of T ∪ P are satisfiable, so by the compactness theorem of first-order logic
(Theorem 2.1.6) we have that T ∪ P has a model B.

(3) ⇒ (4). Let τ be the signature of T . Let A1 and A2 be models of T . We
have to show that there exists a model B of T that admits homomorphisms from
A1 and A2. Let A′1 and A′2 be expansions of A1 and A2, respectively, where every
element is denoted by a distinct constant symbol. By Lemma 2.1.10 the theories
S1 := T ∪ Th(A′1)qfpp and S2 := T ∪ Th(A′2)qfpp are satisfiable. Let S′1 ⊆ S1 and
S′2 ⊆ S2 be finite. We obtain a single qfpp formula φi by forming a conjunction over
all elements of S′i, for i = 1 and i = 2. By (3), the theory T ∪ {φ1, φ2} is satisfiable
as well, showing that T ∪ S′1 ∪ S′2 is satisfiable. Again, the compactness theorem of
first-order logic implies that T ′ := T ∪S1∪S2. Let B′ be a model of T ′, and let B be
the τ -reduct of B′. Then another application of Lemma 2.1.10 asserts the existence
of a homomorphism from A1 to B and from A2 to B, which proves (4).
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(4)⇒ (3). Let φ1 and φ2 be existential positive sentences such that T ∪{φ1} has
a model A1 and T ∪ {φ2} has a model A2. By (4), there exists a model B of T such
that A1 and A2 map homomorphically to B. Then B clearly satisfies T ∪ {φ1, φ2}
since homomorphisms preserve existential positive sentences. �

Note that in the statement and the proof above, the phrase existential positive
can be used interchangeably with the phrase primitive positive. With the additional
assumption that T has a finite relational signature, item (1) in Proposition 2.1.16
becomes the statement that there exists a structure B such that CSP(B) and CSP(T )
are the same problem, so we indeed proved in particular Proposition 1.3.6.

2.1.10. Chains and direct limits. Chains and direct limits of sequences of
τ -structures are an important method of constructing models of first-order theories,
and will be used for instance in Section 2.5 and Section 2.7.

Let (Ai)i<κ be a sequence of τ -structures for a relational signature τ . Then
(Ai)i<κ is called a chain if Ai is a substructure of Aj for all i < j < κ. A chain is
called an elementary chain if for all i, j < κ the extension Aj of Ai is elementary.

Definition 2.1.17. The union of the chain (Ai)i<γ is a τ -structure B defined
as follows. The domain of B is

⋃
i≤γ Ai, and for each relation symbol R ∈ τ we put

ā ∈ RB if ā ∈ RAi for some (or all) Ai containing ā.

Theorem 2.1.18 (Tarski-Vaught; Theorem 2.5.2 in [214]). Let (Ai)i<κ be an
elementary chain. Then

⋃
i<κ Ai is an elementary extension of Ai for each i < κ.

We say that a formula φ is preserved by chains (of models of T ) if for all chains
(Ai)0≤i<κ of τ -structures (where all the Ai and A :=

⋃
i<κ Ai are models of T ), and

every finite n-tuple ā of elements of A0 we have A |= φ(ā) whenever Ai |= φ(ā) for
every (equivalently, for some) i < κ.

Proposition 2.1.19 (Theorem 2.4.4 in [214]). Every ∀∃-formula is preserved by
unions of chains.

Proposition 2.1.19 is a direct consequence of the more general Lemma 2.1.21
below. Direct limits can be seen as a positive variant of the notion of a union of
chains; we essentially replace the identity embeddings of Ai into Aj in the chain by
homomorphisms. Let τ be a relational signature, and let A0,A1, . . . be a sequence of τ -
structures such that there are homomorphisms fij : Ai → Aj . Those homomorphisms
are called coherent if fjk ◦ fij = fik for every i ≤ j ≤ k.

Definition 2.1.20. Let (Ai)i<κ be a sequence of τ -structures with coherent ho-
momorphisms fij : Ai → Aj . Then the direct limit limi<κ Ai is the τ -structure A
defined as follows. Let X :=

⋃
i<κAi where we assume for simplicity that Ai and

Aj are disjoint; if they are not, replace them by isomorphic copies. The domain A
of A comprises the equivalence classes of the equivalence relation ∼ defined on X by
setting xi ∼ xj for xi ∈ Ai, xj ∈ Aj iff there is a k such that fik(xi) = fjk(xj). Let
gi : Ai → A be the function that maps a ∈ Ai to the equivalence class of a in A. For
R ∈ τ and a tuple ā over A, define A |= R(ā) iff there is a k < κ and a tuple b̄ over
Ak such that Ak |= R(b̄) and ā = gk(b̄).

Note that the definition of limi<κ Ai also depends on the coherent family fij , but
this is left implicit and will be clear from the context. Also note that gi defines a
homomorphism from Ai to A; this function is called the limit homomorphism from
Ai to the direct limit A. Note that gi = gj ◦ fij for all i < j < κ.

We have seen that unions of chains preserve ∀∃-formulas; the analogous statement
for direct limits is as follows. We say that a first-order formula φ(x1, . . . , xn) is
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preserved by direct limits (of models of T ) if for every direct limit A := limi<κ Ai as
defined above where all the Ai and A are models of T , we have A |= φ(ā) for ā ∈ An
whenever there exists i < κ and āi ∈ Ani whose j-th entry is a representative of the
j-th entry of ā such that Ai |= φ(āi). The following is Theorem 2.4.6 in [213]; it is
given there without proof but we present the proof here for completeness.

Lemma 2.1.21. Every ∀∃+-formula is preserved by direct limits of models of T .

Proof. Let (Ai)i<κ be a sequence of models of T with coherent homomorphisms
hij : Ai → Aj , for i, j < κ, such that A := limi<κ Ai is a model of T . Let gi be the
limit homomorphism from Ai to A. Let φ be a ∀∃+-formula, ā ∈ An, and i < κ be
such that there exists āi ∈ Ani with gi(āi) = ā and Ai |= φ(āi). We have to show that
A |= φ(ā). Since φ is ∀∃+, we can assume that φ(x̄) is of the form ∀ȳ : φ′(x̄, ȳ) where φ′

is a disjunction of negated atomic formulas and existential positive formulas. Suppose
that φ′(ā, b̄) is false in A for some tuple b̄ of elements of A. Every disjunct ψ of φ′(ā, b̄)
is false in A. Then there exists an p < κ such that all entries of b̄ have representatives
in Ap, and the negated atomic disjuncts of φ′ are already false in Ap, by the definition
of direct limits. Let q := max(p, i). Let b̄q be a tuple of elements of Aq where the j-th
entry is a representative of the j-th entry in b̄. Define āq := hip(āi) and bq := hpq(b̄q).
Since Aq |= φ(aq), there must exist a disjunct ψ of φ′ such that ψ(āq, b̄q) holds in Aq.
The limit homomorphism gq maps (āq, b̄q) to (ā, b̄) and is a homomorphism from Aq to
A, and therefore preserves existential positive formulas, contradicting the assumption
that φ′(ā, b̄) is false in A. It follows that A |= ∀ȳ : φ′(ā, ȳ) and hence A |= φ(ā). �

2.2. Types

Loosely speaking, types are used to talk about elements in a structure that are
not necessarily there; a type of a structure B is a set of formulas that is satisfied by a
real or by a ‘virtual’ element of B, that is, an element of some structure that has the
same theory as B. In this section we present fundamental results about the existence
of models that realise many types, and constructing models that avoid certain types;
these results will be needed in elegant proofs of logical preservation theorems that are
relevant for constraint satisfaction.

We now introduce types formally. A set Φ of formulas with free variables x1, . . . , xn
is called satisfiable over a structure B if there are elements b1, . . . , bn of B such that
for all sentences φ ∈ Φ we have B |= φ(b1, . . . , bn). We say that Φ is satisfiable if
there exists a structure B such that Φ is satisfiable over B. For n ≥ 0, an n-type
of a theory T is a set p of formulas with free variables x1, . . . , xn such that p ∪ T is
satisfiable. An n-type over a structure B is an n-type of the first-order theory of B;
note that we do not admit parameters in these formulas (i.e., we allow constants to
appear in the formulas of the type only if they belong to the signature). An n-type p
of T is maximal or complete if T ∪p∪{φ(x1, . . . , xn)} is unsatisfiable for any formula
φ /∈ p. The set of all maximal n-types of Th(A) is denoted by SA

n .
A quantifier-free (existential positive) type is a type whose formulas are quantifier-

free (existential positive). Maximality for existential positive types and for quantifier-
free types is defined analogously with the obvious modifications. If p is an n-type,
and I ⊆ {1, . . . , n} with |I| = k, then the subtype of p induced on I is the k-type
obtained from p by existentially quantifying in all formulas in p the variables xi for
i ∈ {1, . . . , n} \ I, and then renaming the variables in the resulting set of formulas to
x1, . . . , xk in a way that preserves the order on the indices of the variables.

An n-type p of A is realised in A if there exist a1, . . . , an ∈ A such that A |=
φ(a1, . . . , an) for each φ ∈ p; otherwise, p is omitted in A. The set of all first-order
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formulas with free variables x1, . . . , xn satisfied by an n-tuple ā = (a1, . . . , an) in A is
a maximal type of A, called the type of ā, and denoted by tpA(ā).

2.2.1. Realising types and saturated structures. A structure B is saturated
if, informally, ‘as many types as possible’ come from real elements of B. Formally,
for an infinite cardinal κ, a structure A is κ-saturated if, for all β < κ and expansions
A′ of A by at most β constants, every 1-type of A′ is realised in A′. We say that an
infinite structure A is saturated if it is |A|-saturated.

Theorem 2.2.1 (Corollary 8.2.2 in [214]; Theorem 4.3.12 in [287]). Let τ be
a signature and λ ≥ |τ |. Then every τ -structure B has a λ+-saturated elementary
extension of cardinality ≤ |B|λ.

The proof of this theorem is very similar to the proof of Lemma 2.7.3, and we refer
to the cited textbooks for a proof. The proof of the following result uses an important
technique, called a back-and-forth argument . For a back-and-forth argument in a more
concrete setting, see Proposition 4.1.1.

Lemma 2.2.2. Let A and B be two saturated structures with the same theory and
the same cardinality. Then A and B are isomorphic.

Proof. Let (aα)α<κ be an enumeration of A and (bα)α<κ an enumeration of B.
We inductively construct a sequence (cα)α<κ of elements of A and a sequence(dα)α<κ
of elements of B such that for all β < κ

Th(A; (aα)α<β , (dα)α<β) = Th(B; (cα)α<β , (bα)α<β).

The base case β = 0 holds by the assumptions of the theorem. Suppose that (cα)α<β
and (dα)α<β have already been constructed. If β is a limit ordinal, there is nothing
to be done. Otherwise, β = γ + 1 and (cα)α<γ and (dα)α<γ have already been
constructed. We use saturation of B to find cβ such that

Th(A; (aα)α≤β , (dα)α<β) = Th(B; (cα)α≤β , (bα)α<β).

Then we use saturation of A to find dβ such that

Th(A; (aα)α≤β , (dα)α≤β) = Th(B; (cα)α≤β , (bα)α≤β).

At the end of the day, the map f : A → B defined by f(aα) := cα for all α < κ is
an embedding A ↪→ B, and the map bα 7→ dα is an embedding B ↪→ A which is the
inverse of f . �

2.2.2. Omitting types and atomic structures. A formula φ(x1, . . . , xn) iso-
lates an n-type p over T if

• T ∪ {∃x̄ : φ(x̄)} is satisfiable, and
• for every formula ψ ∈ p we have that T |= ∀x̄(φ(x)⇒ ψ(x̄)).

A type p of a theory T is called principal if it is isolated by some formula. If T
is complete, then every principal type p is realised in every model of T , because
B |= ∃x̄ : φ(x̄), and if B |= φ(ā), then ā realises p. The omitting types theorem can
be viewed as a converse of this observation; for a proof, see [214] or [287].

Theorem 2.2.3 (Countable omitting types theorem). Let τ be a countable sig-
nature, let T be a satisfiable τ -theory, and let p1, p2, . . . be non-principal types of T .
Then T has a countable model that omits all of the pi’s.

We say that a structure B is atomic if for every a ∈ Bn, the type of a in B is
principal.

Theorem 2.2.4 (Theorem 6.2.2 in [214]). Let T be a complete satisfiable theory
with countably many n-types for every n ∈ N. Then T has a countable atomic model.
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Proof. There are only countably many non-principal complete types in T , so
by the countable omitting types theorem (Theorem 2.2.3) there is a countable model
B of T that omits all of them. �

Lemma 2.2.5. Let A and B be atomic countable structures with the same theory.
Then A and B are isomorphic. In particular, if B is atomic, and a, b ∈ Bn have the
same type, then a and b lie in the same orbit under Aut(B).

Proof. As in the proof of Lemma 2.2.2, this can be shown by a back-and-forth
argument. Where we previously used saturation of B to show the existence of an
element cβ that has the same type over (B; (cα)α<β , (bα)α<β), we now use that this
type is principal (since the type of (c1, . . . , cβ) in B is principal by assumption), and
hence must be realised. �

2.2.3. Existential positive types. Recall that an existential positive n-type
(ep-n-type) of a theory T is a set p of existential positive formulas with free variables
x1, . . . , xn such that p ∪ T is satisfiable, and that an ep-n-type p of T is maximal
if T ∪ p ∪ {φ(x1, . . . , xn)} is unsatisfiable for any existential positive formula φ /∈ p.
Note that p ∪ Th(A) is satisfiable if and only if p ∪ Th(A)∀− is satisfiable; thus we
could equivalently have defined existential positive n-types with respect to the latter
theory.

A structure A is existentially positively κ-saturated if for all β < κ and expansions
A′ of A by at most β constants every existential positive 1-type of A′ is realised in
A′. Note that a structure that is κ-saturated is a fortiori existentially positively
κ-saturated.

Lemma 2.2.6. Let A and B be τ -structures, where B is existentially positively
|A|-saturated. Suppose that every primitive positive sentence that is true in A is also
true in B. Then there is a homomorphism from A to B.

Proof. Let (ai)0≤i<|A| well-order A. We claim that for every µ ≤ |A| there is a
sequence (bi)i<µ of elements of B such that every primitive positive (τ ∪{ci | i < µ})-
sentence true on (A, (ai)i<µ) is true on (B, (bi)i<µ). The proof is by transfinite
induction on µ.

• The base case, µ = 0, follows from the hypothesis of the lemma.
• The inductive step for limit ordinals µ follows from the observation that

a sentence can only mention a finite collection of constants, whose indices
must all be less than some ν < µ.

• For the inductive step for successor ordinals µ = ν + 1 < |A|, set

Σ :=
{
φ(x) | φ is a ep-(τ ∪ {ci | i < ν})-formula such that

(A, (ai)i<ν) |= φ(aν)
}
.

By the inductive assumption (B, (bi)i<ν) |= ∃x : φ(x) for every φ ∈ Σ. By
compactness, since Σ is closed under conjunction, we have that Σ is an ep-1-
type of (B, (bi)i<ν). Then Σ is realised by some element bγ ∈ B because B
is ep-|A|-saturated. By construction we maintain that all primitive positive
(τ ∪ {ci | i < µ})-sentences true on (A, (ai)i<µ) are true on (B, (bi)i<µ).

The function that maps ai to bi for all i < |A| is a homomorphism from A to B. �

2.3. Fräıssé Amalgamation

A versatile tool for the construction of beautiful countably infinite structures
from classes of finite structures is amalgamation à la Fräıssé. The resulting infinite
structures can be used as templates to model various computational problems as
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CSPs. Such a structure has a large automorphism group which will be important for
the universal-algebraic approach in Chapter 6. We present Fräıssé-amalgamation for
the special case of relational structures; this is all that is needed in the examples that
we present in this text. For a stronger version of Fräıssé-amalgamation for classes
of structures that may involve function symbols, see [214]. In this section, τ always
denotes a countable relational signature.

2.3.1. The age of a structure. Let C be a class of τ -structures. We say that
C has the joint embedding property (JEP) if for all structures B1,B2 ∈ C there exists
a structure C ∈ C that embeds both B1 and B2. The age of a τ -structure A is the
class of all finite τ -structures that embed into A; it is denoted by Age(A). The proof
of the following lemma is similar to that of Lemma 1.1.8.

Proposition 2.3.1. A class C of finite τ -structures is the age of a countably
infinite τ -structure B if and only if C contains countably many isomorphism types, is
closed under isomorphisms, taking substructures, and if it has the JEP.

2.3.2. The amalgamation property. Let B1,B2 be τ -structures such that A
is an induced substructure of both B1 and B2 and all common elements of B1 and
B2 are elements of A; note that in this case A = B1 ∩ B2. We call (B1,B2) an
amalgamation diagram (over C). The structure B1 ∪B2 is called the free amalgam
of B1,B2 over A. More generally, a τ -structure C is an amalgam of (B1,B2) if for
i = 1, 2 there are embeddings fi : Bi ↪→ C such that f1(a) = f2(a) for every a ∈ A. A
strong amalgam of (B1,B2) is an amalgam of (B1,B2) where f1(B1)∩f2(B2) = f1(A)
(= f2(A)).

Definition 2.3.2. Let C be an isomorphism-closed class of relational τ -structures.
Then C has the (free, strong) amalgamation property (AP) if all amalgamation dia-
grams over C have a (free, strong) amalgam in C. A class of finite τ -structures that
contains at most countably many non-isomorphic structures, has the amalgamation
property, and is closed under taking induced substructures and isomorphisms is called
an amalgamation class.

Note that since we only consider relational structures here (and since we allow
structures to have an empty domain), the amalgamation property of C implies the
joint embedding property.

Example 2.3.3. Let C be the class of all finite structures over the signature
{<} where < denotes a linear order. Then C is clearly closed under isomorphisms
and induced substructures, and has countably many isomorphism types (one for each
domain size). To show that it also has the amalgamation property, let B1,B2 ∈ C,
and let A be an induced substructure of both B1 and B2. Let C be the free amalgam
of B1 and B2 over A. Then C is an acyclic finite graph; therefore, any linear extension
of C is an amalgam (even a strong amalgam, but not a free amalgam) in C of B1 and
B2 over A. It follows that C is an amalgamation class. 4

Example 2.3.4. Let n ≥ 3. Let C be the class of all finite graphs that do
not embed Kn, viewed as structures over the signature {E}. Such graphs are also
called Kn-free. Again it is clear that C is closed under isomorphisms and induced
substructures, has countably many isomorphism types, and the free amalgamation
property. 4

Example 2.3.5. Let k ∈ N \ {0}. Let C be the class of all finite structures over
the signature {E} where E denotes an equivalence relation with at most k classes.
Again it is clear that C is closed under isomorphisms and induced substructures, has
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countably many isomorphism types and the strong amalgamation property, but not
the free amalgamation property. 4

Example 2.3.6. Let k ∈ N \ {0}. Let C be the class of all finite structures over
the signature {E} where E denotes an equivalence relation where each equivalence
class has size at most k. Again it is clear that C is closed under isomorphisms and
induced substructures, and has countably many isomorphism types. Moreover, C has
the amalgamation property, but this time not the strong amalgamation property. 4

A τ -structure A is homogeneous (sometimes also called ultra-homogeneous [214])
if every isomorphism between finite substructures of A can be extended to an auto-
morphism of A.

Proposition 2.3.7. If C is a homogeneous structure, then Age(C) is an amalga-
mation class.

Proof. Let (B1,B2) be an amalgamation diagram over Age(C). Let g1 and g2

be embeddings of B1 and B2 into C. For i ∈ {1, 2}, let Ai be the substructure of
C induced on gi(B1 ∩ B2). Then g2 ◦ g−1

1 |A1 is an isomorphism between the finite
substructures A1 and A2 of C, and hence can be extended to an automorphism α of
C. The substructure of C induced on α(B1)∪B2 is the required amalgam of (B1,B2)
witnessed by the embeddings f1 := αg1 and f2 := g2. �

Fräıssé’s theorem can be seen as a converse to this observation.

Theorem 2.3.8 (Fräıssé [179, 180]). Let τ be a countable relational signature
and let C be an amalgamation class of τ -structures. Then there is a homogeneous and
at most countable τ -structure C whose age equals C. The structure C is unique up to
isomorphism, and called the Fräıssé-limit of C.

For the proof of Theorem 2.3.8, we refer to [214]; the proof of Lemma 2.7.3 below
is similar.

Example 2.3.9. Let C be the class of all finite graphs. It is even easier than
in the previous examples to verify that C is an amalgamation class, since here the
free amalgam itself shows the amalgamation property. The Fräıssé-limit of C is also
known as the countable random graph or the Rado graph. 4

Example 2.3.10. Let C be the class of all finite Kn-free graphs from Exam-
ple 2.3.4, for some n ≥ 3. Then the Fräıssé-limit of C is called the Kn-free Henson
graph [206]. 4

Example 2.3.11. Let C be the class of all finite partially ordered sets. Amalga-
mation can be shown by computing the transitive closure: if C is the free amalgam
of B1 and B2 over A, then the transitive closure of C gives an amalgam in C. The
Fräıssé-limit of C is called the homogeneous universal partial order . 4

All countable homogeneous graphs have been classified in [258], all countable
homogeneous posets in [331], and all countable homogeneous directed graphs in [138].

2.3.3. Forbidden substructures. In the following, it will be convenient to
specify classes of finite τ -structures by specifying forbidden substructures. If F is a
set of finite τ -structures, we write Forbemb(F) for the set of finite τ -structures A such
that no structure in F embeds into A.

Example 2.3.12. Henson [207] used Fräıssé limits to construct 2ω many pairwise
non-isomorphic homogeneous directed graphs. A tournament is a directed graph
without loops such that for all pairs x, y of distinct vertices exactly one of the pairs
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(x, y), (y, x) is an arc in the graph. Let L be the directed graph with just one
vertex 0 and the edge (0, 0)). Note that for all classes N of finite tournaments,
Forbemb(N ∪{L}) is an amalgamation class, because if A1 and A2 are directed graphs
in Forbemb(N ∪ {L}) such that A = A1 ∩ A2 is an induced substructure of both A1

and A2, then the free amalgam A1 ∪ A2 is also in Forbemb(N ∪ {L}).
In his proof, Henson specified an infinite set T of tournaments T1,T2, . . . with

the property that Ti does not embed into Tj if i 6= j; the set T will be described in
Section 13.3. Note that this property implies that for two distinct subsets N1 and N2

of T the two free amalgamation classes Forbemb(N1 ∪ {L}) and Forbemb(N2 ∪ {L})
are distinct as well. Since there are 2ω many subsets of the infinite set T , there
are also that many distinct homogeneous directed graphs; they are often referred
to as Henson digraphs. Note that non-isomorphic Henson digraphs have distinct
CSPs. Since there are only countably many algorithms, this proves that there exist
homogeneous digraphs with an undecidable CSP [90]. 4

The structures from Example 2.3.12 can be used to prove various negative results
about homogeneous structures with finite signature, for instance in Section 11.6 and
in Section 13.3. A better behaved class of homogeneous structures are those whose
age is finitely bounded (we use the same terminology as in [278]).

Definition 2.3.13. A class C of finite relational τ -structures (or a structure with
age C) is called finitely bounded if τ is finite and there exists a finite set of finite
τ -structures F such that C = Forbemb(F). We sometimes refer to the elements of
F as the bounds of C. A structure B is called finitely bounded if Age(B) is finitely
bounded.

Lemma 2.3.14. Let τ be a relational signature. A class C of τ -structures is finitely
bounded if and only if C has a universal axiomatisation, i.e., there exists a universal
τ -sentence φ such that C is precisely the class of finite models of φ.

Proof. If F is such that C = Forbemb(F) then the conjunction of all sentences
of the form ∀x̄ : ¬QF for F ∈ F is a universal axiomatisation of C; here, QF is the
quantifier-free type of a tuple that lists all the elements of F. Conversely, if φ is
universal axiomatisation with n variables, we choose a representative for each isomor-
phism class of τ -structures with at most n elements that does not belong to C. If F
is the set of chosen representatives, then Forbemb(F) = C. �

Proposition 2.3.15. If B is a reduct of a finitely bounded structure, then CSP(B)
is in NP.

Proof. It is easy to see that CSP(B) is in monotone SNP (Section 1.4). �

Proposition 2.3.16. A structure B is a finite-signature first-order reduct of a
finitely bounded homogeneous structure if and only if B is a reduct of a finitely bounded
homogeneous structure.

Proof. Clearly, if B is a reduct of a finitely bounded homogenous structure
C, then B is also a first-order reduct of C and has a finite signature. Conversely,
suppose that B is a finite-signature first-order reduct of a finitely bounded homo-
geneous structure C, i.e., there exists a finite set of finite τ -structures F such that
Forbemb(F) = Age(C). We claim that the expansion C′ of C by all relations from B
is still homogeneous and finitely bounded. This is clear for homogeneity. For finite
boundedness, let m be the maximum of the arities of the relations of B and the size of
the bounds of C. Up to isomorphism, there are finitely many structures of size at most
m in the signature of C′. Let F ′ be all those structures that are not in Age(C′). Then
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Forbemb(F ′) = Age(C′). Hence, B is a reduct of the finitely bounded homogeneous
structure C′. �

The following conjecture was proposed by Michael Pinsker and the author at the
Fields Institute in Toronto in 2011 (at the time, conditional on the finite-domain
dichotomy conjecture).

Conjecture 2.3.1 (Infinite-domain dichotomy conjecture). For every reduct B
of a finitely bounded homogeneous structure, CSP(B) is in P or NP-complete.

2.3.4. One-point amalgamation. In some situations, in place of the full amal-
gamation property it is more convenient to work with the 1-point amalgamation prop-
erty (1-AP), which only requires amalgams if the given structures B1,B2 ∈ C over a
common substructure A are such that |B1| = |B2| = |A| + 1. By Proposition 2.3.17
below, this ostensibly weaker property is equivalent to full amalgamation. Similarly,
the strong amalgamation property may be replaced by a strong 1-point amalgama-
tion property which requires the existence of an amalgam C that additionally satisfies
|C| = |A|+ 2.

When using the 1-AP another formulation is more practical, namely item (4)
in the proposition below. Similarly, when using the AP item (1) is a more practi-
cal formulation (so that for many authors, item (1) is the official definition of the
amalgamation property).

Proposition 2.3.17. Let C be a class of finite τ -structures that is closed under
isomorphisms and substructures. Then the following are equivalent.

(1) for all A,B1,B2 ∈ C and embeddings ei : A ↪→ Bi, for i ∈ {1, 2}, there exists
a structure C ∈ C and embeddings fi : Bi ↪→ C such that f1 ◦ e1 = f2 ◦ e2.

(2) C has the amalgamation property.
(3) C has the 1-point amalgamation property.
(4) for all A,B1,B2 ∈ C and embeddings ei : A ↪→ Bi for i ∈ {1, 2} such that
|B1| = |A| + 1 = |B2|, there exist C ∈ C and embeddings fi : Bi ↪→ C such
that f1 ◦ e1 = f2 ◦ e2.

Proof. The implication from (1) to (2) is easy (choosing e1 and e2 to be idA),
and the converse implication follows easily from the assumption that C is closed under
isomorphisms. Similarly, (3) and (4) are equivalent.

The implication from (2) to (3) is trivial. The missing implication from (4) to
(2) is more interesting. Let A,B1,B2 ∈ C be such that B1 ∩ B2 = A. We prove
that B1,B2 has an amalgam C over A in C by induction on |B1 \A|+ |B2 \A|. The
statement is trivial for |B1| = |A| since in this case B2 is an amalgam. Likewise, the
statement is trivial if |B2| = |A|. Let b1 ∈ B1 \ A and b2 ∈ B2 \ A. By assumption,
B′1 := B1[A ∪ {b1}] and B′2 := B2[A ∪ {b2}] have an amalgam C′ over A. By the
inductive assumption, for i ∈ {1, 2} the structures Bi and C′ have an amalgam Ci
over B′i via the embeddings fi : Bi → Ci and f ′i : C′ → Ci. Finally, applying the
inductive assumption again we obtain that C1 and C2 have an amalgam C over C′

via the embeddings gi : Ci → C. Then C is also an amalgam of B1 and B2 via the
embeddings gi ◦ fi : Bi → C; indeed,

g1 ◦ f1|A = g1 ◦ f ′1|A = g2 ◦ f ′2|A = g2 ◦ f2|A. �

The following variant of Proposition 2.3.17 for strong amalgamation can be shown
analogously.

Proposition 2.3.18. Let C be a class of finite τ -structures that is closed under
isomorphisms and substructures. Then the following are equivalent.
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(1) for all A,B1,B2 ∈ C and embeddings ei : A ↪→ Bi, for i ∈ {1, 2}, there exists
a structure C ∈ C and embeddings fi : Bi ↪→ C such that f1 ◦ e1|A = f2 ◦ e2|A
and such that |f1(B1) ∩ f2(B2)| = |A|.

(2) C has the strong amalgamation property.
(3) C has the strong 1-point amalgamation property.
(4) for all A,B1,B2 ∈ C and embeddings ei : A ↪→ Bi, for i ∈ {1, 2} such that
|B1| = |A| + 1 = |B2|, there exist C ∈ C and embeddings fi : Bi ↪→ C such
that f1 ◦ e1|A = f2 ◦ e2|A and such that |f1(B1) ∩ f2(B2)| = |A|.

2.3.5. Deciding Amalgamation. Let F be a finite set of finite τ -structures.
We are interested in the computational problem of deciding whether Forbemb(F) is
an amalgamation class. It is open whether this problem is decidable (Question 54).

Recall that for relational signatures, the Amalgamation Property implies the Joint
Embedding Property. It is known that whether Forbemb(F) has the JEP is undecid-
able [108]; however, this does not answer our question. In this section we use 1-point
amalgamation to prove that if the signature is binary then it is algorithmically de-
cidable whether Forbemb(F) has the amalgamation property; this follows from the
following proposition.1

Proposition 2.3.19. Let τ be a finite relational signature where all relation
symbols have arity at most 2. Let F be a finite set of finite τ -structures and let
C := Forbemb(F). Let m ≥ 3 be larger than the maximal number of elements of the
structures in F and let ` be the number of 2-element structures in C. Then C has
the amalgamation property if and only if all 1-point amalgamation diagrams of size
at most (m− 2)` have an amalgam.

Proof. By Proposition 2.3.17, C has the amalgamation property if and only
if it has 1-point amalgamation. Let (B1,B2) be a 1-point amalgamation diagram
without an amalgam. In particular, no τ -structure C with domain B1 ∪B2 such that
B1 and B2 are substructures of C can be an amalgam for (B1,B2). Hence, there
must exist A = {a1, . . . , am−2} ∈ B0 := B1 ∩ B2 such that the substructure induced
on {a1, . . . , am−2, p, q} embeds a structure from F . Note that since the maximal arity
is 2, the number of such τ -structures C is bounded by ` since they only differ by the
substructure induced on {p, q}. So let A1, . . . , A` ⊆ B0 be a list of sets witnessing
that all of these structures C embed a structure from F . Let B′1 be the substructure
of B1 induced on {p} ∪ A1 ∪ · · · ∪ A` and let B′2 be the substructure of B2 induced
on {q} ∪ A1 ∪ · · · ∪ A`. Suppose for contradiction that (B′1,B

′
2) has an amalgam

D; we may assume that this amalgam is of size at most (m − 2) · `. Depending on
the two-element structure induced on {p, q} in D, there exists an i ≤ ` such that the
structure induced on {p, q}∪Ai in D embeds a structure from F , a contradiction. �

2.3.6. Generic superpositions. For strong amalgamation classes there is a
powerful construction to obtain new strong amalgamation classes from known ones.
If τ1 and τ2 are disjoint relational signatures, and for i ∈ {1, 2} let Ai be a τi-structure
such that A1 and A2 have the same domain. Then the (τ1 ∪ τ2)-structure whose τi-
reduct equals Ai is called the superposition of A1 and A2.

Definition 2.3.20. Let C1 and C2 be classes of finite structures with disjoint
relational signatures τ1 and τ2, respectively. Then the superposition of C1 and C2, de-
noted by C1 ∗C2, is the class of all superpositions of structures from C1 with structures
from C2.

1The author has learned about this fact from Gregory Cherlin but is not aware of a proper
reference in the literature.
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The following lemma has a straightforward proof by combining amalgamation in
C1 with amalgamation in C2.

Lemma 2.3.21. Let C1 and C2 be strong amalgamation classes with disjoint rela-
tional signatures. Then C1 ∗ C2 is also a strong amalgamation class.

Definition 2.3.22 (Generic superposition). Let B1 and B2 be homogeneous
structures with disjoint relational signatures whose ages C1 and C2 have strong amal-
gamation. Then B1 ∗ B2 denotes the (up to isomorphism unique) Fräıssé-limit of
C1 ∗ C2. We refer to B1 ∗B2 as the generic superposition of B1 and B2.

It can be shown by a back and forth argument (an example of such an argument
will be given in Proposition 4.1.1) that for i ∈ {1, 2} the τi-reduct of B1 ∗ B2 is
isomorphic to Bi. In the following, we identify the domain of Bi with the domain of
B1 ∗B2 along this isomorphism, so that B1 ∗B2 is indeed a superposition of B1 and
B2 as defined in the beginning of this section.

Example 2.3.23. For i ∈ {1, 2}, let τi = {<i}, let Ci be the class of all finite
τi-structures where <i denotes a linear order, and let Bi be the Fräıssé-limit of Ci. is
known as the random permutation (see e.g. [130]). 4

More facts about generic superpositions in a slightly more general setting can be
found in Section 4.7.1.

2.4. First-Order Interpretations

First-order interpretations are a powerful tool to derive new structures from
known structures. To keep the presentation simple, we define first-order interpre-
tations for relational structures only; but the formalism can be extended to general
signatures without any problems.

Definition 2.4.1. Let A and B be structures with the relational signatures τ
and σ and let d ∈ N. A (first-order) interpretation of dimension d of B in A is a
partial surjection I : Ad → B (also called the coordinate map) such that for every
relation R defined by an atomic σ-formula φ, say of arity k, the dk-ary relation

I−1(R) :=
{

(a1
1, . . . , a

1
d, . . . , a

k
1 , . . . , a

k
d) | (I(a1

1, . . . , a
1
d), . . . , I(ak1 , . . . , a

k
d)) ∈ R

}
has a first-order definition φI in A.

Since equality and > are always allowed as atomic formulas, there must in par-
ticular exist

• a τ -formula >I , called the domain formula, such that >I(x1, . . . , xd) holds
if and only if (x1, . . . , xd) is in the domain dom(I) of I;
• a τ -formula =I such that =I (x1,1, . . . , x1,d, x2,1, . . . , x2,d) holds if and only

if
(
(x1,1, . . . , x1,d), (x2,1, . . . , x2,d)

)
lies in the kernel of I.

In order to specify a σ-structure B with a first-order interpretation in a given
τ -structure A up to isomorphism, it suffices to specify the interpreting formulas for
the atomic σ-formulas of A; in particular, if the signature of A is relational and finite,
then an interpretation has a finite presentation.

We say that B is interpretable in A with finitely many parameters if there are
c1, . . . , cn ∈ A such that B is interpretable in the expansion of A by the constants ci
for all 1 ≤ i ≤ n.

Example 2.4.2. In Section 1.6 we have described Allen’s Interval Algebra for tem-
poral reasoning in Artificial Intelligence [10], and the corresponding CSP. Formally,
it is easiest to describe the template A for this CSP by a first-order interpretation I in
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(Q;<). The dimension of the interpretation is two, and the domain formula >I(x, y)
is x < y. Hence, the elements of A can indeed be viewed as non-empty closed bounded
intervals [x, y] over Q. The template A contains for each inequivalent {<}-formula
φ with four variables a binary relation R such that (a1, a2, a3, a4) satisfies φ if and
only if

(
(a1, a2), (a3, a4)

)
∈ R. In particular, A has relations for equality of intervals,

containment of intervals, and so forth. 4

Example 2.4.3. Let G = (V ;E) be an undirected graph (viewed as a symmetric
digraph). Then the line graph LG of G is the (undirected) graph with vertex set

V (LG) :=
{
{u, v} | (u, v) ∈ E

}
and the edge set

E(LG) :=
{

({u, v}, {u′, v′}) | (u, v), (u′, v′) ∈ E, |{u, v} ∩ {u′, v′}| = 1
}
.

The line graph has the 2-dimensional first-order interpretation I : E → V (LG) in G
given by I(x, y) := {x, y}:

• I−1(LG) has the first-order definition E(x1, x2).
• I−1

(
{(u, u) | u ∈ V (LG)}

)
has the first-order definition

(x1 = y1 ∧ x2 = y2)

∨ (x1 = y2 ∧ x2 = y1).

• I−1
(
E(LG)

)
has the first-order definition(
(x1 = y1 ∧ x2 6= y2) ∨ (x1 = y2 ∧ x2 6= y1)

∨ (x2 = y1 ∧ x1 6= y2) ∨ (x2 = y2 ∧ x1 6= y1)
)
. 4

Lemma 2.4.4. Let B be a structure with at least two elements. Then every finite
structure has a first-order interpretation in B.

Proof. Let A be a τ -structure with domain {1, . . . , n}. The statement is trivial
if n = 1; so let us assume that n > 1 in the following. Our first-order interpretation
I of A in B is n-dimensional. For k ∈ {1, . . . , n− 1}, define

ρk(x1, . . . , xn) :=

(
xk 6= xk+1 ∧

k∧
i=1

x1 = xi

)
ρn := (x1 = · · · = xn) .

The domain formula of our interpretation is true. Equality is interpreted by the
formula

=I (x1, . . . , xn, y1, . . . , yn) :=
∨
k<n

(
ρk(x1, . . . , xn) ∧ ρk(y1, . . . , yn)

)
.

Note that the equivalence relation defined by =I on An has exactly n equivalence
classes. If R ∈ τ is m-ary, then the formula R(x1, . . . , xm)I is a disjunction of con-
junctions with the nm variables x1,1, . . . , xm,n. For each tuple (t1, . . . , tm) from RA

the disjunction contains the conjunct∧
i≤m

ρti(xi,1, . . . , xi,n). �
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2.4.1. Composing interpretations. First-order interpretations can be com-
posed. In order to conveniently treat these compositions, we first describe how
an interpretation of a σ-structure B gives rise to interpreting formulas for arbi-
trary σ-formulas ψ(x1, . . . , xn). Replace each atomic σ-formula φ(y1, . . . , yn) in ψ
by φI(y1,1, . . . , y1,d, . . . , yn,1, . . . , yn,d); we write ψI(x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d)
for the resulting τ -formula, and call it the interpreting formula for ψ. Note that
if ψ defines the relation R in B, then ψI defines I−1(R) in A. For all d-tuples
a1, . . . , an ∈ I−1(B)

B |= ψ
(
I(a1), . . . , I(an)

)
⇔ A |= ψI(a1, . . . , an) .

Definition 2.4.5. Let C, B, A be structures with the relational signatures ρ, σ,
and τ . Suppose that

• C has a d-dimensional interpretation I in B, and
• B has an e-dimensional interpretation J in A.

Then C has a natural de-dimensional first-order interpretation I ◦J in A: the domain
of I ◦J is the set of all de-tuples in A that satisfy the τ -formula (>I)J , and we define

I ◦ J
(
a1,1, . . . , a1,e, . . . , ad,1, . . . , ed,e) := I(J(a1,1, . . . , a1,e), . . . , J(ad,1, . . . , ed,e)

)
.

Let φ be a τ -formula which defines a relation R over A. Then the formula (φI)J
defines in A the preimage of R under I ◦ J .

2.4.2. Bi-interpretations. Let I1 and I2 be two interpretations of B in A of
dimension d1 and d2, respectively. Then I1 and I2 are called homotopic2 if the relation
{(x̄, ȳ) | I1(x̄) = I2(ȳ)} of arity d1 + d2 is first-order definable in A. Note that idC is
an interpretation of C in C, called the identity interpretation of C (in C).

Definition 2.4.6. Two structures A and B with an interpretation I of B in A
and an interpretation J of A in B are called mutually interpretable. If both I ◦ J and
J ◦ I are homotopic to the identity interpretation (of A and of B, respectively), then
we say that A and B are bi-interpretable (via I and J).

Example 2.4.7. It is easy to see that Allen’s interval algebra from Section 1.6.1
is bi-interpretable with (Q;<) (a detailed proof can be found in Example 3.3.3). 4

2.4.3. Full interpretations. An interpretation I of B in A is called full if for
every R ⊆ Bk we have that R is first-order definable in B if and only if the relation
I−1(R) is first-order definable in A. Note that every structure with an interpretation
in A is a first-order reduct of a structure with a full interpretation in A. Full inter-
pretations play an important role in Section 6.3.5 since they are the counterpart for
certain standard algebraic constructions that will be studied later. The interpreta-
tion in Example 2.4.2 is full: this follows easily from previous observations and the
following lemma.

Lemma 2.4.8. Suppose that A and B are bi-interpretable via I and J . Then I
(and, symmetrically, J) is a full interpretation.

Proof. Let τ be the signature of A and ρ the signature of B. Let d be the
dimension of I and e the dimension of J . Let R ⊆ Bk be a relation such that the
dk-ary relation I−1(R) has a first-order definition φ in A. Let ψ be the τ -formula
that defines in B the relation

{(x1,1, . . . , x1,e, . . . , xd,1, . . . , xd,e, y) | I(J(x1,1, . . . , x1,e), . . . , J(xd,1, . . . , xd,e)) = y}

2We follow the terminology from [8].



70 2. MODEL THEORY

witnessing homotopy of I ◦ J with idB . Then the ρ-formula χ(y1, . . . , yk) given by

∃y1,1,1, . . . , yk,d,e

φJ(y1,1,1, . . . , yk,d,e) ∧
∧
i≤k

ψ(yi,1,1, . . . , yi,d,e, yi)


is a first-order definition of R in B: if (b1, . . . , bk) ∈ R, choose b1,1,1, . . . , bk,d,e such
that J(I(bi,1,1, . . . , bi,1,e), . . . , I(bi,d,1, . . . , bi,d,e)) = bi which exist by the surjectivity
of I and J . Then

(b1, . . . , bk) ∈ R⇔ A |= φ(J(b1,1,1, . . . , b1,1,e), . . . , J(bk,d,1, . . . , bk,d,e))

⇔ B |= φJ(b1,1,1, . . . , bk,d,e)

⇔ B |= χ(b1, . . . , bk). �

2.5. Preservation Theorems

Preservation theorems in model theory establish links between definability in (a
syntactically restricted fragment of) a given logic with certain ‘semantic’ closure prop-
erties. For the syntactic restrictions on first-order formulas that we have introduced
in Section 2.1.7 we have already made remarks about various types of mappings that
automatically preserve the respective formulas. Interestingly, these mappings can be
used to obtain an exact characterisation of definability in the corresponding fragment
of first-order logic.

When studying CSP(T ) for a given theory T , preservation theorems become rel-
evant in two contexts. The first is that they can be used to give exact characterisa-
tions for a first-order formula to be equivalent to an existential, existential positive,
or quantifier-free formula over T . The second context in which we encounter model-
theoretic preservation theorems is in connection with syntactic restrictions for theories
T in the study of CSP(T ), for example when proving Proposition 2.6.13.

Definition 2.5.1. When T is a first-order theory and φ(x̄) and ψ(x̄) are formulas,
we say that φ and ψ are equivalent modulo T if T |= ∀x̄(φ(x̄)⇔ ψ(x̄)).

Theorem 2.5.2 (Homomorphism Preservation Theorem). Let T be a first-order
theory. A first-order formula φ is equivalent to an existential positive formula modulo
T if and only if φ is preserved by all homomorphisms between models of T .

Proof. It is clear that homomorphisms preserve existential positive formulas.
For the converse, let φ be first-order, with free variables x1, . . . , xn, and preserved
by homomorphisms between models of T . Let τ be the signature of T and φ, and
let c̄ = (c1, . . . , cn) be a sequence of constant symbols that do not appear in τ .
If T ∪ {φ(c̄)} is unsatisfiable, the statement is clearly true, so assume otherwise.
Let Ψ be the set of all existential positive (τ ∪ {c1, . . . , cn})-sentences ψ such that
T ∪{φ(c̄)} |= ψ. Let A be a model of T ∪Ψ. Let U be the set of all primitive positive
sentences θ such that A |= ¬θ.

We claim that T ∪ {¬θ | θ ∈ U} ∪ {φ(c̄)} is satisfiable. For otherwise, by com-
pactness, there would be a finite subset U ′ of U such that T ∪ {¬θ | θ ∈ U ′} ∪ {φ(c̄)}
is unsatisfiable. But then ψ :=

∨
θ∈U ′ θ is an existential positive sentence such

that T ∪ {φ(c̄)} |= ψ, and hence ψ ∈ Ψ. This is in contradiction to the assump-
tion that A |= ¬θ for all θ ∈ U . We conclude that there exists a model B of
T ∪ {¬θ | θ ∈ U} ∪ {φ(c̄)}.

By Theorem 2.2.1, A has an elementary extension A′ which is |B|-saturated.
Every primitive positive (τ ∪ {c1, . . . , cn})-sentence θ that is true in B is also true in
A′: for if otherwise θ were false in A′, then it would be also false in A, and hence θ ∈ U
in contradiction to the assumption that B |= {¬θ | θ ∈ U}. Hence, by Lemma 2.2.6,
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there exists a homomorphism from B to A′. Since B |= φ(c̄), and φ is preserved by
homomorphisms between models of T , we have A′ |= φ(c̄). Then A |= φ(c̄) since A′ is
an elementary extension of A.

We conclude that T ∪Ψ∪{¬φ(c̄)} is unsatisfiable, and again by compactness there
exists a finite subset Ψ′ of Ψ such that T∪Ψ′∪{¬φ(c̄)} is unsatisfiable. Note that

∧
Ψ′

is an existential positive sentence; let ψ be the formula obtained from this sentence
by replacing for all i ≤ n all occurrences of ci by xi. Then T |= ∀x̄(ψ(x̄)⇔ φ(x̄)) (see
Lemma 2.1.7), which is what we wanted to show. �

Note that here the assumption that ⊥ is always part of first-order logic is impor-
tant: the first-order formula ∃x : x 6= x is preserved by all homomorphisms between
models of T , but without ⊥ it may not be equivalent to an existential positive formula
modulo T (for instance when T is the empty theory).

The classical theorem of  Loś-Tarski for preservation under embeddings of models
of a theory is a direct consequence of the homomorphism preservation theorem.

Corollary 2.5.3 ( Loś-Tarski; see e.g. Corollary in 5.4.5 of [214]). Let T be
a first-order theory. A first-order formula φ is equivalent to an existential formula
modulo T if and only if φ is preserved by all embeddings between models of T .

Proof. For each atomic formula ψ add a new relation symbolNψ to the signature
of T , and add the sentence ∀x̄(Nψ(x̄)⇔ ¬ψ(x̄)); let T ′ be the resulting theory. Then
every existential formula φ is equivalent to an existential positive formula in T ′, which
can be obtained from φ by replacing negative literals ¬ψ(x̄) in φ by Nψ(x̄). Similarly,
homomorphisms between models of T ′ must be embeddings. Hence, the statement
follows from Theorem 2.5.2. �

Our next preservation theorem, Theorem 2.5.5, is a positive variant of the well-
known Chang- Loś-Suszko preservation theorem, which characterises ∀∃-definability.
Much as we have just seen in the case of the homomorphism preservation theorem,
our positive variant easily implies the classical one. The proof we give for the positive
version is similar to the proof of the Chang- Loś-Suszko theorem given in [214]. We
need the following lemma.

Lemma 2.5.4. Let T be a first-order theory and let A be a model of T∀∃+ . Then
A can be extended to a model B of T such that for every every ā ∈ An and every
existential positive formula φ if B |= φ(ā) then A |= φ(ā).

Proof. Let A′ be an expansion of A by constants such that each element of A′ is
denoted by a constant symbol. It suffices to prove that T ∪Th(A′)qf ∪Th(A′)∀− has
a model B. Suppose for contradiction that it is inconsistent; then by compactness,
there exists a finite subset U of Th(A′)qf ∪Th(A′)∀− such that T ∪U is inconsistent.
Let φ be the conjunction over U where all new constant symbols are existentially
quantified. Then T ∪ {φ} is inconsistent as well. But ¬φ is equivalent to a ∀∃+

formula, and a consequence of T . Hence, A |= ¬φ, a contradiction. �

Theorem 2.5.5 below is essentially Theorem 23 in [38]; the formulation below is
taken from [65].

Theorem 2.5.5 (Positive Chang- Loś-Suszko). Let T be a first-order τ -theory,
and Φ a set of τ -formulas. Then the following are equivalent.

(1) Φ is equivalent modulo T to a set of ∀∃+-formulas Ψ.
(2) Φ is preserved in direct limits of sequences of models of T ;
(3) Φ is preserved in direct limits of countable sequences of models of T .
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Proof. The implication from (1) to (2) is Lemma 2.1.21. The implication from
(2) to (3) is trivial. For the implication from (3) to (1), assume that Φ is preserved
by direct limits of sequences (Ai)i<ω as in the statement of the proposition. We can
assume that Φ is a set of sentences (by adding constants, Lemma 2.1.7). Let Ψ be the
set of all ∀∃+-sentences that are consequences of T ∪ Φ. To show that T ∪Ψ implies
Φ, it suffices to show that every model of T ∪Ψ is elementary equivalent to the direct
limit of a sequence (Bi)i<ω of models of T ∪Φ. To construct this sequence, we define
an elementary chain of models (Ai)i<ω of T ∪Ψ such that there are

• Ai has an extension to a model Bi of T ∪ Φ such that for every tuple āi
of elements from Ai and every existential positive formula θ, if Bi |= θ(āi),
then Ai |= θ(āi), and
• homomorphisms gi : Bi → Ai+1 such that gi is the identity on Ai.

Let A0 be a model of T ∪Ψ. To construct the rest of the sequence, suppose that
Ai has been chosen. Since A0 is an elementary substructure of Ai, in particular all
the ∀∃+-consequences of T ∪Φ hold in Ai. By Lemma 2.5.4, the structure Ai can be
extended to a model Bi of T ∪ Φ such that every ep-sentence that holds in (Bi, āi)
also holds in (Ai, āi). By Lemma 2.1.12 there are an elementary extension Ai+1 of Ai
and a homomorphism gi : Bi → Ai+1. Then C :=

⋃
i<ω Ai equals limi<ωBi, and by

the Tarski-Vaught elementary chain theorem (Theorem 2.1.18) A0 is an elementary
substructure of C. So C is a model of T , and the direct limit of models Bi of T ∪ Φ,
and hence by assumption C |= Φ. This shows that T ∪Ψ implies Φ. �

By compactness one can show that if Φ is finite, then the set of formulas Ψ from
item (1) in Theorem 2.5.5 above can be chosen to be a single formula.

Corollary 2.5.6 (Chang- Loś-Suszko Theorem; Theorem 5.4.9 in [214] and re-
marks after the proof). Let T be a first-order τ -theory.

• A set of first-order τ -formulas Φ is equivalent to a set of ∀∃-formulas Ψ
modulo T if and only if Φ is preserved in unions of chains of models of T .
• A first-order τ -formula φ is equivalent to a ∀∃-formula ψ modulo T if and

only if φ is preserved in unions of chains (Ai) of models of T .

Proof. The statement can be derived by adding relation symbols for the nega-
tions of all atomic formulas, and applying Theorem 2.5.5 to the corresponding theory,
as in the proof of Corollary 2.5.3. �

2.6. Model-completeness and Cores

This section is concerned with theories T where various fragments of first-order
logic have equal expressive power. In particular, we consider the situation that modulo
T

(a) every first-order formula is equivalent to an existential formula (Section 2.6.1),
(b) every existential formula is equivalent to an existential positive formula (Sec-

tion 2.6.2),
(a)&(b) every first-order formula is equivalent to an existential positive formula (Sec-

tion 2.6.3.

In fact, the most important case in later sections will be the third, so we treat it
separately.

These collapse results will be useful when studying the complexity of CSPs.
For example, they clarify when the so-called constraint entailment problem is inter-
reducible with a corresponding CSP (see Section 2.6.2). They are also important for
the universal-algebraic approach for CSPs of ω-categorical structures that we present
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in Chapter 6. While the collapse properties listed above appear to be quite strong as-
sumptions on T , we will see in Section 2.7 that often (for instance if T is ω-categorical)
there exists a theory T ′ such that CSP(T ) = CSP(T ′) and T ′ satisfies the collapse
properties listed above.

2.6.1. Model-complete theories. We start by recalling the classical concept
of model-completeness of theories, since it inspired the new results of the next section
about core theories.

Definition 2.6.1. A theory T is model complete if every embedding between
models of T is elementary, i.e., preserves all first-order formulas.

An equivalent characterisation of model-completeness is as follows.

Theorem 2.6.2 (Theorem 7.3.1 in [214]). Let T be a theory. Then the following
are equivalent.

(1) T is model complete;
(2) every first-order formula is equivalent modulo T to an existential formula;
(3) for every embedding e of a model A of T into a model B of T , every tuple

ā of elements of A, and every existential formula φ, if B |= φ(e(ā)) then
A |= φ(ā).

(4) every existential formula is equivalent modulo T to a universal formula;
(5) every first-order formula is equivalent modulo T to a universal formula.

Proof. (1)⇒ (2). Suppose that T is model complete, and let φ be a first-order
formula. Since T is model complete, φ is preserved by all embeddings between models
of T . It follows from Theorem 2.5.3 that φ is equivalent to an existential formula.

(2) ⇒ (3). Let e be an embedding of a model A of T into a model B of T . Let
ā be a tuple of A, and φ an existential formula such that B |= φ(e(ā)). By (2), ¬φ
is equivalent to an existential formula. Therefore, e preserves ¬φ. Since B |= φ(e(ā))
we therefore must have A |= φ(ā).

(3)⇒ (4). Let φ be an existential formula. We have to show that ¬φ is equivalent
to an existential formula. But (3) implies that ¬φ is preserved by embeddings between
models of T , so the statement follows from Theorem 2.5.3

(4) ⇒ (5). Let φ be a first-order formula, written in prenex normal form
Q1x1 · · ·Qnxn : ψ for ψ quantifier-free. Let i ≤ n be smallest so that Qi = · · · = Qn.
If i = 1 then either φ is already universal, or equivalent to a universal formula by
(4), and we are done. Otherwise, if Qi = · · · = Qn = ∃ then by (4) the formula
∃xi . . . ∃xn : ψ is equivalent modulo T to a universal formula ψ′. We proceed with the
formula Q1x1 · · ·Qi−1xi−1 : ψ′ which has fewer quantifier alternations than φ. Finally,
suppose that Qi = · · · = Qn = ∀. By (4) the formula ∃xi . . . ∃xn : ¬ψ is equivalent
modulo T to a universal formula ψ′. Then the formula Q1x1 · · ·Qi−1xi−1 : ¬ψ′ is
clearly equivalent to φ, but has fewer quantifier alternations. The claim follows by
induction on the number of quantifier alternations of φ.

(5) ⇒ (1). Let φ be a first-order formula. Then ¬φ is equivalent to a universal
formula, therefore φ is equivalent to an existential formula, and hence preserved by
all embeddings between models of T . �

For many theories, model completeness can be shown by proving an even stronger
property, namely quantifier elimination.

Definition 2.6.3. A τ -theory admits quantifier elimination if for every first-order
τ -formula there is a quantifier-free τ -formula which is equivalent modulo T .
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In this context, our assumption that we allow ⊥ as a first-order formula, becomes
relevant.3 Theorem 2.6.2 shows that theories with quantifier elimination are model
complete.

Example 2.6.4. Let T be the first-order theory of (Z; Succ) where Succ is the
binary relation {(x, y) | y = x + 1}). Then T does not have quantifier elimination,
but is model complete. 4

We say that a structure A is model complete if and only if the first-order theory
Th(A) of A is model complete.

Example 2.6.5. The structure (Q+
0 ;<), where Q+

0 denotes the non-negative ra-
tional numbers, is not model complete, because the self-embedding x 7→ x + 1 of
(Q+

0 ;<) does not preserve the formula φ(x) = ∀y (x < y ∨ x = y) (which is satisfied
only by 0). 4

In the following we use the easy fact that the first-order theory of a finite structure
determines the structure up to isomorphism.

Example 2.6.6. All finite structures A are model complete: self-embeddings of A
are automorphisms, and hence they are elementary. Every relation that is first-order
definable in a finite structure also has an existential definition. 4

Proposition 2.6.7. Every model-complete theory T is equivalent to a ∀∃-theory.

Proof. This is an immediate consequence of the Chang- Loś-Suszko theorem
(Corollary 2.5.6; where the theory denoted by T in Corollary 2.5.6 is empty and Φ from
Corollary 2.5.6 equals the theory T from the statement here) because for any sequence
(Bi)i<κ of models of T with embeddings gij : Bi ↪→ Bj , the gij are elementary. By
the Tarski-Vaught theorem (Theorem 2.1.18), we have that (limi<κBi) |= T . �

2.6.2. Core theories. We have already encountered the concept of a core of
a finite structure in Section 1.1. To recall, a finite structure B is called a core
if all endomorphisms of B are embeddings. Cores play an important role in the
classification program for finite-domain CSPs. There are many equivalent definitions
of the notion of a core of a finite structure: for example, a finite structure is a
core if and only if all endomorphisms are surjective, or injective, or bijective, or
automorphisms. For infinite structures these definitions are in general not equivalent,
even when if they are ω-categorical; see [33,34,48]. To motivate our general definition
of cores, let us review some important properties of finite cores:

• Existence: every finite structure A has a core B (Proposition 1.1.11);
• Uniqueness: all core structures B of A are isomorphic (Proposition 1.1.11);
• Definability: orbits of k-tuples under Aut(B) for finite cores B are primi-

tively positively definable in B (Proposition 1.2.11).
• Definability property 2: every first-order formula is equivalent over B to an

existential positive formula (a direct consequence of the previous item).

Note that the last property only depends on the first-order theory of B, and not
on B itself. We make the following definition.

Definition 2.6.8. A theory T is called a core theory if every homomorphism
between models of T is an embedding.

3Hodges [213] does not make this assumption, and therefore has to distinguish between quan-
tifier elimination and what he calls quantifier elimination for non-sentences.
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Note that a finite structure B is a core if and only if the first-order theory of
B is a core theory (again we use that the first-order theory of a finite structure
B determines the structure up to isomorphism). In fact, the same is true for all
ω-categorical structures B; we will revisit the ω-categorical case in Chapter 4.

Example 2.6.9. The first-order theory T of (Q;<) is easily seen to be a core
theory: homomorphisms between models of T must be injective and also preserve the
complement of <. In contrast, the first-order theory of (Q;≤) is not a core theory,
since (Q;≤) has a constant endomorphism. 4

Proposition 2.6.10. Let T be a first-order τ -theory. The following are equiva-
lent.

(1) T is a core theory.
(2) Every existential formula is equivalent modulo T to an existential positive

formula.
(3) For every atomic τ -formula ψ, the formula ¬ψ is equivalent to an existential

positive formula modulo T .

Proof. (1) ⇒ (2). Let T be a core theory, and let φ be an existential formula.
Then φ is preserved by all embeddings between models of T . Since all homomorphisms
between models of T are embeddings, φ is also preserved by all homomorphisms
between models of T . Hence, Theorem 2.5.2 implies that φ is equivalent modulo T to
an existential positive formula.

(2)⇒ (3) is clear since negations of atomic formulas are existential formulas.
(3)⇒ (1) is immediate because homomorphisms between models of T must pre-

serve existential positive formulas, so by (3) they must preserve the negations of
atomic formulas, and hence are embeddings. �

We would like to point out a computational corollary. Let T be a theory with
finite relational signature τ . The constraint entailment problem for T is the following
computational problem. The input consists of a primitive positive τ -formula φ, and a
single atomic τ -formula ψ, both φ and ψ with free variables x1, . . . , xn. The question
is whether φ implies (entails) ψ over T , i.e., whether

T |= ∀x1, . . . , xn (φ⇒ ψ) .

Corollary 2.6.11. Let τ be a finite relational signature, and let T be a core τ -
theory. Then the constraint entailment problem for T is equivalent to CSP(T ) under
polynomial-time Turing reductions.

Proof. The reduction from CSP(T ) to the constraint entailment problem for T
is trivial, because in order to decide satisfiability of T ∪ {φ}, we can test whether φ
entails false over T .

For the converse reduction, let φ, ψ be an input to the constraint entailment
problem for T . Since T is a core theory, ¬ψ is by Proposition 2.6.10 equivalent to
an existential positive τ -formula, and hence equivalent to a disjunction ψ1 ∨ · · · ∨ψm
of primitive positive formulas. We may assume that the size of this disjunction is
bounded by a constant, for all possible inputs, because T is fixed and the signature τ is
finite. Then φ entails ψ if and only if for all 1 ≤ i ≤ m, we have that ∃x1, . . . , xk (φ∧ψi)
is false in T . In this way we have reduced the entailment problem to solving a constant
number of constraint satisfaction problems over T . �

2.6.3. Model-complete core theories. The results from the previous two sec-
tions can be combined to obtain alternative characterisations of model-complete core
theories. We mostly work with such theories in later sections for reasons that will
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become apparent in Section 2.7, so we explicitly combine these results here for easy
reference.

Theorem 2.6.12. Let T be a first-order theory. Then the following are equivalent:

(1) T is a model-complete core theory;
(2) every first-order formula is equivalent modulo T to an existential positive

formula;
(3) for every homomorphism h from a model A of T to a model B of T , every

tuple ā of elements of A, and every existential positive formula φ, if B |=
φ(h(ā)) then A |= φ(ā).

(4) every existential positive formula is equivalent modulo T to a universal neg-
ative formula;

(5) every first-order formula is equivalent modulo T to a universal negative for-
mula.

Proof. Analogous to the proof of Theorem 2.6.2, replacing Theorem 2.5.2 by
Corollary 2.5.3, existential by existential positive definability, universal by universal
negative definability, and embeddings by homomorphisms. �

Proposition 2.6.13. Let T be a model-complete core theory. Then T is equivalent
to a ∀∃+-theory.

Proof. Analogous to the proof of Proposition 2.6.7, replacing the Chang- Loś-
Suszko theorem by its positive variant, Theorem 2.5.5. �

2.7. Companions

When we are interested in CSP(T ), it is often useful to first pass to a ‘nicer’ theory
T ′ such that CSP(T ) = CSP(T ′). Ideally, we would like that T ′ is a model-complete
core theory – but such a theory T ′ may not exist. However, if such a model-complete
core theory T ′ does exist, then it turns out to be unique up to equivalence of theories,
and will be called the core companion of T .

If the core companion exists, it can be constructed using the concept of existential
positive closure, which we develop in Section 2.7.1. Another closely related concept
is the positive Kaiser hull of a theory T , defined in Section 2.7.2. The positive Kaiser
hull may not be model complete or not a core theory, but if T has a core companion,
then the core companion equals the positive Kaiser hull of T . In particular, if the
core companion exists, then the core companion is unique – all this up to logical
equivalence of theories. Using these concepts, we prove in Section 2.7.3 the central
statements about core companions. Our results about core companions imply the
corresponding classical results about existential closure, the Kaiser hull, and model
companions; this will be the topic of Section 2.7.4.

2.7.1. Existential positive closure. The direct limit construction from Sec-
tion 2.1.10 can be used to build models with a certain desirable property, existential
positive closure, which we will introduce in this section. Much of the material pre-
sented here is from [65] and analogous to, but more powerful than, the classical facts
about existential closure.

Definition 2.7.1. Let T be a theory. A structure A is called existentially posi-
tively closed for T (short: T -epc) if there is a homomorphism from A to a model of
T , and if for any homomorphism h from A into a model B of T , any tuple ā from A,
and any existential positive formula φ with B |= φ(h(ā)) we have A |= φ(ā).

Note that we can equivalently replace ‘existential positive’ by ‘primitive positive’
in the previous definition.
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Lemma 2.7.2. A structure is T -epc if and only if it is T∀−-epc.

Proof. Suppose that A is T -epc. Then A maps homomorphically to a model
B of T∀− . Let h be any such homomorphism, let ā be a tuple in A, and φ an
existential positive formula such that B |= φ(h(ā)). By Proposition 2.1.14, B has a
homomorphism g to a model of T . Then g(h(ā)) holds since g preserves existential
positive formulas. Apply the assumption that A is T -epc to the homomorphism g ◦ h
to conclude that φ(ā), which proves that A is T∀− -epc.

Now, let A be T∀− -epc. Proposition 2.1.14 shows that A has a homomorphism to
a model of T . Any such homomorphism is in particular a homomorphism to a model
of T∀− , and hence the assumption that A is T∀− -epc implies that A is T -epc. �

To show the existence of T -epc structures we apply the direct limit construction
from Section 2.1.10 (see also [37]).

Lemma 2.7.3. Let T be a τ -theory and κ ≥ max(|τ |,ℵ0). Then any model A of T
of cardinality at most κ admits a homomorphism to a T -epc structure B of cardinality
at most κ.

Proof. Set B0 := A. Suppose that we have already constructed Bi of cardinality
at most κ, for i < ω. Let {(φα, āα) | α < κ} be an enumeration of all pairs (φ, ā)
where φ is existential positive with free variables x1, . . . , xn, and ā is an n-tuple from
Bi. We construct a sequence (Bα

i )0≤α<κ of models of T∀− of cardinality at most κ
and a coherent sequence (fµ,αi )0≤µ<α<κ where fµ,αi is a homomorphism from Bµ

i to
Bα
i , as follows.

Set B0
i = Bi−1. Now let α = β + 1 < κ be a successor ordinal. Let b̄β be the

image of āβ in Bβ
i under f0,β

i . If there is a model C of T∀− and a homomorphism

h : Bβ
i → C such that C |= φβ(h(b̄β)), then by the theorem of Löwenheim-Skolem

(Theorem 2.1.11) there is also a model C′ of T∀− of cardinality at most κ and a

homomorphism h′ : Bβ
i → C′ such that C′ |= φβ(h′(b̄β)). Set Bα

i := C′ and fµ,αi :=

h′ ◦ fµ,βi for all µ < α. Otherwise, if there is no such model C, we set Bα
i := Bβ

i and

fβ,αi := id (the identity mapping) and fµ,αi := fµ,βi . Finally, for limit ordinals α < κ,
set Bα

i := limµ<αB
µ
i and let fµ,αi be the corresponding limit homomorphism from

Bµ
i to Bα

i .
Let Bi be limα<κB

α
i and let gi : Bi−1 → Bi be the limit homomorphism mapping

each element of Bi−1 = B0
i to its equivalence class in Bi. In the natural way,

the gi give rise to a coherent sequence of homomorphisms, and by Lemma 2.1.21,
B := limi<ωBi is a model of T∀− ; let hi : Bi → B for i < ω be the corresponding
limit homomorphisms.

To verify that B is T -epc it suffices to show that it is T∀− -epc, by Lemma 2.7.2.
Let g be a homomorphism from B to a model C of T∀− , and suppose that there is a
tuple b̄ over B and an existential positive formula φ such that C |= φ(g(b̄)). There is
an i < ω and an ā ∈ Bi such that hi(ā) = b̄. Then g ◦hi is a homomorphism from Bi

to C, and by construction we have that Bi+1 |= φ(gi+1(ā)). Note that hi+1◦gi+1 = hi.
Thus, since hi+1 preserves existential positive formulas, we also have that B |= φ(b̄),
which is what we had to show. �

Existential positive closure can be characterised using maximal ep-types.

Proposition 2.7.4. Let T be a theory and let A be a model of T . Then A is
T -epc if and only if for every n ∈ N every ep-n-type of a tuple in A is a maximal
ep-type of T .
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Proof. (Forwards.) Let (a1, . . . , an) be a tuple of elements of A and let p
be the ep-n-type of (a1, . . . , an). Let c1, . . . , cn be new constant symbols that de-
note a1, . . . , an in A. Let φ(x1, . . . , xn) be an existential positive formula such that
T ∪p(c1, . . . , cn)∪{φ(c1, . . . , cn)} has a model C. Then C has an |A|-saturated elemen-
tary extension Csat by Theorem 2.2.1. Clearly, Csat is in particular ep-|A|-saturated,
and all existential positive sentences true on (A, c1, . . . , cn) are true on Csat. By
Lemma 2.2.6, there is a homomorphism h from (A, c1, . . . , cn) to Csat. Now, since
Csat |= φ(c1, . . . , cn) and A is T -epc, we find that (A, c1, . . . , cn) |= φ(c1, . . . , cn).
Hence, p is a maximal ep-type of T .

(Backwards.) Let B be a model of T and h : A → B a homomorphism, ā ∈ An,
and φ(x1, . . . , xn) an existential positive formula such that B |= φ(h(ā)). Let p be
the ep-type of ā in A. Since B is a model of T and h preserves all existential positive
formulas, it follows that T ∪ p ∪ {φ} is satisfiable. By the maximality of p, we have
that φ ∈ p, and therefore A |= φ(ā). �

The classical results about existential closure can be seen as a special case of the
results about existential positive closure. Let T be a first-order theory. A structure
A is called existentially closed for T (short, T -ec) if A embeds into a model of T and
A |= φ(ā) for any embedding e from A into another model B of T , any tuple ā from
A, and any existential formula φ with B |= φ(e(ā)). The following is Lemma 3.2.11
in [346], a variant of Corollary 7.2.2 in [214].

Corollary 2.7.5. Let T be a τ -theory and κ ≥ max(|τ |,ℵ0). Then any model A
of T of cardinality at most κ embeds into a T -ec structure of cardinality at most κ.

Proof. A direct consequence of Lemma 2.7.3, by appropriately choosing the
signature (as in the proof of Corollary 2.5.3). �

2.7.2. The positive Kaiser hull. In this section we introduce a positive variant
of the classical notion of the Kaiser Hull of a theory. The results about the Kaiser
Hull are direct consequences of their positive analogues that we present here. Our
presentation follows the presentation of the classical case given in [346].

Lemma 2.7.6. For every theory T there exists a unique largest ∀∃+-theory T ′ such
that T ′∀− = T∀− .

Proof. Suppose for contradiction that the set of all ∀∃+-theories S such that
S∀− = T∀− is not closed under unions. This is equivalent to the existence of ∀∃+-
theories S, S′ such that

• S∀− = S′∀− = T∀− ,
• T has a model A, and
• S ∪ S′ is unsatisfiable.

By Proposition 2.1.14 there exists a homomorphism from A to a model A0 of S, and
a homomorphism from A0 to a model A1 of S′. Repeating this step we construct
a sequence of structures (Ai)i∈N, with coherent homomorphisms fij : Ai → Aj , such
that Ai is a model of S for even i and a model of S′ for odd i. Then by Lemma 2.1.21
the direct limit B := limi<ω Ai is a model of S ∪ S′, a contradiction. �

The theory T ′ from Lemma 2.7.6 will be called the positive Kaiser hull of T ,

denoted in the following by TKH+

.

Lemma 2.7.7. The positive Kaiser hull of T equals the set of ∀∃+-sentences that
hold in all T -epc structures.
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Proof. Let T ∗ be the set of all ∀∃+-sentences satisfied by all T -epc structures.

To show that T ∗ ⊆ TKH+

it suffices to show that (T ∗)∀− = T∀− . By Lemma 2.7.3,
every model of T∀− has a homomorphism to a T ∗-epc structure. Therefore, every
universal-negative sentence that holds in all T ∗-epc structures must be in T∀− , i.e.,
(T ∗)∀− ⊆ T∀− . Conversely, every T -epc structure homomorphically maps to a model
of T∀− , and therefore satisfies T∀− , so T∀− ⊆ (T ∗)∀− .

We now show that TKH+ ⊆ T ∗. For this, we have to show that every T -epc

structure A satisfies all φ ∈ TKH+

. Since TKH+

is a ∀∃+-theory, φ is of the form
∀ȳ : ψ(ȳ) where ψ is a disjunction of existential positive and negative atomic τ -
formulas. Let ā be a tuple of elements of A. We have to show that A |= ψ(ā).

Since (T ∗)∀− = T∀− = TKH+

∀− , by Proposition 2.1.14 there is a homomorphism h from

A to a model B of TKH+

∀− . Since B |= ∀ȳ : ψ(ȳ), at least one disjunct θ(h(ā)) of ψ
is true in B. If θ is a negative atomic formula, then θ(ā) is also true in A since h
is a homomorphism. Now suppose that θ is an existential positive formula. Since

TKH+

∀− = T∀− , by Proposition 2.1.14 there is a homomorphism g from B to a model
C of T∀− . Since g preserves θ we have that C |= θ(g(h(ā))). Now A |= θ(ā) since A is

T -epc. In both cases we can conclude that A |= ψ(ā). Hence, A |= TKH+

. �

2.7.3. Core companions. In this section we study conditions that imply that
we can pass from a theory T to a model-complete core theory T ′ satisfying the same
universal negative sentences (and therefore, when T has a finite relational signature,
T and T ′ have the same CSP).

Definition 2.7.8 (from [65]). Let T be a first-order τ -theory. Then a τ -theory
S is called a core companion of T if

• S is a model-complete core theory;
• S and T have the same universal negative consequences, i.e., S∀− = T∀− .

Recall from Corollary 2.1.15 that the second item in Definition 2.7.8 is equivalent
to requiring that every model of S maps homomorphically to a model of T , and
conversely every model of T maps homomorphically to a model of S.

Example 2.7.9. Let T be the first-order theory of (Z;<). Then the core com-
panion T is the first-order theory of (Q;<). 4

Example 2.7.10. Let T be the first-order theory of all undirected and loop-less
graphs. Then the core companion of T is the first-order theory of (N; 6=). 4

The core companion, if it exists, is unique; we choose a formulation of this fact
that follows the presentation of the classical results on model companions given by
Tent and Ziegler (Theorem 3.2.14 in [346]; some parts were generalised to the positive
setting in [38], Corollary 24).

Theorem 2.7.11. Let T be a theory. Then the following are equivalent.

(1) T has a core companion;
(2) all models of the positive Kaiser hull of T are T -epc;
(3) the class of T -epc structures has a first-order axiomatisation.

In particular, if T has a core companion T ∗, then T ∗ is the theory of all T -epc

structures, and T ∗ is equivalent to TKH+

.

Proof. (1) ⇒ (2). Let U be the core companion of T . By Proposition 2.6.13,

U is equivalent to a ∀∃+-theory. Since U∀− = T∀− we therefore have U ⊆ TKH+

.
So it suffices to show that every model A of U is T -epc. The structure A has a
homomorphism h to a model of T since A |= U∀−(= T∀−) by Proposition 2.1.14.
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Let h be an arbitrary homomorphism from A to a model B of T , let ā be a tuple
from A, and φ an existential positive formula with B |= φ(h(ā)). Then B has a
homomorphism g to a model C of U . Since U is a model-complete core theory, the
homomorphism g ◦ h is elementary. Since g preserves existential positive formulas,
C |= φ(g(h(ā))). Since g ◦ h is elementary, A |= φ(ā).

(2) ⇒ (3). Lemma 2.7.7 implies that TKH+

is satisfied by all T -epc structures.

Together with (2) this implies that the first-order theory TKH+

axiomatises the class
of all T -epc structures.

(3)⇒ (1). Suppose that the class of T -epc structures equals the class of all models
of a first-order theory U . We claim that U is the core companion of T . Every model
of U is in particular a model of T∀− , and every model of T∀− maps homomorphically
to a model of U by Lemma 2.7.3. So we only have to verify that U is a model-
complete core theory. It suffices to verify item (3) in Theorem 2.6.12. Let h be a
homomorphism between models A and B of U , let ā be a tuple from A, and φ an
existential positive formula such that B |= φ(h(a)). Since B satisfies T∀− and A is
T∀− -epc by Lemma 2.7.2, we have that B |= φ(ā), as desired.

The final statement of the theorem is a clear consequence of the proof above. �

Example 2.7.12. Let T be the first-order theory of (Z; Succ), as in Example 2.6.4.
Then T is not a core theory since there are models of T consisting of several dis-
joint copies of (Z; Succ), and homomorphisms from such models to (Z; Succ) are
non-injective. We claim that T has no core companion. To see this, observe that
all structures that are T -epc are isomorphic to (Z; Succ); hence, by Theorem 2.7.11 if
there were a core companion, it would have to be T itself, contradicting our observa-
tion above that T is not a core theory. 4

2.7.4. Model companions. In this section we state classical results about
model companions and derive them from the more general results about core com-
panions from the previous section.

Definition 2.7.13. A theory S is a model companion of a theory T if

• S is model complete;
• S and T have the same universal consequences, i.e., S∀ = T∀.

Note that the second item in this definition is equivalent to requiring that every
model of S embeds into a model of T , and vice versa (this follows from Corollary 2.1.15
by choosing an appropriate signature, as explained in the proof of Corollary 2.5.3).

Example 2.7.14. In Example 2.6.5 we have seen that (Q+
0 ;<) is not model-

complete. However, it has a model companion: the first-order theory of (Q;<). 4

Example 2.7.15. We give an example of a theory without model companion. Let
B be a binary relation symbol, and let T be the first-order theory of (Q;≤) together
with sentences that assert that B is the graph of a bijection that preserves ≤. Then
T does not have a model companion; this follows from a much more general result of
Kikyo [241] about theories without model companions. But T has a core companion:
the theory of the structure ({0};≤, {(0, 0)}). 4

It follows from Lemma 2.7.7 that there exists a ∀∃-theory TKH which is largest
with respect to containment and such that T∀ = TKH

∀ ; the theory TKH is called the
Kaiser Hull of T . And similarly as in the positive case, if T has a model companion,
then the model companion equals TKH.

Theorem 2.7.16 (Theorem 3.2.14 in [346]). Let T be a theory. Then the following
are equivalent.
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(1) T has a model companion;
(2) all models of the Kaiser hull of T are T -ec;
(3) the class of T -ec structures has a first-order axiomatisation.

In particular, if T has a model companion T ∗, then it is unique up to equivalence of
theories, and T ∗ = TKH is the theory of all T -ec structures.

Proof. An immediate consequence of Theorem 2.7.11 by appropriately changing
the signature if necessary. �





CHAPTER 3

Primitive Positive Interpretations

Jaroslav Nešetřil, 2004

Primitive positive definability from Section 1.2 is a strong tool to prove that
certain CSPs are hard, but in some cases this tool is not strong enough. In this
chapter we discuss the more flexible concept of primitive positive interpretations, a
restriction of first-order interpretations that were introduced in Section 2.4. Later,
in Chapter 6, we will see an important tight connection between primitive positive
interpretability in finite or countably infinite ω-categorical structures and pseudo-
varieties from universal algebra.

3.1. Introducing Primitive Positive Interpretations

Primitive positive interpretations are interpretations for which all the defining
formulas are primitive positive. As we will see, such interpretations can be used to
study the computational complexity of constraint satisfaction problems.

Definition 3.1.1. Let I be an interpretation of A in B. If all the interpreting
formulas of I can be chosen to be primitive positive then we say that I is a primitive
positive interpretation. A d-dimensional primitive positive interpretation I is called
full if a relation R ⊆ Ak is primitively positively definable in A whenever

I−1(R) =
{

(b11, . . . , b
d
1, . . . , b

1
k, . . . , b

d
k) ∈ Bdk | (b11, . . . , bd1), . . . , (b1k, . . . , b

d
k) ∈ dom(I),

(I(b11, . . . , b
d
1), . . . , I(b1k, . . . , b

d
k)) ∈ R

}
is primitively positively definable in B.

Example 3.1.2. Let G be a directed graph and let F be an equivalence relation
on V (G). Then G/F is the directed graph whose vertices are the equivalence classes
of F , and where (S, T ) is an arc if there are s ∈ S and t ∈ T such that (s, t) ∈ E(G).
If F has a primitive positive definition in G, then G/F has a primitive positive
interpretation in G.

83
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This interpretation is not full in general: consider for example the digraph

G =
(
{−1, 0, 1}; {(−1, 0), (0, 1), (−1, 1)}

)
and the equivalence relation F with equivalence classes {0} and {−1, 1}. Then G/F
is isomorphic to K2 and has an automorphism that exchanges the vertex {0} with the
vertex {−1, 1}, so the unary relation that just contains the class {0} is not primitively
positively definable in G/F . On the other hand, the relation {0} has the primitive
positive definition φ(x) = ∃u, v

(
E(u, x) ∧ E(x, v)

)
in G.

For an example where this interpretation is full, consider the digraph

G =
(
{−1, 0, 1}; {(0,−1), (−1, 0), (0, 1), (1, 0)}

)
and the equivalence relation F with equivalence classes {0} and {−1, 1}. Again, G/F
is isomorphic to K2. Let φ be a primitive positive formula over the signature of
graphs, defining a relation R over G. Then the same primitive positive formula φ
defines I−1(R) over G/F . 4

Example 3.1.3. The field of rational numbers (Q; 0, 1,+, ∗) has a primitive pos-
itive 2-dimensional interpretation I in (Z; 0, 1,+, ∗). First observe that the non-
negative integers are primitively positively definable in (Z; 0, 1,+, ∗), namely by the
following formula φ(x) which states that x is the sum of four squares:

∃x1, x2, x3, x4(x = x2
1 + x2

2 + x2
3 + x2

4).

Clearly, every integer that satisfies φ(x) is non-negative; the converse is the famous
four-square theorem of Lagrange [199]. The interpretation is now given as follows.

• The domain formula >I(x, y) is y ≥ 1 (using φ(x), it is straightforward to
express this with a primitive positive formula);

• The formula =I (x1, y1, x2, y2) is x1y2 = x2y1;
• The formula 0I(x, y) is x = 0, the formula 1I(x, y) is x = y;
• The formula +I(x1, y1, x2, y2, x3, y3) is y3 ∗ (x1 ∗ y2 + x2 ∗ y1) = x3 ∗ y1 ∗ y2;
• The formula ∗I(x1, y1, x2, y2, x3, y3) is x1 ∗ x2 ∗ y3 = x3 ∗ y1 ∗ y2. 4

Theorem 3.1.4. Let A and B be structures with finite relational signatures. If
there is a primitive positive interpretation of A in B, then there is a polynomial-time
reduction from CSP(A) to CSP(B).

Proof. Let d be the dimension of the primitive positive interpretation I of the
τ -structure A in the σ-structure B. Let φ be an instance of CSP(A) with variable
set U = {x1, . . . , xn}. We construct an instance ψ of CSP(B) as follows. For distinct
variables V := {y1

1 , . . . , y
d
n}, we set ψ1 to be the formula∧

1≤i≤n

>I(y1
i , . . . , y

d
i ) .

Let ψ2 be the conjunction of the formulas θI(y
1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) over all

conjuncts θ = R(xi1 , . . . , xik) of φ. By moving existential quantifiers to the front and
removing equalities as in the proof of Lemma 1.2.6, the sentence

∃y1
1 , . . . , y

d
n (ψ1 ∧ ψ2)

can be re-written to a primitive positive σ-formula ψ, and clearly ψ can be constructed
in polynomial time in the size of A.

We claim that φ is true in A if and only if ψ is true in B. Let V be the variables of
ψ. Suppose that f : V → B satisfies all conjuncts of ψ in B. Hence, by construction
of ψ, if φ has a conjunct θ = R(xi1 , . . . , xik), then

B |= θI
(
(f(y1

i1), . . . , f(ydi1)), . . . , (f(y1
ik

), . . . , f(ydik))
)
.
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By the definition of interpretations, this implies that

A |= R
(
I(f(y1

i1), . . . , f(ydi1)), . . . , I(f(y1
ik

), . . . , f(ydik))
)
.

Hence, the mapping g : U → A that sends xi to I(f(y1
i ), . . . , f(ydi )) satisfies all con-

juncts of φ in A.
Now, suppose that f : U → A satisfies all conjuncts of φ over A. Since I is a sur-

jective mapping from dom(I) to A, there are b1i , . . . , b
d
i ∈ B such that I(b1i , . . . , b

d
i ) =

f(xi) for all i ∈ {1, . . . , n}. We claim that the mapping g : V → B that maps yji
to bji satisfies ψ in B. By construction, any constraint in ψ either comes from ψ1

or from ψ2. If it comes from ψ1 then it must be of the form >I(y1
i , . . . , y

d
i ), and is

satisfied since >I defines the pre-image of I. If the constraint comes from ψ2, then it
must be a conjunct of a formula θI(y

1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) that was introduced

for θ = R(xi1 , . . . , xik) in φ. It therefore suffices to show that

B |= θI
(
g(y1

i1), . . . , g(ydi1), . . . , g(y1
ik

), . . . , g(ydik)
)
.

By assumption, R(f(xi1), . . . , f(xik)) holds in A. By the choice of b11, . . . , b
d
n, this

shows that R(I(b1i1 , . . . , b
d
i1

), . . . , I(b1ik , . . . , b
d
ik

)) holds in B. By the definition of in-

terpretations, this is the case if and only if θI(b
1
i1
, . . . , bdi1 , . . . , b

1
ik
, . . . , bdik) holds in B,

which is what we had to show. �

Remark 3.1.5. As for first-order interpretations, primitive positive interpreta-
tions can be composed. Recall from Section 2.4 that if a τ2-structure C2 has a first-
order interpretation I1 in a τ1-structure C1, and the τ3-structure C3 has a first-order
interpretation I2 in C2, then C3 has a natural (d1d2)-dimensional first-order inter-
pretation I2 ◦ I1 in C1. Note that if I1 and I2 are primitive positive, then I2 ◦ I1
is primitive positive, too. This comes from the observation that if φ is a primitive
positive τ2-formula, then the τ1-formula φI1 is primitive positive, too. The analogous
statement holds for existential positive definability as well, but not for existential
definability: there are existential formulas φ and existential interpretations I1 such
that φI1 is no longer existential.

In many hardness proofs we use Theorem 3.1.4 in the following way.

Corollary 3.1.6. Let B be a relational structure such that K3, ({0, 1}; 1IN3),
or ({0, 1}; NAE) has a primitive positive interpretation in B. Then B has a finite-
signature reduct with an NP-hard CSP.

Proof. The primitive positive formulas involved in the primitive positive inter-
pretation can mention only finitely many relations from B. Let B′ be the reduct
of B that contains exactly those relations. Then the NP-hardness of CSP(B′) fol-
lows via Theorem 3.1.4 from the NP-hardness of CSP(K3) (see, e.g., [183]) and of
CSP({0, 1}; 1IN3) and CSP({0, 1}; NAE) (see Section 1.2 and Example 1.2.2). �

There are situations where Theorem 3.1.4 can be combined with Lemma 1.2.10
to prove hardness of CSPs, as described in the following.

Proposition 3.1.7. Let A be a structure with finite relational signature, and let
B be a structure with elements c1, . . . , ck such that

• the orbit of (c1, . . . , ck) under Aut(B) is primitively positively definable, and
• A has a primitive positive interpretation in (B, c1, . . . , ck).

Then there is a finite-signature reduct B′ of B and a polynomial-time reduction from
CSP(A) to CSP(B′).
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Proof. Let B′ be the finite-signature reduct of B that contains exactly the
relations mentioned in the primitive positive interpretation of A in B and the rela-
tions mentioned in a primitive positive definition φ of the orbit of (c1, . . . , ck) under
Aut(B). Since C := (B′, {c1}, . . . , {ck}) interprets A primitively positively, there is
a polynomial-time reduction from CSP(A) to CSP(C) by Theorem 3.1.4. Since φ
is a primitive positive definition of the orbit of (c1, . . . , ck) under Aut(B) over the
signature of B′, the orbit of (c1, . . . , ck) is the same under Aut(B′), and we can ap-
ply Lemma 1.2.10 and obtain a polynomial-time reduction from CSP(C) to CSP(B′).
Composing reductions, we conclude that there is a polynomial-time reduction from
CSP(A) to CSP(B′). �

We give a concrete example of this technique of proving hardness.

Definition 3.1.8. Let T3 be the ternary relation

T3 := {(x, y, z) ∈ Q3 | (x = y < z) ∨ (x = z < y)}.

Proposition 3.1.9. The structure ({0, 1}; 1IN3) has a primitive positive inter-
pretation in (Q;T3, 0). The problem CSP(Q;T3) is NP-hard.

Proof. We give a 2-dimensional primitive positive interpretation I of the struc-
ture ({0, 1}; 1IN3) in (Q;T3, 0). The domain formula >I(x1, x2) is T3(0, x1, x2); the
formula 1IN3I(x1, x2, y1, y2, z1, z2) is

∃u, v, w
(
T3(0, u, z1) ∧ T3(u, v, y1) ∧ T3(v, w, x1)∧T3(0, 0, w)

)
;

the formula =I(x1, x2, y1, y2) is T3(0, x1, y2). Let (b1, b2) be a pair of elements of B
that satisfies >I . Then exactly one of b1, b2 must have value 0, and the other element
is strictly greater than 0. We define I(b1, b2) to be 1 if b1 = 0, and to be 0 otherwise.

To see that this is the intended interpretation, let (x1, x2), (y1, y2), (z1, z2) be
pairs that satisfy >I in B and suppose that

t := (I(x1, x2), I(y1, y2), I(z1, z2)) = (1, 0, 0) ∈ 1IN3 .

We have to verify that (x1, x2, y1, y2, z1, z2) satisfies 1IN3I in B. Since I(x1, x2) = 1,
we have x1 = 0, and similarly we get that y1, z1 > 0. We can then set u and v to 0,
and w to 1 and satisfy T3(0, u, z1), T3(u, v, y1), T3(v, w, x1), and T3(0, 0, w). In the
case that t = (0, 1, 0) we set u to 0, and both v and w to x1/2, and again satisfy the
three atomic formulas. Finally, if t = (0, 0, 1) ∈ 1IN3 then x1, y1 > 0 and z1 = 0 and
we can set all of u, v, w to min(x1/2, y1/2).

Conversely, suppose that the tuple (x1, x2, y1, y2, z1, z2) satisfies 1IN3I in B. Since
T3(0, u, z1), exactly one out of u and z1 equals 0. If u = 0, then exactly one out of v
and y1 equals 0 because of T3(u, v, y1). If v = 0 then x1 = 0 because of T3(v, w, x1)∧
T3(0, 0, w), and we get that

(I(x1, x2), I(y1, y2), I(z1, z2)) = (1, 0, 0) ∈ 1IN3 .

If v > 0 then x1 > 0 because of T3(v, w, x1) ∧ T3(0, 0, w) and

(I(x1, x2), I(y1, y2), I(z1, z2)) = (0, 1, 0) ∈ 1IN3 .

If u > 0, then y1 > 0 and v > 0 and consequently x1 > 0, so

(I(x1, x2), I(y1, y2), I(z1, z2)) = (0, 0, 1) ∈ 1IN3 .

The orbit of the pair (0, 1) under Aut(Q;T3) is primitively positively definable in
(Q;T3) by the formula T3(x, x, y). Hence, the NP-hardness of CSP(Q;T3) follows
from the NP-hardness of CSP({0, 1}; 1IN3) via Proposition 3.1.7. �
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We give another concrete application. We have defined in Example 1.1.3 the
relation Betw on Z; we use the analogous definition for Betw over Q, that is,

Betw := {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x}.

Proposition 3.1.10. The structure ({0, 1}; NAE) has a primitive positive inter-
pretation in (Q; Betw, 0), and CSP(Q; Betw) is NP-hard.

Proof. Recall that the relation NAE is {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. The dimen-
sion of our interpretation I is one, and the domain formula is ∃z : Betw(x, 0, z), which
is equivalent to x 6= 0. The formula =I (x1, y1) is

∃z
(

Betw(x1, 0, z) ∧ Betw(y1, 0, z)
)
.

Note that =I is over (Q; Betw, 0) equivalent to (x1 > 0 ⇔ y1 > 0). Finally, the
formula NAE(x1, y1, z1)I is

∃u
(

Betw(x1, u, y1) ∧ Betw(u, 0, z1)
)
.

The coordinate map sends positive points to 1, and all other points from Q to 0.
Since the orbit of 0 under Aut(Q; Betw) is the entire set Q it is in particular

primitively positively definable, and we can show the NP-hardness of CSP(Q; Betw)
using Proposition 3.1.7 and the fact that CSP({0, 1}; NAE) is NP-hard. �

More applications of Proposition 3.1.7 can be found in Section 12.2.

3.2. Interpreting All Finite Structures Primitively Positively

Some structures B have the remarkable property that they can interpret all finite
structures primitively positively. We have already seen that we can always find first-
order interpretations of all finite structures in B if B has at least two elements
(Lemma 2.4.4). This is relevant here because there are many structures where every
first-order formula is equivalent to a primitive positive formula. An example for such a
structure is Kn for n ≥ 3, and the Boolean structures ({0, 1}; 1IN3) and ({0, 1}; NAE);
the proof has to wait until Section 6.1.8.

Corollary 3.2.1. K3 interprets all finite structures primitively positively.

Proof. In Proposition 6.1.43 we will see that for n ≥ 3, every first-order formula
is equivalent over Kn to a primitive positive formula. Therefore the statement follows
from Lemma 2.4.4. �

The class of structures that admit primitive positive interpretations of all finite
structures can be characterised in many different ways. We write I(B) for the class
of all structures with a primitive positive interpretation in B.

Theorem 3.2.2. Let B be any structure. Then the following are equivalent.

(1) ({0, 1}; 1IN3) ∈ I(B).
(2) ({0, 1}; NAE) ∈ I(B).
(3) Kn ∈ I(B), for some n ≥ 3.
(4) I(B) contains a structure with at least two elements for which all first-order

formulas are equivalent to primitive positive formulas.
(5) I(B) contains all finite structures.

If these equivalent conditions apply, then B has a finite-signature reduct whose CSP
is NP-hard.
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Proof. Clearly, (5) implies (1), (2), and (3). We have given a primitive posi-
tive definition of NAE in ({0, 1}; 1IN3) in the proof of Theorem 6.2.7, which proves
that (1)⇒ (2) by composing primitive positive interpretations (see Section 3.1). The
implication (2) ⇒ (4) is by Proposition 6.2.8. The implication (3) ⇒ (4) is Propo-
sition 6.1.43. (4) ⇒ (5) is immediate from Lemma 2.4.4 and composing primitive
positive interpretations (see Section 3.1).

For the final statement of the theorem, we use the fact thatK3 ∈ I(B); we consider
the reduct B′ of B that consists of all relations of B that appear in the interpretation
of K3. Then the NP-hardness of CSP(B′) follows from the NP-hardness of CSP(K3)
via Corollary 3.1.6. �

The equivalent conditions in Theorem 3.2.2 capture many of the structures B
such that CSP(B) is NP-hard, but not all. A concrete example is the structure B =
(Q;T3) from Proposition 3.1.9; in Example 9.6.3 we will see that the conditions from
Theorem 3.2.2 fail for this structure. A finite core with an NP-hard CSP that cannot
interpret all finite structures primitively positively will be discussed in Example 6.7.1.

3.3. Bi-interpretations

The notion of primitive positive homotopy (pp-homotopy) between two interpre-
tations I1, I2 of C in D is defined analogously to homotopy in Section 2.4: we require
that the relation {(x̄, ȳ) | I1(x̄) = I2(ȳ)} is primitively positively definable in D. Note
that the identity interpretation is primitive positive.

Definition 3.3.1. Two structures C and D with a primitive positive interpreta-
tion I of C in D and a primitive positive interpretation J of D in C are called mutually
primitively positively interpretable. If both I ◦ J and J ◦ I are pp-homotopic to the
identity interpretation (of D and of C, respectively), then we say that C and D are
primitively positively bi-interpretable.

Example 3.3.2. The directed graph C := (N2;M) where

M :=
{

((u1, u2), (v1, v2)) | u2 = v1

}
and the structure D := (N; =) are primitive positive bi-interpretable. The primitive
positive interpretation I of C in D is 2-dimensional, the domain formula is true,
and I(u1, u2) = (u1, u2). The primitive positive interpretation J of D in C is 1-
dimensional, the domain formula is true, and J(x, y) = x. Both interpretations are
clearly primitive positive.

Then J(I(x, y)) = z is definable by the formula x = z, and hence I ◦ J is pp-
homotopic to the identity interpretation of D. Moreover, I(J(u), J(v)) = w is primi-
tively positively definable by

M(w, v) ∧ ∃p
(
M(p, u) ∧M(p, w)

)
,

so J ◦ I is also pp-homotopic to the identity interpretation of C. 4

Example 3.3.3. Let I be the set of all non-empty closed bounded intervals over
Q (also see Example 2.4.2). Let I be the 2-dimensional interpretation of (I;m) in
(Q;<) with domain formula x < y, mapping (x, y) ∈ Q2 with x < y to the interval
[x, y] ∈ I. The formula (y1 = y2)I is true, and the formula (m(y1, y2))I has variables
x1

1, x
1
2, x

2
1, x

2
2 and is given by x1

2 = x2
1.

Let J be the 1-dimensional interpretation with the domain formula true and
J([x, y]) := x. The formula (x < y)I is the primitive positive formula

∃u, v
(
m(u, x) ∧m(u, v) ∧m(v, y)

)
.
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We show that J ◦I and J ◦I are pp-homotopic to the identity interpretation. The
relation

{
(x1, x2, y) | J(I(x1, x2)) = y

}
has the primitive positive definition x1 = y.

To see that the relation R :=
{

(u, v, w) | I(J(u), J(v)) = w
}

has a primitive positive
definition in (I;m), first note that the relation{

(u, v) | u = [u1, u2], v = [v1, v2], u1 = v1

}
has the primitive positive definition φ1(u, v) = ∃w

(
m(w, u) ∧ m(w, v)

)
in (I;m).

Then the formula φ1(u,w)∧m(w, v) is equivalent to a primitive positive formula over
(I;m), and defines R. 4

Example 3.3.4. The structures C :=
(
N2; {(x, y), (u, v) | x = u}

)
and D :=

(N; =) are mutually primitive positive interpretable, but not primitive positive bi-
interpretable. There is a primitive positive interpretation I1 of D in C, and a primitive
positive interpretation of C in D such that I2 ◦ I1 is pp-homotopic to the identity
interpretation. However, the two structures are not even first-order bi-interpretable,
as we will see in Example 9.5.27 in Section 9.5.3. 4

Definition 3.3.5. A structure B has essentially infinite signature if every rela-
tional structure C that is primitively positively interdefinable with B has an infinite
signature.

Examples of finite and countably infinite ω-categorical structures with essentially
infinite signature will be presented in Section 8.5.5. We show that the property of
having essentially infinite signature is preserved by bi-interpretability.

Proposition 3.3.6. Let B and C be structures that are primitive positive bi-
interpretable. Then B has essentially infinite signature if and only if C has essentially
infinite signature.

Proof. Let τ be the signature of B. Suppose that the interpretation I1 of C in
B is d1-dimensional, and that the interpretation I2 of B in C is d2-dimensional. Let
θ(x, y1,1, . . . , yd1,d2) be the τ -formula that shows that I2 ◦ I1 is pp-homotopic to the
identity interpretation of B. That is, θ defines in B the (d1d2 + 1)-ary relation that
contains a tuple (a, b1,1, . . . , bd1,d2) iff

a = h2

(
h1(b1,1, . . . , b1,d2), . . . , h1(bd1,1, . . . , bd1,d2)

)
.

We have to show that if C has a finite signature, then B is primitively positively
interdefinable with a structure B′ with a finite signature. Let σ ⊆ τ be the set of all
relation symbols that appear in θ and in all the formulas of the interpretation of C
in B. Since the signature of C is finite, the cardinality of σ is finite as well. We will
show that there is a primitive positive definition of B in the σ-reduct B′ of B.

Let φ be an atomic τ -formula with k free variables x1, . . . , xk. Then the primitive
positive σ-formula

∃y1
1,1, . . . , y

k
d1,d2

( ∧
i≤k

θ(xi, y
i
1,1, . . . , y

i
d1,d2)

∧ φI1I2(y1
1,1, . . . , y

k
1,d2 , y

1
2,d2 , . . . , y

k
2,d2 , . . . , y

k
d1,d2)

)
is equivalent to φ(x1, . . . , xk) over B′. Indeed, by the surjectivity of h2, for every
element ai of B there are elements ci1, . . . , c

i
d2

of C such that h2(ci1, . . . , c
i
d2

) = ai, and

by the surjectivity of h1, for every element cij of C there are elements bi1,j , . . . , b
i
d1,j

of

B such that h1(bi1,j , . . . , b
i
d1,j

) = cij . Then

B |= R(a1, . . . , ak) ⇔ C |= φI2(c11, . . . , c
1
d2 , . . . , c

k
1 , . . . , c

k
d2)

⇔ B′ |= φI1I2(b11,1, . . . , b
k
1,d2 , b

1
2,d2 , . . . , b

k
2,d2 , . . . , b

k
d1,d2). �
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3.4. Classification Transfer

Let C be a structure with finite relational signature. By the classification project
for C we mean a complexity classification for CSP(B) for all first-order expansions
B of C with finite relational signature. For instance, the classification project for
(N; =) is treated in Chapter 7, and the classification project for (Q;≤) is treated in
Chapter 12.

Sometimes, it is possible to derive the classification project for C from the classi-
fication project for D, for another structure D. For instance, we will show below how
to derive the classification project for the directed graph

C := (N2; {(x, y), (u, v) | y = u})
from the classification project for D := (N; =); a more advanced application of such
a classification transfer can be found in Theorem 3.4.3 below. Here is the central
lemma for complexity classification transfer.

Lemma 3.4.1. Suppose D has a primitive positive interpretation I in C, and C
has a primitive positive interpretation J in D such that J ◦ I is pp-homotopic to the
identity interpretation of C. Then for every first-order expansion C′ of C there is a
first-order expansion D′ of D such that C′ and D′ are mutually pp-interpretable.

Proof. Let C′ be a first-order expansion of C. Let d be the dimension of J and
c the dimension of I. Then we set D′ to be the expansion of D that contains for
every k-ary R in the signature of C′ the (dk)-ary relation S defined as follows. If φ
is the first-order definition of R in C, then S is the relation defined by φJ in D (see
Section 3.1).

We claim that J is also a primitive positive interpretation of C′ in D′. First
note that J−1(C ′) = J−1(C) is primitively positively definable in D′ since J−1(C)
is primitively positively definable in D and D′ is an expansion of D. An atomic
formula ψ with free variables x1, . . . , xk in the signature of C′ can be interpreted
in D′ as follows. We replace the relation symbol in ψ by its definition in C, and
obtain a formula φ in the signature of C. Let S be the symbol in the signature of
D′ for the relation defined by φJ(x1

1, . . . , x
d
1, . . . , x

1
k, . . . , x

d
k) over D′. Then indeed

S(x1
1, . . . , x

d
1, . . . , x

1
k, . . . , x

d
k) is a defining formula for ψ, because

C′ |= ψ(J(a1
1, . . . , a

d
1), . . . , J(a1

k, . . . , a
d
k))⇔ D′ |= S(a1

1, . . . , a
d
1, . . . , a

1
k, . . . , a

d
k)

for all a1, . . . , ak ∈ J−1(C).
Conversely, we claim that I is a primitive positive interpretation of D′ in C′.

Again, I−1(D′) = I−1(D) is primitively positively definable in C′ since C′ is an ex-
pansion of C. Let φ be an atomic formula over the (relational) signature of D′. If the
relation symbol in φ is already in the signature of D, then there is a primitive positive
interpreting formula in C and therefore also in C′. Otherwise, by definition of D′,
the relation symbol in φ has arity dk for some k ∈ N and has been introduced for a
k-ary relation R from C′. We have to find a defining formula with kcd variables. Let
θ(x0, x1,1, . . . , x1,c, . . . , xd,1, . . . , xc,d) be the primitive positive formula of arity cd+ 1
that defines J

(
I(x1,1, . . . , xc,1), . . . , I(x1,d, . . . , xc,d)

)
= x0 in C. Then the defining

formula φI for the atomic formula φ(x1
1, . . . , x

k
d) has free variables x1

1,1, . . . , x
k
c,d and

equals

∃x1, . . . , xk
(
R(x1, . . . , xk) ∧

k∧
i=1

θ(xi, xi1,1, . . . , x
i
c,d)
)
.

We have to verify that (a1
1,1, . . . , a

k
c,d) ∈ Ccdk satisfies φI in C′ if and only if

(I(a1
1,1, . . . , a

1
c,1), . . . , I(ak1,d, . . . , a

k
c,d))
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satisfies φ in D′. Suppose that C |= φI(a
1
1,1, . . . , a

k
c,d) ∈ Ccdk and let for all i ≤ k

ai := J
(
I(ai1,1, . . . , a

i
c,1), . . . , I(ai1,d, . . . , a

i
c,d)
)
.

Then R(a1, . . . , ak). Since J is an interpretation this shows that

D′ |= φ(I(a1
1,1, . . . , a

1
c,1), . . . , I(ak1,d, . . . , a

k
c,d)).

All implications in this final argument can be reversed, which concludes the proof. �

In particular, when C, D, C′ and D′ are as in Lemma 3.4.1, and C′ and D′ have a
finite relational signature, then CSP(C′) and CSP(D′) have the same computational
complexity, by Theorem 3.1.4. Hence, Lemma 3.4.1 shows that the classification
project for C can be reduced to the classification project for D. With a slightly
stronger assumption we can get the following consequence.

Corollary 3.4.2. Let C and D be primitive positive bi-interpretable structures.
Then every first-order expansion of C is primitive positive bi-interpretable with a first-
order expansion of D.

Let us conclude with a concrete application of Corollary 3.4.2.

Theorem 3.4.3. Let B be a reduct of Allen’s interval algebra (Example 2.4.2)
that contains the relation m =

{
((u1, u2), (v1, v2)) |u2 = v1

}
. Then CSP(B) is either

in P or NP-complete.

Proof. In Example 3.3.3 we have shown that the structure (I;m) is primitive
positive bi-interpretable with (Q;<). The result follows from the main result of
Chapter 12 and Corollary 3.4.2. �

3.5. Binary Signatures and the Dual Encoding

In this section we prove that every structure C with a relational signature of
maximal arity m ∈ N is primitively positively bi-interpretable with a binary structure
B, i.e., a relational structure where every relation symbol has arity at most two.
Moreover, if C has a finite signature, then B can be chosen to have a finite signature
as well. It follows from Theorem 3.1.4 that every CSP is polynomial-time equivalent to
a binary CSP. This transformation is known under the name dual encoding [140,155].
We want to stress that the transformation works for relational structures with domains
of arbitrary cardinality.

Definition 3.5.1. Let C be a structure and d ∈ N. Then a d-th full power of C is
a structure D with domain Cd such that the identity map on Cd is a full d-dimensional
primitive positive interpretation of D in C.

In particular, for all i, j ∈ {1, . . . , d} the relation

Ei,j :=
{

((x1, . . . , xd), (y1, . . . , yd)) | x1, . . . , xd, y1, . . . , yd ∈ C and xi = yj
}

is primitively positively definable in D.

Proposition 3.5.2. Let C be a structure and D a d-th full power of C for d ≥ 1.
Then C and D are primitively positively bi-interpretable.

Proof. Let I be the identity map on Cd which is a full interpretation of D in C.
Our interpretation J of C in D is one-dimensional and the coordinate map is the first
projection. The domain formula is true and the pre-image of the equality relation
in C under the coordinate map has the primitive positive definition E1,1(x, y). To
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define the pre-image of a k-ary relation R of C under the coordinate map it suffices
to observe that the k-ary relation

S := {((a1,1, . . . , ad,1), . . . , (a1,k, . . . , ad,k)) | (a1,1, . . . , a1,k) ∈ R}

is primitively positively definable in D and J(S) = R.
To show that C and D are primitively positive bi-interpretable we prove that I ◦J

and J ◦ I are pp-homotopic to the identity interpretation. Then the relation{
(u0, u1, . . . , uk) | u0 = I(J(u1), . . . , J(uk)), u1, . . . , uk ∈ Ck+1

}
has the primitive positive definition

∧
i∈{1,...,k}Ei,1(u0, ui) and the relation{

(v0, v1, . . . , vk) | v0 = J(I(v1, . . . , vk)), v1, . . . , vk ∈ Dk+1
}

has the primitive positive definition v0 = v1. �

Note that for every relation R of arity k ≤ d of C, in a d-th full power D of C the
unary relation

R′ := {(a1, . . . , ad) | (a1, . . . , ak) ∈ R}
must be primitively positively definable. We now define a particular full power.

Definition 3.5.3. Let C be a relational structure with maximal arity m and let
d ≥ m. Then the structure B := C[d] with domain Cd is defined as follows:

• for every relation R ⊆ Ck of C the structure B has the unary relation
R′ ⊆ B = Cd defined above, and
• for all i, j ∈ {1, . . . , d} the structure B has the binary relation symbol Ei,j .

It is clear that the signature of B is finite if the signature of C is finite. Also note
that the signature of C[d] is always binary.

Lemma 3.5.4. Let C be a relational structure with maximal arity m and let d ≥ m.
Then the binary structure C[d] is a full power of C. If C is finitely bounded, then C[d]

is finitely bounded. Moreover, if Age(C) = Forbemb(F) for a finite set of finite τ -
structures F , then we can compute from F a finite set of finite structures F ′ (in
polynomial time in the representation size of F) such that Age(C[d]) = Forbemb(F ′).

Proof. The identity map is a d-dimensional primitive positive interpretation I of
B := C[d] in C. Our interpretation J of C in B is one-dimensional and the coordinate
map is the first projection. The domain formula is true and the pre-image of the
equality relation in C under the coordinate map has the primitive positive definition
E1,1(x, y). The pre-image of the relation R of C under the coordinate map is defined
by the primitive positive formula

∃y
( ∧
i∈{1,...,k}

E1,i(xi, y) ∧R′(y)
)
.

The proof that I ◦ J and J ◦ I are pp-homotopic to the identity interpretation is as
in the proof of Proposition 3.5.2.

Now suppose that C is finitely bounded with signature τ , i.e., Age(C) = Forbemb(F)
for some finite set of finite τ -structures. For F ∈ F , note that F[d] does not embed into
C[d]. Otherwise, suppose that e is such an embedding. Then the map x 7→ e(x, . . . , x)1

is an embedding of F into C: if (x1, . . . , xk) ∈ RF for R ∈ τ , let R′ ∈ ρ be the unary
relation symbol introduced in Fd for R. Pick any xk+1, . . . , xd ∈ F and note that

(x1, . . . , xd) ∈ (R′)F
[d]

. Hence, e(x1, . . . , xd) ∈ (R′)B. Also note that for every i ≤ d

F[d] |= R1,i

(
(xi, . . . , xi), (x1, . . . , xd)

)
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and hence B |= R1,i

(
e(xi, . . . , xi), e(x1, . . . , xd)

)
. By the definition of B, this implies

that (e(x1, . . . , x1)1, . . . , e(xd, . . . , xd)1) ∈ (R′)B, and we conclude that(
e(x1, . . . , x1)1, . . . , e(xk, . . . , xk)1

)
∈ RC.

Let F ′ be the finite set of structures of the form F[d] for F ∈ F together with
finitely many structures in the signature of B (of size at most three) that ensure that
for every structure A ∈ Forbemb(F ′)

(1) Ei,i(x, x) holds for all i ≤ d and x ∈ A;
(2) Ei,j(x, y) implies that Ej,i(y, x) for all i, j ≤ d and x, y ∈ A;
(3) Ei,j(x, y) and Ej,k(y, z) imply that Ei,k(x, z) for all i, j, k ≤ d and x, y, z ∈ A.
(4)

∧
i∈{1,...,d}Ei,i(x, y) implies that x = y.

In particular, every relation Ei,i is an equivalence relation on A; if a is an element,
then we write [a]i for the equivalence class of a with respect to the equivalence relation
Ei,i. Note that every element a ∈ A is uniquely determined by [a]1, . . . , [a]d. Clearly,
no structure in F ′ embeds into B. We claim that every structure A ∈ Forbemb(F ′)
embeds into B. Let A′ be the following τ -structure. The elements of A′ are the
equivalence classes of all the equivalence relations Ri,i for i ≤ d, where [a]i is identified

with [b]j if Ri,j(a, b) holds in A. We define ([a1]1, . . . , [ak]k) ∈ RA′ if (a1, . . . , ak) ∈ RA.

Note that (a1, . . . , ad) 7→ ([a1]1, . . . , [ad]d) is an embedding from A into (A′)[d].
The structure A′ embeds into C: suppose otherwise that there is an embedding

f from F ∈ F into A. Then (x1, . . . , xd) 7→ (f(x1), . . . , f(xd)) is an embedding from
F[d] into A, a contradiction. Hence, A′ ↪→ C and it follows that A ↪→ (A′)[d] ↪→ C[d]

which concludes the proof. �

Corollary 3.5.5. For every structure C with maximal arity m there exists a
structure B with maximal arity 2 such that B and C are primitively positively bi-
interpretable. If the signature of C is finite, then the signature of B can be chosen to
be finite as well.

Proof. An immediate consequence of Lemma 3.5.4 and Proposition 3.5.2. �

In the case that the structure C is ω-categorical then a universal-algebraic in-
terpretation of this result can be found in Section 6.3.5. Note that if C has a finite
relational signature, then Corollary 3.5.5 implies that CSP(C) is polynomial-time
equivalent to CSP(B) for some structure B with a finite binary signature. A quite
different reduction to a binary signature has been given by Feder and Vardi [177].
Their reduction even produces a constraint language with a single binary relation.
However, this approach has only been described for finite domains.

3.6. Primitive Positive Constructions

In the previous sections we have seen several conditions on A and B that im-
ply that CSP(A) reduces to CSP(B); in this section we compare them. We will do
this by introducing operators on classes of structures. For finite or countably infi-
nite ω-categorical structures, these operators have algebraic counterparts that will be
introduced in Section 6.4. Let C be a class of relational structures. We write

(1) H(C) for the class of structures that are homomorphically equivalent to struc-
tures in C;

(2) C(C) for the class of all structures obtained by expanding a structure B ∈ C
with finitely many singleton relations {b}, for some b ∈ B where the orbit
of b under Aut(B) is primitively positively definable in B;

(3) Pfin
full(C) for the class of all structures that are a full finite power of a structure

in C (Definition 3.5.1);
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(4) Red(C) for the class of all primitive positive reducts A of structures B in
C, i.e., A has the same domain as B and all relations of A are primitively
positively definable in B.

(5) I(C) for the class of structures with a primitive positive interpretation in a
structure from C .

We also write H(B) instead of H({B}), and similarly for the operators C, Pfin
full,

Red, and I. Brackets can be omitted when composing those operators. Clearly,
I(I(C)) = I(C) (see Remark 3.1.5).

Lemma 3.6.1. For any class of structures we have C(C(C)) = C(C).

Proof. Let B ∈ C and b ∈ Bn be such that the orbit of b under Aut(B) has the
primitive positive definition φ(x̄) in B. Let c ∈ Bm be such that the orbit of c under
Aut(B, b) has the primitive positive definition ψ(ȳ) in (B, b). Write ψ(ȳ) as ψ′(b, ȳ)
where ψ′ is now a formula over the signature of B. We claim that χ(x̄, ȳ) := ψ′(x̄, ȳ)∧
φ(x̄) is a primitive positive definition of the orbit of (b, c) under Aut(B). Clearly,
B |= χ(b, c). Conversely, suppose that B |= (b′, c′). Then there exists a β ∈ Aut(B)
such that β(b′) = b. Hence, B |= χ(b, β(c′)) and in particular B |= ψ′(b, β(c′)).
Since ψ(ȳ) defines the orbit of c under Aut(B, b) there exists a γ ∈ Aut(B, b) such
that γ(b, β(c′)) = (b, c). Hence, γ ◦ β(b′, c′) = γ(b, β(c′)) = (b, c). It follows that
(B, b, c) ∈ C(B). �

Barto, Opršal, and Pinsker [29] showed that if there is an arbitrary chain of
applications of the operators H, C, and I to derive A from B, then there is also
a three-step chain to derive A from B, namely by finding A in H Red Pfin

full(B). If
A ∈ H Red Pfin

full(B) then A is also called pp-constructible in B (see [29]).

Theorem 3.6.2 (Barto, Opršal, and Pinsker [29]). Let C be a class of structures,
and let D be the smallest class that contains C and is closed under H, C, and I. Then

D = H Red Pfin
full(C) = HI(C).

This insight is conceptually important for the CSP since it leads to a better
understanding of the power of the available tools. We split the proof into several
propositions.

Proposition 3.6.3. Let B be a τ -structure and c ∈ B be such that the orbit of c
under Aut(B) is primitively positively definable in B. Then

C := (B, {c}) ∈ HI(B).

Proof. Let O be the orbit of c under Aut(B) and let φ be a primitive positive
definition of O in B. We give a 2-dimensional primitive positive interpretation I of
a structure A with the same signature as C and with domain B × O. The domain
formula >I(x1, x2) is φ(x2) and the coordinate map is the identity on B×O. If R ∈ τ
has arity k then

RA := {((a1, b1), . . . , (ak, bk)) ∈ Ak | (a1, . . . , ak) ∈ RB and b1 = · · · = bk ∈ O}.
If S is the symbol for the relation {c} of C, then we define SA := {(a, a) | a ∈ O}.

We claim that A and C are homomorphically equivalent. The homomorphism
from C to A is given by a 7→ (a, c):

• if (a1, . . . , ak) ∈ RC = RB then ((a1, c), . . . , (ak, c)) ∈ RA;
• the relation SC = {c} is preserved since (c, c) ∈ SA.

To define a homomorphism h from A to C we pick for each a ∈ O an automorphism
αa ∈ Aut(B) such that αa(a) = c. If B |= >I(a, b), then b ∈ O, and we define
h(a, b) := αb(a). To check that this is indeed a homomorphism, let R ∈ τ be k-ary,
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and let t = ((a1, b1), . . . , (ak, bk)) ∈ RA. Then b1 = · · · = bk =: b ∈ O and we
have that h(t) = (αb(a1), . . . , αb(ak)) is in RC since (a1, . . . , ak) ∈ RB = RC and αb
preserves RB = RC. If SA = {(a, a) | a ∈ O}, then S is preserved as well, because
h((a, a)) = αa(a) = c ∈ {c} = SC. �

Proposition 3.6.4. For every structure B we have I(B) ⊆ H Red Pfin
full(B).

Proof. Let C be a τ -structure with a d-dimensional primitive positive interpre-
tation I in B. Let D be a d-th full power of B. Let D′ be the τ -structure where
R ∈ τ of arity k denotes the relation

{((a1,1, . . . , a1,d), . . . , (ak,1, . . . , ak,d)) | (I(a1,1, . . . , a1,d), . . . , I(ak,1, . . . , ak,d)) ∈ RC}.

We have D′ ∈ Red(D) by the definition of full powers. We prove that D′ is homo-
morphically equivalent to C. Let f be any map from D to C extending I. Let g be
any mapping from C to D such that f ◦ g is the identity on C. Then f and g witness
that D′ and C are homomorphically equivalent. �

Proposition 3.6.5. For any class of structures C we have

H(H(C)) ⊆ H(C) (13)

Red(Red(C)) ⊆ Red(C) (14)

Pfin
full(Red(C)) ⊆ Red(Pfin

full(C)) (15)

H(Red(H(Red(C)))) ⊆ H(Red(C)) (16)

Pfin
full(H(C)) ⊆ H(Red(Pfin

full(C))) (17)

Pfin
full(P

fin
full(C)) ⊆ Pfin

full(C) (18)

where (18) holds if we consider structures up to isomorphism.

Proof. The proof of (13) follows from the transitivity of homomorphic equiva-
lence. Also the other statements are simple consequences of the definitions; we only
verify that Pfin

full(H(C)) ⊆ H(Red(Pfin
full(C))). Let B ∈ C and C be a structure such that

there is a homomorphism f from B to C and a homomorphism g from C to B. Let
D be a d-th full power of C. If R is a k-ary relation of D, then there is a primitive
positive formula φR with dk free variables that defines R over C. Let D′ be the reduct
of a d-th full power of B where we keep for each relation R of D the relation defined
by φR over B (rather than over C). Then the map (a1, . . . , ad) 7→ (f(a1), . . . , g(ad))
is a homomorphism from D′ to D and the map (a1, . . . , ad) 7→ (g(a1), . . . , g(ad)) is a
homomorphism from D to D′. �

We can finally prove Theorem 3.6.2.

Proof. We have to show that H Red Pfin
full(C) is closed under H, C, and I. For H

this follows from (13) above. For closure under interpretations, we have

I(H Red Pfin
full(C)) ⊆ H Red Pfin

full(H Red Pfin
full(C))) (Proposition 3.6.4)

⊆ H Red H Red Pfin
full Red Pfin

full(C))) (Proposition 3.6.5, (17))

⊆ H Red H Red Pfin
full Pfin

full(C))) (Proposition 3.6.5, (15,14))

⊆ H Red Pfin
full(C) (Proposition 3.6.5, (16,18)).

For closure under C, Proposition 3.6.3 implies that

C(H Red Pfin
full(C)) ⊆ HI(H Red Pfin

full(C))

which equals H Red Pfin
full(C) by the above. �
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There are finite core structures A,B such that A ∈ HI(B) \H(B). The following
example is taken from [29].

Example 3.6.6. Let B be the structure with the domain (Z2)2 and the signature
{Ra | a ∈ (Z2)2} such that

RB
a :=

{
(x, y, z) ∈

(
(Z2)2

)3 | x+ y + z = a
}
.

Note that B is a core. Let B′ be the reduct of B with the signature τ := {R(0,0), R(1,0)}.
Let A be the τ -structure with domain Z2 such that for b ∈ {0, 1}

RA
(b,0) := {(x, y, z) ∈ (Z2)3 | x+ y + z = b}.

Now observe that (x1, x2) 7→ x1 is a homomorphism from B′ to A, and x 7→ (x, 0)
is a homomorphism from A to B′. Therefore A ∈ H(B′). Moreover, B′ ∈ Red(B)
and consequently A ∈ H Red(B). We finally show that A /∈ I(B). Suppose for
contradiction that there is a pp-interpretation of A in B with coordinate map I : C →
A such that C ⊆ Bn is primitively positively definable in B. The kernel K of I has a
primitive positive definition φ in B. The two equivalence classes of K are pp-definable
relations over B as well: the formula ∃x(φ(x, y)∧Ra(x)) defines the equivalence class
of a. But the relations with a primitive positive definition in B are precisely the affine
linear subspaces of the vector space (Z2)2, so their cardinality must be a power of 4.
And two powers of 4 cannot add up to a power of 4. 4

3.7. The Tractability Conjecture

The previous section suggests that the NP-hardness condition for CSPs from
Theorem 3.2.2 can be generalised.

Corollary 3.7.1. Let B be a relational structure such that K3 ∈ HI(B). Then
B has a finite-signature reduct whose CSP is NP-hard.

Proof. Follows from the NP-hardness of CSP(K3), the fact that homomorphic
equivalence preserves the CSP, and Theorem 3.1.4. �

For finite templates, the negation of the condition in the previous result ensures
polynomial-time tractability of the CSP. This result has been obtained by Bula-
tov [116] and, independently, Zhuk [358], providing a solution to the Feder-Vardi
dichotomy conjecture.

Theorem 3.7.2 (Finite-domain tractability [116,358]). Let B be a finite struc-
ture with a finite signature. If K3 /∈ HI(B) then CSP(B) is in P.

Also all the known reducts B of finitely bounded homogeneous structures such
that CSP(B) is NP-hard satisfy K3 ∈ HI(B). The infinite-domain tractability con-
jecture (Conjecture 3.7.1 below) generalises Theorem 3.7.2 and states that otherwise
CSP(B) is in P.

Conjecture 3.7.1 (Infinite-domain tractability conjecture). Let B be a reduct
of a finitely bounded homogeneous structure. If K3 /∈ HI(B) then CSP(B) is in P.

The infinite-domain tractability conjecture was originally stated in a different
form [100] (see Conjecture 4.5.1) which is closer to the condition that has been used
in the tractability conjecture as formulated in [121] and proved by Bulatov and Zhuk.
For finite structures B, and more generally for reducts B of finitely bounded homo-
geneous structures (but not for general ω-categorical structures), the conditions of
Conjecture 3.7.1 and Conjecture 4.5.1 are equivalent. The equivalence of the two
conjectures will be shown in Section 6.6 for finite structures and in Section 10.3 for
reducts of homogeneous structures with finite relational signature.
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The conjecture has been verified for many finitely bounded homogeneous struc-
tures, e.g., for (Q;<) (see Chapter 12), for the countable homogeneous universal
poset [249], for the structure (L; |) for phylogenetic reconstruction from Section 5.1,
for all unary structures [86], and for all homogeneous graphs [85].





CHAPTER 4

Countably Categorical Structures

Many important infinite-domain constraint satisfaction problems can be formu-
lated with templates that are ω-categorical (the adjectives ‘ω-categorical’ and ‘ℵ0-
categorical’ are used interchangeably). The concept of ω-categoricity is central in
model theory, and for reasons that will become clear in Section 4.2, also in permu-
tation group theory. From a model-theoretic perspective, ω-categoricity is a very
strong assumption – but still many problems that have been studied in the literature,
in particular constraint satisfaction problems for qualitative reasoning formalisms in
artificial intelligence1, can be formulated as CSPs with ω-categorical templates. We
will also see that every CSP that can be expressed by a first-order sentence de-
scribes a constraint satisfaction problem of an ω-categorical structure (Section 5.6.1).
This even holds for the larger class of CSPs that can be expressed in monadic SNP
(Section 5.6.2). The corresponding computational problems have also been called
called forbidden patterns problems and studied in [281, 283, 284]); we will see that
each of these problems is a constraint satisfaction problem for an ω-categorical struc-
ture.

In this chapter we present fundamental results about ω-categorical structures: for
example how to algebraically characterize syntactically restricted forms of definability
of relations over ω-categorical structures (Sections 4.2, 4.4, and 4.5), and how to
construct ω-categorical structures (Sections 4.3, 4.7.2, and 4.6). We also give an

1The question which reasoning formalisms in Artificial Intelligence should be called qualitative

has been the topic of scientific discussion [272]. My own response to this question is: it is qualitative
if and only if it can be formulated with an ω-categorical template.
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exact model-theoretic characterisation of those constraint satisfaction problems that
can be formulated with ω-categorical templates (Section 4.6).

There is already an excellent literature on ω-categoricty: most notably, the book
by Cameron [129], the recent survey by Macpherson [278], and the collection [234].
Moreover, classical textbooks on model theory, such as [214, 239, 287, 346], always
treat ω-categority, and use ω-categorical structures as a rich source of examples. The
present chapter is different from those in that it focusses on techniques and facts
that will be relevant for complexity classification for the corresponding constraint
satisfaction problems. It contains many results that are not contained in any of the
sources mentioned above (and which have been published in [65, 71–73, 90, 94, 95,
203]).

4.1. Introducing Countable Categoricity

“Every statement about all ω-categorical structures is either trivial, or false.”
(Martin Ziegler, 2005)

A satisfiable first-order theory T is called ω-categorical (or ℵ0-categorical) if all
countable models of T are isomorphic. A structure is called ω-categorical if its first-
order theory is ω-categorical. Note that the theory of a finite structure does not have
countable models, and hence is ω-categorical.

Cantor [131] showed that the linear order of the rational numbers (Q;<) is ω-
categorical; we use this as a running example in this section. We will see many
more examples of ω-categorical structures in this section and in Chapter 5. One of
the standard approaches to verify that a structure is ω-categorical is via a so-called
back-and-forth argument [214,315]. Such an argument already appeared in the proof
of Lemma 2.2.2, but we would like to illustrate this technique again in a concrete
situation, for proving the ω-categoricity of the structure (Q;<).

Proposition 4.1.1. The structure (Q;<) is ω-categorical.

Proof. Let A be a countable model of the first-order theory T of (Q;<). It is
easy to verify that T contains (and, as this argument will show, is uniquely given by)

• ∃x : x = x (no empty model)
• ∀x, y, z

(
(x < y ∧ y < z)⇒ x < z

)
(transitivity)

• ∀x : ¬(x < x) (irreflexivity)
• ∀x, y (x < y ∨ y < x ∨ x = y) (totality)
• ∀x ∃y : x < y (no largest element)
• ∀x∃y : y < x (no smallest element)
• ∀x, z

(
x < z ⇒ ∃y (x < y ∧ y < z)

)
(density).

An isomorphism between A and (Q;<) can be defined inductively as follows.
Suppose that we have already defined f on a finite subset S of Q and that f is an
embedding of the substructure of (Q;<) induced on S into A. Since <A is dense and
unbounded, we can extend f to any other element of Q such that the extension is
still an embedding from a substructure of Q into A (going forth). Symmetrically, for
every element v of A we can find an element u ∈ Q such that the extension of f that
maps u to v is also an embedding (going back). We now alternate between going forth
and going back; when going forth, we extend the domain of f by the next element of
Q, according to some fixed enumeration of the elements in Q. When going back, we
extend f such that the image of A contains the next element of A, according to some
fixed enumeration of the elements of A. If we continue in this way, we have defined
the value of f on all elements of Q. Moreover, f will be surjective, and an embedding,
and hence an isomorphism between A and (Q;<). �
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Remark 4.1.2. The proof in fact shows that (Q;<) is homogeneous, since taking
A = (Q;<) we extend an arbitrary embedding from a finite substructure of (Q;<)
into (Q;<) to an automorphism of (Q;<).

A second important running example of this section is the countable random graph
(V;E), introduced in Section 2.3, Example 2.3.9. This (simple and undirected) graph
has the following extension property : for all finite disjoint subsets U,U ′ of V there
exists a vertex v ∈ V \ (U ∪ U ′) such that v is adjacent to all vertices in U and to no
vertex in U ′.

Proposition 4.1.3. The random graph (V;E) is ω-categorical.

Proof. Note that the extension property of (V;E) given above is a first-order
property; a simple back-and-forth argument shows that every countably infinite graph
with this property is isomorphic to (V;E). �

Another important ω-categorical structure that turns out to be useful in many
different contexts in this text (see Section 5.3, Example 5.7.2, Example 6.7.5, Exam-
ple 7.3.5) is introduced in the following example.

Example 4.1.4. An atom in a Boolean algebra (B;∧,∨,−, 0, 1) is an element
x 6= 0 such that for all y ∈ B with (x ∧ y) = y and x 6= y we have y = 0. If a
Boolean algebra does not contain atoms, it is called atomless. Note that the axioms
of Boolean algebras and the property of not having atoms can be written as first-order
sentences. Let T be the first-order theory of all atomless Boolean algebras. Clearly,
atomless Boolean algebras exist, so T is satisfiable, and T also has a countable model
by Theorem 2.1.11. It is well known and easy to show by a back-and-forth argument
that all countable atomless Boolean algebras are isomorphic (Corollary 5.16 in [250];
also see Example 4 on page 100 in [213]). Hence, T is ω-categorical, and we refer
to its countable model as the atomless Boolean algebra. We also mention that the
structure A has quantifier elimination (see Exercise 17 on Page 391 in [213]). 4

4.1.1. The theorem of Engeler, Svenonius, and Ryll-Nardzewski. There
are many equivalent characterisations of ω-categoricity, the most important one being
in terms of the automorphism group of B. In the following, let G be a set of permu-
tations of a set X. We say that G is a permutation group if G contains the identity
idX , and for α, β ∈ G the functions x 7→ αβx and x 7→ α−1x are also in G . For n ≥ 1
the orbit of t = (t1, . . . , tn) ∈ Xn under G is the set {(αt1, . . . , αtn) | α ∈ G }, and is
sometimes denoted by G t. An orbit of G refers to an orbit for a tuple of length n = 1.
An orbital of G is an orbit of pairs, that is, a set of the form {(αa, αb) | α ∈ G } for
a, b ∈ B.

Definition 4.1.5. A permutation group G on a countably infinite set X is oligo-
morphic if G has only finitely many orbits of n-tuples for each n ≥ 1.

The following theorem can be found in Hodges’ book (Theorem 6.3.1 in [214]).

Theorem 4.1.6 (Engeler, Ryll-Nardzewski, Svenonius). For a countably infinite
structure B with countable signature, the following are equivalent:

(1) B is ω-categorical;
(2) every type of B is principal;
(3) every model of Th(B) is atomic;
(4) B has finitely many complete n-types, for all n ≥ 1;
(5) for each n ≥ 1, there are finitely many inequivalent formulas with free vari-

ables x1, . . . , xn over B;
(6) every model of Th(B) is ω-saturated;
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(7) every relation that is preserved by Aut(B) is first-order definable in B;
(8) the automorphism group Aut(B) of B is oligomorphic.

Proof. We show the following implications:

(1)⇒ (2)⇒ (3)⇒ (1)

(2)⇒ (4)⇒ (5)⇒ (6)⇒ (1)(
(2) ∧ (3) ∧ (5)

)
⇒ (7)⇒ (8)⇒ (5)

(1)⇒ (2). Suppose B has a non-principal type p. By the omitting types theorem
(Theorem 2.2.3) a countable model where p is omitted. But Th(B) also a countable
model where p is realised by the theorem of Löwenheim-Skolem (Theorem 2.1.11), so
B is not ω-categorical.

(2) ⇒ (3). If all types of B are principal then B is atomic; the same applies to
all models of Th(B).

(3)⇒ (1). All countable atomic models with the same theory are isomorphic by
Lemma 2.2.5.

(2)⇒ (4). Suppose that all types are principal and let n ≥ 1. Then there exists
a sequence of formulas (φi)i∈I such that every n-type is isolated by one of those
formulas. Then Th(B) ∪ {¬φi | i ∈ I} is unsatisfiable and hence by the compactness
theorem (Theorem 2.1.6) there exists a finite F ⊆ I such that Th(B)∪ {¬φi | i ∈ F}
is unsatisfiable. That is, in every model of Th(B), every n-tuple satisfies φi for some
i ∈ F , which shows that there are finitely many complete n-types in B.

(4) ⇒ (5). Every n-type is described by the complete n-types that contain the
n-type, so if there are finitely many complete n-types, there are finitely many n-types
in B. And this provides a finite upper bound for the number of formulas with free
variables x1, . . . , xn.

(5) ⇒ (6). Let A be a model of Th(B), let a ∈ An, and let p be a com-
plete 1-type of (A, a). If there is a finite number of inequivalent first-order formulas
φ(x1, x2, . . . , xn+1), the conjunction over all formulas such that φ(x1, ā) ∈ p isolates
p. So p is realised in (A, a). This shows that A is ω-saturated.

(6)⇒ (1) follows from the fact that all countable ω-saturated structures with the
same theory are isomorphic (Lemma 2.2.2).

(2)∧(3)∧(5)⇒ (7). Let R be an n-ary relation that is preserved by Aut(B). The
relation R is a union of orbits of n-tuples of Aut(B). It suffices to show that orbits
are first-order definable: by assumption (5), there are only finitely many inequivalent
first-order formulas, we can then define R by forming a finite disjunction. Since B is
atomic (3), if two n-tuples have the same type, then there is an automorphism that
maps one to the other, by Lemma 2.2.5. So types define orbits of n-tuples. Since
n-types of B are principal (2), it follows that the orbits of n-tuples are first-order
definable in B.

(7)⇒ (8). Suppose that Aut(B) are infinitely many orbits of n-tuples, for some
n. Then the union of any subset of the set of all orbits of n-tuples is preserved by all
automorphisms of B; but there are only countably many first-order formulas over a
countable language, so not all the invariant sets of n-tuples can be first-order definable
in B.

(8)⇒ (5) is immediate since automorphisms preserve first-order formulas. �

Condition 8 in Theorem 4.1.6 provides another way to verify that a structure is
ω-categorical. We again illustrate this with the structure (Q;<); suppose that all we
know about this structure is that it is the (homogeneous) Fräıssé-limit of the class
C of all finite linear orders from Example 2.3.3. The homogeneity of (Q;<) implies
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that the orbit of an n-tuple (t1, . . . , tn) from Qn under Aut(Q;<) is determined by
the weak linear order induced on (t1, . . . , tn) in (Q;<). We write weak linear order,
and not linear order, because some of the elements t1, . . . , tn may be equal (that is,
a weak linear order is a total quasiorder). The number of weak linear orders on n
elements is bounded by nn, and hence the automorphism group of (Q;<) has a finite
number of orbits of n-tuples, for all n ≥ 1. See Lemma 4.3.1 for a generalisation of
this argument.

4.1.2. Compactness and ω-categoricity. Lemma 4.1.7 below states a useful
property that ω-categorical structures have in common with finite structures, and is
an easy consequence of Königs tree lemma.

Lemma 4.1.7. Let B be a finite or countably infinite ω-categorical structure with
relational signature τ , and let A be a countable τ -structure. If there is no homomor-
phism (embedding) from A to B, then there is a finite substructure of A that does not
map homomorphically (embed) to B.

Proof. We present the proof for homomorphisms; the proof for embeddings is
analogous. Suppose every finite substructure of A maps homomorphically to B. We
show the contraposition of the lemma, and prove the existence of a homomorphism
from A to B. Let a1, a2, . . . be an enumeration of A. We construct a rooted tree
with finite out-degree, where each node lies on some level n ≥ 0. The nodes on
level n are equivalence classes of homomorphisms from the substructure of A induced
on a1, . . . , an to B. Hence, there is only one vertex on level 0, which will be the
root of the tree. Two such homomorphisms f and g are equivalent if there is an
automorphism α of B such that αf = g. Two equivalence classes of homomorphisms
on level n and n+ 1 are adjacent if there are representatives of the classes such that
one is a restriction of the other. Theorem 4.1.6 asserts that Aut(A) has only finitely
many orbits of k-tuples, for all k ≥ 0 (clearly, this also holds if B is finite). Hence,
the constructed tree has finite out-degree. By assumption, there is a homomorphism
from the substructure of A induced on a1, a2, . . . , an to B for all n ≥ 0, and hence
the tree has vertices on all levels. König’s lemma asserts the existence of an infinite
path in the tree, which can be used inductively to define a homomorphism h from A
to B as follows.

The restriction of h to {a1, . . . , an} will be an element from the n-th node of
the infinite path. Initially, this is trivially true if h is restricted to the empty set.
Suppose h is already defined on a1, . . . , an, for n ≥ 0. By construction of the infinite
path, we find representatives hn and hn+1 of the n-th and the (n+ 1)-st element on
the path such that hn is a restriction of hn+1. The inductive assumption gives us
an automorphism α of A such that αhn(x) = h(x) for all x ∈ {a1, . . . , an}. We set
h(an+1) to be αhn+1(an+1). The restriction of h to a1, . . . , an+1 will therefore be a
member of the (n+ 1)-st element of the infinite path. The operation h defined in this
way is indeed a homomorphism from A to B. �

The assumption that A is countable is necessary in Lemma 4.1.7; consider for
example A := (R;<), which does not admit a homomorphism to B := (Q;<) for
cardinality reasons, even though any finite substructure of A does.

Corollary 4.1.8. For any structure C, there is a finite structure B with the
same CSP as C if and only if C has a finite core.

Proof. If there exists a finite structure B with the same CSP as C, then every
finite substructure of C maps homomorphically to the core B′ of B (which is unique
up to isomorphism). If C is countable, then Lemma 4.1.7 implies that there exists a
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homomorphism from C to B′; it is not difficult to show that C has a homomorphism
to B′ even if C is uncountable, using the compactness theorem (Theorem 2.1.6). Since
B′ also maps to C, it is a core of C. The converse is trivial. �

Corollary 4.1.9. Two countable ω-categorical relational τ -structures A and B
have the same CSP if and only if there is a homomorphism from A to B and a
homomorphism from B to A.

For general countable relational structures Corollary 4.1.9 is false. Consider for
example the structure (Z; {(x, y) | y = x+ 1}) — the ‘infinite line’, and the structure
(N; {(x, y) | y = x+ 1}) — the ‘infinite ray’. Clearly, these two structures give rise to
the same CSP, but there is no homomorphism from the line to the ray.

Several times we need variants of Lemma 4.1.7 that can be proved in the same
way. For instance, we can replace homomorphism in the statement and the proof by
strong homomorphism, or injective homomorphism. Sometimes, we are also looking
for functions f from A2 to B that satisfy universal identities such as ∀x, y : f(x, y) =
f(y, x). What is common for all those statements is that the respective property
of the function can be expressed by universal first-order sentences. We make this
more precise and derive the following generalisation of Lemma 4.1.7 based on the
compactness theorem.

Lemma 4.1.10. Let B be a countable ω-categorical structure with countable rela-
tional signature τ , let A be a countably infinite τ -structure, and let σ be a countable
set of function symbols. Then for any universal (τ ∪ σ)-theory T the following are
equivalent.

(1) The two-sorted structure (A,B) has a (τ ∪σ)-expansion that satisfies T such
that every f ∈ σ denotes a function from A to B.

(2) For every finite induced substructure C of A the two-sorted structure (C,B)
has a (τ ∪ σ)-expansion that satisfies T such that every f ∈ σ denotes a
function from C to B.

Proof. Any substructure of a model of a universal theory is again a model of
the theory, so (1) implies (2). For the converse, let P1, P2 be unary relation symbols
not contained in τ . Let A′ be an expansion of A by countably many constants such
that every element of A is named in A′ by a constant symbol; let τ ′ be the (countable)
signature of A′. Let D := Th(A′)qf, and let S be a set of first-order sentences that
expresses that

• P1 and P2 are disjoint and denote two distinct sorts such that all function
symbols from σ denote functions from P1 to P2, and

• the τ -reduct of the structure induced by the elements in P2 has the same
first-order theory as B.

We first prove that D ∪ S ∪ T is satisfiable. By compactness, it suffices to prove
the satisfiability of D′ ∪ S ∪ T for all finite subsets D′ of D. Let c1, . . . , cn be the
constant symbols mentioned in D′. Let C′ be the substructure of A′ induced on
{c1, . . . , cn}. Clearly, C′ |= D′. Let C be the τ -reduct of C′. By assumption, the
two-sorted structure (C,B) with sorts P1 and P2 can be expanded to a two-sorted
(τ ∪ σ)-structure D that satisfies T ; this structure also satisfies S. If we additionally
denote the constants c1, . . . , cn as in A′, then the expansion satisfies also D′, and so
we have found a model of D′ ∪ S ∪ T .

By compactness, there exists an (infinite) model of D ∪ S ∪ T , and by Theo-
rem 2.1.11 and since τ ′ ∪ σ is countable there is also a countably infinite model M of
D∪S∪T . Consider the substructure M′ of M generated by the constants from τ ′ and
the elements in PM

2 . Then M′ still satisfies D and S, and since universal sentences
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are preserved by taking substructures, M′ also satisfies T . Then M′ |= D implies
that in M′, the constants from τ ′ induce a copy of A. Since M |= S the elements
of PM

2 induce a structure that is isomorphic to B, because B is ω-categorical. So
the functions of M′ denoted by the function symbols from σ provide the required
(τ ∪ σ)-expansion of (A,B). �

Lemma 4.1.10 is indeed a generalisation of Lemma 4.1.7: to make sure that
f is a homomorphism, T contains for every relation symbol R ∈ τ the sentence
∀x̄ (R(x̄)⇒ R(f(x̄)).

4.2. Oligomorphic Permutation Groups

We have seen in Section 4.1.1 that a countably infinite structure is ω-categorical
if and only if its automorphism group is oligomorphic, i.e., has for each n ≥ 1 only
finitely many orbits of n-tuples. This section describes the connection between logic
and permutation groups in more detail.

4.2.1. Topology. Automorphism groups of relational structures B are naturally
equipped with a topology, given by the following definition (a more general topological
treatment can be found in Chapter 9). We write Sym(B) for the set of all permutations
of the set B; this set forms a permutation group and is called the symmetric group
over X.

Definition 4.2.1. A subset P of Sym(B) is called closed in Sym(B) if P con-
tains all α ∈ Sym(B) with the property that for every finite A ⊆ B there exists β ∈P
such that αx = βx for all x ∈ A.

Proposition 4.2.2. For P ⊆ Sym(B), the following are equivalent.

(1) P is the automorphism group of a relational structure with domain B;
(2) P is a closed subgroup of Sym(B);
(3) P is the automorphism group of a homogeneous relational structure with

domain B.

In the proof of this proposition, the following concept is useful.

Definition 4.2.3. If P ⊆ Sym(B) be a set of permutations, then sInv(P)
denotes the strong invariants of P, i.e., the set of all relations R over B such that
for every α ∈ P, both α and α−1 preserve R. Occasionally, we may view sInv(P)
as a relational structure with domain B whose relations are precisely the orbits of
n-tuples, for all n ≥ 1.

Proof of Proposition 4.2.2. For the implication from (1) to (2), let P be
the set of automorphisms of a relational structure B with domain B. It is clear that
P is closed under composition and taking inverses. To show that P is closed in
Sym(B), let α ∈ Sym(B) be such that for every finite A ⊆ B there exists β ∈P such
that αx = βx for all x ∈ A. Then α must preserve all relations from B, because if α
does not preserve a relation from B, then this can be seen from the restriction of α
to a finite subset of B. Hence, α ∈P.

For the implication from (2) to (3), first note that sInv(P) is homogeneous:
suppose that i is an isomorphism between finite substructures of sInv(P) with domain
{a1, . . . , an}. Then (2) implies that {(αa1, . . . , αan) | α ∈ P} ∈ sInv(P). Hence,
this relation is preserved by i and (i(a1), . . . , i(an)) = (αa1, . . . , αan) for some α ∈P.
This shows that there is an automorphism of sInv(P) that extends i. In fact, P is
closed in Sym(B), so this also shows that every automorphism of sInv(P) is from P.
Since clearly P ⊆ Aut(sInv(P)), we therefore have that P = Aut(sInv(P)) is the
automorphism of a homogeneous relational structure.
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Figure 4.1. Illustration for the Galois connection Aut-sInv between
sets of relations R over the base set B, ordered by ⊇, and and sets
of permutations P of B, ordered by ⊆.

The implication from (3) to (1) is trivial. �

4.2.2. The sInv-Aut Galois connection. The set of all relations that are
first-order definable in a structure B is denoted by 〈B〉fo. We will see in this section
that for every ω-categorical structure C the set

{〈B〉fo | B first-order definable in C},
partially ordered by inclusion, is closely connected to the set of all closed subgroups
of Sym(B) that contain Aut(C), again partially ordered by inclusion.

Recall that the automorphism group of a relational structure B, i.e., the set of all
automorphisms of B, is denoted by Aut(B). In the following it will be convenient to
define the operator Aut also on sets R of relations over the same domain B, in which
case Aut(R) denotes the set of all permutations α of B such that α and its inverse
α−1 preserve all relations from R.

Definition 4.2.4. An (anti-tone) Galois connection is a pair of functions F : U →
V and G : V → U between two posets U and V , such that v ≤ F (u) if and only if
u ≤ G(v) for all u ∈ U, v ∈ V .

If F,G form a Galois connection then u ≤ G(F (u)) for every u ∈ U : it follows
immediately from Definition 4.2.4 for v := F (u) that u ≤ G(v) = G(F (u)), because
F (u) ≤ F (u). Similarly, we get that v ≤ F (G(v)) for every v ∈ V . Moreover,
F (u) = F (G(F (u))) and G(v) = G(F (G(v))) for all u ∈ U and v ∈ V . See Figure 4.1.

Proposition 4.2.5. Let B be a set. The operators sInv and Aut form a Ga-
lois connection between sets of relations over B and sets of permutations of B, both
partially ordered by inclusion.

Proof. Let R be a set of relations over B and let P be a set of permutations
of B. First suppose that P ⊆ Aut(R), and let R ∈ R and g ∈P. Then g ∈ Aut(R)
and hence g and g−1 preserve R. Thus, R ⊆ sInv(P).

Conversely, suppose that R ⊆ sInv(P), and again let g ∈ P and R ∈ R. Then
R ∈ sInv(P), and hence g preserves R. Since g−1 ∈ P, and g−1 also preserves R,
we have that g ∈ Aut(R). Thus, P ⊆ Aut(R). �

For sets of permutations P ⊆ Sym(B) and sets R of relations over the domain
B, we now present descriptions of the closure operators

P 7→ Aut(sInv(P))

R 7→ sInv(Aut(R)).
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We start with the former, for which we need the following definitions.

Definition 4.2.6. For P ⊆ Sym(B), we define

• 〈P〉, the permutation group generated by P, to be the smallest permutation
group that contains P.
• P, the closure of P in Sym(B), to be the smallest closed subset of Sym(B)

that contains P.

Proposition 4.2.7. Let P ⊆ Sym(B) and let P ′ be the smallest permutation

group that contains P and is closed in Sym(B). Then P ′ = Aut(sInv(P)) = 〈P〉.

Proof. Since P ⊆P ′ and P ′ is a permutation group, we must have 〈P〉 ⊆P ′,

and therefore also 〈P〉 ⊆ P ′ since P ′ is closed in Sym(B). To show the converse

inclusion P ′ ⊆ 〈P〉, it suffices to verify that 〈P〉 is a closed subgroup of Sym(B).

Since 〈P〉 is clearly closed in Sym(B) we only have to show that 〈P〉 is closed under
compositions and contains inverses, which is both straightforward and left to the
reader.

We now show that 〈P〉 ⊆ Aut(sInv(P)). Let α ∈ 〈P〉 be arbitrary, and let
R be from sInv(P). We have to show that α and α−1 preserve R. Let t ∈ R;

since α ∈ 〈P〉, we have that αt = β1 · · ·βkt for some permutations β1, . . . , βk from
P ∪P−1. Since β1, . . . , βk preserve R, we have that αt ∈ R. The argument for α−1

is analogous.
Finally, we show Aut(sInv(P)) ⊆ 〈P〉. Let α be from Aut(sInv(P)). It suffices

to show that for every finite subset {a1, . . . , an} of B there is a β ∈ 〈P〉 such that
αai = βai for all i ≤ n. Consider the relation {(βt1, . . . , βtn) | β ∈ 〈P〉}. It is
preserved by all permutations in P. Therefore, α preserves this relation, and so
there exists β ∈ 〈P〉 as required. �

We now turn to characterisations of the hull operator R 7→ sInv(Aut(R)). First
observe the following, which is straightforward.

Proposition 4.2.8. Let B be any structure. Then sInv(Aut(B)) contains 〈B〉fo,
the set of all relations that are first-order definable in B.

An exact characterisation of sInv(Aut(B)) can be given if B is ω-categorical. The
analogous statement of Theorem 4.2.9 below has been observed for finite structures
by Krasner [254]. The fact that it extends to ω-categorical structures is a direct
consequence of the theorem of Ryll-Nardzewski (Theorem 4.1.6).

Theorem 4.2.9. Let B be a countable ω-categorical structure with countable sig-
nature and let R ⊆ Bk be a relation. Then R is first-order definable in B if and only
if R is preserved by the automorphisms of B, in symbols,

sInv(Aut(B)) = 〈B〉fo .

As we have seen in the proof of Proposition 4.2.2, it follows in particular that
the expansion of every ω-categorical structure by all first-order definable relations is
homogeneous. Observe that the equivalence of (1) and (3) in Theorem 4.1.6 implies
that the conclusion in Theorem 4.2.9 holds if and only if B is ω-categorical.

We have the following consequence of Proposition 4.2.7 and Theorem 4.2.9. An
anti-isomorphism between two posets U and V is a bijection f from the elements of
U to the elements of V such that u ≤ v in U if and only if f(u) ≥ f(v) in V .

Corollary 4.2.10. Let B be a countable ω-categorical structure. Then we have
the following.
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• The sets of the form 〈A〉fo, where A is a first-order reduct of B, ordered by
inclusion, form a lattice.
• The closed subgroups of Sym(B) containing Aut(B), ordered by inclusion,

form a lattice.
• The operator sInv is an anti-isomorphism between those two lattices, and

Aut is its inverse.

Recall that two structures B,C on the same domain are said to be first-order
interdefinable iff all relations of B have a first-order definition in C and vice-versa.
Then it follows from the above that two ω-categorical structures are first-order inter-
definable if and only if they have the same automorphisms.

4.2.3. Primitivity and transitivity. We further illustrate the connection be-
tween ω-categorical structures and oligomorphic permutation groups by translating
several concepts from permutation group theory into model-theoretic terminology,
and vice versa.

A congruence of a permutation group on a set B is an equivalence relation on B
that is preserved by all permutations in the permutation group. Subsets of B that
are equivalence classes of some congruence are also called blocks.

Lemma 4.2.11. Let G be a permutation group on a set B. Then S ⊆ B is a block
if and only if g(S) = S or g(S) ∩ S = ∅ for all g ∈ G .

Proof. Suppose that S is a block of the congruence C, and suppose that g(S)∩S
contains an element t. That is, there is an element s ∈ S such that g(s) = t. We
will show that g(S) = S. Let r ∈ S be arbitrary. Then (r, s) ∈ C, and hence
(g(r), g(s)) = (g(r), t) ∈ C. Since t ∈ S, it follows that g(r) ∈ S.

Now suppose that S ⊆ B is such that g(S) = S or g(S) ∩ S = ∅ for all g ∈ G .
Define

C :=
{

(x, y) | x = y or ∃g ∈ G : g(x), g(y) ∈ S
}
.

This relation is clearly reflexive, symmetric, and preserved by G . In order to prove
that C is a congruence it remains to verify transitivity. Let (x, y), (y, z) ∈ C. If
x = y or y = z then (x, z) ∈ C. Otherwise, there are g1, g2 ∈ G such that
g1(x), g1(y), g2(y), g2(z) ∈ S. Then S ∩ g2(g−1

1 (S)) contains g2(y), and hence (g2 ◦
g−1

1 )(S) = S contains both g2(x) and g2(z), and hence (x, z) ∈ E. �

A congruence is trivial if each block contains only one element (and non-trivial
otherwise), and it is called proper if it is distinct from the equivalence relation that
has only one block.

Proposition 4.2.12. Let B be an ω-categorical structure and G its (oligomor-
phic) automorphism group. Then the congruences of G are exactly the first-order
definable equivalence relations in B.

Proof. An immediate consequence of Theorem 4.2.9. �

A permutation group G on a set B is called

• primitive if every proper congruence of G is trivial;
• k-transitive if for any two k-tuples s, t of distinct elements from B there is an
α ∈ G such that αs = t, where the action of α on tuples is componentwise,
i.e., α(s1, . . . , sk) = (αs1, . . . , αsk);

• transitive if it is 1-transitive;
• k-set transitive if for any two sets S, T ⊆ B of cardinality k there is an α ∈ G

such that αS = {αs | s ∈ S} = T .
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Clearly, 2-transitive structures are always primitive.
It is easy to see that every 2-set transitive permutation group G on a set B of

size at least three is also transitive. We prove the contraposition: assume that c1
and c2 are elements of B in distinct orbits. Let c3 ∈ B be distinct from c1 and c2.
There is no permutation in G that maps {c1, c3} to {c2, c3}, and hence G is not 2-set
transitive. More generally, it can be shown that the number of orbits of n-element
subsets of B under G is a non-decreasing sequence [129]; here, by an orbit of a set
S ⊆ B under G we mean {α(S) | α ∈ G }.

4.2.4. Group actions. It will be convenient to take a more general perspective
on permutation groups (and this will again be used in Chapter 9). We now consider
abstract groups (Example 2.1.1). The link to permutation groups is given by the
concept of an action of such a group on a set, which is described below.

Definition 4.2.13. A (left) group action of an (abstract) group G on a set X
is a binary function · : G × X → X which satisfies that (gh) · x = g · (h · x) for all
g, h ∈ G and x ∈ S, and e · x = x for every x ∈ X. The action is faithful if for any
two distinct g, h ∈ G there exists an x ∈ X such that g · x 6= h · x.

Equivalently, a group action of G on a set X is a homomorphism from G into
Sym(X), and a faithful group action is an isomorphism between G and a subgroup
of Sym(X).

Example 4.2.14 (The componentwise action on Xn). If G is a permutation group
on a set X, then the componentwise action of G on Xn is given by

ξ(g)(x1, . . . , xn) := (g(x1), . . . , g(xn)).

This action is faithful. 4

Example 4.2.15 (The setwise action on
(
X
k

)
). If G is a permutation group on a

set X, then the setwise action of G on
(
X
n

)
is given by

ξ(g)({x1, . . . , xn}) := {g(x1), . . . , g(xn)}.

Again, this action is faithful. 4

The orbit of x under an action of G on X is the set {g·x | g ∈ G}. Clearly, to every
action of G on B we can associate a permutation group G as considered before, namely
the image of the action in Sym(B). We see that an orbit of n-tuples under Aut(B), as
defined in Definition 1.2.9, is the same as an orbit under the componentwise action of
Aut(B) on B (Example 4.2.14), and an orbit of a k-element subset of B as defined in

the previous section is an orbit under the setwise action of Aut(B) on
(
B
k

)
. Conversely,

to every permutation group G on a set X we can associate an abstract group G whose
domain is G , where composition and inverse are defined in the obvious way, and which
acts on X faithfully by g · x = gx.

An action is called oligomorphic if the associated permutation group is oligo-
morphic. In this way we can also use other terminology introduced for permutation
groups (such a transitivity, congruences, primitivity, etc.) for group actions.

4.2.5. Products. In this section we review the classical theory of the analysis
of a permutation group in terms of transitive ones. The same idea can be used to
construct new oligomorphic permutation groups from known ones.

The product of a sequence of groups (Gi)i∈I is the product of this sequence as
defined in general in Section 2.1; note that the product is again a group. Products
appear in several ways when studying permutation groups; the first in connection with
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the relation between a permutation group and its ‘transitive constituents’, described
in the following.

4.2.5.1. The intransitive action of a group product. If G acts on a set X and
O ⊆ X is an orbit under this action, then G naturally acts transitively (but not
necessarily faithfully) on O by restriction.

Proposition 4.2.16 (see [129]). Let G be a group acting faithfully on a set X
and let O be the set of all orbits under the action. Then for each O ∈ O there exists
a group GO acting transitively on O such that G has a surjective homomorphism to
GO and G is a subgroup of

∏
O∈OGO.

We can use the same idea to construct new oligomorphic permutation groups
from known ones.

Definition 4.2.17. Let G1 and G2 be groups acting on disjoint sets X and Y ,
respectively. Then the action of G1 ×G2 on X ∪ Y defined by (g1, g2) · z = g1z if
z ∈ X, and g2z if y ∈ Y , is called the (natural) intransitive action of G1 ×G2 on
X ∪ Y .

Note that if G1 and G2 act oligomorphically on X and Y , respectively, then the
natural intransitive action of G1 ×G2 is also oligomorphic: If f1(n) is the number

of orbits under the setwise action of G1 on
(
X
n

)
and f2(n) is the number of orbits

under the setwise action of G2 on
(
Y
n

)
(Example 4.2.15), then the number f(n) of

orbits under the setwise of G1 ×G2 on X ∪ Y is
∑

0≤i≤n f1(i)f2(n − i), and hence

finite for all n. Since nnf(n) is an upper bound on the number of orbits under the
componentwise action of G1 ×G2 on X ∪ Y , it follows that the action of G1 ×G2

on X ∪ Y is oligomorphic.
If G1 and G2 are the automorphism groups of ω-categorical relational structures

A and B with disjoint domains A and B, respectively, then the natural intransitive
action on A ∪ B can also be described as the automorphism group of a relational
structure C. If τ is the signature of A and σ the signature of B, then we can take for
C the structure

• whose signature is τ ∪ σ ∪ {P}, where P is a new unary relation symbol,
• whose domain is A ∪B, and
• whose relations are RC := RA for R ∈ τ , RC := RB for R ∈ σ, and PC := A.

Since reducts of ω-categorical structures are again ω-categorical, this shows in par-
ticular that the disjoint union of two ω-categorical structures is again ω-categorical.
Note that if A and B are finitely bounded, then so is C.

4.2.5.2. The product action. When G1 is a group acting on a set X, and G2 a
group acting on a set Y , there is another important natural action of G1×G2 besides
the intransitive natural action of G1×G2, namely the product action. In this action,
G1 × G2 acts on X × Y by (g1, g2) · (x, y) = (g1x, g2y). If G is the permutation
group on X induced by the action of G1 on X and H is the permutation group on
Y induced by the action of G2 on Y then we also write G ×H for the permutation
group induced by the product action of G1 ×G2 on X × Y .

If the actions of G1 and G2 are transitive, then the product action is clearly
transitive, too. We claim that if the actions of G1 and G2 are oligomorphic, then the
product action is also oligomorphic. Let F1(n) and F2(n) be the number of orbits
under the componentwise action of G1 on Xn and Y n, respectively. Then the number
of orbits under the componentwise action of G on (X × Y )n is F1(n)F2(n), and in
particular finite, which proves the claim.
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If G1 and G2 are the automorphism groups of ω-categorical structures A and B,
then the image of the product action of G in Sym(A×B) is the automorphism group
of the following structure A�B, which we call the algebraic product of A and B.

Definition 4.2.18. Let A be a relational σ-structure and B be a relational τ -
structure. We assume that σ and τ are disjoint, otherwise we rename the relations so
that the assumption is satisfied. We also assume that each of σ and τ has a symbol
for equality. Then the structure A�B contains the relations

{((a1, b1), . . . , (ak, bk)) | (a1, . . . , ak) ∈ RA, b1, . . . , bk ∈ B} for each k-ary R ∈ σ,
{((a1, b1), . . . , (ak, bk)) | (b1, . . . , bk) ∈ RB, a1, . . . , ak ∈ A} for each k-ary R ∈ τ.

By our assumption that σ and τ have a symbol for equality, A�B carries in particular
the following two relations.

E1 := {((a1, b1), (a2, b2)) | a1, a2 ∈ A, b1, b2,∈ B, a1 = a2}
E2 := {((a1, b1), (a2, b2)) | a1, a2 ∈ A, b1, b2,∈ B, b1 = b2}

Proposition 4.2.19. Let A and B be structures. Then the automorphism group
of C := A�B equals Aut(A)×Aut(B) in its product action on A×B. Moreover,

• if A and B are homogeneous, then so is A�B;
• if A and B are finitely bounded, then so is A�B.

Proof. Let h be the product action of G := Aut(A) × Aut(B) on A × B,
viewed as a homomorphism from G to Sym(A × B). Let (g1, g2) be an element
of G. Then h((g1, g2)) is the permutation (x, y) 7→ (g1x, g2y) of A×B, and this map
preserves C: if ((a1, b1), . . . , (ak, bk)) ∈ RC, for R ∈ σ, then (a1, . . . , ak) ∈ RA, and so
(g1a1, . . . , g1ak) ∈ RA. Therefore, ((g1a1, g2b1), . . . , (g1ak, g2bk)) ∈ RC. The proof for
the relation symbols R ∈ τ is analogous.

We now show that conversely, every automorphism g of C is in the image of h.
Note that E1 and E2 are congruences of the automorphism group of C. Fix elements
a0 ∈ A, b0 ∈ B. Let g1 be the permutation of A that maps a ∈ A to the point a′

such that g((a, b0)) = (a′, b0). Similarly, let g2 be the permutation of B that maps
b ∈ B to the point b′ such that g((a0, b)) = (a0, b

′). Since g preserves E1 and E2, the
definition of g1 and g2 does not depend on the choice of a0 and b0. Moreover, g1 is
from Aut(A), since g preserves the relations for the symbols from σ. Similarly, g2 is
from Aut(B). Then h((g1, g2)) equals g. Hence, g is a permutation of A × B that
lies in the image of h. We leave the proof of the statements about homogeneity and
finite boundedness of A�B to the reader. �

Note that Proposition 4.2.19 becomes false in general when we omit the relations
E1 and E2 in A�B. Consider for example a structure B with empty signature and
at least two elements. Then the automorphism group of B�B is not primitive, but
without the relations E1 and E2, the structure is primitive. Note that (A �B) � C
and A � (B � C) have the same automorphism group (on the domain A × B × C).
We explicitly define the d-fold algebraic product as follows.

Definition 4.2.20 (Algebraic product of d structures). Let B1, . . . ,Bd be struc-
tures with disjoint relational signatures τ1, . . . , τd. We denote by B1 � · · · �Bd the
structure with domain B := B1 × · · · × Bd that contains for every i ≤ d, and every
m-ary R ∈ (τi ∪ {=}) an m-ary relation defined by{(

(x1
1, . . . , x

d
1), . . . , (x1

m, . . . , x
d
m)
)
∈ Bm | (xi1, . . . , xim) ∈ RBi

}
.

If B := B1 = · · · = Bk, then we first rename R ∈ τi into Ri so that the factors have
pairwise disjoint signatures. Then B1 � · · ·�Bd is well-defined, and called the d-th
algebraic power of B, written B(d).
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The structure B(d) should not be confused with the full power structure B[d] from
Definition 3.5.3.

Remark 4.2.21. If A and B have the same signature τ , then the automorphism
group of the τ -structure A × B contains the automorphism group of A � B, and
hence A × B is ω-categorical, by Theorem 4.1.6. As a consequence, the class of
all ω-categorical structures of some fixed signature, considered up to homomorphic
equivalence, forms a lattice with respect to the homomorphism order (where disjoint
union gives the join, and product the meet of two ω-categorical structures).

4.3. Countable Categoricity from Fräıssé-Amalgamation

Fräıssé’s theorem can be used to construct ω-categorical structures, because ho-
mogeneous structures with finite relational signature are ω-categorical. More gener-
ally, we have the following.

Lemma 4.3.1. Let C be a countably infinite homogeneous structure such that for
each k only a finite number of distinct k-ary relations can be defined by atomic for-
mulas. Then C is ω-categorical.

Proof. By the homogeneity of C, the atomic formulas that hold on the elements
of t in C determine the orbit of t under Aut(C). Since there are only finitely many
such atomic formulas, it follows that there are finitely many orbits of k-tuples under
Aut(C). The claim follows by Theorem 4.1.6. �

4.3.1. Homogeneity and quantifier elimination. There is an exact char-
acterisation of those ω-categorical structures that are homogeneous. A structure
has quantifier elimination if its first-order theory has quantifier elimination (Defini-
tion 2.6.3). We will prove shortly that an ω-categorical structure B admits quantifier
elimination if and only if it is homogeneous. This is an immediate corollary of more
general results about definability by positive Boolean combinations in ω-categorical
structures. Following Truss and Lockett [275], a structure B is called

• HA-homogeneous if every finite partial endomorphism of B extends to an
automorphism.
• HI-homogeneous if every finite partial endomorphism of B extends to a self-

embedding of B.

Lemma 4.3.2. Let B be a countable ω-categorical τ -structure. Then the following
are equivalent.

(1) B is HI-homogeneous.
(2) B is HA-homogeneous.
(3) Every orbit of k-tuples under Aut(B) can be defined by a conjunction of

atomic τ -formulas.
(4) Every first-order formula is equivalent over B to a positive Boolean combi-

nation of atomic τ -formulas.

Proof. The implication (2)⇒ (1) is trivial.
(1) ⇒ (2). If h is a homomorphism from a finite substructure A of B to B, then
by assumption h can be extended to a self-embedding of B. We have to show that
h can even be extended to an automorphism of B. We construct the automorphism
by a back-and-forth argument. Suppose we have already constructed an isomorphism
f between two finite substructures A and A′ of B, and let b be any element of B.
(Going forth) Then there is a self-embedding of B that extends f , and the restriction
of this self-embedding to A ∪ {b} is an embedding of the substructure of B induced
on A ∪ {b} that extends f . (Going back) Apply the same reasoning to f−1 to define
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an extension of f whose image includes b. Since B is countable we eventually obtain
an automorphism of B that extends h.

(2) ⇒ (3). Let a = (a1, . . . , ak) ∈ Bk; we claim that the conjunction ψ of all
atomic τ -formulas that hold on a defines in B the orbit of a under Aut(B). To see
this, suppose that b ∈ Bk is such that B |= ψ(b). Then the mapping that sends
ai to bi is a partial endomorphism, and by HA-homogeneity can be extended to an
automorphism of B. So b is in the same orbit as a, which proves the claim.

(3) ⇒ (4). Every first-order definable relation R is a finite union of orbits of
n-tuples under Aut(B). The assumption implies that each orbit can be defined by
a conjunction of atomic τ -formulas. The disjunction over all those conjunctions is a
positive Boolean combination of atomic τ -formulas defining R.

(4)⇒ (2). Let ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk) be k-tuples of elements of B
such that the mapping f that sends ai to bi, for 1 ≤ i ≤ n, is a homomorphism between
the substructures of B induced on {a1, . . . , ak} and on {b1, . . . , bk}. By Theorem 4.1.6,
the orbit of (a1, . . . , ak) under Aut(B) has a first-order definition φ, and by assumption
φ is equivalent to a positive Boolean combination of atomic τ -formulas. Such formulas
are preserved by homomorphisms, and hence (b1, . . . , bk) lies in the same orbit as
(a1, . . . , ak). It follows that f can be extended to an automorphism of B. �

The equivalence of HA-homgeneity and HI-homogeneity holds for countable struc-
tures in general [275]. By expanding an ω-categorical τ -structure B by all negations
of atomic τ -formulas, Lemma 4.3.2 implies the following.

Corollary 4.3.3 (Statement 2.22 in [129]). An ω-categorical structure B admits
quantifier elimination if and only if it is homogeneous.

4.3.2. Strong Amalgamation and Algebraic Closure. When C is a strong
amalgamation class, then the Fräıssé-limit of C has a remarkable property. Let B be
a structure, and A a finite set of elements of B. Then aclB(A) denotes the (model-
theoretic) algebraic closure of A in B, i.e., the elements of B that lie in finite sets that
are first-order definable over B with parameters from A. In ω-categorical structures,
this is precisely the set of elements of B that lie in finite orbits under Aut(B)(A).
We say that B has no algebraicity if aclB(A) = A for all finite sets of parameters A.
Otherwise, if aclB(A) \A is non-empty, we say that B has algebraicity . Note that B
has algebraicity if and only if there are finitely many elements a1, . . . , an in B such
that a single element distinct from a1, . . . , an is definable in (B, a1, . . . , an).

Example 4.3.4. Let E be an equivalence relation on a countably infinite set B
whose classes have size k ∈ N, for some fixed k ≥ 2. Then the structure (B;E) is
homogeneous (the Fräıssé-limit of Example 2.3.6), Aut(B;E) has no finite orbits, but
algebraicity. 4

Theorem 4.3.5 (See (2.15) in [129]). A homogeneous ω-categorical structure B
has no algebraicity if and only if the age of B has strong amalgamation.

Proof. Suppose first that Age(B) has strong amalgamation, and suppose for
contradiction that there are elements a1, . . . , an of B such that the set {a0} is definable
in (B, a1, . . . , an). Let A be the substructure of B induced on A := {a1, . . . , an} and
let C be the substructure of B induced on A ∪ {a0}. Then Age(B) contains a strong
amalgam D of C and C over A, so there are embeddings e1 and e2 of C into D such that
e1(C)∩e2(C) = A. By the homogeneity of B we can assume that D is a substructure
of B that contains A as a substructure, and that e1 and e2 fix the elements of A.
Again by the homogeneity of B the tuples (a1, . . . , an, e1(a0)) and (a1, . . . , an, e2(a0))
lie in the same orbit of (n+ 1)-tuples under Aut(B), and it follows that the elements
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e1(a0) and e2(a0) lie in the same orbit under Aut(B, a1, . . . , an), contradicting the
assumption that {a0} is definable in (B, a1, . . . , an).

Now suppose that B has no algebraicity. To prove that Age(B) has strong amal-
gamation, it suffices to verify the strong 1-point amalgamation property (Proposi-
tion 2.3.18). Let A,B1,B2 ∈ Age(B) be such that B1 ∩B2 = A and |B1| = |B2| =
|A| + 1. By the homogeneity of B, there exists an amalgam C ∈ Age(B) of B1 and
B2 over A with embeddings e1 : B1 ↪→ C and e2 : B2 ↪→ C. Without loss of generality
we assume that C is a substructure of B. Let b ∈ B1 \ A and let b1, . . . , bk be the
elements of B2 such that b1 = B2\A. Since B has no algebraicity and is ω-categorical,
the orbit of e1(b) under Aut(B, e2(b2), . . . , e2(bk)) contains more than one element,
so pick c in this orbit distinct from e1(b). Then the substructure of B induced on
C ∪{c} is a strong amalgam of B1 and B2 over A via e1 and the embedding obtained
from e2 by mapping b1 to c. �

Note that if B has no algebraicity, and C is a first-order reduct of B, then C has
no algebraicity, too. We give an application of algebraicity in the context of constraint
satisfaction.

Lemma 4.3.6. Let B be an ω-categorical relational structure without algebraicity
all of whose relations R are injective, i.e., every tuple in R has pairwise distinct
entries. Then every finite structure that maps homomorphically to B also has an
injective homomorphism to B.

Proof. Let τ be the signature of B. Let f be a homomorphism from a finite
τ -structure F to B such that f(F ) is maximal. If |f(F )| = |F | then f is injective
and we are done. Otherwise, there are u, v ∈ F such that f(u) = f(v). Let A be
the substructure of B induced on f(F ) \ {f(u)}. By Theorem 4.3.5, Age(B) has
strong amalgamation, and hence there exist embeddings e1, e2 : B[f(F )] ↪→ B such
that e1 ◦ f |A = e2 ◦ f |A and e1(f(u)) 6= e2(f(v)). Then the mapping f ′ : F → B
defined by

f ′(w) :=

{
e2(f(w)) if w 6= u

e1(f(w)) if w 6= v

is well defined. To see that f ′ is a homomorphism from F to B, let (x1, . . . , xn) ∈ RF.
Since f is a homomorphism we have (f(x1), . . . , f(xn)) ∈ RB, and at most one of the
f(xi) equals f(u) = f(v) since RB is injective. Hence, f ′|{x1,...,xn} = e1 ◦ f |{x1,...,xn}
or f ′|{x1,...,xn} = e2 ◦ f |{x1,...,xn}, proving that (f ′(x1), . . . , f ′(xn)) ∈ RB. Since
f ′(u) 6= f ′(v), we have |f ′(F )| > |f(F )|, a contradiction. �

4.3.3. Homogenisation. It is sometimes convenient to define an ω-categorical
τ -structure B by specifying an amalgamation class C with a larger signature than τ
such that B is a reduct of the Fräıssé-limit of C. If the Fräıssé-limit of C satisfies the
condition of Lemma 4.3.1, it will be ω-categorical, and therefore also all its reducts
are ω-categorical (Lemma 4.7.3).

This method will be used in Section 5.1 to construct ω-categorical templates for
computational problems that have been studied in phylogenetic analysis. It has also
been used in [218] to give another proof of a theorem due to Cherlin, Shelah, and Shi
(Theorem 4.3.7). The result appears in [136] for the special case where τ has a single
binary relation denoting the edge relationship of undirected graphs. The statement
for general relational signatures τ also follows from a result of [148]. The theorem of
Cherlin, Shelah, and Shi will be useful to formulate problems in monotone monadic
SNP as CSPs with ω-categorical templates (Section 5.6.2).

Let F be a finite set of finite structures with a finite relational signature τ . Recall
that a τ -structure B is called F-free if there is no homomorphism from any structure
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in F to B. A structure A in a class of structures C is called universal for C if the class
of structures that embed into A is precisely C. Recall that a structure is connected if
it cannot be given as the disjoint union of non-empty structures.

Theorem 4.3.7 (Cherlin, Shelah, and Shi [136]). Let F be a finite set of finite
connected τ -structures; then there exists a countable model-complete τ -structure B
which is universal for the class of at most countable F-free structures. Moreover, B
is ω-categorical and without algebraicity.

Observe that

• the structure B from Theorem 4.3.7 is unique up to isomorphism: this
follows from the uniqueness of the model companion (Theorem 2.7.16), and
ω-categoricity.
• in countable ω-categorical structures, being universal for the class of all

countable F-free structures is equivalent to the requirement that Age(B) =
Forbhom(F), by Lemma 4.1.7.

If we are interested in an ω-categorical structure B with Age(B) = Forbhom(F),
then there is another candidate for B, which is easier to construct than the struc-
ture in Theorem 4.3.7. The structure B that we construct in Theorem 4.3.8 below is
in general not isomorphic to the structure from Theorem 4.3.7 (see Example 4.3.9).
However, we will see in Section 4.7.4 that Theorem 4.3.8 below implies Theorem 4.3.7
using general principles. A primitive positive formula is called connected if its canon-
ical database D(φ) (see Section 1.2.2) is connected (as a structure, in the sense of
Section 1.1). If B is a structure, we write Bpp(m) for the expansion of B by all re-
lations that can be defined with a connected primitive positive formula with at most
m variables, at least one free variable, and without equality. The following theorem
is a rephrasing of results of Hubička and Nešetřil [218] and [217].

Theorem 4.3.8. Let F be a finite set of finite connected τ -structures and let m
be the maximal domain size of the structures in F . Then there exists a countable
ω-categorical τ -structure B without algebraicity such that

• Age(B) = Forbhom(F);
• Bpp(m) is homogeneous;
• Age(Bpp(m)) is the class P of all substructures of structures of the form

App(m) for A ∈ Forbhom(F).

Proof. The class P is clearly closed under isomorphisms and substructures, and
contains only countably many non-isomorphic structures. We verify that it has the
strong amalgamation property. Let A,B1,B2 ∈ P with A = B1 ∩ B2. Let φi be
the canonical query of Bi, for i ∈ {1, 2}. If Rψ(x̄) is a conjunct of φi where Rψ
is the relation that has been added for a primitive positive formula ψ, then replace
the conjunct Rψ(x̄) in φi by the formula ψ(x̄) (using fresh variable names for the
existentially quantified variables in ψ). Let C be the canonical database of φ1 ∧ φ2

(a τ -structure). We will show that Cpp(m) is the required (strong) amalgam, where
f1 : B1 → C and f2 : B2 → C are the identity map.

Claim 1: C is F-free. Suppose for contradiction that there was a homomorphism
h : F → C for some F ∈ F . Let χ be the canonical query of the substructure of C
induced on h(F ); note that χ has at most m variables. Let χi be the subset of the
conjuncts of χ that is contained in φi, for i ∈ {1, 2}. Let x1, . . . , xn be the variables of
χ1 contained in A, and let y1, . . . , yk be the remaining variables. Note that k ≥ 1, since
otherwise χ would hold in the canonical query of B2, a contradiction to the assumption
that B2 is F-free. Similarly, there is at least one variable of χ2 which is not contained
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in A. Therefore, n ≥ 1 by the assumption that F is connected. The primitive positive
formula obtained by existentially quantifying y1, . . . , yk is connected, has at most m
variables and at least one free variable, so the structure A ∈ P contains a relation
symbol R for the relation defined by this formula, and A |= R(x1, . . . , xn). By the
definition of P, there exists a structure A′ ∈ Forbhom(F) such that A is a substructure
of A′pp(m). The structure A′ must have witnesses for the variables that we quantified

in χ1 (here we use that A is non-empty), and the variables that we quantified in χ2,
so F maps homomorphically to A′, a contradiction.

Claim 2: The structures B1 and B2 are substructures of Cpp(m). We show this

for B1; the proof for B2 is analogous. Let ā ∈ Ak and b̄ ∈ B`1 and let Rψ be a (k+ `)-
ary relation from the signature of B1. First note that if B1 |= Rψ(ā, b̄) then the
conjunct ψ(ā, b̄) is part of φ1, and hence C |= ψ(ā, b̄). Conversely, suppose that C |=
ψ(ā, b̄) for some primitive positive formula ψ with at most m variables. The definition
of C implies that ψ(ā, b̄) can be written as ∃x̄, ȳ, z̄

(
ψ1(ā, b̄, x̄, ȳ)∧ψ2(ā, b̄, ȳ, z̄)

)
where

ψ1 and ψ2 are quantifier-free primitive positive formulas such that

• x̄ lists the variables from φ1 that are not variables of φ2;
• ȳ lists the variables that appear both in φ1 and in φ2;
• z̄ lists the variables that appear in φ2 but not in φ1.

Note that the variables in ȳ are in fact elements of A (recall that φ1 and φ2 were
constructed from the canonical database of B1 and B2, respectively, so they contain
the elements of A as variables). Let θ(ā, ȳ) be the formula ∃z̄ : ψ2(ā, b̄, ȳ, z̄) which is
primitive positive with at most m variables. Let B′1 be a structure in Forbhom(F)
such that B1 is a substructure of (B′1)pp(m) (such a structure exists since B1 ∈ P).

The above implies that there are elements v̄ of A such that B′1 |= ∃x̄ : ψ1(ā, b̄, x̄, v̄)
and A |= Rθ(ā, v̄). In particular, B1 |= Rθ(ā, v̄). It follows that

B′1 |= ∃x̄, z̄
(
ψ1(ā, b̄, x̄, v̄) ∧ ψ2(ā, b̄, v̄, z̄)

)
and hence B′1 |= ∃x̄, ȳ, z̄

(
ψ1(ā, b̄, x̄, ȳ) ∧ ψ2(ā, b̄, ȳ, z̄)

)
. Thus, B1 |= Rψ(ā, b̄) as re-

quired.

Claims 1 and 2 show that Cpp(m) ∈ P is an amalgam of B1 and B2 over A. So P
is a Fräıssé-class. Let B′ be its Fräıssé-limit, and let B be the τ -reduct of B′. Then
B has the desired properties:

• it is ω-categorical, because it is a reduct of a homogeneous structure with a
finite relational signature;
• it has no algebraicity, because it is a reduct of a structure without algebraic-

ity: B′ is the Fräıssé-limit of a strong amalgamation class, and hence has
no algebraicity by Theorem 4.3.5;
• clearly, Age(B) = Forbhom(F);
• as we prove below, the structure Bpp(m) equals B′, which shows the last

two items of the statement.

Let ψ(x1, . . . , xk) be a primitive positive τ -formula with at most m variables and
without equality conjuncts. We have to prove that B′ |= Rψ(a1, . . . , ak) if and only
if Bpp(m) |= Rψ(a1, . . . , ak) for all a ∈ Bk. By definition, the latter is the case if
and only if B |= ψ(a1, . . . , ak). The substructure A′ of B′ induced on a1, . . . , ak is
contained in P, and hence there exists a superstructure of A′ of the form App(m) ∈ P
for a structure A ∈ Forbhom(F). Note that

B′ |= Rψ(a1, . . . , ak)⇔ A′ |= Rψ(a1, . . . , ak) (A′ ∈ Age(B′))

⇔ A |= ψ(a1, . . . , ak) (by definition of App(m)).
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The structure App(m) embeds into B′ and by the homogeneity of B′ we obtain that
B′ |= Rψ(a1, . . . , ak) if and only if B |= ψ(a1, . . . , ak), which is what we had to
show. �

Example 4.3.9. Let F be {C5}. Let B′ be a model-complete structure with
Age(B) = Forbhom(F). We claim that B′ is not isomorphic to the structure B that
we constructed in Theorem 4.3.8. To see this, observe that the formula

¬∃y
(
E(x, y) ∧ E(y, z)

)
(19)

is over B′ equivalent to an existential formula (Theorem 2.6.2); in our case, this is
the existential formula

ϕ = E(x, z) ∨ ∃y1, y2

(
E(x, y1) ∧ E(y1, y2) ∧ E(y2, z)

)
.

But note that the class P from the proof of Theorem 4.3.8 contains App(m) for the

structure A ∈ Forbhom(F) that contains two vertices x, z and where all relations are
empty. In the τ -reduct B of the Fräıssé-limit of P, any path from x to z must have
at least six vertices. So the formula (19) is in B not equivalent to ϕ, and B and B′

cannot be isomorphic. 4

4.3.4. Expansions by constants. It is easy to see that every expansion of a
homogeneous structure B by constant symbols is again homogeneous. Also note that
if c ∈ B then Aut(B, c) = Aut(B, {c}). However, the relational structure (B, {c}) is
in general not homogeneous, as the following example shows.

Example 4.3.10. Let (V ;E) be the random graph (Example 2.3.9) and let c ∈ V.
Let p ∈ V \ {c} be such that E(p, c) and q ∈ V \ {c} be such that ¬E(c, q). Then the
mapping that sends p to q is an isomorphism between (one-element) substructures
of (V ;E, {c}) which cannot be extended to an automorphism of (V ;E, {c}). (The
difference to (V ;E, c) is that all substructures of (V ;E, c) must contain c.) 4

It will be convenient later to work with homogeneous structures with finite rela-
tional signature, and we therefore define the following structure.

Definition 4.3.11. Let B be a relational structure with signature τ and let
b1, . . . , bn ∈ B. Then Bb1,...,bn denotes the expansion of B which contains all relations
that are defined by atomic formulas over the structure (B, b1, . . . , bn).

Note that if the signature of B is finite then the signature of Bb1,...,bn is also
finite, and the maximal arity is unaltered.

Proposition 4.3.12. Let B be a homogeneous relational structure and b1, . . . , bn ∈
B. Then Bb1,...,bn is homogeneous and Aut(B, b1, . . . , bn) = Aut(Bb1,...,bn).

Proof. The claim about the automorphism groups follows from the observation
that Bb1,...,bn has in particular the unary relations {b1}, . . . , {bn}. To show the homo-
geneity of Bb1,...,bn , let a be an isomorphism between two finite substructures A1, A2

of Bb1,...,bn . Since Bb1,...,bn contains for all i ≤ n the relation {bi} which is preserved
by a, it follows that if A1 or A2 contains bi, then both A1 and A2 must contain bi, and
a(bi) = bi. If bi is contained in neither A1 nor A2, then a can be extended to a partial
isomorphism a′ of Bb1,...,bn with domain A1 ∪ {bi} by setting a(bi) = bi: this follows
directly from the definition of Bb1,...,bn . By the homogeneity of B, the map a′ can be
extended to an automorphism of B. This automorphism fixes each of b1, . . . , bn, and
hence is an automorphism of Bb1,...,bn . �
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4.4. Oligomorphic Endomorphism Monoids

We apply the model-theoretic preservation theorems from Section 2.5 to char-
acterise existential and existential positive definability of relations in ω-categorical
structures. For finite structures, a characterisation of existential positive definabil-
ity has already been noted by Krasner [254]. Note that existential definability over
finite structures equals first-order definability (for finite structures, self-embeddings
are necessarily automorphisms).

Theorem 4.4.1 (from [47] and [71,94]). Let B be an ω-categorical structure with
base set B, and R ⊆ Bk be a relation.

(1) R has an existential positive definition in B if and only if R is preserved by
all endomorphisms of B.

(2) R has an existential definition in B if and only if R is preserved by all
self-embeddings of B.

Proof. We have already remarked in Section 2.1 that existential positive for-
mulas are preserved by homomorphisms, and existential formulas are preserved by
embeddings.

For the other direction, note that the endomorphisms and self-embeddings of
B contain the automorphisms of B, and hence Theorem 4.1.6 shows that R has a
first-order definition φ in B. Suppose for contradiction that R is preserved by all
endomorphisms of B but has no existential positive definition in B. We use the
homomorphism preservation theorem (Theorem 2.5.2). Since by assumption φ is not
equivalent to an existential positive formula in B, there are models B1 and B2 of the
first-order theory of B and a homomorphism h from B1 to B2 that does not preserve
φ. By the theorem of Löwenheim-Skolem (Theorem 2.1.11; by Theorem 4.1.6 we
may assume that the signature is countable) the first-order theory of the two-sorted
structure (B1,B2;h) has a countable model (B′1,B

′
2;h′). Since both B′1 and B′2

must be countably infinite, and because B is ω-categorical, we have that B′1 and B′2
are isomorphic to B, and h′ can be seen as an endomorphism of B that does not
preserve φ; a contradiction.

The argument for existential definitions is similar, but instead of the homomor-
phism preservation theorem we use the theorem of  Los-Tarski (Corollary 2.5.3). �

We now present a Galois connection between sets of relations on a base set B
and sets of functions from B to B for which the Galois-closed sets correspond to exis-
tential positive definability and to closed transformation monoids, respectively. This
is similar to the Galois connection presented in Section 4.2 for first-order definability
and closed permutation groups.

For a structure B, we denote the set of relations with an existential positive
definition in B by 〈B〉ep. A set F ⊆ BB is closed (in BB) if it contains every
f ∈ BB such that for every finite subset A of B there exists a g ∈ F such that
f(a) = g(a) for all a ∈ A. The set of endomorphisms of a relational structure B is
denoted by End(B). The set of functions from BB that preserve a set of relations
R over the domain B is also denoted by End(R). The following can be shown in a
similarly straightforward way as Proposition 4.2.2.

Proposition 4.4.2. For every F ⊆ BB, the following are equivalent.

(1) F is the transformation monoid of a relational structure;
(2) F is a transformation monoid that is closed in BB.

Proceeding as in Section 4.1.1, we make the following definition. Note the differ-
ences from Definition 4.2.6; however, it will always be clear from the context which
of the two definitions applies.
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Definition 4.4.3. Let F be a subset of BB .

• 〈F 〉 denotes the smallest transformation monoid that contains F .

• The closure F of F is the smallest closed subset of BB that contains F .

The set of all relations that are preserved by all functions in F ⊆ BB is de-
noted by Inv(F ). The proof of the following statement is similar to the proof of
Proposition 4.2.7.

Proposition 4.4.4. Let F ⊆ BB. Then End(Inv(F )) = 〈F 〉 equals the smallest
transformation monoid that contains F and is closed in BB.

Theorem 4.4.1 implies the following analog to Corollary 4.2.10.

Corollary 4.4.5. Let C be an ω-categorical structure. Then the lattice of closed
submonoids of CC that contain Aut(C) is anti-isomorphic to the lattice of sets of the
form 〈B〉ep, ordered by inclusion, where B is first-order definable in C.

To illustrate we present a simple and typical application.

Lemma 4.4.6. Let B be such that Aut(B) is 2-set transitive. If B has a non-
injective endomorphism f , then B also has a constant endomorphism.

Proof. Let f be an endomorphism of B such that f(b) = f(b′) for two distinct
values b, b′ ∈ B. Let b1, b2, . . . be an enumeration of B. We construct a sequence of
endomorphisms e1, e2, . . ., where ei is an endomorphism that maps all of the values
b1, . . . , bi to b1. This suffices, since then the mapping defined by e(x) := b1 for all x
is an endomorphism of B as well since End(B) is closed.

For e1, we take the identity map, which clearly is an endomorphism with the
desired properties. To define ei for i ≥ 2, let α be an automorphism of B that
maps {b1, ei−1(bi)} to {b, b′}; such an automorphism exists because Aut(B) is 2-set
transitive. Then the endomorphism f(αei−1(x)) is constant on b1, . . . , bi; recall that
b1 = ei−1(b1) = · · · = ei−1(bi−1). Since B is 2-transitive, it is in particular transitive,
and there is an automorphism β that maps f(b) to b1. Then ei : x 7→ βf(αei−1(x)) is
an endomorphism of B with the desired properties. �

There are structures B such that Aut(B) = End(B), for example the structure
B = (Z; {(x, y) | x = y + 1}). This cannot happen if B is countably infinite ω-
categorical! The most natural proof of this fact seems to be a model-theoretic one.

Proposition 4.4.7. Let B be an ω-categorical structure. Then there exists an
elementary self-embedding e ∈ End(B) \Aut(B).

Proof. Let τ be the signature of B and let b1, b2, . . . be constant symbols and
C an expansion of B with signature τ ∪ {b1, b2, . . . } so that bC1 , b

C
2 , . . . enumerates all

elements of B. Let c be a new constant symbol. Note that every finite subset of the
theory T := Th(C)∪{c 6= bi | i ∈ N} has an infinite model, and hence by compactness
of first-order logic (Theorem 2.1.6) T has a infinite model A; by Theorem 2.1.11,
we may assume that A is countably infinite. Note that the τ -reduct of A satisfies
the same first-order sentences as B, and by the ω-categoricity of B there exists an
isomorphism i between this reduct and B. Then the map e : B → B that sends bBn
to i(bAn ) is an elementary self-embedding such that e(B) does not contain i(cA). �

4.5. Countably Categorical Model-Complete Cores

We have seen that first-order definability in a countable ω-categorical structure
B is captured by the automorphism group of B (Section 4.2) and that existential-
positive definability in B is captured by the endomorphism monoid of B (Section 4.4).
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Particularly interesting is the situation where existential positive and first-order de-
finability is the same, which happens precisely if B is model complete and a core. In
the more general terminology of Section 2.6, this is the case if and only if B has a
model-complete core theory. We will see later that every ω-categorical structure B is
homomorphically equivalent to an ω-categorical structure that has this property (The-
orem 4.7.4); so when it comes to the classification of the computational complexity
of CSPs for ω-categorical structures B, we usually work with model-complete cores.
In this section we prove various equivalent conditions that characterise ω-categorical
model-complete cores and illustrate them with examples.

Theorem 4.5.1. Let B be a countable ω-categorical structure. Then the following
are equivalent.

(1) B is a model-complete core.
(2) B has a homogeneous expansion such that all relations of the expansion and

their complements have an existential positive definition in B.
(3) Every first-order formula is equivalent to an existential positive one over B.
(4) The orbits of n-tuples under Aut(B) are primitively positively definable in

B.
(5) Aut(B) is dense in End(B).
(6) Every e ∈ End(B) is locally invertible, i.e., for every finite tuple t of ele-

ments of B there exists i ∈ End(B) such that i(e(t)) = t.
(7) Every existential positive formula is equivalent to a universal-negative for-

mula over B.
(8) B has a model-complete core theory.
(9) The theory of B is equivalent to a ∀∃+-theory.

Proof. We show these statements in cyclic order. For the implication from (1)
to (2), consider the expansion B′ of B by all relations with an existential positive
definition in B. Since every endomorphism of B preserves all first-order formulas,
it also preserves all relations in B′ and their complements. It follows that the com-
plements also have an existential positive definition by Theorem 4.4.1, and hence the
expansion is of the desired type. Since the endomorphism of B preserve by assump-
tion all first-order formulas, and since by the ω-categoricity of B and Theorem 4.1.6
the orbits of n-tuples under Aut(B) are first-order definable in B, it follows from
Theorem 4.4.1 that the orbits of n-tuples under Aut(B) (and its expansion) have
an existential positive definition in B. Then, the expansion B′ by all existentially
positively definable relations in homogeneous.

For the implication from (2) to (3), let φ be a first-order formula. Then φ has in
the homogeneous expansion of B from Item (2) a quantifier-free definition ψ (Corol-
lary 4.3.3); assume without loss of generality that ψ is written in conjunctive normal
form. If we replace all literals by their existential positive definition in B we arrive
at an equivalent formula which is existential positive in the signature of B.

For the implication from (3) to (4), let O be an orbit of n-tuples under Aut(B). By
Theorem 4.1.6, O is first-order definable, so by assumption, O even has an existential
positive definition. Note that every existential positive formula can be written as a
disjunction of primitive positive formulas, so let φ be such a definition of O. We can
also assume without loss of generality that none of the disjuncts in φ implies another
(otherwise, we simply omit it). Since O is a minimal non-empty first-order definable
relation, φ can only contain a single disjunct, and therefore is primitive positive.

(4) implies (5). Let e ∈ End(B). To show that e ∈ Aut(B), let t be a finite tuple
of elements of B. We have to show that there is an automorphism α of B such that
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e(t) = αt. The orbit of t is by assumption primitively positively definable, and hence
preserved by e. So e(t) is in the same orbit as t, and we are done.

(5) implies (6). Let x̄ be a finite tuple of elements of B, and e ∈ End(B). By (5)
there exists an α ∈ Aut(B) such that e(x̄) = αx̄. Choose g = α−1.

(6) implies (7). Let φ be an existential positive formula. In order to show that φ
is equivalent to an universal negative formula, we use Theorem 4.4.1 and show that
¬φ is preserved by all endomorphisms f of B, and hence equivalent to an existential
positive formula. Let ā be a finite tuple of elements of B such that B |= φ(f(ā)). By
assumption, there exists a g ∈ End(B) such that g(f(ā)) = ā, and hence B |= φ(ā).
This shows that f preserves ¬φ.

The implication from (7) to (8) follows from the implication from (4) to (1) in
Theorem 2.6.12.

The implication from (8) to (9) follows from Theorem 2.7.11: The theory of B is
its own core companion and hence is equivalent to its positive Kaiser hull, which is
by definition a ∀∃+-theory.

For (9) implies (1), note that by definition the theory T of B equals its positive
Kaiser hull; see Theorem 2.7.11. Lemma 2.7.7 states that T equals the set of all ∀∃+-
sentences that hold in all T -epc structures, and then Theorem 2.7.11 implies that T
is its own core companion and therefore a model-complete core theory. �

Note that in (2), we have to insist on the complements of all relations being
existentially positively definable; in other words, it is not true that an ω-categorical
structure B is a model-complete core if and only if the expansion by all relations
with an existential positive definition is homogeneous, as illustrated by the following
example.

Example 4.5.2. The existential positive expansion of the structure (Q+
0 ;<) by

the unary predicate P such that P (x) ⇔ ∃y (y < x) is homogeneous, but (Q+
0 ;<) is

not even model complete (Example 2.6.5). 4

4.5.1. Adding constants. The fact that in countable ω-categorical model-
complete cores the orbits of n-tuples are primitively positively definable is one of
the key facts for finite cores B mentioned earlier. This can be exploited in the study
of the CSP in many ways. For instance, it can be combined with Proposition 3.1.7 to
obtain the following.

Corollary 4.5.3. Let B be an ω-categorical model-complete core, and suppose
that A is a structure with finite relational signature and a primitive positive interpre-
tation in B with parameters from B. Then there exists a finite signature reduct B′

of B such that CSP(A) has a polynomial-time reduction to CSP(B′).

This in turn immediately yields the following hardness condition.

Corollary 4.5.4. Let B be an ω-categorical structure, and let C be its model-
complete core. If K3 has a primitive positive interpretation in C with parameters from
C then B has a finite-signature reduct with an NP-hard CSP.

We can now state the infinite-domain tractability conjecture (Conjecture 3.7.1) in
its historically first formulation. We will see in Section 10.3 that the two conjectures
are equivalent.

Conjecture 4.5.1. Let B be a reduct of a finitely bounded homogeneous struc-
ture, and let C be its model-complete core. If K3 does not have a primitive positive
interpretation in C with parameters from C then CSP(B) is in P.
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This conjecture involves two operators on structures that we have already intro-
duced in Section 3.6: the operator I for primitive positive interpretations and the
operator C for adding constants for tuples whose orbit is primitively positively defin-
able. We revisit these operators for ω-categorical model-complete cores.

Lemma 4.5.5. Let B be an ω-categorical model-complete core. Then any structure
in C(B) is an ω-categorical model-complete core as well.

Proof. Let c ∈ B, let e be an endomorphism of (B, c), and let φ(x̄) be a first-
order formula over the signature of (B; c). Let ψ(x̄, y) be the first-order formula over
the signature of B such that ψ(x̄, c) equals φ(x̄). As B is an ω-categorical model-
complete core, e preserves ψ. Since e also preserves c we find that e preserves φ(x̄)
and it follows that (B, c) is a model-complete core. The ω-categoricity of (B, c) is an
easy consequence of Theorem 4.1.6; see Lemma 4.7.3. �

Also note the following relation between expansions by constants and primitive
positive interpretations in ω-categorical model-complete core.

Lemma 4.5.6. Let B be an ω-categorical model-complete core. Suppose that A
has a primitive positive interpretation in B. Then any expansion of A by constants
is in IC(B).

Proof. Suppose that A has a d-dimensional primitive positive interpretation I in
B and let a ∈ An. Arbitrarily choose b ∈ I−1(a); note that b = (b1,1, . . . , bn,d) ∈ Bdn.
Let χ(x̄, ȳ) be the primitive positive definition of I−1(=A). We claim that I is also
an interpretation of (A, a) in (B, b): the pre-image I−1(a) has the primitive positive
definition

∧
i≤n χ(xi,1, . . . , xi,d, bi,1, . . . , bi,d). Moreover, the orbit of b under Aut(B)

has a primitive positive definition in B because B is a model-complete core. Hence,
(A, a) ∈ C(B). �

Combining this observation with Lemma 3.6.1, we obtain the following.

Corollary 4.5.7. Let B be an ω-categorical model-complete core, and let C be
the smallest class that contains B and is closed under I and expansions by finitely
many constants. Then

C = IC(B).

4.5.2. Model completeness. The description of ω-categorical model-complete
cores from Theorem 4.5.1 implies the following characterisation of model-completeness
for countable ω-categorical structures.

Theorem 4.5.8. Let B be a countable ω-categorical structure. Then the following
are equivalent.

(1) The structure B is model complete.
(2) B has a homogeneous expansion by relations R1, R2, . . . such that both the

Ri and their complements have existential definitions in B.
(3) Every self-embedding of B is in Aut(B).
(4) Th(B) is equivalent to a ∀∃-theory.

Proof. Follows from Theorem 4.5.1. �

We give an overview of the various restrictions of first-order logic that were con-
sidered in this text in Figure 4.2. The following example shows that being a core
and homogeneous (and therefore model-complete) does not imply that every first-
order formula is equivalent to a formula which is both quantifier-free and existential
positive.
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Figure 4.2. Various forms of syntactically restricted definability
(left side), ordered by relative strength, and the corresponding class
of operations (right side). The labels on the arrows indicate the
condition on the structure when the corresponding two forms of de-
finability coincide (left side), and correspondingly when one set of
operations generates the other (right side).

Example 4.5.9. The structure ({0, 1};Z, 6=), for Z = {0}, is clearly homogeneous
and a core. The relation {1} has the quantifier-free definition ¬Z(x), and it also has
the existential positive definition ∃y(Z(y) ∧ x 6= y), but it is clearly not definable by
a formula which is both quantifier-free and existential positive. 4

4.6. Existential Positive Ryll-Nardzewski

In this section we present an existential positive variant of the Ryll-Nardzewski
theorem (Theorem 4.6.1 below). This also answers the question which CSPs can be
formulated with an ω-categorical template, and it implies an existential variant of
Ryll-Nardzewski due to Simmons [339]. Another consequence of Theorem 4.6.1 is
that every ω-categorical theory has a model companion due to Saracino [327] and a
core companion (a result from [48]).

For a satisfiable theory T , let ∼Tn be the equivalence relation defined on existential
positive formulas with n free variables x1, . . . , xn (we could have equivalently used
primitive positive formulas here) as follows. For two such formulas φ1 and φ2, let
φ1 ∼Tn φ2 if for all existential positive formulas ψ with free variables x1, . . . , xn we
have that {φ1, ψ} ∪ T is satisfiable if and only if {φ2, ψ} ∪ T is satisfiable. The index
of an equivalence relation is the number of its equivalence classes.

Theorem 4.6.1 (Theorem 4.27 in [65]). Let T be a theory with countable rela-
tional signature and the joint homomorphism property (JHP; cf. Proposition 2.1.16).
Then the following are equivalent.

(i) T has an ω-categorical core companion.
(ii) ∼Tn has for each n finite index.

(iii) T has finitely many maximal existential positive n-types for each n.
(iv) There is a (finite or countably infinite) ω-categorical model-complete core

B that satisfies an existential positive sentence φ if and only if T ∪ {φ} is
satisfiable.
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Proof. We show (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).
(i) ⇒ (ii). Let U be the core companion of T . Since U and T entail the same

universal negative sentences, we can deduce that for every existential positive formula
ψ the theory U ∪ {ψ} is satisfiable if and only if T ∪ {ψ} is satisfiable; from which it
follows that the indices of ∼Un and ∼Tn coincide.

For a proof by contraposition, assume that ∼Un has infinite index for some n. Let
ψ1 and ψ2 be two existential positive formulas from different equivalence classes of ∼Un .
Hence, there is an existential positive formula ψ3 such that exactly one of {ψ1, ψ3}∪U
and {ψ2, ψ3}∪U is satisfiable. This shows that ψ1 and ψ2 are inequivalent modulo U .
Therefore there are infinitely many first-order formulas with free variables x1, . . . , xn
that are inequivalent modulo U , and U cannot be ω-categorical by Theorem 4.1.6.

(ii) ⇒ (iii). We show that every maximal ep-n-type p is determined completely
by the ∼Tn equivalence classes of the existential positive formulas contained in p. Since
there are finitely many such classes, the result follows. Let p and q be maximal ep-
n-types such that for every φ1 ∈ p there exists φ′1 ∈ q such that φ1 ∼Tn φ′1 and for
every φ2 ∈ q, there exists φ′2 ∈ p such that φ2 ∼Tn φ′2. We aim to prove that p = q.
If not then there exists, without loss of generality, ψ ∈ p such that ψ /∈ q. Since q is
maximal, T ∪ q ∪ {ψ} is not satisfiable. By compactness, T ∪ {θ, ψ} is not satisfiable
for some finite conjunction θ of formulas from q. Now, θ ∈ q by maximality and there
exists by assumption θ′ ∈ p such that θ ∼Tn θ′. By the definition of ∼Tn we deduce
that T ∪ {θ′, ψ} is satisfiable if and only if T ∪ {θ, ψ} is satisfiable. Since the latter is
not satisfiable, we deduce that neither is the former, which yields the contradiction
that T ∪ p ∪ {ψ} is not satisfiable.

(iii) ⇒ (iv). Let S be the union of the set of all existential positive sentences φ
such that T ∪ {φ} is satisfiable and the set of all universal negative consequences of
T . By Proposition 2.1.16, S has a model C, and by Theorem 2.1.11 we can assume
that C is either finite or countable. Lemma 2.7.3 gives a homomorphism from C to
a finite or countable epc τ -model B of S. Note that also B satisfies exactly those
existential positive sentences that are satisfiable together with T . Let σ be a signature
that contains a relation symbol for each maximal ep-n-types of T , and let τ ′ := τ ∪σ.
Then B has a canonical τ ′-expansion B′ where a new relation symbol denotes the set
of all tuples that attain the respective maximal ep-type.

Claim. B′ is homogeneous. Let b, a1, . . . , am ∈ B′ and let f be an embedding
of the substructure of B′ induced on {a1, . . . , am} into B′. By Proposition 2.7.4,
the ep-type p of (f(a1), . . . , f(am), b) in B is maximal. For each of the finitely many
other ep-(m + 1)-types q in B pick a primitive positive formula in p which is not in
q; let φ(x1, . . . , xm, x) be the conjunction of all these formulas. Then the ep-type of
(f(a1), . . . , f(am)) contains ∃x : φ(x1, . . . , xm, x). Since the ep-type of (a1, . . . , am)
is maximal (again by Proposition 2.7.4) it must also contain this primitive positive
formula. We deduce the existence of a ∈ B such that B |= φ(a1, . . . , am, a) and
consequently B |= p(a1, . . . , am, a). It follows that the extension of f given by f(a) :=
b is still an isomorphism between substructures of B′. This was the step of going back
in a back-and-forth argument that shows that f can be extended to an automorphism
of B′, and the claim follows.

The homogeneity of B′ implies that B′ and B are ω-categorical by Lemma 4.3.1
(since variable identifications are existential positive, there is only a finite number
of inequivalent atomic formulas with n free variables). To prove that B is a model-
complete core, note that the argument above has shown that all relations of the
homogeneous expansion B′ of B and their complements have an existential positive
definition in B. The statement then follows from Theorem 4.5.1 (2).
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For the implication (iv) ⇒ (i), observe that a (finite or countably infinite) ω-
categorical structure B is a model-complete core if and only if it has a model-complete
core theory; this is an easy consequence of the Löwenheim-Skolem theorem (Theo-
rem 2.1.11). So it suffices to show that the first-order theory of B and T have the
same universal negative consequences, by Corollary 2.1.15. A universal negative sen-
tence φ is implied by T if and only if T ∪ {¬φ} is unsatisfiable, which is the case if
and only if B does not satisfy ¬φ (and hence satisfies φ). �

Theorem 4.6.1 implies a necessary and sufficient condition for whether a CSP can
be formulated with an ω-categorical template.

Corollary 4.6.2. Let A be a structure with a finite relational signature. Then
the following are equivalent.

(1) There is an ω-categorical template B such that CSP(B) = CSP(A);

(2) ∼Th(A)
n has for each n finite index;

(3) There exists a structure B with CSP(B) = CSP(A) which has for all n ≥ 1
finitely many primitively positively definable relations of arity n.

Proof. The implications from (1) to (3) and from (3) to (2) are easy. The
implication from (2) to (1) follows from (ii)⇒ (iv) in Theorem 4.6.1. �

A related existential positive variant of the theorem of Ryll-Nardzewski has been
found by Pech and Pech [309]; their version is less general than the variant presented
here since it does not cover the following example.

Example 4.6.3. The structure (Z;<) has infinitely many 2-types, but only three
maximal existential positive n-types for each n. And indeed, the ω-categorical model-
complete core (Q;<) satisfies the same existential positive sentences as (Z;<). 4

Simmons’ theorem. The following is due to Simmons [339], and another im-
mediate consequence of Theorem 4.6.1 Recall the joint embedding property, which has
been defined for classes of structures in Section 2.3; a theory T has the joint embed-
ding property (JEP) if for any two models B1,B2 of T there exists a model C of T
that embeds both B1 and B2.

Theorem 4.6.4 (Simmons [339]). Let T be a theory with the JEP. Then the
following are equivalent.

• T has an ω-categorical model companion.
• For every n, the theory T has finitely many maximal existential n-types.

In particular, every ω-categorical theory has an ω-categorical model companion.

Proof. By appropriately choosing the signature and applying Theorem 4.6.1 to
the corresponding theory, as in Corollary 2.5.3. The second part of the statement
clearly follows from the first. �

The consequence stated for ω-categorical theories T at the end of Theorem 4.6.4
has first been shown by Saracino [327].

Corollary 4.6.5. An ω-categorical structure is model-complete if and only if its
first-order theory is equivalent to a ∀∃-theory.

Proof. Follows from Corollary 4.7.6. �
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4.7. Constructing Countably Categorical Structures

In this section we present powerful techniques to construct ω-categorical struc-
tures from known ones:

• generic superpositions (Section 4.7.1),
• first-order interpretations (Section 4.7.2),
• forming model companions, and, more generally,
• forming model-complete cores (Section 4.7.3).

In Section 4.7.4 we present an application of constructing ω-categorical structures by
taking model-complete cores.

4.7.1. Generic superpositions. If two ω-categorical structures A and B have
disjoint signatures and no algebraicity, then their expansions A′ and B′ by all first-
order definable relations are homogeneous and still have no algebraicity. Hence, A′

and B′ have a generic superposition (A′) ∗ (B′) as defined in Section 2.3.6, and the
generic superposition is still ω-categorical. Suppose that A has the signature τ and
B has the signature ρ and that τ and ρ are disjoint. Then the (ρ ∪ τ)-reduct C of
(A′) ∗ (B′) is called the generic superposition of A and B, and denoted by A ∗B, too
(this is a slight generalisation of the definitions given in Section 2.3.6). The following
can be shown by an easy back-and-forth argument.

Lemma 4.7.1. Let C be the generic superposition of A and B. Then the reduct of
C in the signature of A is isomorphic to A, and the reduct of C in the signature of B
is isomorphic to B.

We mention that the generic superposition C is uniquely given by the following
properties (see [62]).

• For all k ∈ N and a, b ∈ Ck with pairwise distinct entries, the orbit of a under
Aut(Cτ ) and the orbit of b under Aut(Cρ) have a non-empty intersection.
• For all a ∈ Ck, k ∈ N the orbit of a under Aut(C) is the intersection of the

orbit of a under Aut(Cτ ) and the orbit of a under Aut(Cρ).

Generic superpositions inherit some of the properties from their constituents.

Lemma 4.7.2. Let A and B be ω-categorical model-complete cores. Then A ∗B
is an ω-categorical model-complete core as well.

Proof. The generic superposition is a reduct of an ω-categorical structure and
hence ω-categorical. To show that A ∗B is a model-complete core we verify item (2)
in Theorem 4.5.1. Let A′ and B′ be the expansions of A and B′ by all first-order
definable relations so that A∗B is a reduct of the homogeneous structure A′∗B′. Since
A is a model-complete core, all relations of A′ have an existential positive definition
in A, and likewise all relations of B′ have an existential positive definition in B.
Therefore, A′ ∗ B′ is a homogeneous expansion of A ∗ B such that all relations of
A′ ∗B′ and their complements have an existential positive definition A ∗B, which is
item (2) in Theorem 4.5.1. �

4.7.2. Countable categoricity from interpretations. Many ω-categorical
structures can be derived from other ω-categorical structures via first-order interpre-
tations.

Lemma 4.7.3. Let A be an ω-categorical structure. Then every structure B that
is first-order interpretable in A with finitely many parameters is ω-categorical.

Proof. By the theorem of Ryll-Nardzewski (Theorem 4.1.6) it suffices to show
that the number o(n) of orbits of n-tuples under Aut(B) is finite, for every n. If B
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is the expansion of A by a constant c, then oB(n) ≤ oA(n + 1) since the map that
sends the orbit of t to the orbit of (c, t) is an injection. If B has a d-dimensional
interpretation in A then oB(n) ≤ oA(dn) and hence is finite, too. �

Note that in particular all first-order reducts of an ω-categorical structure and
all expansions of an ω-categorical structure by finitely many constants are again ω-
categorical.

4.7.3. Forming model-complete cores. Recall that a structure C is called a
core if and only if all endomorphisms of B are embeddings. If C is ω-categorical, this
is equivalent to saying that the first-order theory of C is a core theory (an easy con-
sequence of the Löwenheim-Skolem theorem, Theorem 2.1.11). We present a simple
proof of the following result from [48].

Theorem 4.7.4 (Theorem 16 in [48]). Every countable ω-categorical structure B
is homomorphically equivalent to an ω-categorical model-complete core C. All model-
complete cores of B are isomorphic to C.

Proof. Let T be the first-order theory of B; clearly, T has the JHP. Since T is ω-
categorical, ∼Tn has finite index for each n (Theorem 4.1.6), and Theorem 4.6.1 implies
that T has a core companion S which is either ω-categorical or the theory of a finite
structure. Let C be the unique countable model of S. By Theorem 2.7.11, the theory
S is unique up to equivalence of first-order theories, so it follows that C is unique
up to isomorphism. Finally, B and C have the same universal negative theory and
are ω-categorical, and therefore Lemma 4.1.7 implies that they are homomorphically
equivalent, which proves the statement. �

Since the model-complete core C of B from the previous theorem is unique up to
isomorphism, we call it the model-complete core of B.

Remark 4.7.5. If h is a homomorphism from a countable ω-categorical structure
B to its model-complete core C, and i is a homomorphism from C to B, then i must in
fact be an embedding: h◦i is an endomorphism of C, and hence must be an embedding
because C is a model-complete core. This implies that i must be an embedding, too.
So the model-complete core of B embeds into B.

The existence of model-complete cores for ω-categorical structures also yields yet
another characterisation of ω-categorical model-complete cores.

Corollary 4.7.6. An ω-categorical structure is a model-complete core if and
only if its first-order theory T is equivalent to a ∀∃+-theory.

Proof. The forward implication is Proposition 2.6.13. For the backwards impli-

cation, assume that T is equivalent to a ∀∃+-theory. Then T is equivalent to TKH+

.
Theorem 4.7.4 implies that T has a core companion, and by Theorem 2.7.11, T is its
own model companion, and hence model complete. �

The following gives an indication that the model-complete core of an ω-categorical
structure B is typically ‘simpler’ than B.

Proposition 4.7.7. Let B be a countable ω-categorical structure, and let C be
its model-complete core. Then the following statements hold.

(1) If B is homogeneous, then C is homogeneous as well.
(2) If i is a homomorphism from C to B and t1, t2 ∈ Cn lie in the same orbit

under Aut(C), then there exist endomorphisms e1, e2 ∈ End(B) such that
e1(i(t1)) = i(t2) and e2(i(t2)) = i(t1).
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(3) If i is a homomorphism from C to B and t1, t2 ∈ Cn are such that i(t1) and
i(t2) lie in the same orbit under Aut(B), then t1 and t2 lie in the same orbit
under Aut(C).

(4) For every n, the number of orbits of n-tuples under Aut(C) is at most the
number of orbits of n-tuples under Aut(B).

(5) if for every n, the number of orbits of n-tuples under Aut(C) equals the
number of orbits of n-tuples under Aut(B), then B and C are isomorphic.

Proof. Let h be a homomorphism from B to C, and i be a homomorphism from
C to B. To prove (2), suppose that t1 and t2 lie in the same orbit. Then t3 := h(i(t1))
also lies in the same orbit as t2 because C is a model-complete core; let γ ∈ Aut(C)
be such that it maps t3 to t2. Then iγh is an endomorphism of B that maps i(t1) to
i(t2). Symmetrically, there exists an endomorphism of B that maps i(t2) to i(t1).

We now prove (3). Since C is an ω-categorical model-complete core, there are
primitive positive definitions φ1 and φ2 of the orbits of t1 and t2. Suppose that there
exists β ∈ Aut(B) that maps i(t1) to i(t2). Since h, β, and i preserve primitive
positive formulas, the tuple t3 := h(βi(t1)) satisfies φ1. As βi(t1) = i(t2), the tuple
t3 can also be written as h(i(t2)), and hence also satisfies φ2. Thus, φ1 and φ2 define
the same orbit, and t1 and t2 are in the same orbit.

(1) and (4) are an immediate consequence of (3).
For (5), let n ∈ N, t ∈ Bn, and e ∈ End(B). Select from each orbit O of n-

tuples under Aut(C) a tuple sO; then (3) shows that the map I from the orbits of
n-tuples under Aut(C) to the orbits of n-tuples under Aut(B) that maps O to the
orbit of i(sO) is an injection; by assumption, it must be a bijection. Arbitrarily
choose s from the preimage of the orbit of t under the map I, and s′ from the
preimage of the orbit of e(t). Then there are α, β ∈ Aut(B) such that αi(s) = t and
βi(s′) = e(t). Since C is a model-complete core, the endomorphism f ◦ e ◦ α ◦ i of C

is in Aut(C), so s and f ◦ e ◦ α ◦ i(s) lie in the same orbit under Aut(C). Note that
f ◦ e ◦α ◦ i(s) = f ◦ e(t) = f ◦β ◦ i(s′), and that f ◦β ◦ i is an endomorphism of C and

hence in Aut(C). So s′ lies in the same orbit as s, and e(t) lies in the same orbit as t.
This shows that B is a model-complete core, and hence B and C are isomorphic by
Theorem 4.7.4. �

Note that item (2) of Proposition 4.7.7 cannot be strengthened by requiring that
i(t2) and i(t1) lie in the same orbit, as the following example shows.

Example 4.7.8. Let B be the substructure of (Q;<) induced on Q \ (−1, 1).
Clearly, (Q;<) is the model-complete core of B. Let i be a homomorphism from
(Q;<) to B that maps the negative rationals to the rationals smaller than −1, and
that maps to non-negative rationals to rationals larger than 1. Then −1 and 1 lie
in the same orbit under Aut(Q;<), but i(−1) and i(1) lie in different orbits under
Aut(B). However, there are endomorphisms of B mapping i(−1) to i(1) and vice
versa. 4

4.7.4. Proving Cherlin, Shelah, and Shi. Using model companions we can
now also derive the theorem of Cherlin, Shelah, and Shi (Theorem 4.3.7) from The-
orem 4.3.8. We also obtain an even more powerful existential positive variant of
Theorem 4.3.7; both are combined in the following corollary.

Corollary 4.7.9. Let F be a finite set of finite connected τ -structures. Then
there are

(1) a countable ω-categorical model-complete structure B such that Age(B) =
Forbhom(F) (this is the structure from Theorem 4.3.7);
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(2) a countable ω-categorical model-complete core structure B such that a count-
able structure maps homomorphically to B if and only if it is F-free.

Proof. By Theorem 4.3.8 there exists an ω-categorical structure C such that
Age(C) = Forbhom(F). By Theorem 4.6.4, the model companion B of C exists,
satisfies Age(B) = Forbhom(F), and is ω-categorical, showing (1). Likewise, we can
use Theorem 4.7.4 and obtain that the model-complete core of C has the required
properties in (2). �





CHAPTER 5

Examples

The structure (Q;<) was an important running example in the previous section.
First-order reducts of (Q;<) provide further examples of ω-categorical structures,
and they will be studied in great detail in Chapter 12. In this chapter, we present
other ω-categorical structures A that will not be treated at the same level of detail.
For example, we treat homogeneous C-relations (Section 5.1), dense semilinear orders
(Section 5.2), and the atomless Boolean algebra (Section 5.3). In each case, we give
a brief discussion on what is known about CSPs for first-order reducts of these ω-
categorical structures. Thereby, we revisit many problems from Section 1.6. We also
discuss constructions of ω-categorical structures that serve as templates for network
satisfaction problems for certain finite relation algebras (Section 5.5) or for problems
in fragments of existential second-order logic (Section 5.6).

The ω-categorical structures presented in this chapter are chosen to illustrate the
diversity of the class of all ω-categorical structures, and many computational problems
and classes of computational problems from the literature can be formulated as CSPs
for these structures.

5.1. Phylogeny Constraints and Homogeneous C-relations

The rooted-triple satisfiability problem from Section 1.6.2 can be formulated as
CSP(B) for an ω-categorical template B (an observation from [48]). There are various
different ways to define such a structure B; the most convenient for us is via Fräıssé-
amalgamation (Section 5.1.1). The resulting homogeneous structure can be found
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au bv

au bv

B1

B2

Figure 5.1. Illustration for the proof of Proposition 5.1.2 and for Section 5.2.3.

in [128] and appears explicitly in the model theory literature about so-called C-
relations; this is discussed in Section 5.1.2.

5.1.1. Leaf structures. A rooted tree (see Section 1.6.2) is called binary if
the root has degree zero (in which case the tree consists of just one vertex) or two,
and all other vertices have degree one (i.e., they are leaves) or three. Let T be the
class of all finite rooted binary trees T. Clearly, T is not closed under substructures.
The closure of T under substructures does not satisfy the amalgamation property
(Figure 5.1 shows two trees with the common set of leaves {a, b, u, v} that cannot
be amalgamated; in this figure, we did not indicate the roots but draw directed
arcs instead). Generalising our notation from Section 1.6.2, we define the youngest
common ancestor yca(S) of a subset S of the nodes of T to be the node w that lies
in T above each vertex in S and has maximal distance from the root of T.

Definition 5.1.1. The leaf structure C of a tree T ∈ T with leaves L is the
relational structure (L; |) where | is a ternary relation symbol, and ab|c holds in C iff
yca({a, b}) lies strictly below yca({a, b, c}) in T.

We also call T the underlying tree of C. Let C be the class of all leaf structures
for trees from T .

Proposition 5.1.2. The class C is an amalgamation class.

Proof. Closure under isomorphisms holds by definition, and closure under sub-
structures is easy to see. For the amalgamation property, let B1,B2 ∈ C be such that
A = B1∩B2 is a substructure of both B1 and B2. To show that there is an amalgam
of B1 and B2 over A in C, we inductively assume that the statement has been shown
for all triples (A,B′1,B

′
2) where B′1 ∪B′2 is a proper subset of B1 ∪B2.

Let T1 be the rooted binary tree underlying B1, and T2 the rooted binary tree
underlying B2. Let B1

1 ∈ C be the substructure of B1 induced on the vertices below
one of the children of the root of T1, and B2

1 ∈ C be the substructure of B1 induced
on the vertices below the other child of the root of T1. The structures B1

2 and B2
2

are defined analogously for B2 instead of B1.
First consider the case that there is a vertex u that lies in both B1

1 and B1
2, and a

vertex v that lies in both B1
2 and B2

1. In this case no vertex w from B2
2 can lie inside

B1: for otherwise, w is either in B1
1, in which case we have uw|v in B1, or in B2

1, in
which case we have vw|u in B1. But since u, v, w are in A, this is in contradiction to
the fact that uv|w holds in B2. Let C′ ∈ C be the amalgam of B1 and B1

2 over A,
which exists by inductive assumption, and let T′ ∈ T be its underlying tree. Now let
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T be the tree with root r and T′ as a subtree, and the underlying tree of B2
2 as the

other subtree. It is straightforward to verify that the leaf structure of T is in C, and
that it is an amalgam of B1 and B2 over A (via the identity embeddings).

Up to symmetry, the only remaining essentially different case we have to consider
is that B1

1 ∪ B1
2 and B2

1 ∪ B2
2 are disjoint. In this case it is similarly straightforward

to first amalgamate B1
1 with B1

2 and B2
1 with B2

2 to obtain an amalgam of B1 and
B2; the details are left to the reader. �

Let (L; |) denote the Fräıssé-limit of C. The structure (L; |) is homogeneous in a
finite relational signature, so it is a fortiori model complete. Clearly, (L; |) is a core:
every endomorphism of (L; |) preserves the binary relation defined by xx|y, which
is equivalent to 6=, and hence must be injective. Moreover, the formula ¬(xy|z) is
equivalent to yz|x ∨ zx|y ∨ x = y = z, and hence is preserved by all endomorphisms
as well. Since Age(L; |) is the class of all leaf structures for structures from T , it is
clear that CSP(L; |) is the rooted triple satisfiability problem (Section 1.6.2).

5.1.2. C-relations. The relation defined by xy|z on L from the previous section
is a so-called C-relation, following the terminology of Adeleke and Neumann [3],
which became an important concept in model theory [200,279]. For a discussion of
C-relations in the context of the constraint satisfaction problem, see [68].

A ternary relation C is said to be a C-relation on a set L if for all a, b, c, d ∈ L
the following conditions hold:

C1 C(a; b, c)⇒ C(a; c, b);
C2 C(a; b, c)⇒ ¬C(b; a, c);
C3 C(a; b, c)⇒ C(a; d, c) ∨ C(d; b, c);
C4 a 6= b⇒ C(a; b, b).

A C-relation is called proper if it satisfies

C5 ∀b, c∃a : C(a; b, c);
C6 ∀a, b

(
a 6= b⇒ ∃c(b 6= c ∧ C(a; b, c)

)
.

A C-relation is called dense if it satisfies

C7 ∀a, b, c
(
C(a; b, c)⇒ ∃e (C(e; b, c) ∧ C(a; b, e))

)
and it is called uniform with branching number 2, or short binary branching , if it
satisfies

∀x, y, z
(
(x 6= y ∨ x 6= z ∨ y 6= z)⇒ (C(x; y, z) ∨ C(y;x, z) ∨ C(z;x, y))

)
.

The structure (L;C) is also called a C-set. A structure B is said to be relatively
k-transitive if for every partial isomorphism f between substructures of B of size k
there exists an automorphism of B that extends f .

Theorem 5.1.3 (Theorem 14.7 in [4] and comments thereafter). Let (L;C) be
a relatively 3-transitive C-set. Then (L;C) is ω-categorical. There is a relatively
3-transitive countable C-set which is dense and binary branching, and unique up to
isomorphism.

Note that the relation | on L satisfies all the properties in Theorem 5.1.3; also
this is discussed in [4]. In fact, the properties C1-C4 together with the property to
be binary branching provide a universal axiomatisation of Age(L; |) (Part III in [4]),
showing that (L; |) is finitely bounded (Lemma 2.3.14). It also follows that the theory
of (L; |) is the model companion of the theory of binary branching C-relations.
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5.1.3. The quartet satisfiability problem. A similar amalgamation approach
can be used to construct a homogeneous template for the quartet satisfiability problem
from Section 1.6.2. Alternatively, an ω-categorical template for the quartet satisfia-
bility problem can be given via a first-order reduct (L;Q) of (L; |).

Definition 5.1.4. If u1, . . . , uk and v1, . . . , vl are leaves in a rooted tree T, then
we write u1 . . . uk|v1 . . . , vl if u := yca({u1, . . . , uk}) and v := yca({v1, . . . , vl}) are
disjoint in T, i.e., neither u lies above v nor v lies above u in T.

The first-order definition of Q(x, y, u, v) is

(xy|uv) ∨ (uv|x ∧ vx|y) ∨ (xy|u ∧ yu|v) .

Indeed, if u, v, x, y ∈ L, and T is the tree underlying the substructure of (L; |) induced
on {u, v, x, y}, then the given formula describes the situation that the shortest path
from x to y in T does not intersect the shortest path from u to v in T. Note that
whether this is true is in fact independent from the position of the root of T. We leave
the verification to the reader that CSP(L;Q) indeed describes the quartet satisfiability
problem. Lemma 4.7.3 implies the ω-categoricity of (L;Q). Similarly as for the C-
relation given above, an axiomatic treatment of (L;Q) has been given in [4]; there,
the relation Q was called a D-relation, and this is standard terminology in model
theory. As we have mentioned above, the structure (L;Q) can also be defined as a
Fräıssé-limit of D-relations on finite sets (see Cameron [129]).

5.2. Branching-Time Constraints and Semilinear Orders

The branching-time satisfiability problem from Section 1.6.3 can be formulated
as CSP(B) for an ω-categorical structure B. This has been observed in [90] and can
be shown in various ways.

5.2.1. An explicit construction. Let S be the set of all non-empty finite se-
quences of rational numbers. For

a = (q1, q1, . . . , qn), b = (q′1, q
′
1, . . . , q

′
m), n ≤ m

we write a < b if one of the following conditions holds:

• a is a proper initial subsequence of b, i.e., n < m and qi = q′i for 1 ≤ i ≤ n;
• qi = q′i for 1 ≤ i < n, and qn < q′n.

We use a ≤ b to denote (a < b) ∨ (a = b), and ‖ denotes the binary relation that
contains all pairs of elements that are equal or incomparable with respect to ≤. A
proof that (S;≤, ‖, 6=) is ω-categorical with a transitive automorphism group can be
found in [4] (Section 5). The reduct (S;≤) of this structure is a semilinear order , i.e.,
for all x ∈ S, the set {y | y ≤ x} is linearly ordered by <. Such structures have been
studied systematically in the context of infinite permutation groups; see [129, 162].
We warn the reader that in some publications the order is reversed, so that {y | y ≥ x}
is linearly ordered by <. Since the structure (S;≤, ‖, 6=) has the same age as the
structure C constructed in Section 1.6.3, we obtain the following.

Proposition 5.2.1. The branching-time satisfiability problem is CSP(S;≤, ‖, 6=).

Note that the structure (S;≤, ‖, 6=) is not model-complete. To see this, first
observe that (S;≤) is a meet-semilattice (Example 2.1.2). Indeed, for any two a, b ∈ S,
there exists a least upper bound a ∧ b of a and b: if a and b are comparable, then
a ∧ b ∈ {a, b}. Otherwise, let c be the longest common prefix of a and b. Note that
a = (c, a′) for some a′ ∈ S; let a′′ ∈ Q be the first entry of a. Similarly, b = (c, b′)
for some b′ ∈ S; let b′′ ∈ Q be the first entry of a. Then (c,min(a′′, b′′)) is the least
upper bound of a and b.
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Now observe that for any two x, y ∈ S that are incomparable with respect to ≤
there exists an embedding e of (S;≤) which fixes all elements of S except for C :={
u | (x ∧ y) < u

}
, and which maps for every u′ ∈ S the element u = (x ∧ y, u′) ∈ C

to (x ∧ y, 0, u′). Then e preserves ≤, but it does not preserve ∧ because

e(x) ∧ e(y) = (x ∧ y, 0)

6= x ∧ y = e(x ∧ y).

This shows that (S;≤) is not model-complete.
However, by Theorem 4.6.4 the structure (S;≤, ‖, 6=) has an (up to isomorphism

unique) ω-categorical model companion B, which is also a template for the branching-
time satisfiability problem. In the following section this template will be constructed
more directly.

5.2.2. Construction via existential closure. In this section we essentially
follow the presentation in [53]. Let T be the first-order theory of semilinear orders. By
Corollary 2.7.5 there exists a countable semilinear order (T;≤) which is existentially
closed for T . Clearly, (T;≤) is

• downwards directed : for all x, y ∈ T there exists z ∈ T such that z ≤ x and
z ≤ y;
• dense: for all x, y ∈ T such that x < y there exists z ∈ T such that x < z < y;
• unbounded : for every x ∈ T there are y, z ∈ T such that y < x < z;
• binary branching : (a) for all x, y ∈ T such that x < y there exists u ∈ T such

that u < y and u|x, and (b) for any three incomparable elements of T there
is an element in T that is larger than two out of the three, and incomparable
to the third;

• nice (adopting the terminology from [165]): for every x, y ∈ T such that x|y
there exists z ∈ T such that z > x and z|y.

• without joins: for all x, y, z ∈ T with x, y ≤ z and x, y incomparable, there
exists a u ∈ T such that x, y ≤ u and u < z.

It can be shown by a back-and-forth argument that all countable, downwards directed,
dense, unbounded, nice, and binary branching semilinear orders without joins are
isomorphic to (T;≤). For a proof, see [53] (Proposition 3.4); this also follows from
results of Droste [163] and Droste, Holland, and Macpherson [164]. Since all of
the properties of (T;≤) listed above can be expressed by first-order sentences, it
follows that (T;≤) is ω-categorical. Moreover, the theory of (T;≤) is the model
companion of the theory of semilinear orders (Theorem 2.7.16). Again writing a ≤ b
for (a < b) ∨ (a = b) and ‖ for the binary relation that contains all pairs of elements
that are equal or incomparable with respect to ≤, we obtain that CSP(T;≤, ‖, 6=)
equals the branching-time satisfiability problem.

5.2.3. Construction via Fräıssé amalgamation. The age of (T;≤) is not an
amalgamation class: an illustration of an amalgamation diagram that fails can be
found in Figure 5.1. Let | be the ternary relation with the following primitive positive
definition over (T;≤).

xy|z :⇔ ∃u
(
(u ≤ x) ∧ (u ≤ y) ∧ ¬(u ≤ z) ∧ ¬(z ≤ u)

)
.

Proposition 5.2.2 (Proposition 3.4 in [53]). (T;≤, |) is homogeneous.

We are not aware of a reference for the following fact.

Proposition 5.2.3. (T;≤, |) is finitely bounded.
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Proof. The definition of semilinear orders can be expressed by a universal sen-
tence φ (with three variables). Writing x|y as a shortcut for ¬(x ≤ y)∧¬(y ≤ x), we
claim that the additional axioms

∀x, y, z, u : (u ≤ x ∧ u ≤ y ∧ u|z)⇒ xy|z (20)

∀x, y, z : (xy|z ⇒ yx|z) (21)

∀x, y, z :
(
xy|z ⇒ x|z ∧ y|z

)
(22)

∀x, y, z : ¬(xy|z ∧ yz|x) (23)

∀x, y, z : (x|y ∧ y|z ∧ x|y)⇒ (xy|z ∨ yz|x ∨ zx|y) (24)

∀x, y, z, u : (xy|z ∧ yz|u)⇒ xz|u (25)

provide a universal axiomatisation of Age(T;≤, |). The claim proves the statement
by Lemma 2.3.14. Clearly, (T;≤, |) satisfies all the above axioms.

Let A be a finite {≤, |}-structure which satisfies the above axioms We prove
by induction on |A| that A embeds into (T;≤, |). We already know that the {≤}-
reduct of A must be a semilinear order. If |A| ≤ 2 then the statement is immediate,
so suppose that |A| ≥ 3. We first consider the case that there exists r ∈ A with
r ≤ a for all a ∈ A. Then by the inductive assumption there exists an embedding
e : A[A \ {r}] ↪→ (T;≤, |). Since (T;≤) is unbounded and downwards directed there
exists t ∈ T such that t ≤ e(a) for all a ∈ A. If rx|y, xr|y, or xy|r held in A for some
x, y ∈ A, then x, y, r show that A does not satisfy (22), a contradiction. Since neither
te(x)|e(y), e(x)t|e(y), nor e(x)e(y)|t holds in (T;≤, |), it follows that the extension of
e that maps r to t is an embedding of A into (T;≤, |).

Otherwise, there are r1, r2 ∈ A with r1|r2 such that there is no a ∈ A with
a < r1 or a < r2. Note that (20) implies that ab|c for all a, b ∈ Bi := {u | ri ≤ u} and
c ∈ A\Bi. Also note that (23) implies that ¬ab|c for a ∈ B1, b ∈ B2, and c ∈ B1∪B2.
We claim that there exists a partition of A into two non-empty sets B1, B2 such that
ab|c for all a, b ∈ B1 and c ∈ B2 and ab|c for all a, b ∈ B2 and c ∈ B1. Otherwise,
choose B1 and B2 such that ab|c for all a, b ∈ B1 and c ∈ B2 and ab|c for all a, b ∈ B2

and c ∈ B1 and such that |B1| + |B2| is maximal. Suppose for contradiction that
there exists d ∈ A \ (B1 ∪ B2). If d ≤ b for b ∈ B1, then (20) implies that db|a for
every a ∈ B2. Axioms (25) and (21) imply that dc|a for all c ∈ B1, contradicting the
maximality of |B1| + |B2|. With similar reasoning we can infer that we must have
that b1|d and b2|d for all b1 ∈ B1 and b2 ∈ B2. Therefore, (24) implies that b1b2|d,
b2d|b1, or d|b1b2. In each of the cases we may use (25) to derive a contradiction to
the maximality of |B1 +B2|.

By the inductive assumption there exist embeddings ei : A[Bi] ↪→ (T;≤, |). Since
(T;≤) is downwards directed and unbounded there exist u1, u2 ∈ T such that ui <
ei(a) for all a ∈ Bi. Using the homogeneity of (T;≤, |) we may assume that u1|u2 and
consequently that e1(a1)|e2(a2) for all a1 ∈ B1 and a2 ∈ B2. It is now straightforward
to verify that the common extension e of e1 and e2 to all of A is an embedding of A
into (T;≤, |). �

Hence, we could have introduced (T;≤) as the reduct of the Fräıssé-limit of the
class of all finite {≤, |}-structures that satisfy the universal sentences from the proof
of Proposition 5.2.3. We refrain from doing so since the proof of the amalgamation
property of this class is tedious.

Note that Aut(T;≤) has four orbitals, with the primitive positive definitions
x ≤ y∧x 6= y, y ≤ x∧x 6= y, x‖y∧x 6= y, and x = y in (T;≤, ‖, 6=). Since all relations
of (T;≤, ‖, 6=) are binary, this implies that every endomorphism of (T;≤, ‖, 6=) must
be an embedding, and hence (T;≤, ‖, 6=) is a core.
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5.3. Set Constraints and the Atomless Boolean Algebra

In Section 1.6.5 we defined the problem of Basic Set Constraint Satisfiability .
This problem, and many other set constraint satisfaction problems, can also be for-
mulated as a CSP for an ω-categorical structure. We first define what we mean by
a set constraint satisfaction problem and later explain how to construct ω-categorical
templates.

Let S be the structure with the domain P(N), the set of all subsets of natural
numbers, and with the signature {∩,∪, c,0,1}, where

• ∩ is a binary function symbol that denotes intersection, i.e., ∩S = ∩;
• ∪ is a binary function symbol for union, i.e., ∪S = ∪;
• c is a unary function symbol for complementation, i.e., cS is the function

that maps S ⊆ N to N \ S;
• 0 and 1 are constants (treated as 0-ary function symbols) denoting the empty

set ∅ and the full set N, respectively.

A set constraint language is a relational structure with the domain P(N) whose
relations have a quantifier-free first-order definition in S. For example, the rela-
tion {(x, y, z) ∈ P(N)3 | x ∩ y ⊆ z} has the quantifier-free first-order definition
z ∩ (x ∩ y) = x ∩ y over S.

The first-order theory of the structure S is certainly not ω-categorical; it is easy
to verify that there are infinitely many pairwise inequivalent first-order formulas with
one free variable. However, all set constraint satisfaction problems can be formulated
with an ω-categorical template.

Proposition 5.3.1. Let C be a set constraint language. Then there exists an
ω-categorical structure B such that B and C have the same existential theory. In
particular, if C has finite signature, then B and C have the same CSP.

Proof. Let φ1, φ2, . . . be quantifier-free first-order formulas that define the re-
lations RC

1 , R
C
2 , . . . of C over S = (P(N);∪,∩, c,0,1). Let A be the countable atom-

less Boolean algebra (Example 4.1.4) and let RA
1 , R

A
2 , . . . be the relations defined by

φ1, φ2, . . . over the atomless Boolean algebra A, where ∧,∨,¬, 0, 1 play the role of
∩,∪, c,0,1. The structure B = (A;RA

1 , R
A
2 , . . . ) is ω-categorical (see the comment

after Lemma 4.7.3). To verify that B and C have the same existential theory, let
ψ be an existential sentence over the signature {R1, R2, . . . }. Replace each atomic
formula of the form Ri(x1, . . . , xk) in ψ by the formula φi(x1, . . . , xk). The resulting
formula ψ′ is a quantifier-free first-order formula in the signature of Boolean algebras,
{∪,∩, c,0,1}. Clearly, C |= ψ if and only if S |= ψ′ and B |= ψ if and only if A |= ψ′.
It therefore suffices to show that S |= ψ′ if and only if A |= ψ′. To see this, first note
that the structure (P(N);∪,∩, c,0,1) is a Boolean algebra, with

• ∩ and ∪ playing the role of ∧ and ∨, respectively;
• c playing the role of −;
• 0 and 1 playing the role of 0 and 1.

Now the statement follows from the well-known fact that a quantifier-free formula is
satisfiable in some infinite Boolean algebra if and only if it is satisfiable in all infinite
Boolean algebras (see, e.g., Corollary 5.7 in [289]). �

All finite set constraint languages have a CSP in NP [64]. A large class of
polynomial-time tractable set constraint languages has been described in [64]; the
class given there is maximal tractable in the sense that every strictly larger class of
set constraint languages contains a finite subset with an NP-hard CSP.
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5.4. Spatial Reasoning

In this section we present a homogeneous structure R whose CSP equals the
network satisfaction problem for RCC5 from Section 1.6.6 (for an explanation of the
identification of network satisfaction problems with CSPs see Section 1.5.3). We
present two different ways of constructing R.

5.4.1. Construction via Fräıssé-amalgamation. Our first construction fol-
lows the presentation in [55]. Let S be the structure with domain S := P(N) \ {∅},
i.e., the set of all non-empty subsets of the natural numbers N. The signature of S
consists of the binary relation symbols P,DR,PO, and for x, y ⊆ N we have

(x, y) ∈ PS iff x ⊆ y, “x is contained in y”

(x, y) ∈ DRS iff x ∩ y = ∅, “x and y are disjoint”

(x, y) ∈ POS iff x 6⊆ y ∧ y 6⊆ x ∧ x ∩ y 6= ∅, “x and y properly overlap”.

Note that every pair (x, y) of distinct elements of S is contained in precisely one of the

relations PS, {(x, y) | (y, x) ∈ PS}, DRS, and POS. Also note that the structure S
is neither ω-categorical nor homogeneous. But there exists a homogeneous structure
with the same age as S; this follows from Fräıssé’s theorem (Theorem 2.3.8) and the
following proposition.

Proposition 5.4.1 (Theorem 30 in [55]). Age(S) is a strong amalgamation class.

Proof. It suffices to verify the strong amalgamation property. Let A,B0,B1 ∈
Age(S) be such that A = B0 ∩ B1. We have to show that there exist embeddings
fi : Bi ↪→ S, for i ∈ {0, 1}, such that f0(a) = f1(a) for all a ∈ A and f0(B0)∩f1(B1) =
f0(A) = f1(A). For i ∈ {0, 1}, let ei : Bi ↪→ S be an embedding. We may choose e0

and e1 such that
⋃
b∈B0

e0(b) ∩
⋃
b∈B1

e1(b) = ∅. For b ∈ Bi and X ⊆ Bi, define

Ni(b) := {b′ ∈ Bi | (b′, b) ∈ PBi}

Ni(X) := {b′ ∈ Bi | ∃b ∈ X : (b′, b) ∈ PBi}.
We define fi : Bi → S by

fi(b) := ei(b) ∪
⋃

b′∈N1−i(Ni(b))

e1−i(b
′).

Note that if b ∈ A then N1(N0(b)) = N1(b) and N0(N1(b)) = N0(b), and f0(b) =
f1(b) = ei(b) ∪ e1−i(b). We claim that fi is an embedding. Let v, v′ ∈ Bi.

(1) If (v′, v) ∈ PBi then ei(v
′) ⊆ ei(v). Since PBi is transitive, N1−i(Ni(v

′)) ⊆
N1−i(Ni(v)), and hence fi(v

′) ⊆ fi(v). This shows that fi preserves P.
(2) To prove that fi is injective suppose that fi(v) = fi(v

′). Then by the
definition of fi, every element x ∈ ei(v′) ⊆ fi(v′) = fi(v) must be contained
in ei(v) or in e1−i(u) for some u ∈ N1−i(Ni(v)). Since ei(v

′)∩e1−i(u) = ∅, we
must have that x ∈ ei(v). We conclude that ei(v

′) ⊆ ei(v). Symmetrically,
one can show that ei(v) ⊆ ei(v′). Since ei is an embedding this implies that
v = v′ and proves the injectivity of fi.

(3) Now suppose that (v, v′) ∈ DRBi . Suppose for contradiction that there
exists x ∈ fi(v)∩ fi(v′). By the definition of fi this means that x ∈ ei(v) or
there exists u ∈ N1−i(Ni(v)) such that x ∈ e1−i(u).
• Suppose that x ∈ ei(v). By the definition of fi either x ∈ ei(v′) or there

exists u′ ∈ N1−i(Ni(v
′)) such that x ∈ e1−i(u

′). The latter is impossible
because ei(v) ∩ e1−i(u

′) = ∅. Thus, x ∈ ei(v) ∩ ei(v′), in contradiction

to the assumption that ei is an embedding and (v, v′) ∈ DRBi .
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• Suppose that there exists u ∈ N1−i(Ni(v)) such that x ∈ e1−i(u). By
the definition of fi either x ∈ ei(v′) or there exists u′ ∈ N1−i(Ni(v

′))
such that x ∈ e1−i(u

′). The former is impossible because e1−i(u) ∩
ei(v

′) = ∅. We thus have u ∈ N1−i(Ni(v)) and u′ ∈ N1−i(Ni(v
′)) such

that x ∈ e1−i(u) ∩ e1−i(u
′). Let w ∈ Ni(v) be such that u ∈ N1−i(w)

and let w′ ∈ Ni(v′) such that u′ ∈ N1−i(w
′). Since e1−i is an embedding

and x ∈ e1−i(u) ∩ e1−i(u
′) we have that (w,w′) /∈ DRB1−i , and since

w,w must be in A we have that (w,w′) /∈ DRBi . This in turn implies

that (v, v′) /∈ DRBi , in contradiction to the assumptions.

(4) Finally, suppose that (v, v′) ∈ POBi . Then there exist x ∈ ei(v) ∩ ei(v′),
y ∈ ei(v)\ei(v′), and y′ ∈ ei(v′)\ei(v). Note that x ∈ fi(v)∩fi(v′), y ∈ fi(v),
and y′ ∈ fi(v

′). Also note that y /∈ fi(v
′) since y /∈ ei(v

′) and ei(v) and
e1−i(u) are disjoint for every u ∈ Ni−1(Ni(v

′)). Similarly, y′ /∈ fi(v). This
shows that fi preserves PO.

Moreover, f0(u0) 6= f1(u1) for ui ∈ Bi \ A; this can be shown similarly as in (2).
Hence, f0(B0) ∩ f1(B1) = f0(A) = f1(A). This concludes the proof of the strong
amalgamation property of Age(S). �

Proposition 5.4.1 and Theorem 2.3.8 imply that there exists a countable homo-
geneous structure with the same age as S. Let R be the first-order expansion of this
structure where

• PP(x, y) is defined by P(x, y) ∧ x 6= y,
• PPI(x, y) is defined by P(y, x) ∧ x 6= y,
• EQ(x, y) is defined by x = y, and
• all other elements of the relation algebra RCC5 are defined as the respective

unions of PP,PPI,DR,PO,EQ.

It is now straightforward to verify that the relations of this structure satisfy the
composition table given in Figure 1.6.6. It follows that R is a square representation
of RCC5.

Proposition 5.4.2. R is a fully universal representation of RCC5.

Proof. Let A be a finite {PP,PPI,DR,PO,EQ}-structure that satisfies the ax-
ioms (8),(9), (10), and (11) from Section 1.6.6. It suffices to verify that the structure

(A; PPA ∪ EQA,DRA,POA) embeds into S. Suppose without loss of generality that

A = {1, . . . , n}. Then e : A→ P(N) given by e(a) := {b | (a, b) ∈ PPA ∪EQA} is such
an embedding. �

5.4.2. Construction via the atomless Boolean algebra. The structure R
can also be obtained from the atomless Boolean algebra (Example 4.1.4), following
the presentation in [66]. Let PP, PPI, DR, PO, and EQ be the binary relations with
the following first-order definitions in A (and their intuitive meaning in quotes).

PP(x, y) iff (x ∩ y = x) ∧ x 6= y ∧ x, y /∈ {0} ‘y properly contains x’

PPI(x, y) iff (x ∩ y = y) ∧ x 6= y ∧ x, y /∈ {0} ‘x properly contains y’

DR(x, y) iff (x ∩ y = 0) ∧ x 6= y ∧ x, y /∈ {0} ‘x and y are disjoint’

PO(x, y) iff ¬DR(x, y) ∧ ¬PP(x, y) ∧
¬PPI(x, y) ∧ x 6= y ∧ x, y /∈ {0} ‘x and y properly overlap’

EQ(x, y) iff x = y ∧ x, y /∈ {0} ‘x equals y’

The structure (A; PP,PPI,DR,PO,EQ) is a first-order reduct of A and hence
ω-categorical, and by Theorem 4.6.4 it has an ω-categorical model companion. We
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claim that the expansion of this structure by all binary first-order definable relations
is isomorphic to R as defined in Section 5.4.1. To prove this, first observe that A
satisfies the axioms (8),(9), (10), and (11) from Section 1.6.6. Hence, every finite
substructure of (A; PP∪EQ,DR,PO) embeds into S as we have seen in the proof of
Proposition 5.4.2. Conversely, every finite substructure of S embeds into (A; PP ∪
EQ,DR,PO). From this it follows that R and the structure constructed above have
the same age. Moreover, both structures are model-complete and ω-categorical, so
they must be isomorphic.

5.5. Finite Relation Algebras from Countably Categorical Structures

Every ω-categorical structure B gives rise to a finite relation algebra, which we call
the orbital relation algebra for B, and which is described by the following proposition.

Proposition 5.5.1. Let B be a structure such that Aut(B) has finitely many
orbitals (defined in Section 4.1.1). Then the unions of these orbitals form a proper
square relation algebra A.

Proof. Clearly, the orbitals of Aut(B) partition B2. Since composition is first-
order definable, it follows that unions of orbitals of Aut(B) are preserved under
composition. Also the other properties of proper relation algebras in Definition 1.5.1
are straightforward to verify. �

Note that not every ω-categorical structure provides a universal representation of
its orbital relation algebra: for example the K4-free Henson graph (Example 2.3.10)
has the same orbital relation algebra as the random graph (Example 2.3.9), but only
the latter provides a (fully) universal representation.

Proposition 5.5.2. Let A be a finite relation algebra with a fully universal square
representation B. Then B is finitely bounded and the network satisfaction problem
for A equals the constraint satisfaction problem B.

Proof. Besides some bounds of size at most two that make sure that the atomic
relations partition B2, it suffices to include appropriate three-element structures into
F that can be read off from the composition table of A. The statement about the
network satisfaction problem holds because fully universal representations are in par-
ticular universal (Proposition 1.5.10). �

The connection between (network satisfaction problems of) finite relation algebras
A and ω-categorical structures is clearest for a certain class of finite relation algebras,
namely those that have a normal representation [209].

Definition 5.5.3. A representation for A is called normal if it is square, fully
universal, and (as a relational structure, see Section 1.5.3) homogeneous.

Normal representations of finite relation algebras are ω-categorical (Lemma 4.3.1)
and clearly they are model-complete cores.

Corollary 5.5.4. Let A be a finite relation algebra with a normal representation
B. Then the orbital relation algebra of B is isomorphic to A.

Proof. The statement follows directly from the definition of the orbital relation
algebra from Proposition 5.5.1. �

Examples of finite relation algebras with a normal representation are the point
algebra (Example 1.5.2), RCC5 (Sections 1.6.6 and 5.4), and Allen’s Interval Algebra
which we revisit in the following example.
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Example 5.5.5. Allen’s Interval Algebra A from Section 1.6.1 is a normal rep-
resentation of its orbital relation algebra. It suffices to show that A is homoge-
neous. Let B be the expansion of (Q;<)[2], the full second power of (Q;<) (Def-
inition 3.5.3), by all binary first-order definable relations. We claim that B is ho-
mogeneous: if g : B1 → B2 is an isomorphism between finite substructures of A, let
Ci := {a ∈ Q | (a, b) ∈ Bi or (b, a) ∈ Bi}. The preservation of the relations E1,1, E1,2,
and E2,2 implies that g induces an function f : C1 → C2; this map must preserve <,
and (a, b) 7→ (f(a), f(b)) is an automorphism of B that extends g. Note that A is the
substructure of B with domain {(a, b) | a < b}; it is easy to see that substructures
of homogeneous structures whose domain is first-order definable are homogeneous as
well. 4

We finally present an example of a finite relation algebra with an ω-categorical
fully universal representation, but without normal representation.

Example 5.5.6. An example of a finite relation algebra with no normal rep-
resentation is the left-linear point algebra (Sections 1.6.3 and 5.2). The results in
Section 5.2.3 imply that the left-linear point algebra is the orbital relation algebra of
the ω-categorical structure (T;≤) and that it is a fully universal and square. 4

5.6. Fragments of Existential Second-Order Logic

Already in Section 1.4 we have pointed out the important role of existential
second-order logic in complexity theory, and the role of fragment of ESO, in par-
ticular of SNP, in constraint satisfaction. If CSP(B) is expressible in one of these
fragments, then this often means that B can be chosen to satisfy strong model-
theoretic properties (here we will use concepts that we have introduced in Chapter 2
and Chapter 4).

We start from first-order logic (in Section 5.6.1), then re-visit the logic MMSNP
from Section 1.4.4 (in Section 5.6.2), and then consider a further extension MMSNP2

(in Section 5.6.3). Throughout this section, if Φ is an ESO sentence, we write JΦK for
the class of all finite models of Φ.

5.6.1. Finitely many connected obstructions. Every CSP can be described
by homomorphically forbidding a set of finite connected structures (Lemma 1.1.8). In
this section we study CSPs that can be described by forbidding a finite set of finite
connected structures. It turns out that every such CSP can be formulated with an
ω-categorical template.

The same class of CSPs arises naturally in a different context. Recall that if B is a
structure with a finite relational signature τ , then CSP(B) can be viewed as a class of
finite τ -structures that homomorphically maps to B (as described in Section 1.1 and
Section 1.4). Consider the situation in which this class can be described by a first-order
sentence Φ in the sense that JΦK = CSP(B). If there is such a first-order sentence Φ
then we say that CSP(B) is in FO . It is clear that all CSPs that can be described by
homomorphically forbidding a finite set of finite connected structures are in FO; we
can in fact construct from the homomorphic obstructions a universal-negative sentence
describing the CSP. The converse implication follows from the following result, which
was a famous open problem in finite model theory until its solution by Rossman [326].
The theorem will not be needed further in this text and we do not present its proof.

Theorem 5.6.1 (Homomorphism Preservation in the Finite). Let τ be a finite
relational signature, and let Φ be a first-order τ -sentence. Then Φ is equivalent to
an existential positive sentence on all finite τ -structures if and only if the class of all
finite τ -models of Φ is closed under homomorphisms (Definition 1.1.7).
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In the remainder of this section, τ is a finite relational signature and B is a τ -
structure. Recall that CSP(B), viewed as a class of finite τ -structures, is closed under
inverse homomorphisms and disjoint unions. In particular, the class of all finite τ -
structures that do not map homomorphically to B is closed under homomorphisms,
and by Theorem 5.6.1 it can be described by an existential positive τ -sentence Ψ.
This leads us to the following.

Theorem 5.6.2. Let τ be a finite relational signature and let C be a class of finite
τ -structures. Then the following are equivalent.

(1) C = CSP(B) for some τ -structure B, and CSP(B) is in FO;
(2) C = Forbhom(F) for a finite set of finite connected τ -structures F ;
(3) C = CSP(B) for an ω-categorical τ -structure B, and there exists a universal-

negative sentence Ψ such that A ∈ C if and only if A |= Ψ.

Proof. (1) implies (2): The remarks above explain how to deduce from Theo-
rem 5.6.1 that there is an existential positive τ -sentence Ψ such that A maps homo-
morphically to B if and only if A satisfies ¬Ψ. The sentence ¬Ψ can be re-written
as a universal negative sentence in conjunctive normal form; let Φ be such a univer-
sal negative sentence of minimal size. We claim that the canonical database C for
each conjunct in Φ is connected. To see this, suppose that C has several connected
components. If one of them does not map homomorphically to B, then Φ was not
of minimal size, since the corresponding conjunct could have been replaced by the
(smaller) conjunctive query for the component. If all components map homomorphi-
cally to B, then so does C, a contradiction to the fact that C is the canonical database
of a conjunct of Φ. Therefore, we obtain finitely many connected τ -structures C, and
they form the desired set F .

(2) implies (3). We can apply Theorem 4.3.8 to the finite set F of finite con-
nected τ -structures, and obtain an ω-categorical τ -structure B such that CSP(B) =
Forbhom(F). When ψ is the canonical query for a structure C ∈ F , then ¬ψ is equiv-
alent to a universal-negative sentence. The conjunction over the all those universal-
negative formulas for all structures in F provides a universal-negative sentence Ψ with
the required properties.

(3) implies (1): trivial. �

5.6.2. CSPs in Monadic SNP. In this section we show that every CSP in
monadic SNP can be formulated using an ω-categorical template.

Theorem 5.6.3 (Theorem 7 in [60]). Let C be a structure with a finite relational
signature. If CSP(C) can be described by a monadic SNP sentence Φ, then there is
an ω-categorical B such that CSP(B) = CSP(C).

Proof. By Corollary 1.4.19, we can assume without loss of generality that Φ is a
connected and monotone monadic SNP sentence. Let P1, . . . , Pk be the existentially
quantified monadic predicates in Φ. Let τ ′ be the signature containing the input
relations from τ , the monadic relation symbols P1, . . . , Pk, and new monadic relation
symbols P ′1, . . . , P

′
k.

We replace positive literals of the form Pi(x) in Φ by ¬P ′i (x). We shall denote
the τ ′-formula obtained from Φ after this transformation by Φ′. Observe that each
clause ψ′ of Φ′ can be written as ¬ψ where ψ is quantifier-free primitive positive. We
define F to be the set of τ ′-structures containing for each clause ψ = ¬ψ′ in Φ′ the
canonical database of ψ′. We shall use the fact that a τ ′-structure A satisfies a clause
ψ′ if and only if the canonical database of ψ is not homomorphic to A. Since Φ is
connected, all structures in F are connected.
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Then Theorem 4.3.8 asserts the existence of an F-free ω-categorical τ ′-structure
B′ that is universal for all F-free structures. We use B′ to define the template B with
the properties required in the statement of the theorem we are about to prove. The
structure B is the τ -reduct of the restriction of B′ to the points with the property
that for all existential monadic predicates Pi, 1 ≤ i ≤ k, either Pi or P ′i holds (but
not both Pi and P ′i ). It follows from Theorem 4.7.3 that reducts of ω-categorical
structures and restrictions to first-order definable subsets of ω-categorical structures
are again ω-categorical. Hence, the resulting τ -structure B is ω-categorical.

We claim that JΦK = CSP(B). First, let A be a finite structure that has a
homomorphism h to B. Let A′ be the τ ′-expansion of A such that for all i ≤ k and
a ∈ A the relation Pi(a) holds in A′ if and only if Pi(h(a)) holds in B′, and P ′i (a)
holds in A′ if and only if P ′i (h(a)) holds in B′. Clearly, h defines a homomorphism
from A′ to B′. In consequence, none of the structures from F maps to A′. Hence,
the τ -reduct A of A′ satisfies Φ.

Conversely, let A be a finite τ -structure satisfying Φ. Consequently, there exists
a τ ′-expansion A′ of A that satisfies the first-order part of Φ′, and where for every
a ∈ A exactly one of Pi(a) or P ′i (a) holds. Clearly, no structure in F is homomorphic
to A′, and by the universality of B′ the τ ′-structure A′ is a substructure of B′. Since
for every a ∈ A exactly one of Pi(a) and P ′i (a) holds, A′ is also a substructure of
the restriction of B′ to B. Consequently, A is homomorphic to the τ -reduct of this
restriction. This completes the proof. �

5.6.3. Guarded monotone SNP. In this section we consider an expressive
generalisation of MMSNP introduced by Bienvenu, ten Cate, Lutz, and Wolter [44]
in the context of ontology-based data access, called guarded monotone SNP (also
called guarded disjunctive Datalog [44]). It has the same expressive power as the logic
MMSNP2 introduced by Madelaine [282], which is the extension of the class MMSNP
from Section 1.4.4 where we are also allowed to quantify over subsets of (extensional)
relations, rather than just over subsets of the domain [80]. See Figure 13.1.

Definition 5.6.4. Let Φ be a monotone SNP τ -sentence with existentially quan-
tified predicates ρ. Then Φ is called guarded if each conjunct of Φ can be written in
the form

α1 ∧ · · · ∧ αn ⇒ β1 ∨ · · · ∨ βm, where

• α1, . . . , αn are atomic (τ ∪ ρ)-formulas, called body atoms,
• β1, . . . , βm are atomic ρ-formulas, called head atoms,
• for every head atom βi there is a body atom αj such that αj contains all

variables from βi (such clauses are called guarded).

We do allow the case that m = 0, i.e., the case where the head consists of the empty
disjunction, which is equivalent to ⊥ (false).

The following proposition can be shown similarly as Proposition 1.4.11.

Proposition 5.6.5. Every guarded monotone SNP sentence Φ is equivalent to a
finite disjunction Φ1 ∨ · · · ∨ Φk of connected guarded monotone SNP sentences.

Similarly as in Corollary 1.4.15 is can be shown that if connected guarded mono-
tone SNP has a complexity dichotomy into P and NP-complete, then so has guarded
monotone SNP.

Theorem 5.6.6 (Theorem 2 in in [76]). For every sentence Φ in connected
guarded monotone SNP there exists a reduct C of a finitely bounded homogeneous
structures such that JΦK = CSP(C).
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Proof. Let Φ be a τ -sentence in connected guarded monotone SNP with existen-
tially quantified relation symbols {E1, . . . , Ek}. Let σ be the signature which contains
for every relation symbol R ∈ {E1, . . . , Ek} two new relation symbols R+ and R− of
the same arity and for every relation symbol R ∈ τ a new relation symbol R′. Let
φ be the first-order part of Φ, written in conjunctive normal form, and let n be the
number of variables in the largest clause of φ. Let φ′ be the sentence obtained from φ
by replacing each occurrence of R ∈ {E1, . . . , Ek} by R+ and each occurrence of ¬R
by R−, and finally each occurrence of R ∈ τ by R′. Let F be the (finite) class of all
finite σ-structures with at most n elements that do not satisfy φ′. By Theorem 4.3.8,
there exists a finitely bounded homogeneous (σ ∪ ρ)-structure B such that the age of
the σ-reduct C of B equals Forbemb(N ). We say that S ⊆ B is correctly labelled if for
every R ∈ {E1, . . . , Ek} of arity m and s1, . . . , sm ∈ S we have R−(s1, . . . , sm) if and
only if ¬R(s1, . . . , sm). Let B′ the (τ ∪ σ ∪ ρ)-expansion of B where R ∈ τ of arity
m denotes

{(t1, . . . , tm) ∈ (R′)B | {t1, . . . , tm} is correctly labelled}.

Since B is finitely bounded homogeneous, B′ is finitely bounded homogeneous, too.
Let C be the τ -reduct of B′. We claim that JΦK = CSP(C). First suppose that A is
a finite τ -structure that satisfies Φ. Then it has an {E1, . . . , Ek}-expansion A′ that
satisfies φ. Let A′′ be the σ-structure with the same domain as A′ where

• R′ denotes RA′ for each R ∈ τ ;
• R+ denotes RA′ for each R ∈ {E1, . . . , Ek};
• R− denotes ¬RA′ for each R ∈ {E1, . . . , Ek}.

Then A′′ satisfies φ′, and hence embeds into B. This embedding is a homomorphism
from A to C since the image of the embedding is correctly labelled by the construction
of A′′.

Conversely, suppose that A has a homomorphism h to C. Let A′ be the (τ ∪
{E1, . . . , Ek})-expansion of A by defining for every n-ary R ∈ {E1, . . . , Ek} that

(a1, . . . , an) ∈ RA if and only if (h(a1), . . . , h(an)) ∈ RB′ . Then each clause of φ is
satisfied, because each clause of φ is guarded: let x1, . . . , xm be the variables of some
clause of φ. If a1, . . . , am ∈ A satisfy the body of this clause, and ψ(ai1 , . . . , ail) is
a head atom of such a clause, then the set {h(ai1), . . . , h(ail)} is correctly labelled.
This implies that some of the head atoms of the clause must be true in A′ because
B′ satisfies φ′. �

Not all CSPs of finitely bounded homogeneous structures can be expressed in
GMSNP: similarly as in Example 1.4.20 it can be shown that CSP(Q;<) is not in
GMSNP [76].

5.7. Examples with Doubly Exponential Orbit Growth

This section presents an example of an ω-categorical structure B such that
CSP(B) is in NP, but there is no first-order reduct C of a homogeneous structure
with a finite relational signature such that CSP(B) = CSP(C). For this purpose, the
number of maximal ep-n-types of B is useful (see Section 4.6). Note that when two
structures have the same CSP, then for all n ≥ 1 they have the same number of max-
imal ep-n-types. The number of orbits of n-tuples under Aut(B) is un upper bound
for the number of maximal ep-n-types of B; equality holds if B is an ω-categorical
model-complete core.

Proposition 5.7.1. Let B be a reduct of a homogeneous relational τ -structure C
with maximal arity m. Then Aut(B) has at most 2|τ |n

m

orbits of n-tuples.
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Proof. An orbit of n-tuples under Aut(C) is uniquely described by the atomic
formulas that hold on a (equivalently, all) tuples from this orbit. Since each atomic
formula has at most m variables, there are at most |τ |nm possible atomic formulas
that can hold on such an n-tuple, which yields the bound. �

To construct the announced example we use a set constraint language.

Example 5.7.2. Let B be the structure that contains all relations of arity at most
three with a quantifier-free first-order definition in the atomless Boolean algebra A
(Example 4.1.4). Since A is ω-categorical, the signature of B is finite. We have
already mentioned in Section 5.3 that the CSP for all finite set constraint languages,
and in particular for CSP(B), is in NP [64]. 4

Proposition 5.7.3. Let B be the structure from Example 5.7.2. Then there is
no first-order reduct B′ of a homogeneous structure with finite signature such that
CSP(B′) = CSP(B).

Proof. We first show that B is a model-complete core. Trivially, B is a core,
since with each relation also the complement of the relation is a relation of B. To
see that B is model complete, let φ be a first-order formula that defines a first-order
relation R over B; we have to show that R also has an existential definition over B.
By quantifier elimination of A (recall that A has function symbols ∪,∩, c,0,1), there
is a quantifier-free first-order formula ψ that defines R over A. By un-nesting terms
in ψ with the help of new existentially quantified variables, and replacing occurrences
of atomic formulas by the corresponding formulas in the signature of B (for instance
replacing formulas of the form x ∩ y = z by S(x, y, z) where S is the relation of
B defined by x ∩ y = z), we find the required existential definition of R in B.
By Theorem 4.5.1, the orbits of n-tuples under Aut(B) are primitively positively
definable, and so the number of maximal ep-n-types equals the number of orbits of n-
tuples under Aut(B). Because of Proposition 5.7.1, it therefore suffices to show that
for every m ≥ 1, the number of orbits of n-tuples under Aut(B) is not in O(2n

m

).

We show that this number is at least 22n−1

. Let X := {x1, . . . , xn−1} be such
that for each S ⊆ {1, . . . , n− 1} we have

xS :=
⋂
i∈S

xi ∩
⋂

i∈{1,...,n}\S

c(xi) 6= ∅.

Note that if S, T ⊆ {1, . . . , n − 1} are distinct, then xS ∩ xT = ∅. Hence, there are

22n−1

many different elements b that can be obtained from the elements of the form
xS by applying ∪. Since the relations {(x, y) | x = c(y)}, {(x, y, z) | x ∩ y = z}, and
{(x, y, z) | x∪ y = z} are in B, for each of these elements b the tuple (x1, . . . , xn−1, b)
will lie in a different orbit, which shows the claim. �

5.8. CSPs in SNP without a Countably Categorical Template

In this section we present a simple example of a connected monotone SNP sentence
that cannot be formulated with an ω-categorical template. Recall from Section 1.6.14
that Succ denotes the relation {(x, y) ∈ Z2 | x = y + 1}.

Proposition 5.8.1. CSP(Z; Succ) can be expressed in connected monotone SNP.
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Proof. Let Φ be the following connected monotone SNP sentence over the sig-
nature {Succ}.
∃E,S, T ∀x, y, z

(
‘E is an equivalence relation’

∧‘T is transitive, irreflexive, and extends S, and S extends Succ’

∧
(
(S(x, y) ∧ S(x, z))⇒ E(y, z)

)
∧
(
(S(x, y) ∧ E(x, x′))⇒ S(x′, y)

)
First note that if a finite {Succ}-structure has a homomorphism h to (Z; Succ} then
there exists an {Succ, E, S, T}-expansion that satisfies the quantifier-free part φ of Φ,
given as follows:

• E(x, y) holds if h(x) = h(y),
• S(x, y) holds and if Succ(h(x), h(y)), and
• T (x, y) holds if h(x) < h(y).

Conversely, suppose that a {Succ, S, E, T}-structure satisfies φ. Then the {Succ}-
reduct must be an acyclic directed graph (i.e, the digraph contains no directed cycles);
we have to show that this digraph homomorphically maps to (Z; Succ). It is easy to
see that such a homomorphism exists if and only if the net length of all (not necessarily
directed) cycles in the digraph is 0, i.e., if we traverse a cycle in one direction, then the
number of traversed forward edges equals the number of traversed backwards edges.
Suppose for contradiction that the digraph contains a cycle of net length different
from 0. We now consider cycles where we are additionally allowed to traverse E-
edges and S-edges. The E-edges are ignored when computing the net length of a
cycle, while the S edges are treated as Succ-edges. Let C be the smallest such cycle
of positive net length in the {Succ, S, E}-structure. Not all vertices on the cycle can
have no incoming S-edge because of the acyclicity of the digraph. If for some vertex
on the cycle there are no incoming S-edges, then the preconditions of the implications
in the last two conjuncts of φ can be applied to find a shorter cycle with the same
net length, a contradiction. �

Proposition 5.8.2. CSP(Z; Succ) cannot be formulated with an ω-categorical
template.

Proof. The number of maximal ep-n-types is the same in any structure B where
CSP(B) = CSP(Z; Succ), so by Corollary 4.6.2 it suffices to check that (Z; Succ) has
an infinite number of maximal pp-2-types. But this is clear since for each n the
formula φn(x0, xn) defined by ∃x1, . . . , xn−1

∧n
i=1 Succ(xi−1, xi) is in a different pp-

2-type. �



CHAPTER 6

Universal Algebra

One of the central concerns of universal algebra, as in model-theory, is the clas-
sification of mathematical structures. Often, model-theory is considered to be an
extension of universal algebra, as formulated by Chang and Keisler in

model-theory = univeral algebra + logic.

We have a different perspective. Universal algebra leads to classification results with
finer distinctions: while model theory often considers two relational structures to be

147
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equivalent if they are first-order (or perhaps existentially) interdefinable, universal al-
gebra provides methods that allow to distinguish relational structures up to primitive
positive definability. To do so, we study higher-dimensional generalisations of endo-
morphism monoids, called polymorphism clones; from the perspective of this text, we
therefore have

model-theory = one-dimensional universal algebra.

The strongest universal-algebraic classification results are available on finite do-
mains [212]. In recent years, strong links between deep and central questions in
universal algebra and the Feder-Vardi conjecture have led to renewed activity. In
fact, several important new and purely algebraic results, for example from [24,220,
288,338], were originally motivated by questions about CSPs.

There has been less work on algebras over infinite domains. However, a consider-
able body of universal-algebraic techniques applies when the algebra under consider-
ation contains as operations all the permutations from an oligomorphic permutation
group; we will call such algebras oligomorphic. The assumption that the algebra be
oligomorphic seems to provide the appropriate amount of ‘finiteness’ that we need in
order to apply universal-algebraic methods.

The step from algebras with only unary functions to algebras that contain higher-
ary functions is the point where universal algebra becomes interesting. At the same
time, the step from studying automorphisms and embeddings to studying polymor-
phisms is the step that is new to model-theorists, so we found it natural to divide
the background material into a chapter on model theory and a chapter on universal
algebra (with a slight overlap).

In Section 6.1 we give a brief introduction to clones, to the study of structures
via their polymorphism clones, and to the study of algebras via invariant relations.
In particular, we will see that for a finite or ω-categorical structure B the complexity
of CSP(B) only depends on the polymorphism clone of B; we refer to this step as the
first abstraction step. The Boolean case is particularly well understood and provides
many examples in the field, so we have dedicated an entire section to clones over
a two-element set (Section 6.2). In Section 6.3 we introduce algebras (in the sense
of universal algebra), pseudo-varieties, and varieties. For finite and ω-categorical
structures B, the pseudo-variety generated by the polymorphism algebra of B is
closely linked to the concept of primitive positive interpretability from Chapter 3.
Again, the computational complexity of CSP(B) only depends on this pseudo-variety;
we refer to the passage to the associated pseudo-variety as the second abstraction step.
To even study primitive positive interpretability modulo homomorphic equivalence we
need a recent (but rather natural) concept from universal algebra, the concept of a
reflection of an algebra (Section 6.4).

For finite structures B, there is even a third abstraction step: the complexity of
CSP(B) depends in fact only on the set of identities that are satisfied by the poly-
morphism algebra of B, which corresponds, by the fundamental theorem of Birkhoff,
to the variety generated by the polymorphism algebra of B, and to the polymorphism
clone of B as an abstract clone (Section 6.5). This third abstraction step is harder to
take in the context of ω-categorical structures B; it requires some topological consid-
erations, and is deferred until Chapter 9. In Section 6.6 we present some important
results for idempotent algebras.

The third abstraction step has a variant for pseudo-varieties that are addition-
ally closed under reflections; this variant shows that certain identities are particularly
important, namely identities of height one, where nesting of functions in terms is for-
bidden (Section 6.7). We then show that every finite algebra that satisfies a non-trivial
height-one identity also satisfies a single non-trivial identity involving one function
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symbol of arity six, a so-called Siggers term (Section 6.8.2); also this result will be
generalised for oligomorphic algebras later (in Chapter 10). Finally, in Section 6.9
we present some universal-algebraic results for finite algebras that have not yet been
generalised to oligomorphic algebras.

6.1. Operation Clones

Let B be a set and n ≥ 1. We denote by O
(n)
B := BB

n

the set of operations of
arity n on B, i.e., the set of functions from Bn to B. The set B will be called the
domain or base set . The set of all operations on B of finite arity will be denoted by

OB :=
⋃
n∈N O

(n)
B . An operation clone (over B) is a subset C of OB satisfying the

following two properties:

• C contains all projections, that is, for all 1 ≤ k ≤ n it contains the operation

πnk ∈ O
(n)
B defined by πnk (x1, . . . , xn) = xk, and

• C is closed under composition, that is, for all f ∈ C ∩O
(n)
B and g1, . . . , gn ∈

C ∩ O
(m)
B it contains the operation f(g1, . . . , gn) ∈ O

(m)
B defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) .

A clone is an abstraction of an operation clone that will be introduced in Sec-
tion 6.5. In the literature, operation clones are often called clones, or concrete clones;
we prefer to use the terms ‘operation clone’ and ‘clone’ in analogy to ‘permutation
group’ and ‘group’.

A subclone of C is a clone that is contained in C . If S ⊆ OB is a set of operations
we write 〈S 〉 for the smallest operation clone C which contains S , and call C the
clone generated by S . The most important source of operation clones in this text
are polymorphism clones of structures, which we introduce next.

Definition 6.1.1. A polymorphism of a structure B is a homomorphism from a
finite power of B to B; the set of all polymorphisms of B is denoted by Pol(B).

It is easy to verify that Pol(B) is an operation clone, called the polymorphism

clone of B. Let f be from O
(n)
B , and let R ⊆ Bm be a relation. Then we say

that f preserves R (and that R is invariant under f) iff f(r1, . . . , rn) ∈ R whenever
r1, . . . , rn ∈ R, where f(r1, . . . , rn) is calculated componentwise.

Definition 6.1.2. An operation clone C ⊆ OB is called finitely related if there
exists a structure B with finite relational signature such that C = Pol(B).

It will be convenient to define the operator Pol not only for relational structures
B, but also for sets of relations (since the polymorphisms do not depend on the choice
of the signature, but only on the set of relations of B). We use the following notational

conventions. For n ≥ 1 and a set B, we write R(n)
B for the set of relations R ⊆ Bn

of arity n over B (also called the n-ary relations over B). The set of all relations

over B will be denoted by RB :=
⋃
n≥1R

(n)
B . For R ⊆ RB , we write Pol(R) for the

set of operations of OB that preserve all relations from R. Conversely, given a set of
operations S ⊆ OB , we write Inv(S ) for the set of all relations which are invariant
under all f ∈ S .

Primitive positive definability has been introduced in Section 2.1.7. The following
is straightforward.

Proposition 6.1.3. Let B be any structure. Then Inv(Pol(B)) contains 〈B〉pp,
the set of all relations that are primitively positively definable in B.
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Proof. Suppose thatR is k-ary, has a primitive positive definition ψ, and let f be
an l-ary polymorphism of B. To show that f preserves R, let t1, . . . , tl be tuples from
R. Then there must be witnesses for the existentially quantified variables xk+1, . . . , xn
of ψ that show that ψ(ti) holds in B, for all 1 ≤ i ≤ n. Write si for the extension
of ti such that si satisfies the quantifier-free part ψ′(x1, . . . , xk, xk+1, . . . , xn) of ψ
(we assume that ψ is written in prenex normal form). Then the tuple f(s1, . . . , sl)
satisfies ψ′ as well. This shows that f(t1, . . . , tl) satisfies ψ in B, which is what we
had to show. �

6.1.1. Pol-Inv. In this section we fix a countably infinite base set B and write

O instead of OB and O(n) instead of O
(n)
B . Operation clones are naturally equipped

with a topology, the topology of pointwise convergence, which is given by the following
definition (for a proper topological treatment, see Chapter 9.)

Definition 6.1.4. Let S be a subset of O. Suppose that for all n ≥ 1 and all
g ∈ O(n), if for all finite A ⊆ Bn there exists an n-ary f ∈ S which agrees with g
on A, then g ∈ S . Then we say that S is locally closed . The local closure of S ,
denoted by S , is the smallest locally closed subset of O that contains S . If f ∈ 〈S 〉
then we also say that f is locally generated by S .

The following proposition is a description of the hull operator S 7→ Pol(Inv(S ))
(cf. [343], in particular Corollary 1.9) in the Galois connection defined by the opera-
tors Pol and Inv.

Proposition 6.1.5. Let C ⊆ O be the smallest locally closed clone that contains
S ⊆ O. Then C = 〈S 〉 = Pol(Inv(S )).

Proof. Clearly, 〈S 〉 ⊆ C since C contains S , is a clone, and is locally closed.

To show that conversely C ⊆ 〈S 〉 it suffices to show that 〈S 〉 is a locally closed clone

that contains S , because C is the smallest such clone. Clearly, 〈S 〉 contains S and

is locally closed; it is straightforward to verify that 〈S 〉 is a clone.

To show that 〈S 〉 ⊆ Pol(Inv(S )), let f ∈ 〈S 〉 be k-ary. Let R be from Inv(S ).
We have to show that f preserves R. Let t1, . . . , tk be from R. By assumption
f(t1, . . . , tk) = g(t1, . . . , tk) for some operation g generated from operations in S and
projections. Note that Inv(S ) = Inv(〈S 〉) and hence all those operations preserve
R. So we conclude that f(t1, . . . , tk) ∈ R.

We finally show that Pol(Inv(S )) ⊆ 〈S 〉. Let f ∈ Pol(Inv(S )) be n-ary. It
suffices to show that for every finite subset A of B there is an operation g ∈ 〈S 〉 such
that f(ā) = g(ā) for every ā ∈ An. List all elements of An by a1, . . . , am and consider
the relation R := {(g(a1), . . . , g(am)) | g ∈ 〈S 〉(n)}. Note that R is preserved by all
operations in S . By assumption, f preserves R. Also note that since πni ∈ 〈S 〉 for
all i ≤ n we have that (a1[i], . . . , am[i]) ∈ R. Therefore, (f(a1), . . . , f(an)) ∈ R, and
hence there exists a g ∈ 〈S 〉 such that (f(a1), . . . , f(an)) = (g(a1), . . . , g(an)), as
required. �

Proposition 6.1.5 has the following folklore consequence in universal algebra (to
the best of my knowledge, the first reference in the literature appears to be Geiger [185];
also see [317] and [343]).

Corollary 6.1.6. For S ⊆ O, the following are equivalent.

(1) S is the polymorphism clone of a relational structure;
(2) S is a locally closed clone.

Arbitrary intersections of subclones of O are operation clones, and arbitrary in-
tersections of locally closed subclones of O are locally closed. In fact, the set of all
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locally closed subclones of O, partially ordered by inclusion, forms a complete lattice.
The join of a family (Ci)i∈I in this lattice equals 〈

⋃
i∈I Ci〉, and its meet is

⋂
i∈I Ci.

For every permutation group G there is a unique largest operation clone C on the
same domain such that C (1) = G , namely the polymorphism clone of the structure
introduced in the following definition.

Definition 6.1.7. If G is a permutation group on the set B, we write Orb(G )
for a relational structure with domain B whose relations are precisely the orbits of
n-tuples under G , for all n ≥ 1.

The structure Orb(G ) is not unique because there is no restriction on the exact
choice of the symbols in the signature; however, this choice never matters in what
follows. Note that End(Orb(G )) = G . Also note that if G is oligomorphic, then
Orb(G ) and all its first-order expansions are ω-categorical model-complete cores.

Remark 6.1.8. The n-ary operations in Pol(Orb(G )) are precisely the operations

f ∈ O
(n)
B such that for all g1, . . . , gn ∈ G the operation

x 7→ f
(
g1(x), . . . , gn(x)

)
is contained in G . If f preserves all orbits of n-tuples under G then the operation
above preserves them and hence is in G ; if f does not preserve an orbit O of n-tuples,
then we can find a t ∈ O and g1, . . . , gn ∈ G such that f(g1(t), . . . , gn(t)) /∈ O, and

hence the operation above is not in G . 4
6.1.2. Inv-Pol. In this section we present a characterisation of Inv(Pol(B)) for

arbitrary countable structures B. The characterisation specialises for ω-categorical
structures B to a characterisation of primitive positive definability, using the theo-
rem of Ryll-Nardzewski. A somewhat similar statement is due to Romov (Theorem
3.5 in [324]); other characterisations of the operator Inv-Pol have been proved by
Szabó [342], Geiger [185], and Pöschel [317], but these characterisations involve in-
finitary relations or infinitary superposition, which are not needed in the theorem
below. The proof below is due to Marcello Mamino (personal communication); we
are grateful for the permission to present it here.

The class of infinitary primitive positive formulas is inductively defined as follows.

• atomic formulas belong to the class;
• the class contains all finite and infinite conjunctions of formulas φ(x1, . . . , xn)

in the class that have the same free variables x1, . . . , xn;
• if φ(x1, . . . , xn) is in the class, then ∃xi : φ(x1, . . . , xn) is in the class.

The following example shows that there are relations that can be defined by
infinitary primitive positive formulas that are not definable as infinite conjunctions of
primitive positive formulas.

Example 6.1.9. Consider B := (Z ∪ {∞};<) where n < ∞ holds if and only if
n 6=∞. Clearly, for each i ∈ N the relation {(n,m) ∈ B2 | n+ i < m} has a primitive
positive definition

φi(x, y) := ∃x1, . . . , xi (x < x1 ∧ xi < y ∧
i−1∧
j=1

xj < xj+1)

in B. Then the unary relation {∞} can be defined by the infinitary primitive pos-
itive formula ∃x

∧∞
i=1 φi(x, y). But note that if a primitive positive formula φ(y) is

satisfiable, it is also satisfiable by an element from Z, and since Z is an orbit under
Aut(B), it is satisfiable by all elements from Z. Infinite intersections of relations that
contain Z again contain Z, and in particular it follows that the relation {∞} is not
definable by an infinite intersection of primitively positively definable relations. 4



152 6. UNIVERSAL ALGEBRA

A chain of relations is a sequence of relations (Ri)i∈N of the same arity with the
property that Ri ⊆ Ri+1 for all i ∈ N.

Theorem 6.1.10. Let B be a countable structure. Then R ⊆ Bn is preserved by
all polymorphisms of B if and only if R is the union of a chain of relations that have
infinitary primitive positive definitions in B.

Proof. We have already seen in Proposition 6.1.3 that every relation with a
primitive positive definition in B is preserved by all polymorphisms of B. The proof
that Inv(Pol(B)) is closed under infinite conjunctions and unions of chains is similarly
straightforward.

Now suppose that R ∈ Inv(Pol(B)) is a relation of arity n. Let a1, a2, . . . be
an enumeration of R. For i ∈ N, let Ri be the intersection of all relations that
contain the tuples a1, . . . , ai and that have an infinitary primitive positive definition
in B. We have Ri ⊆ Ri+1 for all i ∈ N since each relation in the intersection
that defines Ri+1 also appears as a relation in the intersection that defines Ri. So
it suffices to prove that R =

⋃
i∈NRi. The inclusion R ⊆

⋃
i∈NRi is clear. To

prove the reverse inclusion, we have to prove that Ri ⊆ R for all i ∈ N. Let t =
(t1, . . . , tn) ∈ Ri. We claim that there exists an f ∈ Pol(B) of arity i such that
f(a1, . . . , ai) = t. Let b1 := (a1[1], . . . , ai[1]), . . . , bn := (a1[n], . . . , ai[n]), and let
bn+1, bn+2, . . . be an enumeration of the remaining elements of Bi. Note that if
br = bs, for some r, s ∈ {1, . . . , n}, then the primitive positive formula xr = xs defines
a relation that contains a1, . . . , ai and hence contains Ri, and therefore tr = ts. Define
f(b1) := t1, . . . , f(bn) := tn. Note that the partially defined function f preserves
all infinitary primitive positive formulas. Indeed, suppose that ψ(x1, . . . , xk) is an
infinitary pp-formula and u1, . . . , ui are k-tuples that satisfy ψ such that f is defined
for (u1, . . . , ui). Then for every j ∈ {1, . . . , k} we have that (u1[j], . . . ui[j]) = bj′

for some j′ ∈ [n]. Since (f(b1), . . . , f(bn)) = t ∈ Ri, by the definition of Ri the
tuple f(u1, . . . , ui) satisfies ψ. We extend f to the next element in the enumeration
of Bi while preserving the property that f preserves all infinitary primitive positive
formulas. Suppose that we already have defined f for b1, . . . , bm, for m ≥ n, and
that we want to define f for bm+1. Let φ(x1, . . . , xm, xm+1) be the conjunction of
all infinitary primitive positive formulas satisfied by b1, . . . , bm+1. Then f preserves
φ′(x1, . . . , xm) := ∃xm+1 : φ(x1, . . . , xm, xm+1), and hence B |= φ′(f(b1), . . . , f(bm)).
Therefore, there exists an element tm+1 such that B |= φ(f(b1), . . . , f(bm), tm+1).
Define f(bm+1) := tm+1. And indeed, by construction this extension still has the
property that it preserves every infinitary primitive positive formula. In particular,
the function f defined on all of Bi is a polymorphism of B. This shows that t ∈ R. �

Note that Example 6.1.9 shows that in general, unions of chains of infinite inter-
sections of primitive positive definable relations are not strong enough to express all
relations in Inv(Pol(B)): in the example, the unary relation {∞} cannot be expressed
in this way.

6.1.3. Oligomorphic clones. Let C ⊆ O be an operation clone. A unary
operation e ∈ C is called invertible in C if there exists a unary i ∈ C such that
i(e(x)) = e(i(x)) = x for all x ∈ B. When C is the polymorphism clone of a structure
B, then the invertible operations of C are precisely the automorphisms of B.

Definition 6.1.11. An operation clone C ⊆ O is oligomorphic if the set of
invertible operations in C forms an oligomorphic permutation group.

It is immediate from Theorem 4.1.6 and Corollary 6.1.6 that a locally closed
subclone of O is oligomorphic if and only if it is the polymorphism clone of an ω-
categorical structure.
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Geiger [185] and independently Bodnarčuk, Kalužnin, Kotov, and Romov [106]
have shown that a relation R has a primitive positive definition in a finite structure
B if and only if R is preserved by all polymorphisms of B. This characterisation of
primitive positive definability holds in fact for all ω-categorical structures B.

Theorem 6.1.12 (Theorem 5.1 in [89]). Let B be a countable ω-categorical struc-
ture. A relation R has a primitive positive definition in B if and only if R is preserved
by all polymorphisms of B; in symbols, Inv(Pol(B)) = 〈B〉pp.

Proof. One direction has been shown in Proposition 6.1.3. For the other di-
rection, recall that there are finitely many primitively positively definable relations
for each fixed arity. Hence, every infinite conjunction of primitive positive formulas
is equivalent to a primitive positive formula. For the same reason, every union of a
chain of primitively positively definable relations is primitively positively definable.
Therefore, Theorem 6.1.10 implies that every relation in Inv(Pol(B)) is primitively
positively definable in B. �

Analogously to Corollary 4.2.10 for permutation groups and to Corollary 4.4.5
for transformation monoids, we obtain a Galois connection between structures with
a first-order definition in an ω-categorical structure B, considered up to primitive
positive interdefinability, and subsets of OB containing Aut(B).

Theorem 6.1.13. Let B be a countable ω-categorical structure. Then:

(1) for first-order reducts C of B, the sets of the form 〈C〉pp, ordered by inclusion,
form a lattice;

(2) the closed subclones of OB containing Aut(B), ordered by inclusion, form a
lattice;

(3) the operator Inv is an anti-isomorphism between those two lattices, and Pol
is its inverse.

Theorem 6.1.13 tells us that classifying the first-order reducts of an ω-categorical
structure B up to primitive positive interdefinability amounts to understanding the
lattice of closed subclones of OB that contain Aut(B). To further illustrate this
connection and to facilitate later use we state some consequences.

Corollary 6.1.14. Let B be ω-categorical and let F ⊆ OB. Then

• 〈F 〉 = Pol(B) if and only if 〈B〉pp = Inv(F ).
• The smallest relation in 〈B〉pp that contains R ⊆ Bk equals{

f(a1, . . . , ak) | ` ∈ N, f ∈ Pol(`)(B), a1, . . . , ak ∈ R
}

If B is not ω-categorical, then Inv(Pol(B)) may or may not be equal to 〈B〉pp,
as the following examples illustrate.

Example 6.1.15. Let B be the structure (Z; {(x, y) | x = y + 1}). We use
Theorem 6.1.10 to prove that Inv(Pol(B)) = 〈B〉pp. By Theorem 6.1.10 it suffices
to show that 〈B〉pp is closed under taking infinite conjunctions and unions of chains.
It can be shown that every relation in 〈B〉pp can be defined as a conjunction of
binary relations in 〈B〉pp, which are precisely the empty relation, the full relation
Z2, and the relations of the form {(x, y) | x = y + c} for c ∈ Z. Clearly, infinite
intersections and unions of chains of such relations are again of this form, which
shows the statement. 4
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6.1.4. Essentially unary operations. Let k ∈ N and i ∈ {1, . . . , k}. We say

that f ∈ O
(k)
B depends on the i-th argument if there is no (k−1)-ary operation f ′ such

that f(x1, . . . , xk) = f ′(x1, . . . , xi−1, xi+1, . . . , xk) for all x1, . . . , xk ∈ B. If f does
not depend on the i-th argument, then we also say that the i-th argument of f is
fictitious. We can equivalently characterise k-ary operations that depend on the i-th
argument by requiring that there are x1, . . . , xk ∈ B and x′i ∈ B such that

f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk).

We say that an operation f is essentially unary iff there is an i ∈ {1, . . . , k} and
a unary operation f0 such that f(x1, . . . , xk) = f0(xi). Operations that are not
essentially unary are called essential .1

Definition 6.1.16. For any set B, the relations P 3
B and P 4

B over B are defined
as follows.

P 3
B :=

{
(a, b, c) ∈ B3 | a = b or b = c

}
P 4
B :=

{
(a, b, c, d) ∈ B4 | a = b or c = d

}
Lemma 6.1.17. Let f ∈ O be an operation on a set B. Then the following are

equivalent.

(1) f is essentially unary.
(2) f preserves P 3

B.
(3) f preserves P 4

B.
(4) f depends on at most one argument.

Proof. Let k be the arity of f . The implication from (1) to (2) is obvious, since
unary operations clearly preserve P 3

B .
To show the implication from (2) to (3), we show the contrapositive, and assume

that f does not preseve P 4
B . By permuting arguments of f , we can assume that there

are 4-tuples a1, . . . , ak ∈ P 4
B with f(a1, . . . , ak) /∈ P 4

B and l ≤ k such that in a1, . . . , al

the first two coordinates are equal, and in al+1, . . . , ak the last two coordinates are
equal. Let c be the tuple (a1

1, . . . , a
l
1, a

l+1
4 , . . . , ak4). Since f(a1, . . . , ak) /∈ P 4

B we
have f(a1

1, . . . , a
k
1) 6= f(a1

2, . . . , a
k
2), and therefore f(c) 6= f(a1

1, . . . , a
k
1) or f(c) 6=

f(a1
2, . . . , a

k
2). Let d = (a1

1, . . . , a
k
1) in the first case, and d = (a1

2, . . . , a
k
2) in the

second case. Likewise, we have f(c) 6= f(a1
3, . . . , a

k
3) or f(c) 6= f(a1

4, . . . , a
k
4), and let

e = (a1
3, . . . , a

k
3) in the first, and e = (a1

4, . . . , a
k
4) in the second case. Then for each

i ≤ k, the tuple (di, ci, ei) is from P 3
B , but (f(d), f(c), f(e)) /∈ P 3

B .
The proof of the implication from (3) to (4) is again by contraposition. Sup-

pose f depends on the i-th and j-th argument, 1 ≤ i 6= j ≤ k. Hence there
exist tuples a1, b1, a2, b2 ∈ Bk such that a1, b1 and a2, b2 only differ at the en-
tries i and j, respectively, and such that f(a1) 6= f(b1) and f(a2) 6= f(b2). Then
(a1(l), b1(l), a2(l), b2(l)) ∈ P 4

B for all l ≤ k, but (f(a1), f(b1), f(a2), f(b2)) /∈ P 4
B ,

which shows that f does not preserve P 4
B .

For the implication from (4) to (1), suppose that f depends only on the first
argument. Let i ≤ k be minimal such that there is an operation g with f(x1, . . . , xk) =
g(x1, . . . , xi). If i = 1 then f is essentially unary and we are done. Otherwise,
observe that since f does not depend on the i-th argument, neither does g, and
so there is an (i − 1)-ary operation g′ such that for all x1, . . . , xn ∈ B we have
f(x1, . . . , xn) = g(x1, . . . , xi) = g′(x1, . . . , xi−1), contradicting the choice of i. �

1This is standard in clone theory, and it makes sense also when studying the complexity of
CSPs, since the essential operations are those that are essential for complexity classification.
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Example 6.1.18. We claim that all polymorphisms of the structure

B = (Z; 0, {(x, y) | x = y + 1}, {(u, v, x, y) | u = v ∨ x = y})

are projections. Lemma 6.1.17 implies that all polymorphisms are essentially unary;
all unary maps that preserve {(x, y) | x = y + 1} must be of the form z 7→ z + c,
for c ∈ Z, and since they also have to preserve 0 all endomorphisms must be the
identity, which proves the claim. Hence, Inv(Pol(B)) is uncountable (every subset
of Z is preserved by all polymorphisms), but 〈B〉pp is countable, so Inv(Pol(B)) 6=
〈B〉pp. 4

For ω-categorical structures we can combine Lemma 6.1.17 with Theorem 4.4.1
to obtain an algebraic characterisation of the situation where disjunction can be elim-
inated from existential positive formulas.

Proposition 6.1.19. Let B be a countable ω-categorical structure. Then the
following are equivalent.

(1) All relations with an existential positive definition in B also have a primitive
positive definition in B.

(2) The relation P 3
B is primitively positively definable in B.

(3) All polymorphisms of B are essentially unary.

Proof. (1) implies (2). The formula (x = y) ∨ (y = z) is existential positive,
and thus has a primitive positive definition in B.

(2) implies (3). All polymorphisms of B preserve all primitive positive formulas,
so the preserve P 3

B and the statement follows from Lemma 6.1.17.
(3) implies (1). Unary operations preserve all existential positive formulas. Hence,

if φ is an existential positive formula, by assumption all polymorphisms of B preserve
φ, and thus φ is equivalent to a primitive positive formula by Theorem 4.4.1. �

6.1.5. Elementary clones. Recall the definition of elementary embedding from
Section 2.1: an embedding is elementary if it preserves all first-order formulas. Anal-
ogously, we say that a polymorphism f of a structure B is elementary if it preserves
all first-order formulas. By Lemma 6.1.17, such a polymorphism must be essentially
unary, and in fact is contained in the smallest closed subclone of O that contains the
automorphisms of B. If every polymorphism of B is elementary, we say that Pol(B)
is elementary .

If Pol(B) is elementary, then B has the remarkable property that every first-order
formula is equivalent to a primitive positive formula over B. The following corollary
is a straightforward combination of results from previous sections. We state it here
for future use.

Corollary 6.1.20. Let B be a countable ω-categorical structure. Then the fol-
lowing are equivalent.

(1) Every relation with a first-order definition also has a primitive positive def-
inition in B.

(2) B is a model-complete core, and P 3
B is primitively positively definable in B.

(3) Pol(B) is generated by the unary operations that are invertible in Pol(B).
(4) Pol(B) is elementary.

Proof. (1) implies (2). We assume that every first-order definable relation has
a primitive positive definition, and hence is preserved by all polymorphisms of B. In
particular, the endomorphisms of B preserve all first-order definable relations, and
hence B is a model-complete core. Moreover, the relation P 3

B is clearly first-order
definable, and therefore also primitively positively definable in B.
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(2) implies (3). Assume (2). Then Proposition 6.1.19 implies that all polymor-
phisms of B are essentially unary. Thus, for every n-ary polymorphism f of B there
is an endomorphism g of B and an j ≤ n such that f(x1, . . . , xn) = g(xj). Since B

is a model-complete core, Theorem 4.5.1 implies that g ∈ Aut(B), which proves (3).
(3) implies (4). Invertible operations of C are automorphisms of B and therefore

preserve all first-order definable relations in B. Hence, the implication follows from
Proposition 6.1.5.

(4) implies (1). By Theorem 6.1.12. �

Corollary 6.1.21. Every countable ω-categorical structure B with more than
one element and an elementary polymorphism clone interprets all finite structures
primitively positively.

Proof. Lemma 2.4.4 states that every finite structure has a first-order definition
in B. The statement follows because every first-order formula is equivalent over B
to a primitive positive formula. �

Lemma 6.1.22. Let B be a countable ω-categorical structure all of whose polymor-
phisms are essentially unary. Then the model-complete core of B has an elementary
polymorphism clone.

Proof. Let h be a homomorphism from B to the model-complete core C of B,
and let i be a homomorphism from C to B. By Corollary 6.1.20 it suffices to verify
that the relation P 3

C is primitively positively definable in C. Since all polymorphisms
of B are essentially unary, Proposition 6.1.19 implies that the relation P 3

B has a
primitive positive definition φ(x, y, z) in B. We claim that φ is also a primitive
positive definition of P 3

C in C. Suppose that C |= φ(a) for a ∈ C3. Then B |= φ(i(a))
since the homomorphism i preserves primitive positive formulas. This in turn means
that i(a) ∈ P 3

B , and so h(i(a)) ∈ P 3
C . Since h◦ i is an embedding, we get that a ∈ P 3

C .
Now suppose that conversely a ∈ P 3

C . Then i(a) ∈ P 3
B , and hence B |= φ(i(a)). This

in turn implies that C |= φ(h(i(a))) since homomorphisms preserve primitive positive
formulas, so h(i(a)) ∈ P 3

C . Since h ◦ i is an embedding because C is a model-complete
core we get that a ∈ P 3

C . �

Corollary 6.1.23. Let B be a countable ω-categorical structure with no constant
endomorphism such that all polymorphisms are essentially unary. Then HI(B) con-
tains all finite structures, and B has a finite-signature reduct whose CSP is NP-hard.

Proof. Let C be the model-complete core of B. Since B does not have a constant
endomorphism, the structure C has at least two elements. Moreover, C is elementary
by Lemma 6.1.22. By Corollary 6.1.21 we have that I(C) contains all finite struc-
tures. Since I(C) ⊆ I(H(B)) ⊆ HI(B) by Theorem 3.6.2, the statement follows from
Corollary 3.7.1. �

6.1.6. Arity reduction. For many combinatorial arguments with polymorphism
clones it is crucial to have bounds on the arity of polymorphisms that have certain
properties. A basic, yet very useful observation to obtain such bounds is the following
(which holds for arbitrary structures B).

Lemma 6.1.24. Let B be a relational structure and R be a k-ary relation contained
in m orbits of k-tuples under Aut(B). If B has a polymorphism f that does not
preserve R, then B also has an m-ary polymorphism that does not preserve R.

Proof. Let f ′ be an polymorphism of B of smallest arity l that does not preserve
R. Then there are k-tuples t1, . . . , tl ∈ R such that f ′(t1, . . . , tl) /∈ R. For l > m
there are two tuples ti and tj that lie in the same orbit of k-tuples, and therefore B
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has an automorphism α such that αtj = ti. By permuting the arguments of f ′, we
can assume that i = 1 and j = 2. Then the (l − 1)-ary operation g defined as

g(x2, . . . , xl) := f ′(αx2, x2, . . . , xl)

is also a polymorphism of B, and also does not preserve R, a contradiction. Hence,
l ≤ m. An operation of arity exactly m that does not preserve R can then be obtained
from f ′ by adding fictitious variables. �

We present some applications of Lemma 6.1.24; other applications can be found
in Section 6.2 and in Chapter 12. Recall that r(G ) denotes the rank of G , i.e., the
number of orbitals of G (see Section 4.2).

Corollary 6.1.25. Let B be a structure with an automorphism group G . If B
has an essential polymorphism, then it must also have an essential polymorphism of
arity at most 2r(G )−s where s is the number of orbits of G .

Proof. The structure B has an essential polymorphism if and only if it has a
polymorphism that does not preserve the relation P 3

B , where B is the domain of B,
by Proposition 6.1.19. The relation P 3

B consists of at most 2r(G )− s orbits of triples:
there are at most r(G ) orbits of triples (t1, t2, t3) where t1 = t2 6= t3, and at most that
many where t1 6= t2 = t3. Only the orbit of the tuple where t1 = t2 = t3 is counted
twice. The statement follows from Lemma 6.1.24. �

We give another simple example of how Lemma 6.1.24 may be used.

Corollary 6.1.26. Let B be first-order definable in (Q;<), and suppose there is
a polymorphism of B that does not preserve <. Then there is also an endomorphism
of B that does not preserve <.

Proof. Observe that < consists of a single orbit of pairs under Aut(Q;<), and
therefore also in Aut(B). �

Corollary 6.1.27. Suppose that B has a 2-transitive automorphism group with
a polymorphism that does not preserve 6=. Then B has a constant endomorphism.

Proof. The relation 6= consists of a single orbit of pairs under Aut(B). Hence,
there is an endomorphism of B that does not preserve 6=, by Lemma 6.1.24. The rest
follows by Lemma 4.4.6. �

6.1.7. Kára’s method. In this section we present a method for showing that an
oligomorphic clone with essential operations must contain a binary essential operation.
The idea is taken from [72], where it was used to prove a result that only applies
to structures preserved by all permutations of the domain. The result has been
generalised slightly in [94]. To state it in full generality, we introduce the following,
apparently new, concept.

Definition 6.1.28. A permutation group G on a set B has the orbital extension
property (OEP) if there is an orbital O such that for all b1, b2 ∈ B there is an element
c ∈ B where (c, b1) ∈ O and (c, b2) ∈ O.

Examples of oligomorphic permutation groups with the orbital extension property
are the automorphism group of the Random graph, (Q;<), the countable universal
homogeneous poset, the universal homogeneous C-relation, and many more. An ex-
ample of a structure whose automorphism group does not have the OEP is Kω,ω,
the complete bipartite graph where both parts are countably infinite. An example of
an oligomorphic permutation group which is not primitive but has the OEP is the
automorphism group of an equivalence relation on an infinite set with infinitely many
infinite classes.
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Lemma 6.1.29. Let C be a clone with an essential operation that contains a
permutation group G with the orbital extension property. Then C must also contain
a binary essential operation.

Proof. Let f be an essential operation in C , and let k be the arity of f . Assume
without loss of generality that f depends on all its arguments and is at least ternary.
In particular, there are a1, . . . , ak and a′1 such that f(a1, . . . , ak) 6= f(a′1, a2, . . . , ak).
Let O be the orbital which exists due to the orbital extension property of G . We
distinguish two cases.

Case 1. There are elements b1, . . . , bk such that (bi, ai) ∈ O for 2 ≤ i ≤ k and
f(b1, a2, . . . , ak) 6= f(b1, . . . , bk). Then there are α3, . . . , αk ∈ G such that αi(a2) = ai
and αi(b2) = bi. We define

g(x, y) := f(x, y, α3(y), . . . , αk(y)) ,

which depends on both arguments:

g(a1, a2) = f(a1, a2, α3(a2), . . . , αk(a2)) = f(a1, a2, a3, . . . , ak)

6= f(a′1, a2, a3, . . . , ak) = g(a′1, a2)

shows that g depends on the first argument, and

g(b1, a2) = f(b1, a2, a3, . . . , ak)

6= f(b1, b2, b3, . . . , bk) = g(b1, b2)

shows that g depends on the second argument.
Case 2. For all b1, . . . , bk, if (ai, bi) ∈ O for 2 ≤ i ≤ k, then f(b1, a2, . . . , ak) =

f(b1, b2, . . . , bk). Since f depends on its second coordinate, there are c1, . . . , ck and
c′2 such that f(c1, c2, c3, . . . , ck) 6= f(c1, c

′
2, c3, . . . , ck). Then f(c1, a2, . . . , ak) can be

equal to either f(c1, c2, c3, . . . , ck), or to f(c1, c
′
2, c3, . . . , ck), but not to both. We

assume without loss of generality that f(c1, a2, . . . , ak) 6= f(c1, c2, c3, . . . , ck). Since
G has the orbital extension property, we can choose d2, . . . , dk such that for each
2 ≤ i ≤ k, the pairs (di, ai) and the pairs (di, ci) all lie in O. Hence, there are
α3, . . . , αk ∈ G such that αi(c2) = ci and αi(d2) = di. We claim that the operation g
defined by

g(x, y) := f(x, y, α3(y), . . . , αk(y))

depends on both arguments. Indeed,

g(a1, d2) = f(a1, d2, . . . , dk) = f(a1, . . . , ak)

and g(a′1, d2) = f(a′1, d2, . . . , dk) = f(a′1, a2, . . . , ak).

and by the choice of the values a1, . . . , ak and a′1 these two values are distinct. Thus,
g depends on the first argument. Finally, g also depends on the second argument,
because

g(c1, d2) = f(c1, d2, . . . , dk) = f(c1, a2, . . . , ak)

and g(c1, c2) = f(c1, c2, . . . , ck).

adn f(c1, a2, . . . , ak) and f(c1, c2, . . . , ck) are distinct. �

Note that every permutation group with the orbital extension property is transi-
tive, and that every 2-transitive infinite permutation group has the orbital extension
property. We even have the following.

Lemma 6.1.30 (Lemma 3.7 in [62]). Every 2-set-transitive permutation group on
a set with at least 4 elements has the orbital extension property.
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Proof. Let G be a 2-set-transitive permutation group on a set B with |B| ≥ 4.
If G is even 2-transitive then the statement is obvious. Otherwise, the relation defined
by x 6= y is the union of exactly two orbitals O and P . Thus, the relation O defines
a tournament on B. It is easy to see that |B| ≥ 4 implies that there are u, v, w ∈ B
with (u, v), (v, w), (u,w) ∈ O. We claim that O witnesses the OEP. Let b1, b2 ∈ B. If
b1 = b2 the statement is trivial; so suppose without loss of generality that (b1, b2) ∈ O.
There exists α ∈ G that maps {b1, b2} to {v, w} because G is 2-set transitive. We
then have (α−1(u), b1) ∈ O and (α−1(u), b2) ∈ O. �

Corollary 6.1.31. Let B be an infinite 2-set-transitive structure with an essen-
tial polymorphism. Then B also has a binary essential polymorphism.

6.1.8. Minimal clones. When classifying closed clones that contain a given
oligomorphic permutation group, e.g. in Chapter 12, it often turns out that a bottom-
up approach works: we first classify all the minimal (with respect to set inclusion)
closed subclones of O that strictly contain Aut(Q;<), and then the remaining classi-
fication argument is organised according to those minimal clones. Of course, for this
method to work, one must at least have the existence of such minimal clones (cf. The-
orem 6.1.37). To present the results in this section in their strongest formulation, we
define a relative notion of minimality of a closed clone above some other closed clone.

Definition 6.1.32. Let C and D be closed subclones of O. We say that D is
minimal above C if C ( D and for all closed subclones E of O

C ( E ⊆ D implies that E = D .

Definition 6.1.33. An operation f ∈ O \C is minimal above C if f is of minimal
arity such that for every g ∈ O \C locally generated by {f}∪C we have that {g}∪C
locally generates f .

The following is straightforward from the definitions.

Proposition 6.1.34. Let C be a closed subclone of O, and let f be minimal
above C . Then {f} ∪ C locally generates an operation clone that is minimal above
C . Conversely, every closed subclone D of O that is minimal above C contains an
operation that is minimal above C such that {f} ∪ C locally generates D .

For oligomorphic operation clones we obtain the following.

Proposition 6.1.35. Let B be an ω-categorical structure, and let C be primitively
positively definable in B. Then Pol(C) is minimal above Pol(B) if and only if for every
R ∈ 〈B〉pp \ 〈C〉pp the structure B has a primitive positive definition in (C, R).

Proof. The equivalence follows from Proposition 6.1.13. �

It is well known that every operation clone over a finite domain contains an
operation clone D which is minimal above the trivial clone that just contains the
projections [151]. The following example shows that same is not true in general over
infinite domains.

Example 6.1.36. Let D be the closed operation clone over the domain N which
is generated by the operation x 7→ x + 1. Then D does not contain an operation
clone that is minimal above the closed clone C that just consists of the set of all
projections over N. To see this, note that every operation in D is essentially unary,
and that every unary operation f ∈ D is of the form x 7→ x + c for some c ∈ N. If
c > 0 then {f} generates the operation g given by x 7→ f(f(x)) = x+ 2c, but {g}∪C
only generates operations of the form x 7→ x+ kc for some k ∈ N, and hence does not
locally generate f . 4
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The situation is better if C is oligomorphic.

Theorem 6.1.37 (Theorem 4.6 in [54]). Let B be a countable ω-categorical struc-
ture with a finite relational signature. Then any locally closed operation clone C that
properly contains Pol(B) contains a closed operation clone D that is minimal above
Pol(B).

Proof. Let B be the polymorphism clone of B. Consider the partially ordered
set of all locally closed operation clones that contain B and that are contained in
C , ordered by inclusion. From this poset we remove B, which is the unique minimal
element; the resulting poset will be denoted by P . We claim that in P , all descending
chains S1 ⊇ S2 ⊇ · · · are bounded, i.e., for all such chains there exists an S ∈ P
such that Si ⊇ S for all i ≥ 1. To see this, observe that

⋃
i≥1 Inv(Si) is closed under

primitive positive definability in the sense that it can be written as 〈S〉pp for some
relational structure S, because only a finite number of relations can be mentioned
in a formula, and because Inv(Si) is closed under primitive positive definability, for
each i ≥ 1. Moreover, there must be a relation R ∈ B that is not contained in⋃
i≥1 Inv(Si); otherwise, since B has finitely many relations, there is a j < ω such

that Inv(Sj) contains all relations from B, and hence equals B, which is impossible
since B is not an element of P . Hence, by Corollary 4.2.10, the structure S has a
polymorphism f that is not from B. Then Pol(S) =

⋂
i≥1 Si is a lower bound in P

of the descending chain (Si)i≥0. We can thus apply Zorn’s lemma and conclude that
P contains a minimal element S . �

For essentially unary oligomorpic clones C , we can bound the arity of minimal
functions above C .

Proposition 6.1.38 (Proposition 24 in [101]). Let B be an arbitrary structure
such that Aut(B) has r orbitals and s orbits. Let B be the (locally closed) clone
generated by the endomorphisms of B. Then every minimal closed clone above B is
locally generated by End(B) ∪ {f} for some function f of arity at most 2r − s.

Proof. Let C be a minimal closed clone above B. If all the functions in C are
essentially unary, then C is generated by a unary operation together with End(B)
and we are done. Otherwise, let f be an essential operation in C . By Lemma 6.1.17
the operation f does not preserve P 3

B over the domain B of B; recall that P 3
B is

defined by the formula (x = y) ∨ (y = z). The subset of P 3
B that contains all tuples

of the form (a, a, b), for a, b ∈ B, clearly consists of r orbits under Aut(B). Similarly,
the subset of P 3

B that contains all tuples of the form (a, b, b), for a, b ∈ B, consists of
the same number of orbits. The intersection of these two relations consists of exactly
s orbits (namely, the triples with three equal entries), and therefore P 3

B is the union
of 2r − s different orbits. The assertion now follows from Lemma 6.1.24. �

In Section 11.4 we will see that under further Ramsey-theoretic assumptions on
the structure B, there are only finitely many minimal closed clones above End(B). In
the remainder of this section, we present Rosenberg’s five types theorem for clones on
finite domains [325]; one of the five Rosenberg cases can be ruled out for oligomorphic
clones. An operation is called idempotent if f(x, . . . , x) = x for all domain elements
x. We define several important properties of operations.

Definition 6.1.39. A k-ary operation f is

• symmetric (or commutative) if f is binary and satisfies

∀x, y : f(x, y) = f(y, x);
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• a quasi near-unanimity operation iff k ≥ 3 and f satisfies

∀x, y : f(x, . . . , x, y) = f(x, . . . , y, x)

= · · · = f(y, x, . . . , x) = f(x, . . . , x) ;

• a quasi majority operation if f is a ternary quasi near-unanimity operation;
• a quasi minority operation if f is ternary and satisfies

∀x, y : f(x, y, y) = f(y, x, y) = f(y, y, x) = f(x, x, x);

• a quasi Maltsev operation if f is ternary and satisfies

∀x, y : f(x, y, y) = f(y, y, x) = f(x, x, x);

• a quasi semiprojection if there exists an i ∈ {1, . . . , k} and a unary operation
g such that for every sequence of variables x1, . . . , xk with |{x1, . . . , xk}| < k
(i.e., at least one variable is repeated) we have the operations f and g satisfy

∀x1, . . . , xk : f(x1, . . . , xk) = g(xi).

An idempotent quasi near-unanimity is called a near-unanimity ; we make an anal-
ogous convention for all other properties involving the qualifier ‘quasi-’. That is, a
majority operation is an idempotent quasi majority operation, etc.

Definition 6.1.40. If f is an operation, then f̂ denotes the unary operation given
by x 7→ f(x, . . . , x).

Note that an operation f is a quasi semiprojection if and only if there is an
i ∈ {1, . . . , k} such that f satisfies the equations

f(x1, x1, x3, . . . , xk) = f(x1, x2, x1, x4, . . . , xk)

= . . . = f(x1, . . . , xk−1, xk−1) = f̂(xi).

The following is a slight generalisation of a lemma of Świerczkowski (which is Satz
4.4.6 in [318]), and a special case of a result of Couceiro and Lehtonen [147].

For the purpose of proving the next lemma, we call an n-ary operation f a weak
semiprojection if for all distinct i, j ∈ {1, . . . , n} there exists an index s(i, j) and a
unary non-constant operation gi,j such that ∀x1, . . . , xn : f(x1, . . . , xn) = gi,j(xs(i,j))
holds whenever xi and xj are the same variable. In the proof of the following lemma
the following notation for weak semiprojections will be practical. Let f be a weak
semiprojection, let S ⊆ {1, . . . , n} be of cardinality at least two, and let (x1, . . . , xn)
be a tuple of variables such that xi = xj for all i, j ∈ S. Then for some k ∈ {1, . . . , n}
it holds that ∀x1, . . . , xn : f(x1, . . . , xn) = gi,j(xk). If k ∈ S define E(S) := S.
Otherwise, define E(S) := {k}. Note that if S ⊆ T ⊆ {1, . . . , n}, then E(S) ⊆ E(T ).
Also note that if there exists a k ∈ {1, . . . , n} such that k ∈ E(S) for every S ⊆
{1, . . . , n} with at least two elements, then f is a quasi semiprojection.

Lemma 6.1.41. Let f be a weak semiprojection of arity at least n ≥ 4. Then f is
a quasi semiprojection.

Proof. We first show that E({1, 2}) ∩ E({3, 4}) 6= ∅. If E({1, 2, 3, 4}) = {`}
for some ` /∈ {1, 2, 3, 4}, then E({1, 2}) = {`} = E({3, 4}) and we are done. So we
assume that E({1, 2, 3, 4}) = {1, 2, 3, 4}. First consider the case that E({1, 2}) =
{i} ⊆ {3, 4}. If E({3, 4}) = {j} ⊆ {1, 2} then f(x, x, y, y, x5, . . . , xn) = g1,2(xi) and
f(x, x, y, y, x5, . . . , xn) = g3,4(xj) for i 6= j, which is a contradiction since g1,2 and
g3,4 are non-constant. Hence, E({3, 4}) = {3, 4} and we have found i ∈ E({1, 2}) ∩
E({3, 4}). Similarly we can treat the case that that E({3, 4}) = {i} ⊆ {1, 2}. If
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E({1, 2}) = {1, 2} and E({3, 4}) = {3, 4} then f(x, x, y, y, x5, . . . , xn) = g1,2(x) be-
cause of E({1, 2}) ⊆ {1, 2} and f(x, x, y, y, x5, . . . , xn) = g3,4(y) because of E({3, 4}) ⊆
{3, 4}, which is a contradiction since g1,2 and g3,4 are non-constant.

Let i ∈ E({1, 2}) ∩ E({3, 4}). Note that if i /∈ {1, 2}, then E({1, 2}) = {i}.
Similarly, if i /∈ {3, 4} then E({3, 4}) = {i}. We therefore have a set S ⊆ {1, . . . , n}
of size two with E(S) = {i}. Let T ⊆ {1, . . . , n} be of cardinality at least two.
We will show that i ∈ E(T ). Observe that if T ⊆ {1, . . . , n} \ {i}, then E(T ) =
E({1, . . . , n} \ {i}) = E(S) = {i}. Now suppose that T = {i, j} for some j ∈
{1, . . . , n} \ {i}. Then {1, . . . , n} \ T has at least two elements (since n ≥ 4). We can
therefore apply the argument from the first paragraph, up to renaming argument,
to conclude that E({i, j}) ∩ E({1, . . . , n} \ {i, j}) contains an element k. If k /∈
{i, j}, then E({1, . . . , n} \ {i, j}) = {1, . . . , n} \ {i, j}, which is in contradiction to
E({1, . . . , n} \ {i}) = {i}. Hence, E({i, j}) = {i, j}. This implies that E(T ) = T for
all T ⊆ {1, . . . , n} of cardinality at least 2 containing i. We conclude that i ∈ E(T )
for every T ⊆ {1, . . . , n} with at least two elements, so f is a semiprojection. �

The following result was shown for finite idempotent clones C in [325]; a clone
is called idempotent if all its operations are idempotent. The infinite non-idempotent
version below appeared in slightly different form in [54]. For oligomorphic clones, the
statement will be strengthened in Theorem 6.1.45.

Theorem 6.1.42. Let C be an essentially unary clone without constant operations
and let f be a minimal operation above C . Then f is of one of the following types:

(1) A unary operation.

(2) A binary essential operation such that f̂ ∈ C .
(3) A quasi Maltsev operation.
(4) A quasi majority operation.
(5) A k-ary quasi semiprojection for some k ≥ 3.

Proof. There is nothing to show when f is unary or binary. If f is ternary,
we have to show that f satisfies the equations of quasi majorities, quasi Maltsev
operations, or quasi semiprojections. By minimality of f , the operation f1(x, y) :=

f(y, x, x) is in C , and hence f1(x, y) = f̂(x) or f1(x, y) = f̂(y). Similarly, the other
operations f2(x, y) := f(x, y, x), and f3(x, y) := f(x, x, y) obtained by identifications

of two variables are essentially unary, and each of f1, f2, f3 is either equal to f̂(x) or

to f̂(y). We therefore distinguish eight cases, depicted in the following table; in each
case, f or a function obtained from f by reordering the arguments, must be a quasi
majority, a quasi semiprojection, or a quasi Maltsev operation, as indicated in the
final column of the table.

f1 f2 f3 type

f̂(x) f̂(x) f̂(x) quasi majority

f̂(x) f̂(x) f̂(y) quasi semiprojection

f̂(x) f̂(y) f̂(x) quasi semiprojection

f̂(x) f̂(y) f̂(y) quasi Maltsev

f̂(y) f̂(x) f̂(x) quasi semiprojection

f̂(y) f̂(x) f̂(y) quasi Maltsev

f̂(y) f̂(y) f̂(x) quasi Maltsev

f̂(y) f̂(y) f̂(y) quasi Maltsev

If f is k-ary for k ≥ 4, then by the assumption that C does not contain constant
operations, f is a weak semiprojection. Thus, Lemma 6.1.41 implies that f is a quasi
semiprojection, and we are done. �
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We finally present a proof, based on Theorem 6.1.42, of a statement that we
have already used in the proof of Corollary 3.2.1 in Section 3.2. The first part of the
statement also follows from Lemma 6.8.4.

Proposition 6.1.43. For each n ≥ 3 all idempotent polymorphisms of Kn are
projections. Every relation that is first-order definable in Kn is primitively positively
definable in Kn; these are precisely the relations that are preserved by all permutations
of the domain.

Proof. By Theorem 6.1.37, it suffices to show that the clone of idempotent poly-
morphisms of Kn does not contain a minimal operation. Hence, by Theorem 6.1.42,
we have to verify that Pol(Kn) does not contain any essentially binary idempotent
operation, Maltsev operation, majority operation, or k-ary semiprojection for k ≥ 3.

(1) Let f be a binary idempotent polymorphism of Kn.
Observation 1. f(u, v) ∈ {u, v}: otherwise, i := f(u, v) is adjacent to

both u and v, but f(i, i) = i is not adjacent to i, in contradiction to f being
a polymorphism.

Observation 2. If f(u, v) = u, then f(v, u) = v: this is clear if u = v,
and if u 6= v then note that f(u, v) 6= f(v, u) because f preserves 6=, so
f(v, u) 6= u. Moreover, f(v, u) ∈ {u, v} by Observation 1, so f(v, u) = v.

To prove that f is a projection, it therefore suffices to show that there
cannot be distinct u, v and distinct u′, v′ such that f(u, v) = u and f(u′, v′) =
v′. Suppose for contradiction that there are such u, v, u′, v′.
Case 1. u = u′. Since f(u, v′) = f(u′, v′) = v′, we have f(v′, u) = u by
Observation 2. This is in contradiction to f(u, v) = u since v′ is adjacent to
u = u′, and u is adjacent to v.
Case 2. u 6= u′.

Case 2.1. f(u′, u) = u. This is impossible because f(u, v) = u,
E(u, u′), and E(u, v).

Case 2.2. f(u′, u) = u′. This is impossible because f(v′, u′) = u′,
E(u′, v′), and E(u′, u).

(2) Since (1, 0), (1, 2), (0, 2) ∈ E(Kn), but (0, 0) /∈ E(Kn), the graph Kn has no
Maltsev polymorphism.

(3) If f is a majority, note that f(0, 1, 2) = f(x0, x1, x2) where xi is some
element distinct from i if f(0, 1, 2) = i, and xi := f(0, 1, 2) otherwise. But
(i, xi) ∈ E(Kn), so f is not a polymorphism of Kn.

(4) Finally, let f be a k-ary semiprojection for k ≥ 3 which is not a projec-
tion. Suppose without loss of generality that f(x1, . . . , xk) = x1 whenever
|{x1, . . . , xk}| < k (otherwise, permute the arguments of f). Since f is
not a projection, there exist pairwise distinct a1, . . . , ak ∈ V (Kn) such that
c := f(a1, . . . , ak) 6= a1. Let b1, . . . , bk be such that bi is any element of
V (Kn) \ {c} if c = ai, and bi := c otherwise. Note that b1 = c since
c 6= a1, and that f(b1, . . . , bk) = b1 = c because f is a semiprojection. But
(ai, bi) ∈ E(Kn) for all i ≤ k, so f is not a polymorphism of Kn.

The second part of the statement follows from Theorem 6.1.12. �

If the clone C is generated by an oligomorphic permutation group G , the charac-
terisation of minimal operations f above C can be strengthened. First of all, we can
exclude the case that f is a quasi Maltsev operation. This follows from the following
more general fact, which we prove using a consequence of Ramsey’s theorem (which
is presented in Section 11.1).
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Proposition 6.1.44. Let D be an oligomorphic clone on a countably infinite set
B and suppose that D contains a quasi Maltsev operation. Then D must contain a
unary non-injective operation.

Proof. Since D is oligomorphic, the group of invertible unary operations in D
has a finite number r of orbitals. Let v1, v2, . . . be an enumeration of B. For i < j,
we assign to a pair (vi, vj) the orbital of (vi, vj) as a colour. Ramsey’s theorem
(Theorem 11.1.1) implies that there is a monochromatic triangle with respect to this
colouring, i.e., there exist three distinct elements a, b, c ∈ B such that (a, b), (a, c),
and (b, c) lie in the same orbital O. Let α, β ∈ D (1) be such that α(a, b) = (a, c) and
β(a, b) = (b, c). Now, suppose f is a quasi Maltsev operation. We claim that g ∈ D (1)

given by g(x) := f(x, α(x), β(x)) is non-injective:

g(a) = f(a, α(a), β(a)) = f(a, a, b) = f̂(b)

= f(b, c, c) = g(b, α(b), β(b)). �

Hence, in particular, ω-categorical model-complete cores cannot have quasi Malt-
sev polymorphisms.

Theorem 6.1.45. Let G be an oligomorphic permutation group on a countably
infinite set B with r orbitals and s orbits, and let f be minimal above 〈G 〉. Then f is
of one of the following types:

(1) A unary operation.
(2) A binary operation.
(3) A ternary quasi majority operation.
(4) A k-ary quasi semiprojection, for 3 ≤ k ≤ 2r − s.

Proof. The statement follows from Theorem 6.1.42 as follows. By Proposi-
tion 6.1.44 the operation f cannot be a quasi Maltsev operation, since in this case
〈{f}∪G 〉 contains a unary operation g that is non-injective and therefore not in 〈G 〉,
in contradiction to minimality of f .

Next, observe that if the arity of a quasi semiprojection is larger than 2r−s, then
it generates an essential operation of arity at most 2r− s by Corollary 6.1.25; hence,
minimal quasi semiprojections have arity at most 2r − s. �

6.2. The Boolean Domain

Schaefer’s theorem states that for every 2-element template the CSP is either in
P or NP-hard (Theorem 6.2.7). Via the Inv-Pol Galois connection (Section 6.1.2),
most of the classification arguments in Schaefer’s article follow from earlier work of
Post [319], who classified all clones over the Boolean domain {0, 1}. We present a
short proof of Schaefer’s theorem here, using the results and ideas from Section 6.1.6
and Section 6.1.8.

Note that over the Boolean domain, there is precisely one minority operation,
and precisely one majority operation.

Theorem 6.2.1 (Post [319]). Let C be an essentially unary operation clone with
domain {0, 1}. Then every minimal operation above C is among one of the following:

• a unary operation.
• the binary operation (x, y) 7→ min(x, y).
• the binary operation (x, y) 7→ max(x, y).
• the minority operation.
• the majority operation.
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Proof. Let f be a minimal operation above C of arity at least two. Note that

f̂ ∈ 〈f〉 and that f̂ cannot be constant by the minimality of f . Hence, either f̂ is the

identity, in which case f is idempotent, or f̂ equals ¬, in which case ¬f is idempotent
and minimal above C as well. So we can assume without loss of generality that f is
idempotent.

There are only four binary idempotent operations on {0, 1}, two of which are
projections and therefore cannot be minimal. The other two operations are min and
max. Next, note that a semiprojection of arity at least three on a Boolean domain
must be a projection. Thus, Theorem 6.1.42 implies that f is the majority or a Maltsev
operation. In the former case, we are done. In the latter case, if f(x, y, x) = y then
f is the minority operation, and we are also done. Otherwise, the minimality of f
implies that f(x, y, x) = x, and we will define the majority operation in terms of f .
Indeed, the operation g defined by

g(x, y, z) := f(x, f(x, y, z), z)

satisfies

g(x, x, z) = f(x, f(x, x, z), z) = f(x, z, z) = x

g(x, y, y) = f(x, f(x, y, y), y) = f(x, x, y) = y

g(x, y, x) = f(x, f(x, y, x), x) = f(x, x, x) = x. �

Using Theorem 6.2.1, the following result about the structure ({0, 1}; 1IN3) in-
troduced in Example 1.2.2 is straightforward to check.

Corollary 6.2.2. All polymorphisms of ({0, 1}; 1IN3) are projections.

Proof. The Boolean relation 1IN3 is preserved neither by min, max, minority,
nor majority. The only unary polymorphism is the identity. Hence, the statement
follows from Theorem 6.2.1. �

In the following propositions we present alternative descriptions of the relations
which are preserved by min, max, minority, and majority.

Proposition 6.2.3. A Boolean relation is preserved by the minority operation if
and only if R has a definition by a conjunction of linear equations modulo 2.

Proof. This statement follows from basic facts in linear algebra. Let R be n-
ary. We view R as a subset of the Boolean vector space {0, 1}n. By definition, R is
called affine if it is the solution space of a system of linear equations, and it is a well-
known fact from linear algebra that affine spaces are precisely those that are closed
under affine combinations, i.e., linear combinations of the form α1x1 + · · ·+αkxk such
that α1 + · · · + αk = 1. In particular, if R is affine it is preserved by (x1, x2, x3) 7→
x1 + x2 + x3, which is the minority operation. Conversely, if R is preserved by the
minority operation, then x1 + · · ·+ xk, for odd k, can be written as

minority(x1, x2,minority(x3, x4, . . .minority(xn−2, xk−1, xk)))

and hence is contained in R. �

The following definition is very useful for proving that certain Boolean relations
R can be defined in syntactically restricted propositional logic.

Definition 6.2.4. A propositional formula φ in conjunctive normal form is called
reduced if whenever we remove a literal from a clause in φ, the resulting formula is
not equivalent to φ.

Clearly, every Boolean relation has a reduced definition: simply remove literals
from any definition in CNF until the formula becomes reduced.
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Proposition 6.2.5. A Boolean relation R has a definition by a Horn formula
(Section 1.6.7) if and only if R is preserved by min.

Proof. It is easy to see that min preserves every relation defined by a clause
that contains at most one positive literal, and hence every relation with a Horn
definition. Conversely, let R be a Boolean relation preserved by min. Let φ be a
reduced propositional formula in CNF that defines φ. Now suppose for contradiction
that φ contains a clause C with two positive literals x and y. Since φ is reduced,
there is an assignment s1 that satisfies φ such that s1(x) = 1, and such that all other
literals of C evaluate to 0. Similarly, there is a satisfying assignment s2 for φ such that
s2(y) = 1 and all other literal s of C evaluate to 0. Then s0 : x 7→ min(s1(x), s2(y))
does not satisfy C, and does not satisfy φ, in contradiction to the assumption that
min preserves R. �

A Boolean relation is called bijunctive if it can be defined by a propositional
formula that is a conjunction of clauses of size two.

Proposition 6.2.6. A Boolean relation R is preserved by the majority operation
if and only if it is bijunctive.

Proof. It is easy to see that the majority operation preserves every Boolean
relation of arity two, and hence every bijunctive Boolean relation. For the converse,
it suffices to show that if R is preserved by the majority operation, and φ is a reduced
definition of R, then all clauses C of φ have at most two literals. Suppose for contra-
diction that C has three literals l1, l2, l3. Since φ is reduced, there must be satisfying
assignments s1, s2, s3 to φ such that under si all literals of C evaluate to 0 except
for li. Then the mapping s0 : x 7→ majority(s1(x), s2(x), s3(x)) does not satisfy C
and therefore does not satisfy φ, in contradiction to the assumption that majority
preserves R. �

Recall that NAE was defined as the Boolean relation {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.
We combine the findings above in the following theorem.

Theorem 6.2.7 (Schaefer [328]). Let B be a structure with finite signature over
a two-element universe. Then either ({0, 1}; NAE) has a primitive positive definition
in B, and CSP(B) is NP-complete, or

(1) B is preserved by a constant operation.
(2) B is preserved by min. In this case, every relation of B has a definition by

a propositional Horn formula.
(3) B is preserved by max. In this case, every relation of B has a definition

by a dual-Horn formula, that is, by a propositional formula in CNF where
every clause contains at most one negative literal.

(4) B is preserved by the majority operation. In this case, every relation of B
is bijunctive.

(5) B is preserved by the minority operation. In this case, every relation of B
can be defined by a conjunction of linear equations modulo 2.

In case (1− 5) the problem CSP(B) can be solved in polynomial time.

Proof. If Pol(B) contains a constant operation, then we are in case one, and
the statement follows from Proposition 1.1.12; so suppose in the following that this
is not the case.

If NAE is primitively positively definable in B, then CSP(B) is NP-hard by
Corollary 1.2.8. Otherwise, by Theorem 6.1.12 there is an operation f ∈ Pol(B) that

does not preserve NAE. If f̂ equals the identity then f is idempotent. Otherwise,
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f̂ equals ¬. But then ¬f ∈ Pol(B) is idempotent and also does not preserve NAE.
So let us assume in the following that f is idempotent. Then f generates a minimal
operation g ∈ Pol(B) of arity at least two.

By Theorem 6.2.1, the operation g equals min, max, the Boolean minority, or the
Boolean majority function.

• g = min or g = max. If B is preserved by min, then by Proposition 6.2.5
all relations of B can be defined by propositional Horn formulas. It is well-
known that the satisfiability of propositional Horn formulas can be solved
in linear time [159].2 A general tractability condition generalising the al-
gorithmic content of this results will be presented in Section 8.4. The case
that g = max is dual to this case.
• g = majority. By Proposition 6.2.6, all relations of B are bijunctive. Hence,

in this case the instances of CSP(B) can be viewed as instances of the 2SAT
problem, and can be solved in linear time [12]. A general tractability con-
dition generalising the algorithmic content of this results will be presented
in Section 8.5.2.
• g = minority. By Proposition 6.2.3 every relation of B has a definition by

a conjunction of linear equalities modulo 2. Then CSP(B) can be solved in
polynomial time by Gaussian elimination.

This concludes the proof of the statement. �

NP-hard Boolean constraint languages can be characterised in many equivalent
ways via Corollary 6.1.20, as we will see in the following.

Proposition 6.2.8. Let B be a structure over a two-element universe. Then the
following are equivalent.

(1) The relation NAE has a primitive positive definition in B.
(2) B is preserved neither by min, max, minority, majority, nor the constant

operations.
(3) Either the polymorphism clone of B contains only projections, or it is gen-

erated by the unary operation x 7→ ¬x.
(4) Every first-order formula is equivalent over B to a primitive positive for-

mula.

Proof. The implication from (1) to (2) follows from the fact that NAE is not
preserved by min, max, minority, majority, or constant operations, which is straight-
forward to verify. The implication (2) implies (3) follows from Theorem 6.2.1. The
implication from (3) to (4) follows from Corollary 6.1.20. For the implication from (4)
to (1), note that NAE has the first-order definition NAE(x, y, z) ⇔ (x 6= y ∨ y 6= z).
So (4) implies that NAE also has a primitive positive definition in B. �

6.3. Algebras and Pseudo-Varieties

In the previous sections of this chapter we have seen a useful characterisation of
primitive positive definability in an ω-categorical structure B in terms of the poly-
morphism clone of B. In this section we present a similarly useful universal-algebraic
characterisation of the notion of (full) primitive positive interpretability in B, which
we introduced in Section 3.1, based on pseudo-varieties.

2A well-known algorithmic technique to decide the satisfiability of a given propositional Horn
formula is positive unit-resolution [333].
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6.3.1. Algebras. Algebras have been defined in Section 2.1: they are simply
structures with a purely functional signature. When A is an algebra with signature
τ and domain A, we denote by Clo(A) the set of all term functions of A, that is,
functions with domain A of the form (x1, . . . , xn) 7→ t(x1, . . . , xn) where t is any
term over the signature τ whose set of variables is contained in {x1, . . . , xn}. Clearly,
Clo(A) is an operation clone since it is closed under compositions, and contains the
projections, and in fact it is the smallest operation clone that contains {fA | f ∈ τ}.
An algebra A is called oligomorphic if Clo(A) is oligomorphic.

Conversely, it is clear that for any operation clone C one can find an algebra A
such that Clo(A) = C . In the context of complexity classification of CSPs, algebras
arise as follows.

Definition 6.3.1. Let B be a structure with domain B. An algebra B with
domain B such that Clo(B) = Pol(B) is called a polymorphism algebra of B.

A relational structure has many different polymorphism algebras, since Defini-
tion 6.3.1 does not prescribe how to assign function symbols to the polymorphisms
of B. We mention that there is a canonical way of choosing a signature, namely by
using the functions in the operation clone themselves as the symbols of the signature
(we can use any set as a signature for an algebra). This is why it also makes sense to
speak about the polymorphism algebra, which is the algebra B with signature Pol(B)
such that fB := f . In later sections (at the latest from Chapter 9 onwards) we often
work directly with operation clones rather than algebras, which allows elegant presen-
tation of many results. However, we believe it to be necessary for this text to present
the treatment via algebras as well, for several reasons. One reason is that we would
like to relate the results in this text with results in their traditional presentation in
universal algebra. Another reason is that when we discuss properties of a τ -algebra
A it will be convenient to use universal-conjunctive first-order τ -sentences in order
to express properties of the operation clone Clo(A). Later we will see that there is
another, essentially equally expressive way for talking about these properties, namely
primitive positive sentences over the signature of abstract clones (see Section 6.5).
But these sentences are syntactically cumbersome, and we often prefer to work with
τ -terms instead.

6.3.2. Subalgebras of powers. Let f : An → A be an operation on A and let
R ⊆ Am be a relation on A, for some n,m ∈ N. The equivalence of the following
statements is immediate from the definitions.

(1) f ∈ Pol(A;R).
(2) f preserves R.
(3) f is a homomorphism from (A;R)n → (A;R).
(4) R is a subalgebra of (A; f)m.

6.3.3. Congruences and quotients. A congruence K of an algebra A is an
equivalence relation on A that is preserved by all operations in A (so K can be
viewed as a subalgebra of A2). The results in Section 6.1.2 show that for countable
ω-categorical structures A with polymorphism algebra A, the congruences of A are
exactly the primitively positively definable equivalence relations over A.

Proposition 6.3.2 (see [125]). Let A be an algebra. Then E is a congruence of
A if and only if E is the kernel of a homomorphism from A to some other algebra B.

Note that the notion of a congruence relates to normal subgroups in group theory
(the normal subgroups are precisely the equivalence classes of the neutral element with
respect to some congruence of the group; see Proposition 9.2.16) but also generalises
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the notion of a congruence of a permutation group (we view the permutation group as
an algebra which has a unary function for each permutation of G ; see Section 4.2.3).

Definition 6.3.3. IfK is a congruence of a τ -algebra A, then the quotient algebra
A/K denotes τ -algebra with domain A/K where

fA/K(a1/K, . . . , ak/K) = fA(a1, . . . , ak)/K

where a1, . . . , ak ∈ A and f ∈ τ is k-ary. This is well defined since K is preserved by
all operations of A. If K is the kernel of a homomorphism h then we also write A/h
instead of A/K.

The following is well known.

Lemma 6.3.4. Let A and B be algebras with the same signature, and let h : A→ B
be a homomorphism. Then the image of any subalgebra A′ of A under h is a subalgebra
of B, and the preimage of any subalgebra B′ of B under h is a subalgebra of A.

Proof. Let f ∈ τ be k-ary. Then for all a1, . . . , ak ∈ A′,

fB(h(a1), . . . , h(ak)) = h(fA(a1, . . . , ak)) ∈ h(A′) ,

so h(A′) is a subalgebra of B. Now suppose that h(a1), . . . , h(ak) are in B′; then
fB(h(a1), . . . , h(ak)) ∈ B′ and hence h(fA(a1, . . . , ak)) ∈ B′. So, fA(a1, . . . , ak) ∈
h−1(B′) which shows that h−1(B′) induces a subalgebra of A. �

6.3.4. Homomorphic images, subalgebras, products. In this section we
recall some basic universal-algebraic operators on classes of algebras that will be used
in the following subsections. When K is a class of algebras of the same signature,
then

• H(K) denotes the class of all homomorphic images of algebras from K.
• S(K) denotes the class of all subalgebras of algebras from K.
• P(K) denotes the class of all products of algebras from K.

• Pfin(K) denotes the class of all finite products of algebras from K.
• Exp(K) denotes the class of all expansions of algebras from K.

(Homomorphic images, subalgebras, products, and expansions have been defined in
Section 2.1.) Note that closure under homomorphic images implies in particular

closure under isomorphisms. For the operators H, S, P, Pfin, and Exp we often omit
the brackets when applying them to singletons K = {A}, i.e., we write H(A) instead
of H({A}). A class V of algebras with the same signature τ is called

• a pseudo-variety if V contains all homomorphic images, subalgebras, and
finite direct products of algebras in V, i.e., H(V) = S(V) = Pfin(V) = V;

• a variety if V also contains all (finite and infinite) products of algebras in V.

So the only difference between pseudo-varieties and varieties is that pseudo-varieties
need not be closed under direct products of infinite cardinality. The smallest pseudo-
variety (variety) that contains a class C of τ -algebras is called the pseudo-variety
(variety) generated by C.

Lemma 6.3.5 (HSP lemma). Let C be a class of τ -algebras.

• The pseudo-variety generated by C equals HSPfin(C).
• The variety generated by C equals HSP(C).

Proof. Clearly, HSPfin(C) is contained in the pseudo-variety generated by C, and
HSP(C) is contained in the variety generated by C. We have to verify that HSPfin(C) is
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closed under H, S, and Pfin. It is clear that H(HSPfin(C)) = HSPfin(C). Lemma 6.3.4

implies that S(HSPfin(C)) ⊆ HS(SPfin(C)) = HSPfin(C). Finally,

Pfin(HSPfin(C)) ⊆ H Pfin S Pfin(C) ⊆ HSPfin Pfin(C) = HSPfin(C) .
The proof that HSP(C) is closed under H, S, and P is analogous. �

6.3.5. Interpretations and pseudo-varieties. We present the aforementioned
connection between primitive positive interpretations and pseudo-varieties.

Proposition 6.3.6. Let C be a structure and let C be a polymorphism algebra of
C. If B ∈ I(C) then Exp HSPfin(C) contains a polymorphism algebra of B.

Proof. Suppose that B has a d-dimensional primitive positive interpretation
I in C. Since I−1(B) is primitively positively definable in C, it is preserved by all
operations in C, and therefore induces a subalgebra D of Cd. Let K be the kernel of
I. Since I−1(=B) is primitively positively definable in C, all operations of C preserve
the equivalence relation K = I−1(=B), so K is a congruence of D. Thus, I is a
surjective homomorphism from D to B := D/K. It is straightforward to verify that
Clo(B) ⊆ Pol(B). �

Recall that any structure with an interpretation in a structure C is a reduct of a
structure with a full interpretation in C. If C is a class of structures, we write Ifull(C)
for the class of structures with a full primitive positive interpretation in a structure
from C.

Theorem 6.3.7. Let C be a countable ω-categorical structure and let C be a
polymorphism algebra of C. Then

(1) B ∈ Ifull(C) if and only if there exists B ∈ HSPfin(C) such that

Clo(B) = Pol(B).

(2) B ∈ Red(C) if and only if there exists B ∈ Exp(C) such that

Clo(B) = Pol(B).

(3) B ∈ I(C) if and only if there exists B ∈ Exp HSPfin(C) such that

Clo(B) = Pol(B).

Proof. (2) follows from Theorem 6.1.12. Moreover, (3) follows from (1) and (2).
To show (1), suppose that B has a d-dimensional full primitive positive interpre-

tation I in C (and thus is ω-categorical by Lemma 4.7.3). Since I−1(B) is primitively
positively definable in C, it is preserved by all operations in C, and therefore induces a
subalgebra D of Cd. Let K be the kernel of I. Since I−1(=B) is primitively positively
definable in C, all operations of C preserve K = I−1(=B), so K is a congruence of
D. Thus, I is a surjective homomorphism from D to B := D/K. We verify that

Clo(B) = Pol(B). By Corollary 6.1.14 it suffices to show that a relation R ⊆ Bk is
primitively positively definable in B if and only if it is preserved by all operations of
B. For every f ∈ τ , the relation R is preserved by fB if and only if fC preserves
I−1(R), which is the case if and only if I−1(R) is primitively positively definable in
C. This in turn is the case if and only if R is primitively positively definable in B by
the assumption that the primitive positive interpretation I is full.

Now suppose that there is an algebra B ∈ HSPfin(C) such that Clo(B) = Pol(B).
So there exists a finite number d ≥ 1, a subalgebra D of Cd, and a surjective ho-
momorphism h from D to B. We claim that h is a d-dimensional primitive positive
interpretation of B in C. All operations of C preserve D (viewed as a d-ary relation
over C) since D is a subalgebra of Cd. By Theorem 6.1.12, this implies that D has a
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primitive positive definition in C, which becomes the domain formula of the interpre-
tation. Since h is an algebra homomorphism, the kernel K of h is a congruence of D.
It follows that K, viewed as a 2d-ary relation over C, is preserved by all operations
from C. Theorem 6.1.12 implies that K has a primitive positive definition in C. This
definition becomes the interpreting formula of the equality relation on B.

To see that h is a full interpretation, let R ⊆ Bk be a relation of B, let τ be
the signature of C, and let f ∈ τ be arbitrary. By assumption, fB preserves R.
Therefore, fC preserves h−1(R). Hence, all polymorphisms of C preserve h−1(R),
and because C is ω-categorical, the relation h−1(R) has a primitive positive definition
in C (Theorem 6.1.12), which becomes the interpreting formula for R(x1, . . . , xk). We
have verified that h is a primitive positive interpretation of B in C. To see that h
is a full interpretation, let R ⊆ Bk be a relation such that h−1(R) is primitively
positively definable in C. Then h−1(R) is preserved by Clo(C) and R is preserved by

Clo(B) and therefore also by Clo(B). By assumption Clo(B) = Pol(B), and hence R
is preserved by all polymorphisms of B and primitively positively definable in B by
Theorem 6.1.12. �

The proof of Theorem 6.3.7 above gives more information about the link between
primitive positive interpretations in C and the algebras in Exp HSPfin(C), and we
state it explicitly.

Theorem 6.3.8. Let C be a countable ω-categorical structure with polymorphism
algebra C, let B be an arbitrary structure, let d ∈ N, and let h : Cd → B be a partial
surjection. Then the following are equivalent.

(1) h is a primitive positive interpretation of B in C;
(2) h is a surjective homomorphism from an algebra S ∈ S(Cd) to an algebra B

such that Clo(B) ⊆ Pol(B).

As in the case of primitive positive interpretations, we can also characterise prim-
itive positive bi-interpretations in terms of pseudo-varieties of the respective polymor-
phism algebras.

Proposition 6.3.9 (Proposition 25 in [96]). Let A and B be countable ω-categorical
structures. Then the following are equivalent.

(1) A has a polymorphism algebra A and B has a polymorphism algebra B such
that HSPfin(A) = HSPfin(B).

(2) A and B are primitively positively bi-interpretable.

Proof. For the implication from (1) to (2), we assume that there is a d1 ≥ 1, a
subalgebra S1 of Ad1 , and a surjective homomorphism h1 from S1 to B. Moreover,
we assume that there is a d2 ≥ 1, a subalgebra S2 of Bd2 , and a surjective homomor-
phisms h2 from S2 to A. By Theorem 6.3.8, I1 := (d1, S1, h1) is an interpretation of
B in B, and I2 := (d2, S2, h2) is an interpretation of A in B. Because the statement
is symmetric it suffices to show that the (graph of the) function h1 ◦ h2 : (S2)d1 → B
defined by

(y1,1, . . . , y1,d2 , . . . , yd1,1, . . . , yd1,d2) 7→ h1(h2(y1,1, . . . , y1,d2), . . . , h2(yd1,1, . . . , yd1,d2))

is primitively positively definable in B. Theorem 6.1.12 asserts that this is equivalent
to showing that h1 ◦ h2 is preserved by all operations fB of B. So let k be the arity
of fB and let bi = (bi1, . . . , b

i
d1

) be elements of (S2)d1 , for 1 ≤ i ≤ k. Then indeed

fB((h1 ◦ h2)(b1), . . . , (h1 ◦ h2)(bk))

= h1

(
fA(h2(b11), . . . , h2(bk1)), . . . , fA(h2(b1d1), . . . , h2(bkd1))

)
= (h1 ◦ h2)(fB(b1, . . . , bk)) .
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For the implication from (2) to (1), suppose that A and B are primitive positive
bi-interpretable via an interpretation I1 = (d1, S1, h1) of B in A and an interpretation
I2 = (d2, S2, h2) of A in B. Let A be a polymorphism algebra of A. Theorem 6.3.8
states that S1 induces an algebra S1 in Ad1 and h1 is a surjective homomorphism
from S1 to an algebra B satisfying Clo(B) = Pol(B). Hence, B is a polymorphism
algebra of B that has the same signature τ as A. Similarly, S2 is the domain of a
subalgebra S2 of Bd2 and h2 is a homomorphism from S2 onto an algebra A′ such
that Clo(A′) = Pol(A).

We claim that HSPfin(A) = HSPfin(B). The inclusion ‘⊇’ is clear since B ∈
HSPfin(A). For the reverse inclusion it suffices to show that A = A′ since A′ ∈
HSPfin(B). Let f ∈ τ be k-ary; we show that fA = fA

′
. Let a1, . . . , ak ∈ A.

Since h2 ◦ h1 is surjective onto A, there are ci = (ci1,1, . . . , c
i
d1,d2

) ∈ Ad1d2 such that

ai = h2 ◦ h1(ci). Then

fA
′
(a1, . . . , ak) = fA

′
(h2 ◦ h1(c1), . . . , h2 ◦ h1(ck))

= h2

(
fB(h1(c11,1, . . . , c

1
d1,1), . . . , h1(ck1,1, . . . , c

k
d1,1)), . . . ,

fB(h1(c11,d2 , . . . , c
1
d1,d2), . . . , h1(ck1,d2 , . . . , c

k
d1,d2))

)
= h2 ◦ h1(fA(c1, . . . , ck))

= fA(h2 ◦ h1(c1), . . . , h2 ◦ h1(ck))

= fA(a1, . . . , ak)

where the second and third equations hold since h2 and h1 are algebra homomor-
phisms, and the fourth equation holds because fA preserves h2 ◦ h1, because I2 ◦ I1
is pp-homotopic to the identity. �

The ω-categorical structures B which primitively positively interpret every finite
structure can be characterised algebraically as follows.

Theorem 6.3.10. Let B be a countable ω-categorical structure and let B be a
polymorphism algebra of B. Then the following are equivalent.

(1) I(B) contains all finite structures;
(2) I(B) contains Kn, for some n ≥ 3;
(3) I(B) contains ({0, 1}; NAE).
(4) I(B) contains ({0, 1}; 1IN3).
(5) I(B) contains for every finite set A a structure on A all of whose polymor-

phisms are projections.
(6) HSPfin(B) contains for every finite set A an algebra on A all of whose op-

erations are projections.
(7) HSPfin(B) contains an algebra on a domain of size at least 2 all of whose

operations are projections.
(8) I(B) contains a structure with at least two elements all of whose polymor-

phisms are projections.
(9) I(B) contains a structure with at least two elements where all first-order

formulas are equivalent to primitive positive formulas.

If these conditions apply then B has a finite-signature reduct with an NP-hard CSP.

Proof. We first show the cyclic sequence of implications

(1)⇒ (5)⇒ (6)⇒ (7)⇒ (8)⇒ (9)⇒ (1).

To show (1)⇒ (5), let A be the structure with domain A, the relation P 3
A, and for

each i ∈ A the unary relation {i}. By (1) there is a primitive positive interpretation
of A in B. All polymorphisms of A are projections (Corollary 6.1.20), proving (5).



6.4. REFLECTIONS 173

(5) ⇒ (6). For a finite set A, let A be the structure with domain A from (5).
Then Theorem 6.3.7 implies that there is an algebra A ∈ HSPfin(B) such that all
operations of A are polymorphisms of A.

The implication (6) ⇒ (7) is trivial. For the implication from (7) to (8), let
A be the algebra on a domain A with |A| ≥ 2 such that all operations of A are
projections. Then all operations in A preserve PA and the unary relation {i} for
each i ∈ {1, . . . ,m}; Theorem 6.3.7 then implies (8). The implications (8)⇒ (9) and
(8)⇒ (1) are by Theorem 3.2.2.

Clearly, (1) implies (2), (3), and (4). Proposition 6.1.43 shows that all first-order
formulas are over Kn, for n ≥ 3, equivalent to a primitive positive formula, so (2)
implies (9). Similarly, Proposition 6.2.8 shows that (3) implies (9). Finally, every
polymorphism of ({0, 1}; 1IN3) is a projection (Corollary 6.2.2) so (4) implies (8). �

6.4. Reflections

In Section 6.3.5 we have seen that the HSPfin operator is the algebraic counterpart
to full primitive positive interpretations. This section treats a relatively new universal-
algebraic operator, for forming reflections (introduced in [29]), which can be used to
characterise the structure-building operator HI. Recall from Section 3.6 that HI is
the operator that is most relevant for constraint satisfaction.

Definition 6.4.1. Let B be a τ -algebra, let A be a set, and let h : B → A and
g : A → B be two maps. Then the reflection of B with respect to h and g is the
τ -algebra A with domain A where for all x1, . . . , xn ∈ A and f ∈ τ of arity n we
define

fA(x1, . . . , xn) := h(fB(g(x1), . . . , g(xn))) .

The class of reflections of a class of τ -algebras C is denoted by Refl(C).

As for the other operators on algebras, we write Refl(B) instead of Refl({B}).
The analog to the HSP-lemma (Lemma 6.3.5) is the following.

Lemma 6.4.2 (from [29]). Let C be a class of τ -algebras.

• The smallest class of τ -algebras that contains C and is closed under Refl, H,
S, and P equals Refl P(C).

• The smallest class of τ -algebras that contains C and is closed under Refl, H,
S, and Pfin equals Refl Pfin(C).

Proof. For the first statement, it suffices to prove that Refl P(C) is closed under

Refl, H, S, P, and for the second that Refl Pfin(C) is closed under Refl, H, S, Pfin. For
the operator Refl this follows from the simple fact that Refl Refl(K) = Refl(K) for any
class K.

To prove that Refl P(C) and Refl Pfin(C) are closed under H, we show that H(K) ⊆
Refl(K) for any class K. Let B ∈ K and h : B → A be a surjective homomorphism to
an algebra A. Pick any function g such that h ◦ g is the identity on A. Then h and
g witness that A is a reflection of B since

h(fB(g(x1), . . . , g(xn)) = fA(h ◦ g(x1), . . . , h ◦ g(xn)) (since h is a homomorphism)

= fA(x1, . . . , xn) (by the choice of g).

To prove that Refl P(C) and Refl Pfin(C) are closed under S, we show that S(K) ⊆
Refl(K) for any class K. Let B ∈ K and suppose that A is a subalgebra of B. Let
g : A → B be the identity on A, and h : B → A be any extension of g to B. Then h
and g show that A is a reflection of B since

h(fB(g(x1), . . . , g(xn)) = fB(x1, . . . , xn) = fA(x1, . . . , xn) .
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Let I be an arbitrary set, (Bi)i∈I be algebras from P(C), and suppose that Ai is a
reflection of Bi for every i ∈ I, witnessed by functions hi : Bi → Ai and gi : Ai → Bi.
Then the map h :

∏
i∈I Bi →

∏
i∈I Ai that sends (bi)i∈I to (hi(bi))i∈I and the map

g :
∏
i∈I Ai →

∏
i∈I Bi that sends (ai)i∈I to (gi(ai))i∈I witness that

∏
i∈I Ai is a

reflection of
∏
i∈I Bi. This shows that P(Refl P(C)) ⊆ Refl P(C) and likewise that

Pfin(Refl Pfin(C)) ⊆ Refl Pfin(C). �

Theorem 6.4.3. Let B,C be at most countable ω-categorical relational structures
and let C be a polymorphism algebra of C. Then

(1) B ∈ H Red(C) if and only if there is an algebra B ∈ Exp Refl(C) such that
Clo(B) = Pol(B).

(2) B ∈ HI(C) if and only if there is an algebra B ∈ Exp Refl Pfin(C) such that
Clo(B) = Pol(B).

Proof. To show (1), first suppose that B ∈ H(C′) and C′ ∈ Red(C); let h : C′ →
B and g : B → C′ be homomorphisms witnessing homomorphic equivalence of B
and C′. Let C′ be an expansion of C which is a polymorphism algebra of C′. Let
B′ be the reflection of C′ with respect to h and g. Every operation of Clo(B′) is
obtained as a composition of homomorphisms, so preserves all the relations of B, so
Clo(B′) ⊆ Pol(B). This shows the existence of an algebra

B ∈ Exp(B′) ⊆ Exp Refl(C′) ⊆ Exp Refl Exp(C) = Exp Refl(C)

such that Clo(B′) = Pol(B).
Conversely, suppose that the reflection B of C at h : C → B and g : B → C is

such that Clo(B) ⊆ Pol(B). Let C′ be the structure with domain C and the same
signature as B which contains for every k-ary relation symbol R of B the relation

RC′ := {(f(g(b11), . . . , g(b`1)), . . . , f(g(b1k), . . . , g(b`k)))

| f ∈ Pol(C), (b11, . . . , b
1
k), . . . (b`1, . . . , b

`
k) ∈ RB}.

These relations are preserved by Pol(C), so they are primitively positively definable in
C by Theorem 6.1.12, and hence C′ ∈ Red(C). Clearly, g is a homomorphism from B
to C′. We claim that h is a homomorphism from C′ to B. Indeed, if b1, . . . , bk ∈ B are
such that (f(g(b1), . . . , g(bk))) ∈ RC′ , then h(f(g(b1), . . . , g(bk))) ∈ RB because the
operation (x1, . . . , xk) 7→ h(f(g(x1), . . . , g(xk))) is an operation of B′ ∈ Refl(C) and
hence a polymorphism of B since Clo(B′) ⊆ Pol(B). Thus, B ∈ H(C′) = H(Red(C)).

Item (2) is a straightforward combination of item (1) with Theorem 6.3.7. We
only show the forward direction and leave the converse direction to the reader. If
B ∈ HI(C) then there exists a structure D ∈ Ifull(C) such that B ∈ H Red(D). By
Theorem 6.3.7 (3) there is an algebra D ∈ Exp HSPfin(C) such that Clo(D) = Pol(D),
and by item (1) there is an algebra B ∈ Exp Refl(D) such that Clo(B) = Pol(B).
This proves the statement since

B ∈ Exp Refl(D) ⊆ Exp Refl Exp HSPfin(C)

⊆ Exp Refl Pfin(C) (by Lemma 6.4.2). �

The following hardness condition for CSPs is stronger than the one presented
in 6.3.10: there are situations where the conditions of the following corollary applies,
but where the conditions of Theorem 6.3.10 do not.

Corollary 6.4.4. Let B be an at most countable ω-categorical structure and let
B be a polymorphism algebra of B. Then the following are equivalent.

(1) HI(B) contains K3;
(2) HI(B) contains all finite structures;
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(3) HI(B) contains ({0, 1}; 1IN3);
(4) Refl Pfin(B) contains an algebra of size at least 2 all of whose operations are

projections.
(5) Refl Pfin(B) contains for every finite set A an algebra on A all of whose

operations are projections.

If these condition apply then B has a finite-signature reduct with an NP-hard CSP.

Proof. The implication from (1) to (2) follows from the fact that I(K3) con-
tains all finite structures (Corollary 3.2.1), and that I H I(B) ⊆ HI(B) by Theo-
rem 3.6.2. The implication from (2) to (3) is trivial. The implication from (3)
(4) follows from the fact that all polymorphisms of ({0, 1}; 1IN3) are projections
(Corollary 6.2.2), and Theorem 6.4.3. For the implication from (4) to (5), suppose
that Refl Pfin(B) contains an algebra A of size at least 2 all of whose operations
are projections. By Theorem 6.3.10, HSPfin(A) contains for every finite set S an
algebra on S all of whose operations are projections. The statement follows since
HSPfin(A) ⊆ HSPfin(Refl Pfin(B)) ⊆ Refl Pfin(B) by Theorem 3.6.2. To show that (5)
implies (1), let A ∈ Refl Pfin(B) be such that A = {0, 1, 2} and all operations of A
are projections. Then Clo(A) ⊆ Pol(K3) and hence K3 ∈ HI(B) by Theorem 6.4.3.
The final statement follows from Corollary 3.7.1. �

6.5. Varieties, Abstract Clones, and Birkhoff’s Theorem

Varieties (see Section 6.3.4) are a fascinatingly powerful concept to study classes
of algebras. They are also central for the study of the complexity of CSPs: We will
see that the complexity of CSP(B) for finite B only depends on the variety generated
by a polymorphism algebra B of B. This comes from the fact that a finite algebra
is in the variety generated by a finite algebra B if and only if it is in the pseudo-
variety generated by B; and the link between the pseudo-variety generated by the
polymorphism algebra of B and CSP(B) has already been explained in Section 6.3.5.

The central theorem for the study of varieties is Birkhoff’s HSP theorem (Sec-
tion 6.5.1), which links varieties with equational classes. By Birkhoff’s theorem, there
is also a close relationship between varieties and the concept of an abstract clone (Sec-
tion 6.5.2).

6.5.1. Birkhoff’s theorem. Varieties have the advantage that they can be de-
scribed by the identities (or equations) satisfied by its members. Let τ be a functional
signature. An identity (over τ) is a τ -sentence of the form

∀x1, . . . , xn : s(x1, . . . , xn) = t(x1, . . . , xn)

where s and t are τ -terms.

Theorem 6.5.1 (Birkhoff [46]; see e.g. [213] or [125]). Let A and B be algebras
with the signature τ . Then the following are equivalent.

(1) Every identity that holds in B also holds in A.
(2) A ∈ HSP(B).

Moreover, if A and B are finite then we can add the following to the list:

(3) A ∈ HSPfin(B).

Proof. We first consider the case that A and B are finite, and prove that (1)
implies (3): Let a1, . . . , ak be the elements of A, define m := |B|k, and let C be BA.
Let c1, . . . , cm be the elements of C; for i ≤ k, define ci := (c1(ai), . . . , c

m(ai)) ∈ Bm.
Let S be the smallest subalgebra of Bm that contains c1, . . . , ck; so the elements of S
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are precisely those of the form tS(c1, . . . , ck), for a k-ary τ -term t. Define µ : S → A
by

µ(tS(c1, . . . , ck)) := tA(a1, . . . , ak).

Claim 1: µ is well defined. Suppose that tS(c1, . . . , ck) = sS(c1, . . . , ck). We
first show that tB = sB. Let b ∈ Bk. Then there exists an i ≤ m such that
(ci(a1), . . . , ci(ak)) = b. Thus,

tB(b) = tB(ci(a1), . . . , ci(ak)) = (tS(c1, . . . , ck))i

= (sS(c1, . . . , ck))i = sB(ci(a1), . . . , ci(ak)) = sB(b).

Hence, tB = sB. By assumption, tA = sA and in particular tA(a1, . . . , ak) =
sA(a1, . . . , ak).

Claim 2: µ is surjective. Let i ≤ k, and let t(x1, . . . , xk) be the τ -term xi. Then

µ(ci) = µ(tS(c1, . . . , ck)) = tA(a1, . . . , ak) = ai.

Claim 3: µ is a homomorphism from S to A. Let f ∈ τ be of arity n and let
s1, . . . , sm ∈ S. For i ≤ n, write si = tSi (c1, . . . , ck) for some τ -term t. Then

µ
(
fS(s1, . . . , sn)

)
=µ
(
fS(tS1 (c1, . . . , ck), . . . , tSn(c1, . . . , ck))

)
=µ
(
fS(tS1 , . . . , t

S
n)(c1, . . . , ck)

)
=µ
(
(f(t1, . . . , tn))S(c1, . . . , ck)

)
=
(
f(t1, . . . , tn)

)A
(a1, . . . , ak)

= fA
(
tA1 (a1, . . . , ak), . . . , tAn (a1, . . . , ak)

)
= fA(µ(s1), . . . , µ(sn)).

Therefore, A is the homomorphic image of the subalgebra S of Bm, and so A ∈
HSPfin(B). The same proof shows that for general A we have A ∈ HSP(B), and
hence (1) implies (2).

To show that (2) implies (1) (and, likewise, (3) implies (1)), let

φ := ∀x1, . . . , xn : s(x1, . . . , xn) = t(x1, . . . , xn)

be an identity that holds in B. To see that φ is preserved in powers A = BI

of B let a1, . . . , an ∈ A be arbitrary. By assumption B |= s(a1[j], . . . , an[j]) =
t(a1[j], . . . , an[j]) holds for all j ∈ I. Hence, BI |= s(a1, . . . , an) = t(a1, . . . , an).
Since a1, . . . , an were chosen arbitrarily, we conclude that A |= φ.

Moreover, φ is true in subalgebras of algebras that satisfy φ (this is true for
universal sentences in general). Finally, suppose that B is an algebra that satisfies φ,
and µ is a surjective homomorphism from B to some algebra A. Let a1, . . . , an ∈ A;
by surjectivity of µ we can choose b1, . . . , bn such that µ(bi) = ai for all i ≤ n. Then

sB(b1, . . . , bn) = tB(b1, . . . , bn)⇒ µ
(
sB(b1, . . . , bn)

)
= µ

(
tB(b1, . . . , bn)

)
⇒ tA

(
µ(b1), . . . , µ(bn)

)
= sA

(
µ(b1), . . . , µ(bn)

)
⇒ tA(a1, . . . , an) = sA(a1, . . . , an) .

Hence, A |= φ. �

Birkhoff’s theorem has an elegant reformulation based on the concept of abstract
clones, which we discuss in the next section.
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6.5.2. (Abstract) clones. Clones (in the literature often called abstract clones)
have the same relation to operation clones as (abstract) groups do to permutation
groups. The elements of a clone correspond to the functions of an operation clone, and
the signature contains constant symbols for the projections, and composition symbols
to code how operations compose. Since an operation clone contains operations of
various arities, a clone will be formalised as a multi-sorted structure, with a sort for
each arity. Abstract clones have also been formalised in category theoretic terms; this
perspective is not needed here and we refer the interested reader to [345].

Definition 6.5.2. A clone C is a multi-sorted structure with sorts {C(k) | k ∈
N+} and the signature {prki | 1 ≤ i ≤ k} ∪ {compkl | k, l ≥ 1}. The elements of the

sort C(k) will be called the k-ary operations of C. We denote a clone by

C = (C(1), C(2), . . . ; (prki )1≤i≤k, (compkl )k,l≥1)

and require that prki is a constant in C(k), and that compkl : C(k) × (C(l))k → C(l) is
an operation of arity k + 1. Moreover, we require that

compkk(f, prk1 , . . . ,prkk) = f (26)

compkl (prki , f1, . . . , fk) = fi (27)

compml (compkm(f, g1, . . . , gk), h1, . . . , hm)

= compkl (f, compml (g1, h1, . . . , hm), . . . , compml (gk, h1, . . . , hm)). (28)

We also write f(g1, . . . , gk) instead of compkl (f, g1, . . . , gk) when l is clear from
the context. Equation (28) can then be phrased as

f(g1, . . . , gk)(h1, . . . , hm) = f
(
g1(h1, . . . , hm), . . . , gm(h1, . . . , hm)

)
and is a generalised form of associativity. Note that in this equation, the arguments
h1, . . . , hm are duplicated (cloned), justifying (for me) the name clone. According
to Cohn [142], the name is due to Philipp Hall. Michael Pinsker [311] suggests the
origin “closed operation network”.

In the following, we also use the term abstract clone when we want to stress
that we are working with a clone and not with an operation clone. Every operation
clone C gives rise to an abstract clone C in the obvious way: prki ∈ C(k) denotes the
projection πki ∈ C , and compkl (f, g1, . . . , gk) ∈ C(l) denotes the composed function
(x1, . . . , xl) 7→ f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) ∈ C . All the terminology that we
have introduced for operation clones and that only depends on the associated abstract
clone will also be used for abstract clones.

Definition 6.5.3. Let C and D be clones. A function ξ : C → D is called a
(clone) homomorphism iff

• ξ preserves arities, i.e., ξ(C(i)) ⊆ D(i) for all i ∈ N+;
• ξ preserves the projections, i.e., ξ

(
(prki )C

)
= (prki )D for all 1 ≤ i ≤ k;

• for all n,m ≥ 1, f ∈ C(n), and g1, . . . , gn ∈ C(m)

ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)).

An (clone) isomorphism between C and D is a bijective homomorphism whose inverse
is also a homomorphism.

In the following, we write prki for the element (prki )C of C when the reference to C
is clear from the context. The following generalisation of Cayley’s theorem for groups
shows that for every clone C there exists an operation clone whose abstract clone
is C. In other words, every clone has an injective homomorphism into an operation
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clone. We present the proof here since it may serve as a motivation for the precise
choice of the axioms (26), (27), and (28) for clones.

Theorem 6.5.4 (Cayley’s theorem for clones). Every clone C is isomorphic to
the clone of an operation clone.

Proof. Let D :=
∏∞
n=1 C

(n). We define ξ : C → OD as follows. Let f ∈ C be k-
ary. For d ∈ D and i ∈ N, we write d[i] for the i-th component of d (which is an element
of C(i))). For d1, . . . , dk ∈ D, let d0 ∈ D be such that d0[i] = compki (f, d1[i], . . . , dk[i])
for all i ∈ N. We then define ξ(f)(d1, . . . , dk) := d0.

We verify that ξ is a homomorphism from C to OD: for d1, . . . , dk ∈ D and
k, l, i ∈ N we have

ξ(prkl )(d1, . . . , dk)[i] = compki (prkl , d1[i], . . . , dk[i]) (by definition of ξ)

= dl[i] (by (27))

and therefore ξ(prkl )(d1, . . . , dk) = dl and ξ(prkl ) = πkl as required.

For f ∈ Ck, g1, . . . , gk ∈ C(l), d1, . . . , dl ∈ D, i ∈ N, using (28) we have that

ξ(compkl (f, g1, . . . , gk))(d1, . . . , dl)[i]

= compli(compkl (f, g1, . . . , gk), d1[i], . . . , dl[i])

= compki (f, compli(g1, d1[i], . . . , dl[i]), . . . , compli(gk, d1[i], . . . , dl[i]))

= compki (f, ξ(g1)(d1, . . . , dl)[i], . . . , ξ(gk)(d1, . . . , dl)[i])

= ξ(f)(ξ(g1)(d1, . . . , dl), . . . , ξ(gk)(d1, . . . , dl))[i]

and thus the desired

ξ(compkl (f, g1, . . . , gk)) = ξ(f)(ξ(g1), . . . , ξ(gk)).

Moreover, ξ is injective: note that if f ∈ C is k-ary, and d1, . . . , dk ∈ D are such
that dj [k] = prkj for all j ∈ {1, . . . , k}, then

ξ(f)(d1, . . . , dk)[i] = compki (f, d1[i], . . . , dk[i]) (by definition of ξ)

= compki (f, prk1 , . . . ,prkk) (by the choice of d1, . . . , dk)

= f (by (26)).

Hence, if f 6= k then ξ(f)(d1, . . . , dk) 6= ξ(g)(d1, . . . , dk) and hence ξ(f) 6= ξ(g).
Therefore, the image of ξ in OD is the desired operation clone. �

6.5.3. Clones and varieties. We are next going to describe the link between
abstract clones and varieties. The first step is an (obvious, but formally cumbersome)
translation between τ -terms over an algebra A and clone terms, i.e., terms over the
signature of abstract clones. Each variable in such a term is equipped with a rank
k ∈ N. The rank of a clone term is defined as follows:

• the rank of variables is already defined;
• the rank of prkl is defined to be k;
• the rank of a clone term of the form compkl (s0, s1, . . . , sk) is defined to be l.

Observe that every clone term is equivalent to a normalised clone term, i.e., a clone
term such that the first argument of a comp symbol is always a variable; this can be
achieved by applying Equation 27 and Equation 28.

Definition 6.5.5. Let τ be a functional signature and let f1, . . . , fn ∈ τ . Then
for every normalised clone term r(z1, . . . , zn) of rank m we write r∗(f1, . . . , fn) (or
simply r∗ if f1, . . . , fn are clear from the context) for the τ -term over the variables
x1, . . . , xm inductively obtained as follows:
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• if r = prki then r∗ := xi;
• if r = zi then r∗ := fi;
• otherwise, r = compkl (zi, s1, . . . , sk) for normalised clone terms s1, . . . , sk;

in this case, define r∗ := fi(s
∗
1, . . . , s

∗
k).

A clone formula is a formula over the signature of clones. We may assume that
all terms that appear in φ are normalised. If φ(z1, . . . , zn) is a finite conjunction of
atomic clone formulas, then we write φ∗ for the conjunction of all identities

∀x1, . . . , xm : r∗(f1, . . . , fn) = s∗(f1, . . . , fn)

for each conjunct r(z1, . . . , zn) = s(z1, . . . , zn) in φ where r and s are clone terms of
rank m.

The central property of this translation is the following.

Lemma 6.5.6. Let A be a τ -algebra, let f1, . . . , fn ∈ τ , and let φ(z1, . . . , zn) be a
conjunction of atomic clone formulas. Then

Clo(A) |= φ(fA1 , . . . , f
A
n )

if and only if A |= ∀x1, . . . , xm : φ∗(f1, . . . , fn)(x1, . . . , xm).

Proof. Straightforward from the definitions. �

We can also go in the other direction, translating τ -terms into clone terms as
follows.

Definition 6.5.7. For every τ -term t(x1, . . . , xm) built from f1, . . . , fn ∈ τ we
write t†(z1, . . . , zn) for the (normalised) clone term inductively obtained as follows:

• if t = xi for some variable xi then t† := prmi ;
• if t = fi for some constant symbol fi ∈ τ then t† := zi;

• if t = fi(s1, . . . , sk) then t† := comp(zi, s
†
1, . . . , s

†
k).

If ψ(x1, . . . , xm) is a conjunction of atomic τ -formulas built from the function sym-
bols f1, . . . , fn then we write ψ†(z1, . . . , zn) for the conjunction of t†(f1, . . . , fn) =
s†(f1, . . . , fn) for each conjunct t = s in ψ.

Again, the central property of this translation is formulated in a lemma.

Lemma 6.5.8. Let A be a τ -algebra. Then for all conjunctions ψ(x1, . . . , xm) of
atomic τ -formulas built from f1, . . . , fn ∈ τ we have that

A |= ∀x1, . . . , xm : ψ(x1, . . . , xm)

if and only if Clo(A) |= ψ†(fA1 , . . . , f
A
n )

Proof. Straightforward from the definitions. �

Example 6.5.9. For a τ -algebra A and f ∈ τ we have that

Clo(A) |= comp2
2(fA, p2

1, p
2
2) = comp2

2(fA,pr2
2,pr2

1)

if and only if f is symmetric, i.e.,

A |= ∀x1, x2 : f(x1, x2) = f(x2, x1). 4

In practice it can be more intuitive to manipulate τ -terms rather than clone terms,
even if we work over a clone and not a τ -algebra; it is therefore standard to be sloppy
with the distinction. We will refer to atomic clone formulas as identities, too.

If A and B are τ -algebras then the map ξ : Clo(B)→ Clo(A) defined by fB 7→ fA

for all f ∈ τ is well defined if and only if for all τ -terms s, t

sB = tB ⇒ sA = tA.
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In this case, ξ is in fact a surjective clone homomorphism, and we call it the natural
homomorphism from Clo(B) to Clo(A). With this terminology, Birkhoff’s theorem
takes the following form.

Theorem 6.5.10. Let A and B be τ -algebras. The following are equivalent.

(1) The natural homomorphism from Clo(B) onto Clo(A) exists.
(2) All identities that hold in B also hold in A.
(3) A ∈ HSP(B).

When A and B are finite, then we can add the following to the list:

(4) A ∈ HSPfin(B)

Proof. The equivalence of (2), (3), and for finite A of (4) follows from Theo-
rem 6.5.1.

(1) implies (2). Let ξ : Clo(B)→ Clo(A) be the natural homomorphism and let
φ = ∀x1, . . . , xn : s = t be an identity that holds in B. Then sB = tB and hence
sA = ξ(sB) = ξ(tB) = tA, which shows that A |= ∀x1, . . . , xn : s = t.

(2) implies (1): let s(x1, . . . , xn), t(x1, . . . , xn) be τ -terms such that sB = tB.
Then B |= ∀x1, . . . , xn : s(x1, . . . , xn) = t(x1, . . . , xn) and by assumption we have
that A |= ∀x1, . . . , xn : s(x1, . . . , xn) = t(x1, . . . , xn) which shows that sA = tA, so
the natural homomorphism from Clo(B) to Clo(A) exists. �

The equivalence between (1) and (4) in Theorem 6.5.10 is relevant in the study
of the complexity of CSPs since (4) is related to our most important tool to prove
NP-hardness (see Theorem 6.3.10), and since (1) is the universal-algebraic property
that will be used in the following (cf. Theorem 6.6.4 below). In Section 9.5.2, we will
present a generalisation of the equivalence between (1) and (4) for algebras B with
an infinite domain, replacing clone homomorphisms by uniformly continuous clone
homomorphisms, or even by continuous clone homomorphisms if B is oligomorphic.

For easy reference we also spell out a consequence of this result for operation
clones rather than algebras.

Corollary 6.5.11. Let A and B be operation clones. Then there is a homo-
morphism from A onto B if and only if there are algebras A and B with the same
signature such that Clo(A) = A and Clo(B) = B and A ∈ HSP(B). If A and B are
finite, then A ∈ HSP(B) can be replaced by A ∈ HSPfin(B).

The setting of abstract clones is suitable for applying the compactness theorem,
as demonstrated in the proof of the following lemma.

Definition 6.5.12. An operation clone C satisfies a set Σ of identities over some
signature τ if there exists a τ -algebra A such that A |= Σ and Clo(A) ⊆ C .

Lemma 6.5.13. Let D be an operation clone over a finite domain and let Σ be a
set of identities. Then D satisfies Σ if and only if it satisfies all finite subsets of Σ.

Proof. The forward implication is trivial. To prove the backwards implication,
we introduce a constant symbol cf of rank k for each operation symbol f of arity k
that appears in Σ. Let T be the first-order theory of the expansion of the abstract
clone of D by a constant df for every element f ∈ D . Let S be the set of all first-order
sentences of the form ψ†(cf1 , . . . , cfn) where ψ is an identity from Σ that contains the
new operation symbols f1, . . . , fn (recall Definition 6.5.7). If D satisfies all finite
subsets of Σ, then Lemma 6.5.8 implies that for all finite subsets F of S the theory
T ∪F is satisfiable. By the compactness theorem (Theorem 2.1.6) it follows that T ∪S
has a model M. Consider the restriction of M to the elements that lie in

⋃
i∈NM

(i),
and consider the reduct of this restriction in the signature of abstract clones. Since M
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satisfies T and each M (i) is finite, we obtain that f 7→ dMf is an isomorphism between

D and M. Let A be the algebra such that fA = cMf for all function symbols that

appear in Σ. Then Clo(A) ⊆ D and M |= S implies that D satisfies Σ. �

Clearly, if there is a clone homomorphism from C to D, then every primitive
positive clone sentence that holds in C also holds in D.

Corollary 6.5.14. Let C and D be clones. If D is the clone of a finite algebra,
then there is a clone homomorphism from C to D if and only if every primitive
positive sentence that holds in C also holds in D.

Proof. We only have to prove the backwards direction. By Theorem 6.5.4 we
may assume that there exists an algebra such that Clo(A) = C. Let Σ be the
set of all identities that hold in A. By Lemma 6.5.8 there exists for every finite
subset ∆ of Σ a primitive positive clone sentence ψ†(f1, . . . , fn), where f1, . . . , fn
are the function symbols that appear in ∆ so that a τ -algebra B satisfies ∆ if and
only if Clo(B) |= ψ†(fB1 , . . . , f

B
n ). Hence, Clo(A) |= ψ†(fA1 , . . . , f

A
n ), and by as-

sumption D |= ∃x1, . . . , xn : ψ†(x1, . . . , xn). This in turn implies that D satisfies ∆.
Lemma 6.5.13 then shows that D satisfies Σ, i.e., there exists an algebra B such that
B |= Σ and Clo(B) = D. We may now define the homomorphism ξ from C to D: for
every f ∈ C there exists a term t such that tA = f , and we define ξ(f) := tB. �

We close this section with a simple lemma which can be useful when we want to
verify that a given map is a clone homomorphism.

Lemma 6.5.15. Let C and D be clones and let ξ : C→ D be a map which preserves
arities, projections, and for all i,m, n ∈ N the formulas of the form

f(prn1 , . . . ,prni , g(prni+1, . . . ,prnm),prnm+1, . . . ,prnn) = h.

Then ξ is a clone homomorphism.

Proof. We need to show that ξ also preserves formulas of the form

f(g1, . . . , gk) = h.

Let n be the rank of g1, . . . , gk and h. We illustrate the idea of the proof for k = 2.
Put

h1 := f(prn+1
1 , g2(prn+1

2 , . . . ,prn+1
n+1))

h2 := h1(g1(pr2n
1 , . . . ,pr2n

n ),pr2n
n+1, . . . ,pr2n

2n)

and note that

h2(prn1 , . . . ,prnn,prn1 , . . . ,prnn)

= h1(g1(pr2n
1 , . . . ,pr2n

n ),pr2n
n+1, . . . ,pr2n

2n)(prn1 , . . . ,prnn,prn1 , . . . ,prnn)

= h1(g1,prn1 , . . . ,prnn)

= f
(

prn+1
1 , g2(prn+1

2 , . . . ,prn+1
n+1)

)
(g1,prn1 , . . . ,prnn)

= f
(

prn+1
1 (g1,prn1 , . . . ,prnn), g2(prn+1

2 , . . . ,prn+1
n+1)(g1,prn1 , . . . ,prnn)

)
= f

(
g1, g2(prn+1

2 (g1,prn1 , . . . ,prnn), . . . ,prn+1
n+1(g1,prn1 , . . . ,prnn))

)
= f

(
g1, g2(prn1 , . . . ,prnn)

)
= f(g1, g2).

Hence, f(g1, g2) = h is equivalent to

∃h1, h2

(
h1 = f(prn+1

1 , g2(prn+1
2 , . . . ,prn+1

n+1))

∧ h2 = h1(g1(pr2n
1 , . . . ,pr2n

n ),pr2n
n+1, . . . ,pr2n

2n)

∧ h = h2(prn1 , . . . ,prnn,prn1 , . . . ,prnn)
)
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and this formula is preserved by ξ by assumption. The general case for arbitrary k
can be shown similarly. �

6.5.4. Applications and examples. Birkhoff’s theorem is important for the
study of constraint satisfaction problems since it can be used to transform the ‘nega-
tive’ condition of not interpreting primitively positively certain finite structures into
a ‘positive’ condition of having polymorphisms satisfying non-trivial identities, as we
will see in the following corollary. Section 6.6 presents an application of this philoso-
phy.

Corollary 6.5.16. Let A and B be relational structures. Then (1)⇒ (2)⇒ (3):

(1) A ∈ I(B).
(2) There is a clone homomorphism from Pol(B) to Pol(A).
(3) Every primitive positive clone sentence which holds in Pol(B) also holds in

Pol(A).

If A and B are finite structures, then the converse implications hold as well. In
particular, if A /∈ I(B), then there is a sentence in the signature of abstract clones
which holds in Pol(A) but not in Pol(B).

Proof. Let B be a polymorphism algebra of B. If A ∈ I(B) then there exists
an algebra A ∈ Exp HSPfin(B) such that Clo(A) = Pol(A) (see Theorem 6.3.7). By
Theorem 6.5.10, (3)⇒ (1), there exists a clone homomorphism from Clo(B) = Pol(B)
to Clo(A) = Pol(A). The implication (2)⇒ (3) and its converse if A is finite follows
from Lemma 6.5.13.

Now suppose that A and B are finite structures, and suppose that every primitive
positive sentence that holds in Pol(B) also holds in Pol(A). By the contrapositive of
Lemma 6.5.13 from the previous section there is a clone homomorphism ξ : Pol(B)→
Pol(A). Let A be the algebra with domain A and the same signature τ as B where
f ∈ τ denotes ξ(fB). That is, ξ is the natural homomorphism from Clo(B) = Pol(B)
to Clo(A) ⊆ Pol(A), and the implication from (1) to (4) in Theorem 6.5.10 implies
that A ∈ HSPfin(B). So there exists an algebra A′ ∈ Exp HSPfin(B) such that
Clo(A′) = Pol(A) and so item (3) in Theorem 6.3.7 implies that A ∈ I(B). �

The situation in which A and B are not finite, but countable and ω-categorical
will be treated in Corollary 9.5.20. Already the easy first part of Corollary 6.5.16 has
many applications, illustrated by the following example.

Example 6.5.17. The structure K3 does not have a primitive positive interpre-
tation in B := (Q; {(x, y, z) | x > y ∨ x > z}). The reason is that Pol(B) contains
the symmetric operation (x, y) 7→ min(x, y), but Pol(K3) does not contain a binary
symmetric operation, as we have seen in Proposition 6.1.43. 4

The tractability conjecture for finite-domain constraint satisfaction can be for-
mulated in terms of abstract clones; for this we need the following definition.

Definition 6.5.18. We write Proj (pronounced clone of projections) for the ab-
stract clone that just contains the projections and for which pr2

1 6= pr2
2; this condition

characterises Proj uniquely up to isomorphism.

Note that if C is an operation clone that contains only projections then C is
isomorphic to Proj (as an abstract clone) if and only if its domain has size at least
two. The following follows immediately from Corollary 6.2.2.

Proposition 6.5.19. Pol({0, 1}; 1IN3) is isomorphic to Proj.

A set of identities is called trivial if it is satisfied by some algebra A whose clone
is isomorphic to Proj, and non-trivial otherwise.
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Corollary 6.5.20. Let B be an algebra. Then the following are equivalent.

(1) All identities satisfied by B are trivial;
(2) HSP(B) contains a 2-element algebra all of whose operations are projections;
(3) Clo(B) maps homomorphically to Proj.

Moreover, if the polymorphism algebra of a finite structure B satisfies the above con-
ditions, then B has a finite-signature reduct B′ such that CSP(B′) is NP-hard.

Proof. (1) implies (3). Suppose that all identities satisfied by B are trivial, i.e.,
they are satisfied by some algebra A with Clo(A) = Proj. Then Theorem 6.5.10
implies that A ∈ HSP(B).

(2) implies (3). Let A be a 2-element algebra all of whose operations are projec-
tions; so Clo(A) is isomorphic to Proj. Theorem 6.5.10 implies that if A ∈ HSP(B),
then there exists a homomorphism from Clo(B) to Clo(A).

(3) implies (1). If there is a homomorphism ξ : Clo(B) → Proj, then every
identity that holds in B also holds in Proj, so every identity that holds in B is
trivial.

The second condition is one of the equivalent conditions from Theorem 6.3.10, so
the last statement follows from that theorem. �

Corollary 6.5.20 shows that for finite structures B the equivalent conditions from
Theorem 6.3.10 (which imply that CSP(B) is NP-hard) correspond to a property of
the abstract polymorphism clone of B.

6.6. Idempotent Algebras and Taylor Terms

This section studies idempotent operation clones without a homomorphism to
Proj, the clone of projections on an at least two-element set. A fundamental result
about such clones is that they contain a Taylor operation. This has been improved
later to the existence of operations that satisfy even stronger identities than the
identities for Taylor operations, leading to several interesting equivalent characterisa-
tions of the border between polynomial-time tractable and NP-complete finite-domain
CSPs. Many of these results have not yet found analogues over infinite domains. The
classical result of Taylor also holds for operation clones on infinite sets. However,
the assumption of idempotence limits the applicability of this result to oligomorphic
clones, because an oligomorphic clone over an infinite set is certainly never idempotent
(it may or may not contain interesting idempotent operations, though).

The results presented in this section are in fact about abstract clones; note that
an operation clone is idempotent if and only if its abstract clone satisfies

compk1(f, pr1
1, . . . ,pr1

1) = pr1
1

for all its k-ary operations f , for all k ∈ N. However, we present the results using
algebras and terms because this makes the notation more intuitive.

Definition 6.6.1 (Taylor identities). A finite set of identities φ1, . . . , φn, for
n ≥ 2, is called a set of Taylor identities if φi is of the form

∀x, y : f(z1, . . . , zn) = f(z′1, . . . , z
′
n)

where z1, . . . , zn, z
′
1, . . . , z

′
n are variables from {x, y} with zi 6= z′i. An operation

f : Bn → B, for n ≥ 2, is called a Taylor operation if it satisfies some Taylor identities.

Examples of Taylor operations are constant operations, binary commutative oper-
ations, majority operations, and Maltsev operations. We do not insist on idempotence
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for Taylor operations. Note that an n-ary operation f is Taylor if and only if it satisfies
a set of n equations that can be written as

f



x ? ? · · · ?

? x ?
...

... ?
. . .

. . .
...

...
. . . x ?

? · · · · · · ? x


= f



y ? ? · · · ?

? y ?
...

... ?
. . .

. . .
...

...
. . . y ?

? · · · · · · ? y


where f is applied row-wise and ? stands for either x or y.

Definition 6.6.2 (Taylor terms). Let B be a τ -algebra. A Taylor term of B is
a τ -term t(x1, . . . , xn), for n ≥ 2, such that tB is a Taylor operation.

We make the same convention for other types of operations; e.g., a majority term
over an algebra B is a term that denotes a majority operation in B. The following
theorem goes back to Taylor (Corollary 5.3 in [344]); we give a slightly expanded
presentation of the proof of Lemma 9.4 in [212]).

Definition 6.6.3. For x of rank l ∈ N and y of rank m ∈ N, the star product
x ∗ y is defined as

complml
(
x, compmml(y,prml1 , . . . ,prmlm ), . . . , compmml(y,prml(l−1)m+1, . . . ,prmlml)

)
.

Theorem 6.6.4. Let B be an idempotent algebra with signature τ . Then there is
no homomorphism from Clo(B) to Proj if and only if B has a Taylor term.

Proof. To show the easy backward implication, suppose that t is a Taylor term,
and suppose for contradiction that ξ : Clo(B)→ Proj is a clone homomorphism. By
the definition of Proj we have ξ(tB) = prnl for some l ≤ n. By assumption, B satisfies

∀x, y : t(z1, . . . , zn) = t(z′1, . . . , z
′
n) (29)

for z1, . . . , zn, z
′
1, . . . , z

′
n ∈ {x, y} such that zl 6= z′l. Put differently, Clo(B) satisfies

compn2 (tB,pr2
i1 , . . . ,pr2

in) = compn2 (tB,pr2
j1 , . . . ,pr2

jn) (30)

for i1, . . . , in, j1, . . . , jn ∈ {1, 2} such that il = 1 if zl = x and il = 2 otherwise, jl = 1
if z′l = x and jl = 2 otherwise, and il 6= jl. Since ξ(tB) = prnl we therefore obtain
that pr2

1 = pr2
2, which does not hold in Proj, a contradiction.

To show the forward implication, suppose that Clo(B) does not map homomor-
phically to Proj. Then Lemma 6.5.13 implies that there is a primitive positive
sentence over the signature of clones that holds in Clo(B) but not in Proj. Note
that by introducing new existentially quantified variables we can assume that this
sentence is of the form ∃u1, . . . , ur : φ where φ is a conjunction of atoms of the form
y = compml (x0, x1, . . . , xm) or of the form y = prml for y, x0, x1, . . . , xm ∈ {u1, . . . , ur}
and l,m ∈ N. For example, the equation comp2

2(x0,pr2
1,pr2

2) = comp2
2(x0,pr2

2,pr2
1) is

equivalent to

∃x1, x2, y (y = comp2
2(x0, x1, x2)

∧ y = comp2
2(x0, x2, x1)

∧ x1 = pr2
1

∧ x2 = pr2
2) .
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Note that Clo(B) satisfies(
y = compmll (x ∗ y,prml1 , . . . ,prmll ,prml1 , . . . ,prmll , . . . ,prml1 , . . . ,prmll )

)
(31)

and
(
x = compmlm (x ∗ y,prml1 , . . . ,prml1 ,prml2 , . . . ,prml2 , . . . ,prmll , . . . ,prmll )

)
(32)

since B is idempotent. Define

u := u1 ∗ (u2 ∗ (· · · (ur−1 ∗ ur) · · · )). (33)

Observe that for each i ∈ {1, . . . , r} we can obtain ui from u by composing u with
projections. In order to formalise this, we need a compact notation for strings of
arguments consisting of projection constants. In this notation, (31) reads as y =
compnl (x ∗ y, (1, . . . , l)m), and (32) reads as x = compnm(x ∗ y, 1m, . . . , lm). Similarly,
if ki ∈ N is the arity of ui and k := k1 · · · kr we have

ui = compkki(u, p̄
i) where p̄i := (1k1···ki−1 , . . . , k

k1···ki−1

i )ki+1···kn) ∈ {1, . . . , ki}k .

Let n = k2. Then every term of the form uj can be written as compnkj (u ∗ u, q̄uj ) for

q̄uj ∈ {1, . . . , kj}n obtained by k times concatenating p̄j with itself. Moreover, every

term t of the form compkikj (ui, ui1 , . . . , uiki
) can be written as compnkj (u ∗ u, q̄t) for

q̄t ∈ {1, . . . , kj}n obtained from p̄i by replacing character l ≤ kj by the string p̄il . In
this way, every conjunct of φ of the form

uj = compkikj (ui, ui1 , . . . , uiki
)

can be written in the form

compnl (u ∗ u, q̄uj ) = compnl (u ∗ u, q̄t)

for appropriate q̄uj , q̄t ∈ {1, . . . , kj}n. Conjuncts of φ of the form uj = pr
kj
l can

be rewritten similarly. Let ψ be the conjunction of all these equations; note that φ
implies ψ. Let θ be the formula obtained from ψ by replacing each occurrence of u∗u
by a variable symbol f . Note that Clo(B) |= ∃f : θ. It suffices to show that every
f ∈ Clo(B) that satisfies θ is a Taylor operation.

Suppose for contradiction that for ` ∈ {1, . . . , n} there are no v̄, v̄′ ∈ {1, 2}n with
v̄` 6= v̄′` such that compn2 (f, v̄) = compn2 (f, v̄′). It is easy to see that this implies that
for all m ≤ n

if compnm(f, v̄) = compnm(f, v̄′) then v̄` = v̄′`. (34)

We claim that the assignment ρ that maps for every s ∈ {1, . . . , r} the variable us to
prksos for os := q̄us

` satisfies all conjuncts of φ, contradicting our assumptions. First note
that os equals the `1-st entry of p̄s where `1 ∈ {1, . . . , k} is such that ` = (`1−1)k+`2
for some `2 ∈ {1, . . . , k}. To prove the claim, consider a conjunct of φ of the form

uj = t for t = compkikj (ui, ui1 , . . . , uiki
).

By construction, θ contains the conjunct

comp(f, q̄uj ) = comp(f, q̄t).

Therefore, (34) implies that

q̄
uj

` = q̄t`. (35)
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Then the assignment ρ satisfies the conjunct φ since

compkikj (ρ(ui), ρ(ui1), . . . )) = compkikj (prkioi ,pr
ki1
oi1
, . . . )

= pr
kj
q̄t`

(by definition of q̄t)

= pr
kj

q̄
uj
`

(by 35))

= ρ(uj).

The verification that ρ also satisfies conjuncts of φ of the form uj = pr
kj
l is similar. �

For idempotent algebras A there is yet another characterisation of the existence
of clone homomorphisms to Proj, due to Bulatov and Jeavons [120].

Theorem 6.6.5. Let B be an idempotent algebra. Then HSPfin(B) contains an
algebra with at least two elements all of whose operations are projections if and only
if HS(B) does.

Proof. Suppose that C ∈ S(Bd) for some d ∈ N has a congruence K with at
least two classes such that all operations of A := C/K are projections.

Let I ⊆ {1, . . . , d} be a maximal set such that for each i ∈ I there exists bi ∈ B
such that the set

C
(
(bi)i∈I

)
:= {c ∈ C | ci = bi for all i ∈ I}

is not contained in a class of K. Note that such a set exists because for I = ∅ we
have that C

(
(bi)i∈I

)
= C is not contained in one class of K since C/K has at least

two elements.
Without loss of generality, we may assume that {1, . . . , d} \ I = {1, . . . , k}. Since

B is idempotent, C
(
(bi)i∈I

)
is the domain of a subalgebra C′ of C. Let K ′ :=

K ∩ (C ′)2. All operations of A′ := C′/K ′ are restrictions of operations in A and
hence projections. Let

B′ := {b ∈ B | (b1, . . . , bk−1, b, bk+1, . . . , bd) ∈ C ′}.
Then B′ is the domain of a subalgebra B′ of B. The image

K ′′ := {(ck, ek) ∈ (B′)2 | (c, e) ∈ K ′}
of K ′ under the k-th projection is a congruence of B′, and it must have more than one
equivalence class: otherwise there would be b1, . . . , bd, b

′
1, . . . , b

′
k−1 ∈ B such that the

tuples (b1, . . . , bk−1, bk, bk+1, . . . , bd) and (b′1, . . . , b
′
k−1, bk, bk+1, . . . , bd) are in different

K ′-classes. But then I ∪ {k} is such that C
(
(bi)i∈I∪{k}

)
is not contained in one class

of K, contradicting the maximality of I. Therefore, B′/K ′′ ∈ HS(B) is an algebra
with at least two elements of all whose operations are projections. �

Since the size of the algebras in HS(B) is bounded by the size of B, this leads to
an algorithm that decides whether a given finite structure B satisfies the equivalent
conditions in Theorem 6.6.4. Another effective condition can be found in Section 6.8.2.

It is not hard to see that Theorem 6.6.5 is false for oligomorphic B, even in the
case where the invertible elements of Clo(B) are dense in Clo(B)(1). Consider for
example a polymorphism algebra B of (N;P 3

N, 6=) (Definition 6.1.16), which has no
non-trivial subalgebras and homomorphic images, but where HS(B2) does contain a
two-element algebra all of whose operations are projections. The following corollary
summarises the consequences for finite idempotent algebras.

Corollary 6.6.6. For a finite idempotent algebra B, the following are equivalent.

(1) Every 2-element algebra in HSP(B) contains an essential operation.
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(2) Every 2-element algebra in HSPfin(B) contains an essential operation.
(3) Every algebra with at least two elements in HS(B) contains an essential

operation.
(4) There is no homomorphism from Clo(B) to Proj.
(5) B satisfies a non-trivial identity.
(6) B has a Taylor term.

Proof. (1)⇔ (2): Theorem 6.5.1.
(2)⇔ (3): Theorem 6.6.5.
(1)⇔ (4)⇔ (5): Corollary 6.5.20.
(5)⇔ (6): Theorem 6.6.4. �

Definition 6.6.7. A sentence φ over the signature of abstract clones is called
trivial if Proj |= φ, and non-trivial otherwise.

For easy reference, we rephrase some of these results with structures and clones
instead of algebras.

Corollary 6.6.8. Let B be a finite structure such that Pol(B) is idempotent.
Then the following are equivalent.

(1) There exists a finite structure without primitive positive interpretation in B.
(2) K3 /∈ I(B).
(3) ({0, 1}; 1IN3) /∈ I(B).
(4) I(B) does not contain a structure with at least two elements all of whose

polymorphisms are projections.
(5) There is no homomorphism from Pol(B) to Proj.
(6) Pol(B) satisfies a non-trivial sentence in the signature of abstract clones.
(7) Pol(B) contains a Taylor operation.

Proof. The equivalence of (1), (2), (3), and (4) has already been shown in
Theorem 6.3.10. Let B be a polymorphism algebra of B. Theorem 6.3.10 also implies
the equivalence to the statement that all two-element algebras in HSPfin(B) contain a
two-element algebra all of whose operations are projections. This in turn is equivalent
to the non-existence of a homomorphism from Clo(B) = Pol(B) to Proj, to the
existence of a non-trivial sentence that holds in Clo(B), and to the existence of a
Taylor operation in Clo(B) = Pol(B) (by Corollary 6.6.6) proving the equivalence of
(4), (5), (6) and (7). �

6.7. Minor-preserving Maps and Height-one Identities

There are finite cores that do not interpret all finite structures primitively pos-
itively, but which do allow such interpretations modulo homomorphic equivalence
(Example 6.7.1 below). This shows that clone homomorphisms from Pol(B) to Proj
are not a necessary condition for the NP-hardness of CSP(B). In this section we
present an algebraic condition on Pol(B) which, for finite structures B, applies if
and only if B can interpret all finite structures up to homomorphic equivalence. A
generalisation to countably infinite ω-categorical structures relies on concepts from
topology and has to wait until Section 9.5.2.

Example 6.7.1 (from [31]). Consider the structure B = (B;R,S) where

B = {1, 2, 3} × {0, 1}
R = {((a, i), (b, j)) | i = j ∧ a 6= b}
S = {((a, i), (b, j)) | i 6= j}.
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The structure B is a core since all maps from B to B that preserve R and S must
be injective. Observe that for c ∈ B chosen arbitrarily the substructure of (B;R)
induced on {x ∈ B | S(x, c)} is isomorphic to K3, and hence (B, c) interprets K3

primitively positively. It follows (Theorem 3.6.2) that K3 ∈ HI(B).
However, using the concepts from Section 6.5.4, one can show that B does not

interpret K3 primitively positively. Indeed, note that the map defined by

α
(
(a, i)

)
:= (a, 1− i)

is an automorphism of B and that

s
(
(a, i), (b, j), (c, k)

)
:=

{
(c, k) if i = j

(a, i) if i 6= j

is a ternary polymorphism of B. These maps satisfy the non-trivial identity

∀x, y : s(x, x, y) = y = s(y, α(y), x).

Therefore, the contraposition of (3)⇒ (1) in Corollary 6.5.20 shows that Pol(B) has
no homomorphism to Proj. 4

This example illustrates that we may want to consider from the algebraic perspec-
tive a reduction between CSPs that is more widely applicable than primitive positive
interpretations; such a reduction is provided by the operator HI from Section 3.6. On
the algebraic side, if B is the polymorphism algebra of B, then understanding HI(B)
amounts to understanding the class Exp Refl Pfin(B) (Theorem 6.4.3 (2)) rather than
Exp HSPfin(B). It turns out that Exp Refl Pfin(B) can be studied using Clo(B) and
the existence of minor-preserving maps between clones in the manner of Section 6.5.

6.7.1. Minor-preserving maps. Let A,B be non-empty sets and f : Ak → B a
k-ary function. A minor of f is an operation of the form f(g1, . . . , gn) where g1, . . . , gn
are m-ary projections, for some m ∈ N (i.e., a minor of f is an operation obtained from
f by permuting arguments, identifying arguments, and adding (fictitious) arguments)
A minion on (A,B) is a non-empty subset M of

⋃
k≥1A

k → B which is closed under
taking minors, i.e., which contains all minors of all operations in M . Clearly, every
operation clone is a minion (where A = B). Minions are not required to contain the
projections.

Definition 6.7.2. Let M1,M2 be minions. A map ξ : M1 →M2 is called minor-
preserving (or a minion homomorphism) if it maps functions from M1 to functions
in M2 of the same arity, and if it preserves composition with projections, i.e., if

ξ(f(p1, . . . , pn)) = ξ(f)(p1, . . . , pn)

for all n-ary functions f ∈M1 and projections p1, . . . , pn of equal arity.

We mention that minions and minor-preserving maps also play an important
role in the emerging theory of promise CSPs [123]. Minor-preserving maps are not
required to preserve the projections; we present an example of a minor-preserving
map that does not preserve the projections.

Example 6.7.3. Let C := Pol({0, 1}; NAE); note that C is the operation clone
generated by ¬ : x 7→ 1− x (Proposition 6.2.8). Then the map ξ : C → C that maps
f to ¬f is minor-preserving and does not preserve the projections. 4

However, in some cases minor-preserving maps must preserve projections.

Proposition 6.7.4. Let M be a minion and let P be an operation clone that
just contains projections. Then every minor-preserving map ξ : M → P preserves
all projections in M .
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Proof. Suppose that ξ(πki ) = πkj for some i 6= j. Then

πkj = ξ(πki ) = ξ(πki (πki , . . . , π
k
i ))

= ξ(πki )(πki , . . . , π
k
i ) = πkj (πki , . . . , π

k
i ) = πki

which is impossible unless P is an operation clone on a one-element set, where the
statement holds trivially. �

The following example presents another example of an ω-categorical structure B
such that Pol(B) has a minor-preserving map to the clone of projections on {0, 1},
but no clone homomorphism [22]. This example plays an important role later, see
Example 10.3.1.

Example 6.7.5. Let A = (A;∧,∨,−, 0, 1) be the countable atomless Boolean
algebra (see Example 4.1.4 and Section 5.3). Note that A is homomorphically equiva-
lent to the two-element Boolean algebra, while its expansion (A, 6=) is an ω-categorical
model-complete core.

Also note that A2 is again a countable atomless Boolean algebra, and hence
there exists an isomorphism e : A2 ↪→ A and an automorphism α ∈ Aut(A) such
that e(x, y) = αe(y, x) for all x, y ∈ A. Note that both e and α preserve 6=, and so
Pol(A, 6=) satisfies

∃e, α : e = comp(α, comp(e, pr2
2,pr2

1))

but Proj does not. Therefore, there is no clone homomorphism from Pol(A, 6=) to
Proj. However, there exists a minor-preserving map from Pol(A) (and in particular
from Pol(A, 6=)) to the clone of projections on a two-element set. To define this map,
we pick an ultrafilter U on A, i.e., a subset of A which is a maximal proper filter:

• U /∈ {∅,A},
• for x, y ∈ U there is an element z ∈ U such that z ≤ x and z ≤ y,
• for every x ∈ U and y ∈ A we have y ∈ U whenever x ≤ y, and
• U is maximal with these properties.

Observe that if f ∈ Pol(A) is n-ary then exactly one of the elements

a1 := f(1, 0, . . . , 0), a2 := f(0, 1, 0, . . . , 0), . . . , an := f(0, . . . , 0, 1)

is contained in U : this can be seen as follows.

• ai ∧ aj = 0 whenever i 6= j since f preserves ∧ and 0. Hence, if both ai
and aj are in U , then ai ∧ aj = 0 must also be in U , and thus U = A in
contradiction to the assumptions.

• a1 ∨ · · · ∨ an = 1 since f preserves ∨ and 1; hence, if none of the ai is
contained in U then U was not maximal.

Let i ≤ n be the unique index such that ai ∈ F . We claim that ξ(f) := πni defines
a minor-preserving map to Proj. Indeed, let f ∈ Pol(A) be n-ary, let p1, . . . , pn be
projections of the same arity m, and let i ∈ {1, . . . , n} be such that

ai = f(bni ) ∈ U where bni := (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

).

Then ξ(f) = πni . Let k ∈ {1, . . . ,m} be such that pi = πmk . Then πmk (bmk ) = 1 and
hence

f(p1, . . . , pn)(bmk ) = f(p1(bmk ), . . . , pn(bmk ))

= f(p1(bmk ), . . . , pi−1(bmk ), 1, pi+1(bmk ), . . . , pn(bmk )) ∈ U
showing that ξ(f(p1, . . . , pn)) = πmk = pi. We conclude that

ξ(f)(p1, . . . , pn) = πni (p1, . . . , pn) = pi = ξ(f(p1, . . . , pn))
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which shows that ξ is minor-preserving. 4

The following result from [31] provides a sufficient condition for a minor-preserving
map to Proj to be a clone homomorphism (Theorem 6.7.7).

Definition 6.7.6. Let C and D be clones, let ξ : C → D be a map that preserves
arities, and let S ⊆ C(1) be a set of unary operations.

• ξ preserves left composition with S if for all f ∈ C and e ∈ S

ξ(e ◦ f) = ξ(e) ◦ ξ(f).

• ξ preserves right composition with S if

ξ(f(e1, . . . , en)) = ξ(f)(ξ(e1), . . . , ξ(en))

for all f ∈ C and e1, . . . , en ∈ S.
• ξ preserves composition with S if it preserves left and right composition with
S.

Theorem 6.7.7 (Proposition 5.6 in [31]). Let C be a clone and let ξ : C→ Proj
be a minor-preserving map that preserves composition with C(1). Then ξ is a clone
homomorphism.

Proof. First observe that if f ∈ C depends only on its i-th argument, then f
satisfies the identity

∀x1, . . . , xn, y1, . . . , yn : f(x1, . . . , xn) = f(y1, . . . , yi−1, xi, yi+1, . . . , yn)

and the only projection satisfying this identity is prni . Since ξ is minor preserving, we
deduce that ξ(f) = prni .

Claim 1. ξ preserves identities of the form

∀x̄ : f(g(x1,1, . . . , x1,m), . . . , g(xn,1, . . . , xn,m)) = h(x1,1, . . . , xn,m).

Suppose that ξ(f) = prni and ξ(g) = prmj . We have to show that ξ(h) satisfies the
identity

∀x̄ : ξ(h)(x1,1, . . . , xn,m) = xi,j .

Note that in C the following identity holds:

∀x1, . . . , xn : h(x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn) = f(ĝ(x1), ĝ(x2), . . . , ĝ(xn)).

Since ξ preserves right composition with C(1) and ξ(ĝ) = pr1
1, we obtain

∀x1, . . . , xn : ξ(h)(x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn) = ξ(f)(x1, x2, . . . , xn)

= xi

and it follows that for some 1 ≤ l ≤ m

∀x̄ : ξ(h)(x1,1, . . . , xn,m) = xi,l.

Similarly, from

∀x1, . . . , xm : h(x1, . . . , xm, x1, . . . , xm, . . . , x1, . . . , xm) = f̂(g(x1, . . . , xm))

and the assumption that ξ preserves left composition with C(1) we get that

∀x̄ : ξ(h)(x1,1, . . . , xn,m) = xk,j

for some 1 ≤ k ≤ n, proving Claim 1.

Claim 2. ξ preserves identities of the form

∀x̄ : f(g(x1, . . . , xm), xm+1, . . . , xn) = h(x1, . . . , xn).
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Let t(x1,1, . . . , xn,m) := f(g(x1,1, . . . , x1,m), . . . , g(xn,1, . . . , xn,m)). We obtain

ξ(f)(ξ(g)(x1, . . . , xm), xm+1, . . . , xn)

= ξ(f)(ξ(g)(x1, . . . , xm), ξ(g)(xm+1, . . . , xm+1), . . . , ξ(g)(xn, . . . , xn))

= ξ(t)(x1, . . . , xm, xm+1, . . . , xm+1, . . . , xn, . . . , xn) (Claim 1)

= ξ(h)(x1, . . . , xn).

The final equation holds because ξ preserves right composition with C(1) and hence
preserves the identity

∀x̄ : t(x1, . . . , xm, xm+1, . . . , xm+1, . . . , xn, . . . , xn) = h(x1, . . . , xm, ĝ(xm), . . . , ĝ(xn)).

This concludes the proof of the claim. Analogously, ξ preserves identities of the form

∀x̄ : f(x1, . . . , xk, g(xk+1, . . . , xm), xm+1, . . . , xn) = h(x1, . . . , xn).

The statement now follows from Lemma 6.5.15. �

Minor-preserving maps that preserve right composition with invertible elements
of C (1) will play a role in Section 9.6, and minor-preserving maps that preserve left
composition with C (1) will be the topic of Section 10.1.

6.7.2. Birkhoff’s theorem for height-one identities. Recall that an identity
is a sentence of the form ∀x1, . . . , xn : s = t where s(x1, . . . , xn) and t(x1, . . . , xn) are
terms. A height-one identity is an identity where the involved terms have height one,
i.e., each term involves exactly one function symbol. Some examples of properties
that can be expressed as finite sets of height-one identities are

∀x, y : f(x, y) = f(y, x) (f is commutative)

∀x, y : f(x, x, y) = f(x, y, x) = f(y, x, x) = f(x, x, x) (f is a quasi majority)

∀x, y : f(x, x, y) = f(y, x, x) = f(y, y, y) (f is quasi Maltsev)

and, more generally, all Taylor identities are finite sets of height-one identities. A
non-example is furnished by the Maltsev identities f(x, x, y) = f(y, x, x) = y because
the term y involves no function symbol. Identities where each term involves at most
one function symbol are called linear ; so the Maltsev identities are an example of a
set of linear identities. An example of a non-linear identity is the associativity law

∀x, y, z : f(x, f(y, z)) = f(f(x, y), z).

If A is a τ -algebra, then we write Minion(A) for the smallest minion that contains
{fA | f ∈ τ}. If A and B are τ -algebras then there exists a minor-preserving map
ξ : Minion(B)→ Minion(A) that maps fB to fA if and only if for all f, g ∈ τ of arity
k and l and all m-ary projections p1, . . . , pk, q1, . . . , ql we have that fA(p1, . . . , pk) =
gA(q1, . . . , ql) whenever fB(p1, . . . , pk) = gB(q1, . . . , qk). If this map exists it must
be surjective and we call it the natural minor-preserving map from Minion(B) to
Minion(A). The following theorem is a variant of Birkhoff’s theorem (Theorem 6.5.10)
for height-one identities.

Theorem 6.7.8 (cf. Proposition 5.3 of [29]). Let A and B be τ -algebras such that
Minion(A) and Minion(B) are operation clones. Then the following are equivalent.

(1) The natural minor-preserving map from Minion(B) to Minion(A) exists.
(2) All height-one identities that hold in B also hold in A.
(3) A ∈ Refl P(B).

Moreover, if A and B are finite then we can add the following to the list:

(4) A ∈ Refl Pfin(B).
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Proof. The equivalence of (1) and (2) is straightforward from the definitions,
as in the proof of Theorem 6.5.10.

The proof that (2) implies (3) is similar to the proof of Theorem 6.5.1. For every

a ∈ A, let πAa ∈ C := BB
A

be the function that maps every tuple in BA to its a-th

entry. Let S be the subalgebra of BBA

generated by {πAa | a ∈ A}. Define h : S → A
as

h(fB(πAa1 , . . . , π
A
an)) := fA(a1, . . . , an).

Similarly as in the proof of Theorem 6.5.1 one can show that h is well defined using
that all height-one identities that hold in B also hold in A. Note that h is defined on
all of S because Minion(B) is an operation clone.

Let g : A → S be the mapping which sends every a ∈ A to πAa . Then h and g
show that A ∈ Refl(S) ⊆ Refl S P(B) = Refl P(B): for all a1, . . . , an ∈ A

fA(a1, . . . , an) = h(fB(g(a1), . . . , h(an))).

If A and B are finite, then BA is finite and hence C ∈ S Pfin(B), so the proof implies
that A ∈ Refl Pfin(B).

(3) implies (2). If A ∈ P(B) then the statement follows from Theorem 6.5.1. Now
suppose that A is a reflection of B via the maps h : B → A and g : A→ B. Let φ be
the identity ∀x1, . . . , xn : f1(xi1 , . . . , xik) = f2(xj1 , . . . , xjl) for f1, f2 ∈ τ and suppose
that B |= φ. For all a1, . . . , an ∈ A we have

fA1 (ai1 , . . . , aik) = h(fB1 (g(ai1), . . . , g(aik)))

= h(fB2 (g(aj1), . . . , g(ajl)))

= fA2 (aj1 , . . . , ajl)

Since a1, . . . , an were chosen arbitrarily, we have that A |= φ. �

A generalisation of this theorem to oligomorphic algebras will be presented in
Section 9.6.

6.7.3. Minor conditions. If we apply our translation between identities and
sentences in the signature of abstract clones (see Definition 6.5.5) to height-one iden-
tities ∀x1, . . . , xn : s = t we obtain clone formulas of a special form. To describe
these sentences in a more readable form, we introduce a convenient notation. If
σ : {1, . . . , n} → {1, . . . , k} then we also write fσ instead of comp(f, prkσ(1), . . . ,prkσ(n)).

Correspondingly, if f is an n-ary operation over a set B (rather than a variable), then
we also write fσ for the k-ary operation (x1, . . . , xk) 7→ f(xσ(1), . . . , xσ(n)).

Definition 6.7.9. A primitive positive clone sentence is called a minor condition
if each of its conjuncts is of the form fσ = gρ for σ : {1, . . . , n1} → {1, . . . , k} and
ρ : {1, . . . , n2} → {1, . . . , k}.

Recall from Definition 6.6.7 that a clone sentence φ is called trivial if Proj |= φ,
and non-trivial otherwise. A loop condition is a special case of a minor condition [187,
303,304].

Definition 6.7.10. A loop condition is a minor condition of the form

∃f : fτ = fσ

where f is n-ary, τ, σ : {1, . . . , n} → {1, . . . , k}, and k ∈ N.

Every loop condition φ can be represented by a directed graph Dφ with vertex
set {1, . . . , k} and edge set {(σ(i), τ(i)) | i ∈ {1, . . . , n}}. The name loop condition
comes from the observation that if Dφ maps homomorphically to a digraph H, and H
is preserved by an operation f satisfying fτ = fσ, then H must have a loop: simply
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feed in the images of the n edges of Dφ into the arguments of f ; the identity above
then implies that H contains an edge of the form (x, x). An important loop condition
is the loop condition for the digraph K3 which will be treated in Section 6.8.2.

Note that if φ is a finite conjunction of height-one identities built from the func-
tion symbols f1, . . . , fm, then ∃z1, . . . , zm : φ∗(z1, . . . , zm) is a minor condition (recall
Definition 6.5.5). Lemma 6.5.13 has the following variant for minions.

Lemma 6.7.11. Let Mi, for i ∈ {1, 2}, be a minion on (Ai, Bi). If there is a
minor-preserving map from M1 to M2 then every minor condition that holds in M1

also holds in M2. If A2 and B2 are finite, then the converse holds as well.

Proof. Let ξ : M1 →M2 be minor preserving, let φ be a minor condition, and
suppose that M1 |= φ. Let fσ = gρ be a conjunct of φ. We use the same letters f
and g to denote witnesses in M1 of the variables f and g in φ. Then

ξ(f)σ = ξ(fσ) (since ξ is minor preserving)

= ξ(gρ) (by assumption)

= ξ(g)ρ (since ξ is minor preserving).

showing that φ holds in M2. The converse can be shown by a compactness argument
similarly as in Lemma 6.5.13. �

Corollary 6.5.16 for clones has the following variant for minor-preserving maps.

Corollary 6.7.12. Let A and B be relational structures. Then (1)⇒ (2)⇒ (3):

(1) A ∈ HI(B);
(2) There exists a minor-preserving map from Pol(B) to Pol(A);
(3) Every minor condition that holds in Pol(B) also holds in Pol(A).

If A is finite then the implication from (3) to (2) holds as well. If additionally B is
finite, then the implication from (2) to (1) holds as well.

Proof. Let B be the polymorphism algebra of B.
(1) ⇒ (2): If A ∈ HI(B) then there exists an algebra A ∈ Exp Refl Pfin(B) such

that Clo(A) = Pol(A) (see Theorem 6.4.3). By Theorem 6.7.8, (3)⇒ (1), there exists
a minor-preserving map from Clo(B) = Pol(B) to Clo(A) = Pol(A).

(2) ⇒ (3): An immediate consequence of Lemma 6.7.11, which also shows the
implication (3)⇒ (2) if A is finite.

Let A be the algebra with domain A and the same signature τ as B where
f ∈ τ denotes ξ(fB). That is, ξ is the natural minor-preserving map from Clo(B) =
Pol(B) to Clo(A) ⊆ Pol(A). For finite A and B the implication from (1) to (4)
in Theorem 6.7.8 implies that A ∈ Exp Refl Pfin(B). So there exists an algebra
A′ ∈ Exp Refl HSPfin(B) such that Clo(A′) = Pol(A) and so item (2) in Theorem 6.4.3
implies that A ∈ HI(B). �

Corollary 6.7.13 below shows that for finite structures B the condition from Con-
jecture 3.7.1 (item (1)) is equivalent to the condition from Conjecture 4.5.1 (item (7)).
A proof for the larger class of reducts of homogeneous structures with finite relational
signature can be found in Section 10.3.

Corollary 6.7.13. Let B be a finite structure. Then the following are equivalent.

(1) K3 ∈ HI(B).
(2) HI(B) contains all finite structures.
(3) HI(B) contains ({0, 1}; 1IN3).
(4) There is a minor-preserving map from Pol(B) to Proj.
(5) Pol(B) satisfies no non-trivial minor condition.
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(6) Pol(B) contains no Taylor operation.
(7) K3 ∈ ICH(B).

If these conditions hold, then B has a finite-signature reduct B′ such that CSP(B′)
is NP-hard.

Proof. The equivalence of (1), (2), and (3) has been stated in Corollary 6.4.4.
Since Proj is isomorphic to Pol({0, 1}; 1IN3) (Proposition 6.5.19) the implications
from (3) to (4) and from (4) to (5) follow from Corollary 6.7.12. The implication
from (5) to (6) is immediate since the existence of a Taylor operation is a non-trivial
minor condition. To prove the contraposition of the implication from (6) to (7),
suppose that K3 /∈ ICH(B). Let C be the core of B with domain C = {c1, . . . , cn},
and note that (C, c1, . . . , cn) ∈ C H(B). Hence, K3 /∈ I(C, c1, . . . , cn). Polymorphisms
of (C, c1, . . . , cn) are idempotent and therefore, by Corollary 6.6.8, (C, c1, . . . , cn) and
therefore also C has a Taylor polymorphism. The implication from (7) to (1) follows
from Theorem 3.6.2. �

6.8. Siggers Operations

In Section 1.1 the theorem of Hell and Nešetřil [202] was mentioned, which states
that finite graphs B exhibit a complexity dichotomy: CSP(B) is in P or NP-complete.
Long before the proofs of the Feder-Vardi conjecture a strengthened version of the
theorem of Hell and Nešetřil was known, namely Theorem 6.8.1, which is of indepen-
dent interest was known (in particular, the stronger statement remains interesting
even if P = NP).

Theorem 6.8.1. Let B be a finite loopless undirected graph. Then

• B is bipartite, i.e., admits a homomorphism to K2, or
• K3 ∈ HI(B).

In the former case, the problem is to determine whether a given instance of the
problem is bipartite. This problem can be solved easily in polynomial time by reducing
to the connected case and attempting to compute the (unique possible) bipartition.
This is an instance of the algorithmic methods described in Chapter 8. In the latter
case, CSP(B) is NP-complete by Corollary 3.7.1. Theorem 6.8.1 has a remarkable
consequence in universal algebra, discovered by Siggers in 2010 (see Section 6.8.2),
whose significance goes beyond the study of the complexity of CSPs.

6.8.1. Proof of the Hell-Nešetřil theorem. The graph K4−{0, 1} (a clique
where one edge is missing) is called a diamond . A graph is called diamond-free if
it does not contain a copy of a diamond as a (not necessarily induced) subgraph.3

Note that these are precisely those undirected graphs for which every edge is covered
by at most one copy of a K3. For every l ∈ N, the graph (K3)l is an example of
diamond-free graph.

Lemma 6.8.2. Let B be a finite loopless undirected graph which is not bipartite.
Then HI(B) contains a finite diamond-free core graph containing a triangle.

Proof. We may assume that

(1) HI(B) does not contain a non-bipartite loopless graph with fewer vertices
than B, because otherwise we could replace B by this graph.

3Note that when we view a graph as a relational structure B, then a substructure of B in the
sense of Definition 1.1.6 is what a graph theorist would call an induced subgraph; in contrast, a

(weak) subgraph of a graph (V ;E) is a graph (V ′;E′) where V ′ ⊆ V and E′ ⊆ E ∩
(V ′

2

)
.
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... ...
a1 ak+1

uk+1

vk+1

an-1

u1

v1

a0 an

Figure 6.1. Diagram for the proof of Lemma 6.8.2.

(2) B contains a triangle: if the length of the shortest odd cycle is k, then
(B;Ek−2), where Ek−2 is defined via the usual composition of binary re-
lations and so primitively positively definable in B, is an undirected graph
and contains a triangle, so it can replace B. Moreover, the new graph has
the same number of vertices, so the assumption (1) is still satisfied.

Claim 1. B is a core. If B were not a core, then H(B) would contain a non-
bipartite graph with fewer vertices, in contradiction to assumption (1) above.

Claim 2. Every vertex of B is contained in a triangle. Otherwise, the sub-
graph of B induced on the set of vertices defined by the primitive positive formula
∃u, v

(
E(x, u)∧E(x, v)∧E(u, v)

)
in B still contains a triangle, and has fewer vertices

than B, in contradiction to assumption (1).
Claim 3. B does not contain a copy of K4. Otherwise, if a is an element from a

copy of K4, then the subgraph of B induced on {x ∈ B | E(a, x)} is a non-bipartite
graph A, which has strictly less vertices than B because a /∈ A. Moreover, A ∈ HI(B)
by Theorem 3.6.2, contrary to assumption (1).

Claim 4. B is diamond-free. To see this, let R be the binary relation with the
primitive positive definition

R(x, y) :⇔ ∃u, v
(
E(x, u) ∧ E(x, v) ∧ E(u, v) ∧ E(u, y) ∧ E(v, y)

)
(36)

and let T be the transitive closure of R. The relation T is clearly symmetric, and
since every vertex of B is contained in a triangle, it is also reflexive, and hence an
equivalence relation of B. If (x, y) ∈ T , we also say that x and y are diamond
connected ; see Figure 6.1. Since B is finite, for some n the formula δn(x, y)

∃a1, . . . , an−1

(
R(x, a1) ∧R(a1, a2) ∧ · · · ∧R(an−1, y)

)
(37)

defines T , showing that T is primitively positively definable in B.
We claim that the graph B/T (see Example 3.1.2) is lookless. It suffices to show

that T ∩ E = ∅. Otherwise, let (a, b) ∈ T ∩ E be chosen so that δn(a, b) holds
with n minimised. So there exists a sequence a = a0, a1, . . . , an = b with R(a0, a1),
R(a1, a2), . . . , R(an−1, an) in B; again, see Figure 6.1. This chain cannot have the
form R(a0, a1) because B does not contain K4 subgraphs. Suppose first that n = 2k
is even. Let the vertices u1, v1, uk+1 and vk+1 be as depicted in Figure 6.1. Let S be
the set of elements x ∈ B defined in B by

∃x1, xk
(
E(uk+1, x1) ∧ E(vk+1, x1) ∧ δk−1(x1, xk) ∧ E(xk, x)

)
.

The vertices of the triangle (a0, u1, v1) lie in S, so the subgraph induced on the
primitively positively definable set S is non-bipartite. The vertex an does not lie in
S, by the minimal choice of n. So HI(B) contains a loopless non-bipartite graph with
fewer vertices than B, in contradiction to the initial assumption.

If n = 2k + 1 is odd, we can argue analogously with the set S defined by the
formula ∃y

(
δk(ak+1, y)∧E(y, x)

)
and again obtain a contradiction. Hence, B/T does

not contain loops. Since B contains a triangle, say on {a, b, c}, it also follows that
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B/T has a triangle on the classes of a, b, and c. The initial assumption for B then
implies that T must be the trivial equivalence relation, which in turn implies that B
does not contain any diamonds. �

Definition 6.8.3. For I = {i1, . . . , im} ⊆ {1, . . . , k} with x1 < · · · < im we write
πkI for the function

(x1, . . . , xk) 7→ (xi1 , . . . , xim).

Lemma 6.8.4 (Bulatov [112]). Let B be a diamond-free loopless undirected graph
and let h : (K3)k → B be a homomorphism. Then there exists I ⊆ {1, . . . , k} such
that h has the same kernel as πkI , and the image of h is isomorphic to (K3)|I|.

Proof. Let I ⊆ {1, . . . , k} be maximal such that the kernel of h is contained in
the kernel of πkI . Such a set exists, because the kernel of πk∅ is the total relation. We

claim that the kernel of h equals the kernel of πkI . We have to show that for every
j ∈ {1, . . . , k} \ I and for all z1, . . . , zk, z

′
j ∈ {0, 1, 2}

h(z1, . . . , zj , . . . , zk) = h(z1, . . . , zj−1, z
′
j , zj+1, . . . , zk).

By the maximality of I, there are x, y ∈ (K3)k such that h(x) = h(y) and xj 6= yj .
We may suppose that zj 6= xj and z′j = xj . To simplify the notation we assume that

j = k. It is easy to see that any two vertices in (K3)k have a common neighbour.

• Let r be a common neighbour of x and (z, zk) := (z1, . . . , zk). Note that r
and (z, z′k) are adjacent, too.
• For all i 6= k we choose an element si of K3 that is distinct from both
ri and yi. Since xk is distinct from rk and yk we have that (s, xk) :=
(s1, . . . , sk−1, xk) is a common neighbour of r and y.
• The tuple (r, zk) := (r1, . . . , rk−1, zk) is a common neighbour of both x and

(s, xk).
• Finally, for i 6= k choose ti to be distinct from zi and ri, and choose tk to

be distinct from zk and from z′k. Then t := (t1, . . . , tk−1, tk) is a common
neighbour of (z, zk), of (z, z′k), and of (r, zk).

The situation is illustrated in Figure 6.2. Since B is diamond-free, h(x) = h(y) implies
that h(r) = h(r, zk) and for the same reason h(z, zk) = h(z, z′k) which completes the
proof of the claim.

We finally show that the image of h is isomorphic to (K3)m where m = |I|. In
fact, the map πkI ◦ h−1 provides an isomorphism:

• this map is well defined since h and πkI have the same kernel;
• if ((u1, . . . , um), (v1, . . . , vm)) is an edge in (K3)m, then let a, b ∈ (K3)k

be such that πkI (a) = (u1, . . . , um) and πkI (b) = (v1, . . . , vm), and ai = u1,
bi = v1 if i /∈ I. Then (a, b) is an edge in (K3)k and hence (h(a), h(b)) is an
edge in B.
• if (u1, . . . , um) and (v1, . . . , vm) are distinct but not adjacent then ui = vi

for some i ∈ {1, . . . ,m}. We can therefore find two distinct elements p and q
of (K3)m that are adjacent to both (u1, . . . , um) and (v1, . . . , vm). Similarly
as in the previous item we can find a, b, c, d such that πkI (a) = (u1, . . . , um),
πkI (b) = (v1, . . . , vm), πkI (c) = p, πkI (d) = q, and such that c and d are
adjacent to both a and b. Hence, the same holds for h(c), h(d), h(a), h(b) as
h is a homomorphism. Moreover, since h and πkI have the same kernel we
have h(a) 6= h(b) and h(p) 6= h(q). Since B is diamond-free we obtain that
h(a) and h(b) are not adjacent in B.

This concludes the proof. �
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Figure 6.2. Diagram for the proof of Lemma 6.8.4.

Lemma 6.8.5 (Bulatov [112]). If a finite diamond-free loopless undirected graph
B contains a copy of a K3, then B interprets (K3)k primitively positively with pa-
rameters, for some k ∈ N.

Proof. We construct a strictly increasing sequence of subgraphs G1 ⊂ G2 ⊂ · · ·
of B such that Gi is isomorphic to (K3)ki for some ki ∈ N. Let G1 be any triangle
in B. Suppose now that Gi has already been constructed. If the domain of Gi is
primitively positively definable in B with constants, then we are done. Otherwise,
there exists an idempotent polymorphism f of B and v1, . . . , vk ∈ Gi such that
f(v1, . . . , vk) /∈ Gi. The restriction of f to Gi provides a homomorphism from (K3)ki

to the diamond-free graph B. Lemma 6.8.4 shows that Gi+1 := f
(
(Gi)

k
)

induces a

copy of (K3)ki+1 for some ki+1 ≤ k. Since f is idempotent, we have that Gi ⊆ Gi+1,
and by the choice of f the containment is strict. Since B is finite, for some m the set
Gm must have a primitive positive definition in B with constants. �

Proof of Theorem 6.8.1. Let B be a finite loopless undirected graph that is
not bipartite. Lemma 6.8.2 states that there is a diamond-free core C containing a
triangle in HI(B). Then Lemma 6.8.5 applied to C implies that for some k ∈ N there
is a primitive positive interpretation of (K3)k with constants in C. Since C is a core,
and since (K3)k is homomorphically equivalent to K3, it follows that K3 ∈ HI(C). �

6.8.2. Siggers’ theorem. We present a strengthening of Taylor’s theorem (The-
orem 6.6.4). An operation s : B6 → B is called a Siggers operation if

s(x, y, x, z, y, z) = s(y, x, z, x, z, y)

holds for all x, y, z ∈ B. Note that the existence of a Siggers operation can be
formulated as a loop condition (Definition 6.7.10). Clearly, a Siggers operation is a
Taylor operation. Also note that whether or not a clone contains a Siggers operation
can be formulated as a (non-trivial) minor condition in the sense of the previous
section.

Theorem 6.8.6 (Siggers [338]). Let B be a finite structure. Then either K3 ∈
HI(B) or B has a Siggers polymorphism and the two cases are mutually exclusive.

Proof. By Corollary 6.7.12, if A ∈ HI(B) then every minor condition that holds
in Pol(B) also holds in Pol(A). Since all polymorphisms of K3 are essentially unary
(Propoisition 6.1.43), Pol(K3) does not satisfy any non-trivial minor condition. But
having a Siggers polymorphism is a non-trivial minor condition. This shows that the
two cases are mutually exclusive.

To show that one of the two cases applies, let k ≥ 1 and a, b, c ∈ Bk be such that
{(ai, bi, ci) | i ≤ k} = B3. Let R be the binary relation on Bk such that (u, v) ∈ R iff
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there exists a 6-ary s ∈ Pol(B) such that u = s(a, b, a, c, b, c) and v = s(b, a, c, a, c, b).
We make the following series of observations.

• The vertices a, b, c ∈ Bk induce in (Bk;R) a copy of K3: each of the six
edges of K3 is witnessed by one of the six 6-ary projections from Pol(B).
• The relation R is symmetric: Suppose that (u, v) ∈ R and let s ∈ Pol(B) be

such that u = s(a, b, a, c, b, c) and v = s(b, a, c, a, c, b). Define s′ ∈ Pol(B)
by s′(x1, . . . , x6) := s(x2, x1, x4, x3, x6, x5); then

v = s(b, a, c, a, c, b) = s′(a, b, a, c, b, c)

u = s(a, b, a, c, b, c) = s′(b, a, c, a, c, b)

and hence s′ witnesses that (v, u) ∈ R.
• If the graph (B6;R) contains a loop (w,w) ∈ R, then there exists a 6-ary
s ∈ Pol(B) such that

s(a, b, a, c, b, c) = w = s(b, a, c, a, c, b) .

The operation s is Siggers: for all x, y, z ∈ B there exists an i ≤ k such that
(x, y, z) = (ai, bi, ci), and the above implies that

s(ai, bi, ai, ci, bi, ci) = s(bi, ai, ci, ai, ci, bi)

and we are done in this case.

So we may assume in the following that (Bk;R) is a undirected and loopless graph
that contains a copy of K3. The relation R (as a 2k-ary relation over B) is preserved
by Pol(B), and hence (Bk;R) has a primitive positive interpretation in B (Theo-
rem 6.1.12). By Theorem 6.8.1 applied to the undirected graph (Bk;R), we have
K3 ∈ HI(Bk;R) and hence also K3 ∈ HI(B), and this concludes the proof. �

In Section 10.2 we present a generalisation of this result for ω-categorical model-
complete core structures, due to Barto and Pinsker [30].

Note that for an explicitly given finite structure B, the existence of a Siggers
polymorphism can be decided, and it follows that the condition of the dichotomy for
finite domain CSPs is decidable.

6.9. Weak Near-Unanimity Operations

For finite structures, the existence of a Taylor polymorphism is not only equivalent
to the existence of a Siggers polymorphism, but also to the existence of a weak near-
unanimity polymorphism, to the existence of a cyclic polymorphism, and to the
existence of a 4-ary Siggers polymorphism. The results in this section have not
yet been generalised to ω-categorical structures, and we just give a survey to a small
selection of recent results about finite algebras.

We also present some famous stronger systems of identities; such identities are a
central topic in universal algebra and their discussion would fill an entire book. We
focus on some of the strongest known systems (in Section 6.9.3 and Section 6.9.2) such
that for ω-categorical structures B with polymorphisms satisfying these identities the
tractability of CSP(B) is still open.

Definition 6.9.1. An operation f : Bn → B, for n ≥ 2, is called

• cyclic if it satisfies

∀x1, . . . , xn : f(x1, . . . , xn) = f(x2, . . . , xn, x1);

• a weak near-unanimity if it satisfies

∀x, y : f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(y, x, . . . , x) .
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Figure 6.3. Operations satisfying the loop condition of this digraph
are 4-ary Siggers operations.

• 4-ary Siggers if n = 4 and f satisfies

∀a, e, r : f(r, a, r, e) = f(a, r, e, a).

Again, we do not require idempotence in this definition. Clearly, every cyclic
operation is also a weak near-unanimity operation. Also note that Siggers terms and
cyclic terms are (special) Taylor terms. The identity in the definition of 4-ary Siggers
operations is the loop condition (Definition 6.7.10) of the digraph

({1, 2, 3}; {(1, 2), (2, 3), (3, 1), (1, 3)});

see Figure 6.3. A full proof of Theorem 6.9.2 below is beyond the scope of this text;
but we will provide exact pointers to the literature.

Theorem 6.9.2. Let B be a finite algebra. Then the following are equivalent.

(1) B has a Taylor term.
(2) for all prime numbers p > |B|, the algebra B has a p-ary cyclic term.
(3) B has a cyclic term.
(4) B has a weak near-unanimity term.
(5) B has a 4-ary Siggers term.

Proof. The implications (2)⇒ (3)⇒ (4)⇒ (1) and (5)⇒ (1) are trivial.
(1) ⇒ (2). The statement can be found for finite idempotent algebras in [25].

Since a structure has a Taylor polymorphism if and only if its core does (recall that in
this text we do not require that Taylor operations are idempotent), and since a core
has a Taylor polymorphism if and only if it has an idempotent Taylor polymorphism,
the idempotent case implies the statement as given in the theorem.

It therefore suffices to show that (2)⇒ (5). Let p = 3k+2 be some prime number
larger than |B| (which exists by Dirichlet’s theorem) and let c(x1, . . . , xp) be a cyclic
term of B. Define s(x, y, z, w) to be the term

c(x, x, . . . , x︸ ︷︷ ︸
k+1 times

, y, . . . , y︸ ︷︷ ︸
k times

, w, z, . . . , z︸ ︷︷ ︸
k times

) .

Then

s(x, y, z, y) = c(x, x, . . . , x︸ ︷︷ ︸
k+1 times

, y, y, . . . , y, y︸ ︷︷ ︸
k+1 times

, z, . . . , z︸ ︷︷ ︸
k times

)

= c(y, y, . . . , y︸ ︷︷ ︸
k+1 times

, z, z, . . . , z︸ ︷︷ ︸
k times

, x, x, . . . , x︸ ︷︷ ︸
k+1 times

) (by the cyclicity of c)

= s(y, z, x, x) .

Note that also this identity is the loop condition of the digraph shown in Figure 6.3,
so a 4-ary Siggers operation can be obtained from s by permuting the arguments
accordingly. �
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6.9.1. H-colouring revisited. As an application of Theorem 6.9.2, we show
how to derive the complexity classification of the H-colouring problem for finite undi-
rected simple graphs H, following [25], previously treated in Section 6.8.

Theorem 6.9.3 (Hell and Nešetřil [202]). Let H be a finite undirected graph. If
H is bipartite then CSP(H) is in P. Otherwise, CSP(H) is NP-complete.

Proof. As remarked in Section 6.8, if H is bipartite then CSP(H) can be solved
in polynomial time. Otherwise, G there exists a cycle a0, a1, . . . , a2k, a0 of odd length
in H. If H has no Taylor polymorphism, then by Corollary 6.7.13, K3 ∈ HI(B) and
CSP(H) is NP-hard.

Otherwise, if H has a Taylor polymorphism, then Theorem 6.9.2 asserts that
there exists a p-ary cyclic polymorphism c of H where p is a prime number greater
than max{2k, |A|}. Since the edges in H are undirected, we can also find a cycle
a0, a1, . . . , ap−1, a0 in H. Then c(a0, a1, . . . , ap−1) = c(a1, . . . , ap−1, a0), which implies
that H contains a loop, a contradiction to the assumption that the core of H has more
than one element. �

An alternative proof of the implication from (1) to (5) in Theorem 6.9.2, similar to
the proof of Theorem 6.8.6, can be given using the following theorem. The algebraic
length of a digraph B is the greatest common divisor of the length of all directed
cycles in B. A sink in a digraph is a vertex with no outgoing edges; similarly, a
source in a digraph is a vertex with no incoming edges. Digraphs without sources
and sinks are also called smooth.

Theorem 6.9.4 (Barto, Kozik, Niven [27]). Let B be a finite smooth digraph of
algebraic length 1. Then either K3 ∈ HI(B) or B contains a loop.

6.9.2. Edge Operations. In this section we briefly discuss another algebraic
criterion for polynomial-time decidability of CSPs given in [219,220], which has not
yet been generalised to the ω-categorical setting (Question 35). This is the existence
of an edge polymorphism.

Definition 6.9.5. An operation e : Bk+1 → B, for k ≥ 2, is called a quasi k-edge
operation if it satisfies for all x, y ∈ B

e(y, y, x, x, x, . . . , x) = e(x, . . . , x)

e(y, x, y, x, x, . . . , x) = e(x, . . . , x)

e(x, x, x, y, x, . . . , x) = e(x, . . . , x)

... =
...

e(x, x, x, x, . . . , x, y) = e(x, . . . , x).

An idempotent quasi edge operation is called an edge operation. The equations of
a k-edge operation from Definition 6.9.5 are perhaps more easily readable in matrix
form as follows.

e


y y x x · · · x
y x y x · · · x
x x x y x
...

...
...

. . .

x x x x y

 = e


x · · · x

...
. . .

...

x · · · x


Clearly, every quasi edge operation is a Taylor operation. Note that a quasi 2-edge
operation is a quasi Maltsev operation (modulo interchanging the first and second
argument). Bulatov and Dalmau [118] proved that if B is a finite structure with
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finite relational signature and a Maltsev polymorphism, then CSP(B) can be solved
in polynomial time (the algorithm even works in polynomial time if the signature is
infinite and the relations are represented by listing all tuples in the relation). The
Bulatov-Dalmau algorithm has been generalised to all finite structures with an edge
polymorphism [220].

The existence of an edge term in a finite algebra is an important property in
universal algebra because it is equivalent to a number of equivalent fundamental
properties: for example, a finite algebra A has an edge term if and only if A has the

few subpowers property [41], i.e., the number of subalgebras of An is in O(2n
k

) for
some k ∈ N.

Example 6.9.6. The algebra A := ({0, 1}; min) does not have the few subpowers
property: the number of subalgebras of An is at least the number of subalgebras of
An which are generated by sets of the form {a ∈ {0, 1}n |

∑
i ai = bn/2c}. Any

two distinct sets of this form generate different subalgebras, because applying min to
distinct tuples in the set strictly decreases the number of entries with a 1. Thus, the

number of subalgebras of An is at least 2( n
bn/2c), and

(
n
bn/2c

)
clearly grows faster than

any polynomial. Hence, the facts mentioned above imply that ({0, 1}; min) does not
have an edge term. 4

Another result that should be mentioned in this context links the existence of an
edge term with a fundamental property in universal algebra. A variety is called con-
gruence modular if the congruence lattice of every algebra in the variety is modular; for
such varieties, a strong structure theory is known (called commutator theory [236]).
Barto [20] showed that a finite structure B with finite relational signature has an edge
polymorphism if and only if the polymorphism algebra of B generates a congruence
modular variety.

6.9.3. Jónsson chains. Jónsson chains were introduced by Bjarni Jónsson [226];
they provide an equivalent characterisation of congruence distributive varieties. If the
variety is generated by the polymorphism clone of a finite structure B with finite re-
lational signature, this condition has drastic consequences for CSP(B). Barto [18]
proved that in this case B must also have a near-unanimity polymorphism and hence
can be solved in polynomial time by the methods that will be presented in Sec-
tion 8.5. Unfortunately, a generalisation of Barto’s theorem for polymorphism clones
of ω-categorical structures B with finite relational signature is not yet known (see
Question 18).

There are several equivalent definitions of Jónsson chains; we present a variant
that follows the terminology in [235].

Definition 6.9.7. A sequence (j1, . . . , j2n+1) of ternary operations on a set B is
called a chain of quasi Jónsson operations if for all x, y ∈ B

j1(x, x, y) = j1(x, x, x)

ji(x, y, x) = ji(x, x, x) for all i ∈ {1, . . . , 2n+ 1}
j2i−1(x, y, y) = j2i(x, y, y) for all i ∈ {1, . . . , n}
j2i(x, x, y) = j2i+1(x, x, y) for all i ∈ {1, . . . , n}

j2n+1(x, y, y) = j2n+1(y, y, y).

A chain of quasi Jónsson operations for which the operations are idempotent is called
a chain of Jónsson operations (or a Jónsson chain).
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Note that if (j1) is a quasi Jónsson chain, then j1 is a quasi majority operation.
Clearly, the existence of a quasi Jónsson chain is a non-trivial minor condition (Defini-
tion 6.7.9), so any clone that contains a quasi Jónsson chain has no minor-preserving
map to Proj. A variety is congruence distributive if the congruence lattice of every
algebra in the variety is distributive. Jónsson [226] showed that this is the case if and
only if there exists a chain of terms which denotes a Jonsson chain in all algebras of
the variety.

We mention two further strengthenings of the existence of chains of quasi Jónsson
operations whose impact on the complexity of CSP(B) for ω-categorical B is also
unclear.

Definition 6.9.8. A sequence (d1, . . . , dn) of ternary operations on a set B is
called a chain of quasi directed Jónsson operations if for all x, y, z ∈ B

d1(x, x, y) = d1(x, x, x)

di(x, y, x) = di(x, x, x) for all i ∈ {1, . . . , n}
di(x, y, y) = di+1(x, x, y) for all i ∈ {1, . . . , n− 1}
dn(x, y, y) = dn(y, y, y).

A chain of quasi directed Jónsson operations where the operations are idempotent is
called a chain of directed Jónsson operations.

Proposition 6.9.9. If a clone contains a chain (d1, . . . , dn) of quasi directed
Jónsson operations then it also contains a chain (j1, . . . , j2n−1) of quasi Jónsson op-
erations.

Proof. Define j1(x, y, z) := d1(x, y, z) and for i ∈ {1, . . . , n− 1}

j2i(x, y, z) := di+1(x, x, z)

j2i+1(x, y, z) := di+1(x, y, z).

Then

j1(x, x, y) = d1(x, x, y) = d1(x, x, x) = j1(x, x, x),

j2n−1(x, y, y) = dn(x, y, y) = dn(y, y, y) = j2n−1(y, y, y),

and for i ∈ {1, . . . , n− 1}:

j2i(x, y, x) = di+1(x, x, x) = j2i(x, x, x)

j2i+1(x, y, x) = di+1(x, y, x) = di+1(x, x, x) = j2i+1(x, x, x)

j2i−1(x, y, y) = di(x, y, y) = di+1(x, x, y) = j2i(x, y, y)

j2i(x, x, y) = di+1(x, x, y) = j2i+1(x, x, y). �

Proposition 6.9.10. If a clone contains an n-ary quasi near-unanimity operation
f , then it also contains a chain (d1, . . . , dn) of quasi directed Jónsson operations.

Proof. For i ∈ {1, . . . , n} define di(x, y, z) := f(x, . . . , x, y, z, . . . , z) where the
argument y is at position n− i+ 1. �

It has been shown by Kazda, Kozik, McKenzie, and Moore that a clone contains
a chain of Jónsson operations if and only if it contains a chain of directed Jónsson
operations [235]. Whether the same is true for quasi Jónsson operations and quasi
directed Jónsson operations is not clear to the author (see Question 19). A slight
variation of the previous definition from [235] yields a much stronger condition.
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Definition 6.9.11. A sequence (p1, . . . , pn) of ternary operations on a set B is
called a chain of quasi Pixley operations if for all x, y ∈ B

p1(x, y, y) = p1(x, x, x)

pi(x, y, x) = pi(x, x, x) for all i ∈ {1, . . . , n}
pi(x, x, y) = pi+1(x, y, y) for all i ∈ {1, . . . , n− 1}
pn(x, x, y) = pn(y, y, y).

A chain of quasi Pixley operations whose operations are idempotent is called a chain
of Pixley operations.

Proposition 6.9.12. If a clone contains a chain (p1, . . . , pn) of quasi Pixley
operations, then it also contains a chain (j1, . . . , j2n+1) of quasi Jónsson operations.

Proof. Define

j1(x, y, z) := p1(x, x, x)

j2i(x, y, z) := pi(x, y, z) for i ∈ {1, . . . , n}
j2i+1(x, y, z) := pi+1(x, z, z) for i ∈ {1, . . . , n− 1}
j2n+1(x, y, z) := pn(z, z, z).

Then

j1(x, x, y) = p1(x, x, x) = j1(x, x, x),

j2n+1(x, y, y) = pn(x, y, y) = j2n+1(y, y, y),

and for i ∈ {1, . . . , n}:
j2i(x, y, x) = pi(x, y, x) = pi(x, x, x) = j2i(x, x, x)

j2i+1(x, y, x) = pi+1(x, x, x) = j2i+1(x, x, x)

j2i−1(x, y, y) = pi(x, y, y) = j2i(x, y, y)

j2i(x, x, y) = pi(x, x, y) = pi+1(x, y, y) = j2i+1(x, x, y). �

Note that if (p1) is a chain of quasi Pixley operations of length n = 1, then p1 is a
quasi Maltsev operation. We have already seen that an ω-categorical model-complete
core never has a quasi Maltsev polymorphism (Proposition 6.1.44). However, there
are ω-categorical model-complete cores with essentially infinite signature and a chain
of quasi Pixley polymorphisms of length n = 2 (Proposition 8.5.18). An even weaker
condition can be obtained if in Definition 6.9.11 the identities pi(x, y, x) = pi(x, x, x)
are removed; the resulting system is called a quasi Hagemann Mitschke chain.





CHAPTER 7

Equality Constraint Satisfaction Problems

Jan Kára, 2005

This section is about first-order reducts of (N; =); From a model theory perspec-
tive, such structures appear to be altogether trivial. However, the set of all such
structures, ordered by primitive positive definability, is a quite complicated object;
there are actually 2ω many first-order reducts of (N; =) up to primitive positive in-
terdefinability [58].

First-order reducts of (N; =) will be called equality constraint languages, in par-
ticularly when used as templates for CSPs. It is easy to show that a structure B
is isomorphic to an equality constraint language if and only if B is preserved by all
permutations of its domain (cf. Section 4.2). Therefore, by the connection presented
in Section 6.1 the results in this chapter concern locally closed clones that contain all
permutations of the domain. Clones on infinite sets that contain all permutations are
of independent interest in universal algebra [201,277,312,313]. On a finite domain,
such clones have been completely described in [198]; it turns out that the number
of clones that contain all permutations of a fixed finite domain is finite. On infinite
domains, local closure is a strong additional assumption, which allows a good under-
standing of the lattice of all locally closed clones that contain all permutations [58].

The CSP for a finite equality constraint language is called an equality constraint
satisfaction problem. Equality CSPs are of fundamental importance in infinite-domain
constraint satisfaction; we mention some reasons.

• NP-hard equality CSPs are useful for establishing hardness results of other
infinite-domain CSPs. For instance, it follows from the results presented in
this section that every structure which admits a primitive positive definition
of the relation {(x, y, z) | (x = y 6= z) ∨ (x 6= y = z)} has an NP-hard CSP.

205
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• When analysing an ω-categorical structure B via the universal-algebraic ap-
proach, the question which equality constraint languages can be primitively
positively defined in B is of crucial importance, as we will see for instance
in Chapter 12. For example, if the relation {(x, y, u, v) | x = y ⇔ u = v}
is primitively positively definable in B, then every polymorphism of B that
depends on all its arguments must be injective (Lemma 7.5.1).

The complexity of equality CSPs has been completely classified [72]; they are in
P or NP-complete. In this chapter we present a new proof of this result. A structure
B that is preserved by all permutations either has a binary injective polymorphism,
in which case B has a quantifier-free Horn definition in (N; =), and CSP(B) is in P,
or else allows primitive positive interpretations of all finite structures, in which case
CSP(B) is NP-complete. This implies that the tractability conjecture for reducts of
finitely bounded homogeneous structures (Conjecture 3.7.1; also see Theorem 6.3.10)
is true for equality CSPs.

The proof given here has the advantage that it divides the argument into several
steps, some of which generalise to much larger classes of structures. Indeed, the central
argument (Theorem 7.2.1) applies to all structures with a 3-transitive automorphism
group, and several other results of this chapter also turn out to be useful in later
classification arguments.

The fact that satisfiability of quantifier-free Horn clauses over (N; =) can be de-
cided in polynomial time was observed in [232]. Here, we derive an algorithm from
more general principles that will also be important for algorithmic results in Chap-
ter 12.

7.1. Independence of Disequality

We will now discuss a useful notion of independence of a particular relation from
a template1. This notion has been discovered by a number of authors independently,
beginning with [267,268]. Here we focus on the case where the relation in question
is disequality, 6=. A general definition of independence has been worked out in [139].

Independence has been applied in the study of temporal reasoning [227,251] and
qualitative reasoning calculi [109,110], and is related to a notion called convexity in
the literature on combining decision procedures [16,298].

Definition 7.1.1 (Independence of disequality). Let B be a structure with rela-
tional signature τ . Then we say that 6= is independent from B if for every primitive
positive τ -formula φ with variables x1, y1, . . . , xn, yn, if for all i ≤ n the formula
φ ∧ xi 6= yi is satisfiable over B, then φ ∧

∧
i≤n xi 6= yi is satisfiable over B as well.

In this section we prove that for arbitrary ω-categorical structures, independence
of disequality is equivalent to the existence of a binary injective polymorphism. The
following definition comes from [72].

Definition 7.1.2. A relation R ⊆ Bk is called intersection-closed if for all k-
tuples (u1, . . . , uk), (v1, . . . , vk) ∈ R there is a tuple (w1, . . . , wk) ∈ R such that for all
1 ≤ i, j ≤ k we have wi 6= wj whenever ui 6= uj or vi 6= vj .

The following lemma appears in [95]; see also [69].

Lemma 7.1.3. Let B be a countable ω-categorical structure. Then the following
are equivalent.

(1) Disequality 6= is independent from B.

1The notion of independence in constraint satisfaction should not be confused with independence
in the sense of model theory, e.g., as in [5].
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(2) Every finite substructure of B2 admits an injective homomorphism into B.
(3) B has a binary injective polymorphism.
(4) Every primitively positively definable relation in B is intersection-closed.

Proof. We show the implications in cyclic order. Throughout the proof, let
b1, b2, . . . be an enumeration of the domain B of B.

(1)⇒ (2). Let A be a finite induced substructure of B2. Then the domain of A is
contained in {b1, . . . , bn}2, for sufficiently large n. It clearly suffices to show that the
substructure of B2 induced on {b1, . . . , bn}2 homomorphically and injectively maps
to B, so let us assume without loss of generality that the domain of A is {b1, . . . , bn}2.

Consider the formula φ whose variables x1, . . . , xn2 are the elements of A,

x1 := (b1, b1), . . . , xn := (b1, bn), . . . , xn2−n+1 := (bn, b1), . . . , xn2 := (bn, bn) ,

and which is the conjunction over all literals R((bi1 , bj1), . . . , (bik , bjk)) such that
R(bi1 , . . . , bik) and R(bj1 , . . . , bjk) hold in B; so φ states precisely which relations
hold in A (by the ω-categoricity of B, the conjunction can be chosen to be finite).
We claim that the formula φ ∧

∧
1≤k≤m xik 6= xjk with the property that ik 6= jk

for all 1 ≤ k ≤ m is satisfiable over B. This implies that there exists an injective
homomorphism from A into B. To prove the claim, let i := ik and j := jk for k ≤ m
be distinct and let r, s be the n2-tuples defined as follows.

r := (b1, . . . , b1, b2, . . . , b2, . . . , bn, . . . , bn)

s := (b1, b2, . . . , bn, b1, b2, . . . , bn, . . . , b1, b2, . . . , bn).

These two tuples satisfy φ, because the projections to the first and second coordinate,
respectively, are homomorphisms from A to B. Now r or s satisfies xi 6= xj , proving
that φ ∧ xi 6= xj is satisfiable in B. The claim now follows from the independence of
6= from B.

The implication (2) ⇒ (3) follows from Lemma 4.1.10, because the property
that a function is injective can be described by the universal first-order sentence
∀x̄, ȳ

(
x̄ 6= ȳ ⇒ f(x̄) 6= f(ȳ)

)
.

(3) ⇒ (4): If f is a binary injective polymorphism of B, then it also preserves
all relations that have a primitive positive definition in B. Clearly, every relation
preserved by an injective function is intersection-closed.

The implication (4)⇒ (1) is straightforward as well. �

Under the condition that the relation 6= is primitively positively definable in B, we
have a further characterisation of independence of disequality, which appeared in [95];
see also [69]. The condition given in this characterisation is in many situations easier
to verify.

Definition 7.1.4 (Local Independence of Disequality). Let B be a structure
with relational signature τ . Then we say that 6= is locally independent from B if
for every primitive positive τ -formula φ with variables x1, y1, x2, y2, if each of the
formulas φ∧x1 6= y2 and φ∧x2 6= y2 is satisfiable over B, then φ∧x1 6= y1 ∧x2 6= y2

is satisfiable over B as well.

Lemma 7.1.5. Let B be a structure where 6= is primitively positively definable.
Then the following are equivalent.

(1) 6= is independent from B.
(2) 6= is locally independent from B.



208 7. EQUALITY CONSTRAINT SATISFACTION PROBLEMS

Proof. Clearly, (1) implies (2). The implication (2) implies (1) can be shown
by induction.2 �

We close with an application to CSPs. When A is an instance of CSP(B), then
an injective homomorphism from A to B is also called an injective solution for A.

Proposition 7.1.6. Suppose that B has a binary injective polymorphism. Then
every satisfiable instance A of CSP(B) either has an injective solution, or A has two
distinct elements a, a′ such that s(a) = s(a′) in all solutions s for A.

Proof. Suppose that A has a solution, but no injective solution. Let f be a
solution such that the cardinality of f is maximal. Since there is no injective solution,
there are two elements a, a′ of A such that f(a) = f(a′). We claim that s(a) = s(a′)
in all solutions s of A. Otherwise, if s(a) 6= s(a′) for some solution s, then by the
choice of f there must be another pair b, b′ such that s(b) 6= s(b′) but f(b) 6= f(b′). Let
h be the binary injective polymorphism of B. Then the mapping x 7→ h(f(x), s(x))
is also a solution to A, but has a strictly larger image than f , a contradiction. �

7.2. Three-transitive Templates

We show that every structure with a 3-transitive automorphism group (in partic-
ular, every equality constraint language) with an essential polymorphism but without
constant polymorphisms also has a binary injective polymorphism. Here we use Corol-
lary 6.1.31 about the existence of binary essential polymorphisms, and Lemma 7.1.5
about the existence of binary injective polymorphisms.

Theorem 7.2.1. Let B be a structure with a 3-transitive automorphism group
such that Pol(B) contains an essential operation but no constant operation. Then
Pol(B) also contains a binary injective operation.

Proof. Corollary 6.1.31 implies that Pol(B) contains a binary essential opera-
tion f . Since B has no constant polymorphism and is 2-set transitive, Corollary 6.1.27
implies that all polymorphisms of B preserve 6=, and hence 6= is primitively positively
definable in B. So we can apply Lemma 7.1.5, and have to show that for every prim-
itive positive formula φ the formula φ ∧ x 6= y ∧ u 6= v is satisfiable over B whenever
φ ∧ x 6= y and φ ∧ u 6= v are satisfiable over B.

Let V be the variables of φ, and let s : V → B be a satisfying assignment for
φ ∧ x 6= y, and t : V → B be a satisfying assignment for φ ∧ u 6= v. We can assume
that s(u) = s(v) and t(x) = t(y), as otherwise we are done. Let k be the cardinality
of the set {s(x), s(y), s(u), t(u), t(v), t(x)}; note that 4 ≤ k ≤ 6. Suppose that k = 6,
the other cases are simpler. Since f is essential, it does not preserve the relation P 3

B

(Lemma 6.1.17).
Since f preserves 6=, we can therefore assume that there are tuples (a, a, b) for

a 6= b and (c, d, d) for c 6= d such that f(a, c) 6= f(a, d) and f(a, d) 6= f(b, d). By
2-transitivity of Aut(B), there are α, β ∈ Aut(B) such that α(s(u), s(x)) = (a, b),
and β(t(u), t(x)) = (c, d). Since s(x) 6= s(y) and t(v) 6= t(u), and f preserves
6=, we have f(αs(x), βt(v)) 6= f(αs(y), βt(u)). This implies that f(αs(x), βt(v)) =
f(αs(y), βt(v)) and f(αs(y), βt(v)) = f(αs(y), βt(u)) cannot both be true. By the
3-transitivity of Aut(B), there exist α′, β′ ∈ Aut(B) such that α′(a, αs(y), b) =
(αs(y), a, b), and β′(d, βt(v), c) = (βt(v), d, c).

If f(αs(x), βt(v)) 6= f(αs(y), βt(v)), then z 7→ f(αs(z), β′t(z)) is a satisfying
assignment for φ ∧ x 6= y ∧ u 6= v. If f(αs(y), βt(v)) 6= f(αs(y), βt(u)), then z 7→
f(α′s(z), βt(z)) is a satisfying assignment for φ ∧ x 6= y ∧ u 6= v. �

2The author thanks Josia Pietsch for the simpler proof which needs less assumptions than my
original proof.
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7.3. Square Embeddings

In this section we show that B has certain binary injective polymorphisms if and
only if all relations in B have a quantifier-free Horn definition over a ‘base’ structure
C; this is useful to design algorithms for CSP(B). We then apply these results to
equality CSPs. The following is a simple, but very useful definition for syntactic
purposes.

Definition 7.3.1. A quantifier-free first-order formula φ in conjunctive normal
form is called reduced (over a structure B) if every formula obtained from φ by
removing a literal is not equivalent to φ (over B).

Clearly, every quantifier-free formula is equivalent to a reduced formula over B,
because we can find one by successively removing literals from φ. The following
theorem is from [57] and [65].

Theorem 7.3.2. Let B be a structure with an embedding e : B2 ↪→ B. Then a
relation R with a quantifier-free definition in B has a quantifier-free Horn definition
in B if and only if R is preserved by e.

Proof. Forwards (necessity). Let δ be an quantifier-free Horn definition of R
over B, written in conjunctive normal form. It suffices to demonstrate that e preserves
each clause in δ. Note that a Horn clause ψ of δ can always be written in the form
(φ1 ∧ · · · ∧ φl) → φ0, for atomic τ -formulas φ0, . . . , φl. Let V be the variables of ψ,
and let s1, s2 : V → N be two assignments that satisfy the clause. We claim that
s3 : V → N defined by s3(x) = e(s1(x), s2(x)) satisfies ψ. There are two cases to
consider. Either there is an i ≤ l such that s1 or s2 does not satisfy φi. In this case,
since e : B2 ↪→ B is an embedding, s3 does not satisfy φi, and therefore satisfies ψ.
Or, if for all i ≤ l both s1 and s2 satisfy φi, then they also satisfy φ0. Since e is a
polymorphism of B, it follows that s3 satisfies φ0, and therefore also ψ.

Backwards (sufficiency). Consider a quantifier-free definition δ of R in B; we
may suppose that δ is a reduced formula in conjunctive normal form. Assume for
contradiction that δ is not Horn, that is, has a clause ψ = φ1∨φ2∨φ3∨· · ·∨φl where
φ1, φ2 are positive literals, and φ3, . . . , φl are positive or negative literals. Let V be
the variables of δ. Since δ is reduced, it has a satisfying assignment s1 : V → N such
that φi is false for all i ≤ l except for i = 1. Similarly, δ has a satisfying assignment
s2 : V → N such that φi is false for all i ≤ l except for i = 2. Then s3 : V → N defined
by s3(x) = e(s1(x), s2(x)) does not satisfy ψ, a contradiction. �

Example 7.3.3. The structure B := (N; =) is an obvious example with an em-
bedding from B2 into B. 4

Example 7.3.4. Let VF be a countable vector space over a finite field F. Then
(VF)2 is again a countable vector space over F, again of countably infinite dimension,
and hence isomorphic to VF. 4

Example 7.3.5. Let A be the countable atomless Boolean algebra (Example 4.1.4).
Then A2 is a countable and atomless Boolean algebra, and thus isomorphic to A. 4

For the structures C from the previous examples we even had an isomorphism
between C2 to C. The following is an example where C2 embeds into C, but not
surjectively.

Example 7.3.6. Let (V ;E) be the countable random graph (defined in Sec-
tion 4.1.1). By the universality of (V ;E), the graph (V ;E)2 embeds into (V ;E).
Note that (V ;E)2 is not isomorphic to (V ;E): When E(x1, x2) and E(y1, y2), then
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there is no point in (V ;E)2 that is adjacent to (x1, y1) and (x2, y2) but not adjacent
to (x1, y2) and (x2, y1), violating the extension property of (V ;E). 4

For a relational structure B let B¬ be the expansion of B by all relations that are
defined by negated atomic formulas over B. The following formulation is from [57],
but similar statements were proved earlier [141].

Theorem 7.3.7. Let C be a structure with an embedding e : C2 ↪→ C. Let B be a
relational structure with finite signature σ that is preserved by e and has a quantifier-
free definition in C. Then there is a polynomial-time Turing reduction from CSP(B)
to CSP(C¬).

// Input: An instance φ of CSP(B)
// Assumption: B has a quantifer-free Horn definition in a τ -structure C.
Replace each constraint R(x1, . . . , xn) from φ by δ(x1, . . . , xn),

where δ is a quantifier-free Horn definition of R in C.
Let ψ be the resulting τ -sentence, written in conjunctive normal form.
Do

Let Ψ be the set of all singleton clauses in ψ.
If Ψ is unsatisfiable over C then reject.
For each negative literal η of ψ do

If Ψ ∪ {η}, considered as an instance of CSP(C¬), is unsatisfiable
Remove η from its clause in ψ

Loop until no further changes are made
Accept

Figure 7.1. A polynomial-time Turing reduction from CSP(B) to
CSP(C¬) if B is preserved by an embedding C2 ↪→ C.

Proof. We use the algorithm shown in Figure 7.1. By Theorem 7.3.2, every
relation of B has a quantifier-free Horn definition in C. Let φ be an input instance
of CSP(B), and let ψ be the sentence over the signature of C obtained from φ as
described in the algorithm. Since σ is finite and fixed, and does not depend on the
input, only a linear number of literals can be deleted from ψ in the course of the
algorithm. It is thus clear that the algorithm works in polynomial time.

To show that the algorithm is correct, observe that φ is false in B if and only if
ψ is false in C. We first show that if the algorithm rejects, then ψ is false in B. The
reason is that whenever a negative literal η is removed from a clause of ψ, then in
fact ¬η is implied by the other clauses in ψ, and therefore removing η from ψ leads
to an equivalent formula.

Finally, we show that if the algorithm accepts, then ψ is true in C. Let B be the
domain of B and C, and let V be the set of variables of ψ. Consider the negative
literals η1, . . . , ηm that are in clauses of ψ at the final stage of the algorithm. For all
i ≤ m, let ti : V → B be an assignment that satisfies all clauses of ψ without negative
literals, and which also satisfies ηi. Such an assignment must exist, since otherwise ηi
would have been false in all solutions, and our algorithm would have removed ηi in
the inner loop of the algorithm. We claim that s : V → B given by

s(x) = e(t1(x), e(t2(x), . . . e(tm−1(x), tm(x)) . . . ))

satisfies all clauses of ψ. Negative literals ηk are satisfied because tk satisfies ηk and
e : C2 ↪→ C is an embedding. Clauses of ψ with a single positive literal are satisfied
by s because they are satisfied by all the ti, and since e is a polymorphism of C. �
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Note that in Theorem 7.3.7 we did not assume the ω-categoricity of B or C.

7.4. Classification

In this section we prove a complexity classification for CSP(B) where B is an
equality constraint language; the classification confirms the tractability conjecture
(Conjecture 3.7.1). The structure (N; =) has quantifier elimination: this follows from
Corollary 4.3.3 by the observation that every bijection between finite subsets of N can
be extended to a permutation of N. In fact, by the same argument every equality
constraint language has quantifier elimination.

Theorem 7.4.1. Let B be an equality constraint language. Then one of the
following cases applies.

(1) B has a constant polymorphism. In this case, for every reduct B′ of B with
finite signature CSP(B′) can be solved in polynomial time.

(2) B has a binary injective polymorphism. In this case, for every reduct B′ of
B with finite signature CSP(B′) can be solved in polynomial time.

(3) All polymorphisms of B are essentially unary and preserve 6=; equivalently,
every first-order formula is over B equivalent to a primitive positive for-
mula; equivalently, the relation 6= and the relation P 4

B (Definition 6.1.16)
are primitively positively definable in B. In this case, there exists a reduct
B′ of B with finite signature such that CSP(B′) is NP-hard.

Proof. If B has a constant endomorphism, then the claim for finite reducts
of B follows from Proposition 1.1.12. So suppose in the following that B does not
have a constant polymorphism. Since equality constraint languages have 2-transitive
automorphism groups, we can use the contrapositive of Corollary 6.1.27 to derive that
all polymorphisms of B must preserve 6=. The endomorphisms of B are therefore
injective, and locally generated by the automorphisms of B. If B does not have
essential polymorphisms, then Corollary 6.1.20 shows that all relations that are first-
order definable in B are also primitively positively definable in B, and we are in
case (3); for the equivalent characterisations of this case, see Proposition 6.1.19. If
B has an essential polymorphism, then B has a binary injective polymorphism by
Theorem 7.2.1. Since every relation of B has a quantifier-free definition over (N; =),
Theorem 7.3.7 shows that the CSP for every finite signature reduct of B can be
reduced to CSP(N; =, 6=) in polynomial time. Tractability of CSP(N; =, 6=) has been
shown in Example 1.2.3. �

We can now give the complexity classification for equality constraint languages.
The classification confirms the tractability conjecture (Conjecture 3.7.1) in the special
case of equality CSPs (note that every equality CSP is the CSP for a reduct of a finitely
bounded homogeneous structure).

Theorem 7.4.2. Let B be an equality constraint language. Then exactly one of
the following cases applies.

• B has a polymorphism f and an automorphism α such that

f(x, y) = αf(y, x)

for all elements x and y of B. In this case, for every finite reduct B′ of B
the problem CSP(B′) can be solved in polynomial time.
• All finite structures have a primitive positive interpretation in B. In this

case, there is a finite reduct B′ of B such that CSP(B′) is NP-complete.
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Proof. If B has a constant polymorphism, then clearly there are f and α such
that f(x, y) = αf(y, x) for all x, y ∈ B. Now suppose that B has a binary injective
polymorphism f . Then there exists a permutation α of B such that f(x, y) = αf(y, x)
for all x, y ∈ N. By Theorem 7.4.1, the only remaining case is that over B all first-
order formulas are equivalent to primitive positive formulas. In this case the claim
follows from Theorem 3.2.2. That the two cases are disjoint follows from Corol-
lary 6.6.8. �

7.5. Essential Injectivity

We have seen in Section 6.1.4 that clones of operations that are essentially unary
can be characterised using relations definable from equality. Also the situation where
all operations are essentially injective can be characterised using such relations; the
material in this section is essentially from [58]. An operation f : Bk → B is called
essentially injective if there exist i1, . . . , il and an injective function g : Bl → B such
that for all x1, . . . , xk ∈ B we have

f(x1, . . . , xk) = g(xi1 , . . . , xil).

We first prove the following intermediate results.

Lemma 7.5.1. Let f be an operation from Bk to B that depends on all arguments.
Then the following are equivalent.

(1) f is injective.
(2) f preserves the relation defined by x = y ⇔ u = v.
(3) f preserves the relation I4 defined by x = y ⇒ u = v.

Proof. For the implication from (1) to (2), suppose that f is injective. We
check that f preserves x = y ⇔ u = v. Let a, b, c, d be elements of Bk such that
ai = bi ⇔ ci = di for all i ≤ k, and let t be the tuple (f(a), f(b), f(c), f(d)). If
a = b, we thus have that ci = di for all i ≤ k, and so c = d. In this case, t satisfies
t1 = t2 and t3 = t4, and we are done. Similarly, if c = d then a = b and we are done.
Otherwise, a 6= b and c 6= d, and by injectivity of f we have t1 6= t2 and t3 6= t4. So
we have in all cases that t1 = t2 if and only if t3 = t4.

For the implication from (2) to (3), note that x = y ⇒ u = v is equivalent to a
primitive positive formula over (B;R) where R = {(a, b, c, d) | a = b⇔ c = d}). The
primitive positive formula is

∃w
(
R(x, y, u, w) ∧R(x, y, w, v)

)
.

Finally, for the implication from (3) to (1), suppose that there are distinct a, b ∈
Bk such that f(a) = f(b). We want to prove that f does not preserve x = y ⇒ u = v.
Let I be the set of all i ∈ {1, . . . , k} such that ai 6= bi. Since a and b are distinct, I
is non-empty; let i ∈ I be arbitrary. Since f depends on the i-th argument, there are
c, d ∈ Dk with cj = dj for all j 6= i, and ci 6= di. We claim that (a, b, c, d) shows that
f does not preserve x = y ⇒ u = v. First, note that for all j ∈ {1, . . . , k} \ I, we have
that aj = bj and cj = dj . Next, note that for all j ∈ I we have that aj 6= bj . We
conclude that for all j ∈ {1, . . . , k} we have that ai = bi implies ci = di. However,
f(a) = f(b) and f(c) 6= f(d). �

We obtain several equivalent descriptions of a particularly important oligomorphic
clone, the Horn clone H . In general, there are four natural ways to specify an
operation clone over a domain B:

• Give a preferably finite set of operations that generates C .
• Give an explicit description of all operations in the clone.
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• Give a preferably finite set of relations R1, R2, . . . on B such that C =
Pol(B;R1, R2, . . . ).
• Give an explicit description of all relations in Inv(C ).

For most oligomorphic clones, not all of these four potential descriptions of the clone
are known. For the Horn clone, however, we have all four descriptions, and we present
them in the following theorem. The proof follows easily from the facts developed in
this chapter and is left to the reader.

Theorem 7.5.2. The following four definitions are equivalent.

• H := 〈{i} ∪ Sym(N)〉 where i : N2 → N is any injective map.
• H is the set of all essentially injective operations.
• H := Pol(N; 6=, I4).
• H is the set of all operations such that Inv(H ) is precisely the set of all

relations with a quantifier-free Horn definition over (N; =).

The clone thus defined is called the Horn clone.

7.6. Injectivity in One Direction

In this section we present another locally closed clone, introduced in [58], that
contains Sym(N) and that provides examples and counterexamples for many basic
questions that can be asked about oligomorphic clones.

Definition 7.6.1. Let B be a set and n ≥ 1. An operation f : Bn → B is called
injective in the i-th direction if for all a, b ∈ Bn

ai 6= bi ⇒ f(a) 6= f(b).

We say that f is injective in one direction if there exists an i ∈ {1, . . . , n} such that
f is injective in the i-th direction. Let R be the set of all operations on B = N that
are injective in one direction.

It is easy to verify that R is indeed a clone.

Definition 7.6.2. A quantifier-free formula φ over the empty signature is called
negative if it is in conjunctive normal form and if each clause of φ either

• consists of a single positive literal (which must be of the form x = y for
variables x and y), or
• does not contain positive literals (and so must be of the form x1 6= y1∨ · · ·∨
xn 6= yn for variables x1, y1, . . . , xn, yn).

The following theorem of Bodirsky, Chen, and Pinsker [58] gives equivalent char-
acterisations of the clone R.

Theorem 7.6.3. Let R ⊆ Nk be a relation that is preserved by all permutations
of N (i.e., R is first-order definable over the empty signature). Then the following are
equivalent.

(1) R is preserved by R.
(2) In (N;R, 6=) there is no primitive positive definition of the relation

{(a, b, c) ∈ N3 | a = b = c ∨ |{a, b, c}| = 3}.
(3) R has a negative definition.

The clone R appears as a fundamental example for instance in Section 8.5.5.





CHAPTER 8

Datalog

In Chapter 6 we presented algebraic conditions for finite or ω-categorical struc-
tures B which imply that CSP(B) is NP-hard. In this chapter we present an impor-
tant technique to show that CSP(B) is in P.

The most important and prominent family of algorithmic approaches to constraint
satisfaction is based on establishing local consistency. There are numerous definitions
and variations of what local consistency can mean. A convenient framework to formu-
late and study many of these variants is Datalog , which is a heavily studied formalism
in database theory. Datalog can be viewed from a number of different perspectives,
for example as

• an extension of conjunctive queries (see Section 1.2) by a mechanism for
recursion;
• the fragment of the logic programming language Prolog [274] where function

symbols are not allowed;
• the existential positive fragment of least fixed-point logic (Section 8.7);
• a fragment of monotone SNP (Section 1.4.2), namely existential second-order

Horn logic [190].

Typical CSPs that can be solved by a Datalog program are

• CSP({0, 1}; {1}, {(x, y, z) | x ∧ y ⇒ z}), which is closely related to Horn-
SAT; see Section 1.6.7 and Theorem 6.2.7;

215
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• CSP({0, 1}; {(x, y) | x ⇒ y}, {(x, y) | x ∨ y}, {(x, y) | ¬x ∨ ¬y}), which is
essentially 2-SAT; see Theorem 6.2.7;
• CSP(Q;<); see Example 1.1.2;
• CSP(Q;≤, 6=); see Example 1.5.2;
• CSP(N; 6=, {(x, y, u, v) | x = y ⇒ u = v}), treated in Section 7.3.
• CSP(Q; 6=, {(x, y, u, v) | x = y ⇒ u ≤ v}); this is closely related to the

Ord-Horn constraints from Section 1.6.9.

The finite-domain structures B such that CSP(B) can be solved by Datalog have been
characterised by Barto and Kozik, resolving the so-called (Larose-Zadori) bounded
width conjecture [265], which was anticipated by Feder and Vardi [177] (see [264]
for a discussion). Informally, the result states that CSP(B) can be solved by Datalog
unless CSP(B) can ‘simulate’ linear equation systems over a finite field (Section 8.8).
The bounded width conjecture is complemented by a result of Atserias, Bulatov, and
Dawar [14] which states that if CSP(B) can simulate systems of linear equations over
a finite field, then CSP(B) it not even expressible in the counting extension of least
fixed-point logic, LFP+C. We also mention that Zhuk’s algorithm [358] confirms the
(informal) conjecture of Feder and Vardi that if CSP(B) can be solved in polynomial
time, then this is because CSP(B) can be solved either by Datalog, by Gaussian
elimination, or by (clever) combinations of these two approaches.

For countable ω-categorical structures B a universal-algebraic characterisation of
solvability of CSP(B) in Datalog is not known. However, many of the fundamental
definitions and results about Datalog and constraint satisfaction apply to all countable
ω-categorical structures.

8.1. Introducing Datalog

There are (at least) two possibilities to formally introduce the semantics of Dat-
alog programs. In this text, we choose the more concise approach via least fixed
points. From this it will become obvious that every Datalog program is equivalent to
a monotone SNP sentence.

Another approach is ‘operational’ in the sense that we explicitly specify how to
evaluate a Datalog program on a given finite structure; this has the advantage that it
is then easy to see that Datalog programs can be evaluated in polynomial time. The
proof that the two approaches are equivalent can be found in Section 8.1.3.

8.1.1. Syntax of Datalog. A Datalog program consists of a finite set of rules,
i.e., expressions that are traditionally written in the following form

ψ :− φ1, . . . , φm

where m ≥ 0 and ψ, φ1, . . . , φm are atomic formulas over some relational signature.
The formula ψ is called the head of the rule, and φ1, . . . , φm is called the body . We
also require that all variables in the head also occur in the body.

The relation symbols occurring in the head of some clause are called intensional
database predicates (or IDBs), and all other relation symbols in the clauses are called
extensional database predicates (or EDBs). A Datalog program has width (`, k) if all
IDBs are at most `-ary, and if all rules have at most k distinct variables.

Example 8.1.1. Before we give formal definitions of the semantics of Datalog,
consider the following Datalog program Π, which has width (2, 3):
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tc(x, y) :− x < y

tc(x, y) :− tc(x, u), tc(u, y)

false :− tc(x, x)

Here, < is a binary EDB (written in infix notation), tc is a binary IDB, and false
is an IDB of arity 0. The program Π can be used to solve CSP(Q;<): the idea is that
on a given instance A of CSP(Q;<) the program Π computes the transitive closure
of the relation < in A, and that Π derives false if and only if it finds that (x, x) is
in the transitive closure, i.e, if and only if A contains a directed cycle. This will be
made more precise in the following section. 4

8.1.2. Declarative semantics of Datalog. Let Π be a Datalog program with
EDBs τ and IDBs σ and let A be a τ -structure. An expansion A′ with signature τ ∪σ
is called a fixed point of Π on A if A′ satisfies the sentence ∀x̄(ψ∨¬φ1∨· · ·∨¬φm) for
each rule ψ :− φ1, . . . , φm of Π. Recall from Section 1.1 that for two (τ ∪σ)-structures
A1 and A2 with the same domain, the structure A1∩A2 is the (τ ∪σ)-structure where
the relations are defined to be the intersections of the respective relations in A1 and
A2. The following is easy to see from the definitions.

Lemma 8.1.2. Let A1 and A2 be two fixed points of Π on A; then A1 ∩ A2 is a
fixed point of Π on A as well.

So we can compare fixed-points by declaring A1 ≤ A2 if A1 ∩ A2 = A1. The
lemma above implies that for every finite structure A, the program Π has a unique
smallest fixed-point on A, which we denote by Π(A).

Datalog programs can be used to describe classes of finite structures (and in
particular CSPs). We require that there exists a distinguished IDB false of arity 0.
We say that

• Π derives false on A if the empty tuple is in falseΠ(A);
• Π is sound for CSP(B) if A does not map homomorphically to B whenever

Π derives false on A;
• Π solves CSP(B) if Π derives false on precisely those finite structures A

that do not map homomorphically to B;
• CSP(B) has (Datalog-) width (`, k) if there exists a Datalog program of

width (`, k) that solves CSP(B);
• CSP(B) has (Datalog-) width ` if it has width (`, k) for some k ∈ N;
• CSP(B) is in Datalog if there exists a Datalog program that solves CSP(B).

Clearly, CSP(B) is in Datalog if and only it has bounded width, i.e., if CSP(B) has
Datalog width ` for some ` ∈ N.

Example 8.1.3. A constraint satisfaction problem satisfies the equivalent con-
ditions given in Theorem 5.6.2 if and only if it has Datalog width 0: if CSP(B) =
Forbhom(F) for a finite set of finite connected structures F , then we introduce for
each F ∈ F a rule with head false whose body is the canonical query of F. Conversely,
if CSP(B) has width 0, consider the set F of canonical databases of the bodies of the
rules whose head is false. Then CSP(B) = Forbhom(F). 4

Proposition 8.1.4. If CSP(B) is in Datalog, then CSP(B) can be expressed in
monotone SNP.

Proof. Let Π be a Datalog program that solves CSP(B). We may assume that
each of the rules of Π does not involve atomic formulas of the form x = y in the rule
body, because such rules can be equivalently replaced by rules where each occurrence
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of y is replaced by x and the atomic formula has been removed. We use the following
monotone SNP sentence Φ (Section 1.4):

• the IDBs of Π are the existentially quantified relations of Φ;
• each rule ψ :− φ1, . . . , φm of Π corresponds to a conjunct ψ∨¬φ1∨· · ·∨¬φm

of Φ.
• we additionally add the conjunct ¬false to Φ.

Note that if Π does not derive false on a finite τ -structure A, then the least fixed
point of Π on A satisfies the first-order part of Φ. Conversely, if there exists a (τ ∪σ)-
expansion A′ of A wich satisfies the first-order part of Φ, then also the least fixed
point does. Hence, Π does not derive false on A if and only if A |= Φ. �

Example 8.1.5. In the proof of Proposition 5.8.1 we presented an SNP sentence
Φ that describes CSP(Z; Succ). It is easy to see that there exists a Datalog program
Π that describes CSP(Z; Succ): each conjunct of Φ gives rise to a rule of Π. 4

While there are NP-hard CSPs that can be expressed in monotone SNP, there is
a polynomial-time algorithm to evaluate whether a Datalog program Π derives false
on a given finite structure A; we prove this in the next section.

8.1.3. Operational semantics of Datalog. In this section we interpret Dat-
alog programs algorithmically; that is, we describe a constructive approach to the
construction of the least fixed point.

Let Π be a Datalog program with EDBs τ and IDBs σ, and let A be a finite
τ -structure. An evaluation of Π on A proceeds in steps i = 0, 1, . . . , constructing
a chain S0 ⊆ S1 ⊆ · · · of sets of atomic (σ ∪ τ)-formulas with parameters from A.
Each clause of Π is understood as a rule that may derive a new atomic (σ ∪ τ)-
formula from the formulas in Si. We define S0 to be the canonical query of A (see
Section 1.2.1). Now suppose that R1(a1

1, . . . , a
1
k1

), . . . , Rl(a
m
1 , . . . , a

m
km

) ∈ Si for some

a1
1, . . . , a

1
k1
, . . . , am1 , . . . , a

m
km
∈ A and that Π contains the rule

R0(x0
1, . . . , x

0
k0) :− R1(x1

1, . . . , x
1
k1), . . . , Rl(x

m
1 , . . . , x

m
km)

where aij = ai
′

j′ if xij = xi
′

j′ . Then Si+1 additionally contains R0(a0
1, . . . , a

0
m) where

a0
j = aij′ if and only if x0

j = xij′ .

Since A is finite, there exists an r ∈ N such that Si = Sr for all i ≥ r. Moreover,
Sr can be computed in polynomial time for a given Π and a given finite structure A.
If ψ ∈ Sr, we also say that Π derives ψ on A.

Theorem 8.1.6. Let Π be a Datalog program with EDBs τ and IDBs σ. Let A be
a τ -structure. Then the canonical database of the set of all (τ ∪ ρ)-formulas derived
by Π on A equals Π(A).

Proof. Since Sr contains the canonical query of A, the canonical database A∗

of Sr is an expansion of A. It is straightforward to show by induction over the steps
in the definition of Sr that all formulas added to Sr must hold in every fixed point
of Π on A, so in particular in Π(A). Since Sr = Sr+1, the canonical database of Sr

itself is a fixed point, which implies that A∗ = Π(A). �

Corollary 8.1.7. If CSP(B) is in Datalog then CSP(B) is in P.

8.2. The Expressive Power of Datalog

In this section we introduce important concepts used to analyse the expressive
power of Datalog.
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8.2.1. The canonical Datalog program. For every ω-categorical structure
B and all `, k ∈ N there exists a Datalog program Π`,k with the property that if
some Datalog program of width (`, k) solves CSP(B) then Π`,k solves CSP(B) (The-
orem 8.2.8). The Datalog program Π`,k that we construct will also be called the
canonical Datalog program of width (`, k). For finite τ -structures B the canonical
Datalog program was defined by Feder and Vardi [177]. Our definition (from [60])
and generalises this definition to ω-categorical structures B.

Definition 8.2.1 (canonical Datalog program). Let B be an ω-categorical τ -
structure and let B′ be the expansion of B by all primitively positively definable
relations of arity at most `; let σ be the (finite) signature of B′. Then the canonical
(`, k)-Datalog program for B has IDBs σ and EDBs τ . The empty 0-ary relation serves
as false. Theorem 4.1.6 asserts that over B′ there is a finite number of inequivalent
formulas Ψ(x, y) of the form(

ψ1(x, y) ∧ · · · ∧ ψj(x, y)
)
⇒ R(x)

where x is a tuple of at most ` variables, (x, y) is a tuple of at most k variables,
ψ1, . . . , ψj are atomic (τ ∪σ)-formulas, and R ∈ σ. For each of these formulas Ψ(x, y)
such that B′ |= ∀x, y : Ψ(x, y) we introduce a rule

R(x) :− ψ1(x, y), . . . , ψj(x, y)

into the canonical Datalog program.

The canonical (`, k)-Datalog program is often called the (`, k)-consistency pro-
cedure (more on the concept of (`, k)-consistency can be found in Section 8.2.2).
We would like to mention that for binary homogeneous structures B, executing the
canonical (2, 3)-Datalog program on an instance of CSP(B) has been called establish-
ing (strong) path consistency in the temporal and spatial reasoning community. The
following is easy to see.

Proposition 8.2.2. Let B be an ω-categorical structure with finite relational
signature τ . Then the canonical (`, k)-Datalog program for B is sound for CSP(B).

Proof. We have to show that if the canonical (`, k)-Datalog Π program derives
false on a given τ -structure A, then there is no homomorphism from A to B. More
generally, we claim that if Π derives R(c̄) for some tuple c̄ = (c1, . . . , cd) ∈ Ad,
and the IDB R was introduced for the relation with the primitive positive formula
φ(x1, . . . , xd) over B, then for all homomorphisms f from A to B we have that
B satisfies φ(f(c1), . . . , f(cd)). This follows by a straightforward induction over the
evaluation of canonical Datalog programs, using the fact that the rules of the canonical
Datalog program have been introduced for valid implications in the expansion B′ of
B by all at most `-ary primitively positively definable relations in B. �

We will see later that if the canonical Datalog program for CSP(B) does not
derive false, then no other sound Datalog program for CSP(B) does (Theorem 8.2.8).

8.2.2. The existential pebble game. The existential (`, k)-pebble game is
used in the context of constraint satisfaction to characterise the expressive power of
Datalog [153,177,246]. In particular, it can be used to show that certain constraint
satisfaction problems cannot be solved by Datalog programs.

The game is played by the players Spoiler and Duplicator on (possibly infinite)
structures A and B with the same relational signature. Let k, ` ∈ N be such that
` ≤ k. Each player has k pebbles, p1, . . . , pk for Spoiler and q1, . . . , qk for Duplicator.
Spoiler places his pebbles on elements of A, Duplicator her pebbles on elements of B.
Initially, no pebbles are placed. In each round of the game Spoiler picks k−` pebbles.
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If some of these pebbles are already placed on A, then Spoiler removes them from
A, and Duplicator responds by removing the corresponding pebbles from B. Spoiler
places the k−` pebbles on elements of A, and Duplicator responds by placing the cor-
responding pebbles on elements of B. Let i1, . . . , im be the indices of the pebbles that
are placed on A (and thus on B) after the r-th round. Let ai1 , . . . , aim (bi1 , . . . , bim) be
the elements of A (B, respectively) pebbled with the pebbles pi1 , . . . , pim (qi1 , . . . , qim)
after the r-th round. If for some r the partial mapping hr from A to B defined by
hr(aij ) := bij , for 1 ≤ j ≤ m, is not a homomorphism from A[{ai1 , . . . , aim}] to B,
then Spoiler wins, and the game ends at that stage. Duplicator wins if the game
continues forever.

We are interested in the situations where Duplicator can win the game no matter
how Spoiler plays, that is, where Duplicator has a winning strategy. 1 Our description
of a winning strategy above is rather informal; we do not formalise it, but rather give a
formal definition of winning strategy that is easier to work with (and that is equivalent
to the notion of a winning strategy hinted at above, once it is properly formalised).

Definition 8.2.3 (of [245]). A winning strategy for Duplicator for the existential
(`, k)-pebble game on (A,B) is a non-empty set H of partial homomorphisms from A
to B such that

• H is closed under restrictions of its members, and
• for all functions h in H with domain size d ≤ ` and for all a1, . . . , ak−d ∈ A

there is an extension h′ ∈ H of h such that h′ is also defined on a1, . . . , ak−d.

The second item is often called the (`, k)-extension property . Clearly, if there
exists a homomorphism h : A → B then Duplicator has a winning strategy, namely
the set of all restrictions of h to subsets of A of size at most k. The full link between the
existential pebble game and the expressivity of Datalog can be found in Section 8.2.5.

8.2.3. Bounded treewidth duality. Let 0 ≤ ` < k be positive integers. An
(`, k)-tree is defined inductively as follows:

• A k-clique is an (`, k)-tree;
• For every (`, k)-tree G and for every `-clique induced on the nodes v1, . . . , v`

in G, the graph G′ obtained by adding k − ` new nodes vl+1, . . . , vk to G
and adding edges so that a k-clique is induced on {v1, . . . , vk} is also an
(`, k)-tree.

A partial (`, k)-tree is a (not necessarily induced) subgraph of an (`, k)-tree.

Definition 8.2.4. Let 0 ≤ ` < k and let τ be a relational signature. We say that
a τ -structure A has treewidth at most (`, k) if the Gaifman graph of A (Definition 2.1.5)
is a partial (`, k)-tree.

If a structure has treewidth at most (k, k+ 1) we also say that it has treewidth at
most k, and it is not difficult to see that these structures are precisely the structures
of treewidth at most k in the sense of [246]. It is also possible to define partial
(`, k)-trees by using tree decompositions.

Definition 8.2.5. A tree decomposition of a graph (V ;E) is a set {Xt | t ∈ T}
of subsets of V together with a tree with vertex set T such that

(1)
⋃
t∈T Xt = V ;

(2) For each e ∈ E there exists t ∈ T with e ⊆ Xt;
(3) If v ∈ Xr ∩Xs then v ∈ Xt for every t on the unique path from r to s in T .

1It turns out that in this case Duplicator also has a positional strategy in the sense that the

decisions of Duplicator are only based on the current position of the pebbles, and not the previous
decisions in the game.
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A tree decomposition {Xt | t ∈ T} has width (`, k) if |Xt| ≤ k for all t ∈ T and
|Xr ∩Xs| ≤ ` for distinct r, s ∈ T .

Proposition 8.2.6. A graph is a partial (`, k)-tree if and only if it has a tree
decomposition of width (`, k).

Proof. Let G be a partial (`, k)-tree. Any tree decomposition of G is also a
tree decomposition of graphs obtained by removing edges from G, so we can assume
without loss of generality that G is an (`, k)-tree. We construct a tree decomposition
of width (`, k) inductively. The base case is that G is a k-clique, in which case there
exists a tree decomposition with T = {t} and Xt containing this clique, which clearly
has width (`, k). For the inductive step, suppose that G is obtained from an (`, k)-tree
G′ which contains an `-clique v1, . . . , v` by adding the new vertices vl+1, . . . , vk and
adding edges so that v1, . . . , vk induce a k-clique. By induction, there exists a tree
decomposition {Xt | t ∈ T ′} of G′ of width (`, k). As v1, . . . , v` induce a clique, there
exists t ∈ T ′ such that {v1, . . . , v`} ⊆ Xt. Let T := T ′ ∪ {s} for a new element s,
define Xs := {v1, . . . , vk}, and link s to t in T . Clearly, T is a tree decomposition of
G of width (`, k).

Conversely, suppose that G has a tree decomposition T of width (`, k). We prove
by induction on the number of vertices of T that G is a subgraph of an (`, k)-tree H
such that every subset of Xt of size at most ` for every t ∈ T is contained in some
`-clique in H. Let r be a leaf of T , let T ′ be the tree decomposition obtained from T
by removing r, and let G′ be the subgraph of G induced on

⋃
s∈T ′ Xs. By induction,

G′ is a subgraph of an (`, k)-tree H ′ with the desired properties. Let t be the unique
node of T that is adjacent to r. By assumption, |Xr ∩Xt| ≤ ` and hence Xr ∩Xt is
contained in some `-clique Y in H ′. Note that the elements of Xr \Xt cannot appear
in Xs for any s 6= r since then they would then have to also appear in Xt. Add the
elements of Xr \Xt to H ′ and add edges so that Y ∪ (Xr \Xt) forms a clique in the
resulting graph H, which satisfies all the requirements. �

We say that a relational structure B has (`, k)-treewidth duality if there is a set
N of finite structures of treewidth at most (`, k) such that every finite τ -structure A
is homomorphic to B if and only if no structure in N is homomorphic to A. We say
that B has bounded treewidth duality if there exist `, k ∈ N such that B has (`, k)-
treewidth duality. The link between bounded treewidth duality and the expressivity
of Datalog can be found in Section 8.2.5.

8.2.4. Finite variable logics. Finite variable logics have been introduced in
the context of constraint satisfaction by Kolaitis and Vardi as a tool to study the
expressive power of Datalog [245,246]. Our presentation is based on [60].

Let 0 ≤ ` < k be positive integers. A conjunction
∧

Ψ is called `-bounded
if Ψ is a collection of formulas ψ that are quantifier-free or have at most ` free
variables. We denote by L`,k the logic where the formulas have at most k variables
and are obtained inductively from atomic formulas using `-bounded conjunctions and
existential quantification; this logic will be called `-bounded existential positive k-
variable logic [60].

Lemma 8.2.7. Let A be a finite structure of treewidth at most (`, k). Then the
canonical query of A is logically equivalent to a sentence from L`,k.

Proof. Let G be the Gaifman graph of A and let {Xt | t ∈ T} be a tree
decomposition of G. Pick a leaf t ∈ T and let Xt = {a1, . . . , ak′}. We show by
induction on the size of T that there exists a formula φA(y1, . . . , yk′) in L`,k such that
for every structure B and elements b1, . . . , bk′ ∈ B the following two statements are
equivalent:
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(1) The partial mapping from A to B that maps ai to bi for 1 ≤ i ≤ k′ can be
extended to a homomorphism from A to B;

(2) B |= φA(b1, . . . , bk′).

The base case is that the tree contains only one node t. In this case φA is the canonical
conjunctive query of A. For the inductive step, let t1, . . . , tm be neighbours of t in
T . Consider the m subtrees T1, . . . , Tm of T obtained by removing t, and let Ai be
the substructure of A induced on {Xs | s ∈ Ti}. Then Ti is a tree decomposition
of Ai and the induction hypothesis provides a formula φAi for which (1) and (2) are
equivalent. Let φA(y1, . . . , yk′) be the conjunction of the following formulas:

(a) for each i ∈ {1, . . . ,m}, existentially quantify all free variables yj in φAi

where aj 6∈ Xt. Note that the resulting formula has at most ` free variables;
(b) the canonical query of the substructure of A induced on Xt (as in the base

case).

To show that (1) and (2) are equivalent, let B be an arbitrary structure. By the
properties of the tree decomposition we know that h is a homomorphism from A to
B that maps ai to bi if and only if for every i ∈ {1, . . . ,m} the restriction of h to Ai
is a homomorphism from Ai to B and the restriction of h to the elements of Xt is a
partial homomorphism from A to B as well. The former condition is equivalent to the
fact that the assignment yai 7→ bi satisfies every formula of φA(y1, . . . , yk′) included in
(a). The latter condition is equivalent to the fact that the same assignment satisfies
the formula included in (b). �

8.2.5. Characterising the expressive power of Datalog. The following the-
orem is the promised link between Datalog, the existential pebble game, finite variable
logics, and treewidth duality for ω-categorical structures. We present it here in its
most general form with both parameters ` and k.

Theorem 8.2.8. Let τ be a finite relational signature. Let B be an ω-categorical
τ -structure and A be a finite τ -structure. Then for all `, k with ` ≤ k the following
statements are equivalent.

(1) Every sound (`, k)-Datalog program for CSP(B) does not derive false on A.
(2) The canonical (`, k)-Datalog program for B does not derive false on A.
(3) Duplicator wins the existential (`, k)-pebble game on A and B.
(4) All sentences in L`,k that hold in A also hold in B.
(5) Every finite τ -structure with a core of treewidth at most (`, k) that maps

homomorphically to A also maps homomorphically to B.

Proof. The implication from (1) to (2) follows from Proposition 8.2.2.
To show that (2) implies (3), we define a winning strategy for Duplicator as

follows. Let B′ be the expansion of B by all at most `-ary primitively positively
definable relations, let σ be the signature of B′, and let A′ be the σ-structure computed
by the canonical (`, k)-Datalog program for B on input A. Let H be the strategy for
Duplicator that consists of all partial homomorphisms f : A′ → B′ with domain of
size at most k. By construction, H is closed under restrictions and is non-empty
(since false is not derived, H contains the partial mapping with the empty domain).
We claim that H has the (`, k)-extension property. Let h be a function with domain
v1, . . . , v`′ of size at most ` and let D = {v1, . . . , v`′ , v`′+1, . . . , vk′} ⊆ A be a superset
of {v1, . . . , v`′} of size at most k. Consider the following rule with variables D of the
canonical Datalog program. The body of the rule is the canonical query φ of A′[D].

The head of the rule is S(v1, . . . , v`′) where SB′ is the projection of the relation
defined by φ in B′ to the first `′ arguments. This rule shows that the canonical
Datalog program for A derived S(v1, . . . , v`′) in A′, and, by the definition of H,
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(h(v1), . . . , h(v`′)) belongs to SB′ . By the definition of SB′ , there exist b`′+1, . . . , bk′

such that (h(v1), . . . , h(v`′), b`′+1, . . . , bk′) satisfies φ in B′. Hence, if we extend h by
vi 7→ bi for i ∈ {l′ + 1, . . . , k′} we obtain the desired function.

Next, we show the implication from (3) to (4). Suppose Duplicator has a winning
strategy H for the existential (`, k)-pebble game on A and B. Let φ be a τ -sentence
from L`,k that holds in A. We have to show that φ also holds in B. For that, we
prove by induction on the syntactic structure of L`,k formulas that if ψ(v1, . . . , vm)
is an `-bounded conjunction or has at most ` free variables (i.e., m ≤ `), then for
all h ∈ H and all elements a1, . . . , am from the domain of h, if A |= ψ(a1, . . . , am),
then B |= ψ(h(a1), . . . , h(am)). Clearly, for m = 0 this implies that φ holds in B.
The base case of the induction is obvious since atomic formulas are preserved under
homomorphisms. Next, suppose that ψ(v1, . . . , vm) is an `-bounded conjunction of a
set of formulas Ψ. Then each formula in Ψ has at most ` free variables or is quantifier-
free. In both cases we can use the inductive hypothesis and the inductive step follows
directly. Assume that the formula ψ(v1, . . . , vm) is of the form

∃u1, . . . , un : χ(v1, . . . , vm, u1, . . . , un)

where χ is an `-bounded conjunction or an atomic formula. We will use the in-
ductive hypothesis for the formula χ(v1, . . . , vm, u1, . . . , un). Let h be a homomor-
phism in H. We have to show that if a1, . . . , am are arbitrary elements from the
domain of h such that A |= ψ(a1, . . . , am), then B |= ψ(h(a1), . . . , h(am)). Since
A |= ∃u1, . . . , un : χ(a1, . . . , am), there exist am+1, . . . , am+n such that

A |= χ(a1, . . . , am, am+1, . . . , am+n).

Consider the restriction h∗ of h to the subset {a1, . . . , am} of the domain of h. Because
of the first property of winning strategiesH, the homomorphism h∗ is inH. Since m ≤
l, we can apply the extension property of H to h∗ and am+1, . . . , am+n, and there are
b1, . . . , bn such that the extension h′ of h∗ with domain {a1, . . . , am+n} that maps am+i

to bi is in H. By applying the induction hypothesis to χ(v1, . . . , vm, u1, . . . , un) and to
h′, we infer that B |= χ(h′(a1), . . . , h′(am+n)), and hence B |= ψ(h(a1), . . . , h(am)).

(4) implies (5). Let T be a finite τ -structure whose core T′ has treewidth at
most (`, k) such that T maps homomorphically to A. By Lemma 8.2.7 there exists
an L`,k-sentence φ such that φ is equivalent to the canonical query of B, and hence
φ holds in a structure if and only if T′ maps homomorphically to that structure. In
particular, φ must hold in A. Then (4) implies that φ holds in B, and therefore T′

maps homomorphically to B. But then we can compose the homomorphism from T
to T′ and the homomorphism from T′ to B to obtain the desired homomorphism from
T to B.

We finally show that (5) implies (1). Suppose that there is a sound (`, k)-Datalog
program Π for B that derives false on A. The idea is to use the ‘derivation tree of false’
to construct a τ -structure S of treewidth at most (`, k) that maps homomorphically
to A, but not to B. The construction proceeds by induction over the evaluation
of Π on A. Suppose that R0(y0

1 , . . . , y
0
k0

) is an atomic formula derived by Π on A

from previously derived atomic formulas R1(y1
1 , . . . , y

1
k1

), . . . , Rs(y
s
1, . . . , y

s
ks

). We will

prove that there exists a structure S0 with distinguished vertices v0
1 , . . . , v

0
k0

and an
(`, k)-tree G0 such that

(1) the Gaifman graph of S0 is a (not necessarily induced) subgraph of G0,
(2) v0

1 , . . . , v
0
k0

induce a clique in G0,

(3) there is a homomorphism from S0 to A that maps v0
i to y0

i for every 1 ≤
i ≤ k0, and

(4) the program Π derives R0(v0
1 , . . . , v

0
k0

) on S0.
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Let i ∈ {1, . . . , s}. If Ri is an IDB of Π, then let Si, v
i
1, . . . , v

i
ki

, and Gi be given

by the inductive hypothesis. If Ri is an EDB, we create fresh vertices vi1, . . . , v
i
ki

, and

define Si to be the following structure with vertices vi1, . . . , v
i
ki

. The relation Ri in Si

equals {(vi1, . . . , viki)}, and all other relations in Si are empty. Clearly, {vi1, . . . , viki}
induces a clique in the Gaifman graph of Si, and the Gaifman graph of Si is a partial
(`, k)-tree.

Now, the structure S0 has the distinguished vertices v0
1 , . . . , v

0
k0

, and is obtained
from the τ -structures S1, . . . ,Ss as follows. We start from the disjoint union of
S1, . . . ,Ss. When yij = yrs for i, r ∈ {0, . . . , s}, j ∈ {1, . . . , ki}, and s ∈ {1, . . . , kr},
then we identify vij and vrs . To define G0 we form a disjoint union of G1, . . . , Gs and

the isolated nodes v0
1 , . . . , v

0
k0

, and do the same node identifications as before. We

finally add an edge for every pair of distinct vertices in v0
1 , . . . , v

0
k0

. The resulting
graph, G0, satisfies the requirements of the claim. Observe that since Π derives
R1(v1

1 , . . . , v
1
k1

), . . . , Rs(v
s
1, . . . , v

s
ks

) on S0 by the inductive assumption, it also derives

R0(v0
1 , . . . , v

0
k0

) on S0.
In this fashion we proceed for all inference steps of the Datalog program. Let S

be the resulting structure for the final derivation of false. It has treewidth at most
(`, k), and maps to A, but does not map to B, since Π (which is sound) derives also
false on S. �

Corollary 8.2.9. Let B be an ω-categorical structure and let `, k ∈ N. Then
every instance of CSP(B) whose core has treewidth at most (`, k) can be solved in
polynomial time by the canonical (`, k)-Datalog program.

Proof. It is clear that the canonical (`, k)-Datalog program can be evaluated on
a (finite) instance A of CSP(B) in polynomial time. If the canonical (`, k)-Datalog
program derives false on A, then, because the canonical Datalog program is always
sound, there is no homomorphism from A to B. Now, suppose that the canonical
Datalog program does not derive false on a finite structure A whose core has treewidth
at most (`, k). Then, by Theorem 8.2.8, every τ -structure whose core has treewidth
at most (`, k) that maps homomorphically to A also maps homomorphically to B.
This holds in particular for A itself, and hence A is homomorphic to B. �

The following direct consequence of Theorem 8.2.8 yields other characterisations
of bounded Datalog width.

Theorem 8.2.10. Let B be an ω-categorical structure with a finite relational
signature τ . Then for all `, k ∈ N with ` ≤ k the following statements are equivalent.

(1) There is an (`, k)-Datalog program that solves CSP(B).
(2) The canonical (`, k)-Datalog program solves CSP(B).
(3) For every finite τ -structures A, if Duplicator has a winning strategy for the

existential (`, k)-pebble game on A and B, then A maps homomorphically to
B.

(4) For every finite τ -structures A, if all sentences in L`,k that hold in A also
hold in B, then A maps homomorphically to B.

(5) for every finite τ -structures A, if every finite τ -structure S of treewidth at
most (`, k) that maps homomorphically to A also maps homomorphically to
B, then A maps homomorphically to B.

(6) B has (`, k)-treewidth duality, i.e., there is a set N of finite structures of
treewidth at most (`, k) such that every finite τ -structure A is homomorphic
to B if and only if no structure in N is homomorphic to A.
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Proof. To prove the implication from (1) to (2), suppose that an (`, k)-Datalog
program Π solves CSP(B), and let A be an instance of CSP(B). If the canonical
(`, k)-Datalog program derives false on A, then by Proposition 8.2.2 the structure A
is not homomorphic to B. Otherwise, since Π is sound, the implication from (2) to
(1) in Theorem 8.2.8 shows that the canonical (`, k)-Datalog program does not derive
false on A as well. Hence, the canonical Datalog program solves CSP(B).

The implications (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1) are straightforward consequences
of Theorem 8.2.8.

To show that (5) implies (6), let N be the set of all those structures of treewidth
at most (`, k) that does not map homomorphically to B. Let A be a finite τ -structure.
If A maps homomorphically to B, then clearly there is no structure S in N that maps
to A, because then S would also map to B, a contradiction to the definition of N .
Conversely, suppose that no structure in N maps homomorphically to A. In other
words, every structure that homomorphically maps to A also maps to B. Using 5,
this implies that A homomorphically maps to B.

Finally, to show that (6) implies (5) let N be as in item (6). It follows that all
structures in N do not map homomorphically to B. Let A be a finite τ -structure such
that every finite τ -structure S of treewidth at most (`, k) that maps homomorphi-
cally to A also maps homomorphically to B. In particular, no structure in N maps
homomorphically to A. Therefore, A maps homomorphically to B. �

8.3. Datalog and Primitive Positive Interpretations

Primitive positive interpretations not only preserve polynomial-time tractability
of CSPs, but they also preserve bounded Datalog width. This has been proved by
Larose and Zadori [265], but only stated for finite domains and with slightly weaker
bounds on the Datalog width than those given below. An alternative approach, with
worse bounds on the width, can be found in [14].

We first treat primitive positive definitions rather than primitive positive inter-
pretations; here it is convenient to view instances of CSP(B) as primitive positive
sentences φ rather than structures; the relation between the two points of view is dis-
cussed in Section 1.2. Thus, we write Π(φ) for the set of (τ ∪ρ)-formulas derived by Π
on input φ. Recall that one of the differences between formulas and structures in the
input is that formulas might contains conjuncts using the equality symbol even if the
signature does not contain a symbol that denotes the equality relation. However, the
following proposition shows that Datalog is able to deal with expansions by a binary
relation symbol that denotes the equality relation.

Lemma 8.3.1. Let B be an ω-categorical structure such that CSP(B) has Datalog
width (`, k) and let B′ be the expansion of B with a new relation symbol ≡ which
denotes the equality relation. Then CSP(B′) has Datalog width (`′, k′) where `′ :=
max(2, l) and k′ := max(3, 2k).

Proof. Let φ be an instance of CSP(B′). If φ contains a conjunct of the form
x ≡ y, replace all occurrences of y by x, and repeat this step until the resulting
formula ψ has no more conjuncts of the form x ≡ y. For later use, we define E to be
the equivalence relation on the variables of φ that relates two variables if they have
been replaced by the same variable in ψ. Clearly, ψ is satisfiable in B if and only if
φ is satisfiable in B′.

If φ is satisfiable then by Proposition 8.2.2 the canonical (`′, k′)-Datalog program
Π′ for B′ does not derive false on φ. So let us assume that φ is unsatisfiable. In this
case ψ is unsatisfiable, too, and by assumption the canonical (`, k)-Datalog program
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Π derives false on ψ. We use the derivation of false by Π on ψ to inductively construct
a derivation of false on φ by Π′.

Note that since `′ ≥ 2 and k′ ≥ 3, the program Π′ has a rule that has been
introduced for transitivity of equality. Hence, if E(x1, x2) holds for two variables
x1 and x2 of φ, then Π′ will derive E′(x1, x2) where E′ is the IDB that has been
introduced for the primitive positive formula x ≡ y. Finally, suppose that Π contains
the rule

R0(x̄) :− R1(y1
1 , . . . , y

1
i1), . . . , Rs(y

s
1, . . . , y

s
is).

Then Π′ must contain the rule

R0(x̄) :− E′(y1
1 , z

1
1), . . . , E′(y1

j1 , z
1
j1), . . . , E′(ys1, z

s
1), . . . , E′(ysjs , z

s
js),

R1(z1
1 , . . . , z

1
i1), . . . , Rs(z

s
1, . . . , z

s
is).

With these rules it is straightforward to translate a derivation of false of Π on ψ into
a derivation of false of Π′ on φ, which concludes the proof. �

Lemma 8.3.2. Let B be an ω-categorical structure that contains the equality re-
lation and such that CSP(B) has Datalog width (`, k). Let B′ be the expansion of B
by all primitively positively definable relations of arity at most m. Then CSP(B′) has
Datalog width (`′, k′) for `′ := m` and k′ := mk.

Proof. To simplify the presentation, we prove the lemma for an expansion of B
by a single m-ary relation R with a primitive positive definition θ in B; the general
case can be shown similarly. Let φ be an instance of CSP(B′). Let τ be the signature
of B, and let ψ be the τ -formula obtained from φ as follows (this is as in the proof
of Lemma 1.2.6): replace each conjunct of φ of the form R(x̄) by θ(x̄). Rewrite the
formula into prenex normal form, and replace equalities in the primitive positive def-
inition by the symbol for equality in the signature τ . Clearly, the resulting τ -formula
ψ is satisfiable in B if and only if φ is satisfiable in B′. If the canonical (`′, k′)-Datalog
program Π′ for B′ derives false on φ then φ is unsatisfiable by Proposition 8.2.2 and
there is nothing to be shown. Suppose that the canonical (`′, k′)-Datalog program Π′

for B′ does not derive false on ψ. By Theorem 8.2.8 this means that Duplicator has
a winning strategy H for the existential (`′, k′)-pebble game on ψ and B′.

We claim that Duplicator also has a winning strategy J for the existential (`, k)-
pebble game on ψ and B. Let x̄ be a tuple of at most l variables from ψ. If an entry
x̄i is not a variable from φ, then it must be an existentially quantified variable of some
primitive positive formula θ(ȳi) that replaced a conjunct R(ȳi) of φ. Let T (x̄) be the
set of variables in x̄ together with all the variables in θ(ȳi) for every i such that x̄i in
not a variable from φ. Since H satisfies the (0, k′)-extension property, there exists a
partial homomorphism h ∈ H from φ to B′ which is defined on all the variables from
T (x̄) that lie in φ (there are at most k′ = mk such variables). Let R(z̄) be a conjunct
of φ where the entries of z̄ are in the domain of h. Then h has an extension to the
existential quantifiers that appear in θ(z̄). So we may assume that h has an extension
g to all the variables in T (x̄); we then include into our strategy J the restriction of
g to x̄. This map will clearly be a partial homomorphism from ψ to B.

To show that J has the (`, k)-extension property, let x̄ be a tuple of at most l
variables from ψ and let h ∈ J be defined on all entries from x. Let ȳ be some tuples
of variables from ψ such that (x̄, ȳ) contains at most k variables. We have to find an
extension of h to (x̄, ȳ) that also lies in J . The map h was defined as the restriction
of some partial homomorphism g from ψ to B that was defined on all of the variables
from T (x̄). The restriction of this map to the variables in z̄ that also lie in φ has at
most `′ = m` variables, and thus can be extended by the (`′, k′)-extension property
of H to a homomorphism defined on all variables of T (x̄, ȳ) that lie in φ, which are
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at most k′ = mk variables. This map in turn has an extension g to all variables in
T (x̄, ȳ). The restriction of g to (x̄, ȳ) defines a partial map from J which extends h,
concluding the proof. �

Lemma 8.3.3. Let B be an ω-categorical structure such that CSP(B) has Datalog
width (`, k). Suppose that D has maximal arity m and is homomorphically equivalent
to a structure with a d-dimensional primitive positive interpretation in B. Then
CSP(D) has Datalog width (`′, k′) for `′ := max(2, dm`) and k′ := max(3, dmk).

Proof. Clearly, if two structures B and D are homomorphically equivalent, then
a Datalog program solves CSP(B) if and only if it solves CSP(D). It is also clear
that if D is a reduct of B then a Datalog program for CSP(B) also solves CSP(D).
So to show the statement for D ∈ HI(B) = H Red Pfin

full(B) we can suppose without
loss of generality that D is the reduct of the full d-th power of B containing all at
most m-ary relations (Theorem 3.6.2). We also assume that B contains the equality
relation; otherwise, the statement can be shown by combining the argument below
with the proof of Lemma 8.3.1 (this is why we need that `′ ≥ 2 and k′ ≥ 3).

Let C be the expansion of B by all primitively positively definable relations of
arity dm. Lemma 8.3.2 shows that CSP(B) has Datalog width (`′, k′). We show that
CSP(D) has Datalog width (`′, k′), too. Let φ be an instance of CSP(D) with variable
set X = {x1, . . . , xn}. From φ we construct an instance ψ of CSP(C) as follows. Note
that for every primitive positive formula over the signature of B with md free variables
the structure D has an m-ary relation R′, and the structure C has an md-ary relation
R. Let Y := {yij | 1 ≤ i ≤ d, 1 ≤ j ≤ n} be fresh and pairwise distinct variables. The

formula ψ contains a conjunct of the form R(y1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) for every

conjunct R′(xi1 , . . . , xik) of φ.
If the canonical (`′, k′)-Datalog program for D derives false on φ then by Propo-

sition 8.2.2 φ is unsatisfiable and there is nothing to be shown. Otherwise, we have
to show that φ is satisfiable. By Theorem 8.2.8 Duplicator has a winning strategy for
the existential (`′, k′)-pebble game H on φ and D. We claim that the Duplicator also
has a winning strategy J for the existential (`′, k′)-pebble game on ψ and C.

Let (yi1j1 , . . . , y
is
is

) be a tuple of variables of ψ of length s ≤ k′. By the (0, k′)-
extension property the strategy H contains a partial homomorphism h from φ to D
defined on xj1 , . . . , xjs . We then include in to J the map which sends (yi1j1 , . . . , y

is
js

)

to (h(xj1)i1 , . . . , h(xjs)is). To show that J has the (`′, k′)-extension property, let

(yi1j1 , . . . , y
is
js

) be a tuple of variables of ψ of length s ≤ `′ and let g ∈ J a partial

homomorphism from ψ to C defined on all of these variables. Let ȳ = (yi1j1 , . . . , y
ir
jr

)

be an extension of the tuple above of length r ≤ k′. We have to show that J
contains an extension of h defined on all of ȳ. Then g was included into J for some
h ∈ H defined on xj1 , . . . , xjs . By the (`′, k′)-extension property h has an extension

in H defined an all of xj1 , . . . , xjr ). Then the map which sends (yi1j1 , . . . , y
ir
jr

) to(
h(xj1)i1 , . . . , h(xjr )ir )

)
is an extension of g with the desired properties.

This shows via Theorem 8.2.8 that the canonical (`′, k′)-Datalog program does
not derive false on ψ and C, and hence by assumption there exists a homomorphism
f from ψ to C. This in turn implies that there exists a homomorphism from φ to D:
the mapping from X → D that sends xi to (f(y1

i ), . . . , f(ydi )) satisfies all conjuncts
of φ in D. �

Corollary 8.3.4. Let B be an ω-categorical structure with finite signature such
that CSP(B) is in Datalog. Let D be a structure with finite signature such that D is
homomorphically equivalent to a structure with a primitive positive interpretation in
B. Then CSP(D) is in Datalog as well.
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Remark 8.3.5. Corollary 8.3.4 also holds without the assumption of ω-categoricity;
this has been stated for finite structures in Theorem 18 in [14], in a formulation that
is equivalent to our formulation of Corollary 8.3.4 if the domain is finite. Their proof,
however, can be used to prove our formulation of the statement for arbitrary domains;
for the details, we refer to [92].

8.4. Arc Consistency

The arc consistency procedure (AC) is an algorithm for constraint satisfaction
problems that is intensively studied in Artificial Intelligence.2 If m is the maximal
arity of the input relations, then AC can be described as the subset of the canonical
(1,m)-Datalog program that consists of all rules whose body contains at most one
non-IDB, and if it contains a non-IDB, then all the variables of the non-IDB are
distinct. For finite templates B it is known that AC solves CSP(B) if and only if B
has Datalog width one [177]. For infinite structures, this is no longer true, as the
following example shows.

Example 8.4.1. The problem Triangle-Freeness from Figure 1.2 has has Datalog
width 0 (cf. Example 8.1.3). On the other hand, it is easy to see that this CSP cannot
be solved by AC: to see this, let B be the countably triangle-free (K3-free) Henson
graph (Example 2.3.10). Since B is homogeneous and has no loops, the only primitive
positive definable unary relations are the empty and the full relation, and since each
of the rules involves at most one edge, none of the rules can detect the existence of a
triangle in the input graph. 4

In the following sections we present general conditions that imply that CSP(B)
can be solved by AC.

8.4.1. The definable subset structure. Let B be a countable ω-categorical
structure with finite relational signature τ . Since B is ω-categorical there is only a
finite number of primitive positive definable non-empty sets S1, . . . , Sn.

Definition 8.4.2. The definable subset structure P (B) of B is the finite rela-
tional τ -structure with domain {S1, . . . , Sn} where a k-ary relation R from τ holds on
Si1 , . . . , Sik if for every j ∈ {1, . . . , k} and every vertex vj in the orbit Sij there are
vertices v1, . . . , vj−1, vj+1, . . . , vk from Si1 , . . . , Sij−1

, Sij+1
, . . . , Sik , respectively, such

that (v1, . . . , vk) ∈ RB.

Lemma 8.4.3. Let B be an ω-categorical structure with finite relational signa-
ture τ . For every finite τ -structure A the following two statements are equivalent:

(1) The arc consistency procedure Π for B does not derive false on A.
(2) A is homomorphic to P (B).

Proof. Let B′ be the expansion of B by all unary primitive positive definable
relations.

(1)⇒ (2). If Π derives R(a) on A then R is an IDB and has been introduced for

a relation that is primitive positive definable over B, and hence RB′ ∈ {S1, . . . , Sn}.
For every a ∈ A, let T a be the set of all RB′ ∈ {S1, . . . , Sn} such that Π derives R(a)
on A. By the definition of the rules of Π, the set T a is closed under intersection.
Hence, T a contains a smallest element with respect to set inclusion, which will be
denoted by ∩T a. Define h to be the mapping from A to {S1, . . . , Sn} that maps
a ∈ A to ∩T a. We shall show that h is a homomorphism from A to P (B). Let R ∈ τ ,

2In the literature, the name arc consistency is reserved for binary CSPs, and the general case

with constraints of arity larger than two is then called hyper-arc consistency or generalised arc
consistency.
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and let (a1, . . . , ak) be a tuple of RA. Then (∩T a1 , . . . ,∩T ak) is the image of this tuple
under h. Fix any j ∈ {1, . . . , k} and let S be the set containing all those vj such that
there are vertices b1, . . . , bj−1, bj+1, . . . , bk from ∩T a1 , . . . ,∩T aj−1 ,∩T aj+1 , . . . ,∩T ak ,
respectively, such that (b1, . . . , bk) ∈ RB. Then S is primitive positive definable in

B, and Π contains an IDB U such that UB′ = S and the rule

U(xj) :− R(x1, . . . , xk),∩T a1(x1), . . . ,∩T aj−1(xj−1),∩T aj+1(xj+1), . . . ,∩T ak(xk)

which allows to derive U(aj). As ∩T aj ⊆ S = UB′ we conclude that

(∩T a1 , . . . ,∩T ak) ∈ RP (B).

(2) ⇒ (1). Let h be a homomorphism from A to P (B). It is easy to prove by

induction on the evaluation of Π on A that h(a) ⊆ RB′ for every R(a) derived by Π
on A (as described in Section 8.1.3). Hence, false cannot be derived by Π on A. �

The next theorem is from Feder and Vardi [177], formulated for CSPs for finite
templates; we follow the presentation in [60] for ω-categorical templates.

Theorem 8.4.4. Let B be an ω-categorical structure with finite relational signa-
ture. Then AC solves CSP(B) if and only if P (B) is homomorphic to B.

Proof. Since P (B) maps homomorphically to P (B), Lemma 8.4.3 shows that
AC does not derive false on P (B). Hence, if the arc consistency procedure solves
CSP(B) then P (B) maps homomorphically to B.

Conversely, suppose that there is a homomorphism h from P (B) to B. To show
that Π solves CSP(B), it suffices to show that a finite τ -structure A such that Π does
not derive false on A maps homomorphically to B. By Lemma 8.4.3 there is a homo-
morphism g from A to P (B). Composing g and h yields the desired homomorphism
from A to B. �

Example 8.4.5. Let B be a countable ω-categorical digraph with a directed cycle
but without loop. Then CSP(B) cannot be solved by AC. Indeed, suppose that B
contains a directed cycle of length k. The subset S of all vertices of B that lie in
a cycle of B whose length divides k is primitively positively definable. Hence, S is
a vertex in P (B), and (S, S) is an edge in P (B). Since B has no loop, there is no
homomorphism from P (B) to B, and thus Theorem 8.4.4 implies the statement. If B
is a finite structure then the converse holds as well: if P (B) contains a loop, then B
must contain a directed cycle. The structure B = (Q;<) shows that this is no longer
true for ω-categorical structures in general, since P (B) has the loop (Q,Q) but B
has no directed cycle. 4

Corollary 8.4.6. Let B be an ω-categorical structure with finite relational signa-
ture. If CSP(B) is solved by the arc consistency algorithm, then B is homomorphically
equivalent to a finite structure.

Proof. The definable subset structure C of B is finite, and by Theorem 8.4.4,
it has a homomorphism to B. Thus, it suffices to prove that B has a homomorphism
to C. Let A be a finite substructure of B. Since substructures of B are satisfiable
instances of CSP(B), the program Π does not derive false on such a structure A.
So by Lemma 8.4.3, there exists a homomorphism from A to C. Lemma 4.1.7 then
implies that also B maps homomorphically to C. �

In spite of Corollary 8.4.6, the arc consistency procedure is also important for
infinite-domain CSPs, because many infinite-domain CSPs can be reduced in polyno-
mial time to finite-domain CSPs (cf. Section 10.5.3) that can then be solved by the
arc consistency procedure (a simple example is CSP(N; 6=, I4) from Section 7.5).
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8.4.2. Totally symmetric polymorphisms. There is also a characterisation
of solvability by AC which is based on polymorphisms, due to [154].

Definition 8.4.7. A function f : Bk → B is called totally symmetric if

f(x1, . . . , xm) = f(y1, . . . , ym) whenever {x1, . . . , xm} = {y1, . . . , ym}.

Note that the existence of a totally symmetric polymorphism is a non-trivial
minor condition (Definition 6.7.9).

Example 8.4.8. The operation (x1, . . . , xn) 7→ min(x1, . . . , xn) is a totally sym-
metric polymorphism of the structure ({0, 1}; {(x, y, z) | (x ∧ y) ⇒ z}, {0}, {1})
(cf. Section 1.6.7 and Proposition 6.2.5). 4

More generally, if a structure has a semilattice operation (Example 2.1.2), then
it has totally symmetric polymorphisms of all arities.

Theorem 8.4.9. Let B be a finite structure and maximal arity m. Then the
following are equivalent.

(1) P (B) maps homomorphically to B;
(2) B has totally symmetric polymorphisms of all arities.
(3) B has a totally symmetric polymorphism of arity m|B|.

Proof. (1)⇒ (2): Suppose that g is a homomorphism from P (B) to B, and let
k ∈ N be arbitrary. Let f be defined by f(x1, . . . , xk) := g(S({x1, . . . , xk})) where
S({x1, . . . , xk}) is the smallest primitive positive definable subset of B that contains
{x1, . . . , xk}. Clearly, f is totally symmetric. If R ∈ τ is `-ary and t1, . . . , tk ∈ RB,
then Corollary 6.1.14 (2) implies that(

S({t11, . . . , tk1}), . . . , S({t1` , . . . , tk` })
)
∈ RP (B)

and hence (f(t1), . . . , f(t`)) ∈ RB. Therefore, f is a polymorphism of B.
The implication (2) ⇒ (3) is trivial. To prove (3) ⇒ (1), suppose that f is a

totally symmetric polymorphism of B of arity m|B|. Let g : P (B) → B be defined
by

g({x1, . . . , xn}) := f(x1, . . . , xn−1, xn, xn, . . . , xn)

which is well defined because f is totally symmetric. Let R ∈ τ be of arity ` ≤ m,
let (U1, . . . , U`) ∈ RP (B), and for each i ≤ ` let ui1, . . . , u

i
pi be an enumeration of the

elements of Ui. The properties of P (B) imply that for each i ≤ ` and q ≤ pi there
are v1

i,q ∈ U1, . . . , v
i−1
i,q ∈ Ui−1, v

i+1
i,q ∈ Ui+1, . . . , v

`
i,q ∈ U` such that

(v1
i,q, . . . , v

i−1
i,q , u

i
q, v

i+1
i,q , . . . , v

`
i,q) ∈ RB.

Then

g(U1) = g({u1
1, . . . , u

1
p1}) = f(u1

1, . . . , u
1
p1 , v

1
2,1, . . . , v

1
2,p2 , . . . , v

1
`,1, . . . , v

1
`,p`

, u1
1, . . . , u

1
1)

· · ·

g(U`) = g({u`1, . . . , u`p`}) = f(v`1,1, . . . , v
`
1,p1 , v

`
2,1, . . . , v

`
2,p2 , . . . , u

`
1, . . . , u

`
p`
, u`1, . . . , u

`
1)

and
(
g(U1), . . . , g(U`)

)
∈ RB since f preserves R. �

Note that the assumption that B is finite is necessary, as the following example
shows.

Example 8.4.10. Let B := (Q;<). Clearly, B has totally symmetric polymor-
phisms of all arities, namely the operations (x1, . . . , xn) 7→ min(x1, . . . , xn). On the
other hand, P (B) contains a loop, and hence does not map homomorphically to B.
And indeed, AC does not solve CSP(B). 4
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8.5. Strict Width and Quasi Near-Unanimity Operations

The notion of strict width has been introduced for finite-domain CSPs by Feder
and Vardi [177]. Bounded strict width of CSP(B) is a strong form of bounded
width of CSP(B), and can be defined for arbitrary countable ω-categorical structures
B. For countable ω-categorical structures B has bounded strict width has partic-
ularly elegant universal-algebraic characterisations in terms of Pol(B) and (quasi-)
near-unanimity polymorphisms (Section 8.5.2). Bounded strict width and quasi near-
unanimity polymorphisms are also tightly linked to the concept of decomposability,
defined in Section 8.5.3. The link between the three concepts is presented in Sec-
tion 8.5.4. In Section 8.5.5 we revisit the clone from Section 7.6 which provides an
example of a structure with an infinite signature and no quasi near-unanimity poly-
morphism, but where every finite reduct of the structure has such a polymorphism.

8.5.1. Bounded strict width. Feder and Vardi [177] defined strong width
for finite-domain CSPs in terms of the canonical Datalog program. Based on our
notion of canonical Datalog programs, we study the analogous concept for countable
ω-categorical structures. In the terminology of the constraint satisfaction literature
in Artificial Intelligence, strict width ` is equivalent to the property that ‘strong `-
consistency implies global consistency’.

Recall that a Datalog program over the signature τ receives as input a τ -structure
A and returns an expansion Π(A) of A in the signature that contains τ as well as a
symbol for every IDB of Π. If Π is the canonical (`, k)-Datalog program for CSP(B),
then Π(A) can be viewed as an instance of CSP(B′) where B′ is the expansion of
B by all at most `-ary primitively positively definable relations. The instance Π(A)
is called globally consistent if every partial homomorphism, i.e, every homomorphism
from an induced substructure of Π(A) to B′, can be extended to a homomorphism
from Π(A) to B′.

Definition 8.5.1. Let ` ≥ 2 and k ≥ `. Then B has strict width (`, k) if all
instances of CSP(B′) that are computed by the canonical (`, k)-Datalog program Π
are globally consistent. We say that B has strict width ` if it has strict width (`, k)
for some k.

Note that if B has strict width ` then CSP(B) has Datalog width `. To state
some of our later results in the strongest possible form, we define strict width also for
ω-categorical structures B with an infinite relational signature: such a structure has
strict width ` if every reduct of B with a finite signature has strict width `.

Also note that if Π derives false on input A, then Π(A) does not have any partial
homomorphisms to B′, and hence Π(A) is in this case by definition globally consistent.
If the reader feels uneasy about calling unsatisfiable instances globally consistent, one
may also define global consistence only for satisfiable instances; for strict width ` we
would then require that the instances computed by the canonical (`, k)-program that
do not contain the predicate false are globally consistent. With our definition we
follow what is standard in the literature.

Example 8.5.2. The infinite clique B := (N; 6=) has strict width (0, 2). Indeed,
let A be a graph such that the canonical (0, 2)-Datalog program for B does not derive
false on A. Then A does not contain loops, i.e., unsatisfiable constraints of the form
x 6= x, and hence every partial mapping from A to (N; 6=) can be extended to a
homomorphism from A to (N; 6=) by always picking new elements in N. 4

Example 8.5.3. The structure B := (Q;<) has strict width (2, 3). Indeed, let
A be a finite digraph such that the canonical (2, 3)-Datalog program Π for B does
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not derive false on A. Let B′ be the expansion of B by all at most binary relations
with a primitive positive definition in B; let T be the binary relation symbol of B′

introduced for the primitive positive formula x < y. Then TΠ(A) equals the transitive
closure of <A. Moreover, it is easy to see that any partial homomorphism from Π(A)
to B′ can be extended to all of Π(A) (as in the step of ‘going forth’ in the proof of
Proposition 4.1.1) ), so Π(A) is globally consistent. 4

To study the strict width of an ω-categorical structure B, we may always assume
that B contains the equality relation, thanks to the following lemma [60]

Lemma 8.5.4. Let B be an ω-categorical structure of strict width ` and let B′ be
the expansion of B by the equality relation. Then B′ has strict width ` as well.

Proof. Let C be a reduct of B with finite signature. Let k be such that CSP(C)
has strict width (`, k). Let ≡ the binary symbol that denotes the equality relation in
B′; it suffices to show that CSP(C;≡) has strict width (`, k). Let Π′ be the canonical
(`, k)-program for CSP(C,≡). Let A be an instance of CSP(C,≡). Let E be the finest
equivalence relation on A that contains ≡A. Let A/E be the τ -reduct of A obtained
by factoring A by the equivalence relation E. The definition is analogous to the
construction in Example 3.1.2: the universe of A/E are the equivalence classes of E
and for every R ∈ τ , say r-ary, RA/E = {(a1/E, . . . , ar/E) | (a1, . . . , ar) ∈ RA}. We
now consider A/E as an instance of CSP(B). Let Π be the canonical (`, k)-program
of B. It is easy to prove by induction on the evaluation of Π on A/E that if R is an
IDB, say r-ary, and R(a1/E, . . . , ar/E) is derived by Π on A/E, then R(a1, . . . , ar)
is derived by Π′ on A. We have to show that Π(A) is globally consistent. So suppose
that there is a partial homomorphism h from Π(A) to an expansion of (C;≡) by all
`-ary primitively positively definable relations. Since ` ≥ 2 and k ≥ 3, the Datalog
program Π′ will be able to derive that all elements in the same equivalence class of
E have to get the same value and hence, if h is a partial homomorphism then this
implies that h(a) = h(b) for all elements a, b in the domain of h such that (a, b) ∈ E.
Define h/E to be the partial mapping that maps a/E to h(a) for every a in the
domain of h. Then h/E is a partial homomorphism from A/E to B. Hence h/E can
be extended to a full homomorphism h′ from A/E to B. Finally, the mapping defined
by a 7→ (h/E)(a/E) is a homomorphism from A to (C,≡). �

8.5.2. Quasi Near-Unanimity Polymorphisms. In Section 8.5.4 we will show
that for ω-categorical model-complete cores, B bounded strict width if and only if
B has a quasi near-unanimity polymorphism. Quasi near-unanimity operations have
already been introduced in Section 6.1.8 in the context of minimal clones. Recall that
an operation f is a quasi near-unanimity operation if it satisfies the identities

∀x, y : f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(y, x, . . . , x) = f(x, . . . , x).

A near-unanimity operation is additionally idempotent. If A ⊆ B we say that
f : Bk → B is a near-unanimity on A if the near-unanimity identities are satisfied for
all x, y ∈ A. A ternary near-unanimity operation is called a majority operation, and
a ternary quasi near-unanimity operation is called a quasi majority operation. We
present some examples with majority or quasi majority polymorphisms.

Example 8.5.5. Let (D;<) be any linearly ordered set. Then the ternary median
operation defined as

(x, y, z) 7→ min(max(x, y),max(y, z),max(z, x))

= max(min(x, y),min(y, z),min(z, x))
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is a majority operation, which also preserves ≤ (increasing all arguments of the op-
eration can only increase the function value). Hence, the structure (Q;<,≤) has a
majority polymorphism. If D is finite, the median operation also preserves the suc-
cessor relation. The definition of the median can be generalised to any lattice defined
on D, with meet in place of min and join in place of max. 4

Example 8.5.6. Directed cycles Cn of length n ≥ 1, defined as

Cn := ({0, . . . , n− 1};E) where E := {(x, y) | y = x+ 1 mod n},
have a majority polymorphism: Let f be the ternary operation that maps (u, v, w) ∈
{0, . . . , n − 1}3 to u if u, v, w are pairwise distinct, and otherwise acts as a majority
operation. We claim that f is a polymorphism of Cn. Let (u, u′), (v, v′), (w,w′) ∈ E be
arcs. If u, v, w are all distinct, then u′, v′, w′ are clearly all distinct as well, and hence
(f(u, v, w), f(u′, v′, w′)) = (u, u′) ∈ E. Otherwise, if two elements of u, v, w are equal,
say u = v, then u′ and v′ must be equal as well, and hence (f(u, v, w), f(u′, v′, w′)) =
(u, u′) ∈ E. 4

Example 8.5.7. The infinite clique (N; 6=) has no near-unanimity operation: if
f : Nk → N is a near-unanimity, we distinguish two cases:

• a := f(1, 2, . . . , k) /∈ {1, . . . , k}. In this case we have a 6= 1, . . . , a 6= k, and
f(a, . . . , a) = a = f(1, . . . , k), so f does not preserve 6=.
• a := f(1, 2, . . . , k) ∈ {1, . . . , k}; say a = 1. Then 2 6= 1, 1 6= 2, . . . , 1 6= k and
f(2, 1, . . . , 1) = 1 = f(1, 2, . . . , k), so again f does not preserve 6=.

However, (N; 6=) does have a quasi majority: to see this, let E be the smallest
equivalence relation on N3 that contains all pairs of the form ((x, x, y), (x, x, x)),
((x, y, x), (x, x, x)), and ((y, x, x), (x, x, x)). We claim that (N; 6=)3/E (Definition
given in Example 3.1.2) does not contain loops: the only edges in (N; 6=)3/E come
from edges ((x1, x2, x3), (y1, y2, y3)) in (N; 6=)3 where x1 6= y1, x2 6= y2, and x3 6= y3.
All triples that are E-equivalent to (x1, x2, x3) must have two equal entries, and
the same holds for all triples that are E-equivalent to (y1, y2, y3). This shows that
(x1, x2, x3) cannot be E-equivalent to (y1, y2, y3) and proves the claim. Hence, ev-
ery injection from N/E to N is a homomorphism h from (N; 6=)3/E to (N; 6=), and
(x1, x2, x3) 7→ h

(
(x1, x2, x3)/E

)
is the desired quasi majority operation. 4

Quasi near-unanimity identities have height one (cf. Section 6.7.2), so if B has
a quasi near-unanimity polymorphism, then so have all structures that are homo-
morphically equivalent to B (see Corollary 6.7.12). This holds in particular for the
model-complete core of an ω-categorical structure B. The following lemma shows
that the existence of a quasi near-unanimity polymorphism follows from the local
existence of quasi near-unanimity polymorphisms.

Proposition 8.5.8. Let B be countable ω-categorical and let k ≥ 2. Then B has
a k-ary quasi near-unanimity polymorphism if for every finite F ⊆ B there exists a
polymorphism of B of arity k which is a quasi near-unanimity operation on F . Con-
versely, if B is an ω-categorical model-complete core and has a quasi near-unanimity
polymorphism of arity k, then for all finite F ⊆ B there is a k-ary polymorphism of
B whose restriction to A is a near-unanimity.

Proof. The statement can be shown using an argument based on König’s tree
lemma as in the proof of Lemma 4.1.7. Alternatively, we can apply Lemma 4.1.10,
because whether f is a k-ary quasi near-unanimity operation can be expressed as a
universal first-order sentence in a two-sorted structure with the sorts Bk and B.

Now suppose that B is an ω-categorical model-complete core. Let f be a poly-
morphism of B which is a quasi near-unanimity operation and let b1, . . . , bn ∈ B. The
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map f̂ is an endomorphism of B, and hence f̂ ∈ Aut(B) since B is a model-complete

core (Theorem 4.5.1). So there exists an α ∈ Aut(B) such that f̂(bi) = α(bi) for

every i ≤ n. Then the map α−1f̂ ∈ Pol(B) is a near-unanimity on {b1, . . . , bn}. �

The following example shows that the assumption that B is a core is necessary
for the converse implication in Proposition 8.5.8.

Example 8.5.9. The core of the structure B := (N;P 3
N) (Definition 6.1.16) has

just one element, and B has a constant polymorphism of arity 2, which is a quasi near-
unanimity operation. However, by Proposition 6.1.19 all polymorphisms of (N;P 3

N)
are essentially unary, so for any finite F ⊂ N with at least two elements there does
not exist a near-unanimity operation on F . 4

8.5.3. Decomposability. Bounded strict width and the existence of quasi near-
unanimity polymorphisms of ω-categorical model-complete cores can also be charac-
terised relationally. The corresponding result for finite structures and (idempotent)
near-unanimity polymorphisms is known as the theorem of Baker and Pixley, and is
a special case of the result presented in Theorem 8.5.12.

Definition 8.5.10. Let l ≥ 1. We say that a relation R ⊆ Bk is `-decomposable
if it consists of all tuples (b1, . . . , bk) such that for all i1, . . . , il ≤ k there exists
(c1, . . . , ck) ∈ R such that bi1 = ci1 , . . . , bik = cik .

We say that a structure B is `-decomposable if every relation with a primitive pos-
itive definition in B is `-decomposable. The following shows that `-decomposability
can be seen as a special form of primitive positive quantifier elimination; the proof is
straightforward from the definitions and ω-categoricity is not needed.

Lemma 8.5.11. Let l ≥ 2. A structure is `-decomposable if and only if every
primitive positive formula is equivalent over B to a conjunction of primitive positive
formulas each having at most ` free variables.

8.5.4. Characterising strict width. We finally state and prove the connec-
tion between strict width, near-unanimity polymorphisms, and decomposability. The
proof of this result combines a result from [60] and from [54] and is based on ideas
from [177] and [223] for finite structures B. It is convenient to treat instances of
CSPs as primitive positive sentences rather than structures.

Theorem 8.5.12. Let B be an ω-categorical relational structure and let l ≥ 2.
Then the following are equivalent.

(1) B has strict width `.
(2) B is `-decomposable.
(3) For every finite subset F of B there is an (` + 1)-ary polymorphism of B

whose restriction to F is a near-unanimity.

Proof. Let τ be the signature of B. We first show that (1) implies (2). Without
loss of generality, B contains a binary symbol ≡ that denotes the equality relation
on B (see Proposition 8.5.4). Let B′ be the expansion of B by all `-ary primitively
positively definable relations, and let τ ′ be the signature of B′. Let φ(x1, . . . , xn) be
a primitive positive τ -formula. We have to show that φ is equivalent to a conjunction
of atomic τ ′-formulas.

Let C be the reduct of B that only contains the relations that appear in φ. Let
k ∈ N be such that C has strict width (`, k), and let Π be the canonical (`, k)-Datalog
program. Add the new variables y1, . . . , yn and the conjuncts x1 ≡ y1, . . . , xn ≡ yn
to φ, and then run Π on the resulting formula. Let ψ(y1, . . . , yn) be the set of atomic
σ-formulas derived by Π on y1, . . . , yn. Clearly, all of them have arity at most `, and
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φ(y1, . . . , yn) implies ψ(y1, . . . , yn). The converse also holds since Π(φ) is globally
consistent.

(2)⇒ (3). Let F ⊆ B be finite. We have to prove that there is a polymorphism
of B that is an (` + 1)-ary near-unanimity on F . Let τF be the superset of τ that
additionally contains a unary relation symbol Ra for each a ∈ F . Let BF be the
τF -expansion of B where Ra = {a} for every a ∈ F . Consider the set G of tuples
(a0, . . . , al) in F l+1 that have identical entries ai = a except for possibly one position.
Let C be the τF -expansion of Bl+1 where Ra denotes the set of all tuples in G where
at most one entry is not a. Every homomorphism from C to BF is by construction a
polymorphism of B that is a near-unanimity on F . To show that such a homomor-
phism from C to BF indeed exists, is suffices to show that every finite substructure
of C maps homomorphically to BF (Lemma 4.1.7; here we use ω-categoricity).

Let S be a finite substructure of C. Let ψ be the canonical query of the τ -reduct
of S. Let φ be the primitive positive formula obtained by existentially quantifying all
variables in ψ except for the variables from G. We claim that the map h that sends
(a, . . . , a, b, a, . . . , a) to a satisfies φ, which shows that S maps homomorphically to
BF . By assumption, φ is equivalent to a conjunction of primitive positive formulas
ψ with at most s ≤ l free variables. Let R be the relation of arity s that has been
introduced in B′ for such a formula ψ and suppose that S |= R(t1, . . . , ts). For every
j ∈ {1, . . . , s} the tuple tj is of the from (aj , . . . , aj , bj , aj , . . . , aj). Since s ≤ l, the
pigeon-hole principle guarantees that there exists an index i ∈ {1, . . . , l+1} such that
for every 1 ≤ j ≤ l the i-th entry of tj equals aj . Hence, R(a1, . . . , as) holds and h
preserves φ. We conclude that S maps homomorphically to BF .

(3) ⇒ (1). Let C be a reduct of B with finite signature σ ⊆ τ . Let k be the
maximum of l+ 1 and the maximal arity of the relations in C. Let Π be the canonical
(`, k)-program for B and let C′ be the expansion of C by all at most `-ary primitively
positively definable relations. Let A be a finite σ-structure. We have to prove that
every partial homomorphism h from Π(A) to C′ with domain {v1, . . . , vi}, for i < |A|,
has an extension to any other element v of Π(A) such that the extension is still a
partial homomorphism from Π(A) to C′. We prove this by induction on i.

For the case that i ≤ l, let Ψ be the set of all atomic formulas that hold in Π(A)
on variables from {v1, . . . , vi, v}, and let R be the IDB associated to the primitive
positive formula ∃v

∧
Ψ with free variables v1, . . . , vi. Since each formula in Ψ is

derived by Π on A, the conjunct R(v1, . . . , vi) is also derived by Π on A. Since h
preserves R, we have that (h(v1), . . . , h(vi)) satisfies ∃v

∧
Ψ; hence, there exists an

extension of h to v which is a partial homomorphism from Π(A) to C′.
For the induction step where i ≥ l + 1, let hj be the restriction of h where vj is

undefined, for j ∈ {1, . . . , l+1}. By induction, hj can be extended to a homomorphism
h′j from the substructure of Π(A) induced on {v1, . . . , vi, v} \ {vj} to C′.

Claim. For each (u1, . . . , ur) ∈ RΠ(A), there exists a tuple (bj1, . . . , b
j
r) ∈ RC′

such that h′j(ui) = bji for all ui where h′j is defined.
Let i1, . . . , is be a list of the indices i ∈ {1, . . . , r} such that h′j is defined on ui,

and let i′1, . . . , i
′
t be a list of the other indices in {1, . . . , r} (so we have s + t = r).

We prove the statement by induction on s. For s ≤ l, let R′ be the IDB as-
sociated to the ∃ui′1 , . . . , ui′t : R(u1, . . . , ur) with free variables ui1 , . . . , uis . Since

R′(ui1 , . . . , uis) :− R(u1, . . . , ur) is a rule in Π, we have (h′j(ui1), . . . , h′j(uis)) ∈ R′C
′
.

Then the witnesses for the existentially quantified variables ui′1 , . . . , ui′t in C′ along

with h′j(ui1), . . . , h′j(uis) determine the tuple (d1, . . . , dr) ∈ RC′ with the desired prop-

erty. For s ≥ l + 1, consider for all i ∈ {i1, . . . , il+1} the tuple bi = (bi1, . . . , b
i
r) ∈ RC′
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given inductively for the restriction of h′j to S \ {ui}. Let g be an (` + 1)-ary poly-
morphism which is a near-unanimity on the set containing all elements in all tuples
bi. Then (g(b11, . . . , b

l+1
1 ), . . . , g(b1r, . . . , b

l+1
r )) has the desired properties, concluding

the proof of the claim.
Let F ⊂ B be the finite set that contains all elements bji of C′, for all tuples

(u1, . . . , ur) in all relations R of Π(A). Let g be an (` + 1)-ary polymorphism of C′

that is a near-unanimity on F (observe that B and C′ have the same polymorphisms).
We claim that the extension h′ of h mapping v to

b := g(h′1(v), . . . , h′l+1(v))

is a homomorphism from the substructure of Π(A) induced on {v1, . . . , vi, v} to C′.
Arbitrarily choose (u1, . . . , ur) ∈ RΠ(A); we want to show that (h′(u1), . . . , h′(ur)) ∈
RΠ(A). Recall that (bj1, . . . , b

j
r) ∈ RC′ is such that h′j(ui) = bji for all ui where h′j is

defined. Then (g(b11, . . . , b
l+1
1 ), . . . , g(b1r, . . . , b

l+1
r )) ∈ RC′ . Moreover, we claim that

g(b1s, . . . , b
l+1
s ) = h′(us) for every s ≤ r: if us ∈ {v1, . . . , vi}, note that for all but at

most one j from {1, . . . , l + 1} we have that bjs = h′j(us) = h(us), and since g is a

near-unanimity on the entries of the tuples bj we obtain that

g(b1s, . . . , b
l+1
s ) = h′(us) = h(us).

Otherwise, if us = v, then

g(b1s, . . . , b
l+1
s ) = g(h′1(v), . . . , h′l+1(v)) = b = h′(v)

by the definition of h′. We conclude that (h′(u1), . . . , h′(ur)) ∈ RΠ(A). �

Corollary 8.5.13. If B is an ω-categorical structure with finite relational sig-
nature and a quasi near-unanimity polymorphism. Then CSP(B) is in Datalog.

Proof. Let C be the model-complete core of B, which also has a quasi near-
unanimity polymorphism. By Proposition 8.5.8 for every finite F ⊆ C the structure
C has a polymorphism of arity l+1 which is a near-unanimity operation on F . Hence,
C has bounded strict width by Theorem 8.5.12 and hence is in Datalog. This proves
the statement since C and B have the same CSP. �

Corollary 8.5.14. Let B be an ω-categorical model-complete core. Then for
every l ≥ 2 the following are equivalent.

• B has an (`+ 1)-ary quasi near-unanimity polymorphism.
• Every primitive positive formula is over B equivalent to a conjunction of

primitive positive formulas each with at most ` free variables.
• B is `-decomposable.
• B has strict width `.

Proof. The equivalence of (4), (3), and (2) holds without the assumption of B
being a model-complete core (Theorem 8.5.12 and Lemma 8.5.11). The equivalence
with (1) holds by Proposition 8.5.8. �

Example 8.5.15. Let C be the smallest locally closed operation clone that con-
tains Aut(Q;<) and the median operation on Q (Example 8.5.5). We claim that

C = Pol(Q;<,≤).

To see this, first recall from Example 8.5.5 that median preserves both < and ≤.
Conversely, we have to show that every polymorphism of (Q;<,≤) is locally generated
by the median and automorphisms of (Q;<). Equivalently (Theorem 6.1.13) one
can show that every relation that is first-order definable over (Q;<) and preserved
by the median operation is primitively positively definable over (Q;<). Since the
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structure B with domain Q that contains all these relations is an ω-categorical model-
complete core and median is a majority operation, Theorem 8.5.14 implies that B
is 2-decomposable. However, there are only a few binary relations in B: by the
homogeneity of (Q;<) and B, these are ≤, <, ≥, >, =, the full relation and the empty
relation (the disequality relation 6= is not preserved as we have seen in Example 8.5.7).
All of these relations are primitively positively definable in (Q;<,≤) which concludes
the proof. 4

Example 8.5.16. the structure (Q;≤, 6=) has a quasi near-unanimity polymor-
phism of arity five, but not of arity four [55]. 4

8.5.5. The Strict Width Hierarchy. For every ` ≥ 1 and every set B of
cardinality at least two, there exists a structure with domain B which has strict
width `, but not strict width `− 1. Define the relation

D` := {(x1, y1, . . . , x`, y`) ∈ B2` | x1 6= y1 ∨ · · · ∨ x` 6= y`}.

Then the structure (B;D`) does not have a quasi near-unanimity polymorphism of
arity `: if a, b ∈ B are distinct, then

t1 := (a, b, a, a, . . . , a, a) ∈ D`

t2 := (a, a, a, b, . . . , a, a) ∈ D`

. . .

t` := (a, a, a, a, . . . , a, b) ∈ D`

but f(t1, . . . , t`) = (f̂(a), . . . , f̂(a)) /∈ D`. However, the structure (B;D`) does have
a quasi near-unanimity operation of arity ` + 1. Pick any function from B`+1 to B
whose kernel contains precisely the pairs of `+ 1-tuples that must be mapped to the
same value under any quasi near-unanimity operation. We claim that f preserves D`:
suppose that t1, . . . , t`+1 are such that (f(t11, . . . , t

`+1
1 ), . . . , f(t12`, . . . , t

`+1
2` )) /∈ D`, i.e.,

f(t11, . . . , t
`+1
1 ) = f(t12, . . . , t

`
2), . . . , f(t12`−1, . . . , t

`+1
2`−1) = f(t12`, . . . , t

`+1
2` ).

By the pigeon-hole principle there must exist an i ∈ {1, . . . , `+ 1} such that ti1 = ti2,
. . . , ti2`−1 = ti2`, and hence ti /∈ D`, proving the claim.

Corollary 8.5.17. For any set B of cardinality at least two, the structure B :=
(B;D1, D2, . . . ) has no quasi near-unanimity polymorphism and an essentially infinite
signature (Definition 3.3.5).

Proof. Suppose that B′ is a structure with domain B and finite signature such
that all relations of B′ are primitively positively definable in B. Then there is a
maximal ` such that D` is used in the definitions of the relations of B′ in B. Let f be
the function defined above. It preserves all relations of B′, but it does not preserve
D`, as we have seen above. This shows that B is not primitively interdefinable with
B′ and proves the statement. �

Since the structure B := (B;D1, D2, . . . ) does not have quasi near-unanimity
polymorphisms, one might wonder whether Pol(B) satisfies some other nontrivial
minor conditions. The following example shows that Pol(B) contains a chain of
quasi Pixley operations (and hence also a chain of quasi Jónsson operations; see
Section 6.9.3) and is taken from the master thesis of Sergej Scheck [329].

Proposition 8.5.18. The clone Pol(N;D1, D2, . . . ) contains a chain of quasi
Pixley operations of length 4.



238 8. DATALOG

Proof. First note that Pol(B;D1, D2, . . . ) = R (cf. Section 7.6): for every ` ∈ N,
the relation D` has a negative definition (Definition 7.6.2), and conversely, every
relation with a negative definition has a (quantifier-free) primitive positive definition
in (B;D1, D2, . . . ). Let f : N2 → N be an injection. Define

p1(x, y, z) = f(x, x)

p2(x, y, z) =

{
f(x, z) if x = y

f(x, x) otherwise

p3(x, y, z) =

{
f(x, z) if y = z

f(z, z) otherwise

p4(x, y, z) = f(z, z).

Clearly, p1 and p2 are injective in the first and p3 and p4 are injective in the third
direction, so all of these operations are contained in R. Moreover, the operations
satisfy the quasi Pixley identities:

p1(x, y, z) = f(x, x) = p1(x, x, x)

p1(x, x, z) = f(x, x) = p2(x, z, z)

p2(x, y, x) = f(x, x) = p2(x, x, x)

p2(x, x, z) = f(x, z) = p3(x, z, z)

p3(x, y, x) = f(x, x) = p3(x, x, x)

p3(x, x, z) = f(z, z) = p4(z, z, z)

p4(x, y, z) = f(z, z) = p4(z, z, z). �

Chains of quasi Pixley operations are of particular interest to the theory of
infinite-domain constraint satisfaction, because the existence of polymorphisms of
B that form such a chain is among the strongest universal-algebraic conditions which
are not yet known to imply polynomial-time tractability of CSP(B), even if B is a
reduct of a finitely bounded homogeneous structure (Question 36).

8.6. Datalog Inexpressibility Results

In this section we show that certain CSPs of ω-categorical structures cannot be
solved by Datalog programs. We first prove that Datalog becomes strictly more
powerful by increasing the width. This holds even for CSPs of ω-categorical digraphs
(Section 8.6.1), but not for finite-domain CSPs, where the hierarchy stops at width
two (Theorem 8.8.2). We then present applications of the existential pebble game
and Theorem 8.2.8 to show that the and/or scheduling problem, the rooted triple
satisfiability problem, and solving linear equations over a non-trivial abelian group
are not in Datalog (Section 8.6.2).

8.6.1. The width hierarchy. The following has been shown by Grohe [195]
(Corollary 6.7) using finite graphs with the so-called Hrushovski property [208]. Two
Datalog programs with a distinguished predicate false are called equivalent if they
derive false for the same class of finite structures.

Theorem 8.6.1 (Grohe [195]). The Datalog width hierarchy is strict over graphs,
that is, for every l ≥ 2 there exists a Datalog program of width l which is not equivalent
to a Datalog program of width l − 1.
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We will give an alternative simple proof of the analogous result for directed graphs,
Theorem 8.6.3. Let n ≥ 1 be a fixed integer. We write E for the binary arc relation.
Consider the following (2n, 3n)-Datalog program; we denote it by Πn.

R(x1, . . . , xn, y1, . . . , yn) :− {E(yi, yj), E(xi, xj) | i, j ∈ {1, . . . , n}, i 6= j},
{E(xi, yj) | i, j ∈ {1, . . . , n}}

R(x1, . . . , xn, y1, . . . , yn) :− R(x1, . . . , xn, z1, . . . , zn), {E(zi, yj) | i, j ∈ {1, . . . , n}},
{E(yi, yj) | i, j ∈ {1, . . . , n}, i 6= j}

false :− R(x1, . . . , xn, x1, . . . , xn)

We will show that there is no Datalog program of width 2n − 1 that computes
the same query as Πn. Define a bad sequence in an {E}-structure C to be a sequence
x0, . . . , xm of elements xi = (xi1, . . . , x

i
n) of Cn such that

• E(xip, x
i
q) for all p, q ∈ {1, . . . , n}, p 6= q, and i ∈ {0, . . . ,m};

• E(xip, x
i+1
q ) for all p, q ∈ {1, . . . , n} and i ∈ {0, . . . ,m− 1}.

A bad cycle is a bad sequence x0, x1, . . . , xm where xm = x0. Observe that if Πn

derives R(x1, . . . , xn, y1, . . . , yn) on C for some x1, . . . , xn, y1, . . . , yn ∈ C, then this
means that C contains a bad sequence x0, . . . , xm with x0 = (x1, . . . , xn) and xm =
(y1, . . . , yn). Moreover, if Πn derives false then C must contain a bad cycle.

Let K′n be the class of all structures with signature {E,R, false} that are computed
by runs of Πn on {E}-structures that do not derive false.

Lemma 8.6.2. The class Kn of all substructures of the class K′n defined above is
an amalgamation class.

Proof. The verification of the amalgamation property is the only interesting
part of the proof. Let B1 and B2 be structures in Kn, and suppose that A is a
common substructure of B1 and B2. Let Bi be a substructure of B′i ∈ K′n, for
i ∈ {1, 2}. Suppose without loss of generality that B′1 ∩ B′2 = A. Let C′ be the free
amalgam of the {E}-reduct of B′1 and B′2 over the {E}-reduct of A. Execute Πn on
C′. It suffices to show that Πn does not derive new atomic formulas on variables from
B′1, nor on variables from B′2 (and in particular does not derive false) because then
the desired amalgam C ∈ Kn of B1 and B2 over A can be obtained as a substructure
of the {E,R, false}-expansion computed by Πn on C′.

Suppose for contradiction that C′ contains a bad sequence x0, x1, . . . , xm such that
x0, xm ∈ (B′1)n and B′1 does not satisfy R(x0, xm). Choose this sequence such that the
number of elements xij ∈ B′2, for i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}, is minimal. This

number must be at least one, because otherwise Πn would have derived R(x0, xm) on
B′1 alone. Choose u ≤ m minimal such that {xu1 , . . . , xun} ( B′1. Then xu−1

1 , . . . , xu−1
n

must all lie in A since every vertex of xu−1
1 , . . . , xu−1

n is connected with every vertex
of xu1 , . . . , x

u
n, but all edges between B′1 and B′2 must involve vertices from A. Choose

v ∈ {u + 1, . . . ,m} minimal with the property that {xv1, . . . , xvn} ⊆ B′1; such a v
must exist because xm1 , . . . , x

m
n ⊆ B′1. Again, note that {xv1, . . . , xvn} ⊆ A. But then

R(xu−1, xv) holds in B′2, and hence also in A, and hence also in B′1, which means
that in B′1 there exists a bad sequence from xu−1 to xv. So we may replace the
subsequence xu−1, xu, . . . , xv by this sequence in B′1, obtaining a new bad sequence
with fewer vertices in B′2, a contradiction. �

Write Cn for the Fräıssé-limit of Kn, expanded by the binary relation N with
the quantifier-free definition ¬E(x, y) ∧ x 6= y, which is ω-categorical since it is ho-
mogeneous and has a finite relational signature. We claim that CSP(Cn) has width
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(2n, 3n). To see this, it suffices to add to Πn the rules

false :− N(x, x)

false :− E(x, y), N(x, y).

Theorem 8.6.3. The Datalog width hierarchy is strict over directed graphs.

Proof. By Theorem 8.2.10, it suffices to show that for every k ∈ N there exists
an unsatisfiable instance A of CSP(Cn) such that the canonical (2n − 1, k)-Datalog
program Π for Cn does not derive false on A. Let k ∈ N be given. Choose A to
be an {E,N, false}-structure; the relation EA consists of the edges of a bad cycle
x0, x1, . . . , xk+1 with disjoint vertices, and NA is empty. We claim that Π does not
derive false on A. Let P be a relation of arity 2n−1 with a primitive positive definition
in Bn. By the homogeneity of Cn, the relation P is definable by a quantifier-free
formula φ; Since the relation R only contains tuples of pairwise distinct elements of
B, and is of arity 2n, we can even assume that φ is a Boolean combination of atomic
formulas over the signature {E,N, false}. Moreover, we may assume that φ is written
in disjunctive normal form and does not contain occurrences of false. We may then
eliminate formulas of the form ¬E(x, y) by N(x, y) ∨ x = y, formulas of the form
¬N(x, y) by E(x, y) ∨ x = y, and formulas of the form x 6= y by E(x, y) ∨ N(x, y).
Let θ1, . . . , θq be the disjuncts of the resulting positive formula. Now, every rule of Π
of the form

S(x̄) :− β(ȳ), P (z̄)

can be replaced by the rules

S(x̄) :− β(ȳ), θ1(z̄),

. . .

S(x̄) :− β(z̄), θq(z̄).

In this way we can eliminate all IDBs from the bodies of the rules of Π and obtain
an equivalent Datalog program. Since NA is empty and every proper subgraph (not
necessarily induced) of the graph (A;EA) does not contain a bad cycle, Π does not
derive false on A. �

8.6.2. High girth. In this section we present a general lemma that allows us
to prove that various CSPs cannot be solved by Datalog. The proof of the following
lemma is taken from [88]3. The girth of an undirected graph G is the length of
a shortest cycle in G. A graph is called k-regular if every vertex has precisely k
neighbours. A 3-regular graph is also called cubic. A great deal is known about the
existence of finite graphs of high girth.

Fact 8.6.4. For every k ∈ N there exists

• a finite four-regular graph of girth at least k (it is even known that there are
such graphs of size exponential in k [222]);

• a finite cubic graph of girth at least k with a Hamiltonian cycle (see the
comments after the proof of Theorem 3.2 in [45]).

Definition 8.6.5. Let τ be a relational structure. Then the incidence graph
G(A) of A is the graph whose set of vertices is the disjoint union of A and the set of
tuples in relations from A, and where an element from A is connected to a tuple if
and only if the element appears in that tuple.

Note that G(A) is bipartite. We say that A has girth k if all tuples in relations
from A have pairwise distinct entries and the shortest cycle of G(A) has 2k edges.

3The statement of the corresponding lemma in [88] is false; here we present a corrected version.
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Lemma 8.6.6. Let B be a countable ω-categorical structure whose signature τ
consists of finitely many relation symbols of arity at least 3 such that for every relation
R of B of arity r, every (r − 1)-ary projection of R equals the full relation Br−1.
Suppose that there exist unsatisfiable instances of CSP(B) of arbitrarily large girth.
Then CSP(B) cannot be solved by Datalog.

Note that the assumption about minimum arity three in Lemma 8.6.6 is necessary,
because otherwise the structure (Q;<) would satisfy the assumptions, but we have
already seen a Datalog program that solves CSP(Q;<). To prove the lemma, we use a
notion of controlled sets to specify winning strategies for Duplicator for the existential
k-pebble game.

Definition 8.6.7. Let k ≥ 2 and A an instance of CSP(B) of girth at least
4k + 1 where k elements are pebbled. A non-empty set S ⊆ A is called controlled if
it satisfies the following conditions.

(1) The incidence graph G[S] := G(A[S]) is a tree.
(2) All but at most one of the elements that are leaves of G[S] are pebbled.

Note that if S is controlled, then |S| ≤ 2k because of the assumption that G[S]
is a tree, that all but one of the leaves of G[S] are pebbled, and that the minimum
arity of the relation symbols in τ is three. An example of a controlled set S can be
found in Figure 8.1.

Proof of Lemma 8.6.6. Due to Theorem 8.2.8 it suffices to prove that for every
k ≥ 1 there exists an unsatisfiable instance Ak of CSP(B) such that Duplicator wins
the existential (k−1, k)-pebble game on Ak and B. We choose for Ak an unsatisfiable
instance of CSP(B) of girth at least 4k+1, which exists by assumption. In the course
of the game, Duplicator always maintains the following condition:

(∗) whenever S is a controlled set with unique unpebbled leaf a0 and pebbled
vertices a1, . . . , a`, and b1, . . . , b` are the responses of Duplicator, then Du-
plicator can play a value b0 from B such that the mapping h that assigns ai
to bi for 0 ≤ i ≤ ` has an extension to a homomorphism from Ak[S] to B.

Condition (∗) clearly holds at the beginning of the game.
Suppose that at move i Spoiler pebbles a variable a. Let S1, . . . , Sm be the

controlled sets at stage i − 1 where a is an unpebbled leaf. Note that m ≥ 1 since
the set {a} is a controlled set. Let T1, . . . , Tq be the controlled sets at stage i which
contain a such that each Tj has some unpebbled leaf rj . We have to show that under
the assumption that Duplicator in her previous move has maintained condition (∗),
she will be able to make a move that again satisfies condition (∗).

Let S := S1 ∪ · · · ∪ Sm. We claim that S is a controlled set at stage i − 1 as
well. All leaves of G[S] except a are pebbled, and G[S] is connected since all trees
share the vertex a. To show that G[S] has no cycles, it suffices to show that for
p, q ∈ {1, . . . ,m}, the union of Sp and Sq is acyclic, because then the general claim
follows by induction. Let k1 be the number of pebbles on Sp and let k2 be the number
of pebbles on Sq. Note that if k = 0 then |S| = 1 and S is controlled and hence G[S]
is acyclic. Otherwise, |Sp ∪Sq| ≤ 2|k1|+ 2|k2| ≤ 4k. Hence, S cannot contain a cycle,
because Ak has girth at least 4k + 1.

By assumption, the map that sends the pebbled vertices in S to the responses
of Duplicator can be extended to a homomorphism h from Ak[S] to B. Duplicator
plays b := h(a). For an illustration, see Figure 8.1.

For each j ∈ {1, . . . , q}, we have to prove that h can be extended to Tj . We
prove this by induction on the number of elements where h is already defined. Here
we will make use of the assumption on the relations of B in the statement of the
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Figure 8.1. A situation in the proof of Lemma 8.6.6. The encircled
vertices are already pebbled, Spoiler is about to pebble vertex a. The
encircled set of vertices is a controlled set before the vertex a has
been pebbled.

lemma. If h is defined on all of Tj , then we are done, so let us suppose that this is

not the case. If t is a tuple of elements of Tj such that t ∈ RAk[Tj ], let P1, P2, . . . , Pp
be the connected components of the structure obtained from Ak[Tj ] by removing t

from RAk[Tj ]. At most one of these components, say Pr, can contain rj , and at most
one of these components, say Ps, can contain a. Note that every component Pq, for
q ∈ {1, . . . , r} \ {r, s} is a controlled set at stage i− 1, and h can be extended so that
it is also defined on Pq. Similarly as above we may argue that G[S ∪ Tj \ (Pr ∪ Ps)]
is acyclic and hence we may assume that h is already defined on S ∪ Tj \ (Pr ∪ Ps).
It follows that all the elements where h is not yet defined lie on the path from a to
rj in Ak[Tj ]. Pick t ∈ RAk[Tj ] such that h is undefined on a` and h has already been
defined for all other elements; such a choice must exist because of our assumption
that h is not yet defined on all of Tj . By the assumption on the relations of B, the
map h can be extended to a homomorphism that is also defined on a`, concluding the
inductive step. �

8.6.3. Applications. For our first application of Lemma 8.6.6, let Rmin be the
ternary relation {(x, y, z) ∈ Q3 | x > y ∨ x > z} from Section 1.6.8. The CSP for
(Q;Rmin) is one of the simplest computational problems that cannot be solved by
Datalog (Theorem 8.6.8 below). We will later see (in Section 8.7) that this problem
can be solved in polynomial (even linear) time. Another relatively easy computa-
tional problem that can be solved in polynomial time but does not lie in Datalog
is the rooted triple satisfiability problem from Section 1.6.2 (Theorem 8.6.10). As a
third application of Lemma 8.6.6, we prove that Datalog programs cannot be used
to solve satisfiability of systems of linear equations over non-trivial abelian groups
(Theorem 8.6.11).

Theorem 8.6.8 (Theorem 5.2 in [74]). There is no Datalog program that solves
CSP(Q;Rmin).

Proof. Note that the relation Rmin satisfies the requirement from the statement
of Lemma 8.6.6. To apply Lemma 8.6.6 we only have to construct an unsatisfiable
instance A of CSP(Q;Rmin) of girth k for every k ∈ N. For this, let G be a 4-regular
graph of girth at least k (Fact 8.6.4). Since G is 4-regular, there exists an Euler tour
for G (see e.g. [157]). Orient the edges in G along this Euler tour such that there
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are exactly two outgoing and two incoming edges for each vertex in G. Now we can
define our instance A of CSP(Q;Rmin) as follows. The domain of A is the vertex set
of G, and Rmin(w, u, v) holds in A iff uw and vw are the two incoming edges at vertex
w. If G(A) contains a cycle a1, t1, a2, t2, . . . , an, tn, a1 of length 2n then G has the
cycle a1, a2, . . . , an, a1 of length n. Since G has girth at least k, we conclude that A
has girth at least k.

We claim that A does not have a solution: if there is a homomorphism s from A
to (Q;Rmin) then for some w ∈ A the value s(w) is minimal. But for every w ∈ A
there is a constraint Rmin(w, u, v) in A, and this constraint is not satisfied by s since
either s(u) or s(v) must be strictly smaller than s(w). �

We now present a second application of Lemma 8.6.6 to prove a result from [88].
We need the following sufficient condition that a rooted triple satisfiability problem
has no solution, which goes back to Aho, Sagiv, Szymanski, and Ullman [9].

Lemma 8.6.9. Let A be an instance of the rooted triple satisfiability problem. Let
G be the graph whose vertices are the elements of A and which has an edge {a, b} if
A |= ab|c for some c ∈ A. Suppose that G is connected. Then A is unsatisfiable.

Proof. Suppose for contradiction that there exists a rooted tree T with leaves
L and a solution s : A → L. Let r be the yca(A) (Definition 5.1.1). It cannot be
that all the vertices of s(A) lie below the same child of r in T, by the definition of
yca(A). Since G is connected, there is an edge {a, b} in G such that s(a) and s(b) lie
below different children of r in T . Hence, there is an element c ∈ A such that ab|c
holds in A. By assumption, yca(s(a), s(b)) = r lies strictly below yca(s(a), s(c)), a
contradiction to the choice of r. �

Theorem 8.6.10. There is no Datalog program that solves the rooted triple sat-
isfiability problem (Section 1.6.2).

Proof. Let B be the template constructed for the rooted triple satisfiability
problem constructed in Section 5.1. It is clear that the rooted triple relation satisfies
the assumptions on R from Lemma 8.6.6.

To construct an unsatisfiable instance A for CSP(B) of girth at least k, let G be
a cubic graph of girth at least k that has a Hamiltonian cycle (Fact 8.6.4). Note that
G must have an even number of vertices. Let H = (v1, v2, . . . , vn) be the Hamiltonian
cycle of G. For any vertex a of G, let r(a) be the vertex that precedes a on H, let
s(a) the vertex that follows a on H, and let t(a) the third remaining neighbour of a
in G.

We now define A. The domain A of A are the vertices of G, and

|A := {(r(a), s(a), t(a)) | a ∈ A}.

Note that the graph from the statement of Lemma 8.6.9 equals the (connected) graph
G. Therefore, Lemma 8.6.9 implies that A is an unsatisfiable instance of CSP(B).

The only remaining point for the application of Lemma 8.6.6 is the verification
that G(A) has girth at least k. But this is obvious since any cycle of length 2l < 2k
in the incidence graph G(A) would give rise to a cycle of length l < k in G, in
contradiction to G having girth at least k. �

Our third application of Lemma 8.6.6 is a simple proof that solving linear equa-
tions over non-trivial abelian groups is not in Datalog. Let G be an abelian group
and c ∈ G. We define

Rkc := {(x1, . . . , xk) ∈ Gk | x1 + · · ·+ xk = c}.
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Theorem 8.6.11 (Feder and Vardi [177]). Let G be an abelian group with at least
two elements and let G be the structure with domain G that contains the relation R3

c

for every c ∈ A. Then the problem CSP(G) is not in Datalog.

Proof. 4 Let B be the structure with domainG which contains for every function
f : {1, 2, 3} → {−1, 1} and every a ∈ G the relation

Rf,a := {(x1, x2, x3) ∈ G3 | f(x1)x1 + f(2)x2 + f(3)x3 = a}.

These relations are primitively positively definable in G and by Lemma 8.3.2 it suffices
to show that CSP(B) is not in Datalog. All the relations of B satisfy the requirements
from Lemma 8.6.6. It thus suffices to construct an unsatisfiable instance A of CSP(B)
of girth at least k. Let (V ;E) be a cubic graph of girth at least k (Fact 8.6.4). Orient
the edges E arbitrarily. The domain of A is E. For each v ∈ V with the three incident
(oriented) edges e1, e2, e3 we add the constraint Rf,0(e1, e2, e3) to A where f(i) = −1
if v is the first vertex of ei, and f(i) = 1 if v is the second vertex of ei. Then we move
exactly one of the tuples from Rf,0 in A to the relation Rf,a for some a ∈ B \ {0}.
Suppose for contradiction that s : A→ B is a solution for A. Sum over all constraints.
Since each edge appears once positively and once negatively, the left-hand side is 0.
On the right-hand side we obtain a since we have precisely one tuple in A from Rf,0
to Rf,a. Hence, s cannot be a homomorphism, a contradiction. �

8.7. Fixed-Point Logic

Fixed-point logics are powerful logics for expressing computational problems that
are in P; they properly extend Datalog. There are various fixed-point logics, for
instance least fixed-point logics (LFP), inflationary fixed-point logic (IFP), and ex-
tensions by counting quantifiers; they are treated in finite model theory textbooks
such as [169,221,271]. It is known that least fixed-point logic and inflationary fixed-
point logic have the same expressive power (even over infinite structures [255]); since
inflationary fixed-point logic has a simpler definition and is all that will be needed
in our examples, we only introduce IFP. In this section we show that satisfiability
of and/or precedence constraints and the rooted triple satisfiability problem can be
expressed in IFP (but not in Datalog, as we have seen in the previous section). On
the other hand, IFP has the same expressive power as Datalog for finite-domain CSPs
(Theorem 8.8.2 below).

8.7.1. Inflationary Fixed Points. Let A be a set. We write P(A) for the set
of all subsets of A. An operator F : P(A)→ P(A) is called inflationary if X ⊆ F (X)
for every X ∈ P(A). A fixed point of F is an element X ∈ P(A) such that X = F (X).
Clearly, if A if finite and F is inflationary then the sequence (Xi)i∈N given by

X0 := ∅, Xi+1 := F (Xi)

will eventually be constant, and

X∞ :=

∞⋃
i=1

Xi

is a fixed point. If G : P(A) → P(A) is an arbitrary operator, we associate to G the
inflationary operator F (X) := X ∪G(X), and the least fixed point X∞ of F defined
above will be called the inflationary fixed point of G and denoted by ifp(G).

4Thanks to Jonathan Theil and Jakub Rydval.



8.7. FIXED-POINT LOGIC 245

8.7.2. Inflationary Fixed-Point Logic. Let τ be a relational signature and
let φ be a (τ∪{R})-formula for some k-ary relation symbol R /∈ τ . If A is a τ -structure
and X ⊆ Ak, then we write (A, X) for the expansion of A with the signature τ ∪{R}.
We define the operator JA, φK : P(Ak)→ P(Ak) by

X 7→ {a ∈ Ak | (A, X) |= φ(a)}.

Definition 8.7.1 (IFP). Inflationary fixed-point formulas over a relational sig-
nature τ (short, IFP τ -formulas) are defined inductively as follows. Every atomic
τ -formula is an IFP τ -formula, and formulas built from IFP τ -formulas by the usual
first-order constructors are again IFP τ -formulas. Finally, if φ(x1, . . . , xk, ȳ) is an IFP
(τ ∪ {R})-formula where R has arity k then ifpR φ is an IFP τ -formula with the free
variables x1, . . . , xk, ȳ.

The semantics of inflationary fixed-point logic is defined similarly as for first-
order logic; we just discuss how to interpret the inflationary fixed-point construc-
tor. Let A be a τ -structure and let R be a k-ary relation symbol not from τ . Let
a1, . . . , ak, b1, . . . , bl ∈ A and let φ(x1, . . . , xk, y1, . . . , yl) be an IFP (τ ∪{R})-formula.
Then

A |= (ifpR φ)(a1, . . . , ak, b1, . . . , bl)

:⇔ (a1, . . . , ak) ∈ ifp(JA, φ(x1, . . . , xk, b1, . . . , bl)K).

As we have mentioned above, it has been shown that least fixed-point logic and
inflationary fixed-point logic have the same expressive power, so following an estab-
lished convention in the literature we refer from now on to both logics as fixed-point
logic (FP). We present a series of examples of problems expressible in FP of increasing
difficulty.

Example 8.7.2 (Connectivity). Let (V ;E) be a finite graph and a, b ∈ V . The
property that a and b are connected in the graph (V ;E) can be expressed by a fixed-
point formula as follows. Let C be a new unary relation symbol, and let φ(x, y) be
the formula x = y ∨ ∃z(E(x, z) ∧ C(z)). Then ifpC φ(x, a)(b) holds if and only if
a and b are connected in the graph (V ;E). This fixed-point formula will be useful
later, in Example 8.7.5. The following notation is convenient for a flexible usage: for
a formula ψ(x, z) (which we imagine as a formula defining the edge relation E) we
write conn(a, b, ψ) for the fixed-point formula above where we replace the occurrence
of E(x, z) by ψ(x, z). 4

Generalising Example 8.7.2, it is easy to see that for every Datalog program Π
there exists an FP-formula φ such that for all structures A, the program Π derives
false on A if and only if A |= φ (cf. [169, 221, 271]). We now present examples of
properties that can be expressed in fixed-point logic, but not in Datalog.

Example 8.7.3 (Precedence Constraints). Let Rmin be the relation

{(a, b, c) ∈ Q3 | a > b ∨ a > c}
from Section 1.6.8 on and/or precedence constraints. We will show that CSP(Q;Rmin)
can be expressed in FP (recall that it is not in Datalog; Theorem 8.6.8). We first
describe the algorithmic idea. Let A be an instance of this problem, and suppose
that for every a ∈ A there exist b1, b2 such that A |= Rmin(a, b1, b2). Then A has no
homomorphism to (Q;Rmin) because no element from A can take a minimal value
in a solution. On the other hand, let F be the set of all a ∈ A that satisfy ∀b1, b2 :
¬Rmin(a, b1, b2). If there is a homomorphism h from A[A\F ] to (Q;Rmin) then it can
be extended to a homomorphism from A to (Q;Rmin) by setting h(a), for all a ∈ F ,
to some value from Q that is smaller than all other values in the image of h. This
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gives rise to a recursive polynomial-time algorithm for CSP(Q;Rmin). To formulate
the problem in FP, let P be a new unary relation symbol and let φ(x) be the formula

∀y, z
(
Rmin(x, y, z)⇒ (P (y) ∨ P (z))

)
.

We claim that A maps homomorphically to (Q;Rmin) if and only if

A |= ∀x(ifpP φ)(x).

To prove the claim, define P 0 := ∅, and for i ≥ 1 define P i := P i−1 ∪ JA, φK(P i−1).
Then P∞ = ifp(JA, φK). We need to show that P∞ = A if and only if there exists a
homomorphism h : A→ (Q;Rmin).

First suppose that there does exist such a homomorphism. Let i ∈ N; if P i = A
then we are done, so suppose that P i 6= A. Let

Fi := {a ∈ A \ P i | f(a) ≤ f(b) for all b ∈ A}.
Note that Fi 6= ∅. Also note that Fi ⊆ JA, φK(P i): if x ∈ A is such that (A, P i) |=
¬φ(x), then there exist y, z ∈ A \ P i such that Rmin(x, y, z). But this in turn means
that either h(x) > h(y) or h(x) > h(z), and hence x /∈ Fi. We conclude that P i+1 is
strictly larger than P i. Since A is finite, we conclude that P∞ = A.

Conversely, suppose that P∞ = A. Define h : A → Q by mapping a to the
smallest i ∈ N such that a ∈ P i. We claim that h is a homomorphism from A to
(Q;Rmin). Let a, b, c ∈ A be such that A |= Rmin(a, b, c). Let i ∈ N be smallest so
that {a, b, c} ∩ P i is non-empty (hence, i ≥ 1). Then (A, P i−1) |= ¬φ(a), and hence
a /∈ P i, which shows that Rmin(h(a), h(b), h(c)) is true. 4

Example 8.7.4. Let Rmin
≤ be the relation {(a, b, c) ∈ Q3 | a ≥ b ∨ a ≥ c}. Then

CSP(Q;Rmin
≤ , <) is a more expressive variant of the CSP in the previous example;

it will play an important role in Chapter 12. It can be shown that this CSP can be
formulated in IFP [92], using the algorithm presented in Section 12.8.3. 4

Example 8.7.5. The rooted triple satisfiability problem (Section 1.6.2) can be
formulated in FP (recall that it is not in Datalog; Theorem 8.6.10); this has been
observed by Stefan Mengel [292]. The fixed-point formula that we present below
is inspired by a polynomial-time algorithm due to Aho, Sagiv, Szymanski, and Ull-
man [9], which is based on the unsatisfiability criterion from Lemma 8.6.9, and pro-
ceeds inductively if the criterion does not apply. The criterion states that a certain
graph associated to the instance is connected; note that connectivity can be tested
by a fixed-point computation as we have seen in Example 8.7.2.

Let D be a new binary relation symbol. Informally, we use D to store all pairs
(a, b) of elements of an input instance A such that (a, b) is not an edge in the graph
from Lemma 8.6.9, or such that (a, b) is an edge that has been discarded in later
stages of the inductive algorithm. Formally, let φ(u, v) be the formula

∀w
(
uv|w ⇒ ¬ conn(u,w,¬D(x, z))

)
.

We claim that A is a satisfiable instance of the rooted triple satisfiability problem if
and only if

A |= ∀a, b(ifpD φ)(a, b).

To prove the claim, define D0 := ∅, and for i ≥ 1 define Di := Di−1 ∪ JA, φK(Di−1).
Then D∞ = ifp(JA, φK) = D` for some ` ∈ N. We need to show that D∞ = A2 if and
only if A is satisfiable.

First suppose that A is satisfiable. Let i ∈ N; if Di = A2 then there is nothing to
be shown, so suppose that there exists (u, v) ∈ A2 \Di and i ≥ 1. By the definition of
Di there exists w ∈ A such that uv|w and u, v, w are in the same connected component
C in the graph (A;A2 \Di−1). Then there must be a bipartition of C into non-empty
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subsets C1 and C2 such that h(C1)|h(C2) (Definition 5.1.4). Since C is a connected
component in (A;A2 \Di−1), there exists a pair (x, y) ∈ A2 \Di−1 which is contained
in Di, which shows that Di is strictly larger than Di−1. Since A2 is finite, we conclude
that D∞ = A2.

Conversely, suppose that D∞ = A2. Create a rooted tree T in stages i =
0, 1, 2, . . . , ` as follows. Create a new root vertex and add one child vertex for each
connected component of the graph (A;A2 \D1). At state i, create a new vertex for
each connected component of the graph (A;A2 \Di). For i = 0, there is a single con-
nected component which becomes the root of T. For i ≥ i, each connected component
C is a subset of a connected component C ′ of (A;A2 \Di−1). We then add the vertex
that has been created for C as a child below C ′. At stage i = `, we know that the
graph (A;A2 \Di) does not not have any edges, so we may identify the newly created
vertices with the elements of A; they become the leaves of T.

We verify that whenever ab|c holds in A, then ab|c holds in T. Note that (a, b) ∈
A2 \ D1. Let i ≥ 2 be smallest so that (a, b) ∈ Di; such an i exists because D` =
A2. Then a and c lie in the same connected component in (A2 \ Di−2): otherwise
φ(a, b) holds in (A;Di−2) and hence (a, b) ∈ JA, φK(Di−1) = Di−1, contrary to the
assumption. On the other hand, a and c lie in different connected components in
(A2\Di−1), because (a, b) ∈ Di = JA, φK(Di−1) implies that φ(a, b) holds in (A;Di−1),
so in particular a and c are not connected in (A;A2 \ Di−1). This means that ab|c
holds in T, as required. 4

8.7.3. Fixed-Point Logic with Counting. In this section we mention two
fundamental facts about CSPs in the context of fixed-point logic and its most impor-
tant extension, fixed-point logic with counting (FP+C). In the following we do not
need a formal definition of this logic and instead refer to Libkin’s textbook [271].
FP+C is important since it can express most problems that are known to be solv-
able in polynomial time (not just CSPs). A remarkable exception is satisfiability
of systems of linear equations over abelian groups. Theorem 8.6.11, concerning the
inexpressibility of this problem in Datalog, can be strengthened as follows.

Theorem 8.7.6 (Atserias, Bulatov, Dawar [14]). Let A be a finite abelian group
with a nonzero element a ∈ A. Then CSP(A;R2

0, R
3
0, R

3
a) (defined in Theorem 8.6.11)

is not in FP+C.

The importance of this theorem for the descriptive complexity of CSPs stems
from the following result whose proof, given in [14] for the case of finite domains, is
valid in general.

Theorem 8.7.7. Let B be a structure with finite relational signature such that
CSP(B) is in FP+C (FP, Datalog), and let D ∈ HI(B) with finite relational signature.
Then CSP(D) is in FP+C (FP, Datalog) as well.

Hence, if HI(B) contains the structure (A;R2
0, R

3
0, R

3
a) from Theorem 8.7.6, then

CSP(B) is not in FP+C.

8.8. Datalog for Finite Templates

The combination of Theorem 8.7.6 with Theorem 8.7.7 from the previous section
provides a powerful condition implying that CSP(B) is not in FP+C, and in particular
not in Datalog. Barto and Kozik [23] proved that if this condition does not apply, the
CSP(B) is in Datalog. This has been conjectured by Feder and Vardi [177] and later,
in a different formulation, by Larose and Zadori [265] (see [264] for the equivalence).

In this section we present several other characterisations of finite structures B
such that CSP(B) is in Datalog. In fact, each of the characterisation we present has its
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own advantages and many of them are needed to conveniently derive their equivalence
from the proofs that can be found in the literature. Recall from Section 6.9 that a
weak near-unanimity is an operation of arity at least two that satisfies the height-one
identities

∀x, y : w(x, . . . , x, y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x) .

We write WNU(k) for the k-ary weak near-unanimity operations. Again, we warn
the reader that some authors have additionally assumed that weak near-unanimity
operations are idempotent; we do not make this assumption (like in many other recent
articles, e.g., in the survey [28]).

Example 8.8.1. For n ∈ N \ {0} consider the algebra An := (Zn;m) where
Zn := {0, . . . , n− 1} and m(x, y, z) := x− y + z. Then Clo(An) consists of precisely
the operations defined as

g(x1, . . . , xk) :=
∑
i

aixi

where a1, . . . , ak ∈ Zn with
∑
i ai = 1. We claim that An has a WNU(k) term if and

only if gcd(k, n) = 1:

• if gcd(k, n) = 1 then there is an a ∈ Zn such that ak = 1. Then the operation∑
i axi is in WNU(k), and as

∑
i a = ka = 1 it also belongs to Clo(An).

• Conversely, let g ∈ WNU(k). In particular, we have

g(1, 0, . . . , 0) = a1

= g(0, 1, . . . , 0) = a2

= · · · = g(0, . . . , 0, 1) = ak

and it follows that a := a1 = · · · = ak. But 1 =
∑
i ai = ka, which implies

that n and m are pairwise prime.

For example, Clo(A6) has a WNU(5) term, but no WNU(k) term for k ≤ 4. 4

Theorem 8.8.2. Let B be a finite structure with finite relational signature. Then
the following are equivalent.

(1) CSP(B) has width (2,max(3, k)) where k is the maximal arity of B.
(2) CSP(B) has width (l, k) for some l, k ∈ N.
(3) HI(B) does not contain a structure A whose domain A is an abelian group

which which contains for every c ∈ A the relation {c} and the relation

R3
0 := {(x1, . . . , x3) ∈ A3 | x1 + x2 + x3 = 0}

(4) If C is the core of B and C is an algebra whose operations are all idempotent
polymorphisms of C, then HS(C) does not contain an algebra with domain
Znp , for some prime p and some n ∈ N, whose operations are generated by
(x, y, z) 7→ x− y + z.

(5) B has for all but finitely many n ∈ N a polymorphism in WNU(n).
(6) B has polymorphisms f ∈WNU(3) and g ∈WNU(4) satisfying

∀x, y : f(y, x, x) = g(y, x, x, x) .

(7) B has a binary polymorphism f2 and polymorphisms fn ∈WNU(n) for every
n ≥ 3 such that

∀x, y : fn(x, y, . . . , y) = f2(x, y) .

(8) B has ternary polymorphisms p, q such that p ∈WNU(3) and

∀x, y
(
p(x, x, y) = q(x, y, x) ∧ q(x, x, y) = q(x, y, y)

)
.
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We do not give a complete proof of this important result, but only show some of
the easy implications and we explain how to deduce the remaining implications from
statements that can be found explicitly in the literature.

Proof. We first show implications between (1), (2), (3), (4), (5) in cyclic order
and then prove the remaining equivalences.

(1)⇒ (2) is trivial.
(2) ⇒ (3): By Lemma 8.3.2, it suffices to show that CSP(A) does not have

bounded width, which is Theorem 8.6.11.
(3) ⇒ (4). Let c̄ be a tuple enumerating all the elements of C. Suppose that

HS(C) contains an algebra A as in the statement of (4). Let A be a structure
such that Pol(A) = Clo(A). Then A has a primitive positive interpretation in (C, c̄)
(Theorem 6.3.7). Moreover, Theorem 3.6.2 implies that A ∈ HI(B). Note that the
relations R2

0, R
3
0, R

3
1 are preserved by (x, y, z) 7→ x−y+z, and hence (A;R2

0, R
3
0, R

3
1) ∈

HI(B).
The implication (4)⇒ (5) was proved by Maroti and McKenzie [288]; see Theo-

rem 4.15 in [356].
The implication (5) ⇒ (1) was essentially proved by Barto and Kozik [23];

see [19].
A self-contained proof of the implication (2)⇒ (6) was given by Kozik, Krokhin,

Valeriote, and Willard [252]; the implication follows from a combination of Theorem
2.7 and Theorem 2.8 in [252].

The proof from [252] has been generalised by Jovanović, Marković, McKenzie, and
Moore [230] to prove the implication (2) ⇒ (8) (Corollary 3.3) and the implication
(2) ⇒ (7) (Proposition 4.1). They work in the setting of idempotent algebras; but
since a structure has polymorphisms satisfying a given minor condition if and only if
its core does, and since the polymorphisms of a core satisfy a given minor condition
if and only if the idempotent polymorphisms do, the idempotent case implies the
statement as given in the theorem.

The implication (7)⇒ (5) is trivial.
For the implication (8) ⇒ (4), suppose that HS(C) contains an algebra A with

domain Zn, for n ≥ 2, whose operations are generated by the operation (x, y, z) 7→
x − y + z. Note that if p and q are ternary term operation of A, then there are
a1, a2, a3 with a1 + a2 + a3 = 1 and b1, b2, b3 with a1 + a2 + a3 = 1 such that
p(x, y, z) = a1x + a2y + a3z and q(x, y, z) = b1x + b2y + b3z. The identities from
(8) imply that p(0, 0, y) = p(0, y, 0) = p(0, 0, y) and hence a := a1 = a2 = a3.
Moreover, p(0, 0, y) = q(0, y, 0) and hence b2 = a, and q(0, 0, y) = q(0, y, y) and hence
b3 = b2 +b3. Therefore, a = b2 = 0 which implies that A = Zn = {0}, in contradiction
to n ≥ 2.

The implication (6)⇒ (4) can be shown similarly. �

Remark 8.8.3. The equivalent conditions in Theorem 8.8.2 are also equivalent
to an important congruence lattice condition: namely that all algebras in the variety
generated by the idempotent polymorphisms of the core of B have a congruence
meet semidistributive congruence lattice [212]. This property is in turn equivalent
to a fundamental condition from tame congruence theory [212], namely omitting
types 1 and 2. This terminology is omnipresent in the literature cited in the proof
of Theorem 8.8.2, but as we demonstrated above these more advanced universal-
algebraic concepts are not needed in the proof of Theorem 8.8.2.





CHAPTER 9

Topology

In this chapter we will see that the computational complexity of CSP(B) for a
countable ω-categorical structure B only depends on the polymorphism clone of B,
viewed as a topological clone. The definition of topological clone is analogous to the
definition of topological group: a topological clone is an abstract clone together with a
topology on the set of operations such that composition is continuous. Every operation
clone is a topological clone with respect to the topology of pointwise convergence. In
fact, for operation clones on countable domains, this topology is induced by a natural
metric.

In this chapter we present a general correspondence between the pseudo-variety
generated by a algebra B with a countable domain, and Clo(B) viewed as an abstract
clone together with the mentioned metric.1 The next step is a correspondence be-
tween the pseudo-variety generated by an oligomorphic algebra B and the topological
clone Clo(B); this result can be seen as a topological variant of Birkhoff’s theorem
from Section 6.5. We also present a modification of this result that captures the class

1Alternatively, we could work with uniformities; in this text, we focus on countable domains
and it will suffice to work with metrics rather than uniformities.

251
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Exp Refl Pfin(B) topologically. If B is the polymorphism algebra of an ω-categorical
structure B, then this class can be used to study the complexity of constraint satis-
faction problems, because it corresponds to the class HI(B) of structures that have a
primitive positive interpretation in B modulo homomorphic equivalence.

Several other important properties of ω-categorical structures only depend on
the topological polymorphism clone or even the topological automorphism group. In
particular, this is the case for certain Ramsey properties that become important in
the next chapter. Section 9.1 is introductory and can be skipped by readers familiar
with topology.

9.1. Topological Spaces

A topological space is a set S together with a collection of subsets of S, called the
open sets of S, such that

(1) the empty set and S are open;
(2) arbitrary unions of open sets are open;
(3) the intersection of two open sets is open.

The collection of open sets is also called a topology on S. If U ⊆ S is open, then the
complement S \U of U in S is called closed. For E ⊆ S, the closure of E is the set of
all points x such that every open set in S that contains x also contains a point from
E. Clearly, the closure of E is a closed set. A subset E of S is called dense (in S)
if its closure is the full space S. The subspace of S induced on E is the topological
space on E where the open sets are exactly the intersections of E with the open sets
of S. A basis of S is a collection of open subsets of S such that every open set in
S is the union of sets from the collection. For s ∈ S, a collection of open subsets of
S is called a basis at s if each set from the collection contains s, and every open set
containing s also contains an open set from the collection. A topological space S is
called

• discrete if every subset of S is open (and hence also closed);
• Hausdorff if for any two distinct points u, v of S there are disjoint open sets
U and V that contain u and v, respectively;
• separable if it contains a countable dense set;
• first-countable if for all s ∈ S there exists a countable basis at s;
• second-countable if it has a countable basis.

Note that if S is second-countable, it is also first-countable and separable.

9.1.1. Convergence and continuity. A function between topological spaces
is called continuous if the pre-images of open sets are open, and open if images of
open sets are open. A bijective open and continuous map is called a homeomorphism.

There are equivalent characterisations of continuity of maps from a first-countable
space S to a topological space T that are often easier to work with and which we recall
in Proposition 9.1.1. For a sequence (sn)n≥1 of elements of S we say that sn converges
against s if for every open set U of S that contains s there exists an n0 such that
sn ∈ U for all n ≥ n0. Note that if T is Hausdorff, then s is unique, and called the
limit of (sn)n≥1, and we write limn→∞ sn for s. For x ∈ S, we say that ξ : S → T
is continuous at x if for every open V ⊆ T containing ξ(x) there is an open U ⊆ S
containing x whose image ξ(U) is contained in V .

Proposition 9.1.1. Let S be a first-countable space and T an arbitrary topological
space. Then for every ξ : S → T the following are equivalent.

(1) ξ is continuous.
(2) For all sn, if sn converges against s then ξ(sn) converges against ξ(s).
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(3) ξ is continuous at every x ∈ S.

Proof. The implication from (1) to (2) is true even without the assumption that
S is first-countable. Let (sn)n≥1 be be a sequence that converges against s, and let
V be open so that ξ(s) ∈ V . Then U := ξ−1(V ) is open, and s ∈ U . So there exists
an n0 such that sn ∈ U for all n ≥ n0. For then ξ(sn) ∈ V for all n ≥ n0. So ξ(sn)
converges against ξ(s).

For the implication from (2) to (3), we show the contraposition. Suppose that ξ is
not continuous at some s ∈ S. That is, there exists an open set V containing ξ(s) such
that all open sets U that contain x have an image that is not contained in V . Since S is
first-countable, there exists a countable collection Un of open sets containing s so that
any open V that contains s also contains some Un. Replacing Un by ∩nk=1Uk where
necessary, we may assume that U1 ⊃ U2 ⊃ · · · . If Un ⊆ ξ−1(V ), then ξ(Un) ⊆ V , in
contradiction to our assumption; so we can pick an sn ∈ Un \ ξ−1(V ) for all n, and
obtain a sequence that converges to s. But sn /∈ ξ−1(V ) for all n, and so ξ(sn) does
not converge to ξ(s) ∈ V .

Finally, the implication from (3) to (1) again holds in arbitrary topological spaces.
Let V ⊆ T be open. We want to show that U := ξ−1(V ) is open. If s is a point from
U , then because ξ is continuous at s, and V contains ξ(s) and is open, there is an open
set Us ⊆ S containing s whose image ξ(Us) is contained in V . Then

⋃
s∈U Us = U is

open as a union of open sets. �

9.1.2. Sum and quotient spaces. Let (Si)i∈I be a family of topological spaces.
If the Si are pairwise disjoint, then the sum space ⊕i∈ISi is the topological space on⋃
i∈I Si where the topology is given by the basis

{U ⊆
⋃
i∈I

Si | U ∈ Si for some i ∈ I}

Hence, U ⊆
⋃
i∈I is open if and only if U ∩ Si is open in Si for every i ∈ I.

Let S be a topological space and let E be an equivalence relation on S. We
write S/E for the set of equivalence classes of E and for s ∈ S we write s/E for the
equivalence class of s with respect to E. Then S/E can be equipped with the following
topology, called quotient topology : First define p : S → S/E by setting p(s) = s/E
(called the projection map). Define U ⊆ S/E to be open if and only if p−1(U) is open
in S. So the topology is smallest possible so that the projection map is continuous.

9.1.3. Product spaces. The product T =
∏
i∈I Si of a family of topological

spaces (Si)i∈I is the topological space on the cartesian product ×i∈ISi where the
open sets are unions of sets of the form ×i∈IUi where Ui is open in Si for all i ∈ I,
and Ui = Si for all but finitely many i ∈ I. For i ∈ I, the i-th projection map
πi : T → Si is the function defined by πi(u) := u(i). Note that the product topology
on T is the smallest topology such that each projection map πi is continuous.

Lemma 9.1.2. Let S and Si, for i ∈ I, be topological spaces and let f : S →∏
i∈I Si be any map. Then f is continuous if and only if for every i ∈ I the compo-

sition πi ◦ f : S → Si is continuous.

Proof. Clearly, if f is continuous, then so is πi ◦ f since the composition of
continuous functions is continuous. To prove the converse implication, it suffices to
prove that the preimage under f of every basic open set V = ×i∈IVi is open in S.
By the definition of the product topology, there exists a finite set F ⊆ I such that
Vi = Si for all I \ F . By assumption, πi ◦ f is continuous for all i ∈ I, and hence
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f−1(π−1
i (Vi)) is open, for all i ∈ I. We have that

f−1(V ) =
⋂
i∈F

f−1(π−1
i (Vi))

which is open as a finite intersection of open sets. �

If I has just two elements, say 1 and 2, we also write S1 × S2 for the product;
this operation is clearly associative. We denote by Sk for the k-th power S × · · · × S
of S. We also write SI to a |I|-th power of S, where the factors are indexed by the
elements of I. In this case, we can view each element of T := SI as a function from
I to S in the obvious way. The product topology on T is also called the topology of
pointwise convergence, due to the following.

Proposition 9.1.3. Let S be a topological Hausdorff space and let I be a set. Let
(ξn)n∈N be a sequence of elements of the product space T := SI . Then T is Hausdorff
and limn→∞ ξn = ξ if and only if limn→∞ ξn(j) = ξ(j) in S for all j ∈ I.

Proof. Let u, v ∈ T be distinct. Then there exists n ∈ N such that u(n) 6= v(n)
are distinct elements of the Hausdorff space S. It follows that there are disjoint open
sets U, V ⊆ S such that u(n) ∈ U and v(n) ∈ V . By the definition of the product
topology, the sets π−1

n (U) and π−1
n (V ) are open. Clearly, u ∈ π−1

n (U), v ∈ π−1
n (V ),

and π−1
n (U) and π−1

n (V ) are disjoint.
To prove the second statement, suppose first that limn→∞ ξn = ξ in T . Let j ∈ I

be arbitrary and let V be an open set that contains ξ(j). Then the set U :=
∏
i∈I Ti

where Ti = V if i = j, and Ti = S otherwise, is open in T and contains ξ, so there
is an n0 such that ξn ∈ U for all n ≥ n0. But then ξn(j) ∈ V for all n ≥ n0, and so
limn→∞ ξn(j) = ξ(j).

Now suppose that limn→∞ ξn(j) = ξ(j) in S for all j ∈ I, and let V be an open
set of T that contains ξ. Then there exists a finite J ⊆ I and open subsets (Vj)j∈J
of S such that f ∈

∏
i∈I Ti where Ti = Vi if i ∈ J and Ti = S otherwise. For each

j ∈ J there exists an nj so that ξn(j) ∈ Vj for all n ≥ nj . Then ξn ∈ V for all
n ≥ maxj∈Jnj , and hence limn→∞ ξn = ξ. �

Example 9.1.4. If we equip {0, 1} with the discrete topology, then {0, 1}N with
the product topology is called the Cantor space. 4

Example 9.1.5. If we equip the natural numbers N with the discrete topology,
then NN with the product topology is called the Baire space. The open sets are exactly
the unions of sets of the form {g ∈ N→ N | g(ā) = b̄} for some ā, b̄ ∈ Nk, k ∈ N. 4

In Section 9.2 we primarily work with the following topological space.

Example 9.1.6. For any base set B, we view Sym(B) as a subspace of B → B
with the product topology, where B is taken to be discrete, and also refer to this
topology as the topology of pointwise convergence on Sym(B). 4

In Section 9.4 we primarily work with the topological space introduced in Exam-
ple 9.1.7. Let B be a set, and let f ∈ Bk → B for some k ≥ 1. If A ∈ Bm×k for some
m ≥ 1, and A is viewed as a matrix with entries in B, then we write f(A) for the
m-tuple obtained by applying f to each row of the matrix A.

Example 9.1.7. For any countable base set B, we equip the set

OB :=
⋃
n≥1

O
(n)
B
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with the sum topology where for each n ∈ N the set O
(n)
B = BB

n

is equipped with
the product topology. Note that the open sets are exactly the unions of sets of the
form

TA,b := {g ∈ O
(k)
B | g(A) = b̄}

for some n, k ∈ N, A ∈ Bn×k, and b ∈ Bn, so the topology is second-countable. 4

9.1.4. Metrics. Important examples of topologies come from metric spaces. A
metric space is a pair (M,d) where M is a set and d is a metric on M , i.e., a function

d : M ×M → R
such that for any x, y, z ∈M , the following holds:

(1) d(x, y) ≥ 0 (non-negativity)
(2) d(x, y) = 0⇔ x = y (indiscernibility)
(3) d(x, y) = d(y, x) (symmetry)
(4) d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality)

When M ′ ⊆M then the restriction of d to M ′ is clearly a metric, too. Every metric
on M gives rise to a topology on M , namely the topology with the basis{

{y ∈M | d(x, y) < ε} | 0 < ε ∈ R, x ∈M
}
.

A topological space S is metrisable if there exists a metric d on S which is compatible
with the topology, i.e., the topology equals the topology that arises from the metric
as described above. Clearly, metrisable spaces are Hausdorff.

Definition 9.1.8. A metric d is called an ultrametric if it satisfies d(x, z) ≤
max(d(x, y), d(y, z)) for all x, y, z.

Example 9.1.9. The Baire space (Example 9.1.5) has the following compatible
ultrametric d. For elements f, g ∈ G we define d(f, g) = 0 if f = g, and otherwise
d(f, g) = 1/2n+1 where n is the least natural number such that f(n) 6= g(n). 4

Example 9.1.10. The box metric on Nk → N is the metric defined by

d(f, g) := 2−min{n∈N | there is s∈{1,...,n}k such that f(s)6=g(s)}.

This metric is compatible with the product topology of Nk → N if N is taken to be
discrete (Example 9.2.1), and it is an ultrametric. 4

Metric spaces have the advantage that we can use Cauchy sequences to talk about
points that are not really there.

Definition 9.1.11. Let (M,d) be a metric space. A sequence (xn)n∈N of elements
in M is called Cauchy if for any ε > 0 there exists an n0 such that for all m,n > n0

we have d(xm, xn) < ε. The metric space (M,d) is called complete if every Cauchy
sequence has a limit in M .

Let (X, dX) and (Y, dY ) be metric spaces. A map f : (X, dX)→ (Y, dY ) is called
Cauchy continuous if for every Cauchy sequence (xn)n∈N in (X, dX) the sequence
(f(xn))n∈N is Cauchy in (Y, dY ).

Example 9.1.12. The standard distance metric on R is complete. The same
metric on Q is not complete. 4

Example 9.1.13. The ultrametric d from Example 9.1.9, restricted to Sym(N),
is compatible with the topology of pointwise convergence. This metric space is not
complete: to see this, let f be an arbitrary injective non-surjective mapping from
N → N. For each n, there exists a permutation hn of N such that hn(i) = f(i) for
all i ≤ n. We claim that the sequence (hn)n≥1 in Sym(N) is Cauchy. Let ε > 0.
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By the definition of the metric d, there exists an ` ∈ N such that for all p, q ∈ N,
if hp(i) = hq(i) for all i ≤ `, then d(hp, hq) < ε. By the definition of the sequence
(hn)n≥1, it follows that for all n,m ≥ ` we have that hn(i) = hm(i) for all i ≤ `.
Hence, d(hn, hm) < ε, proving that (hn)n≥1 is Cauchy. On the other hand, (hn)n≥1

does not converge to a permutation. 4

A topological space S is called completely metrisable if it has a compatible com-
plete metric. It is called Polish if S is separable and completely metrisable.

Example 9.1.14. The subspace Sym(N) of the Baire space is completely metris-
able. While the ultrametric d is not complete (Example 9.1.13), one can define a
compatible complete metric d′ on Sym(N) as follows. We define d′(f, g) := 0 if
f = g, and otherwise d′(f, g) := 1/2n+1 where n is the least natural number such
that f(n) 6= g(n) or f−1(n) 6= g−1(n). It is again easy to verify that d′ is an ultra-
metric. To see that it is complete, let (fn)n∈N be a Cauchy sequence in Sym(N). We
define f ∈ Sym(N) as follows. For n ∈ N, choose ε > 0 such that for all p, q ∈ N,
if d(fp, fq) < ε then fp(i) = fq(i) and f−1

p (i) = f−1
q (i) for all i ≤ n. Since (fn)n∈N

is Cauchy, there exists an n0 ∈ N such that for all p, q ≥ n0 we have d(fp, fq) < ε.
Define f(n) := fn0

(n). Then it is straightforward to verify that f is a permutation
and that (fn)n∈N converges against f . Since Sym(N) is also separable, we have that
Sym(N) is Polish. 4

9.1.5. Uniform continuity. Given metric spaces (X, d1) and (Y, d2), a function
f : X → Y is called uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x, y ∈ X (d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε) .

For comparison: continuity of f with respect to the topologies induced by d1 and d2

only requires that

∀ε > 0, x ∈ X ∃δ > 0 ∀y ∈ X (d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε) .

Example 9.1.15. An endomorphism ξ of the Baire space with the metric d defined
in Example 9.1.9 is uniformly continuous if for every finite F ⊆ N there exists a finite
G ⊆ N such that for all f, g ∈ NN if f |G = g|G then ξ(f)|F = ξ(g)|F .

For comparison: an endomorphism of the Baire space is continuous if and only
if for every finite F ⊆ N and every f ∈ NN there exists a finite G ⊆ N such that if
g ∈ NN is such that f |G = g|G then ξ(f)|F = ξ(g)|F . 4

Proposition 9.1.16. A uniformly continuous map f between metric spaces maps
Cauchy sequences to Cauchy sequences.

Proof. Let (sn)n∈N be a Cauchy sequences, and let ε > 0. By uniform continuity
of f there exists δ > 0 such that d(f(x) − f(y)) < ε for d(x − y) < δ. Since sn is
Cauchy, there exists an n0 > 0 such that d(sn − sm) < δ for all n,m > n0. Hence,
d(f(sn)− f(sm)) < ε for all n,m > n0. Therefore, (f(sn))n∈N is Cauchy. �

9.1.6. Compactness. A cover of a space S is a family C of subsets of S whose
union equals S; we say that C covers S. A topological space S is called compact if
for any cover C of S consisting of open subsets of S (also called an open cover of S)
there is a finite subset of C that covers S (also called a subcover of C). Equivalently,
if {Vi}i∈A is a collection of closed sets such that

⋂
i∈B Vi 6= ∅ for every finite subset

B of A, then
⋂
i∈A Vi 6= ∅. The Baire space is clearly not compact, but the Cantor

space is. More generally, Tychonoff’s theorem states that products of compact spaces
are compact; for a proof, see for example [353].

Theorem 9.1.17 (Tychonoff). Products of compact spaces are compact.
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Proposition 9.1.18. Let T be a compact space. Then closed subspaces of T and
quotients of T are compact as well.

Proof. Let C be a closed subspace of T . Let U be an open cover of C. By
assumption, T \ C is open in T . Hence, U ∪ {T \ C} is an open cover of T . As T is
compact, there is a finite subcover of U , say {U1, U2, . . . , Ur}. This also covers C by
the fact that it covers T . If T \ C is among U1, U2, . . . , Ur, then it can be removed
and the remaining sets still cover C. Thus we have found a finite subcover of U which
covers C, and hence C is compact.

Let E be an equivalence relation and let C be an open cover of T/E. Then{
{s/E | s ∈ U} | U ∈ C

}
is an open cover of T . Since T is compact there is a finite

subcover of
{
{s/E | s ∈ U1}, . . . , {s/E | s ∈ Un}

}
. But then {U1, . . . , Un} is a finite

subcover of C, showing compactness of T/E. �

Let T be a topological space and S ⊆ T . Then x ∈ T is called a limit point of
S if x ∈ S \ {x}. In other words, x ∈ T is not a limit point of S if there is an open
U ⊆ T such that U ∩ S = {x}.

Proposition 9.1.19. Let T be compact. Then every infinite S ⊆ T has a limit
point in T .

Proof. Let S ⊆ T be without limit points. Then S is closed and hence compact
(Proposition 9.1.18). For any s ∈ S there is an open Us such that Us ∩ S = {s},
because s is not a limit point of S. Then {Us | s ∈ S} is an open cover of S, which
must have a finite subcover by compactness. It follows that S is finite. �

9.2. Topological Groups

A topological group is an (abstract) group G together with a topology on the
elements G of G such that the function (x, y) 7→ xy−1 from G2 to G is continuous.
In other words, we require that the binary group operation and the inverse function
are continuous. Note that every open subgroup H of a topological group G is closed,
since the complement of H in G is the open set given by the union of open sets gH for
g ∈ G \H. A topological isomorphism of topological groups is a group isomorphism
which is a homeomorphism between the respective topologies.

Example 9.2.1. The group Sym(N) with the pointwise convergence topology
induced by the Baire space is a topological group: if U ⊆ G is a basic open set of the
form Sa,c := {f ∈ G | f(a) = c} for some a, c ∈ Nk, then the preimage of U under the
composition operation ◦ : G2 → G is

{(f, g) ∈ G2 | f ◦ g ∈ Sa,c} = {(f, g) ∈ G2 | ∃b ∈ Nk s.t. g ∈ Sa,b and f ∈ Sb,c}

=
⋃
b∈Nk

(Sb,c × Sa,b)

which is open as it is a union of open sets. 4

As in Example 9.2.1, every permutation group on a set B gives rise to a topological
group with respect to the product topology on Sym(B) where B is taken to be discrete;
then the closed subsets of Sym(B) are precisely as described in Definition 4.2.1.

A topological group is Hausdorff (first-countable, metrisable, Polish) if its topol-
ogy is Hausdorff (first-countable, metrisable, Polish, respectively). Note that G is
first-countable if and only if G it has a countable basis at the identity: if B is a basis
of open sets at the identity, and g ∈ G, then {g−1U | U ∈ B} is a basis at g.

The continuity of a homomorphism between two topological groups can be checked
at the identity.
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Lemma 9.2.2. Let G and H be topological groups and h : G→ H a homomorphism
from G to H. Then h is continuous if and only if it is continuous at 1.

Proof. Continuity implies continuity at 1. To prove the converse direction, let U
be an open set of H, and let g ∈ U . Since g−1 is continuous we have that S := g−1U
is open. ξ−1(U) = ξ−1(gS) = ξ−1(g)ξ−1(S) because ξ is a homomorphism. Since
1 ∈ S, the assumption implies that ξ−1(S) is open, and since multiplication by ξ−1(g)
is continuous, ξ−1(g)ξ−1(S) = ξ−1(U) is open, which establishes continuity of ξ. �

9.2.1. Continuous actions. An action of a topological group G on a topologi-
cal space S is continuous if it is continuous as a function from G×S into S. If S is a
topological space, then Homeo(S) ⊆ Sym(S) denotes the set of all homeomorphisms
of S. We will view Homeo(S) as a topological space with the subspace topology
inherited from SS which carries the product topology2.

Proposition 9.2.3. Every continuous action of a topological group G on a topo-
logical space S is a continuous homomorphism from G into Homeo(S).

Proof. Suppose that ξ : G → Sym(S) is a continuous action of G on S, so the
map χ(g, s) := ξ(g)(s) is continuous from G × S to S. For every g ∈ G, the map tg
defined by s 7→ χ(g, s) is continuous. The inverse of tg is s 7→ χ(g−1, s), which is also
continuous. Hence, tg is a homeomorphism.

To show that ξ is continuous, let U be a basic open subset of Homeo(S), i.e.,
U =

∏
s∈S Us where Us is open in S for all s ∈ S, and there exists a finite set F such

that Us = S for all s ∈ S \ F . Note that for fixed s, the map ts : G → S given by
g 7→ ξ(g)(s) is continuous, and hence for all s ∈ F the set {g ∈ G | ξ(g)(s) ∈ Us} is
open. Therefore,

ξ−1(U) = {g ∈ G | ξ(g)(s) ∈ Us for all s ∈ F}

=
⋂
s∈F
{g ∈ G | ξ(g)(s) ∈ Us}

is a finite intersection of open sets and hence open. �

If S carries the discrete topology (in which case Homeo(S) = Sym(S)), the state-
ment of Proposition 9.2.3 can be strengthened to obtain an equivalent characterisation
of continuity of actions.

Lemma 9.2.4. Let G be a topological group and ξ an action of G on a set S
equipped with the discrete topology. Then the action ξ is continuous if and only if ξ
is continuous as a map from G to Sym(S).

Proof. The forward implication follows from Proposition 9.2.3. For the converse
implication, we have to show that the function χ : G×S → S given by (g, s) 7→ ξ(g)(s)
is continuous. Let S′ ⊆ S and s′ ∈ S′; it suffices to show that there exists an open
U ⊆ G and an open T ⊆ S′ such that χ(U, T ) contains s′. Since S is discrete, in
particular T := {s′} is open. Let U := ξ−1(Sym(S)s′) which is by assumption an
open subset of G. Then χ(U, T ) contains s′. �

An important example of a continuous action of a topological group G is the
action of G on the coset space of an open subgroup by left translation (Example 9.2.6).

2Note that it is not clear (and depends on S) whether Homeo(S) with this topology is a topo-
logical group.
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Definition 9.2.5. A left coset of a subgroup V of G is a set of the form {hg | g ∈
V } for h ∈ G, also written hV . Clearly, the set of all left cosets of G partitions G,
and is denoted by G/V . The cardinality of G/V is called the index of V in G. The
space V \G of all right cosets V h is defined analogously.

We also view G/V as a topological space with the quotient topology, i.e., a set
of left-cosets is open if their union is an open subset of G.

Example 9.2.6. We define a continuous action of G on G/V by setting

g · hV := ghV.

This action is also called the action of G on G/V by left translation. Suppose now
that V is open. Then the action by left translation is continuous: to see this, let
S ⊆ G/V be open, and let gV ∈ S. It suffices to show that there are open subsets
U ⊆ G and T ⊆ G/V such that gV ∈ {ξ(u)(t) | u ∈ U, t ∈ T} ⊆ S. By the
definition of the quotient topology p−1(S) is open in G. Since composition in G is
continuous the set {(g1, g2) ∈ G2 | g1g2 ∈ p−1(S)} is open in G2. This set contains
(1, g) since p(1g) = gV ∈ S. So there exists an open U ⊆ G containing 1 and
an open H ⊆ G containing g such that {uv | u ∈ U, v ∈ H} ⊆ p−1(S). Then
T := p(H) = {vV | v ∈ H} is open in G/H, and

gV ∈ {ξ(u)(t) | u ∈ U, t ∈ T} = {uvV | u ∈ U, v ∈ H} ⊆ S. 4

We present an example of a discontinuous group action of an oligomorphic per-
mutation group.

Example 9.2.7. The structure A presented in this example is due to Cherlin and
Hrushovski (see also [266]). Let K be the class of all finite structures (A;E1, E2, . . . )
where Ei denotes an equivalence relation on i-tuples with pairwise distinct entries
from A with at most two equivalence classes. Clearly, K is closed under substructures
and isomorphism, and is countable up to isomorphism. It is easy to verify that it
also has the amalgamation property (Section 2.3). Let A be the Fräıssé-limit of K.
Then Aut(A) has a homomorphism ξ1 to (Z2)N (which is equipped with the product
topology): for α ∈ Aut(A) we define ξ1(α) := (αi)i∈N where αi := 0 if α fixes the
equivalence classes of Ei+1 and αi := 1 otherwise. This map is clearly a group
homomorphism.

To construct a discontinuous group homomorphism, let U be an ultrafilter on N,
and let ξ2 : (Z2)N → Z2 be the function that maps (αi)i∈N to 0 if {i | αi = 0} ∈ U , and
to 1 otherwise. Again, it is straightforward to verify that ξ2 is a group homomorphism.
It is continuous if and only if U is principal. For a non-principal ultrafilter U the map
ξ2 ◦ ξ1 is a discontinuous group homomorphism from an oligomorphic permutation
group to Z2. 4

We often consider continuous actions on product spaces; in this context, the
following basic fact is useful.

Proposition 9.2.8. Let X be a topological Hausdorff space, and Y be any set.
Let G be a topological group with an action ξ on XY . Then ξ is continuous if and
only if for every y ∈ Y , the map fy : G ×XY → X given by fy(g, ξ) := (g · ξ)(y) is
continuous.

Proof. Suppose that limn→∞(gn, ξn) = (g, ξ). Then by Proposition 9.1.3 we
have limn→∞ gn = g and limn→∞ ξn(y) = ξ(y) for all y ∈ Y . Since fy is continuous
and by Proposition 9.1.1

lim
n→∞

(gn · ξn)(y) = lim
n→∞

fy(gn, ξn) = fy(g, ξ) = (g · ξ)(y)
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for all y ∈ Y . We again apply Proposition 9.1.3 and obtain that limn→∞(gn·xn) = g·ξ,
which implies continuity of the action of G, again using Proposition 9.1.1. The proof
of the converse implication is straightforward, too. �

There are closed oligomorphic subgroups of Sym(N) with a continuous action
on N such that the image of the action is not closed in Sym(N). The basic idea
of this example is due to Dugald Macpherson and can be found in Hodges’ Model
Theory [213] on page 354.

Example 9.2.9. Using the technique presented in Section 2.3.6, it is easy to
construct a homogeneous structure Q := (Q;<,P ) where

• < is the usual strict order of the rational numbers, and
• P ⊆ Q is such that both P and O := Q \ P are dense in (Q;<).

Let P be the substructure of Q induced on P . It is easy to see (and also follows
from Theorem 9.5.25) that the mapping which sends f ∈ Aut(Q) to f |P induces a
continuous homomorphism µ from Aut(Q) to Aut(P) whose image is dense in Aut(P).
We claim that µ is not surjective. To prove this, we consider Dedekind cuts (S, T ) of
P, that is, partitions of P into subsets S, T with the property that for all s ∈ S and
t ∈ T we have s < t. Note that for each element o ∈ O we obtain a Dedekind cut
(S, T ) with S := {a ∈ P | a < o} and T := {a ∈ P | a > o}. But since there are
uncountably many Dedekind cuts and only countably many elements of O, there also
exists a Dedekind cut (S′, T ′) which is not of this form. By a standard back-and-forth
argument, there exists an α ∈ Aut(P,<) that maps S to S′ and T to T ′. Suppose
for contradiction that there is β ∈ Aut(Q) with β|P = α. Then s < β(o) < t for all
s ∈ S′, t ∈ T ′, in contradiction to the assumptions on (S′, T ′). 4

On the other hand, for some natural actions the image will be closed.

Example 9.2.10. Let G be a topological group and H be an open subgroup of
G. Then the action of G on G/H by left translation (Example 9.2.6) has a closed
image in Sym(G/H). This follows from the fact that H is open in G if and only if
G/H is discrete. 4

9.2.2. Metrics on topological groups. Let G be a closed subgroup of Sym(N).
Then the ultrametric d inherited from the Baire space (Example 9.1.9) is compatible
with the pointwise convergence topology on G, and, in addition, is left-invariant , i.e.,
d(gf1, gf2) = d(f1, f2) for all g, f1, f2 ∈ G.

Proposition 9.2.11. Let ξ : G → H be a continuous homomorphism between
topological groups with compatible left-invariant metrics d1 and d2. Then f is uni-
formly continuous.

Proof. Let ε > 0. Since ξ is continuous, there exists a δ > 0 such that for all
g ∈ G with d1(1G, g) < δ we have d2(1H, ξ(g)) < ε. Let g1, g2 ∈ G be such that
d1(g1, g2) < δ. Then d1(1G, g−1

1 g2) < δ, and hence

d2(ξ(g1), ξ(g2)) = d2(1H, ξ(g1)−1ξ(g2)) = d2(1H, ξ(g−1
1 g2)) < ε

which shows uniform continuity of ξ. �

9.2.3. Closed subgroups. In this text, we are mostly interested in topological
groups that arise as automorphism groups of countable structures. These groups can
be characterised in topological terms. We have already seen in Section 9.2.2 that every
closed subgroup of Sym(N) is Polish. But the group (R; +) with the usual topology
on R is also a Polish group and certainly not a closed subgroup of Sym(N).

A topological group is called non-archimedean if it has a basis at the identity
consisting of open subgroups. It is clear that Sym(N) is non-archimedean.
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Theorem 9.2.12 (Section 1.5 in [35]; also see Theorem 2.4.1 and Theorem 2.4.4
in [182]). Let G be a topological group. Then the following are equivalent.

(1) G is topologically isomorphic to the automorphism group of a countable re-
lational structure.

(2) G is topologically isomorphic to a closed subgroup of Sym(N).
(3) G is Polish and admits a compatible left-invariant ultrametric.
(4) G is Polish and non-archimedean.
(5) G is Polish and has a countable basis closed under left multiplication, i.e.,

a countable basis B of G so that for any U ∈ B and g ∈ G we have gU ∈ B.

Proof. The equivalence of (1) and (2) has been shown in Proposition 4.2.2. For
the implication from (2) to (3), we have already discussed the left-invariant ultramet-
ric. Note that G is separable: for all finite tuples ā, b̄ that lie in the same orbit we
fix an element of G that maps ā to b̄; the (countable) set of all the selected elements
of G is clearly dense in G. We have seen in Example 9.1.14 that G is also completely
metrisable.

For the implication from (3) to (4), let d be a left-invariant ultrametric on G.
Let Un = {x ∈ G | d(x, 1) < 2−n}, for n ∈ N. We claim that the set of all those Un
forms a basis at the identity consisting of open subgroups. Since d is a left-invariant
ultrametric, for x, y ∈ G we have

d(x−1y, 1) = d(y, x) ≤ max(d(y, 1), d(1, x))

and thus Un is a indeed a subgroup.
For the implication from (4) to (5), assume (4). Let {U1, U2, . . . } be an at most

countable basis at the identity (which exists since G is metrizable). Each Ui has an
open subset Vi which is a subgroup, since G has a basis at the identity consisting of
open subgroups. Then {V1, V2, . . . } is a countable basis of the identity consisting of
open subgroups. Each Vi has at most countably many cosets since G is separable. So
the set of all cosets of those groups gives an at most countable basis that is closed
under left multiplication.

Finally, we show that (5) implies (2). Let B = {U1, U2, . . . } be a countable basis
closed under left multiplication. We define the map ξ : G→ Sym(N) by setting

ξ(g)(n) = m ⇔ gUn = Um .

(If |B| = n0 is finite, we define the map ξ : G→ Sym(N) similarly, but set ξ(g)(n) = n
for all n > n0.) It is straightforward to verify that ξ(fg) = ξ(f)ξ(g). The mapping
ξ is injective: when f and g are distinct, then there are disjoint open subsets U and
V with f ∈ U and g ∈ V , because the topology is Hausdorff; since B is a basis,
we can assume that U = Un1

and V = Un2
, for some n1, n2 ≥ 1. If fUn1

= gUn1
,

then g ∈ Un1 = U since f ∈ Un1 , contradicting the assumption that U and V
are disjoint. Hence, ξ(f)(n1) 6= ξ(g)(n1), and so ξ(f) 6= ξ(g). Since bijective algebra
homomorphisms are isomorphisms, ξ is an isomorphism between G and a subgroup of
Sym(N). To verify that ξ is continuous, let g ∈ G be arbitrary, and let V ⊆ Sym(N)
be an open set containing ξ(g). Then V is a union of basic open sets of the form
Vā,b̄ := {f ∈ Sym(N) | f(ā) = b̄} for some ā, b̄ ∈ Nn. The preimage of Vā,b̄ under ξ
is {g ∈ G | gUa1 = Ub1 ∧ · · · ∧ gUan = Ubn}. Since multiplication in G is continuous,
this set is open. Hence, the preimage of V is a union of open sets and therefore open
as well, which concludes the proof that ξ is continuous.

It can also be verified that ξ is open, and that the image of ξ is closed; for the
details of this last step, we refer to [182] (Theorem 2.4.4). �



262 9. TOPOLOGY

9.2.4. Open subgroups. Let G be a subgroup of Sym(B). If n ∈ N and
a ∈ Bn, then Ga denotes the set of all elements of G that fix a; they form a subgroup
of G. Similarly, if F ⊆ B then we write G(F ) for the set of all elements of G that
fix every a ∈ F . These subgroups are called point stabilisers of G (at a and at F ,
respectively).

Lemma 9.2.13. Let G be a subgroup of Sym(N) and U a subgroup of G. Then
the following are equivalent.

(1) U is open in G;
(2) U contains the point stabiliser of G at some finite subset of N;
(3) U contains an open subgroup of G.

Proof. 1 ⇒ 2: Since U is open in G it must contain S(a, b) ∩ G for some
a, b ∈ Nn. Every element of Ga can be written as αβ with α ∈ G ∩ S(b, a) ⊆ U and
β ∈ G ∩ S(a, b) ⊆ U . Hence, U contains Ga.

2⇒ 3: trivial.
3⇒ 1: Let H be an open subgroup of U. Then U =

⋃
α∈U αH. Since H and αH

are open, it follows that U is open, too. �

For a subset A of B, the set stabiliser GA of G is the set of all α ∈ G that fix A
setwise, that is, αA = A.

Lemma 9.2.14. Let G be a subgroup of Sym(B). Then U is an open subgroup of
G if and only if U = GS is the set stabiliser of a block S of the componentwise action
of G on Bn for some n ∈ N.

Proof. Let S ⊆ Bn be a block of the componentwise action of G on Bn (viewed
as a permutation group on Bn); let C be a congruence of this permutation group such
that S is a congruence class of C. We first prove that GS is open in G. Arbitrarily
pick an s ∈ S. Let α ∈ Gs and t ∈ S. Then (s, t) ∈ C and hence (α(s), α(t)) ∈ C.
Since α(s) = s ∈ S we conclude that α(t) ∈ S. So α ∈ GS and Gs ⊆ GS . Therefore,
GS contains an open subgroup and Lemma 9.2.13 implies that GS is open.

Conversely, let U be an open subgroup of G. Then U must contain Gt for some
n ∈ N and some t ∈ Bn, again using Lemma 9.2.13. We claim that S := {h(t) | h ∈ U}
is a block of the componentwise action of G on Bn. By Lemma 4.2.11 it suffices to
verify that g(S) = S or g(S) ∩ S = ∅ for all g ∈ G. Suppose that g(S) ∩ S 6= ∅.
Then there are h1, h2 ∈ U such that h1(t) = g(h2(t)). Thus, (h−1

1 ◦ g ◦ h2) ∈ Gt, and
g ∈ h1Gth

−1
2 ⊆ U . But then g(S) = S, which concludes the proof that S is a block.

Now we verify that U = GS . Let g ∈ U and s ∈ S. Then s = h(t) for some
h ∈ U . Hence, g(s) = gh(t) ∈ S by the definition of S, because gh ∈ U . Therefore,
U ⊆ GS . Now suppose that g ∈ GS . Since g preserves S, we have g(t) ∈ S, and thus
there exists an h ∈ U with hg(t) = t. So hg ∈ Gt ⊆ U , and thus g ∈ U . �

Lemma 9.2.14 has the following immediate consequence.

Corollary 9.2.15. Every permutation group on a countable set has countably
many open subgroups.

9.2.5. Closed normal subgroups. Every open subgroup of a topological group
is closed, but the converse is of course false. However, if we additionally require that
the subgroup is normal , more can be said. A subgroup N of a group G is called
normal if gN = Ng for every g ∈ G. Recall the following equivalent characterisations
of normality of subgroups, which can be seen as a refinement of Proposition 6.3.2 for
the case of groups.



9.2. TOPOLOGICAL GROUPS 263

Proposition 9.2.16. Let G be a group, and N be a subgroup of G. Then the
following are equivalent.

(1) N is normal.
(2) G has the congruence E = {(a, b) | ab−1 ∈ N}.
(3) There is a homomorphism h from G to some group such that N = h−1(0).
(4) For every g ∈ G and every v ∈ N we have gvg−1 ∈ N .

The notion of a quotient algebra (Definition 6.3.3) of course also applies to groups.
If E is a congruence of a group G, then G/E is also called a quotient group. Proposi-
tion 9.2.16 shows that in the case of groups, every congruence E arises from a normal
subgroup N, and we then also use the notation G/N instead of G/E; note that this
is compatible with Definition 9.2.5, since the elements of the quotient group are the
left cosets of N (which are the same as the right cosets of N since N is a normal
subgroup). It can be shown that the quotient topology on G/N turns the quotient
group into a topological group.

Congruences of G should not be confused with congruences of actions of G; but
if G is a closed subgroup of Sym(B), we we can use the latter to understand the
former.

Proposition 9.2.17. Let G be a closed subgroup of Sym(B).

• Let C be a congruence of the componentwise action of G on Bn, for some
n. Then

⋂
S∈Bn/C GS is a closed normal subgroup of G.

• The closed normal subgroups of G are precisely the countable intersections
of closed normal subgroups of the above form.

Proof. We first show that U :=
⋂
S∈Bn/C GS is a closed normal subgroup of

G. Let α ∈ G and β ∈ U , let S ∈ S and s ∈ S. Note that (α−1s, βα−1s) ∈ C since
β fixes the equivalence classes of C. Hence, (s, αβα−1s) are in the same equivalence
classes since α preserves C. It follows that α◦β ◦α−1 preserves each equivalence class
of C, and thus is in U . Normality of U then follows from Proposition 9.2.16. Also
note that U is closed as an intersection of closed sets.

For the second statement, let N be a closed normal subgroup of B and for each
n ∈ N, consider the relation

Rn := {(x, y) | x, y ∈ Bn and there is β ∈ N such that βx = y} .
This relation is obviously an equivalence relation, and it is preserved by all permuta-
tions in G. For this, we have to show that for all α ∈ G and all (x, y) ∈ Rn we have
that (αx, αy) ∈ Rn. So suppose that x, y ∈ Bn such that βx = y for some β ∈ N .
Then

αy = αβx ∈ (αN)x = (Nα)x

by the normality of N . Hence there exists a β′ ∈ N such that β′αx = αy, which
shows that (αx, αy) ∈ Rn.

For n ≥ 1, let Sn be the set of equivalence classes of Rn and define

U :=
⋂
n≥1

⋂
S∈Sn

GS ;

we have to show that U = N . For every n ≤ 1, every β ∈ N preserves every S ∈ Sn,
and hence N ⊆

⋂
S∈Sn GS . For the converse inclusions, let α ∈ U , and let x, y be

from Bn so that αx = y. Since α preserves the equivalence classes of Rn, there exists
an β ∈ N such that βx = y. Hence, α ∈ N , which implies that g ∈ N since N is
closed by assumption. �

We illustrate Proposition 9.2.17 with an example.
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Example 9.2.18. Let Betw =
{

(x, y, z) ∈ Q3 | (x < y < z) ∨ (z < y < x)
}

be the Betweenness Relation on Q. Then Aut(Q; Betw) is 2-transitive and therefore
primitive. However, the relation{

((x1, x2), (y1, y2)) | (x1 < x2 ∧ y1 < y2) ∨ (x1 > x2 ∧ y1 > y2) ∨ (x1 = x2 ∧ y1 = y2)
}

is an invariant equivalence relation on Q2. And indeed, Aut(Q; Betw) has the closed
normal subgroup Aut(Q;<), and Aut(Q; Betw)/Aut(Q;<) has two elements, corre-
sponding to the automorphisms that reverse the order < and the automorphisms that
preserve the order. 4

9.2.6. Reconstruction of Topology. A surprising amount of information about
the topology of the automorphism group of a countable structure B may be coded into
Aut(B) viewed as an abstract group. For example, Sym(B) has only two separable
group topologies, namely the trivial one and the Polish topology from Example 9.2.1
(Kechris and Rosendal [238], Theorem 6.26). In this section we discuss the question
whether we can reconstruct the topology of closed subgroups of Sym(N) from the ab-
stract group. Section 9.4.2 discusses the analogous problem for polymorphism clones
instead of automorphism groups, which is relevant for the complexity of constraint
satisfaction problems with ω-categorical templates.

Definition 9.2.19. Let G be a closed subgroup of Sym(N). We say that

• G has automatic continuity iff every homomorphism from G to Sym(N) is
continuous;
• G has automatic homeomorphicity iff every group isomorphism between G

and a closed subgroup of Sym(N) is a homeomorphism;
• G is reconstructible (or G has reconstruction) iff for every other closed sub-

group H of Sym(N), if there exists an isomorphism between H and G, then
there also exists a group isomorphism between H and G which is a homeo-
morphism.

Automatic continuity implies automatic homeomorphicity (Corollary 2.8 in [266]),
and clearly automatic homeomorphicity implies reconstruction. There are two dom-
inant methods for proving that a group is reconstructible. The first method is via
showing the small index property and the second is based on Mati Rubin’s forall-exists
interpretations. We have seen an example of a closed oligomorphic permutation group
without automatic continuity in Example 9.2.7. This example has still reconstruction;
this can be shown using the results of Rubin (see Remark 5.4.3 in [278]). A more
involved example of a closed oligomorphic permutation group without reconstruction
has been found by Evans and Hewitt [174].

Recall from Lemma 9.2.13 that a subgroup G of Sym(N) is open if it contains
the point stabiliser G(A) for some finite A ∈ N. Clearly, these groups have countable
index, so all open subgroups of Sym(N) have countable index. The situation that the
converse holds as well deserves a name.

Definition 9.2.20. A topological group G has the small index property if every
subgroup of G of at most countable index is open.

Some authors define the small index property slightly differently: they require
that every subgroup of G of cardinality less than 2ω is open. There is no exam-
ple known of closed oligomorphic permutation group where the two definitions dif-
fer [278]. We have chosen our formulation essentially because of the following propo-
sition.

Proposition 9.2.21 (Folklore). Let G be a closed subgroup of Sym(N). Then G
has automatic continuity if and only if it has the small index property.
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Proof. Suppose that G has automatic continuity and let U be a subgroup of G
of at most countable index. We have to show that U is open. Let ξ : G → G/U be
the action of G on the left cosets of U in G by left translation (Example 9.2.6), where
G/U is equipped with the discrete topology. By automatic continuity, ξ is continuous.
In particular, the pre-image of the open set {α ∈ Sym(G/U) | α(U) = U} is open.
But this pre-image is precisely U , which proves the small index property.

Now suppose that G has the small index property, and let ξ be an isomorphism
between G and another closed subgroup of H of Sym(N). By Lemma 9.2.2, it suffices
to prove continuity at 1. Note that the basic open subsets of H that contain 1 are
of the form Ha for a ∈ Nn, n ∈ N. The subgroup Ha of H has countable index, and
therefore ξ−1(Ha) is a subgroup of G of countable index, too, and hence open by
assumption. This establishes continuity of ξ. �

The small index property has been verified for the following groups:

(1) Sym(N) [158,320,337];
(2) the automorphism groups of countable vector spaces over finite fields [173];
(3) all automorphism groups of ω-categorical ω-stable structures [215];
(4) Aut(Q;<) [350];
(5) the automorphism group of the atomless Boolean algebra [350];
(6) the automorphism group of the ω-categorical dense semilinear order giving

rise to a meet-semilattice [164];
(7) the automorphism group of the random graph [215];
(8) the automorphism groups of the Henson graphs [208].

On the other hand, the small index property is not known for the automorphism
group of the countable universal homogeneous tournament , the countable universal
poset, or the random permutation (see [278]). But it is known to be consistent with
Zermelo-Fraenkel set theory (even in the presence of the axiom of dependent choice)
that every closed subgroup of Sym(N) has automatic continuity [266].

9.3. Oligomorphic Groups

In the previous section we have seen conditions that describe when a topological
group is topologically isomorphic to a closed subgroup of Sym(N). In this section,
we give conditions that characterise the topological groups which are topologically
isomorphic to an oligomorphic closed subgroup of Sym(N).

A topological group G is called Roelcke precompact if for every open set U ⊆ G
that contains the identity there exists a finite set F ⊆ G such that G = UFU .
The following theorem is essentially from Tsankov [351]; there, the focus has been a
characterisation of Roelcke precompact groups in terms of oligomorphic permutation
groups. Here, on the other hand, the focus will be the characterisation of oligomorphic
permutation groups in terms of Roelcke precompact ones, and this motivates the
following formulation of Tsankov’s theorem3.

Theorem 9.3.1. Let G be topologically isomorphic to a closed subgroup of Sym(N).
Then the following are equivalent.

(1) G is the automorphism group of a countably infinite ω-categorical structure.
(2) G is Roelcke precompact, and G has an open subgroup V of countably infinite

index such that for all open subgroups U of G there are g1, . . . , gn ∈ G such
that

⋂
i≤n giV g

−1
i ⊆ U .

3I am grateful to Todor Tsankov for his help with the presented reformulation of his result.
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(3) G has a faithful transitive continuous action on N, equipped with the discrete
topology, whose image is closed in Sym(N), and every such action of G is
oligomorphic.

(4) G is the automorphism group of a countably infinite ω-categorical structure
with only one orbit.

Proof. The implication from (4) to (1) is trivial, and we prove (1) ⇒ (2) ⇒
(3)⇒ (4). For the implication from (1) to (2), suppose that G is the automorphism
group of an ω-categorical structure B, and let G be the domain of G, which is a set
of permutations of the domain B of B. Since B is ω-categorical, Aut(B) has a finite
number k of orbits by Theorem 4.1.6; choose orbit representatives b1, . . . , bk ∈ B,
and write b̄ for (b1, . . . , bk). Then the stabiliser V := Gb̄ is an open subgroup of G
of countably infinite index. Let U be an arbitrary open subgroup of G. Then U
contains Gā for some ā ∈ Bn. For j ≤ n, let gj ∈ G be such that gj(aj) = b where

b ∈ {b1, . . . , bk} is from the same orbit as aj . We claim that K :=
⋂
j≤n g

−1
j V gj ⊆ U .

To see this, let h ∈ K be arbitrary. Since h ∈ g−1
j V gj we find that h(aj) = aj . Hence,

h ∈ Gā ⊆ U .
To show that G is Roelcke precompact, let U ⊆ G be open with 1 ∈ U . Then

there exists an n such that U contains the stabiliser Gā for an n-tuple ā of elements of
B. It suffices to show the existence of a finite number of elements g1, . . . , gk of G such
that G =

⋃
i≤kGāgiGā. By Theorem 4.1.6, G has finitely many orbits of 2n-tuples;

so let (ā, g1 · ā), . . . , (ā, gk · ā) be a complete list of representatives for those orbits of
2n-tuples that are contained in G·ā×G·ā. We claim that Gāg1Gā∪· · ·∪GāgkGā = G.
Let f ∈ G be arbitrary. Let i ≤ k be such that (ā, f · ā) and (ā, gi · ā) lie in the same
orbit of n-tuples under Gā. So there exists an h ∈ Gā such that f · ā = hgi · ā. Then
f−1 ◦ h ◦ gi lies in Gā, so f ∈ GāgiGā as required.

(2) implies (3). Since V is open, G/V has the discrete topology, and B is count-
ably infinite by assumption. The action of G on G/V by left translation is contin-
uous and transitive (Example 9.2.6) and its image is closed in Sym(G/V ) (Exam-
ple 9.2.10). We show by induction that this action has only finitely many orbits of
n-tuples for all n ∈ N. Since the action is transitive, this is true for n = 1. For
the induction step, fix ā = (a1, . . . , an) ∈ (G/V )n, and let c be an arbitrary el-
ement from (G/V ) \ {a1, . . . , an}. Since G is Roelcke precompact, there exists a
finite set {f1, . . . , fk} ⊆ G such that G = Gācf1Gāc ∪ · · · ∪ GācfkGāc. Let B(ā) be
{f1 · c, . . . , fk · c}.

Claim 1. For every d ∈ (G/V ) \ {a1, . . . , an} there is an h ∈ Gā and b ∈ B(ā)
such that d = h ·b. By transitivity of G, there is a g ∈ G so that d = g ·c, for arbitrary
d ∈ (G/V ) \ {a1, . . . , an}. Let i, h1, h2 be such that h1, h2 ∈ Gāc and g = h1fih2.
Then d = gc = h1fih2 · c = h1fi · c, proving Claim 1.

Claim 2. When {ā1, . . . , ās} is a complete set of representatives for the orbits of
n-tuples under the permutation group G, then

{(āi, b) | i ∈ [s], b ∈ B(āi)}

is a complete set of representatives for the orbits of (n + 1)-tuples. Let (c̄, d) ∈
(G/V )n+1. By assumption there exists g ∈ G such that g · āi = c̄. Find h ∈ Gāi and
b ∈ B(āi) such that g−1 · d = h · b. Then

gh · (āi, b) = g · (āi, h · b) = (c̄, d)

shows that G has finitely many orbits of (n+ 1)-tuples and concludes the induction
step.

The implication from (3) to (4) follows from Corollary 4.2.10. Suppose that ξ is
a continuous transitive action of G on N whose image is closed in Sym(N). Then the
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image of ξ is a closed oligomorphic subgroup of Sym(N), and hence the automorphism
group of an ω-categorical relational structure with domain N. �

Note that closed oligomorphic permutation groups on countably infinite sets must
always have continuum cardinality; this follows from the following theorem.

Theorem 9.3.2 (cf. Corollary 4.1.5 in [214]). Let G be a closed subgroup of
Sym(N). Then the following are equivalent.

(1) There is a finite A ⊆ N such that |G(A)| = 1;
(2) |G| ≤ ω;
(3) |G| < 2ω.

Sketch of proof. The implications from (1) to (2) and from (2) to (3) are
trivial. For the implication from (3) to (1), suppose that ¬(1). Construct a binary
branching tree with the levels indexed by N; since G is closed in Sym(N) this can
be done in such a way that the infinite branches of the tree correspond to pairwise
distinct elements of G; we deduce that ¬(3) since there are uncountably many infinite
branches of the tree. �

Note that if G is an oligomorphic subgroup of Sym(N), then for every finite A ⊆ N
the point stabiliser G(A) is oligomorphic (Lemma 4.7.3, Theorem 4.1.6), and hence
item (1) in Theorem 9.3.2 does not apply. Hence, for every oligomorphic permutation
group on a countably infinite set there is a bijection between the group elements and
Sym(N). This bijection can be chosen to be a homeomorphism; we prove something
even stronger in Proposition 9.3.3. A bijection ξ between two metric spaces is called
a uniform homeomorphism if ξ and ξ−1 are uniformly continuous.

Proposition 9.3.3. Every closed oligomorphic subgroup G of Sym(N) is uni-
formly homeomorphic to Sym(N) (both spaces are equipped with the metric d inherited
from the Baire space).

Proof. Let N∗ be the set of words over the alphabet N, i.e., the set of finite
tuples of natural numbers. If k ∈ N and w ∈ Nk ⊆ N∗ then we write |w| for k and ε
for the unique element w ∈ N∗ with |w| = 0. A word w′ ∈ N∗ is a prefix of w ∈ N∗ if
w′(i) = w(i) for all i ∈ {1, . . . , |w′|}. Let

S := {w ∈ N∗ | there exists α ∈ G such that α(0, . . . , |w| − 1) = w}.
We first construct an injection f : N∗ → S with the property that if w′ is a prefix
of w, then f(w′) is a prefix of f(w). The uniform homeomorphism ξ : Sym(N) → G
that we are going to construct afterwards will then have the property that for every
k ∈ N \ {0}

ξ(α)(0, . . . , |f(0 · · · k)| − 1) = f
(
α(0) · · ·α(k − 1)

)
. (38)

Since G is oligomorphic some elements of N must lie in infinite orbits under G. Let
nε ∈ N be smallest such that the orbit of nε under G is infinite. Pick a bijection fε
between N and the (infinite) orbit of (0, . . . , nε) under G. We define f(ε) := ε and for
every ` ∈ N we define f(`) := fε(`).

Now suppose that inductively we have already defined f for w ∈ N∗; we want
to define f for words of the form w` for ` ∈ N. Since f(w) ∈ S there exists αw ∈
G such that αw(0, . . . , |f(w)| − 1) = f(w). The permutation group G(0,...,|f(w)|) is
oligomorphic, and hence it must have elements in infinite orbits. Let nw ∈ N be
smallest so that the orbit of nw under G(0,...,|f(w)|) is infinite; note that nw ≥ |w|. Fix
a bijection fw between N and the (infinite) orbit of (0, 1, . . . , nw) under G(0,...,|f(w)|).
Define f(w`) := αwfw(`). We prove that f(w) is a prefix of f(w`). First note that

(0, . . . , |f(w)|) = (fw(`)0, . . . , fw(`)|f(w)|) (39)
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since (0, . . . , nw) and fw(`) lie in the same orbit under G(0,...,|f(w)|). For i ≤ |f(w)|,
we have

f(w`)i =
(
αwfw(`)

)
i

(by the definition of f(w`))

= αw(fw(`)i)

= αw
(
(0, . . . , |f(w)|)i

)
(by (39))

= f(w)i (by the definition of αw).

It is straightforward to verify that f is injective.
To define ξ : Sym(N)→ G, let β ∈ Sym(N). Since G is a closed subset of Sym(N),

the observations above imply that the sequence (α(β(0),...,β(n)))n∈N converges to an
element α ∈ G, and we define ξ(β) := α.

Claim 1. ξ is injective. If β1, β2 ∈ Sym(N) are distinct, then there exists a small-
est n ∈ N such that β1(n) 6= β2(n). Then f(β1(0), . . . , β1(n)) 6= f(β2(0), . . . , β2(n)),
which in turn implies that α(β1(0),...,β1(n)) 6= α(β2(0),...,β2(n)) and thus ξ(β1) 6= ξ(β2).

Claim 2. ξ is surjective. Let α ∈ G. We claim that for every k ∈ N \ {0} there
exists wk ∈ Nk such that

• f(wk) = α(0) · · ·α(|f(wk)| − 1), and
• if k ≥ 2 then wk−1 is a prefix of wk.

We prove this by induction on k. For k = 1, there exists an ` ∈ N such that f(`) =
fε(`) = α(0) · · ·α(nε) since fε is a bijection between N and the orbit of (0, . . . , nε)
under G. For the inductive step we assume that there exists wk ∈ Nk such that
f(wk) = α(0) · · ·α(|f(wk)|−1). Note that α−1

wkα(i) = i for all i ∈ {0, . . . , |f(wk)|−1}.
Since fwk is a bijection between N and the orbit of (0, . . . , nwk) under G(0,...,|f(wk)|),

there exists an ` so that fwk(`) = α−1
wkα(0) · · ·α−1

wkα(nwk). Then

f(wk`) = αwkfwk(`) = α(0) · · ·α(nwk)

so wk+1 := wk` satisfies the requirement for the inductive step.
Observe that (wk)k∈N converges to an element β ∈ Sym(N) and that (αwk)k∈N

converges to α, so ξ(β) = α, proving the surjectivity of ξ.
Claim 3. ξ is uniformly continuous. Let F ⊆ N be finite. Let k := max(F ) and

suppose that β1, β2 ∈ Sym(N) are such that β1(0, . . . , k) = β2(0, . . . , k) =: t. Then
ξ(β1)(0, . . . , |f(t)|) = ξ(β2)(0, . . . , |f(t)|), proving uniform continuity of ξ.

Claim 4. ξ−1 is uniformly continuous. If F ⊆ N is finite, and β1, β2 ∈ Sym(N)
are such that ξ(β1) and ξ(β2) agree on the entries of f(0 · · ·max(F )), then β1 and β2

agree on F . �

9.4. Topological Clones

Definition 9.4.1. A topological clone is a clone

C = (C(1), C(2), . . . ; (prki )1≤i≤k, (compkl )1≤k,l)

together with a topology on C =
⋃
i C

(i) such that each C(n) is closed and open in C
and such that the composition operations are continuous.

A topological isomorphism between topological clones is an isomorphism between
the respective abstract clones which is also a homeomorphism.

Example 9.4.2. Let C ⊆ OB be an operation clone over the domain B. Then
C is a topological clone with respect to the topology on C inherited from the topol-
ogy on OB introduced in Example 9.1.7 (similarly as for permutation groups, see
Example 9.2.1). 4
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In this text, when we view operation clones as topological clones, this will always
be meant with respect to the topology in Example 9.4.2.

9.4.1. Metrics on clones. Let C be a topological clone and d a compati-
ble metric on C. We say that d is left non-expansive if for all f ∈ C(k) and
g1, h1, . . . , gk, hk ∈ C(l) we have that

d
(

compkl (f, g1, . . . , gk), compkl (f, h1, . . . , hk)
)
≤ max

(
d(g1, h1), . . . , d(gk, hk)

)
.

We say that d is projection right invariant if for all k ∈ N, f, g ∈ C(k), and pairwise
distinct i1, . . . , ik ∈ {1, . . . , l} we have

d(f, g) = d
(

compkl (f, prli1 , . . . ,prlik), compkl (g,prli1 , . . . ,prlik)
)
.

The box metric from on O
(k)
N = (Nk → N), defined in Example 9.1.10 can be

extended to all of ON by defining d(f, g) := 1 if f, g ∈ ON have distinct arities. It is
straightforward to verify that this metric is compatible with the topology of pointwise
convergence on ON (Example 9.2.1), and that it is complete, left non-expansive, and
projection right invariant. In the following, when we work with operation clones C
on countable base sets and refer to concepts the require a metric, such as uniform
continuity, we refer to box metric after identifying the countable base set with N.

Theorem 9.2.12 for topological groups has the following topological clone analog.

Theorem 9.4.3 (Theorem 5.4 in [102]). Let C be a topological clone. The fol-
lowing are equivalent.

(1) C is isomorphic to the polymorphism clone of a countable (homogeneous and
relational) structure.

(2) C is isomorphic to a closed subclone of ON.
(3) C is separable and admits a compatible complete left non-expansive and pro-

jection right invariant ultrametric.

Proof. The equivalence between (1) and (2) has already been shown in Corol-
lary 6.1.6. For the implication from (2) to (3), separability of ON, and hence also
of the topology on C has already been noted in Example 9.1.7. The box metric
from Example 9.1.10 is a compatible complete left non-expansive and projection right
invariant ultrametric on ON.

(3)⇒ (4). Let d be a compatible left non-expansive and projection right invariant
ultrametric of C. Note that for every n ∈ N the relation

Un := {(x, y) ∈ C2 | d(x, y) < 1/n}

is an equivalence relation. Let Nn := C/Un and let

N :=
⋃
n∈N

(Nn × {n}).

Define ξ : C → ON as follows. Let k ∈ N, f ∈ C(k), e1, . . . , ek ∈ N , and for i ∈
{1, . . . , k} let li ∈ N and gi ∈ C(li) be such that ei = (gi/Uni

, ni) for n1, . . . , nk ∈ N.
Let n := min(n1, . . . , nk) and l := max(l1, . . . , lk). Define

ξ(f)(e1, . . . , ek) :=
(
f(g1(prl1, . . . ,prll1), . . . , gk(prl1, . . . ,prllk))/Un, n

)
.

This is well-defined: for i ∈ {1, . . . , k} let hi ∈ C be such that (gi, hi) ∈ Uni
. Then

(gi(prl1, . . . ,prlli), hi(prl1, . . . ,prlli)) ∈ Uni
⊆ Un since d is projection right invariant.

Since Un is left invariant is contains the pair

(f(g1(prl1, . . . ,prll1), . . . , gk(prl1, . . . ,prllk)), f(h1(prl1, . . . ,prll1), . . . , hk(pl1, . . . ,prllk)).
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Claim 1. The map ξ is a homomorphism. Let f ∈ C(k) and g1, . . . , gk ∈ C(l).
Let n1, . . . , nl ∈ N and h1 ∈ C(m1), . . . , hl ∈ C(ml). For i ∈ {1, . . . , l} define ei :=
(hi/Uni

, ni) ∈ N . Let m := max(m1, . . . ,ml) and let n := min(n1, . . . , nl). We write
h′i for hi(prm1 , . . . ,prmmi

). Then

ξ(f(g1, . . . , gk))(e1, . . . , el) = (f(g1, . . . , gn)(h′1, . . . , h
′
l)/Un, n)

= (f(g1(h′1, . . . , h
′
l), . . . , gk(h′1, . . . , h

′
l)))/Un, n)

= ξ(f)
(
(g1(h′1, . . . , h

′
l)/Un, n), . . . , (gk(h′1, . . . , h

′
l)/Un, n)

)
= ξ(f)

(
ξ(g1)(e1, . . . , en), . . . , ξ(gl)(e1, . . . , en)

)
and

ξ(prli)(e1, . . . , el) = (prli(h1, . . . , hl)/Un, n) = (hi/Un, n) = ei

and thus, ξ(prli) is mapped to the i-th l-ary projection in ON .

Claim 2. The map ξ is injective. Let f1, f2 ∈ C be distinct. As the topology on C
is Hausdorff there exists an n ∈ N such that (f1, f2) /∈ Un. Therefore,

ξ(f1)
(
(g1/Un, n), . . . , (gk/Un, n)

)
= f1(g1, . . . , gk)/Un

6= f2(g1, . . . , gk)/Un = ξ(f2)
(
(g1/Un, n), . . . , (gk/Un, n)

)
.

Claim 3. The map ξ is continuous. Let f ∈ C(k) be arbitrary and let E ⊆ N be
finite. Define Wf,E := {g ∈ ξ(C) | g(e) = ξ(f)(e) for all e ∈ Ek}, and observe that
the sets of the form Wf,E form a basis for the topology on ξ(C) induced by ON . Then

ξ−1(Wf,E) = {g ∈ C | ξ(g)(e) = ξ(f)(e) for all e ∈ Ek}

=
⋂

e1,...,ek∈E

{
g ∈ C | ξ(g)(e1, . . . , ek) = ξ(f)(e1, . . . , ek)

}
.

Let e1, . . . , ek ∈ E be arbitrary and let hi ∈ C(li) be such that ei = (hi/Uni
, ni). Let

n := min(n1, . . . , nk) and l := max(l1, . . . , lk). Let ρh1,...,hk
: C(k) → C(l) be defined

by
ρh1,...,hk

(f) := f(h1(prl1, . . . ,prll1), . . . , hk(prl1, . . . ,prll1)).

Now,

S :=
{
g ∈ C | ξ(g)(e1, . . . , ek) = ξ(f)(e1, . . . , ek)

}
=
{
g ∈ C(k) | ρh1,...,hk

(g) ∈ ρh1,...,hk
(f)/Un

}
= ρ−1

h1,...,hk
(f/Un).

The set f/Un is open because d is a compatible metric. As composition in topological
clones is continuous, ρ is continuous, and therefore S is open, too. Hence, ξ−1(Wf,E)
is a finite intersection of open sets, and open. We have thus shown that for every
open subset V of ξ(C) containing ξ(f) there is an open subset of C that contains f
and whose image is contained in V , that is, ξ is continuous at f . The claim follows
from Proposition 9.1.1.

Claim 4. The map ξ−1 is uniformly continuous. We write d′ for the box metric on
ON (where we identify N with N in an arbitrary way). We have to show that for every
n ∈ N there exists an m ∈ N such that for all (f, g) ∈ C if d′(ξ(f), ξ(g)) < 1/m then
d(f, g) ≤ 1/n. We may assume that f and g have the same arity k. By the definition
of the box metric we may choose m large enough so that if d′(ξ(f), ξ(g)) < 1/m then

ξ(f)
(
(prk1 /Un, n), . . . , (prkk /Un, n)

)
= ξ(g)

(
(prk1 /Un, n), . . . , (prkk /Un, n)

)
.

Note that this is the case if and only if
(
f(prk1 , . . . ,prkk), g(prk1 , . . . ,prkk)

)
∈ Un, i.e.,

d(f, g) < 1/n.
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Claim 5. The image of C under ξ is closed in ON . Let (fi)i∈N be a sequence
of elements of C such that (ξ(fi))i∈N converges to g ∈ ON . Then (ξ(fi))i∈N is a
Cauchy sequence. Since ξ−1 is uniformly continuous, (fi)i∈N is a Cauchy sequence,
too (Proposition 9.1.16). Since d is complete, (fi)i∈N converges to an element f ∈ C.
Then ξ(f) = g by the continuity of ξ. �

9.4.2. Reconstruction of Topology. As in the case of groups, one may ask
how much information about the topology of a closed subclone C of OB is coded in
C viewed as an abstract clone. This is an important question for complexity classi-
fications for CSPs of ω-categorical structures B because we will see in Section 9.5.3
that the computational complexity of CSP(B) is determined by Pol(B) viewed as a
topological clone. Indeed, if C is the Horn clone (Theorem 7.5.2), the polymorphism
clone of the random graph, or OB itself it can be shown that any (abstract) clone
isomorphism between C and a closed subclone of ON is a homeomorphism [99]; we call
this property automatic homeomorphicity , analogously to the definition of automatic
homeomorphicity for topological groups (Definition 9.2.19). Further results in this di-
rection can be found in [36,310]. An ω-categorical structure A with finite relational
signature whose polymorphism clone does not have automatic homeomorphicity has
been described in [61]. The structure A even has the property that there exist other ω-
categorical structures such that Pol(A) and Pol(B) are isomorphic as abstract clones,
but no isomorphism exists which is additionally a homeomorphism. The construction
used requires the axiom of choice and the structure A is not homogeneous in a finite
relational signature.

9.5. The Topological Birkhoff Theorem

In this section we present a result which can be seen as a topological variant
of Birkhoff’s theorem (Theorem 6.5.1); a strengthened form of the statement for
oligomorphic algebras appeared first in [96] (see Theorem 9.5.15 below). Strictly
more general variants of the result can be found in [184,332].

9.5.1. Uniformly continuous Birkhoff. Let C1 and C2 be operation clones
over countable sets C1 and C2. A function ξ : C1 → C2 is uniformly continuous if and
only if it preserves the arities and for every finite G ⊆ C2 there is a finite set F ⊆ C1

such that for every k ∈ N and all f, g ∈ C
(k)
1 if f |Fk = g|Fk then ξ(f)|Gk = ξ(g)|Gk .

Theorem 9.5.1. Let A and B be τ -algebras such that B is countable and A is
generated by a finite set G. Then the following are equivalent.

(1) A ∈ HSPfin(B);
(2) there exists a finite F ⊆ B such that if t1(x1, . . . , xk) and t2(x1, . . . , xk) are

τ -terms with tB1 |Fk = tB2 |Fk , then tA1 |Gk = tA2 |Gk ;
(3) the natural homomorphism ξ from Clo(B) onto Clo(A) exists and is uni-

formly continuous.

Proof. For the implication from (1) to (3), suppose that µ is a surjective ho-
momorphism from a subalgebra S of Bk to A. For each a ∈ G pick an s ∈ S
such that µ(s) = a; let F be the (finite) set of all entries of all the picked tuples s.
Now let t1(x1, . . . , xk) and t2(x1, . . . , xk) be τ -terms such that tB1 |Fk = tB2 |Fk . Since
G ⊆ µ(F k) it follows that tA1 |Gk = tA2 |Gk , which proves the statement.

(3) implies (2). Immediate from the definition of uniform continuity.
(2) implies (1). Let G = {a1, . . . , ak}. By assumption, there exists a finite F ⊆ B

such that for all f, g ∈ if f |Fk = g|Fk then ξ(f)|Gk = ξ(g)|Gk . Let C := FG, and
let m := |C| = |F |k. Let c1, . . . , cm be an enumeration of C, and for j ≤ k define
cj := (c1j , . . . , c

m
j ) ∈ Fm. Let S be the subalgebra of Bm generated by c1, . . . , ck; so
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the elements of S are precisely those of the form tB
m

(c1, . . . , ck), for a k-ary τ -term
t. Define a function µ : S → A by setting

µ
(
tS(c1, . . . , ck)

)
:= tA(a1, . . . , ak).

Claim 1. µ is well defined. Suppose that tS(c1, . . . , ck) = sS(c1, . . . , ck). We
first show that tB|Gk = sB|Gk . Let b ∈ F k. Note that there is some i ≤ m such that
ci(aj) = bj for all j ≤ k. Hence,

tB(b) = tB
(
ci(a1), . . . , ci(ak)

)
= tB

(
(c1)i, . . . , (ck)i

)
= sB

(
(c1)i, . . . , (ck)i

)
= sB

(
ci(a1), . . . , ci(ak)

)
= sB(b).

So tB|Fk = sB|Fk and by the property of F it follows that tA|Gk = sA|Gk , and in
particular that tA(a1, . . . , ak) = sA(a1, . . . , ak).

Claim 2. µ is surjective. This follows immediately from the assumption that A
is generated by G.

Claim 3. µ is a homomorphism. Let f ∈ τ be an n-ary function symbol and let
s1, . . . , sn ∈ S. Since S is generated by c1, . . . , ck, there exist τ -terms t1, . . . , tn such
that si = tSi (c1, . . . , ck) for all i ∈ {1, . . . , n}. Writing c̄ for (c1, . . . , ck) we obtain

µ
(
fS(s1, . . . , sn)

)
= µ

(
fS(tS1 (c̄), . . . , tSn(c̄))

)
= µ

(
fS(tS1 , . . . , t

S
n)(c̄)

)
= µ

(
(f(t1, . . . , tn))S(c̄)

)
=
(
f(t1, . . . , tn)

)A
(a1, . . . , ak)

= fA
(
tA1 (a1, . . . , ak), . . . , tAn (a1, . . . , ak)

)
= fA

(
µ(s1), . . . , µ(sn)

)
.

It follows that A is the homomorphic image of the subalgebra S of Bm, and so
A ∈ HSPfin(B). �

Note that Theorem 9.5.1 has a version for permutation groups instead of polymor-
phism clones (Theorem 9.5.3 below). Because of Proposition 9.2.11, the assumptions
can be relaxed in this case to continuity instead of uniform continuity.

Definition 9.5.2. Let G be a permutation group on a set B. Then a G -set is
an algebra B with unary functions only such that the term functions for one-variable
terms over B are precisely the elements of G, i.e., Clo(B)(1) = G .

Theorem 9.5.3. Let G be a closed subgroup of Sym(B) and let ξ be a homomor-
phism from G to Sym(A). Then the following are equivalent.

• ξ is continuous and the permutation group ξ(G ) has finitely many orbits.
• There exists a G -set B such that HSPfin(B) contains an algebra A such that

Clo(A)(1) = ξ(G ).

If ξ is a map from C1 to C2 and C2 is a clone over a finite domain, then uniform
continuity has an equivalent description.

Proposition 9.5.4. Let C1 be an operation clone over a countable domain B and
let C2 be an operation clone over a finite domain A. Then a minor-preserving map
ξ : C1 → C2 is uniformly continuous if and only if for every n ∈ N there is a finite

F ⊆ B such that and all f1, f2 ∈ C
(n)
1 if f1|Fn = f2|Fn then ξ(f1) = ξ(f2).

Proof. The forwards implication is trivial. For the backwards implication, let
A = {a1, . . . , ak}. By assumption there exists a finite F ⊆ B such that for all

g1, g2 ∈ C1
(k), if g1|Fk = g2|Fk , then ξ(g1) = ξ(g1)|Ak = ξ(f2)Ak = ξ(g2). Let

n ∈ N and f1, f2 ∈ C
(n)
1 be such that f1|Fn = f2|Fn . Let c1, . . . , cn ∈ A. Let

ρ : {1, . . . , n} → {1, . . . , k} be such that ci = aρ(i). For i ∈ {1, 2}, let gi ∈ C1 be
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the minor (fi)ρ (for the notation, see Section 6.7.3). We then have g1|Fk = g2|Fk ,
and hence ξ(g1) = ξ(g2). Since ξ is minor-preserving we get ξ(f1)(c1, . . . , cn) =
ξ(g1)(a1, . . . , ak) = ξ(g2)(a1, . . . , ak) = ξ(f2)(c1, . . . , cn). Since c1, . . . , cn ∈ A were
chosen arbitrarily, we conclude that ξ(f) = ξ(g). �

The existence of uniformly continuous clone homomorphisms to clones of finite
algebras can also be characterised locally using the following definition.

Definition 9.5.5. Let B be a τ -algebra and let φ be an identity over τ of the
form ∀x1, . . . , xn : r(x1, . . . , xn) = s(x1, . . . , xn). Then we say that B satisfies φ on
F if for all a1, . . . , an ∈ F we have rB(a1, . . . , an) = sB(a1, . . . , an).

Proposition 9.5.6. Let B be a τ -algebra and let C be an operation clone over a
finite domain A. Then the following are equivalent.

(1) there is no uniformly continuous clone homomorphism from Clo(B) to C .
(2) for every finite F ⊆ B there exists a finite set of identities that are satisfied

by B on F but not in C (Definition 6.5.12).

Proof. Suppose that there is a uniformly continuous clone homomorphism from
Clo(B) to C . Since A is finite, this implies that there exists a finite F ⊆ B such
that if f1, f2 ∈ Clo(B)(n) are such that f1|Fn = f2|Fn , then ξ(f1) = ξ(f2). Hence,
all identities that are satisfied by B on F (Definition 9.5.5) are also satisfied in C
(Definition 6.5.12).

Now suppose that there exists a finite F ⊆ B such that all finite sets of identities
that are satisfied by B on F are also satisfied in C . Then by Lemma 6.5.13 all the
identities Σ that are satisfied by B on F are also satisfied in C . That is, there exists
an algebra A such that A |= Σ and Clo(A) ⊆ C . The map that sends fB, for f ∈ τ ,
to fA is a uniformly continuous clone homomorphism from Clo(B) to Clo(A). �

The previous lemma can also be formulated in the language of clones.

Definition 9.5.7. Let C be an operation clone and let f1, . . . , fn ∈ C . Let
φ(x1, . . . , xn) be a primitive positive clone formula. Then C satisfies φ(f1, . . . , fn) on
F if there are operations in C for the existentially quantified variables in φ such that
for each conjunct r = s in φ, where r and s have rank k, we have that r(x1, . . . , xk) =
s(x1, . . . , xk) for all x1, . . . , xk ∈ F .

The following is essentially the same statement as in Proposition 9.5.6, but for-
mulated in the language of clones; we state it here for easy reference.

Corollary 9.5.8. Let C be an operation clone over a countable domain and let
D be an operation clone over a finite domain. Then the following are equivalent.

• There exists a uniformly continuous minor-preserving map from C to D .
• There is a finite subset F of the domain of C such that every minor condition
φ that is satisfied by C on F is also satisfied by D .

9.5.2. The oligomorphic case. The uniformly continuous Birkhoff theorem
(Theorem 9.5.1) refers to the metrics of the operation clones under consideration. For
oligomorphic algebras, this reference can be eliminated by a compactness argument
that we present here. More precisely, we show that every continuous clone homomor-
phism from a closed oligomorphic subclone of ON to ON is uniformly continuous (with
respect to the box metric). We start with a simple observation.

Proposition 9.5.9. Every oligomorphic algebra is finitely generated.

Proof. The permutation group of invertible unary term operations in an oligo-
morphic algebra B has finitely many orbits; picking a representative from each orbit
one obtains a generating set for B. �
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Definition 9.5.10. Let G be a topological group with a continuous action on a
topological space X. Let ∼ be the orbit equivalence relation on X where x ∼ y if
there exists g ∈ G such that x = gy. We write X/G for the quotient space X/∼ with
the quotient topology.

The following statement is taken from [96] and closely related to the compactness
theorems that we presented in Section 4.1.2.

Proposition 9.5.11. Let X,Y be countably infinite sets and let G be a permuta-
tion group on Y . Equip Y with the discrete topology and Y X with the product topology.
Then Y X/G is compact if and only if G is oligomorphic.

Proof. Suppose that X = N. We first prove that if G is oligomorphic, then
Y X/G is compact. Let U := {Ui | i ∈ A} be a family of open subsets of Y X/G
such that no finite subset of U covers Y X/G . For n ∈ N, let ∼n be the equivalence
relation on Y X where f ∼n g if there exists an α ∈ G such that f(x) = αg(x) for
all x ∈ {0, . . . , n− 1}. Note that each equivalence class of ∼n is a union of elements
of Y X/G , and that oligomorphicity implies that ∼n has finitely many classes for
each n ∈ N. If each of the finitely many equivalence classes of ∼n were contained
in the complement of Ui for some i ∈ A, then we would have found a finite subset
of U that covers Y X/G , contrary to our assumptions. So for each n there exists a
∼n-equivalence class which is not contained in

⋃
i∈A Ui.

Consider the following tree: the vertices of the tree are the equivalence classes
of ∼n, for all n ∈ N, that are not contained

⋃
i∈A Ui. Let the equivalence class of

f : {0, . . . , n−1} → N be adjacent to the equivalence class of g : {0, . . . , n} → N if f is
the restriction of g. Clearly, the resulting tree is finitely branching and by Kőnigs tree
lemma contains an infinite path. From this infinite path F1, F2, . . . one can construct
a function f ∈ Y X inductively as follows. Initially, pick any function f1 from F1. By
the definition of edges in the tree there exists an α ∈ G such that αf1 is the restriction
of some g2 ∈ F2. We define f2 to be α−1g2 which is an extension of f1 and in F2. We
continue with f2 instead of f1, and iterate to obtain an infinite sequence of functions
f1, f2, . . . which converges against some f ∈ Y X . Note that f/∼ is not contained in⋃
i∈A Ui which finishes the proof that Y X/∼ is compact.

For the other direction, assume that G is not oligomorphic. Pick an n ≥ 1 such
that the componentwise action of G on Y n has infinitely orbits, and enumerate these
orbits by (Oi)i∈ω. For each i ∈ ω let Ui consist of all classes f/∼ in Y X/G with the
property that f |{1,...,n} belongs to Oi; this is well defined since for all f, g ∈ Y X with
f ∼ g we have that f |{1,...,n} belongs to Oi if and only if g|{1,...,n} belongs to Oi.

Then Y X/G is the disjoint union of the Ui. But each Ui is open, and hence Y X/G is
not compact. �

We mention that the countability of X is necessary in the statement of Propo-
sition 9.5.11: in fact with Y countable and X uncountable, even Y X/ Sym(Y ) is
non-compact (Example 4.5 in [332]).

If G is an oligomorphic permutation group on a countable set Y , then the space
Y Y /G is not Hausdorff, as the following example shows.

Remark 9.5.12. Consider any function f in Y Y which lies in the closure of G
but not in G ; Proposition 4.4.7 shows that if G is oligomorphic, such functions must
exist. Then f is inequivalent to every element of G , but f/∼ cannot be separated
from idY /∼ by open sets: if U is an open subset of Y Y /∼ that contains f/∼, then⋃
U is open in Y Y and hence must contain a basic open set Ta,b where a, b ∈ Y n for

some n ∈ N and f(a) = b. Since f is in the closure of G there also exists an α ∈ G
with αa = b, and α ∼ idY . So every open set that contains f/∼ also contains idY /∼.
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Corollary 9.5.13. Let B be an ω-categorical structure and let k ≥ 1. Then
Pol(B)(k)/Aut(B) is compact.

Proof. Pol(B)(k) is a closed subset of BB
k

which is preserved by Aut(B). Since
B is ω-categorical, Aut(B) is an oligomorphic permutation group by the theorem
of Engeler, Svenonius, and Ryll-Nardzewski (Theorem 4.1.6). Proposition 9.5.11 im-

plies that BB
k

/Aut(B) is compact. Note that Pol(B)(k)/G is a closed subspace of

BB
k

/Aut(B), so the statement follows from Proposition 9.1.18 �

Note that Pol(B)/Aut(B) is never compact since it is the disjoint union of the
spaces Pol(B)(k)/Aut(B).

Let C and D be clones and ξ : C → D a map. Recall from Definition 6.7.6 that
ξ preserves left composition with invertibles if for all f ∈ C and α ∈ C(1) invertible
in C(1) we have that

ξ(α ◦ f) = ξ(α) ◦ ξ(f).

Lemma 9.5.14. Let C be a closed oligomorphic subclone of ON and let ξ : C → ON
be a continuous function that preserves left composition with invertible elements. Then
ξ is uniformly continuous. In particular, every continuous clone homomorphism ξ is
uniformly continuous.

Proof. Let F ⊆ N be finite and k ∈ N. It suffices to prove the existence of
a matrix A ∈ Nm×k for some m ∈ N such that for all f, g ∈ C (k) we have that
f(A) = g(A) implies ξ(f)|F = ξ(g)|F .

Let G be the oligomorphic permutation group formed by the invertible operations
in C (1), and let D be the subclone ξ(C ) of ON. First note that for each f ∈ C (k) the
set

{h ∈ D (k) | h|F = ξ(f)|F }
is open in D (k). Since ξ is continuous, this means that

Uf := {g ∈ C (k) | ξ(g)|F = ξ(f)|F }

is open in C (k). By the definition of the topology on C there exist lf ∈ N, a matrix
Af ∈ Nlf×k, and a vector bf ∈ Nlf such that the basic open set

TAf ,bf = {g ∈ O
(k)
N | g(Af ) = bf}

is contained in Uf and contains f . Hence,

C (k) =
⋃

f∈C (k)

TAf ,bf .

Also note that G · TAf ,bf = {αf | α ∈ G , f ∈ TAf ,bf } is open and preserved by G . So

there exists an open Vf ⊆ C (k)/G such that
⋃
Vf = G · TAf ,bf . Note that

C (k)/G =
⋃

f∈C (k)

Vf .

By compactness of C (k)/G (Proposition 9.5.11) there exists an n ∈ N and f1, . . . , fn ∈
C (k) such that

C (k)/G =
⋃

i∈{1,...,n}

Vfi .

Set m := lf1 + · · · + lfn . Let A ∈ Bm×k be the matrix obtained by superposing the
matrices Af1 , . . . , Afn .

To see that A satisfies the desired property, let f, g ∈ C (k). Assume without loss
of generality that f ∈ G ·TAf1

,bf1
; then there exists α ∈ G such that f(Af1) = α(bf1).
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Since f(A) = g(A) we have f(Af1) = g(Af1) and so also g(Af1) = αbf1 . Hence, α−1f
and α−1g are in TAf1

,bf1
, implying that ξ(α−1f)|F = ξ(α−1g)|F . Thus, ξ(f)|F =

ξ(g)|F since ξ is a clone homomorphism. �

We can now readily combine Theorem 9.5.1, Proposition 9.5.9, and Lemma 9.5.14
and obtain a result which we call ‘topological Birkhoff theorem’.

Theorem 9.5.15. Let A and B be countable oligomorphic algebras with the same
signature such that Clo(B) is closed in OB. Then the following three statements are
equivalent.

(1) The natural homomorphism from Clo(B) onto Clo(A) exists and is contin-
uous.

(2) The natural homomorphism from Clo(B) onto Clo(A) exists and is uni-
formly continuous.

(3) A ∈ HSPfin(B).

Proof. The implication from (2) to (1) is trivial, and the implication from (1) to
(2) follows from Lemma 9.5.14 applied to the closed oligomorphic clone C := Clo(B),
identifying the countable domain with N. For the equivalence of (2) and (3), first
recall that A is finitely generated (Proposition 9.5.9). So the equivalence follows from
Theorem 9.5.1. �

Theorem 6.5.1 for finite algebras A and B is a special case of Theorem 9.5.15, since
the topology of any operation clone on a finite set is discrete, and hence the natural
homomorphism from the operation clone of a finite algebra to that of any other algebra
is continuous. For convenient reference, we also present a straightforward consequence
of this result which departs from operation clones rather than algebras.

Corollary 9.5.16. Let C and D be oligomorphic operation clones on countable
domains, and suppose that C is locally closed. Then the following three statements
are equivalent.

(1) There is a uniformly continuous clone homomorphism from C onto D .
(2) There is a continuous clone homomorphism from C onto D .
(3) there are τ -algebras C and D such that Clo(C) = C , Clo(D) = D , and

D ∈ HSPfin(C).

Applying Theorem 9.5.15 in both directions we also obtain the following corollary.

Corollary 9.5.17. Let C and D be oligomorphic operation clones on countable
domains. Then C and D are topologically isomorphic if and only if there are τ -
algebras C and D such that Clo(C) = C , Clo(D) = D , and HSPfin(A) = HSPfin(B).

9.5.3. Continuous homomorphisms and interpretations. The results from
the previous section can be combined with the results from Section 6.3.5 about pseudo-
varieties and primitive positive interpretations. We start with an elegant characteri-
sation of topological isomorphism of polymorphism clones of ω-categorical structures.

Corollary 9.5.18. Let A and B be countable ω-categorical structures. Then
Pol(A) and Pol(B) are isomorphic as topological clones if and only if A and B are
primitively positively bi-interpretable.

Proof. By Proposition 6.3.9 A and B are primitively positive bi-interpretable
if and only if A has a polymorphism algebra A and B has a polymorphism algebra B
such that HSPfin(A) = HSPfin(B). This in turn is the case if and only if Clo(A) =
Pol(A) and Clo(B) = Pol(B) are topologically isomorphic (Corollary 9.5.17). �
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Corollary 9.5.18 shows that the complexity of the CSP of a finite-signature ω-
categorical structure B only depends on Pol(B) as a topological clone. The same is
true for many other properties of an ω-categorical structure B. We present another
example of such a property.

Proposition 9.5.19. Whether an oligomorphic clone C is finitely related (Defi-
nition 6.1.2) depends only on C viewed as a topological clone.

Proof. The statement is an immediate consequence of Proposition 3.3.6 via
Corollary 9.5.18. �

Recall that A is primitive positive interpretable in B if and only if A is the reduct
of a structure A′ with a full primitive positive interpretation in B. We now present
a topological characterisation of the structures that have a full primitive positive
interpretation in an ω-categorical structure.

Corollary 9.5.20. Let B be a countable ω-categorical structure and A an arbi-
trary structure. Then A has a full primitive positive interpretation in B if and only if
A is countable ω-categorical and there exists a continuous clone homomorphism from
Pol(B) to Pol(A) whose image is dense in Pol(A).

Proof. By Theorem 6.3.7 we have that A ∈ Ifull(B) if and only if there exists

A ∈ HSPfin(B) such that Clo(A) = Pol(A). This in turn is the case if and only if the
natural homomorphism from Clo(B) = Pol(B) to Clo(A) exists, by Theorem 9.5.15.

�

9.5.4. Continuous homomorphisms to the clone of projections. The topo-
logical Birkhoff theorem in the form of Corollary 9.5.20 can also be combined with
the results from Section 6.3.5 to add yet another equivalent item to Theorem 6.3.10.

Corollary 9.5.21. Let B be a countable ω-categorical structure. Then the fol-
lowing are equivalent.

(1) I(B) contains all finite structures;
(2) I(B) contains K3;
(3) I(B) contains ({0, 1}; 1IN3);
(4) Pol(B) has a continuous homomorphism to Proj.
(5) Pol(B) has a uniformly continuous homomorphism to Proj.
(6) There is a finite F ⊆ B such that every primitive positive clone sentence

that is satisfied by Pol(B) on F is trivial.

Proof. The equivalence of (1), (2) and (3) (among many other equivalences)
has already been shown in Theorem 6.3.10.

(3) ⇒ (4): suppose that ({0, 1}; 1IN3) has an expansion A with a full primitive
positive interpretation in B. Recall that Pol({0, 1}; 1IN3) is isomorphic to Proj
(Proposition 6.5.19), hence Pol(A) = Pol({0, 1}; 1IN3). Corollary 9.5.20 asserts the
existence of a continuous clone homomorphism from Pol(B) to Pol(A), and hence to
Proj.

(4)⇒ (3). Let ξ be the continuous homomorphism from Pol(B) to Proj. Since ξ
is surjective, its image is dense, and we apply Corollary 9.5.20 in the other direction
to obtain a (full) primitive positive interpretation of ({0, 1}; 1IN3) in B.

The equivalence of (4) and (5) follows from Corollary 9.5.16. The equivalence
of (5) and (6) follows from Corollary 9.5.8 (for this equivalence we do not need the
ω-categoricity assumption). �

Theorem 9.5.15 can also be used to reformulate the hardness condition from
Corollary 4.5.4 and the infinite-domain tractability conjecture in its original form
(Conjecture 4.5.1).
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Corollary 9.5.22. Let B be an ω-categorical structure, and let C be its model-
complete core. If C has an expansion by finitely many constants c1, . . . , cn such that
Pol(C, c1, . . . , cn) has a continuous homomorphism to Proj then B has a finite-
signature reduct with an NP-hard CSP. Otherwise, Conjecture 4.5.1 states that
CSP(B′) is in P for every finite-signature reduct B′ of B.

The following lemma can be useful to verify that a given clone homomorphism to
the projections is continuous.

Lemma 9.5.23. Let C be a topological clone and let ξ : C→ Proj be a homomor-
phism. Then ξ is continuous if and only if its restriction to C(2) is.

Proof. For 1 ≤ i ≤ n and f ∈ C(n) define

fi := comp(f, pr2
1, . . . ,pr2

1,pr2
2,pr2

1, . . . ,pr2
1)

i.e., the composition of f with the first binary projection except at the i-th argument,
where we choose the second projection. Note that if ξ(f) = prnj with j ≤ n, then

ξ(fi) = pr2
2 if i = j and ξ(fi) = pr2

1 otherwise. Hence,

ξ−1(prni ) = {f ∈ C(n) | fi ∈ ξ−1(pr2
2)}.

Since composition in C is continuous the map that sends f ∈ C(n) to fi is continuous.
As ξ−1(pr2

2) is open it follows that ξ−1(prni ) is open, too. �

The following example shows that there are closed oligomorphic operation clones
on a countable domain with a discontinuous homomorphism to Proj.

Example 9.5.24. The following example of a closed oligomorphic operation clone
on a countable set has been given in [100]; it is the polymorphism clone of a first-order
reduct of the structure presented in Example 9.2.7. Let τ be the signature consisting
of a relation symbol Rn of arity 2n for each n ≥ 1. The class of all finite τ -structures
where each Rn is interpreted as an equivalence relation on n-tuples of distinct entries
with two equivalence classes is a Fräıssé class. Let D be its Fräıssé limit, with domain
D; it is ω-categorical since it is homogeneous and has for all n ≥ 1 only finitely many
inequivalent atomic formulas with n variables.

Let B be the structure with domain D that has for all n ≥ 1 the relation Rn, as
well as the 3n-ary relation

Sn :=
{

(x, y, z) ∈ D3n
∣∣ ¬(Rn(x, y) ∧Rn(y, z) ∧Rn(z, x)

)}
.

Then B is first-order definable over D and therefore also ω-categorical. Since the
elements of Pol(B) preserve Rn for each n ≥ 1, the operation clone Pol(B), viewed
as a topological clone, acts naturally on the equivalence classes of Rn. Write ξn for
the mapping which sends every f ∈ Pol(B) to its corresponding function on the
equivalence classes of Rn. Then ξn is a continuous clone homomorphism, and its
image is an operation clone on a domain with two elements, which we will denote by
0 and 1 in the following (independently of n, since the name of the elements of the base
set is irrelevant). We claim that for every f ∈ Pol(B), the operation ξn(f) depends
on one of its arguments only. To see this, observe that ξn(f) preserves the Boolean
relation {0, 1}3\{(0, 0, 0), (1, 1, 1)} because f preserves Sn; the claim therefore follows
from Proposition 6.2.8.

Let U be a non-principal ultrafilter on ω. Let ξ : Pol(B)→ Proj be the mapping
which sends every k-ary f ∈ Pol(B) to the projection πki ∈ Proj if and only if

{n ≥ 1 | ξn(f) depends on the i-th argument} ∈ U .
It is easy to verify that ξ is a clone homomorphism. Moreover, ξ is not continuous;

by Lemma 9.5.23, it suffices to verify this for the binary polymorphisms of B. Observe
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that for any S ⊆ ω there exists a binary f ∈ Pol(B) such that ξn(f) depends on the
first argument if and only if n ∈ S. This function f can be constructed by defining a
structure onD2 with the same signature as D in which for each t ∈ D2 the membership
in Rn depends only on the membership in Rn of the projection of t onto its first
coordinate when n ∈ S, and onto its second coordinate when n /∈ S. Choosing f as
any embedding of this structure into D using universality, we obtain a polymorphism
of B with the desired property. But since U is non-principal, the membership in U
cannot be determined on any finite subset of S, and the discontinuity of ξ follows.

We mention that the clone Pol(B) also has continuous homomorphisms to Proj:
for example, each single ξn is continuous, and the image of Pol(B) under ξn has a
homomorphism to Proj which is necessarily continuous since the topology on the
image is discrete. 4

Question 9.5.1. Does there exist a reduct of a finitely bounded homogeneous
structure B such that Pol(B) has a homomorphism to Proj, but no continuous one?

9.5.5. Consequences for first-order interpretability. The results in the
previous sections can be specialised to first-order interpretability and topological au-
tomorphism groups; in particular, we obtain an older result which Hodges credits to
Ahlbrandt and Ziegler [8]; Ahlbrandt and Ziegler cite it as an unpublished result of
Coquand.

Theorem 9.5.25 (Theorem 5.3.5 and 7.3.7 in [213]). Let B be a countable ω-
categorical structure. Then a structure A has a full first-order interpretation in B if
and only if there is a continuous group homomorphism ξ : Aut(B) → Aut(A) such
that the image of ξ is dense in Aut(A) and Aut(A) has finitely many orbits.

Proof. Let A′ and B′ be the expansions of A and B by all first-order definable
relations. Then A has a full first-order interpretation in B if and only if A′ has a
full primitive positive interpretation in B′. By Corollary 9.5.20, this is the case if
and only if there exists a continuous clone homomorphism ξ from Pol(B′) to Pol(A′)
whose image is dense in Pol(A′) and A′ is ω-categorical. Note that Aut(B) = Aut(B′)
lies dense in End(B′) and Aut(A) = Aut(A′) lies dense in End(A′), and every poly-
morphism of A′ and of B′ is essentially unary, hence ξ has a continuous extension to
a clone homomorphism from Pol(B′) to Pol(A′). Moreover, the ω-categoricity of A′

implies that Aut(A′) = Aut(A) has finitely many orbits. Conversely, if Aut(A) has
finitely many orbits then A must be ω-categorical (see the proof of the implication (3)
implies (4) in Theorem 9.3.1). Hence, there exists a continuous clone homomorphism
from Pol(B′) to Pol(A′) whose image is dense in Pol(A′) and A′ is ω-categorical if
and only if there exists a continuous group homomorphism from Aut(B) to Aut(A)
whose image is dense in Aut(A) and Aut(A) has finitely many orbits. �

See Example 9.2.9 for an ω-categorical structure B and a group homomorphism
ξ : Aut(B) → Sym(N) where the image of ξ is dense but not surjective. As in the
primitive positive case from Section 9.5.3, the situation that two structures are first-
order bi-interpretable has an even more elegant topological characterisation.

Corollary 9.5.26 (Corollary 1.4 in [8]). Two ω-categorical structures A and B
are first-order bi-interpretable if and only if Aut(A) and Aut(B) are isomorphic as
topological groups.

Proof. Similarly as in the proof of Theorem 9.5.25, the statement is an imme-
diate consequence of Corollary 9.5.18. �



280 9. TOPOLOGY

Example 9.5.27. The structures C := (N2; {(x, y), (u, v) | x = u}) and D :=
(N; =) are mutually primitive positive interpretable, but not bi-interpretable. To see
this, observe that Aut(C) has a proper non-trivial closed normal subgroup N such
that Aut(C)/N is isomorphic to Aut(D) (see Proposition 9.2.17), whereas Aut(D),
the symmetric permutation group of a countably infinite set, has no proper non-
trivial closed normal subgroups (it has exactly three proper non-trivial normal sub-
groups [334], none of which is closed). 4

Corollary 9.5.26 has many consequences. For instance, it shows in combination
with Theorem 9.3.1 that every ω-categorical structure is bi-interpretable with an ω-
categorical structure whose automorphism group has only one orbit.

Several fundamental properties of ω-categorical structures B are preserved by
bi-interpretability, and therefore, by Corollary 9.5.26, only depend on the topological
automorphism group of B. As we will see in Chapter 11, this is for instance the case
for the property whether an ω-categorical structure has the Ramsey property.

9.6. Uniformly Continuous Minor-preserving Maps

There is also a topological variant for Birkhoff’s theorem for height-one identities
from Section 6.7.2. This variant can be used to study the class HI(B) from Section 3.6
for ω-categorical structures B; the results presented here are essentially from [29].
Note that for minor-preserving maps, unlike for clone homomorphisms, one cannot
simply replace uniform continuity by continuity; the compactness argument from
Section 9.5.2 involves left compositions with invertible elements which need not be
preserved by a minor-preserving map.

Theorem 9.6.1. Let C and D be closed oligomorphic subclones of ON and let
ξ : C → D be a surjective minor-preserving map. Then (1)⇒ (2)⇒ (3)⇒ (4).

(1) ξ is continuous and preserves composition with invertibles (Definition 6.7.6);
(2) ξ is uniformly continuous and preserves right composition with invertibles;
(3) there are τ -algebras C,D such that Clo(C) = C , Clo(D) = D , ξ(fC) = fD,

and D ∈ Refl Pfin(C).
(4) ξ is uniformly continuous.

Proof. (1)⇒ (2). Lemma 9.5.14 states that if ξ preserves left composition with
invertibles and is continuous, then it is uniformly continuous.

(2) ⇒ (3). Let C be any τ -algebra such that Clo(C) = C , and let D be the
τ -algebra on D given by fD := ξ(fC). Let d1, . . . , dk be representatives for each of
the orbits of D and let F := {d1, . . . , dk}. By uniform continuity there exists a finite
subset G of the domain of C such that f |Gk = g|Gk implies ξ(f)|Fk = ξ(f)|Fk for all
f, g ∈ C (k). Let A := GF and let m := |A| = |G|k. Let a1, . . . , am be an enumeration
of A, and for j ≤ k define aj := (a1

j , . . . , a
m
j ) ∈ Gm. Let S be the subalgebra of

Cm generated by a1, . . . , ak; so the elements of S are precisely those of the form
fC

m

(a1, . . . , ak), for some k-ary f ∈ τ . Define a function µ : S → D by setting

µ(fS(a1, . . . , ak)) := fD(d1, . . . , dk).

The function µ is well defined: the proof is the same as the proof of Claim 1 in the
proof of Theorem 9.5.1.

Conversely, to define a function ν : D → S for an element e ∈ D, note that there
exists a u ∈ τ and an i ∈ {1, . . . , k} such that e = uD(di). Then we define

ν(e) = ν(uD(di)) := uS(ai).

To prove that D is the reflection of S at µ and ν, let f ∈ τ be an n-ary function
symbol and let e1, . . . , en ∈ S. For every i ∈ {1, . . . , n} there is a ji ∈ {1, . . . , k}
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and a unary ui ∈ τ such that uDi (dji) = ei. Since C is a clone there is some g ∈ τ
such that gC = fC(uC1 , . . . , u

C
n ). By assumption, ξ preserves right composition with

invertibles, and hence

gD = ξ(gC) = ξ(fC(aC1 , . . . , a
C
n )) = ξ(fC)ξ(aC1 , . . . , a

C
n ) = fD(uD1 , . . . , u

D
n ).

Hence,

fD(e1, . . . , en) = fD(uD1 (dj1), . . . , uDn (djn))

= gD(dj1 , . . . , djn)

= µ(gS(aj1 , . . . , ajn))

= µ(fS(uS1 (aj1), . . . , uSn(ajn))

= µ(fS(ν(e1), . . . , ν(en))).

It follows that D is a reflection of a subalgebra S of Cm, and so D ∈ Refl Pfin(C).
(3) ⇒ (4): we have already seen in Theorem 9.5.1 that the map fC 7→ fB is

uniformly continuous if B ∈ Pfin(C); so it suffices to show that the map fB 7→ fD

is uniformly continuous if D ∈ Refl(B). Suppose that D is a reflection of B via the
maps h : B → D and i : D → B. Let F ⊆ D be finite. Choose G := i(F ), and suppose
that f, g are k-ary and satisfy fB|Gk = gB|Gk . Then for every k-ary f, g and d ∈ F k
we have

fD(d) = h(fB(i(d))) = h(gB(i(d))) = gD(d)

which proves uniform continuity of fB 7→ fD. �

The implication (4) ⇒ (3) in Theorem 9.6.1 is false in general as the following
example shows (the author is grateful to Michael Pinsker for pointing this out).

Example 9.6.2. Let B be a homogeneous digraph with an undecidable constraint
satisfaction problem (Example 2.3.12). Then all polymorphisms of (B, P 3

B) are essen-
tially unary (Lemma 6.1.17). We claim that there exists a uniformly continuous ho-
momorphism from Pol(B;P 3

B , 6=) to Pol(B, P 3
B , 6=). Pick a uniform homeomorphism ξ

from Aut(B;P 3
B) to Aut(B, P 3

B) which exists by Proposition 9.3.3. Since Aut(B;P 3
B)

and Aut(B, P 3
B) are dense in End(B;P 3

B , 6=) and in End(B, P 3
B , 6=), respectively, the

map ξ has a unique extension to a uniform homeomorphism from End(B;P 3
B , 6=) to

End(B, P 3
B , 6=). Finally, ξ has a minor-preserving uniformly continuous extension to

Pol(B;P 3
B , 6=) to Pol(B, P 3

B , 6=) because all operations in f are essentially unary.
Since CSP(B;P 3

B) is clearly in NP, but CSP(B, P 3
B) is undecidable, the structure

(B;P 3
B) cannot have a primitive positive interpretation in (B;P 3

B) (Theorem 3.1.4).
Theorem 6.3.7 therefore implies that item (3) in Theorem 9.6.1 does not apply. 4

In Example 9.6.5 below we show that the implication (3)⇒ (2) in Theorem 9.6.1 is
false even if D = Proj and C is a clone on a finite domain. An interesting reduct C of a
finitely bounded homogeneous structure such that Pol(C) has a uniformly continuous
homomorphism to Proj, but no clone homomorphism to Proj, is presented in the
following example.

Example 9.6.3. Let C be the structure (Q;T3) where

T3 := {(x, y, z) | x = y < z ∨ x > y = z})

(Definition 3.1.8). In Proposition 3.1.9 we have proved the NP-hardness of CSP(C)
via a primitive positive interpretation of the structure ({0, 1}; 1IN3) in an expansion
of C by a constant. Hence, if C is a polymorphism algebra of C, Theorem 6.4.3 im-
plies that Exp Refl Pfin(C) contains a two-element algebra all of whose operations are
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projections. The implication (3) ⇒ (1) in Theorem 6.7.8 therefore gives us a minor-
preserving map from Pol(C) to Proj, and the implication (3)⇒ (4) in Theorem 6.4.3
shows that Pol(C) is a uniformly continuous.

In Section 12.5 we prove that C has endomorphisms α1, α2, β1, β2 and a binary
polymorphism pp satisfying

∀x, y
(
pp(α1(x), y) = β1(y)

∧pp(α2(x), y) = β2(x)
)
.

Every binary operation over a 2-element set that satisfies this sentence is either es-
sential or constant. So Pol(C) cannot have a homomorphism to Proj.

Note that the existence of such operations is preserved by minor-preserving maps
that preserve right composition with unary operations. It follows that there is no
minor-preserving map to Proj that preserves right composition with End(C). This
example shows that if we replace ‘right composition with invertibles’ by ‘right com-
position with unaries’ in item (2) of Theorem 9.6.1, then the implication (3)⇒ (2) is
false. 4

9.6.1. Uniformly continuous minor-preserving maps to Proj. For finite
structures A we have a necessary and sufficient condition for containment of A in
HI(B) in terms of uniformly continuous minor-preserving maps.

Theorem 9.6.4 (essentially from [29]). Let A be a finite structure and B an at
most countable ω-categorical structure. Then the following are equivalent.

(1) there is a uniformly continuous minor-preserving map ξ : Pol(B)→ Pol(A);
(2) if B is a polymorphism algebra of B then there exists A ∈ Refl Pfin(B) such

that Clo(A) ⊆ Pol(A);
(3) A ∈ HI(B).

Proof. The equivalence between (2) and (3) is Theorem 6.4.3. For the implica-
tion from (2) to (1), it follows from Theorem 6.7.8 that the natural minor-preserving
map from Pol(B) to Pol(A) exists, and it is uniformly continuous by Theorem 9.6.1
(3)⇒ (4).

The implication from (1) to (2) has essentially been shown in the proof of The-
orem 6.7.8; we only need a similar modification as in the proof of Theorem 9.5.1.
Alternatively, one may modify the proof of Theorem 9.6.1 and enumerate all elements
of A instead of orbit representatives. �

Example 9.6.5. In Example 6.7.1 we have seen a finite structure B such that
K3 /∈ I(B) and hence Pol(B) has no clone homomorphism to Proj; the identity pre-
sented there shows that Pol(B) has no minor-preserving map to Proj that preserves
composition with End(B); since B is a core, this shows that item (2) in Theorem 9.6.1
does not apply.

On the other hand, K3 ∈ HI(B) and hence, by Theorem 9.6.4 above, item (3) in
Theorem 9.6.1 applies for C = Pol(B) and D = Proj. 4

Theorem 9.6.4 provides another equivalent formulation of the condition from the
infinite-domain tractability conjecture (Conjecture 3.7.1).

Corollary 9.6.6. Let B be an at most countable ω-categorical structure. Then
the following are equivalent.

(1) HI(B) contains ({0, 1}; 1IN3) (and the other equivalent conditions in Corol-
lary 6.4.4).

(2) There is a uniformly continuous minor-preserving map Pol(B)→ Proj.

If these conditions apply, then B has a finite-signature reduct with an NP-hard CSP.
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Proof. Since Proj is isomorphic to Pol({0, 1}; 1IN3) (Proposition 6.5.19) the
equivalence of (3) and (4) follows from Theorem 9.6.4. The final statement follows
from Corollary 6.4.4. �

Example 9.6.7. We consider again the atomless Boolean algebra A from Exam-
ple 6.7.5, where we described a minor-preserving map from Pol(A) to Proj. This map
is uniformly continuous: for every n ∈ N and f, g ∈ Pol(A)(n), if f |{0,1} = g|{0,1}
then ξ(f) = ξ(g). Corollary 9.6.6 implies that ({0, 1}; 1IN3) ∈ HI(A). Indeed,
({0, 1}; 1IN3) embeds into

B :=
(
A; {(x, y, z) | (c(x) ∩ y ∩ z) ∪ (x ∩ c(y) ∩ z) ∪ (x ∩ y ∩ c(z)) = 1}

)
via the map that sends 0 to 0 and 1 to 1, and conversely there is a homomorphism
h from B to ({0, 1}; 1IN3): as in the construction of the minor-preserving map from
Pol(A) to Proj in Example 6.7.5, we pick an ultrafilter U ⊂ A that contains 0. Then
h maps all elements in U to 0 and all other elements to 1. 4

Remark 9.6.8. An example of an ω-categorical structure B such that Pol(B)
has a minor-preserving map to Proj, but no uniformly continuous minor-preserving
map to Proj has been constructed recently [87]; the structure B can be be chosen
to have a finite relational signature [186].

9.6.2. Local satisfaction of minor conditions. The existence of uniformly
continuous minor-preserving maps to an operation clone over a finite domain can be
characterised in terms of local satisfaction of minor conditions (Proposition 9.6.11).

Let φ be a formula in the language of clones. Clearly, if a clone C satisfies
φ(f1, . . . , fn) then C satisfies φ(f1, . . . , fn) on every finite subset of the domain of C
(Definition 9.5.7). The converse is false, as the following example illustrates.

Example 9.6.9. Consider the Horn clone H (see Theorem 7.5.2); it locally sat-
isfies the clone sentence

∃a, b, f
(
f(x, x) = x ∧ a(f(x, y)) = b(f(y, x)

)
(40)

since for every finite F ⊆ N we can pick a binary injection f : N2 → N and unary
injections a, b satisfying (40) for elements from F . However, if f satisfies (40) globally
then it must be idempotent because of the first conjunct, and essential because of the
second conjunct. Let x, y ∈ N be distinct, and let z := f(x, y). Then f(z, z) = z =
f(x, y) contradicting the fact that in the Horn clone all functions that depend on all
their arguments are injective. 4

If C is a locally closed oligomorphic clone, and if φ is a fixed minor condition
(i.e., all variables are quantified), then local and global satisfaction of φ are again
equivalent; this is a direct consequence of Lemma 4.1.10.

Lemma 9.6.10. Let C be a locally closed oligomorphic operation clone and let φ
be a minor condition. Then C satisfies φ if and only if C satisfies φ locally.

In particular, a locally closed oligomorphic operation clone has a minor-preserving
map to Proj if and only if all minor conditions φ that are satisfied in C on all finite
subsets of the domain of C are trivial. Also the existence of uniformly continuous
minor-preserving maps to Proj can be characterised locally, but in a different sense;
this is a consequence of the following more general proposition (a variant of Corol-
lary 9.5.8).

Proposition 9.6.11. Let C be an operation clone and let D be an operation clone
over a finite domain. Then the following are equivalent.

• There exists a uniformly continuous minor-preserving map from C to D .
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• There is a finite subset F of the domain of C such that every minor condition
φ that is satisfied by C on F is also satisfied on D .

Proof. If ξ is a uniformly continuous minor-preserving map from C to D , then
there is a finite subset F of the domain of C such that for all n ∈ N and f, g ∈ C (n),
if f |Fn = g|Fn the ξ(f) = ξ(g). Hence, every minor condition that holds on F also
holds in D .

Conversely, suppose that there exists a finite subset F of the domain of C such
that every minor condition that holds on F also holds in D . Consider the minion
of all restrictions of operations in C to F . Lemma 6.7.11 shows that there exists a
minor-preserving map ξ from this minion to D . Then the map ζ : C → D which is
defined for an operation f ∈ C of arity n by ζ(f) := ξ(f |Fn) is minor preserving, and
uniformly continuous, because if f |Fn = g|Fn then ζ(f) = ζ(g). �



CHAPTER 10

Oligomorphic Clones

We have seen in Sections 6.6, 6.8.2, and 6.9 that polynomial-time tractability of
finite-domain CSPs can be expressed in terms of the existence of polymorphisms that
satisfy certain minor conditions, such as the existence of a Taylor polymorphism,
a Siggers polymorphism, or a cyclic polymorphism. For ω-categorical structures,
and even for reducts of finitely bounded homogeneous structures, the same minor
conditions cannot be used to characterise polynomial-time tractability; in fact, failing
these minor conditions no longer implies NP-hardness.

For example, the tractability condition for equality constraint languages from
Theorem 7.4.2 requires the existence of a polymorphism f and an automorphism α
such that

f(x, y) = αf(y, x)

holds for all x, y ∈ B, which is not a minor condition. The Horn clone H introduced
in Section 7.5 is an example of a clone that satisfies this condition but does not have
any Taylor operation. This motivates our definition of pseudo-minor conditions. In
Section 10.1 we present some general facts about pseudo-minor conditions and how
to construct operations that satisfy these conditions.

In Section 10.2 we present a break-through result of Barto and Pinsker [30]
which states that every ω-categorical model-complete core that satisfies the condition
from the infinite-domain tractability conjecture in its original formulation (Conjec-
ture 3.7.1) has a pseudo-Siggers polymorphism. In Section 10.3 we prove that the

285
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two versions of the infinite-domain tractability conjecture are indeed equivalent; this
is based on results from [22]. Some of the results that we present in this chapter
are under the assumption that the ω-categorical structure under consideration is a
model-complete core, and for some results we do not need this assumption; this will
be discussed in Section 10.4.

We dedicate the final section to the important concept of canonical functions,
covering material from [86,97,100]. If C is the polymorphism clone of a structure C
which is homogeneous in a finite relational signature, and all polymorphisms of C are
canonical, then C is determined by a clone on a finite set, and CSP(C) is polynomial-
time equivalent to a finite-domain CSP; all this follows from the results in Section 10.5
and is based on material from [86]. The assumption that all polymorphisms of a
structure B are canonical might appear to be rather strong. But it turns out that
very often, if B is an ω-categorical structure such that CSP(B) is not NP-hard, then
B has an expansion C such that Pol(C) is canonical and CSP(C) (and hence CSP(B))
can be solved in polynomial time. A partial explanation as to why this happens so
often can be found in the next chapter about Ramsey theory.

10.1. Pseudo Minor Conditions

Let C be a clone. A pseudo minor condition is a primitive positive clone sentence
whose conjuncts are of the form (using the notation from Section 6.7.3)

a ◦ fσ = b ◦ gτ

where a and b are variables of rank one, f and g are variables of rank n1 and n2,
respectively, and σ : {1, . . . , n1} → {1, . . . , k} and τ : {1, . . . , n2} → {1, . . . , k} are
functions. If there exist a, b ∈ S ⊆ C(1) such that a ◦ fσ = b ◦ gτ holds in C then we
also say that fσ = gτ holds modulo S.

Let C and D be clones. A function ξ : C → D is called a pseudo minor-preserving
map if it is minor-preserving and additionally preserves left composition with C(1).
Using the terminology from Section 6.7.3 we thus have that if f ∈ C(n), a ∈ C(1),
and σ : {1, . . . , n} → {1, . . . , k}, then

ξ(a ◦ fσ) = ξ(a) ◦ ξ(f)σ.

Clearly, pseudo minor-preserving maps preserve pseudo minor conditions.

Example 10.1.1. Recall that a Siggers operation (Section 6.8.2) is an operation s
satisfying ∀x, y, z : s(x, y, x, z, y, z) = s(y, x, z, x, z, y). We say that s is Siggers modulo
S ⊆ C(1) if there are unary operations p, q ∈ S such that

∀x, y, z : p(s(x, y, x, z, y, z)) = q(s(y, x, z, x, z, y)).

If s is Siggers modulo C(1) we also say that s is a pseudo-Siggers operation of C. To
express that s is a pseudo-Siggers operation, we can use the clone formula φSig(s)
defined as

∃p, q : p ◦ comp(s,pr3
1,pr3

2,pr3
1,pr3

3,pr3
2,pr3

3)

= q ◦ comp(s,pr3
2,pr3

1,pr3
3,pr3

1,pr3
3,pr3

2). (41)

The clone formula ∃s : φSig(s), stating the existence of a pseudo-Siggers operation, is
an example of a pseudo minor condition. Section 10.2 presents a proof, due to Pinsker
and Barto [30], that an ω-categorical model-complete core satisfies the conditions from
the infinite-domain tractability conjecture (Conjecture 4.5.1) if and only if it has a
pseudo-Siggers polymorphism. 4
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Example 10.1.2. An operation f : B2 → B is called symmetric modulo S ⊆ C(1)

if there are p, q ∈ S such that for all x, y ∈ B
p(f(x, y)) = q(f(y, x)),

and is called a pseudo-symmetric operation in C if it is symmetric modulo C(1). Note
that every binary injective operation from B2 → B is pseudo-symmetric with re-
spect to the set of all injective maps from B → B, and so is every binary constant
operation. Hence, by Theorem 7.4.1 the existence of a pseudo-symmetric polymor-
phism characterises polynomial-time tractability of the CSP of equality constraint
languages. 4

10.1.1. Pseudo versus quasi. Clearly, oligomorphic operation clones over in-
finite sets cannot be idempotent. Some important operations on infinite sets, such as
the binary minimum operation over (Q;<) or the projections, are idempotent, but
this is rather rare (see for example the clones that appear in Chapter 12). One way
to relax the assumption of idempotence, for instance for majority operations f , is to
replace the identities

∀x, y : f(x, x, y) = f(x, y, x) = f(y, x, x) = x

by their “quasi” form (cf. Definition 6.1.39, Section 8.5.2)

∀x, y : f(x, x, y) = f(x, y, x) = f(y, x, x) = f(x, x, x).

Here we present an observation, due to Kozik and Wrona, that implies that certain
pseudo minor conditions imply the corresponding ‘quasi identities’.

Lemma 10.1.3. Let C be an operation clone whose unary operations are injective
and let f ∈ C and a1, a2 ∈ C (1) be such that for some i0, i1, . . . , ik ≤ n

∀x1, . . . , xn : a1(f(xi1 , . . . , xik)) = a2(f(xi0 , . . . , xi0)).

Then

∀x1, . . . , xn : f(xi1 , . . . , xik) = f(xi0 , . . . , xi0).

Proof. The assumption asserts in particular that for all xi0

a1(f(xi0 , . . . , xi0)) = a2(f(xi0 , . . . , xi0)).

Since a2(f(xi0 , . . . , xi0)) = a1(f(xi1 , . . . , xik)) we therefore have

a1(f(xi0 , . . . , xi0)) = a1(f(xi1 , . . . , xik)).

By assumption a1 injective and hence f(xi0 , . . . , xi0) = f(xi1 , . . . , xik). �

Corollary 10.1.4. Let C be an operation clone such that all operations in C (1)

are injective, and suppose that there are a0, a1, . . . , ak ∈ C (1) and f ∈ C (k) such that

∀x, y : a1(f(y, x, x, . . . , x)) = a2(f(x, y, . . . , x))

= · · · = ak(f(x, . . . , x, y)) = a0(f(x, . . . , x)).

Then f is a quasi near-unanimity operation.

10.1.2. The lift lemma. In order to show that an oligomorphic operation
clone satisfies a pseudo minor condition it suffices to verify the condition locally
(recall Definition 9.5.7). While this is in parallel to the case of minor conditions (see
Lemma 9.6.10), it requires a different compactness proof. We actually prove an even
stronger statement where we can fix the operations that satisfy the given identities
modulo some unary operations; we refer to this result as the lift lemma. The lift
lemma is essentially from [100], but there are many variations and different presenta-
tions of the result (some of which appeared e.g. in [30,68,97]). The result even holds
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for infinite systems of identities, but since the infinite version is not needed in this
text and requires additional technical effort, we do not prove it here, and refer the
interested reader to [97] instead. On the other hand, we also state an addition that
first appeared in [22] which allows us to prove that a given clone satisfies a system of
pseudo-identities where some of the unary maps are required to be equal. Moreover,
our formulation of the lift lemma can also be used for ω-categorical structures that
are not necessarily model-complete cores (like the one in [30], which concerns the
particular case of the pseudo-Siggers identity).

Lemma 10.1.5 (Lift lemma). Let B be a countable ω-categorical structure and
for i ∈ {1, . . . , s} let fi, gi : B

ki → B be operations such that for every finite F ⊆ B
there are ai,F , bi,F ∈ End(B) such that ai,F ◦ fi|F = bi,F ◦ gi|F . Then there are
d1, . . . , ds, e1, . . . , es ∈ End(B) such that di ◦ fi = ei ◦ gi for every i ∈ {1, . . . , s}.
Moreover, if i, j ∈ {1, . . . , s} are such that ai,F = aj,F for all finite F ⊆ B, then
di = dj, and likewise if bi,F = bj,F for all finite F ⊆ B, then ei = ej.

Proof. Suppose without loss of generality that B = N. For e1, e2 ∈ End(B) we
write e1 =n e2 if e1|{0,...,n−1} = e2|{0,...,n−1}. For i ∈ {1, . . . , s} and n ∈ N let Pi,n
be the set of all pairs (ai,n, bi,n) ∈ End(B)2 such that ai,n ◦ fi =n bi,n ◦ gi. Note
that Pi,n is non-empty by assumption. Define Pn := P1,n × · · · ×Ps,n, and define the
equivalence relation ∼ on Pn as follows: ((a1, b1), . . . , (as, bs)) ∼ ((a′1, b

′
1), . . . , (a′s, b

′
s))

if there exists β ∈ Aut(B) such that for all i ∈ {1, . . . , s}
ai =n β ◦ a′i bi =n β ◦ b′i.

Note that for each n, the relation ∼ has finitely many equivalence classes on Pn,
because their number is bounded by the number of orbits of sn-tuples under Aut(B),
which is finite by the ω-categoricity of B. We now construct a rooted tree as follows.
Each vertex of the tree lies on some level n ∈ N. The vertices of the tree on level n are
precisely the equivalence classes of ∼ on Pn. We define adjacency in the tree as follows:
if E is a vertex on level n, and E′ is a vertex on level n+1, and ((a1, b1), . . . , (as, bs)) ∈
E and ((a′1, b

′
1), . . . , (a′s, b

′
s)) ∈ E′ such that for all i ∈ {1, . . . , s}

ai =n a
′
i and bi =n b

′
i

then we make E and E′ adjacent in the tree. Note that the resulting tree is finitely
branching and contains vertices on all levels. Hence, by Kőnig’s tree lemma there
exists an infinite path E0, E1, E2, . . . in the tree. We construct an infinite sequence
(pn)n∈N with

pn = ((a1,n, b1,n), . . . , (as,n, bs,n)) ∈ En
such that for all i ∈ {1, . . . , s} and n ∈ N

ai,n−1 =n ai,n and bi,n−1 =n bi,n.

Initially, p0 is defined to be any element of E0. Suppose we have already defined
pn. Since En and En+1 are adjacent, there are ((a1, b1), . . . , (as, bs)) ∈ En and
((a′1, b

′
1), . . . , (a′s, b

′
s)) ∈ En+1 such that ai =n a

′
i and bi =n b

′
i for all i ∈ {1, . . . , s}.

By the definition of ∼ on Pn there exists β ∈ End(B) such that for all i ∈ {1, . . . , s}
ai,n =n β ◦ ai and bi,n =n β ◦ bi.

Define ai,n+1 := β ◦ a′i and bi,n+1 := β ◦ b′i. We verify that this definition has the
required properties. First, observe that

ai,n+1 = β ◦ a′i =n β ◦ ai = ai,n.

Moreover,

pn+1 := ((a1,n+1, b1,n+1), . . . , (as,n+1, bs,n+1)) ∈ En+1
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since pn+1 ∼ ((a′1, b
′
1), . . . , (a′s, b

′
s)) ∈ En+1. For i ∈ {1, . . . , s} and n ∈ N define

di(n) := as,n+1(n) and ei(n) := bs,n+1(n); these maps have the properties that are
required in the statement of the lemma. �

In many situations, in particular if the structure B from Lemma 10.1.5 is a
model-complete core, the following permutation-group formulation of the lift lemma
is sufficient. We find it instructive to give two proofs: the first as a direct consequence
of Lemma 10.1.5, and the second using the terminology from topology.

Corollary 10.1.6. Let G be an oligomorphic permutation group on a countable
base set B and for i ∈ {1, . . . , s} let fi, gi : B

ki → B be operations such that for
every finite F ⊆ B there is an αi,F ∈ G such that αi,F fi|F = gi|F . Then there are

e0, e1, . . . , es ∈ G such that ei ◦ fi = e0 ◦ gi for every i ∈ {1, . . . , s}. Moreover, if
i, j ∈ {1, . . . , s} are such that αi,F = αj,F for all finite F ⊆ B, then ei = ej.

Proof using Lemma 10.1.5. Take B any structure with domain B such that
G = End(B) (Proposition 4.4.2). Then we apply Lemma 10.1.5 with ai,F := αi,F
and bi,F := id for all i ∈ {1, . . . , s}. �

For our second proof of Corollary 10.1.6, based on the presentation in [97], we use
a certain compact Hausdorff space that will be important later again in Section 11.4.2.
Recall that the space BB/G from Definition 9.5.10 is compact (Proposition 9.5.11)
but not Hausdorff (Remark 9.5.12). We consider the following quotient space which
is still compact and additionally Hausdorff.

Definition 10.1.7. Let G be a permutation group on a set B and let A be any
set. For f, g ∈ BA, define f ∼ g if f ∈ G g := {α ◦ g | α ∈ G }. Then we also write
BA�G instead of BA/∼.

Proposition 10.1.8. Let G be an oligomorphic permutation group on a set B,
and let A be countable. Then BA�G is a compact Hausdorff space.

Proof. Since BA�G is a quotient of BA/G , and since BA/G is compact (Propo-
sition 9.5.11), the compactness of BA�G follows from Proposition 9.1.18. To prove
that BA�G is Hausdorff, let s1/∼, s2/∼ be elements of BA�G . If these two el-
ements are distinct, there exists t ∈ An such that s1(t), s2(t) ∈ Bn lie in differ-
ent orbits of n-tuples under G . Then s1 ∈ U1 := {u ∈ BA | u(t) = s1(t)} and
s2 ∈ U2 := {u ∈ BA | u(t) = s2(t)}, and U1 and U2 are open and disjoint. �

Second proof of Corollary 10.1.6. We may assume that B = N, and we
write αi,j instead of αi,{0,...,j−1}. By adding fictitious arguments to the fi and gi
we may assume that ki = m for every i ∈ {1, . . . , s}. Let H be the componentwise

action of G on Bs+1. Then (Bs+1)B
s+1

�H is compact by Proposition 10.1.8, and

hence its closed subspace G
s+1

�H is compact as well (Proposition 9.1.18). Let S be

the set of equivalence classes of elements of G
s+1

of the form (id, α1,j , . . . , αs,j) for
j ∈ N. Note that limj→∞(αi,jfi) = gi. Hence, if S is finite then there exists δ ∈ G
and j ∈ N such that for every i ∈ {1, . . . , s} we have δαi,jfi = gi, and we are done.
Otherwise, by Proposition 9.1.19 the set S has a limit point (b, a1, . . . , as)/∼. Hence,
there are δj ∈ G for j ∈ N such that limj→∞(δj , δjα1,j , . . . , δjαs,j) = (b, a1, . . . , as).
We obtain that for every i ∈ {1, . . . , s}

ai ◦ fi =

(
lim
j→∞

δjαi,j

)
◦ fi

= lim
j→∞

δj ◦ lim
j→∞

(αi,jfi) = b ◦ gi.
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For the second part of the statement it suffices to observe that if there are i, i′ ∈
{1, . . . , s} such that αi,j = αi′,j for all j ∈ N, then ai = ai′ for the representative
(b, a1, . . . , as) of the limit point. �

For illustration we present an application of the lift lemma for pseudo-Siggers
operations (recall Example 10.1.1).

Corollary 10.1.9. Let C be an oligomorphic operation clone such that the in-
vertible elements in C (1) are dense in C (1), and let s ∈ C (6). Then s is a pseudo-
Siggers operation in C if and only if C locally satisfies the pseudo-Siggers clone for-
mula φSig(s) given in (41).

Proof. The statement is an immediate consequence of the lift lemma in the
form of Corollary 10.1.6 applied to f1(x, y, z) := s(x, y, x, z, y, z) and g1(x, y, z) :=
s(y, x, z, x, z, y). �

Note that the corollary does not immediately imply that C has a pseudo-Siggers
polymorphism if and only if C satisfies the pseudo-Siggers condition ∃s : φSig(s) lo-
cally. To prove this we have to combine the lift lemma with yet another compactness
argument. The argument does not only apply to the pseudo-Siggers condition, but
shows the following.

Lemma 10.1.10. Let B be a countable ω-categorical structure and φ a pseudo
minor condition. Then φ holds in Pol(B) if and only if φ holds in Pol(B) locally.

Proof. Clearly, if φ holds in Pol(B) then it also holds locally in Pol(B). For
the converse, let a1 ◦ (f1)σ1

= b1 ◦ (g1)τ1 , . . . , as ◦ (fs)σs
= bs ◦ (gs)τs be the conjuncts

of the pseudo minor condition. The existence of functions f1, g1, . . . , fs, gs such that
for every finite subset F ⊆ B there are a′1, . . . , a

′
s, b
′
1, . . . , b

′
s ∈ End(B) such that

a′i ◦ (fi)σi |F = b′i ◦ (gi)τi |F
for every i ∈ {1, . . . , s} follows from Lemma 4.1.10. The statement then follows from
Lemma 10.1.5. �

10.1.3. Stable pseudo minor conditions. In this section we consider a certain
class of pseudo minor conditions that are preserved by taking point stabilisers and
by diagonal interpolation. A pseudo minor condition is called stable if each rank 1
clone variable in the pseudo minor condition always appears in front of the same clone
variable. Formally, a clone formula φ(f1, . . . , fn) is called stable if it is of the form

∃e1,1, . . . , e1,k1 , . . . , en,1, . . . , en,kn : ψ

where e1,1, . . . , e1,k1 , . . . , en,1, . . . , en,kn are unary and ψ is a conjunction of atomic
clone formulas of the form

ei,j ◦ (fi)σ = ep,q ◦ (fp)τ

for i, p ≤ n, j ≤ ki, q ≤ kp, σ : {1, . . . , ar(fi)} → {1, . . . , k}, and τ : {1, . . . , ar(fp)} →
{1, . . . , k}. Correspondingly, a pseudo minor condition ∃f1, . . . , fn : φ(f1, . . . , fn) is
called stable if φ is stable.

Example 10.1.11. Pseudo-loop conditions [187] are defined analogously to loop
conditions (Definition 6.7.10): they are pseudo minor conditions of the form

∃f, a, b : a ◦ fτ = b ◦ fσ
where a, b are unary, f is n-ary, and τ, σ : {1, . . . , n} → {1, . . . , k}. The existence of
a pseudo-Siggers operation is an example of a pseudo-loop condition. Note that each
pseudo-loop condition φ can be represented by a directed graph Dφ, as in the case of
loop conditions. Observe that every pseudo-loop condition is stable. 4
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Example 10.1.12. An example of a pseudo minor condition that is not stable is

∃f1, f2, e1, e2

(
e1 ◦ f(x, y) = e2 ◦ g(x, y)

∧ e2 ◦ f(x, y) = e1 ◦ g(y, x)
)

4

The following proposition states that if the polymorphism clone of an ω-categorical
model-complete core structure satisfies a stable pseudo minor condition, then this
condition also holds in the polymorphism clone of the expansion of the structure by
finitely many constants.

Proposition 10.1.13. Let C be an operation clone on a base set B such that
the group G of invertible elements of C (1) is dense in C (1). If C satisfies a stable
pseudo minor condition φ then the stabiliser clone Ct, for some t ∈ Bn and n ∈ N,
also satisfies φ.

Proof. Let f1, . . . , fm ∈ C be operations of arity k1, . . . , km, respectively, and let
e1,1, . . . , e1,k1 , . . . , em,1, . . . , em,km ∈ C (1) be witnesses for the variables of φ showing

that C |= φ. Then for each i ∈ {1, . . . ,m} the operation f̂i ∈ C (1) given by x 7→
fi(x, . . . , x) is in G . In particular, there exists βi ∈ G such that βif̂i(t) = t. The
operation f ′i := βifi ∈ C preserves t, and hence f ′i ∈ Ct.

Let ei,j ◦ (fi)σ = ep,q ◦ (fp)ρ be a conjunct of φ, where σ : {1, . . . , ki} → {1, . . . , k}
and ρ : {1, . . . , kp} → {1, . . . , k}. Since C (1) = G and ei,j(f̂i(t)) = ep,q(f̂p(t)) there

exists α ∈ G such that αei,j(f̂i(t)) = t = αep,q(f̂p(t)). Define

e′i,j := αei,jβ
−1
i

and e′p,q := αep,qβ
−1
i .

We will show that e′i,j(t) = t = e′p,q(t). We have

e′i,j(t) = e′i,j(f
′
i(t, . . . , t)) = αei,jβ

−1
i βif̂i(t) = αei,j f̂i(t) = t.

Therefore, e′i,j ∈ C
(1)
t . The proof that e′p,q ∈ C

(1)
t is analogous. We finally verify that

e′i,j ◦ (f ′i)σ = e′p,q ◦ (f ′p)ρ.

e′i,j ◦ (f ′i)σ = αei,jβ
−1
i βi(fi)σ

= αei,j(fi)σ

= αep,q(fp)ρ

= αep,qβ
−1
i βi(fp)σ

= e′p,q ◦ (f ′p)ρ .

This concludes the proof that Ct satisfies φ. �

Let G be a permutation group on a set B and f : Bk → B. Then the diagonal
interpolation space

{(x1, . . . , xk) 7→ γf(β(x1), . . . , β(xk)) | β, γ ∈ G }

becomes important in Section 11.6 for the task of algorithmically deciding whether
a reduct of a finitely bounded homogeneous structure has a pseudo-Siggers poly-
morphism. The following lemma implies for instance that if f is a pseudo-Siggers
polymorphism of an ω-categorical model-complete core C then every operation in the
diagonal interpolation space is a pseudo-Siggers polymorphism of C, too.

Lemma 10.1.14. Let C be an oligomorphic operation clone on a countable set B
such that the set G of invertible elements of C (1) is dense in C (1). Let f1, . . . , fn ∈ C
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and let φ(x1, . . . , xn) be a stable clone formula such that C satisfies φ(f1, . . . , fn). For
every i ∈ {1, . . . , n}, let

gi ∈ {(x1, . . . , xar(fi)) 7→ γfi(β(x1), . . . , β(xar(fi))) | β, γ ∈ G }.
Then C also satisfies φ(g1, . . . , gn).

Proof. We first show the statement for the formula

∃a, b : a ◦ fσ = b ◦ fτ
where f = fi is k-ary and a, b unary. Let g := gi be as in the statement. By
Lemma 10.1.5 it suffices to show that for every finite F ⊂ Bk there is an η ∈ G
such that gσ|F = ηgτ |F . Let F ⊆ Bk be finite. Then there are γ, δ ∈ G such that

g(t1, . . . , tk) = γf(δ(t1), . . . , δ(tk)) for every (t1, . . . , tk) ∈ F . Since a ∈ G there exists

an α ∈ G such that αa(t) = t for every t ∈ f(F ). Moreover, since b ∈ G there exists
a β ∈ G such that β(t) = b(t) for every t ∈ f(F ). Let η := γαβγ−1. Then for every
t ∈ F

gσ(t) = γfσ(δt)

= γαa(fσ(δt))

= γαb(fτ (δt))

= ηγfτ (δt)) = ηgτ (t)

and thus η ∈ G has the desired properties. The proof for arbitrary stable pseudo
minor conditions is similar. �

10.2. Pseudo-Siggers Operations

Barto and Pinsker [30] proved the following remarkable result; the title of the
journal version starts with the words ‘topology is irrelevant’ because item (1) involves
topology whereas condition (3) is purely algebraic: it only refers to Pol(B) as an
abstract clone.

Theorem 10.2.1 (Pseudo-Siggers theorem). Let B be an ω-categorical model-
complete core. Then the following are equivalent.

(1) For any n ≥ 1 and c1, . . . , cn ∈ B there is no continuous clone homomor-
phism from Pol(B, c1, . . . , cn) to Proj.

(2) There is no primitive positive interpretation of K3 in B with parameters.
(3) Pol(B) contains a pseudo-Siggers operation.
(4) Pol(B) satisfies a non-trivial stable pseudo-minor condition.
(5) For any n ≥ 1 and c1, . . . , cn ∈ B there is no clone homomorphism from

Pol(B, c1, . . . , cn) to Proj.

All the implications in cyclic order are either trivial or follow straightforwardly
from previous observations, except for the implication from (2) to (3). The proof of
this implication is similar to the proof of Theorem 6.8.6; however, instead of The-
orem 6.8.1, we use a lemma that has been called the pseudo-loop lemma and that
will be presented in Section 10.2.1. The proof of Theorem 10.2.1 can be found in
Section 10.2.2.

10.2.1. The pseudo-loop lemma. Before we state the pseudo-loop lemma,
we first state the loop lemma for undirected graphs. Using Corollary 6.7.13, Theo-
rem 6.8.1 can be reformulated as follows.

Lemma 10.2.2 (Loop lemma). Let (V ;E) be a finite undirected graph which is
not bipartite. If K3 /∈ ICH(V ;E), then E contains a loop.
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Let G be a permutation group on a set B and let E ⊆ B2 be a binary relation.
An edge in E is called pseudo-loop with respect to G if it is of the form (v, α(v)) for
some v ∈ B and α ∈ G .

Lemma 10.2.3 (Pseudo-loop lemma). Let G be an oligomorphic permutation
group on a countable set B and suppose that there exists a binary symmetric rela-
tion E ∈ Inv(G ) such that the graph (B;E) embeds K3. If K3 /∈ IC(Orb(G ), E)
(Definition 6.1.7), then (B;E) contains a pseudo-loop with respect to G .

Let G be an oligomorphic permutation group on a countable set B and let E be
a symmetric binary relation on B. We call the graph (B;E) expansive with respect to
G if

• E ∈ Inv(G ),
• (B;E) embeds K3, and
• (B;E) has no pseudo-loops with respect to G .

In the proof of the pseudo-loop lemma we need the following definition from [30].

Definition 10.2.4. Let G be an oligomorphic permutation group on a countable
set B and let (B;E) be expansive with respect to G . Then (B;E) is called minimal
with respect to G if the following two properties hold.

(1) IfB′ ⊆ B is primitively positively definable in (Orb(G ), E) and E′ is a binary
symmetric relation on B′ with a primitive positive definition in (Orb(G ), E)
such that (B′;E′) is expansive with respect to G |B′ , then B′ = B.

(2) If ∼ is an equivalence relation on B which is primitively positively definable
in (Orb(G ), E) and E′ is a binary symmetric relation on B with a primi-
tive positive definition in (Orb(G ), E) such that the graph (B;E′)/∼ (see
Example 3.1.2) is expansive with respect to G /∼, then ∼ is the equality
relation.

When proving Lemma 10.2.3, we may assume without loss of generality that E is
minimal with respect to G . Otherwise, suppose that B′ is a proper subset of B with a
primitive positive definition in (Orb(G ), E) and E′ is a primitively positively definable
relation on B′ such that (B′;E′) has no pseudo-loops with respect to G ′ := G |B′ and
(B′;E′) embeds K3. Note that G ′ is again oligomorphic and has strictly fewer orbits
than G (since the number of orbits of G equals the number of orbits of G ′ plus the
number of orbits of G ′′ := G |B\B′ , which is at least one). Then we may replace G by
G ′ and E by E′; this will be called a shrinking step.

Now suppose that (B;E) is not minimal with respect to G because there exists
a non-trivial equivalence relation ∼ on B which is primitively positively definable in
(Orb(G ), E) and E′ is a primitively positively definable binary relation on B such
that the graph (B;E)/∼ embeds K3 and does not have pseudo-loops with respect to
G /∼. In this case we may again replace G by G /∼ and E by E′; this will be called
a factoring step.

We claim that after a finite number of such replacement steps we reach an oligo-
morphic permutation group G on a countable set B and a graph (B;E) such that E
is minimal with respect to G . The reason is that in the second type of replacement,
the number of orbits does not increase. So in total, there can only be a finite number
of shrinking steps, and from some point on, only factoring steps can be made. But
note that we may combine two factoring steps into one factoring step with respect
to a coarser primitively positively definable equivalence relation. Since there are only
finitely many primitively positively definable equivalence relations in (Orb(G ), E), the
factoring step can also only be performed a finite number of times, which proves the
claim.
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... ...
a1 ak a2k

b2k

c2k

x=a0 y=a2k+1

y’

Figure 10.1. Diagram for the proof of Lemma 10.2.5.

Lemma 10.2.5. Let G be an oligomorphic permutation group on a countable set B
and let (B;E) be minimal with respect to G and such that every edge of E is contained
in a copy of K3 in (B;E). Then (B;E) is diamond-free (see Section 6.8).

Proof. Let R be the binary symmetric relation with the primitive positive def-
inition over (B;E) given in (36) expressing that x and y are linked by a diamond,
and for n ∈ N let δn(x, y) be the formula (37) expressing that x and y are linked by
a chain of at most n + 1 diamonds. Let T be the transitive closure of R, which is
the equivalence relation of being diamond connected as in the proof of Lemma 6.8.2;
reflexivity follows from the assumption that every edge of E is contained in a copy of
K3 in (B;E). The oligomorphicity of G implies that there are finitely many relations
with a primitive positive definition in (B;E), so there must exist an n such that δn
is equivalent to δn′ for all n′ ≥ n. Therefore, the formula δn provides a primitive
positive definition of T in (B,E).

Claim. If (x, y) ∈ T and y′ is in the same orbit as y, then x is not adjacent
to y′. The proof is similar to the one given in the proof of Lemma 6.8.2. Suppose
otherwise, and choose x, y, y′ with a shortest possible sequence (a0, . . . , am) in B such
that a0 = x, am = y, and R(a0, a1), . . . , R(am−1, am). First suppose that m = 2k+ 1
is odd; see Figure 10.1. Consider the set S consisting of all w ∈ B satisfying

∃u, v
(
u ∈ G ak ∧ δk(u, v) ∧ E(v, w)

)
.

Let b2k, c2k be the two witnesses showing that R(a2k, a2k+1) holds. Then b2k, c2k ∈ S.
We also have y′ ∈ S, and therefore y ∈ S since y′ and y lie in the same orbit and S
has a first-order definition. Hence, S contains the triangle formed by b2k, c2k, and
y = a2k+1 in (B;E). By the minimality of (B;E), we must have that S = B. Let
u, v ∈ B be as in the definition of S witnessing that S(x) holds. Then δk(u, v), but
also δk(u, x′) for some x′ ∈ G x because δk(ak, x), u ∈ G ak, and δk is preserved by G .
Therefore, δ2k(v, x′), which together with E(v, x) contradicts the choice of x, y, y′ such
that m is minimal if m ≥ 3. The case m = 1 is impossible, since in this case δ0(v, x′)
implies that v = x′, so E(x, x′) in contradiction to the assumption that (B;E) does
not have pseudo-loops. The case where m is even can be shown similarly.

The claim shows that (B;E)/T does not have pseudo-loops. Moreover, it is easy
to see that every edge in (B;E)/T is contained in a copy of a K3. By minimality, T
must be the equality relation, which means that (B;E) is diamond-free. �

An important example of a diamond-free graph is (K3)k. Clearly, K3 ∈ H((K3)k);
but we even have the following.

Lemma 10.2.6. For every k ∈ N, the graph K3 has a primitive positive interpre-
tation in (K3)k with parameters.

Proof. Consider the following equivalence relation

C :=
{

((u1, . . . , uk), (v1, . . . , vk)) | (u1, . . . , uk), (v1, . . . , vk) ∈ (K3)k and u1 = v1

}
;
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we claim that C is preserved by every idempotent f ∈ Pol
(
(K3)k

)
. Let l be the arity

of f . We may view f as a homomorphism from (K3)kl to the diamond-free graph
(K3)k. Hence, Lemma 6.8.4 implies that there exists I ⊆ {1, . . . , kl} such that the
kernel of f equals the kernel of πklI and the image of f is isomorphic to (K3)|I|. It
follows that |I| ≤ k and by the idempotence of f we have that |I| = k. So there
are {(i1, j1), . . . , (ik, jk)} ⊆ {(1, 1), . . . , (l, k)} and an automorphism α of (K3)k such
that f(x1,1, . . . , x1,k, . . . , xl,1, . . . , xl,k) = α(xi1,j1 , . . . , xik,jk). The idempotence of f
implies that

f(xi,1, . . . , xi,k, xi,1, . . . , xi,k, . . . , xi,1, . . . , xi,k) = (xi,1, . . . , xi,k)

and hence j1 = 1, . . . , jk = k. Note that for every automorphism α of Kk
3 there exists

a permutation q of {1, . . . , k} and permutations g1, . . . , gk of {1, 2, 3} such that for all
u1, . . . , uk ∈ {1, 2, 3}

α(u1, . . . , uk) = (g1(uq(1)), . . . , gk(uq(k))).

Now, if (ū1, v̄1), . . . , (ūl, v̄l) ∈ C then

f(ū1, . . . , ūl)1 = α(ūi1,1, . . . , ūik,k)1

= g1(ū1,q(1))

= g1(v̄1,q(1)) (by assumption)

= f(v̄1, . . . , v̄l)1

and hence (f(ū1, . . . , ūl), f(v̄1, . . . , v̄l)) ∈ C. Analogously one can show that

E :=
{

((u1, . . . , uk), (v1, . . . , vk)) | (u1, . . . , uk), (v1, . . . , vk) ∈ (K3)k and u1 6= v1

}
is preserved by every idempotent polymorphism of Pol((K3)k). Hence, C and E
are primitively positively definable in the expansion of (K3)k by a constant for each
element (Theorem 6.1.12). This shows that the first projection is a 1-dimensional
primitive positive interpretation of K3 in (K3)k with parameters. �

Lemma 10.2.7 (Lemma 3.5 in [30]). Let G be an oligomorphic permutation group
on a countable set B and let E be a binary symmetric relation on B such that

• (B;E) is minimal with respect to G ;
• every edge from E is contained in a copy of K3 in (B;E);
• (B;E) contains an induced subgraph H isomorphic to (K3)k for some k ≥ 1

such that |(K3)k| = 3k is larger than the number of orbits under G .

Then (Orb(G ), E) defines primitively positively a symmetric relation E′ such that

• E′ properly contains E,
• E′ has no pseudo-loops with respect to G , and
• every edge from E′ is contained in a copy of K3 in (B;E′).

Proof. Let {1, 2, 3}k be the vertices of H. By assumption, H has two distinct
vertices o and o′ that lie in the same orbit under G . Let p and q be vertices of H
such that {o, p, q} induces a copy of K3. Let O,P,Q be the orbits of o, p, q under G ,
respectively. Since E does not contain pseudo-loops, O, P , andQ are pairwise distinct.
Let S(u, v) be the binary symmetric relation defined by the following primitive positive
formula in (Orb(G ), E).

∃x, y, z, no, np, nq
(
E(u, no) ∧ E(v, no) ∧ E(no, x) ∧O(x)

∧E(u, np) ∧ E(v, np) ∧ E(np, y) ∧ P (y)

∧E(u, nq) ∧ E(v, nq) ∧ E(nq, z) ∧Q(z)
)
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The set N of neighbours of neighbours of elements in O is primitively positively
definable in (Orb(G );E). Note that N contains O ∪ P ∪ Q. Indeed, if x ∈ P , pick
α ∈ G such that αp = x. Then αo ∈ O, and since (o, p) ∈ E we have (αo, x) ∈ E
and hence x is a neighbour of an element in O. We can reason analogously if x ∈ Q.
This shows that P ∪ Q belongs to the neighbours of elements in O. Repeating this
argument one more time, we obtain that O ∪ P ∪Q belongs to the neighbours of the
neighbours of elements in O. The restriction of E to N still contains a copy of K3

(namely {o, p, q}). Hence, the minimality of (B;E) with respect to G implies that
every element of B is at distance at most two from an element in O. The same applies
to P , and to Q. This implies that the relation S is reflexive.

The set M(u, v) of elements of B adjacent to a common neighbour of an element
of G u and an element of G v is primitively positively definable in (Orb(G );E). Note
that M(u, v) contains O∪P ∪Q, and again minimality of (B;E) implies that M = B.
Let T (u, v) be the binary relation defined by the primitive positive formula

∃s, t
(
E(u, s) ∧ S(s, v) ∧ S(u, t) ∧ E(t, v)

)
.

Note that E ⊆ T : since S is reflexive, setting s = v and t = u in the above definition
shows that E(u, v) implies T (u, v). Moreover, T is symmetric by definition. Let E′

consist of those edges of T that are contained in a copy of a K3 in (B;T ). We still
have that E ⊆ E′.

We now show that (B;T ), and hence also (B;E′), does not contain pseudo-loops
with respect to G . Suppose for contradiction that T (u, αu) for some α ∈ G . Then
there exists s such that E(u, s) ∧ S(s, αu), and since E is covered by copies of K3

in (B;E) there exists some w ∈ B such that {u, s, w} induces a copy of K3. Since
w ∈M(s, u), it has a neighbour z which is also adjacent to an element of G s and an
element of G u. The set of vertices with a neighbour in G z

• is primitively positively definable in (Orb(G );E);
• contains G u, G s, and Gw, and hence contains {u, s, w} which induces a K3

in (B;E);
• is a proper subset of B: it does not contain G z because (B;E) does not

have pseudo-loops with respect to G .

This contradicts the minimality of (B;E) with respect to G .
We finally show that E is properly contained in E′. It suffices to show that

E′(o′, p) and E′(o′, q), because if a vertex of (K3)k is adjacent to both p and q, then
the vertex must be equal to o, but o and o′ are distinct by assumption. We only
show that E′(o′, p) since E′(o′, q) can be shown analogously. We may assume without
loss of generality that o = (1, . . . , 1), p = (2, . . . , 2), and q = (3, . . . , 3). Let j be the
number of entries of o′ that are distinct from 2; we may assume that o′i 6= 2 for all
i ∈ {1, . . . , j} and o′i = 2 for all i ∈ {j + 1, . . . , k}. Since o′ 6= p we have j ≥ 1.
Observe that whenever u, v ∈ {1, 2, 3}k are of the form

u = (w1, . . . , wj , 2, . . . , 2) and v = (w1, . . . , wj , 3, . . . , 3)

then S(u, v): this is witnessed by

• their common neighbour (x1, . . . , xj , 1, . . . , 1), where xi /∈ {o′i, wi} for all
i ∈ {1, . . . , j}, which is E-related to o′ ∈ O,

• their common neighbour (y1, . . . , yj , 1, . . . , 1) with yi /∈ {2, wi} for all i ∈
{1, . . . , j}, which is E-related to p ∈ P , and

• their common neighbour (z1, . . . , zj , 1, . . . , 1) with zi /∈ {3, wi} for all i ∈
{1, . . . , j}, which is E-related to q ∈ Q.

Then T (o′, p) holds: setting

t := (o′1, . . . , o
′
j , 3, . . . , 3)
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we have that S(o′, t) by the above observation, and clearly E(t, p). Setting

s := (2, . . . , 2︸ ︷︷ ︸
j times

, 3, . . . , 3)

we have that E(o′, s) and that S(s, p) again by the above observation. We can then
conclude that E′(o′, p) holds, because any two elements of {1, 2, 3}k, and in particular
o′ and p, have a common neighbour with respect to E, and hence also with respect
to T , showing that (o′, p) ∈ T is covered by a copy of a K3 in (B;T ). �

Proof of Lemma 10.2.3. Suppose that the graph (B;E) has no pseudo-loop
with respect to G . We must show that K3 ∈ IC(Orb(G ), E). We may assume that
(B;E) is minimal with respect to G as explained above. Moreover, we may also
assume that every edge of E is contained in a copy of K3 in (B;E): consider the
relation E′ with the primitive positive definition

E′(x, y) :⇔ ∃z
(
E(x, y) ∧ E(y, z) ∧ E(z, x)

)
.

Note that (B;E′) must be minimal with respect to G , and we may replace E by E′

to obtain the desired property.
It then follows from Lemma 10.2.5 that (B;E) is diamond-free. If (B;E) con-

tains an induced subgraph isomorphic to (K3)k such that |(K3)k| is larger than the
number of orbits under G , then by Lemma 10.2.7, there is a symmetric relation
E′ that properly contains E, is primitively positively definable in (Orb(G ), E), and
whose edges are covered by copies of K3 in (B;E′). Then (B;E′) is minimal with
respect to G (and in particular diamond-free), and we may therefore replace E by
E′. Since there are finitely many binary relations in Inv(G ), after a finite number
of steps we arrive at a graph (B;E) which is minimal with respect to G and every
subgraph isomorphic to (K3)k has fewer vertices than the number of orbits under
G . Let k ∈ N be the maximal k such that (B;E) has an isomorphic copy of (K3)k

induced on A := {a1, . . . , a`}. We show that A has a primitive positive definition
in (Orb(G );E) with parameters a1, . . . , a`. By Theorem 6.1.12, it suffices to show
that every f ∈ Pol(Orb(G );E, a1, . . . , a`) preserves A. The restriction f ′ of f to A
is a homomorphism from (K3)k to the diamond-free graph (B;E). The image of f ′

contains A because f ′ preserves a1, . . . , a`. Hence, if f does not preserve A, then the
image of f is strictly larger than A, and by Lemma 6.8.4 the image of f ′ induces
a copy of (K3)m for some m > k, contradicting the maximality of k. We therefore
get (K3)k ∈ IC(Orb(G ), E). Lemma 10.2.6 states that K3 has an interpretation with
parameters in (K3)k. By Corollary 4.5.7 we get that K3 ∈ IC(Orb(G ), E). �

10.2.2. Constructing the pseudo-Siggers polymorphism. In this section
we prove the pseudo-Siggers theorem (Theorem 10.2.1). The important step is prov-
ing that if an ω-categorical model-complete core B does not have a pseudo-Siggers
polymorphism, then K3 ∈ IC(B).

Proof of Theorem 10.2.1. The equivalence of (1) and (2) is a consequence of
Corollary 9.5.21.

(2) ⇒ (3). We use the lift lemma (Lemma 10.1.5) and verify the existence of
a pseudo-Siggers polymorphism locally. Let F ⊆ B be finite. As in the proof of
Theorem 6.8.6 where we constructed a Siggers polymorphism, let k ≥ 1 and a, b, c ∈
F k be such that {(ai, bi, ci) | i ≤ k} = F 3. Let R be the binary relation on Bk such
that (u, v) ∈ R iff there exists a 6-ary s ∈ Pol(B) such that u = s(a, b, a, c, b, c) and
v = s(b, a, c, a, c, b).

• The vertices a, b, c ∈ Bk induce in (Bk;R) a copy of K3: each of the six
edges of K3 is witnessed by one of the six 6-ary projections from Pol(B).
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• The relation R is symmetric; this is as in the proof of Theorem 6.8.6.
• The relation R (as a 2k-ary relation over B) is preserved by Pol(B), and

hence (Bk;R) ∈ I(B) (Theorem 6.1.12). Thus, if K3 ∈ IC(Bk;R) then
K3 ∈ IC(B) by Corollary 4.5.7, contrary to our assumptions.

Note that Orb(Aut(B)) is primitively positively definable in B since B is an ω-
categorical model-complete core, so Lemma 10.2.3 implies that the graph (Bk;R)
has a pseudo-loop (w,αw) ∈ R with respect to Aut(B). Hence, there exists a 6-ary
s ∈ Pol(B) such that

w = s(a, b, a, c, b, c) and αw = s(b, a, c, a, c, b).

We then have that s(x, y, x, z, y, z) and s(y, x, z, x, z, y) lie in the same orbit for all
x, y, z ∈ F , because there exists an i ≤ k such that (x, y, z) = (ai, bi, ci). Therefore,
Lemma 10.1.5 implies that B has a pseudo-Siggers polymorphism.

(3)⇒ (4). Clearly, the existence of a pseudo-Siggers operation is a pseudo-minor
condition which is stable and non-trivial.

(4)⇒ (5). This is Proposition 10.1.13.
(5)⇒ (1) is trivial. �

In Section 11.6 we will present an algorithm that tests for a large class of ω-
categorical structures with a suitable effective representation whether they have a
pseudo-Siggers polymorphism.

10.3. Equivalence of Two Conjectures

Let B be an ω-categorical model-complete core. By the results of the previous
section we know that if B has no pseudo-Siggers polymorphism, then HI(B) contains
all finite structures. What about the converse? Is it possible that HI(B) contains all
finite structures and B has a pseudo-Siggers polymorphism? Indeed, this is possible
and we have already seen an example, which we revisit here.

Example 10.3.1. Let A be the countable atomless Boolean algebra (see Exam-
ple 4.1.4). The structure (A, 6=)

• is an ω-categorical model-complete core;
• has a pseudo-Siggers polymorphism: A6 has an embedding e into A (see Ex-

ample 6.7.5), which is a 6-ary polymorphism of (A, 6=). Then e(x, x, y, y, z, z)
and e(y, z, x, z, x, y) are embeddings of A3 into A, so we can find endomor-
phisms u1 and u2 of (A, 6=) using the lift lemma (Lemma 10.1.5);

• ({0, 1}; 1IN3) ∈ HI(A) (Example 9.6.7).

The expansion of (A; 6=) with finitely many constants still has a pseudo-Siggers poly-
morphism (Proposition 10.1.13). It follows that the structure ({0, 1}; 1IN3) cannot
be interpreted in (A; 6=) with finitely many parameters (Theorem 10.2.1 and Theo-
rem 6.3.10). Note that this is not a counterexample to Conjecture 4.5.1, since this
conjecture only applies to reducts of finitely bounded homogeneous structures. The
structure (A; 6=) is not even a reduct of a homogeneous structure with finite relational
signature, because it has doubly exponential orbit growth (recall the argument given
in the proof of Proposition 5.7.3). 4

In this section we present the result from [22] that if B is an ω-categorical model-
complete core such that

• the condition given in Conjecture 4.5.1 holds, i.e., K3 /∈ IC(B),
• the condition given in Conjecture 3.7.1 fails, i.e., K3 ∈ HI(B),
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then the structure B must have doubly exponential orbit growth (as in the exam-
ple that we have just seen), and therefore does not fall into the scope of the two
conjectures. It follows that Conjecture 3.7.1 and 4.5.1 are equivalent.

10.3.1. Ambiguity degree. Let C be an operation clone over an infinite set C
and let S ⊆ C be of size two. A function r : C → S is called a projectivity witness1

for C if r ◦ f |S is a projection for every f ∈ C .

Definition 10.3.2. Let f ∈ C be k-ary and let S ⊆ C be of size two. The
ambiguity degree of f on S is the number of indices i ∈ {1, . . . , k} such that there
exists a projectivity witness r : C → S such that r ◦ f |S = πki . The ambiguity degree
of C is the supremum of the ambiguity degrees over all operations f ∈ C and all
two-element subsets S of C.

Lemma 10.3.3 (Lemma 3.2 in [22]). Let C be an operation clone of infinite ambi-
guity degree and let G be the permutation group of invertible elements of C (1). Then
for every n ∈ N the componentwise action of G on Cn has at least 22n − 1 orbits.

Proof. Let n ∈ N and let f ∈ C be of ambiguity degree at least 2n with
respect to a two-element set S ⊆ C. By identifying arguments of f we may assume
that the arity of f is exactly 2n. For every non-empty R ⊆ Sn arbitrarily choose
qR1 , . . . , q

R
2n ∈ R such that R = {qR1 , . . . , qR2n}.

Claim. If R, T ⊆ Sn are non-empty and distinct then the n-tuples f(qR1 , . . . , q
R
2n)

and f(qT1 , . . . , q
T
2n) lie in distinct orbits under G . Suppose otherwise that there is

α ∈ G such that f(qR1 , . . . , q
R
2n) = αf(qT1 , . . . , q

T
2n). It suffices to show that for every

i ≤ 2n we have qRi ∈ T , because then R ⊆ T , and similarly T ⊆ R. Choose a
projectivity witness r : C → S for C such that r ◦ f |S is the i-th projection. Then
qRi = r ◦ f(qR1 , . . . , q

R
2n) = r ◦ α ◦ f(qT1 , . . . , q

T
2n) ∈ T since r ◦ α ◦ f |S is a projection.

The statement follows from the claim because there are 22n−1 non-empty binary
relations over the domain Sn. �

Recall the definition of pseudo-loop conditions from Example 10.1.11.

Lemma 10.3.4 (Lemma 3.4 in [22]). Let C be an operation clone such that the
set G of invertible elements of C (1) is dense in C (1). If

• C satisfies a non-trivial pseudo-loop condition, and
• C has a projectivity witness,

then C has infinite ambiguity degree, and hence G has doubly exponential orbit growth.

Proof. We show the statement by proving that for every f ∈ C of ambiguity
degree n ≥ 1 there exists an f ′ ∈ C of ambiguity degree 2n. We may assume that
f has arity n by identifying arguments; so there exists a two-element set S ⊆ C and
projectivity witnesses r1, . . . , rn : C → S such that ri ◦f |S = πni . Set F := {f(s) | s ∈
Sn}. Because G is dense in C (1), the pointwise stabiliser C(F ) satisfies a nontrivial
pseudo-loop condition, too (Proposition 10.1.13). Let g ∈ C(F ) be a function that

witnesses this, i.e, there are u, v ∈ C
(1)
(F ) such that g, u, v satisfy the nontrivial identity

u ◦ g(y1, . . . , ym) = v ◦ g(z1, . . . , zm) for variables y1, . . . , ym, z1, . . . , zm which are
not necessarily distinct. We verify that the star product g ∗ f (Definition 6.6.3) has
ambiguity degree at least 2n.

We already know that ri ◦ (g ∗ f)|S must be a projection. Writing πm,nk,l for

πmn(k−1)n+l, where k ≤ m, l ≤ n, we claim that ri ◦ (g ∗ f)|S = πm,nj,i for some j ≤ m.

1In the original publication [22] projectivity witnesses were called retractional witnesses.
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To see this, note that for all x1, . . . , xn ∈ S we have

ri ◦ (g ∗ f)(x1, . . . , xn, . . . , x1, . . . , xn)

= ri ◦ f(x1, . . . , xn) (since g fixes F = f(Sn) pointwise)

= πni (x1, . . . , xn) (by the choice of ri).

Similarly, we can verify that ri ◦ u ◦ (g ∗ f)|S = πm,nj1,i
for some j1 ≤ m, and that

ri ◦v ◦ (g ∗f)|S = πm,nj2,i
for some j2 ≤ m. We claim that j1 6= j2. Otherwise, if j1 = j2

we have for all y1, . . . , ym ∈ S

yj1 = πm,nj1,i
(y1, . . . , y1, . . . , ym, . . . , ym)

= ri ◦ u ◦ (g ∗ f)(y1, . . . , y1, . . . , ym, . . . , ym)

= ri ◦ u ◦ g(f(y1, . . . , y1), . . . , f(ym, . . . , ym))

= ri ◦ v ◦ g(f(z1, . . . , z1), . . . , f(zm, . . . , zm))

= ri ◦ v ◦ (g ∗ f)(z1, . . . , z1, . . . , zm, . . . , zm)

= πm,nj2,i
(z1, . . . , z1, . . . , zm, . . . , zm) = yj2

which contradicts the assumption that S has two elements. Hence, the operations
r1 ◦ u, . . . , rn ◦ u, r1 ◦ v, . . . , rn ◦ v witness that g ∗ f has ambiguity degree at least 2n.
The final part of the statement follows from Lemma 10.3.3. �

Theorem 10.3.5. Let C be a model-complete core with less than doubly exponen-
tial orbit growth. Then the following are equivalent.

(1) Pol(C) satisfies no non-trivial pseudo-loop condition;
(2) Pol(C) has no pseudo-Siggers operation;
(3) K3 ∈ IC(C);
(4) K3 ∈ HI(C);
(5) Pol(C) has a uniformly continuous minor-preserving map to Proj.
(6) If C is a polymorphism algebra of C then there exists A ∈ Refl Pfin(C) such

that Clo(A) is isomorphic to Proj;

Proof. The implication (1) ⇒ (2) is trivial, and the equivalence (2) ⇔ (3)
holds for all ω-categorical model-complete cores by Theorem 10.2.1. The implication
(3) ⇒ (4) holds in general by Theorem 3.6.2. The equivalence (4) ⇔ (5) holds
by Corollary 9.6.6, and the equivalence (5) ⇔ (6) follows from Theorem 9.6.4. To
show (6) ⇒ (1), suppose that A is a reflection of Ck for some k ∈ N. This means
that Clo(Ck) has a projectivity witness. Since Aut(C) does not have at least double
exponential orbit growth neither has Aut(C)k. So Lemma 10.3.4 implies that Clo(Ck)
and therefore also Clo(C) = Pol(C) satisfies no non-trivial pseudo-loop condition. �

In particular, we obtain that the condition from Conjecture 3.7.1 and the one
from Conjecture 4.5.1 are equivalent, even though Conjecture 3.7.1 does not mention
model-complete cores.

Corollary 10.3.6. Let B be a first-order reduct of a homogeneous structure with
finite relational signature. Then the following are equivalent.

• K3 ∈ IC(C) for the model-complete core C of B;
• K3 ∈ HI(B).

Proof. Since B is a first-order reduct of a homogeneous structure with finite
relational signature, Aut(B) does not have at least double exponential orbit growth
by Proposition 5.7.1, and the same applies to the model-complete core C of B by
Proposition 4.7.7. The equivalence of (3) and (4) in Theorem 10.3.5 states that K3 ∈
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IC(C) if and only if K3 ∈ HI(C). Note that HI(C) = HI(H(C)) = HI(H(B)) = HI(B)
(Theorem 3.6.2) which implies the statement. �

10.4. The Model-complete Core Assumption

The conditions from Theorem 10.3.5 were equivalent under the assumption that C
is a model-complete core. For which implications in Theorem 10.3.5 is this assumption
necessary? Our proof shows that some parts of the statement hold in general, for
example the equivalences (4)⇔ (5)⇔ (6) and the implications (3)⇒ (1)⇒ (2) and
(3) ⇒ (4). However, the implication (4) ⇒ (2) no longer applies (and hence neither
do the implications (4)⇒ (1) and (4)⇒ (3)), as the following example shows, which
was found by Trung Van Pham (personal communication).

Proposition 10.4.1. There is a first-order reduct B of a finitely bounded homo-
geneous structure which has a pseudo-symmetric polymorphism and a pseudo-Siggers
polymorphism, but K3 ∈ HI(B). In particular, the model-complete core of B has no
pseudo-Siggers polymorphism.

Proof. We write S for the ternary relation

{(x, y, z) ∈ N3 | (x = y ∨ y = z) ∧ x 6= z}.

Let B be the structure with domain N2 ∪ N and a single ternary relation

R :=
{

((x1, y1), (x2, y2), (x3, y3)) | S(x1, x2, x3) ∧ S(y1, y2, y3)
}
∪ S.

The expansion of this structure by a unary relation P for N and two binary relations{
((x, y), (x, z)) | x, y, z ∈ N

}{
((x, y), (z, y)) | x, y, z ∈ N

}
is clearly homogeneous, and it is finitely bounded since a finite structure does not
embed into B if and only if it contains a three-element structure that does not embed
into B.

For i ∈ {1, 2}, define ei : B → B by ei(x) := x if x ∈ P and ei(x1, x2) := xi
otherwise; note that ei is an endomorphism of B. We claim that the substructure C of
B induced on P is the model-complete core of B. Note that C = (N;S) is an equality
constraint language, so it is easy to see that C is a model-complete core. Moreover,
the range of the endomorphism ei lies in P . Also note that S is not preserved by a
constant operation and not preserved by binary injective operations. Theorem 7.4.1
therefore implies that K3 ∈ I(C), and hence K3 ∈ HI(B). Let f : B2 → B be defined
by

f(x, y) :=


(x1, y1) if x = (x1, x2), y = (y1, y2) ∈ N2

(x, y1) if x ∈ N, y = (y1, y2) ∈ N2

(x1, y) if x = (x1, x2) ∈ N2, y ∈ N
(x, y) if x, y ∈ N

It is easy to see that f preserves S, and therefore also preserves R. We claim that for
all x, y ∈ B

e1(f(x, y)) = e2(f(y, x)).

We have

e1(f((x1, x2), (y1, y2))) = e1(x1, y1) = x1

= e2(y1, x1) = e2(f((y1, y2), (x1, x2)))
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and

e1(f((x1, x2), y)) = e1(x1, y) = x1

= e2(y, x1) = e2(f(y, (x1, x2)))

and likewise we compute

e1(f(x, y)) = e2(f(y, x))

and e1(f(x, (y1, y2))) = e2(f((y1, y2), x)).

We conclude that f is a pseudo-symmetric polymorphism of B. A pseudo-Siggers
polymorphism can be constructed similarly. The final statement follows from Theo-
rem 10.3.5. �

Note that we see here a behaviour of pseudo-minor conditions that is very different
from minor conditions: for example, if B has a Taylor polymorphism f , and C is
homomorphically equivalent to B via homomorphisms h : B→ C and i : C→ B, then
(x1, . . . , xn) 7→ h(f(i(x1), . . . , i(xn))) is a Taylor polymorphism of C.

It turns out that the implication (2)⇒ (4) in Theorem 10.3.5 also holds for general
ω-categorical structures; this is again an observation of Trung Van Pham and first
appeared in [30]. We state the argument here in more generality for pseudo-minor
conditions rather than the special case of the pseudo-Siggers condition.

Theorem 10.4.2. Let C be the model-complete core of an ω-categorical struc-
ture B and suppose that Pol(C) satisfies a pseudo-minor condition φ. Then Pol(B)
satisfies φ as well.

Proof. Let h be a homomorphism from B to C and let i be a homomorphism
from C to B. Let f1, . . . , fn be the operations witnessing that Pol(C) satisfies all
pseudo-minor identities in φ. For each f ∈ {f1, . . . , fn} of arity n, define

f ′(x1, . . . , xn) := i(f(h(x1), . . . , h(xn))).

We use the lift lemma (Lemma 10.1.5) to show that f ′1, . . . , f
′
n witness that Pol(B)

satisfies φ, too.
Let a ◦ fσ = b ◦ gτ be a pseudo-identity of φ where σ : {1, . . . , n1} → {1, . . . , k}

and τ : {1, . . . , n2} → {1, . . . , k}. Let m ∈ N and t1, . . . , tk ∈ Bm. Then

s1 := f(h(tσ(1)), . . . , h(tσ(n1)))

s2 := g(h(tτ(1)), . . . , h(tτ(n2)))

lie in the same orbit under Aut(C) because a ◦ fσ = b ◦ gτ holds in Pol(C) and C is a
model-complete core. By Proposition 4.7.7 (2) there is an endomorphism of B that
maps i(s1) = f ′(tσ(1), . . . , tσ(n1)) to i(s2) = g′(tτ(1), . . . , tτ(n2)), and an endomorphism
that maps i(s2) to i(s1). The lift lemma (Lemma 10.1.5) then implies that there are
operations in End(B) that together with f ′1, . . . , f

′
n show that Pol(B) |= φ. �

10.5. Clones of Canonical Operations

Canonical functions are a very fruitful concept with many applications, for in-
stance for

• classifying first-order reducts with respect to first-order interdefinability [6,
7,67,94,98,273,306,316],

• classifying the computational complexity of constraint satisfaction prob-
lems [68,85,95,105,249]

• deciding various definability questions over finitely bounded homogeneous
structures [101],
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• lifting algorithmic results from finite-domain CSPs to problems about the
existence of homomorphisms from definable infinite structures to finite struc-
tures [242], and
• decidability questions about automata with infinite state space in [243].

Operations that are canonical with respect to an oligomorphic permutation group
resemble operations on a finite set, and many results about operation clones with a
finite domain extend to operation clones on infinite domains that consist of canonical
operations.

10.5.1. Canonical functions. Let G be a permutation group on a set A and let
H be a permutation group on a set B. A function f : A→ B is called canonical with
respect to (G ,H ) if for every n ∈ N, t ∈ An, and α ∈ G there exists β ∈H such that
f(α(t)) = β(f(t)). In other words, the orbit of the image of t under f only depends
on the orbit of t. Therefore, functions that are canonical with respect to (G ,H )
induce for each integer k ≥ 1 a function from the orbits of the componentwise action
of G of Ak to the orbits of the componentwise action of H on Bk. For oligomorphic
permutation groups we have the following equivalent characterisations of canonicity.

Proposition 10.5.1. Let G be a permutation group on a countable set A and
let H be an oligomorphic permutation group on a countable set B. Then for any
function f : A→ B the following are equivalent.

(1) f is canonical with respect to (G ,H );

(2) for every α ∈ G we have f ◦ α ∈H f := {β ◦ f | β ∈H };
(3) for every α ∈ G there are e1, e2 ∈H such that e1 ◦ f ◦ α = e2 ◦ f .

Proof. The implications (3) ⇒ (1) ⇒ (2) follow straightforwardly from the
definitions. The implication (2) ⇒ (3) is a direct consequence of the lift lemma
(Lemma 10.1.5). �

A stronger condition than canonicity would be to require that for every α ∈ G
there is an e ∈H such that

f ◦ α = e ◦ f. (42)

To illustrate that this is strictly stronger, already when G = H , we give an explicit
example.

Example 10.5.2 (thanks to Trung Van Pham). Let G := H := Aut(Q;<). Note
that (Q;<) and (Q\{0};<) are isomorphic, and let f be such an isomorphism. Then
f , viewed as a function from Q → Q, is clearly canonical with respect to (G ,H ).
But f does not satisfy the stronger condition (42). To see this, choose a ∈ Q such
that f(a) < 0, and pick α ∈ G such that f(α(a)) > 0. Since the image of f ◦α equals

the image of f , any e ∈ H such that f ◦ α = e ◦ f must fix 0. Since e must also
preserve <, it cannot map f(a) < 0 to f(α(a)) > 0. Hence, there is no e ∈ H such
that f ◦ α = e ◦ f . 4

A function f : A → B is called m-canonical with respect to (G ,H ) if for every
m-tuple t, the orbit of f(t) under H only depends on the orbits of t under G . Hence,
f is canonical if it is m-canonical for all finite m. The following is a straightforward
consequence of homogeneity.

Lemma 10.5.3. Let B be a homogeneous relational structure whose relations have
maximal arity m (in fact, it suffices that B is first-order interdefinable with such a
structure). Then m-canonicity implies canonicity.
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10.5.2. Clones of canonical operations. Let G be a permutation group on
a set B. Then an operation f : Bk → B is called m-canonical with respect to G if it
is m-canonical with respect to (G k,G ). In other words, if t1, . . . , tk ∈ Bm then the
orbit of f(t1, . . . , tk) under G only depends on the orbits of t1, . . . , tk under G . It is
called canonical with respect to G if it is m-canonical for all m ≥ 1.

Example 10.5.4. Let lex be a binary operation on Q such that lex(a, b) <
lex(a′, b′) if either a < a′, or a = a′ and b < b′. Clearly, such an operation ex-
ists. Note that lex is injective, that it preserves <, and that it is canonical as a binary
polymorphism of (Q;<). 4

If B is a clone whose operations are canonical with respect to G then we say that
B is canonical with respect to G . If B is an operation clone that contains G , then the
set C of operations of B that are canonical with respect to G is again an operation
clone that contains G . We also call the clone C the canonical subclone of B with
respect to G .

Example 10.5.5. Every elementary clone (Section 6.1.5) is canonical with re-
spect to its automorphism group. The Horn clone H (see Theorem 7.5.2) is another
example of a clone which is canonical with respect to its invertible unary operations
(i.e., with respect to Sym(N)). 4

For every m ∈ N, every operation f ∈ C induces a function on orbits of G on
Cm, which we denote by ξG

m(f). The set of operations

C G
m := {ξG

m(f) | f ∈ C }

is a clone; if G is oligomorphic then C G
m has a finite domain. The map ξG

m : C → C G
m

is easily seen to be a uniformly continuous clone homomorphism.

Lemma 10.5.6. Let B be an ω-categorical model-complete core, and let C be the
canonical subclone of Pol(B) with respect to G := Aut(B) and let m ∈ N. Then C G

m

is an idempotent operation clone on a finite domain.

Proof. Let f ∈ Pol(B) and let A be an element of the domain of C G
m (which

is finite by the ω-categoricity of B), i.e., an orbit of m-tuples under Aut(B). Since
B is an ω-categorical model-complete core, A is preserved by the endomorphisms of

B, and in particular it is preserved by f̂ (Definition 6.1.40). Hence, ξG
m(f̂) ∈ C G

m

preserves A, showing the idempotence of ξG
m(f̂). �

The following lemma shows that we can transfer information from C G
m to Pol(B).

Lemma 10.5.7 (from [100]). Let B be a homogeneous structure with finite re-
lational signature of maximal arity m, let A be a first-order reduct of B, and let C
be the polymorphisms of A that are canonical with respect to G := Aut(B). If C G

m

satisfies a minor condition, then Pol(A) satisfies this condition modulo G .

Proof. Fix operations from C G
m that witness that the given condition holds in

C G
m . We claim that the preimages of these operations witness that Pol(A) satisfies

the condition modulo G , and verify this using the lift lemma (Lemma 10.1.5). Let
F ⊆ A = B be finite and suppose that fσ = gτ is a conjunct of the condition. For
all finite tuples t1, . . . , tk over F , by the assumption we know that the two tuples
(ξG
m)−1(f)σ(t1, . . . , tk) and (ξG

m)−1(g)τ (t1, . . . , tk) lie in the same orbit under G . So
there exists an automorphism of B mapping one tuple to the other and the statement
follows from the lift lemma. �
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Proposition 10.5.8. Let B be a homogeneous structure B with a finite relational
signature of maximal arity m, and let C be a first-order reduct of B which is a model-
complete core. Let C be the clone of all polymorphisms of C that are canonical with
respect to G := Aut(B). Then the following are equivalent.

(1) C contains for every prime p that is larger than the number of orbits of
m-tuples under G a pseudo-cyclic operation of arity p.

(2) C contains a pseudo-cyclic operation of some arity n ≥ 2.
(3) C contains a pseudo weak near-unanimity of some arity n ≥ 2.
(4) C contains a pseudo Taylor operation.
(5) C G

m contains a Taylor operation.
(6) C G

m contains for every prime p that is larger than the number of orbits of
m-tuples under G a cyclic operation of arity p.

(7) C G
m contains a 4-ary (or a 6-ary) Siggers operation.

(8) C contains a 4-ary (or a 6-ary) pseudo-Siggers operation.
(9) C has no uniformly continuous minor-preserving map to Proj (and the

other equivalent conditions in Theorem 10.3.5).

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are trivial. The equiva-
lence of (5), (6), and (7) follows from Theorem 6.9.2.

For the implication (7) ⇒ (8), let g ∈ Pol(C) be such that ξG
m(g) equals the

4-ary Siggers operation. Then g satisfies the 4-ary pseudo-Siggers condition by
Lemma 10.5.7. The implication (6)⇒ (1) can be shown analogously.

For the equivalence of (8) and (9), let D be any structure such that Pol(D) equals
the set of all polymorphisms of C that are canonical with respect to Aut(B). Recall
that B and hence also C and D have less than doubly exponential orbit growth,
because B is homogeneous in a finite relational language. So the equivalence follows
from Theorem 10.3.5. �

10.5.3. Reduction to the finite. In this section we present a polynomial-time
reduction from a large class of infinite-domain CSPs to certain finite-domain CSPs.
This reduction can be used to derive many tractability results for infinite-domain
CSPs from algorithms for finite-domain CSPs; examples will be given in Section 10.5.5.
In Section 10.5.4 we will use the concept of canonical functions to prove that in certain
situations, the finite-domain CSP is even polynomial-time equivalent to the infinite-
domain CSP we started from.

Definition 10.5.9. Let B be a finitely bounded structure, and let A be a re-
lational structure with the same domain as B such that every relation of A has a
quantifier-free definition in B. Let m be a positive integer. Then the associated type
structure TB,m(A) is defined to be the relational structure whose domain is the set of
maximal quantifier-free (qf) m-types of B and whose relations are as follows.

• For each relation R of A of arity r, let χ(z1, . . . , zr) be a definition of R in
B. For i : [r]→ [m] we write 〈χ(zi(1), . . . , zi(r))〉 for the unary relation that
consists of all the maximal qf-types that contain χ(zi(1), . . . , zi(r)), and add
all such relations to TB,m(A).
• For each r ∈ [m] and i, j : [r] → [m], the compatibility relation Compi,j is

defined to be the binary relation that contains all the pairs (p, q) of max-
imal qf m-types such that for every quantifier-free formula χ(z1, . . . , zs) of
B and t : [s] → [r], the formula χ(zit(1), . . . , zit(s)) is in p if and only if
χ(zjt(1), . . . , zjt(s)) is in q.

Note that if (a1, . . . , am) has type p and (b1, . . . , bm) has type q, then Compi,j(p, q)
holds if and only if (ai(1), . . . , ai(r)) and (bj(1), . . . , bj(r)) have the same type in B.
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Also note that if i : [m]→ [m] is the identity map, then Compi,i denotes the equality
relation on the domain of TB,m(A).

Theorem 10.5.10 below holds for arbitrary finitely bounded structures B. In the
next section we present a sufficient condition for the existence of a polynomial-time
reduction in the other direction, from CSP(TB,m(A)) to CSP(A).

Theorem 10.5.10 (Theorem 3.1 in [86]). Let A be a quantifier-free reduct of a
finitely bounded structure B, and suppose that A has a finite signature. Let ma be the
maximal arity of all relations in A or B, and mb be the maximal size of a bound for
B. Let m be at least max(ma + 1,mb, 3). Then there is a polynomial-time reduction
from CSP(A) to CSP(TB,m(A)).

Proof. Let ψ be an instance of CSP(A), and let V = {x1, . . . , xn} be the vari-
ables of ψ. Assume without loss of generality that n ≥ m. We build an instance φ of
CSP(TB,m(A)) as follows.

• The variable set of φ is the set I of increasing functions2 from [m] → V
(where the variables are endowed with an arbitrary linear order). The idea
of the reduction is that the variable v ∈ I of φ represents the maximal
qf-type of (h(v(1)), . . . , h(v(m))) in a satisfying assignment h for ψ.
• For each conjunct of the form R(j(1), . . . , j(r)) of ψ, where j : [r] → V , we

add unary constraints to φ as follows. By assumption, R has a qf-definition
χ(z1, . . . , zr) over B. Let v ∈ I be such that its image Im(v) contains the
image of j. Let U be the relation symbol of TB,m(A) that denotes the unary
relation 〈χ(zv−1j(1), . . . , zv−1j(r))〉. We then add U(v) to Φ.
• Finally, for all u, v ∈ I let k : [r] → Im(u) ∩ Im(v) be a bijection. We then

add the constraint Compu−1k,v−1k(u, v).

Before proving that the given reduction works, we illustrate it with an example.

Example 10.5.11. Let A be (N; =, 6=) and consider the following instance of
CSP(A).

x1 = x2 ∧ x2 = x3 ∧ x3 = x4 ∧ x1 6= x4

The structure (N; =, 6=) is a reduct of the homogeneous structure B with domain N
and the empty signature, which has no bounds. We have in this example m = 3.
The maximal qf m-types of B can be viewed as partitions of the variables where two
variables zi, zj are in the same part if the type implies that zi = zj .

The structure TB,3(A) has a domain of size five, where each element corresponds
to a partition of {z1, z2, z3}. It has a unary relation U1 for 〈z2 = z3〉, containing all
partitions in which z2 and z3 belong to the same part. Similarly, it has a relation
U2 for 〈z1 = z3〉, U3 for 〈z1 = z2〉, V1 for 〈z2 6= z3〉, V2 for 〈z1 6= z3〉, and V3

for 〈z1 6= z2〉. The instance φ of CSP(TB,3(A)) created by our reduction has four
variables, for the four order-preserving injections from [3] → {x1, x2, x3, x4} (where
we order x1, . . . , x4 according to their index). These four variables will be called
v1, v2, v3, v4 and Im(vj) = {x1, . . . , x4}\{xj}. We then have the following constraints
in φ:

• U3(v3) and U3(v4) for the constraint x1 = x2 in ψ;
• U1(v4) and U3(v1) for the constraint x2 = x3 in ψ;
• U1(v2) and U1(v1) for the constraint x3 = x4 in ψ;
• V2(v2) and V2(v3) for the constraint x1 6= x4 in ψ.

2One could take I to be the set of all functions [m]→ V without any change to the reduction.

We choose here to only take increasing functions so that the presentation of the example below is
more concise.
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For the compatibility constraints we only give an example. Let k, k′ : [2]→ [4] be such
that k(1, 2) = (1, 3) and k′(1, 2) = (1, 2). Then Compk,k′(v4, v2) and Compk′,k′(v4, v3)
are in φ. 4

We now prove that the reduction is correct. Let h : V → B be an assignment of
the variables to the domain of B. Let χ(z1, . . . , zr) be a qf-formula over the signature
of B, let j : [r]→ V , and let v ∈ I be such that Im(j) ⊆ Im(v). First note that

B |= χ(h(j(1)), . . . , h(j(r)))

iff (h(v(1)), . . . , h(v(m))) satisfies χ(zv−1j(1), . . . , zv−1j(r)) in B. (‡)

The property (‡) holds since in the qf-type of the tuple (h(v(1)), . . . , h(v(m))), the
variable zi represents the element h(v(i)), and therefore zv−1j(i) represents h(j(i)).

Claim 1: ψ satisfiable implies φ satisfiable. Suppose that h : V → B satisfies
ψ in A. To show that φ is satisfiable in TB,m(A) define g : I → TB,m(A) by setting
g(v) to be the qf-type of (h(v(1)), . . . , h(v(m))) in B, for every v ∈ I. To see that
all the constraints of φ are satisfied by g, let U(v) be a constraint in φ that has been
introduced for a conjunct of the form R(j(1), . . . , j(r)) in ψ, where j : [r] → V . Let
χ(z1, . . . , zr) be a qf-formula that defines R in B. Then

A |= R(h(j(1)), . . . , h(j(r)))

⇒ B |= χ(h(j(1)), . . . , h(j(r)))

⇒ χ(zv−1j(1), . . . , zv−1j(m)) ∈ g(v) (because of (‡))
⇒ TB,m(A) |= U(g(v)).

Next, consider a constraint of the form Compu−1k,v−1k(u, v) in Φ, and let r :=
|Im(k)|. Let χ(z1, . . . , zs) be a qf-formula over the signature of B and let t : [s]→ [r].
Suppose that χ(zu−1kt(1), . . . , zu−1kt(s)) is in g(u). From (‡) we obtain that B |=
χ(h(kt(1)), . . . , h(kt(s))). Again by (‡) we get that χ(zv−1kt(1), . . . , zv−1kt(s)) is in
g(v). Hence, TB,m(A) |= Compu−1k,v−1k(g(u), g(v)).

Claim 2: φ satisfiable implies ψ satisfiable. Suppose that φ is satisfiable in
TB,m(A), that is, there exists a map h from I to the qf m-types of B that satisfies
all conjuncts of φ. We show how to obtain an assignment {x1, . . . , xn} → A that
satisfies ψ in A. Define an equivalence relation ∼ on V as follows. Let x, y ∈ V .
Let u ∈ I be such that there are p, q ∈ [m] such that u(p) = x and u(q) = y.
We define x ∼ y if, and only if, h(u) contains the formula zp = zq. Note that the
choice of u is not important: if u′, p′, q′ are such that u′(p′) = x and u′(q′) = y,
the intersection of Im(u) and Im(u′) contains {x, y}. Let k : [r]→ Im(u) ∩ Im(u′) be
a bijection. By construction, the constraint Compu−1k,u′−1k(u, u′) is satisfied by h,
which by definition of the relation means that h(u) contains zp = zq iff h(u′) contains
zp′ = zq′ .

We prove that ∼ is an equivalence relation. Reflexivity and symmetry are clear
from the definition. Assume that x ∼ y and y ∼ z. Let w ∈ I, p, q, r be such that
w(p) = x,w(q) = y, and w(r) = z, which is possible since m ≥ 3. Since x ∼ y, the
previous paragraph implies that h(w) contains the formula zp = zq. Similarly, since
y ∼ z, the formula zq = zr is in h(w). Since h(w) is a type, transitivity of equality
implies that zp = zr is in h(w), so that x ∼ z.

Define a structure C on V/∼ as follows. For every k-ary relation symbol R
of B and k elements y1/∼, . . . , yk/∼ of V/∼, let w ∈ I, p1, . . . , pk ∈ [m] be such
that w(pi) = yi (such a w exists because m ≥ k). Add the tuple (y1/∼, . . . , yk/∼)
to RC if and only if h(w) contains the formula R(zp1 , . . . , zpk). As in the para-
graph above, this definition does not depend on the choice of the representatives
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y1, . . . , yk or on the choice of w. Proving that the definition does not depend on
w is straightforward. Suppose now that y1 ∼ y′1, and let w ∈ I be such that
(w(p1), . . . , w(pk)) = (y1, . . . , yk) and such that h(w) contains R(zp1 , . . . , zpk). Let
w′ ∈ I be such that (w′(q), w′(p′1), . . . , w′(p′k)) = (y′1, y1, y2, . . . , yk), which is possible
since m ≥ k + 1. We prove that h(w′) contains R(zq, zp′2 , . . . , zp′k). Since y ∼ y′, we

have that h(w′) contains zq = zp′1 . Moreover, Im(w′)∩Im(w) = {y1, . . . , yk}, and since
h satisfies the compatibility constraints we obtain that h(w′) contains R(zp′1 , . . . , zp′k).

It follows that h(w′) contains R(zq, zp′2 , . . . , zp′k). Therefore, the definition of R in C
does not depend on the choice of the representative for the first entry of the tuple.
By iterating this argument for each coordinate, we obtain that RC is well defined.

We claim that C embeds into B. Otherwise, there would exist a bound D of
size k ≤ m for B such that D embeds into C. Let y1/∼, . . . , yk/∼ be the elements
of the image of D under this embedding. Since k ≤ m, there exist w ∈ I, p1, . . . , pk
such that (w(p1), . . . , w(pk)) = (y1, . . . , yk). The qf-type of (y1/∼, . . . , yk/∼) in C is
in h(w), by the previous paragraph. It follows that if (a1, . . . , am) ∈ Bm is a tuple
whose qf-type is h(w), then there is an embedding of D into the substructure of B
induced on {a1, . . . , am}. This contradicts the assumption that D is a bound of B
and hence does not embed into B.

Let e be an embedding C ↪→ B. We claim that f : {x1, . . . , xn} → A given by
f(x) := e(x/∼) is a valid assignment for ψ. Let R(j(1), . . . , j(r)) be a constraint
from ψ, where j : [r] → V . Let v ∈ I be such that Im(j) ⊆ Im(v), and such that
the constraint 〈χ(zv−1j(1), . . . , zv−1j(r))〉(v) is in φ. Since h satisfies this constraint,
h(v) contains χ(zv−1j(1), . . . , zv−1j(r)). It follows that C |= χ(j(1)/∼, . . . , j(r)/∼).
Since e embeds C into B, we obtain that B |= χ(f(j(1)), . . . , f(j(r))), whence A |=
R(f(j(1)), . . . , f(j(r))), as required.

The given reduction can be performed in polynomial time: the number of variables
in the new instance is in O(nm), and if c is the number of constraints in ψ, then the
number of constraints in φ is in O(cnm + n2m). Each of the new constraints can be
constructed in constant time. �

We mention that the reduction is in fact a first-order reduction (see [14] for
a definition). We also note that Theorem 10.5.10 applies to all CSPs that can be
described in SNP (see Section 1.4). Finally, note that this is one of the rare situations
of a complexity reduction between CSPs which is not based on a pp-construction.
For example, it is easy to see that there cannot be a pp-construction of

B := (N; 6=, {(x, y, u, v) | x = y ⇒ u = v})

in any finite structure, and in particular not in TB,m(B) even though the reduction
from Theorem 10.5.10 can be applied in this case.

10.5.4. Complexity classification for canonical clones. This section con-
nects the canonical polymorphisms of a first-order reduct A of a homogeneous struc-
ture B with finite relational signature of maximal arity m with the polymorphism
clone of the associated type structure TB,m(A) from the previous section. This will
lead to a complete complexity classification for reducts A of finitely bounded homo-
geneous structures B whose polymorphisms are canonical with respect to B, based
on the complexity classification for finite-domain CSPs.

Lemma 10.5.12. Let A be a first-order reduct of a finitely bounded homogeneous
structure B and let C be the canonical subclone of Pol(A) with respect to G := Aut(B).
Then

C G
m ⊆ Pol(TB,m(A))
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for every m ≥ 1. If m is larger than the size of every bound of B and strictly larger
than the maximal arity of A and B, and at least 3, then C G

m = Pol(TB,m(A)).

Proof. Let f ∈ C . We have to show that ξG
m(f) ∈ Pol(TB,m(A)). Let k be

the arity of f . Let χ(z1, . . . , zr) be a quantifier-free definition of a relation of A. Let
i : [r] → [m] and let p1, . . . , pk be from the relation 〈χ(zi(1), . . . , zi(r))〉 of TB,m(A).

Let ā1, . . . , āk be m-tuples whose qf-types are p1, . . . , pk respectively. Since B is ho-
mogeneous there is a one-to-one correspondence between the orbits of m-tuples under
Aut(B), the maximal qf-types of B, and the maximal types of B. Hence, ξG

m(f) can
be seen as an operation on maximal qf m-types; ξG

m(f)(p1, . . . , pk) is the qf-type of
f(ā1, . . . , āk) in B. Since f preserves the relation defined by χ(zi(1), . . . , zi(r)), it fol-

lows that f(ā1, . . . , āk) satisfies χ(zi(1), . . . , zi(r)), which means that χ(zi(1), . . . , zi(r))

is contained in the qf-type of this tuple. Therefore, ξG
m(f) preserves the relations of

TB,m(A) from the first bullet in Definition 10.5.9.
We now prove that ξG

m(f) also preserves the compatibility relations in TB,m(A).
Indeed, let (p1, q1), . . . , (pk, qk) be pairs of qf-types in Compi,j . Let (ā1, b̄1), . . . , (āk, b̄k)

be pairs of m-tuples such that tp(āl) = pl and tp(b̄l) = ql for all l ∈ [k]. As
noted above, the definition of Compi,j implies that the tuples (ali(1), . . . , a

l
i(r)) and

(blj(1), . . . , b
l
j(r)) have the same type in B for all l ∈ [k]. Since f is canonical, we have

that

(f(a1
i(1), . . . , a

k
i(1)), . . . , f(a1

i(r), . . . , a
k
i(r)))

has the same type as

(f(b1j(1), . . . , b
k
j(1)), . . . , f(b1j(r), . . . , b

k
j(r)))

in B. This implies that

Compi,j
(
ξG
m(f)(p1, . . . , pk), ξG

m(f)(q1, . . . , qk)
)

holds in TB,m(A), which concludes the proof.
For the reverse inclusion, we prove that for every g ∈ Pol(TB,m(A)) there exists an

f ∈ C such that ξG
m(f) = g. Let k be the arity of g. We prove that for every subset F

of A there exists a function h from F k → A such that for all ā1, . . . , āk ∈ Fm whose
types are p1, . . . , pk, respectively, h(ā1, . . . , āk) has type g(p1, . . . , pk). A standard
compactness argument then shows the existence of a function f : Ak → A such that
for all ā1, . . . , āk ∈ Am whose types are p1, . . . , pk, respectively, f(ā1, . . . , āk) has type
g(p1, . . . , pk), and such a function must satisfy ξG

m(f) = g.
Note that we can assume without loss of generality that B has for each relation

symbol R also a relation symbol for the complement of RB. This does not change
C G
m or TB,m(A). The existence of a function h with the properties as stated above

can then be expressed as an instance Ψ of CSP(B) where the variable set is F k

and where we impose constraints from B on ā1, . . . , āk to enforce that in any solu-
tion h to this instance the tuple h(ā1, . . . , āk) satisfies g(p1, . . . , pk). Let Φ be the
instance of CSP(TB,m(B)) obtained from Ψ under the reduction from CSP(B) to
CSP(TB,m(B)) described in the proof of Theorem 10.5.10. The variables of Φ are the
order-preserving injections from [m] to F k. For v : [m]→ F k and i ≤ k, let pi be the
type of (v(1)i, . . . , v(m)i) in B. Then the mapping h that sends v to g(p1, . . . , pk),
for all variables v of Φ, is a solution to Φ:

• the constraints of Φ of the form 〈χ(. . . )〉(v) have been introduced to translate
constraints of Ψ, and it is easy to see that they are satisfied by the choice
of these constraints of Ψ and by the choice of h.

• The other constraints of Φ are of the form Compi,j(u, v) where u, v are

order-preserving injections from [m] to F k. Since g is a k-ary polymorphism
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of Pol(TB,m(B)) and hence preserves the relations Compi,j of TB,m(B), it
follows that h satisfies these constraints, too.

By Theorem 10.5.10, the instance Ψ of CSP(B) is satisfiable as well. �

We now derive a complexity classification for canonical clones from the complexity
classification of finite-domain CSPs.

Corollary 10.5.13. Let B be a finitely bounded homogeneous structure in a
finite relational signature and let A be a reduct of B. Let m be larger than 3, larger
than the maximal arity of A, and larger than the maximal bound of B. Suppose that
all the polymorphisms of A are canonical with respect to Aut(B). Then CSP(A) and
CSP(TB,m(A)) are polynomial-time equivalent. In particular, A is either in P or
NP-complete.

Proof. Lemma 10.5.12 implies that ξG
m is a surjective continuous clone homo-

morphism from Pol(A) to Pol(TB,m(A)). Therefore, Corollary 9.5.20 implies that
there is a primitive positive interpretation of TB,m(A) in A, and hence there is a
polynomial-time reduction from CSP(TB,m(A)) to CSP(A) by Theorem 3.1.4.

Lemma 10.5.10 shows that there is a polynomial-time reduction in the reverse
direction. The statement now follows from the finite-domain complexity dichotomy
theorem (Theorem 3.7.2). �

10.5.5. Tractability conditions. The situation that all polymorphisms of a
structure are canonical is quite rare. But for polynomial-time tractability it suffices
that there are some canonical polymorphisms that guarantee tractability, and we
will see that this applies in many situations. In this section we use Lemma 10.5.12
to derive new tractability conditions for reducts A of finitely bounded homogeneous
structures B.

Remark 10.5.14. Interestingly, if the structure A under consideration is a model-
complete core, then the tractability conditions in this section are purely algebraic in
the sense that they are phrased in terms of the existence of polymorphisms satisfying
certain identities (without any reference to the action or the topology of the clone).
The reason is that if the invertible unary operations are dense in the unary operations,
then canonicity of operations is an algebraic property (item (3) in Proposition 10.5.1).

We start with a powerful result for containment in Datalog (see Chapter 8).

Theorem 10.5.15. Let A be a reduct of a finitely bounded homogeneous structure
B. Suppose that Pol(A) contains an operation f or arity three and an operation g of
arity four such that

• f and g are canonical with respect to G := Aut(B),

• f and g are weak near-unanimity operations modulo Aut(B), and
• f(y, x, x) = g(y, x, x, x) for all x, y ∈ B.

Then CSP(A) is in Datalog.

Proof. Let m be as in the statement of Theorem 10.5.10. By Lemma 10.5.12,
f ′ := ξG

m(f) and g′ := ξG
m(g) are polymorphisms of TB,m(A). Moreover, f ′ and g′

must be weak near-unanimity operations, and they satisfy f ′(y, x, x) = g′(y, x, x, x).
It follows from Theorem 8.8.2 that CSP(TB,m(A)) has width (`, k) for some `, k ∈
N, i.e., can be solved by a Datalog program. Since the reduction from CSP(A) to
CSP(TB,m(A) presented in Section 10.5.3 is a first-order reduction, it is in particular
a Datalog reduction. Theorem 10.5.10 and the transitivity of Datalog reductions
implies that CSP(A) is in Datalog, too. �
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This result generalises many tractability results from the literature, for instance

• polynomial-time tractable equality constraints [72] (see Chapter 7),
• the polynomial-time algorithms for partially-ordered time from [109,249],
• the polynomial-time tractable fragments of RCC5 [228], and
• all polynomial-time tractable equivalence CSPs [105].

In all cases, the respective structures A have a polymorphism f such that ξG
2 (f) is

a semilattice operation(Example 2.1.2). Clearly, finite structures with a semilattice
polymorphism also have weak near-unanimity polymorphisms f ′ and g′ that satisfy
f ′(y, x, x, x) = g′(y, x, x), and hence A satisfies the assumptions of Theorem 10.5.15.
The fact that all of these problems can be solved by Datalog can be seen without
using Theorem 8.8.2 by combining Theorem 10.5.10 with the results presented in
Section 8.4.2.

Also the finite-domain CSP tractability theorem (Theorem 3.7.2) can be lifted to
a tractability condition for reducts of finitely bounded homogeneous structures.

Theorem 10.5.16. Let A be a reduct of a finitely bounded homogeneous structure
B. Suppose that A has a polymorphism that is canonical with respect to Aut(B)

and that satisfies the Siggers identity modulo Aut(B) (or any other of the equivalent
conditions from Proposition 10.5.8), then CSP(A) is in P.

Proof. Let m be as in the statement of Theorem 10.5.10. By Lemma 10.5.12,
ξG
m(f) is a polymorphism of TB,m(A). Since ξG

m(f) is a Siggers operation, Theo-
rem 3.7.2 implies that CSP(TB,m(A)) is in P. Then Theorem 10.5.10 implies that
CSP(A) is in P. �

We mention that all the polynomial-time tractable cases in the classification for
Graph-SAT problems [95] satisfy the assumptions of Theorem 10.5.16. Finally, we
mention that the non-trivial polynomial-time tractable cases for first-order reducts of
(Q;<) (see Chapter 12) provide examples that cannot be lifted from finite-domain
tractability results in this way, since the respective languages do not have non-trivial
canonical polymorphisms.





CHAPTER 11

Ramsey Theory

The application of Ramsey theory to study the expressive power of constraint
languages via polymorphisms is one of the central contributions of this text. The idea
is that polymorphisms of Ramsey structures must behave canonically on large parts of
their domain. This also leads to decidability results for several meta-questions about
the expressive power of constraint languages. The same idea can be used to show
statements of the type ‘every polymorphism that does not preserve R must locally
generate g’, for certain relations R and certain operations g with good properties.
Such statements will be crucial for instance in the CSP complexity classification for
first-order reducts of (Q;<) presented in Chapter 12. The same Ramsey theoretic
technique has been applied to classify the complexity of the CSP for all first-order
reducts of the following structures:

• the Rado graph [95];
• the equivalence relation with infinitely many infinite classes [105];
• the homogeneous binary branching C-relation [68];
• the countable homogeneous universal poset [249];
• the Henson graphs [85];
• all structures where the number of orbits of n-tuples is bounded by an ex-

ponential function [52,86].

In this chapter we first revisit classical concepts and results from structural Ram-
sey theory (Section 11.1). In order to apply Ramsey theory to analyse polymor-
phism clones, we need the product Ramsey theorem and other fundamental facts
from Ramsey theory. Many of these general facts can be derived from a fundamental
connection between Ramsey theory and topological dynamics due to Kechris, Pestov,
and Todorčević [237]. This connection allows a more systematic understanding of
Ramsey-theoretic principles, and we present it in Section 11.2. The way in which we

313
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apply Ramsey theory to polymorphisms is based on the concept of canonical functions
as described in Section 11.4. We close with an application of the technique in Sec-
tion 11.6, and prove the decidability of various meta-problems concerning constraint
satisfaction problems, that is, problems where the input is a description of a template
B, and where the question is, for instance, whether certain relations are primitively
positively definable in B, or whether B has polymorphisms satisfying certain stable
clone formulas, for example the pseudo-Siggers condition.

Some of the results presented here have been published in [101]; there is also
a survey article [93] that additionally covers the applications of our technique for
the classification of the first-order reducts of a given homogeneous structure C up to
first-order interdefinability.

11.1. Ramsey Classes

This section is concerned with classes C of finite structures that satisfy the fol-
lowing Ramsey-type property: for all A,B ∈ C and c ∈ N there exists a C ∈ C such
that for every c-colouring of the substructures of C that are isomorphic to A there
exists a monochromatic copy of B in C. Before we formalise this in detail, we give
the classical result of Ramsey, which provides a prototype of a class with the Ramsey
property.

In this section we write [n] for the set {1, . . . , n}. Subsets of cardinality s will be

called s-subsets. Let
(
C
s

)
denote the set of all s-subsets of the set C. We also refer to

a mapping f :
(
C
s

)
→ [c] as a colouring of C (with the colours [c]). If there exists a

subset B of C such that f is constant on
(
B
s

)
then we say that B is monochromatic.

Theorem 11.1.1 (Ramsey). Let C be a countably infinite set and let s, c ∈ N.

Then C has for every colouring χ :
(
C
s

)
→ [c] an infinite monochromatic subset.

A proof of Theorem 11.1.1 can be found in [214] (Theorem 5.6.1); for a broader
introduction to Ramsey theory see [193]. It is easy to derive the following finite
version of Ramsey’s theorem from Theorem 11.1.1 via a compactness argument.

Theorem 11.1.2 (Finite version of Ramsey’s theorem). For all s,m, c ∈ N there

exists a positive integer l such that for every χ :
(

[l]
s

)
→ [c] there exists a monochro-

matic S ∈
(

[l]
m

)
.

Proof. Suppose that there are s,m, c ∈ N such that for every l ∈ N there is a

χ :
(

[l]
s

)
→ [c] such that for all S ∈

(
[l]
m

)
the mapping χ is not constant on

(
S
s

)
. Since

the property that for all k-subsets S of [l] the mapping χ is not constant on
(
S
m

)
is

universal first-order, and since the image of χ is finite, we can apply Lemma 4.1.10 and
get the existence of a mapping χ with the same property but defined on all integers.
This contradicts Theorem 11.1.1. �

The letters are chosen deliberately: we imagine s as a small number, m as a
medium size number, and l as a large number. The Ramsey number r(s,m, c) is the
smallest number l whose existence is asserted by Theorem 11.1.2.

To discuss structural generalisations of Theorem 11.1.2, we introduce some gen-
eral notation. If A and B are τ -structures, we write

(
B
A

)
for the set of all induced

substructures of B that are isomorphic to A. For τ -structures S,M,L and c ∈ N we
write

L→ (M)Sc

if for all χ :
(
L
S

)
→ [c] there exists M′ ∈

(
L
M

)
such that χ is constant on

(
M′

S

)
.



11.1. RAMSEY CLASSES 315

Definition 11.1.3. A class C of relational structures that is closed under isomor-
phisms and induced substructures is called Ramsey , or is said to have the Ramsey
property, if for every S,M ∈ C and for every c ∈ N there exists an L ∈ C such that
L→ (M)Sc .

Example 11.1.4. The class of all finite structures over the empty signature is
Ramsey; this is an immediate consequence of Theorem 11.1.2. 4

Example 11.1.5. The class of all finite linear orders is a Ramsey class. This is
again a direct consequence of Theorem 11.1.2, since whether or not a linear order
with m elements is a substructure of a linear order with n elements only depends on
n and m. 4

We will now present further examples of Ramsey classes; the proofs are non-trivial
and fall outside the scope of this text, but we provide references.

Example 11.1.6. The class of all finite Boolean algebras B = (B;t,u, c,0,1)
has the Ramsey property. This is explicitly stated in [237], page 147, line 3ff (see
also page 112, line 9ff), where it is observed that this follows from a result of Graham
and Rothschild [192]. 4

It may also be instructive to see an example of a class of structures that is not
Ramsey. Typical examples come from classes that contain structures with non-trivial
automorphism groups, as in the following.

Example 11.1.7. The class of all finite graphs is not a Ramsey class. To see
this, let S be the (undirected) graph

(
{0, 1, 2}; {(0, 1), (1, 0), (1, 2), (2, 1)}

)
with three

vertices and two edges, and let M be C4, that is, the undirected four-cycle(
{0, 1, 2, 3}; {(0, 1), (1, 2), (2, 3), (3, 0), (1, 0), (2, 1), (3, 2), (0, 3)}

)
.

Let L be an arbitrary graph. We want to show that there is a way to colour the copies
of S in L without producing a monochromatic copy of M. For that, fix an arbitrary
linear order < on the vertices of L. We define a colouring χ :

(
L
S

)
→ [2] as follows. If

there is an embedding h of S into L such that h(0) < h(1) < h(2), then we colour
the copy of S on h(S) in L by the colour 1; all other copies of S in L are coloured by
the colour 2. We claim that any copy of M in L contains a copy of S that is coloured
by 2, and one that is coloured by 1. The reason is that for any ordering of the
vertices of M there is an embedding h′ of S into M such that h′(0) < h′(1) < h′(2),
and an embedding h′′ of S into M such that not h′′(0) < h′′(1) < h′′(2). Hence,
L 6→ (M)S2 . 4

Frequently, a class without the Ramsey property can be made Ramsey by expand-
ing its members appropriately with a linear ordering. We will see several examples of
this.

Example 11.1.8. Nešetřil and Rödl [301] and independently Abramson and Har-
rington [1] showed that for any relational signature τ , the class C of all finite or-
dered τ -structures is a Ramsey class. That is, the members of C are finite structures
A = (A;<,R1, R2, . . . ) for some fixed signature τ = {<,R1, R2, . . . }, where < is a
linear order of A. A shorter and simpler proof of this substantial result can be found
in [302] and [299] (see also [50]); the proof there is based on the partite method,
which uses amalgamation to reduce the statement to proving the so-called partite
lemma. The proof of the partite lemma relies on the Hales-Jewett theorem from
Ramsey theory (see [193]). 4

Example 11.1.9. Recall from Section 5.1 the homogeneous structure B = (B; |)
carrying a C-relation. We consider the expansion of B by a linear order, defined as
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follows. It is easy to see that for every finite tree T there is an ordering < on the
leaves L of T such that for all u, v, w ∈ L with u < v < w we have either u|vw or uv|w
(recall Definition 5.1.4). This can be seen from the obvious existence of an embedding
of T on the plane so that all leaves lie on a line and none of the edges cross, and take
the linear order induced by the line. We call such an ordering of L compatible with
the tree T. The class of all finite substructures C of B expanded by a compatible
ordering of the underlying tree of C is a Ramsey class [269]; this also follows from
more general results by Milliken (Theorem 4.3 in [293], building on work in [156]);
see [50] for a direct proof. 4

Example 11.1.10. The Ramsey classes from Example 11.1.8 have been further
generalised by Nešetřil and Rödl as follows [301]. Suppose that F is a (not necessarily
finite) class of structures with a finite relational signature τ whose Gaifman graph
(Definition 2.1.5) is a clique – such structures have been called irreducible in the
Ramsey theory literature. It can be readily verified that C := Forbemb(F) is an
amalgamation class. Then the class of all expansions of the structures in C by a linear
order is a Ramsey class; again, this can be shown by the partite method [302]. This
example is indeed a generalisation of Example 11.1.8 since we obtain the previous
result by taking F = ∅. 4

The following theorem indicates that the fact that each of the above Ramsey
classes is the age of a homogeneous structure is not a coincidence.

Theorem 11.1.11 (Nešetřil [300]). Let τ be a relational signature, and let C
be a class of finite ordered τ -structures that is closed under induced substructures,
isomorphism, and has the joint embedding property (see Section 2.3). If C is Ramsey,
then it has the amalgamation property.

Proof. Let A,B1,B2 be members of C such that A is an induced substructure
of both B1 and B2. Since C has the joint embedding property, there exists a structure
C ∈ C with embeddings e1, e2 of B1 and B2 into C. If e1, e2 have the same restriction
to A, then we are done, so assume otherwise.

Let D be such that D → (C)A2 . Define a colouring χ :
(
D
A

)
→ {1, 2} as follows.

When A′ ∈
(
D
A

)
, and f : A → A′ is an isomorphism, then χ(A′) = 1 if and only if

there is an embedding h : C ↪→ D such that f = h ◦ e1. Since D→ (C)A2 , there exists

C′ ∈
(
D
C

)
, witnessed by an embedding h′ : C ↪→ D such that χ is constant on

(
C′

A

)
.

Now any copy of C in D contains a copy A′ of A with χ(A′) = 1. Thus χ is constant

1 on
(
C′

A

)
. In particular, the image of the embedding h′ ◦ e2 : A ↪→ D is coloured 1.

Thus, there exists an embedding h′′ : C ↪→ D such that f = h′′ ◦ e1 = h′ ◦ e2 (here
we use the assumption that the structure A is ordered). This shows that D together
with the embeddings h′′ ◦ e1 : B1 ↪→ D and h′ ◦ e2 : B2 ↪→ D is the amalgam of B1

and B2 over A. �

It is often convenient to work with the Fräıssé-limit of a Ramsey class rather than
the class itself.

Definition 11.1.12. A homogeneous structure C is called Ramsey if C → (B)Ac
holds for all A,B ∈ Age(C) and c ≥ 2.

Proposition 11.1.13. Let C be an amalgamation class and let C be the Fräıssé-
limit of C. Then C is Ramsey if and only if C is a Ramsey class.

Proof. Let A,B ∈ C and c ≥ 2. If C has the Ramsey property then there exists a
C′ ∈ C such that C′ → (B)Ac , and since C′ embeds into C we also have that C→ (B)Ac .
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Conversely, suppose that C→ (B)Ac . Let k := |
(
B
A

)
|. For any structure D the fact

that D→ (B)Ac can be equivalently expressed in terms of c-colourability of a certain
k-uniform hypergraph, defined as follows. Let G = (V ;E) be the structure whose

vertex set V is
(
D
A

)
, and where (A1, . . . ,Ak) ∈ E if there exists a B′ ∈

(
D
B

)
such that(

B′

A

)
= {A1, . . . ,Ak}. Let H = ([c];E) be the structure where E contains all tuples

except the tuples (1, . . . , 1), . . . , (c, . . . , c). Then D→ (B)Ac if and only if G does not
map homomorphically to H. By Lemma 4.1.7, this is the case if and only if there is a
finite substructure of G that does not map homomorphically to H. Thus, C→ (B)Ac
if and only if C′ → (B)Ac for a finite substructure C′ of C, and we conclude that C is
Ramsey. �

If C is a finitely bounded homogeneous Ramsey structure, then the Ramsey prop-
erty is useful for studying which relations are primitively positively definable in C, as
we will see for instance in Section 11.6. In fact, for these applications of Ramsey the-
ory it suffices to suppose that C can be expanded to a finitely bounded homogeneous
Ramsey structure. We make the following conjecture.

Conjecture 11.1.1. Let C be a finitely bounded homogeneous structure. Then C
has a finitely bounded homogeneous ordered Ramsey expansion.

We mention that a related question has been answered in the negative.

Theorem 11.1.14 (Evans, Hubička, Nešetřil [175]). There exists an ω-categorical
structure which has no ω-categorical Ramsey expansion.

11.2. Extremely Amenable Groups

This section presents a link between the Ramsey property and the concept of ex-
treme amenability in topological dynamics. The link rests on the theorem of Kechris,
Pestov, and Todorčević that characterises those homogeneous ordered structures that
are Ramsey in terms of their topological automorphism group. This theorem will be
presented in Section 11.2.1. In Section 11.2.2, 4.2.5, and 11.2.4 we derive some general
transfer principles for the Ramsey property based on this correspondence.

11.2.1. Extreme amenability. The Ramsey property for homogeneous ordered
structures B has an elegant characterisation in terms of the topological automorphism
group of B: the age of B is Ramsey if and only if the automorphism group of B is
extremely amenable. Extreme amenability is a concept from the theory of topological
groups which has been studied since the 1960s [194].

Definition 11.2.1. A topological group G is extremely amenable if every con-
tinuous action ξ of G on a compact Hausdorff space S has a fixed point, i.e., an s ∈ S
such that ξ(g)(s) = s for every g ∈ G.

The following is a combination of Proposition 4.2, Proposition 4.3, Theorem 4.5,
and Theorem 4.7 from [237]. Structures for which the identity is the only automor-
phism are called rigid .

Theorem 11.2.2 (Kechris, Pestov, Todorčević [237]). Let B be a countable ho-
mogeneous relational structure. Then the following are equivalent.

(1) B is Ramsey and Aut(B) preserves a linear order.
(2) The age of B has the Ramsey property and only contains rigid structures.
(3) Aut(B) is extremely amenable.



318 11. RAMSEY THEORY

Proof. Clearly, if G := Aut(B) preserves a linear order, then by the homogene-
ity of B all finite substructures of B must be rigid; hence the implication (1) ⇒ (2)
follows from Proposition 11.1.13. For the implication (2)⇒ (3) we refer to [237].

For the implication from (3) to (1), consider the topological space 2B
2

consisting
of all binary relations on B equipped with the topology of pointwise convergence,
which is a compact space (Theorem 9.1.17) and Hausdorff (Proposition 9.1.3). The
space LO of all linear orders on B is a closed subspace since the axioms of linear orders
are universal first-order properties. Hence, LO is compact, too (Proposition 9.1.18).
We define an action of G on LO by defining

g ·R := {(ga, gb) | (a, b) ∈ R}

for R ∈ LO. This action is continuous: a basic open set in LO has the form

UF,R := {S ∈ LO | S ∩ F = R}

for some finite F,R ⊆ B2 with R ⊆ F . The preimage of UF,R is⋃
α∈G

SαF,F × UαF,αR

which is open. Since G is extremely amenable, the action has a fixed point R0. So
for every g ∈ G we have g ·R0 = R0 and thus (a, b) ∈ R0 if and only if (αa, αb) ∈ R0.
This shows that G = Aut(B) preserves R0.

To show that B is Ramsey, let c ∈ N, let S,M be finite substructures of B, and

let χ :
(
B
S

)
→ [c] be a coloring. Consider the compact topological space X := [c](

B
S)

of all such colorings. Then G acts naturally on X by

g · θ := [S′ 7→ θ(g−1(S′))].

This action is again continuous. The closure of the orbit G · χ of χ is a compact
Hausdorff subspace of X. Since G is extremely amenable there is a fixed point χ′ ∈
G · χ for this action. We claim that any such fixed point is constant. For all h ∈ G

χ′(h(S′)) = (h · χ′)(S′) = χ′(S′).

Thus, with respect to the colouring χ′, all of B is monochromatic. But χ′ lies in the
closure of the orbit of χ. Thus, there is some g ∈ G such that g−1 · χ coincides with

χ′ on the finite set
(
M
S

)
. Hence, χ is constant on

(
g(M)
S

)
. �

Every ω-categorical structure has a homogeneous expansion by first-order de-
finable relations – and such an expansion has the same automorphism group as B.
We can then apply Theorem 11.2.2 to the expansion. This justifies the following
definition, which is compatible with Definition 11.1.12.

Definition 11.2.3. An ω-categorical structure B is Ramsey if the age of the
expansion of B by all first-order definable relations is Ramsey.

For an ω-categorical structure B and a finite substructure A of B we write
(
B
A

)
for the set of all substructures A′ of B such that there exists an automorphism of
B that maps A to A′. Then B is Ramsey if and only if for all A,M ∈ Age(B) and

χ :
(
B
A

)
→ [c] there exists M′ ∈

(
B
M

)
such that χ is constant on

(
M′

A

)
. Whether an

ω-categorical structure B is Ramsey only depends on the automorphism group of B,
viewed as a topological group. This fact has the following consequence.

Corollary 11.2.4. Let B be ω-categorical and d ∈ N. Then B is Ramsey if and
only if B[d] (Definition 3.5.3) is Ramsey.
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Proof. Since B[d] is a full power of B (Proposition 3.5.4), the structures B and
B[d] are primitively positively bi-interpretable (Proposition 3.5.2), and hence their
automorphism groups are isomorphic as topological groups (Corollary 9.5.18), so the
result follows from the comments above. �

We point out another consequence of Theorem 11.2.2 in combination with Theo-
rem 4.2.9.

Corollary 11.2.5. Let B be an ω-categorical Ramsey structure. If all finite
induced substructures of B are rigid, then a linear order is first-order definable in B.

Note that in Corollary 11.2.5, the assumption that B is Ramsey is necessary, as
the following example shows.

Example 11.2.6. Peter Cameron found the following example of a homogeneous
structure B such that

• all structures in the age of B are rigid, and
• no linear order is first-order definable in B.

Let (L; |) be the binary branching homogeneous C-relation from Section 5.1.2 and let
(T;E) be the countable homogeneous universal tournament, i.e., the Fräıssé-limit of
the class of all finite tournaments. Since both structures have no algebraicity (they
are Fräıssé-limits of strong amalgamation classes) there exists a generic superposition
B := (L; |)∗(T;E). Then the second property listed above is straightforward to verify
from homogeneity: there are only finitely many binary first-order definable relations
in B, and none of them is a linear order. To prove the first property, choose a finite
substructure A of B with a non-trivial automorphism α ∈ Aut(A), i.e., α has a cycle
(a0, a2, . . . , an−1) for n ≥ 2. Since (L; |) is binary branching there exists a non-empty
proper subset I of {0, . . . , n−1} such that aiaj |ak if i, j ∈ I and k ∈ {0, . . . , n−1}\I,
or if i, j ∈ {0, . . . , n − 1} \ I and k ∈ I. Moreover, since (a0, a2, . . . , an−1) is a
cycle of an automorphism, |I| = |{0, . . . , n − 1} \ I| and n must be even. Note
that αn/2(a0) = an/2 and αn/2(an/2) = a0. Since we have either (a0, an/2) ∈ E or

(an/2, a0) ∈ E, but not both, αn/2 ∈ Aut(A) does not preserve the tournament edge
relation E, a contradiction. 4

We already mentioned that many ω-categorical structures B that are not Ramsey
can be turned into Ramsey structures by expanding B with an appropriate linear
order (cf. Example 11.1.7 and Example 11.1.8). To give another example, consider
again the countable atomless Boolean algebra. In this case an order expansion with
an extremely amenable automorphism group has been specified in [237], and can be
found below.

Example 11.2.7. Let B = (B;t,u, c,0,1) be a finite Boolean algebra and A its
set of atoms (see Example 11.1.6 in Section 5.3). Then every ordering a1 < · · · < an
of A gives an ordering of B as follows (we follow [237]). For x, y ∈ B, we set x < y
if there exists an i0 ∈ {1, . . . , n} such that

• for all i ∈ {1, . . . , i0 − 1} we have that ai u x = ai u y, and
• x u ai0 = 0 and y u ai0 6= 0.

Such an ordering of the elements of B is called a natural ordering. It can be shown that
the class C of all finite naturally ordered atomless Boolean algebras has the Ramsey
property (see the comments preceding Theorem 6.14 in [237], and Proposition 5.6
in [237]). By Theorem 11.1.11, C is an amalgamation class. The reduct of the Fräıssé-
limit of C with signature {t,u, c,0,1} is the atomless Boolean algebra (Propositions
5.2 and 6.13 in [237]), so we have indeed found an extremely amenable order expansion
of the atomless Boolean algebra. 4
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Using Theorem 11.2.2, the negative result from Theorem 11.1.14 can also be
phrased as follows.

Theorem 11.2.8 (Evans, Hubička, Nešetřil [175]). There exists an oligomorphic
permutation group with no closed extremely amenable oligomorphic subgroup.

The main focus of the article by Kechris, Pestov, and Todorčević [237] is the
application of Theorem 11.2.2 to prove that certain groups are extremely amenable,
using known and deep Ramsey results. Here, on the other hand, our interest lies in
the opposite direction: we apply Theorem 11.2.2 in the following sections to obtain
a more systematic understanding of which classes of structures have the Ramsey
property. Concerning Conjecture 11.1.1 we also mention that Zucker [359] showed
that the existence of an ω-categorical Ramsey expansion of an ω-categorical structure
C is equivalent to the metrisability of the universal minimal flow of Aut(C); for the
definition of the concept of the universal minimal flow from topological dynamics we
refer to [237] and [359].

11.2.2. Surjective continuous homomorphisms. As we have seen, whether
an ω-categorical structure B is Ramsey only depends on the automorphism group of
B viewed as a topological group. More generally, we have the following.

Proposition 11.2.9. Let G, H be topological groups. If there is a surjective
continuous homomorphism f : G→ H and G is extremely amenable, then so is H.

Proof. Let ξ : H × S → S be a continuous action of H on a compact Hausdorff
space S. Then ξ′ : G × S → S given by (g, s) 7→ ξ(f(g), s) is a continuous action of
G on S. Since G is extremely amenable, ξ′ has a fixed point s0.

Now, let h ∈ H be arbitrary. By surjectivity, there is a g ∈ G such that f(g) = h.
Then we have

s0 = ξ′(g, s0) = ξ(f(g), s0) = ξ(h, s0)

and hence s0 is also a fixed point under ξ. �

As a consequence of this and Theorem 9.5.25 we obtain the following.

Corollary 11.2.10. Let A be a structure with a full first-order interpretation in
an ω-categorical ordered Ramsey structure B. If B is Ramsey, then so is A.

Example 11.2.11. Recall Allen’s Interval Algebra (Section 1.6.1; Example 2.4.2)
which is an ω-categorical structure A with binary relations and a two-dimensional
first-order interpretation over (Q;<). In Example 3.3.3 we have shown that A is first-
order bi-interpretable with (Q;<), and hence A has a full interpretation in (Q;<)
by Lemma 2.4.8. Since (Q;<) is Ramsey (Example 11.1.5), Corollary 11.2.10 implies
that A is Ramsey as well. 4

11.2.3. Products. In this section we present an important tool for building new
extremely amenable groups from old ones, namely Theorem 11.2.12 below. Recall the
definition of direct products of two groups from Section 4.2.5. The direct product
of topological groups is the direct product of the respective abstract groups together
with the product topology on the group elements. In the following theorem, but
also at later occasions, we make the assumption that the topological group G is
first-countable, because this covers all the situations of interest in this text, and
because this simplifies the presentation of continuity proofs; however, the theorem
holds without this assumption as well; cf. Proposition 6.7 in [237].

Theorem 11.2.12. Let G be a topological group.
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(1) If G has extremely amenable subgroups H1,H2, . . . such that H1 ⊆ H2 ⊆ · · ·
and

⋃
i∈NHi is dense in G, then G is extremely amenable.

(2) Let N be a closed normal subgroup of G. If both N and the quotient group
G/N are extremely amenable, then so is G.

(3) If H1,H2, . . . are extremely amenable topological groups, then so is
∏
i∈N Hi.

Proof. Suppose that G acts continuously on a compact Hausdorff space S.
To show (1), let

Si := {s ∈ S | for all h ∈ Hi : h · s = s}.

Since Hi is extremely amenable, Si is non-empty. Moreover, Si is closed. Since for
every finite subset F ⊆ N we have

⋂
i∈F Si 6= ∅, the compactness of S implies that⋂

i∈N Si contains an element s0. Then h · s0 = s0 for every h ∈ H :=
⋃
i∈NHi, and

since H is dense in G we have that s0 is a fixed point of the action of G on S.
To prove (2), let SN be the closed subspace of S induced on

{s ∈ S | for all h ∈ N : h · s = s}

which is Hausdorff and compact since closed subsets of compact spaces are compact.
As N is extremely amenable, SN is non-empty. The set SN is preserved by the action
of G on S: if x ∈ SN and g ∈ G, then for any h ∈ N

h · (g · x) = hg · x = g · (g−1hg) · x = g · x

where the last equality is by the normality of N (Proposition 9.2.16). Thus, g ·x ∈ SN.
Now, consider the action of G/N on SN defined by (gN)·x := g·x, which is clearly well
defined. It is continuous, because the action of G on S is continuous. By the extreme
amenability of G/N there is a point p ∈ SN such that f · p = p for all f ∈ G/N. But
then p is also a fixed point for the action of G on S, since g · p = (gN) · p = p for any
g ∈ G.

(3) follows from (1) and (2): suppose that G = H1×H2, and that H1 and H2 are
extremely amenable. Then H1 is a normal subgroup of G, and G/H1 is isomorphic to
H2, so G is extremely amenable by (2). The statement for G = H1×· · ·×Hn follows
by induction on n. If G =

∏
i∈N Gi, define Gi := H1 × · · · ×Hi × {id} × {id} × · · · .

Then
⋃
Gi is dense in

∏
i∈N Hi and the statement follows from (1). �

For every ordered Ramsey class there is a corresponding product Ramsey theorem
which can be shown either directly or by applying the general results from topological
dynamics. The underlying idea is best explained by the product Ramsey theorem for
the class of all finite linear orders (Theorem 11.2.13, which will be used extensively
for d = m = 2 in Chapter 12). We will use the following terminology in this case. If
S1, . . . , Sd are sets, we call a set of the form S1 × · · · × Sd a grid, and we also write
Sd for a product of the form S × · · · × S with d factors. A [k]d-subgrid of a grid
S1 × · · · × Sd is a subset of S1 × · · · × Sd of the form S′1 × · · · × S′d, where S′i is a
k-element subset of Si.

Theorem 11.2.13 (Product Ramsey Theorem). For all positive integers d, c, s,
and m ≥ m, there is a positive integer ` such that for every colouring of the [s]d-
subgrids of [`]d with c colours there exists a monochromatic [m]d-subgrid G of [`]d,
i.e., all the [s]d-subgrids of G have the same colour.

Proof. Let d, c, s, and m ≥ m be positive integers. We claim that we can choose
` to be the Ramsey number r(c, ds, dm). To verify this, let χ be a colouring of the
[s]d-subgrids of [`]d with c colours. We have to find a monochromatic [m]d-subgrid
of [`]d. The colouring χ can be used to define a c-colouring ξ of the ds-subsets of [`]
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as follows. Let S = {u1, u2, . . . , uds} be a ds-subset of [`], with u1 < u2 < · · · < uds.
Then define

ξ(S) := χ({u1, . . . , us} × · · · × {us(d−1)+1, . . . , uds}) .
By Theorem 11.1.2, there is a dm-subset {v1, v2, . . . , vdm} of [`] such that ξ is constant
on the ds-element subsets of {v1, v2, . . . , vdm}. Suppose that v1 < v2 < · · · < vdm.
Then G = {v1, . . . , vm} × · · · × {vm(d−1)+1, . . . , vdm} is a subgrid of [`]d that is
monochromatic with respect to χ. �

We next present our formulation of the product Ramsey theorem for arbitrary ω-
categorical ordered Ramsey structures. The proof uses topological methods, namely,
Theorem 11.2.2 and Theorem 11.2.12.

Theorem 11.2.14. Let B1, . . . ,Bd be ω-categorical ordered Ramsey structures.
Then the algebraic product structure P := B1�· · ·�Bd (Definition 4.2.18) is Ramsey.

Proof. By Theorem 11.2.2, the automorphism groups G1, . . . ,Gd of B1, . . . ,Bd

are extremely amenable, and it suffices to show that the automorphism group G of P
is extremely amenable. The group G is given by the product action of G1× · · · ×Gd

on B1, . . . , Bd (see Section 4.2.5.2). Hence, the extreme amenability of G follows from
Theorem 11.2.12. �

Theorem 11.2.14 indeed generalizes Theorem 11.2.13, which can be seen as fol-
lows. Let r, d,m, k be positive integers. We consider the ordered ω-categorical Ramsey
structure (Q;<), and apply Theorem 11.2.14 where d in Theorem 11.2.14 equals the
d given above. Let A be the structure induced in P := (Q;<)(d) by some (equiva-
lently, every) [s]d-subgrid of Qd, and let B be the structure induced in P by some
(equivalently, every) [m]d-subgrid of Qd. Since C is Ramsey, there exists an induced
substructure C of P such that C → (B)Ar . If C is not induced on an [`]d-subgrid of
Qd, for some large enough `, we can clearly choose a larger substructure C with this
property, such that still C → (B)Ar . The occurrences of A in C correspond precisely
to the [s]d-subgrids of [`]d, which proves the claim.

11.2.4. Open subgroups. In this section we show that open subgoups of ex-
tremely amenable groups are again extremely amenable. This fact will be important
in Section 11.4.5 and 11.6 when it comes to applications for the analysis of polymor-
phisms of first-order reducts of Ramsey structures.

Proposition 11.2.15 (from [101]). Let G be an extremely amenable group, and
let H be an open subgroup of G. Then H is also extremely amenable.

Proof. Let H act continuously on a compact space X; we have to show that
this action has a fixed point. Define a continuous action of G on XG/H as follows:
for g, k ∈ G and ξ ∈ XG/H , set

(gξ)(kH) := ξ(g−1kH).

This defines indeed a group action (Definition 4.2.13), because

((gh)ξ)(kH) = ξ((gh)−1kH) = ξ(h−1g−1kH)

= (hξ)(g−1kH) = (g(hξ))(kH).

The second property of actions is similarly straightforward to verify. To prove that
the action is continuous, let ξ ∈ XG/H , g ∈ G, and let V ⊆ XG/H be a basic open
set that contains gξ. By the definition of the topology of XG/H , the basic open set V
is of the form×fH∈G/H VfH where VfH is an open subset of X and VfH = X unless
f ∈ F for some finite F ⊆ G. For every f ∈ F there exists an open subset Of ⊆ G
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containing 1 such that for every e ∈ Of we have e−1f ∈ fH, because multiplication
in G is continuous and fH is open and contains f . Set O :=

⋂
f∈F Of . If e ∈ O and

ξ′ ∈ V , then for all f ∈ F
(eξ′)(fH) = ξ′(e−1fH) = ξ′(fH) ∈ VfH .

Thus, eξ′ ∈ V and we have proven that the action maps all elements of O × V into
V . The set g−1V is open and contains ξ. Analogously as above one can show that
there exists an open set O ⊆ G containing 1 such that the action maps all elements
of O × g−1V into g−1V . The set

P := gO × g−1V ⊆ G×XG/H

is open and contains (g, ξ). Let e ∈ O and ξ′ ∈ V be arbitrary. Then

(ge)(g−1ξ′) = g(eg−1ξ′) ∈ g(g−1V ) = V.

Therefore, P is mapped into V by the action; this concludes the proof that the action
is continuous.

Denote by π : G → G/H the quotient map and let s : G/H → G be a section
for π, i.e., a mapping satisfying π ◦ s = id. We additionally suppose that s(H) = 1.
Consider the product space XG which is Hausdorff by Proposition 9.1.3 and compact
by Theorem 9.1.17. Let S be the subspace of XG consisting of all χ ∈ XG such
that χ(gh) = hχ(g) for all h ∈ H and g ∈ s(G/H). Any function from s(G/H)
to X has a unique extension in S. Let η : XG/H → S be the function defined by
η(ξ)(gh) := hξ(gH) for all h ∈ H and g ∈ s(G/H) and let σ : S → XG/H be defined
by σ(χ)(gH) := χ(s(gH)) for all g ∈ G. Then η ◦ σ = id and σ ◦ η = id:

η(σ(χ))(gh) = h(σ(χ))(gH)

= hχ(s(gH) = hχ(g) = χ(gh)

σ(η(ξ))(gH) = (η(ξ))(s(gH))

= ξ(s(gH)H) = ξ(gH).

Both η and σ are continuous. To verify this for σ, by Lemma 9.1.2 is suffices to verify
the continuity of πg ◦ σ for all g ∈ G. So let U ⊆ X be open. Then

(pg ◦ σ)−1(U) = {ξ | pg(σ(ξ)) ∈ U} = {ξ | σ(ξ)(g) ∈ U} = {ξ | ξ(gH) ∈ U}

which is a basic open set in XG/H . Continuity of η = σ−1 can be verified similarly:
For gH ∈ G/H, we compute

(pgH ◦ η)−1(U) = {χ | pgH(η(χ)) ∈ U} = {χ | η(χ)(gH) ∈ H} = {χ | χ(s(gH)) ∈ U}
which is a basic open set in S. So it follows that σ is a homeomorphism.

The function g(ξ) := σ−1(g(σ(ξ))) defines a continuous action of G on S. Since
G is extremely amenable, this action has a fixed point ξ ∈ S, that is, g(ξ) = ξ for all
g ∈ G. In particular, h(ξ)(1) = ξ(1) for all h ∈ H. Now

h(ξ)(1) = σ−1(h(σ(ξ)))(1) (by the definition of the action of G on S)

= hσ(ξ)(H) (by the definition of σ)

= σ(ξ)(h−1H) (by the definition of the action of G on XG/H)

= ξ(s(h−1H)) (by the definition of σ)

= ξ(h−1) (since s(H) = 1)

= h−1(ξ(1)) (by the definition of S).

Putting this together, we get that h−1(ξ(1)) = ξ(1) for all h ∈ H. Thus, ξ(1) is a
fixed point of X for the action of H on X. �
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Proposition 11.2.15 can be applied to provide a purely topological proof of the
following Ramsey transfer principle.

Corollary 11.2.16 (from [101]). Let B be homogeneous ordered Ramsey, and
let c1, . . . , cn ∈ B. Then (B, c1, . . . , cn) is homogeneous ordered Ramsey as well.

Proof. It is easy to see that the expansion of any homogeneous structure B
by constants is again homogeneous. The automorphism group of B is extremely
amenable because B is ordered Ramsey. The automorphism group of (B, c1, . . . , cn)
is an open subgroup of Aut(B). The statement thus follows directly from Proposi-
tion 11.2.15 and Theorem 11.2.2. �

A combinatorial proof of this Ramsey transfer principle, due to Miodrag Sokic,
can be found in [50].

11.3. Transfer Principles for the Ramsey Property

The previous section already gave one Ramsey transfer principle, derived from
the topological characterisation of the Ramsey property from Theorem 11.2.2. In
this section we present further Ramsey transfer principles that seem to be difficult to
describe on the level of automorphism groups.

11.3.1. Taking model-complete cores. The following is from [49]. We men-
tion that in [50], the assumption that B is homogeneous has been removed even
though it is necessary–the author thanks Michael Pinsker for pointing out this mis-
take.

Theorem 11.3.1. Let B be homogeneous, ω-categorical, and Ramsey and let C
be the model-complete core of B. Then C is also Ramsey.

Proof. Let h be a homomorphism from B to C, and let i be an embedding from
C into B; see Remark 4.7.5. Let S and M be finite substructures of C and r ∈ N,
and let χ :

(
C
S

)
→ [r] be arbitrary. Let T be the substructure of B induced on i(S).

We define χ′ :
(
B
T

)
→ [r] as follows. Let T′ ∈

(
B
T

)
and let S′ be the substructure of

C induced on h(T ′). The assumption that C is a model-complete core implies that

S′ ∈
(
C
S

)
. Define χ′(T′) := χ(S′). Let N be the substructure of B induced on i(M).

Since B is Ramsey, there exists N′ ∈
(
B
N

)
and c ∈ [r] such that for all T′ ∈

(
N′

T

)
we

have χ′(T′) = c.

Let M′ be the substructure of C induced on h(N ′), and let S′ ∈
(
M′

S

)
. We claim

that χ(S′) = c. Since N′ ∈
(
B
N

)
there exists an automorphism α ∈ Aut(B) that

maps N to N′. Since h ◦ α ◦ i ∈ End(C) and C is a model-complete core, there exists
β ∈ Aut(C) such that β(h ◦ β ◦ i(x)) = x for all x ∈ M . Let T ′ := α ◦ i ◦ β(S′) and
note that h(T ′) = S′. Note that T ′ induces a copy of T in B by the homogeneity of
B. Therefore, χ′(T′) = c, which by the definition of χ′ means that χ(S′) = c. Hence,

χ is constant on
(
M′

S

)
and thus C is Ramsey. �

11.3.2. Generic superpositions. Generic superpositions have been introduced
for Fräıssé-limits of strong amalgamation classes in Section 2.3.6, and more generally
for ω-categorical structures without algebraicity in Section 4.7.1. Our proof of the
Ramsey transfer result for generic superpositions (Theorem 11.3.2) is from [49] and
uses Theorem 11.3.1 about model-complete cores.

Theorem 11.3.2 (Theorem 1.5 in [49]). Let B1 and B2 be ω-categorical homo-
geneous ordered structures with disjoint signatures and no algebraicity such that both
B1 and B2 are Ramsey. Then B1 ∗B2 is Ramsey.
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Proof. By Lemma 4.7.1 we can make the assumption that B1 and B2 are
reducts of B1 ∗B2 to their signatures, and, in particular, all have the same domain
B. Theorem 11.2.14 implies that the algebraic product B1 �B2 is Ramsey. Theo-
rem 11.3.1 implies that the model-complete core C of B1�B2 is Ramsey. It therefore
suffices to show that C is isomorphic to B1 ∗B2. Since B1 ∗B2 is a model-complete
core (Lemma 4.7.2) it suffices to show that B1∗B2 and B1�B2 are homomorphically
equivalent. First note that d 7→ (d, d) is a homomorphism from B1 ∗B2 to B1 �B2.
For the other direction, we verify that every finite substructure F of B1 �B2 maps
homomorphically to C (Lemma 4.1.7). By Lemma 4.3.6 there is an injective homo-
morphism hi from the τi-reduct of F to Bi. The superposition of the substructure of
B1 induced on the image of h1 with the substructure of B2 induced on the image of
h2 is a substructure of B1 �B2, and therefore maps homomorphically to C. �

In the following we present four examples of generic superpositions in the context
of the Ramsey property. Example 11.3.3 and Example 11.3.5 show that the assump-
tion in Theorem 11.3.2 that both structures B1 and B2 are ordered is necessary.
Examples 11.3.4 and 11.3.6 are applications of Theorem 11.3.2 to obtain Ramsey
expansions of the previous two examples, confirming Conjecture 11.1.1 in these cases.

Example 11.3.3. Let E be the class of all finite {E}-structures where E denotes
an equivalence relation and let LO the class of all finite {<}-structures where <
denotes a linear order. It is easy to verify that E ∗LO has the amalgamation property.
Moreover, all automorphisms of structures in E ∗LO have to preserve the linear order
and hence must be the identity. But E ∗ LO does not have the Ramsey property:
let A be the structure with domain {u, v} such that <A = {(u, v)}, and such that u
and v are not E-equivalent. Let B be the structure with domain {a, b, c, d} such that
a <B b <B c <B d and such that {a, c} and {b, d} are the equivalence classes of EB.
There are four copies of A in B.

Suppose for contradiction that there is C ∈ E ∗ LO such that C → (B)A2 . Let
≺ be a convex linear ordering of the elements of C, that is, a linear ordering such
that E(x, z) and x < y < z implies that E(x, y) and E(y, z). Let A′ ∈

(
C
A

)
. Define

χ(A′) = 1 if ≺ ∩(A′)2 =<A′ , and χ(g) = 2 otherwise. For any B′ ∈
(
C
B

)
, the convex

linear order induces a convex linear order on B′ in which one of the two equivalence
classes precedes the other. It follows by inspection that both colours are realised in(
B′

A

)
. 4

Let B be the Fräıssé limit of the class E ∗ LO from the previous example. In
the light of Conjecture 11.1.1 we look for a finitely bounded homogeneous Ramsey
expansion of B.

Example 11.3.4. Let C be the class of all finite structures (V ;E,≺) where E
is an equivalence relation and ≺ is a linear order that is convex with respect to E.
Let C be the Fräıssé-limit of C. Note that C is a reduct of Allen’s Interval Algebra A
(Example 2.4.2) which is homogeneous (Example 5.5.5), Ramsey (Example 11.2.11),
and without algebraicity. By Theorem 11.3.2 the generic superposition A ∗ (Q;<) is
Ramsey. Then A ∗ (Q;<) is isomorphic to a Ramsey expansion of the structure B
from Example 11.3.3. 4

Example 11.3.5. The class of finite ordered binary branching C-relations is an
amalgamation class, but does not have the Ramsey property. To see how the Ramsey
property fails, consider the structure B ∈ C with domain {a, b, c, d} where a < c <
b < d such that C(a; c, d), C(b; c, d), C(d; a, b), C(c; a, b), and the structure A ∈ C with
domain {u, v} where u < v. Now let C ∈ C be arbitrary. Let ≺ be a convex ordering
of C, that is, a linear ordering such that for all u, v, w ∈ L, if C(u; v, w) and v ≺ w,
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then either u ≺ v ≺ w or v ≺ w ≺ u. Define χ :
(
C
A

)
→ [2] as follows. For A′ ∈

(
C
A

)
define χ(A′) = 1 if ≺ ∩(A′)2 =<A′ , and χ(A′) = 2 otherwise. Note that for every

convex ordering ≺ of B there exists an A1 ∈
(
B
A

)
such that ≺ ∩(A1)2 =<A1 , and an

A2 ∈
(
B
A

)
such that ≺ ∩(A2)2 =<A2 . Hence, for every B′ ∈

(
C
B

)
the colouring χ is

not monochromatic on B′. 4
Again, we want to confirm Conjecture 11.1.1 for the Fräıssé-limit of the class from

Example 11.3.5 and show how to find a homogeneous Ramsey expansion, again using
Theorem 11.3.2.

Example 11.3.6. The class C of all finite structures (L;C,<,≺), where < is an
arbitrary linear order, and ≺ is convex with respect to C, is a Ramsey class. The
class C can be described as the superposition of the Ramsey class LO with the class
of all convexly ordered C-relations, which is Ramsey (Example 11.1.9), and hence is
Ramsey by Theorem 11.3.2. 4

11.4. Canonisation

In this section we apply Ramsey theory to analyse polymorphisms of Ramsey
structures B. We first consider the more general case of functions between two pos-
sibly distinct structures, and introduce a refinement of the notion of canonicity from
Section 10.5.1.

Definition 11.4.1. Let A,B be structures and S ⊆ A. We say that a function
f : A→ B is canonical on S with respect to (A,B) if for every n ∈ N and every t ∈ Sn
the type of f(t) in B only depends on the type of t in A. We say that f is canonical
(with respect to (A,B)) if it is canonical on all of A.

Note that for ω-categorical structures A and B these definitions coincide with
the corresponding definitions of canonicity for G = Aut(A) and H = Aut(B) from
Section 10.5.1. Ramsey theory can be applied to the analysis of functions via the
following lemma.

Lemma 11.4.2. Let A be an ω-categorical ordered Ramsey structure, let B be an
ω-categorical structure, and let f : A→ B be a function. Then for every finite F ⊆ A
there exists α ∈ Aut(A) so that f ◦ α is canonical on F with respect to (A,B).

Proof. Let < be a linear order in the signature of A. Suppose without loss of
generality that A contains all relations that are first-order definable in A, so that A is
homogeneous and the age of A is a Ramsey class. Let F ⊆ A be finite and m := |F |.
Let C1, . . . ,Ck be a list of all non-isomorphic substructures of A[F ] and let r be the
number of m-types in B, which is finite by the ω-categoricity of B. Since A is Ramsey,
there is a finite substructure A1 of A such that A1 → (A[F ])C1

r . Further, there is a
finite substructure A2 of A such that A2 → (A1)C2

r . We iterate this k times, arriving

at a structure Ak. For each i ≤ k, the operation f defines a colouring χi of
(
Ak

Ci

)
with

finitely many colours as follows: let c1, . . . , c` be the elements of a copy C of Ci in Ak
such that c1 < · · · < c`. Then χi(C) is just the type of (f(c1), . . . , f(c`)) in B. By
a downward induction following the construction of Ak in reverse, we find copies A′i
of Ai that are monochromatic with respect to the colourings associated with Cj for
j > i, and at the end a copy of A[F ] on which they are all monochromatic. Since A is
homogeneous, there exists an automorphism α of A that sends F to this copy. Then
f ◦ α is canonical on F as a map from A to B. �

Note that the assumption in Lemma 11.4.2 that A is ordered cannot simply be
dropped: for instance, if A is the structure (A; =) and f : A→ Q is injective, then f
is not canonical on any two-element subset of A with respect to

(
(A; =), (Q;<)

)
.
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11.4.1. Functions of higher arity. In this section we consider canonicity for
functions of higher arity; this generalises the terminology from Section 10.5.2.

Let A and B be structures, f : Ad → B a function, and S a subset of Ad. Recall
that A(d) denotes the algebraic product structure introduced in Definition 4.2.20.
Note that f is canonical on S with respect to (A(d),B) if for all n and all n-tuples
t1, . . . , td where (t1i , . . . , t

d
i ) ∈ S for all i ≤ n the n-type of f(t1, . . . , td) in B only

depends on the n-types of t1, . . . , td in A. If B = C, then we say that f is canonical
(on S) with respect to B if it is canonical (on S) with respect to (B(d),B).

Example 11.4.3. The function (x, y) 7→ min(x, y) is not canonical with respect to
(Q;<). However, if S ⊆ Q is finite, and α is an automorphism such that α(max(S)) <
min(S), then for all x, y ∈ S we have min(α(x), y) = α(x), so the operation (x, y) 7→
min(α(x), y) is canonical on S with respect to (Q;<). 4

In the proof of the following we use the product Ramsey theorem, Theorem 11.2.14.

Proposition 11.4.4. Let B be an ω-categorical ordered Ramsey structure and
let f : Bd → B be any operation. Then for all finite subsets S1, . . . , Sd of B there
are α1, . . . , αd ∈ Aut(B) so that the operation (x1, . . . , xd) 7→ f(α1x1, . . . , αdxd) is
canonical on S1 × · · · × Sd with respect to B.

Proof. By Theorem 11.2.14, the structure B(d) is Ramsey. Hence, Lemma 11.4.2
shows the existence of α ∈ Aut(B(d)) such that x 7→ f(αx) is canonical on S1×· · ·×Sd
with respect to (B(d),B). By Proposition 4.2.19, there are α1, . . . , αd ∈ Aut(B) so
that α(x1, . . . , xd)) = (α1x1, . . . , αdxd). Now clearly the function (x1, . . . , xd) 7→
f(α1x1, . . . , αdxd) is canonical on S1 × · · · × Sd with respect to B. �

11.4.2. Interpolation modulo automorphisms. One of the central prob-
lems when analysing a polymorphism of a structure B is to determine what kind
of operations it generates locally (these operations will also be polymorphisms of B,
cf. Proposition 6.1.5). Proposition 11.4.4 can be used for this purpose, as the following
illustrates.

Corollary 11.4.5. Let B be an ω-categorical ordered Ramsey structure and
f ∈ Pol(B)(k) be injective. Then B also has an injective polymorphism g of arity k
which is canonical with respect to B.

This corollary follows in a straightforward way from Proposition 11.4.4 and a
compactness argument, which we do not present here since we will present a proper
generalisation of Corollary 11.4.5 in full detail, namely Theorem 11.4.7. In our gen-
eralisation, we would like to drop the injectivity condition on f , and thus also on
g. But if this is all we do we arrive at a triviality, since local generation — or, for
that matter, generation — produces projections, and projections are canonical. To
formulate an appropriate generalisation, we apply the operation of local closure to a
subset of the set of all operations generated by f .

Definition 11.4.6. Let B be an ω-categorical structure and f, g : Bd → B. Then
f interpolates g modulo Aut(B) if for every finite S ⊆ B there are α0, α1, . . . , αd ∈
Aut(B) such that g(x1, . . . , xd) = α0f(α1x1, . . . , αdxd) for all x1, . . . , xd ∈ S, i.e.,

g ∈ {(x1, . . . , xd) 7→ α0f(α1(x1), . . . , αd(xd)) | α0, α1, . . . , αd ∈ Aut(B)}.

Theorem 11.4.7. Let B be an ω-categorical ordered Ramsey structure and let
f : Bd → B be an operation. Then f interpolates an operation modulo Aut(B) that
is canonical with respect to B.
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Note that Theorem 11.4.7 is indeed a generalisation of Corollary 11.4.5, because
operations that are interpolated by injective operations modulo automorphisms are
again injective, and operations that are interpolated by polymorphisms modulo au-
tomorphisms are again polymorphisms. However, Theorem 11.4.7 is still not in its
most general and most useful form. For this, we need a further generalisation of the
notion of interpolation modulo automorphisms to the situation where f is a function
between different structures A and B.

Definition 11.4.8. Let A and B be structures and let f, g : A→ B be functions.
Then f interpolates g modulo (Aut(A),Aut(B)) if for every finite S ⊆ A there are
α ∈ Aut(A) and β ∈ Aut(B) such that g(x) = βf(αx) for every x ∈ S.

The following is the central statement about Ramsey structures and interpolation
modulo automorphisms; it has many applications. We present two proofs of this
result, the first making direct use of the Ramsey property of A and the compactness
principle of Lemma 4.1.10, the second based on the extreme amenability of Aut(A).

Lemma 11.4.9 (Canonisation Lemma). Let A be an ω-categorical ordered Ramsey
structure and let B be ω-categorical. Then every f : A→ B interpolates an operation
g : A→ B modulo (Aut(A),Aut(B)) that is canonical with respect to (A,B).

First proof. By Lemma 11.4.2, for every finite S ⊆ A there is a function from
A → B that is canonical on S with respect to (A,B) and interpolated by f modulo
(Aut(A),Aut(B)). Now the statement follows from Lemma 4.1.10, because the prop-
erty to be canonical on S with respect to (A,B) is a universal first-order statement
about f in the signature of A and B. �

Second proof. Our second proof, following [97], uses the extreme amenability
of Aut(A). Recall the definition of the space BA�Aut(B) (Definition 10.1.7) which
is compact and Hausdorff (Proposition 10.1.8), and the notation f ∼ g meaning that
f is in the closure of the orbit of g under Aut(B). The space

Aut(B) f Aut(A)/∼

is a closed subspace of BA�Aut(B), and hence compact (Proposition 9.1.18) and

Hausdorff as well. We define a continuous action of Aut(A) on Aut(B) f Aut(A)/∼
by

(α, g/∼) 7→ g α−1/∼ .

This assignment is well defined, it is a group action, and it is continuous. Since
Aut(A) is extremely amenable, this action has a fixed point. Any element g of this
fixed point is canonical: whenever α ∈ Aut(A), then g α/∼ = g/∼, which is the
definition of canonicity. �

Proof of Theorem 11.4.7. We apply Lemma 11.4.9 to the structure

A := B(d),

which is Ramsey if B is Ramsey (Theorem 11.2.14). As in the proof of Proposi-
tion 11.4.4, the canonicity of a function g with respect to (B(d),B) translates into
the canonicity of the d-ary function g with respect to B, and interpolation of opera-
tions modulo (Aut(B(d)),Aut(B)) translates to interpolation modulo Aut(B). �

11.4.3. Canonisation with respect to constants. ‘Canonisation’ of opera-
tions as exhibited in Theorem 11.4.7 becomes particularly powerful when we combine
it with expansions by constants.
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Theorem 11.4.10. Let A be an ω-categorical ordered Ramsey structure and let
B be ω-categorical. Let f : Ak → B be a function and let c1, . . . , cm ∈ Ak. Then{

(x1, . . . , xk) 7→ βf(α1(x1), . . . , αk(xk)) | β ∈ Aut(B), αi ∈ Aut(A, c1i , . . . , c
m
i )
}

contains an operation which is canonical with respect to
(
(A(k), c1, . . . , cm),B

)
, and

which is identical with f on c1, . . . , cm.

Proof. The ω-categorical structure A(k) is Ramsey (Theorem 11.2.14) and a
linear order < is first-order definable in it. The expansion (A(k), <) is ordered and
also ω-categorical and Ramsey. It follows that C := (A(k), <, c1, . . . , cm) is Ramsey
and ω-categorical by Corollary 11.2.16. Note that Aut(C) = Aut(A, c11, . . . , c

m
1 ) ×

· · · × Aut(A, c1k, . . . , c
m
k ). Then Lemma 11.4.9 shows that f interpolates modulo

(Aut(C),Aut(B)) an operation g that satisfies the requirements. �

11.4.4. Behaviours of functions. To work with canonical functions the defi-
nition of a behaviour of a canonical function is important. It is sometimes necessary
to work with functions that share some properties with canonical functions. The
following definition from [93] gives us some flexibility in specifying such properties.

Definition 11.4.11. Let A and B be structures. An (n-)type condition between
A and B is a pair (r, s) where r is a complete n-type in A and s is a complete n-type
in B. A function f : A → B satisfies the n-type condition (r, s) on X ⊆ A, if for
every t ∈ Xn of type r in A the n-tuple f(t) has type s in B. It satisfies a set Λ of
type conditions on X if it satisfies every type condition in Λ on X; if X = A we may
also drop ‘on X’, and simply write that f satisfies Λ. A set Λ of type conditions is
called complete if for every n ≥ 1 and and every complete n-type r in A there exists
a complete n-type s in B such that f satisfies the type condition (r, s).

Note that f : A→ B is canonical if and only if it satisfies a complete set of type
conditions. The behaviour of a canonical function f : A → B is the function that
maps each complete n-type r in A to the complete n-type s in B such that f satisfies
the type condition (r, s).

Lemma 11.4.12. Let A and B be ω-categorical structures.

(1) If f : A → B interpolates g modulo (Aut(A),Aut(B)) and satisfies a type
condition, then g satisfies the type condition as well.

(2) Two functions f, g : A → B that are canonical with respect to (A,B) have
the same behaviour if and only if f interpolates g modulo (Aut(A),Aut(B))
and g interpolates f modulo (Aut(A),Aut(B)).

(3) If B is homogeneous with a finite relational signature of maximal arity m,
then two canonical functions with respect to (A,B) have the same behaviour
if and only if they satisfy the same m-type conditions.

Proof. The first statement follows directly from the definitions. For the second
statement, the backwards implication follows from the first statement. The forward
implication can be shown by a compactness argument and is left to the reader. For
the third statement, suppose that f, g : A → B are canonical with respect to (A,B)
and satisfy the same m-type conditions, and let s, t ∈ An, for n ∈ N, be tuples that
have the same n-type in A. We have to show that f(s) and g(t) have the same n-type
in B. Since every atomic formula over the signature of B has at most m variables,
f(s) and g(t) satisfy the same atomic formulas, so the statement follows from the
homogeneity of B. �

Definition 11.4.11 can also be applied to operations of arbitrary arity over a
structure B. A type condition for k-ary operations from Bk → B is a type condition
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Figure 11.1. Complete sets of type conditions between (Q;<)(2)

and (Q;<) illustrated on a [2]2 grid. Only the top row can be satisfied
by operations f : Q2 → Q.

between the algebraic power B(k) and B. Recall from Section 4.2.5.2 that a complete
n-type in B(k) can be specified by specifying k complete n-types in B. So an n-type
condition between B(k) and B can be specified by a tuple (r1, . . . , rk, s) of complete
n-types in B, and f : Bk → B satisfies this type condition if for all t1, . . . , tk ∈ Xn,
if ti has type ri for all i ∈ {1, . . . , k}, then f(t1, . . . , tk) has type s.

Not for every set Λ of type conditions between A and B there exists a function
that satisfies Λ, as we will see in the following example.

Example 11.4.13. We determine the possible behaviours of binary injective
canonical polymorphisms f of (Q;<). We write < and > stand for the complete
2-types in (Q;<) given by x1 < x2 and by x2 < x1. Note that every Λ must contain
the 2-type condition (<,<,<) because f preserves <. Moreover, there are complete
2-types s1, s2, s3 ∈ {<,>} such that Λ contains (<,=, s1), (=, <, s1), and (<,>, s3).
The eight resulting sets of type conditions are illustrated in Figure 11.1. However,
only four of these sets, namely the ones depicted in the first row, are satisfied by
binary injective polymorphisms of (Q;<). The other diagrams contain directed cy-
cles of length three; so the existence of operations satisfying these type conditions
would imply the existence of three points x, y, z in Q such that x < y < z < x, a
contradiction. The type conditions that are illustrated in the top row, on the other
hand, are satisfied by the operations lex(x, y), lex(y, x), lex(x,−y), and lex(y,−x),
respectively. 4

The analysis in Example 11.4.13 in combination with Corollary 11.4.5 shows that
every binary injective polymorphism of (Q;<) interpolates modulo Aut(Q;<) at least
one of the operations lex(x, y), lex(y, x), lex(x,−y), or lex(y,−x). The not necessarily
injective case can be analysed similarly, and for later reference we state the following.

Lemma 11.4.14. Let f be a canonical binary polymorphism of (Q;<). Then f
has the same behaviour as one of the following six operations.

• lex(x, y) or lex(y, x) (Example 10.5.4);
• lex(x,−y) or lex(y,−x).
• (x, y) 7→ x or (x, y) 7→ y.

11.4.5. Canonical non-preservation. Let C be an ω-categorical ordered Ram-
sey structure and let B be a first-order reduct of C. Suppose that a relation R does
not have a primitive positive definition in B, so that there is an f in Pol(C) that does
not preserve R (Theorem 6.1.12). It is natural to ask whether f may be taken to be
canonical. The following example shows that in general, there may not be a canonical
polymorphism that does not preserve R.
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Example 11.4.15. Let C := (Q;<), and let B the first-order reduct of C that
contains all relations that are first-order definable in C and are preserved by the
operation (x, y) 7→ min(x, y). Clearly, min does not preserve the relation

Betw := {(a, b, c) ∈ Q3 | a < b < c ∨ c < b < a}

and hence Betw is not primitively positively definable in C. On the other hand, it can
be shown that every operation that is locally generated by min and the automorphisms
of C and that is canonical with respect to C is a projection, and hence preserves
Betw. 4

On the other hand, the results from Section 11.2.4 suggest a sense in which we
can still find canonical polymorphisms that do not preserve R. To illustrate the basic
idea, we first discuss the unary case, with existential positive definability instead of
primitive positive definability.

Theorem 11.4.16. Let C be an ω-categorical ordered Ramsey structure and let
B be a first-order reduct of C. Let R be an m-ary relation that does not have an
existential positive definition in B. Then there exists an endomorphism e ∈ End(B)
and an m-tuple c ∈ R such that

• e(c) /∈ R
• e is canonical with respect to

(
(C, c),C

)
.

Proof. The structure B is ω-categorical. If R does not have an existential
definition in B, then by Theorem 4.4.1 there is an endomorphism e′ of B which
does not preserve R, that is, there is a m-tuple c ∈ R such that e′(c) /∈ R. By
Theorem 11.4.10 applied with k = 1, the operation e′ interpolates an operation e
modulo (Aut(C, c),Aut(C)) that is canonical with respect to

(
(C, c),C

)
and that has

the same restriction to {c1, . . . , cm} as e′. Since e is an endomorphism of B it therefore
satisfies the stated properties. �

We now give the analog of Theorem 11.4.16 for operations of higher arity and
whose proof is analogous to the proof of the previous theorem.

Theorem 11.4.17. Let C be an ω-categorical ordered Ramsey structure, let B be
a first-order reduct of C, and let R be an m-ary relation that does not have a primitive
positive definition in B. Then there exist k ∈ N, a k-ary polymorphism f of B, and
m-tuples c1 = (c11, . . . , c

m
1 ), . . . , ck = (c1k, . . . , c

m
k ) ∈ R such that

• f(c1, . . . , ck) /∈ R
• f is canonical with respect to

(
(C(k), (c11, . . . , c

1
k), . . . , (cm1 , . . . , c

m
k )),C

)
.

Proof. If R does not have a primitive positive definition in B, then there is f ′ ∈
Pol(B) which does not preserve R (by Theorem 6.1.12 since B is ω-categorical). Let k
be the arity of f ′. Then there are m-tuples c1, . . . , ck ∈ R such that f ′(c1, . . . , ck) /∈ R.
By Theorem 11.4.10 there exists some operation f in the local closure of the set{

(x1, . . . , xk) 7→ βf ′(α1(x1), . . . , αk(xk)) | β ∈ Aut(C),

αi ∈ Aut(C, ci) for i ∈ {1, . . . , k}
}

which is canonical with respect to
(
(C(k), (c11, . . . , c

1
k), . . . , (cm1 , . . . , c

m
k )),B

)
. Since f

is locally generated by polymorphisms of B, it is itself a polymorphism of B, and
satisfies our requirements. �

We are now ready to prove the following result, which was already stated in
Section 6.1.8.
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Theorem 11.4.18 (Proposition 24 in [101]). Let B be a reduct of a homogeneous
ordered Ramsey structure C with a finite relational signature. Then there are finitely
many minimal closed clones above Pol(B).

Proof. Every minimal closed clone above Pol(B) is locally generated by a mini-
mal operation f (Proposition 6.1.35), and if k is the arity of f then by Theorem 6.1.13
there must be a relation R in B that is not preserved by f , that is, there are
c1 = (c11, . . . , c

m
1 ), . . . , ck = (c1k, . . . , c

m
k ) ∈ R such that f(c1, . . . , ck) /∈ R. Since f is

a minimal operation, Theorem 11.4.17 implies that f must be canonical with respect
to
(
(C(k), (c11, . . . , c

1
k), . . . , (cm1 , . . . , c

m
k )),B

)
. There are only finitely many behaviours

of such operations, because C is homogeneous is a finite relational signature. As two
minimal operations with the same behaviour locally generate the same closed clone
above Pol(B), we are done. �

11.5. Application: Preservation of Pseudo-minor Conditions

Minor-preserving maps preserve minor conditions (Section 6.7.3), but in gen-
eral there is no reason why they should also preserve pseudo-minor conditions (Sec-
tion 10.1). However, if we have a minor-preserving map from Pol(B) to Pol(A) where
A is a finite structure, then more can be said under some Ramsey-theoretic assump-
tion on B. The following statement is only implicit in the literature [22]; it follows
from the second proof of Theorem 1.9 in [22] (the author is grateful to Jakub Rydval
for this observation).

Theorem 11.5.1. Let B be an ω-categorical ordered Ramsey structure which is
a model-complete core and suppose that Pol(B) satisfies a pseudo-minor condition
φ. Let ξ be a uniformly continuous minor-preserving map from Pol(B) to Pol(A) for
some finite structure A. Then Pol(A) also satisfies φ.

Proof. Choose m ∈ N larger than all the arities of all operations that occur in
φ. Let Sm be the set of all functions from Pol(B)(m) to Pol(A)(m). Note that Sm
can be equipped with the product topology, and since A is finite and discrete Sm is
compact (Theorem 9.1.17, for the first time in this text applied to a product with an
uncountable exponent). Also note that the space Sm is Hausdorff (Proposition 9.1.3).
We define an action of Aut(B) on Sm as follows. For α ∈ Aut(B) and η ∈ Sm, define
α · η as the map in Sm given by

f 7→ η(α−1 ◦ f).

Let ξm ∈ Sm be the restriction of ξ to Pol(m)(B). Then

C := {α · ξm | α ∈ Aut(B)}
is a compact subspace of Sm and all maps in C are minor-preserving.

Claim. The restriction of the action to C is continuous. By the uniform continu-

ity of ξ, there exists a finite F ⊆ Bm such that for all f, g ∈ Pol(m)(B) we have that

f |F = g|F implies ξ(f) = ξ(f ′). Now let ψ ∈ C and suppose that f, g ∈ Pol(m)(B)
are such that f |F = g|F . Observe that then ψ(f) = ψ(g): since ψ ∈ C there
exists α ∈ Aut(B) such that ψ(f) = α · ξm(f) and ψ(g) = α · ξm(g). Hence,
ψ(f) = α · ξm(f) = α · ξm(g) = ψ(g).

Now consider for some ψ ∈ C and f ∈ Pol(m)(B) the basic open subsetOf (ψ) ⊆ C
given by

Of (ψ) := {ψ′ ∈ C | ψ′(f) = ψ(f)}.
Then the open set{

(α,ψ′) ∈ Aut(B)× C | α ∈ Aut(B)f(F ) and ψ′(f) = ψ(f)
}
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contains (id, ψ) and is mapped into Of (ψ) by the action. To see this, let α ∈
Aut(B)f(F ) and ψ′ ∈ C such that ψ′(f) = ψ(f). Then by the observation above

(α · ψ′)(f) = ψ′(α−1 ◦ f) (by definition)

= ψ′(f) (since α−1 ◦ f |F = f |F )

= ψ(f) (by assumption)

which shows that α · ψ ∈ Of (ψ). We have now proved the claim.
Since Aut(B) is extremely amenable by Theorem 11.2.2, the action on C has a

fixed point ξ′m, i.e., α · ξ′m = ξ′m for every α ∈ Aut(B). In other words, ξ′m preserves

left composition with Aut(B), and by continuity even with Aut(B). Moreover, ξ′m is
minor-preserving and hence Pol(A) must satisfy φ as well. �

We obtain the following consequence [22]; this is the implication from (5) to (2)
in Theorem 10.3.5, however, under very different assumptions: there we required that
C has less than doubly exponential orbit growth, and here we require that C is an
ω-categorical ordered Ramsey structure.

Corollary 11.5.2. Let B be an ω-categorical ordered Ramsey structure which
is a model-complete core and has a pseudo-Siggers polymorphism. Then Pol(B) does
not have a uniformly continuous minor-preserving map to Proj.

Recall that the atomless Boolean algebra both has a pseudo-Siggers polymor-
phism and a uniformly continuous minor-preserving map to the projections (Exam-
ple 10.3.1). This is consistent with Corollary 11.5.2, because B is not ordered. And
its ordered Ramsey expansion (B, <) (see Example 11.2.7), on the other hand, no
longer has a pseudo-Siggers polymorphism.

11.6. Application: Decidability Results for Meta-Problems

Finitely bounded homogeneous structures B, though typically infinite, are deter-
mined by a finite amount of data: the bounds determining their age, which determines
B up to isomorphism. Since these bounds can be input to a computer, many ques-
tions about finitely bounded homogeneous structures can be viewed as algorithmic
questions. The same applies to finite-signature first-order reducts A of B, because
it suffices to additionally specify (quantifier-free) first-order formulas that define the
relations of A in B. Many of the questions about finitely bounded homogeneous
structures B and their first-order reducts are not known to be decidable, and listed
as open problems in Section 14.2.11. Some of these questions are also of interest when
the structure B is fixed. In this section we discuss applications of the techniques seen
in this chapter to decidability results for finite-signature first-order reducts of finitely
bounded homogeneous structures.

11.6.1. Deciding the existence of maps with specified behavior. Let A
and B be finitely bounded homogeneous structures and let Λ be a finite set of type
conditions between A and B. We are interested in the question whether Λ can be
realised by a function from A to B. The following decidability result will be the basis
for several other decidability results.

Theorem 11.6.1. Let A and B be finitely bounded homogeneous structures and
suppose that B is Ramsey. Let Λ be a finite set of type conditions between A and
B. Then the question whether there is a function from A to B that satisfies Λ is
decidable.
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Proof. Suppose that there exists a function f : A→ B that satisfies Λ. We know
from the canonisation lemma (Lemma 11.4.9) f interpolates a function g modulo
(Aut(A),Aut(B)) which is canonical with respect to (A,B). Moreover, g satisfies
Λ as well (Lemma 11.4.12); we call such a function g a witness for Λ. We decide
the existence of a witness by an effective reduction to a finite-domain constraint
satisfaction problem (similarly as in Section 10.5.3), which proves the decidability
result.

Let F be a finite set of finite structures such that Forbemb(F) = Age(B). It will
be convenient to make the assumption that F is minimal in the sense that it does
not contain structures F1,F2 such that F1 is an induced substructure of F2. This
assumption is without loss of generality since F is finite; otherwise we replace F by a
set F ′ of minimal cardinality with Forbemb(F) = Forbemb(F ′), then F ′ we be minimal
also in the desired sense.

Let n = 2 if all relations of A are unary, and otherwise let n be the maximal arity
of the relations in A and in B. The domain of the CSP is the set of all complete
n-types of B. The instance of the CSP has a variable for every complete n-type of
A. Hence, every solution to the CSP describes a complete set ∆ of type conditions
between A and B. The constraints are described below.

• (Compatibility.) Let r, t ∈ SA
n and I ⊂ [n] be such that the subtype of r

induced on I and the subtype of t induced on I coincide. Let r′, t′ ∈ SB
n be

such that (r, r′), (t, t′) ∈ ∆. Then we impose the binary constraint that I
induces the same subtype in r′ and in t′.
• (Satisfiability.) To ensure that ∆ is satisfiable by a function g : A → B

(recall Example 11.4.13), we need to take care of two things.
– ∆ should not force the existence of one of the forbidden substructures

from F in the image of g. For each structure F ∈ F with |F | =: s > n
and each t ∈ SA

s with (t, t′) ∈ ∆ we have a constraint of arity r :=
(
s
n

)
.

Let a1, . . . , as be the elements of F. Observe that for every subset
I ⊆ [s] with |I| = n the structure induced on {ai | i ∈ I} in F is an

induced substructure of B, by the minimality assumption on F . Let φFI
be the formula with variables x1, . . . , xn that contains for i1, . . . , im ∈ I
the conjunct R(xi1 , . . . , xim) if and only if (ai1 , . . . , aim) ∈ RF. By the
observation we just made and the homogeneity of B in a finite relational
signature, φFI is contained in a unique complete n-type of B. We then
impose the constraint of arity r that requires that for some I ⊆ [s] with

|I| = n the subtype of t′ induced on I does not contain φFI .
– Since equality is transitive1, we also add for every t ∈ SA

3 the ternary
constraint which makes sure that if the subtype of t induced on {1, 2}
contains x1 = x2 and if the subtype of S induced on {2, 3} contains
x1 = x2, then the subtype of t induced on {1, 3} contains x1 = x2.

• (Behaviour) If (t, t′) ∈ Λ, then then we add a constraint that ensures that
(t, t′) ∈ ∆.

We verify that there is a witness g if and only if the CSP instance described above has
a satisfying assignment in the set of all n-types of B. For the easy direction, suppose
that there exists a witness. Then the behaviour of the witness provides a solution
to the instance that clearly satisfies the compatibility, satisfiability, and behaviour
constraints.

1An alternative presentation would have been to add a binary relation symbol for equality and
to add structures to F that code the Leibniz’ laws for equality.
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For the opposite direction, suppose that α is a solution to the described CSP,
i.e., a mapping ∆: SA

n → SB
n that satisfies compatibility, satisfiability, and behaviour

constraints. Clearly, if there is a map g : A → B with behaviour ∆ then g also
has behaviour Λ and we are done. To show the existence of such a map, by the
ω-categoricity of B and Lemma 4.1.10 it suffices to show that for every finite sub-
structure S of A there exists a function h : S → B such that for every a ∈ Sn we
have that tpB(h(a)) = ∆(tpA(a)). The existence of such a function can be shown
similarly as in the proof of Theorem 10.5.10 because ∆ respects the compatibility and
satisfiability constraints. �

11.6.2. Decidability of Definability. Let B be a finitely bounded homoge-
neous structure. We will be interested in the following computational problem.

FO-Def
INSTANCE: A finitely bounded homogeneous structure B and two finite-signature
first-order reducts A1 and A2 of B.
QUESTION: Is A1 a first-order reduct of A2?

We are also interested in the variants of this problem where we replace first-order
definability by other syntactically restricted versions of definability, in particular by
primitive positive definability. The corresponding computational problem for prim-
itive positive definability is denoted by PP-Def(B), and the problem for existential
and existential positive definability by EX-Def(B) and EP-Def(B), respectively.

Example 11.6.2. We can use an algorithm for PP-Def to decide whether all
polymorphisms of a first-order reduct A1 of a finitely bounded homogeneous structure
B are essentially unary. For that, we simply apply the algorithm to A1 and A2 where
A2 only contains the ternary relation defined by x = y ∨ y = z (Proposition 6.1.19).

4

For finite structures B the problem PP-Def is co-NEXPTIME-complete [352]. To
decide the problem FO-Def for finite structures B it suffices to test for every relation
of A1 whether it is preserved by the automorphisms of A2 (Theorem 4.2.9); since a
finite structure has only finitely many automorphisms, this task can be performed
algorithmically. Note that a relation has a first-order definition in a finite structure
A2 if and only if it has an existential definition in A2 (since all finite structures are
model complete) and hence FO-Def and EX-Def are the same problems for finite B.
The problem EP-Def is for finite B also easy to decide, replacing the automorphisms
of B with the endomorphisms of B (Proposition 4.4.1).

Example 11.6.3. We can use an algorithm for EP-Def to test whether a first-
order reduct A of a finitely bounded homogeneous structure B is a core. Recall from
Section 2.6 and in particular from Proposition 2.6.10 that a τ -structure A is a core if
and only if for every atomic τ -formula ψ the formula ¬ψ has an existential positive
definition in A. We apply the algorithm for EP-Def to the structures A1 := B and the
first-order reduct A2 of B that contains for every atomic formula φ of A the relation
defined by ¬φ. 4

The main result of this section is the decidability of PP-Def if B is a first-order
reduct of a finitely bounded homogeneous ordered Ramsey structure. Even if we
restrict B to be the simplest of all countable structures B = (N; =), which is a
first-order reduct of the finitely bounded homogeneous ordered Ramsey structure
(Q;<), the decidability of PP-Def is not obvious (and has been posed as an open
problem [58]).
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Theorem 11.6.4 (Theorem 1 in [101]). PP-Def is decidable if B is a first-order
reduct of a finitely bounded homogeneous ordered Ramsey structure.

Proof. It clearly suffices to show the statement for the situation that B itself
is a finitely bounded homogeneous ordered Ramsey structure; let F be a finite set
of finite structures such that Forbemb(F) = Age(B). Let A1 and A2 be two first-
order reducts of B; we have to decide whether every relation of A2 is primitively
positively definable in A1. Let R be a relation of A2 and let φ be a first-order
definition of R in B; since B is homogeneous we may assume that φ is quantifier-
free (Corollary 4.3.3). By Theorem 11.4.17, the relation R does not have a primitive
positive definition in B if and only if there exists a d ∈ N, a d-ary f ∈ Pol(A1), and
m-tuples t1, . . . , td ∈ R such that f(t1, . . . , td) /∈ R, and f is canonical with respect to(
(B(d), (t11, . . . , t

d
1), . . . , (t1m, . . . , t

d
m)),B

)
. It can be expressed as a behaviour between

(B(d), (t11, . . . , t
d
1), . . . , (t1m, . . . , t

d
m)) and B whether a map f : Bd → B satisfies these

conditions.
Recall that the algebraic power B(d) is homogeneous (Proposition 4.2.19) and

Ramsey (Theorem 11.2.14) and a linear order < is first-order definable in B(d). It fol-
lows that (B(d), <, (t11, . . . , t

d
1), . . . , (t1m, . . . , t

d
m)) is homogeneous and Ramsey (Corol-

lary 11.2.16). There exists a structure with finite relational signature and the same
automorphism group as this structure (Proposition 4.3.12). Therefore, we can use the
algorithm from Theorem 11.6.1 to test whether this behaviour can be realised. �

While the assumptions for the structure B in Theorem 11.6.4 might appear rather
restrictive at first sight, they actually are quite general: we want to point out that
we only require that B is a first-order reduct of a finitely bounded homogeneous
ordered Ramsey structure. If Conjecture 11.1.1 is true then every finitely bounded
homogeneous structure satisfies the assumptions.

Corollary 11.6.5 ([101]). The problems EP-Def and EX-Def are decidable if
the input structure B is a finitely bounded homogeneous ordered Ramsey structure.

Proof. Suppose that A1 and A2 of B. The result for EP-Def follows by applying
the algorithm from Theorem 11.6.4 to the first-order reduct (A1, P

3
A1

) and A2 (see
Proposition 6.1.19). The result for EX-Def can be reduced to EP-Def by expanding
A1 with relations for the negation of each atomic relation in A1 (the same idea has
been used in Example 11.6.3). �

An important open problem is whether the method can be extended to show decid-
ability of FO-Def for finitely bounded homogeneous Ramsey structures B. First-order
definability is characterised by preservation under automorphisms (Theorem 4.1.6),
i.e., surjective self-embeddings. But the requirement of surjectivity is difficult to deal
with in our approach.

In order to formulate some negative results, we consider the restriction of the
problems FO-Def, EX-Def, EP-Def, and FO-Def where we fix the finitely bounded
homogeneous structure B in the input to these problems, and study the decidability of
the problems depending on B. The resulting computational problems will be denoted
by FO-Def(B), EX-Def(B), EP-Def(B), and FO-Def(B), respectively.

We mention that Szymon Toruńczyk (personal communication) has observed that
FO-Def(B) is computationally equivalent to the problem of deciding for given first-
order reducts A1 and A2 of B whether A1 and A2 are isomorphic. Note that it follows
from Theorem 11.6.1 that it is decidable whether there exists an embedding from A1

to A2 and an embedding from A2 to A1; but for infinite structures this of course does
not imply that A1 and A2 are isomorphic.

The assumption that B is finitely bounded is motivated by the following result.
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Proposition 11.6.6. There exists a homogeneous ordered Ramsey structure B
with finite relational signature such that each of PP-Def(B), EP-Def(B), EX-Def(B),
and FO-Def(B) are undecidable.

Proof. Recall the definition of Henson digraphs from Example 2.3.12. We first
show that non-isomorphic Henson digraphs C1 and C2 have distinct PP-Def problems.
In fact, we show the existence of a first-order formula φ1 over digraphs such that the
input with φ0 := E(x, y) and φ1 is a yes-instance of PP-Def(C1) and a no-instance of
PP-Def(C2), or vice versa. Since there are uncountably many Henson digraphs, but
only countably many algorithms, this clearly shows the existence of Henson digraphs
C such that PP-Def(C) is undecidable.

Since C1 and C2 are non-isomorphic, there must be a structure A that embeds to
C1 but not to C2, or that embeds to C2 but not to C1. Assume the former is the case;
in the latter, simply exchange C1 and C2. Let s be the number of elements of A, and
denote the elements by a1, . . . , as. Let ψ be the formula with variables x1, . . . , xs that
has for distinct i, j ≤ s a conjunct E(xi, xj) if E(ai, aj) holds in A, and a conjunct
¬E(xi, xj) ∧ xi 6= xj otherwise. Let φ be the formula ψ ⇒ E(xs+1, xs+2). Consider
the relation R1 ⊆ (C1)s+2 defined by φ in C1. Let R be a relation symbol of arity
s+ 2, and B be the structures with signature {R}, domain C1, and where R denotes
the relation R1. It is clear that ∃x1, . . . , xs : R(x1, . . . , xs, x, y) is a primitive positive
definition of E(x, y) in B. Now consider the relation R2 defined by φ in C2. Since
A does not embed into C2, the precondition of φ is never satisfied, and the relation
R2 is empty. Hence, the structure (C2;R2) is preserved by all permutations. But the
relation E(x, y) is certainly not first-order definable over a structure that is preserved
by all permutations.

Note that every Henson graph has a generic superposition C with (Q;<) (Defi-
nition 2.3.22), and that the generic superposition is (ordered) Ramsey by the results
described in Example 11.1.10. Clearly, PP-Def(C) is undecidable as well. The same
proof shows that EP-Def(C), EX-Def(C), and FO-Def(C) are undecidable as well. �

We mention that the application of the Henson digraphs in the proof of Propo-
sition 11.6.6 is quite close to the original motivation of Henson for introducing his
digraphs, namely proving the existence of an undecidable, ω-categorical theory in the
signature of digraphs [207].

11.6.3. Testing the existence of Pseudo-Siggers polymorphisms. An-
other application of the techniques from this chapter concern the existence of pseudo-
Siggers polymorphisms of finitely bounded homogeneous ordered Ramsey structures.
The same technique can be used to test the existence of polymorphisms satisfying a
given pseudo-minor condition.

Theorem 11.6.7. There is an algorithm that decides whether a given finitely
bounded homogeneous Ramsey structure B has a pseudo-Siggers polymorphism.

Proof. Recall that Lemma 10.1.14 implies that if B has a pseudo-Siggers poly-
morphism s then every operation in

S := {(x1, . . . , x6) 7→ γs(β(x1), . . . , β(x6)) | β, γ ∈ End(B)}

is a pseudo-Siggers operation, too. Let D := B[d] be the finite-signature structure
defined as in the proof of Lemma 3.5.4, which is Ramsey by Corollary 11.2.4. The
canonisation lemma (Lemma 11.4.9) applied to D implies that S contains a diagonally
canonical operation, i.e., an operation f such that for n ∈ N and t1, . . . , t6 ∈ Bn the
orbit of f(t1, . . . , t6) under Aut(B) only depends on the orbit of the tuple (t1, . . . , t6) ∈
B6n under Aut(B). Then Proposition 10.1.13 implies that B has a pseudo-Siggers
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polymorphism if and only if it has a pseudo-Siggers polymorphism which is diagonally
canonical with respect to B. Whether a function Bd → B is diagonally canonical
with respect to B and whether it is a polymorphism of B can be formulated by some
behaviour Λ, and so we may use the algorithm from Theorem 11.6.1 (where B is part
of the input) to test whether such an operation exists. �

See Section 14.2.11 for a series of related meta-problems whose decidability is
open.



CHAPTER 12

Temporal Constraint Satisfaction Problems

Martin Kutz, 2001

This chapter treats first-order reducts of (Q;<). When studying the constraint
satisfaction problems for such reducts, we think of the set of rational numbers Q
as time points, and therefore refer to such reducts as temporal constraint languages,
to their relations as temporal relations, and to the corresponding CSPs as temporal
CSPs. We have already discussed some temporal constraint languages earlier in this
text: for instance and/or precedence constraints from scheduling (Section 1.6.8), and
Ord-Horn constraints on time points (Section 1.6.9).

There are also several famous NP-complete temporal CSPs. For example the
Betweenness Problem [183], which has been introduced in Example 1.1.3 as a CSP
with domain Z, can also be formulated as CSP(Q; Betw) where

Betw := {(x, y, z) ∈ Q3 | (x < y < z) ∨ (z < y < x)}.

We have seen in Proposition 3.1.10 that this CSP is NP-hard. Similarly, the Cyclic
Ordering Problem [183] can be formulated as the CSP for (Q; Cycl) where

Cycl := {(x, y, z) | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)}

and is also NP-complete [181] (an NP-hardness proof using primitive positive inter-
pretations can be found in Section 12.2).

339
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A subclass of temporal CSPs called ordering CSPs has been introduced in [197].
An ordering CSP is a temporal CSP whose constraint language only contains injective
relations (i.e., the entries of all tuples of relations in the language are pairwise dis-
tinct; for example, CSP(Q;≤, 6=) is not an ordering CSP). Satisfiability thresholds for
random instances of ordering CSPs have been studied in [189], and approximability
of ordering CSPs has been studied in [216].

The class of temporal constraint languages is of fundamental importance for in-
finite domain constraint satisfaction, since CSPs for such languages appear as im-
portant special cases in several other classes of CSPs that have been studied, e.g.,
constraint languages about branching time, partially ordered time, spatial reasoning,
and set constraints [109,160,228]. Moreover, several polynomial-time solvable classes
of constraint languages on time intervals [161,256,297] can be solved by translation
into polynomial-time solvable temporal constraint languages (see Section 3.4).

The class of first-order reducts of (Q;<) plays a fundamental role in the theory of
infinite permutation groups: we mention the result of Cameron [127] that the highly
set-transitive closed subgroups of the full symmetric group on a countably infinite set
are precisely those permutation groups that are isomorphic (as permutation groups)
to the automorphism groups of first-order reducts of (Q;<). The structure (Q;<) is
also of fundamental importance in model theory. We mention for example the recent
result of Pierre Simon [340] that an ω-categorical NIP structure B is unstable if and
only if (Q;<) has a first-order interpretation in B.

In this chapter we prove a complete classification of the computational complexity
of CSP(B) for temporal constraint languages B. The classification confirms the gen-
eral infinite-domain tractability conjecture for first-order reducts of finitely bounded
homogeneous structures (Conjecture 3.7.1 and Conjecture 4.5.1).

Theorem 12.0.1. Let B be a structure with a first-order definition in (Q;<).
Then exactly one of the following two cases applies.

(1) B has an at most ternary weak near-unanimity polymorphism modulo endo-
morphisms. In this case, CSP(B′) is in P for every finite-signature reduct
B′ of B.

(2) All finite structures have a primitive positive interpretation with parameters
in B. In this case, B has a finite-signature reduct B′ such that CSP(B′) is
NP-hard by Corollary 3.1.6.

This classification is a slight strengthening of the statement of the infinite-domain
tractability conjecture, in two respects:

• in item (2), instead of primitive positive interpretability with parameters
in the model-complete core of B we directly get primitive positive inter-
pretability with parameters in B.
• instead of a pseudo-Siggers operation, we even get an at most ternary pseudo

weak near-unanimity operation.

On the other hand, we mention that the pseudo weak near-unanimity operations that
describe the polynomial-time tractable cases cannot be chosen to be canonical with
respect to (Q;<). For the same reason, the polynomial-time algorithms in this section
cannot be obtained by the reduction to finite-domain CSPs from Section 10.5. Our
proof is based on the universal-algebraic approach and Ramsey theory as described
in Chapter 6 and Chapter 11. This chapter contains and extends results from [59,
73,74,93].

Notation. All clones considered in this chapter contain all automorphisms of
(Q;<); hence, for f, g ∈ OQ say that f locally generates g if g is in the local closure
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of 〈Aut(Q;<) ∪ {f}〉. Similarly, if S ⊆ OQ we say that S locally generates g if g is in
the local closure of 〈Aut(Q;<) ∪ S〉.

Let Q+ denote the set of all positive rational numbers, and let Q−0 denote Q\Q+.
It will be convenient to use the notation U < V if U, V ⊆ Q are such that u < v for
all u ∈ U and v ∈ V . Likewise, if u ∈ U we use the notation u < V if u < v for all
v ∈ V . The notation U < v is defined analogously.

The unary operation − is defined as −(x) := −x in the usual sense. Note that if
f : Q → Q is canonical with respect to (Q;<) then f must have the same behaviour
as −, as idQ, or as a constant map. This holds because (Q;<) is homogeneous over
a binary signature; hence, the canonical functions are determined by their 2-type
conditions, and only finitely many different behaviours need to be checked. For an
introduction to canonical functions, see Section 11.4.4.

Definition 12.0.2. Let f be a k-ary operation on Q. Then the operation given
by −f(−x1, . . . ,−xk) is called the dual of f .

Note that if f preserves an m-ary relation R, then the dual of f preserves the
relation −R defined as

{(−a1, . . . ,−am) | (a1, . . . , am) ∈ R}.
Clearly, CSP(Q;R1, . . . , Rk) and CSP(Q;−R1, . . . ,−Rk) are exactly the same com-
putational problem.

12.1. Endomorphisms and Cameron’s Theorem

Cameron [127] classified temporal constraint languages up to first-order interde-
finability. In this section we present a refinement of this result, Theorem 12.1.7, which
provides a classification of the model-complete cores of temporal constraint languages,
up to interdefinability (and isomorphism). Our proof is based on canonical functions
and the tools from Chapter 11. We follow a bottom-up strategy and use canonical
functions with respect to expansions of (Q;<) by constants. The same strategy has
been used successfully to classify the first-order reducts of

• the random graph [94], rederiving a result of Simon Thomas [348];
• the countable universal homogeneous poset [306] (Example 2.3.11);
• the expansion of the Henson graphs by a constant [316];
• the countable universal homogeneous ordered graph [98];
• the random permutation [273] (Example 2.3.23);
• the countable universal homogeneous binary branching C-relation [67] (Sec-

tion 5.1.2);
• the countable model of the model companion theory of the theory of semi-

linear orders [53] (Section 5.2.2);
• the Henson digraphs [7] (Example 2.3.12).

For x1, . . . , xn ∈ Q write −−−−−→x1 · · ·xn if x1 < · · · < xn.

Theorem 12.1.1 (Relational version of Cameron’s theorem; see e.g. [231]). Let
B be a first-order reduct of (Q;<). Then B is first-order interdefinable with exactly
one out of the following five homogeneous structures.

(1) The dense linear order (Q;<) itself,
(2) The structure (Q; Betw), where Betw is the ternary relation{

(x, y, z) ∈ Q3 | −−→xyz ∨ −−→zyx
}
,

(3) The structure (Q; Cycl), where Cycl is the ternary relation{
(x, y, z) | −−→xyz ∨ −−→yzx ∨ −−→zxy

}
,
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(4) The structure (Q; Sep), where Sep is the 4-ary relation{
(x1, y1, x2, y2) | −−−−−−→x1x2y1y2 ∨ −−−−−−→x1y2y1x2 ∨ −−−−−−→y1x2x1y2 ∨ −−−−−−→y1y2x1x2

∨ −−−−−−→x2x1y2y1 ∨ −−−−−−→x2y1y2x1 ∨ −−−−−−→y2x1x2y1 ∨ −−−−−−→y2y1x2x1

}
,

(5) The structure (Q; =).

The relation Sep is the so-called Separation Relation; note that Sep(x1, y1, x2, y2)
holds for elements x1, y1, x2, y2 ∈ Q iff all four points x1, y1, x2, y2 are distinct and
the smallest interval over Q containing x1, y1 properly overlaps with the smallest
interval containing x2, y2 (where properly overlaps means that the two intervals have
a non-empty intersection, but none of the intervals contains the other). Note that −
preserves Betw and Sep, but does not preserve < and Cycl.

We now define an important operation on Q. Let c be any irrational number,
and let e be any order-preserving bijection between (−∞, c) and (c,∞). Then the
operation � is defined by e(x) for x < c and by e−1(x) for x > c. Note that �
preserves Cycl and Sep, but does not preserve < and Betw. With this operations and
the observations above, Cameron’s theorem follows from the following.

Theorem 12.1.2 (Operational version of Camerons theorem; see e.g. [231]). Let
B be a temporal constraint language. Then exactly one of the following holds.

(1) Aut(B) = Aut(Q;<);

(2) Aut(B) = 〈Aut(Q;<) ∪ {−}〉;
(3) Aut(B) = 〈Aut(Q;<) ∪ {�}〉;
(4) Aut(B) = 〈Aut(Q;<) ∪ {−,�}〉;
(5) Aut(B) = Sym(Q).

Our bottom-up strategy starts with an analysis of first-order reducts B of (Q;<)
such that < is not existentially positively definable in B.

Proposition 12.1.3. Let B be a first-order reduct of (Q;<) such that the relation
< is not existentially positively definable in B. Then B is preserved by −, by �, or
by a constant operation.

Proof. Theorem 11.4.16 implies that there are s, t ∈ Q, e ∈ End(B) such that

• s < t and e(t) ≤ e(s);
• e is canonical with respect to

(
(Q;<, s, t), (Q;<)

)
.

If e is not injective then Lemma 4.4.6 implies that B has a constant endomorphism
and we are done; so we assume in the following that e is injective and in particular
that e(t) < e(s). Note that the substructure of (Q;<) induced on each of the three
infinite orbits O1, O2, O3 under Aut(Q;<, s, t) is an isomorphic copy of (Q;<). Also
note that the canonicity of the operation e with respect to

(
(Q;<, s, t), (Q;<)

)
implies

that the restriction of e to Oi for some i ∈ {1, 2, 3} is either order-preserving or order-
reversing. If e is order-reversing on Oi, then e interpolates − modulo Aut(Q;<) and
hence B is preserved by −. So we may suppose that e is order-preserving on each of
O1, O2, O3.

If i, j ∈ {1, 2, 3} are such that Oi < Oj and e(Oj) < e(Oi), then e interpolates �
modulo Aut(Q;<) and hence B is preserved by �. So we may assume that e(O1) <
e(O2) < e(O3), in which case the canonicity of e implies that e is order-preserving on
O1 ∪O2 ∪O3.

If the restriction of e to S := {x ∈ Q | s < x} were order-preserving and the
restriction of e to T := {x ∈ Q | x < t} were order-preserving, then we would
have e(s) < e(t), contrary to our assumptions. So suppose without loss of generality
that the restriction to S is not order-preserving. By canonicity e(t) < e(S \ {t}) or
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e(S \ {t}) < e(t). We only consider the first case since the second case can be treated
analogously.

Claim. � ∈ Aut(B). We use the fact that Aut(B) is closed in Sym(Q) and
verify that for every finite F ⊆ Q the operation e and the automorphisms of (Q;<)
generate an operation f such that f |F = �|F (here, local interpolation is not enough).
Let F = {u1, . . . , un} be such that u1 < · · · < un. Let c be the constant from the
definition of �. If ui > c for all i ∈ {1, . . . , n} then we can pick an automorphism of
(Q;<) whose restriction to F equals �|F . Otherwise, let i ∈ {1, . . . , n} be maximal
such that ui < c. Choose α1 ∈ Aut(Q;<) that maps F to S and max(F ) to t; such
an α1 exists by the homogeneity of (Q;<). Define F1 := e(α1(F )). Now suppose
inductively that Fj has already been defined for j ≥ 1. Choose αj+1 ∈ Aut(Q;<)
that maps Fj to S and max(Fj) to t. Let f ′ := e ◦ αn−i · · · e ◦ α1. Then

f ′(ui+1) < f ′(ui+2) < · · · < f ′(un) < f ′(u1) < f ′(u2) < · · · < f ′(ui)

and hence we find α ∈ Aut(Q;<) such that αf ′(uj) = �(uj) for all j ∈ {1, . . . , n}. �

Proposition 12.1.4. Let B be a first-order reduct of (Q;<) preserved by −.

Then End(B) = 〈Aut(B) ∪ {−}〉 or B is preserved by � or by a constant operation.

Proof. If End(B) 6= 〈Aut(B) ∪ {−}〉 then there exists an e ∈ End(B) and
t ∈ Bn for some n ∈ N such that e(t) lies in a different orbit than t and than
−(t) under Aut(Q;<). Again we may assume by Lemma 4.4.6 that e is injective.
Theorem 11.4.16 implies that we may assume that e is canonical with respect to(
(Q;<, t1, . . . , tn), (Q;<)

)
.

If for some i, j ∈ {1, . . . , n} we have Oi < Oj and e(Oj) < e(Oi) and e is order-
preserving on Oi or on Oj then one can show that B is preserved by � by a similar
argument as in the final paragraph of the proof of Proposition 12.1.3; so in this case we
are done. Similarly, we are done if for some i ∈ {1, . . . , n} there exists an infinite orbit
O under Aut(Q;<, t1, . . . , tn) such O is preserved by e and (O < ti and e(ti) < e(O))
or (ti < O and e(O) < e(ti)). We also also done if − ◦ e ∈ End(B) satisfies the
conditions above. Otherwise, one can conclude that e and − have the same behaviour
on all of Q, in contradiction to the assumption that e(t) lies in a different orbit than
t and than −(t). �

Proposition 12.1.5. Let B be a first-order reduct of (Q;<) preserved by �.

Then End(B) = 〈Aut(B) ∪ {�}〉 or B is preserved by − or by a constant operation.

Proof. If End(B) 6= 〈Aut(B) ∪ {�}〉 there exists an e ∈ End(B) and t ∈ Bn for
some n ∈ N such that e(t) lies in a different orbit than t and than �(t) under Aut(Q;<
). Again we may assume by Lemma 4.4.6 that e is injective. Theorem 11.4.16 implies
that we also may assume that e is canonical with respect to

(
(Q;<, t1, . . . , tn), (Q;<)

)
.

In the following, orbits always refer to the permutation group Aut(Q;<, t1, . . . , tn).
If for some i ∈ {1, . . . , n} there exists an infinite orbit O such that e is order-reversing
on O then e interpolates − modulo Aut(Q;<). Hence, B is preserved by − and we
are done. So we may assume that e preserves the order on each infinite orbit.

If for every i ∈ {1, . . . , n} and every infinite orbit O it holds that ti < O if and
only if e(ti) < e(O) then e(t) lies in the same orbit as t, contrary to our assumptions.
Otherwise, by composing e with � and automorphisms of (Q;<) we may assume
that there are i ∈ {1, . . . , n}, infinite orbits O1, O2 such that O1 < ti < O2 and
e(ti) < e(O1) < e(O2).

Claim. − ∈ Aut(B). We use that Aut(B) is closed in Sym(Q) and verify for

every finite F ⊆ Q there exists f ∈ 〈Aut(Q;<) ∪ {e}〉 such that f |F = −|F . Let
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{u1, . . . , un} = F be such that u1 < · · · < un. Choose α1 ∈ Aut(Q;<) that maps
F to O1 ∪ {ui} ∪ O2 such that α1(u2) = ui. Define e1 := e ◦ α1 and F1 := e1(F ).
Suppose inductively that ej and Fj has already been defined for j ≥ 1. Choose αj+1 ∈
Aut(Q;<) that maps Fj to S and ej(uj+1) to ui. Then en−1(u1) > en−1(u2) > · · · >
en−1(un) and hence we can find an α ∈ Aut(Q;<) such that α(en−1(uj)) = −(uj) for
all j ∈ {1, . . . , n}. �

The following proposition is the final (and most complex) step in our bottom-up
strategy where we ‘reach Sym(Q)’.

Proposition 12.1.6. Let B be a first-order reduct of (Q;<) preserved by {�,−}.
Then End(B) = 〈Aut(B) ∪ {�,−}〉 or B is preserved by Sym(Q) or by a constant.

Proof. If End(B) 6= 〈Aut(B) ∪ {�,−}〉 there exists an e ∈ End(B) and t ∈ Bn
for some n ∈ N such that e(t) lies in a different orbit than t, �(t), and −(t) with
respect to Aut(Q;<). Again we may assume by Lemma 4.4.6 that e is injective.
Theorem 11.4.16 implies that we may also assume that e is canonical with respect to(
(Q;<, t1, . . . , tn), (Q;<)

)
. Orbits will in the following be always with respect to the

permutation group Aut(Q;<, t1, . . . , tn).
To show that Aut(B) = Sym(Q) it suffices to show that for every finite F ⊆ Q

and every permutation of F there is an operation generated by Aut(Q) ∪ {e,−,�}
whose restriction to F coincides with that permutation, because Aut(B) is closed.
Since every permutation of a finite set is generated by transpositions, it suffices to
show this for a transposition of F , i.e., a permutation α such that there exist two
distinct elements u, v ∈ F with α(u) = v, α(v) = u, and α(w) = w for all other
w ∈ F . In each of the following three claims we verify this condition. We always
assume without loss of generality that u < v and use the following notation:

F1 := {x ∈ F | x < u}
F2 := {x ∈ F | u < x < v}
F3 := {x ∈ F | v < x}.

So we have F1 < u < F2 < v < F3.

Claim 1. If there are infinite orbits O1 and O2 such that e reverses the order on
O1 and preserves the order on O2 then Aut(B) = Sym(Q). By composing e with −,
automorphisms of (Q;<), and � we may suppose that O1 < O2 and e(O1) < e(O2).
Let β1 ∈ Aut(Q;<) be such that β1(F1 ∪ {u} ∪ F2) ⊆ O1 and β1({v} ∪ F3) ⊆ O2.
Setting e1 := e ◦ β1 we have

e1(F2) < e1(u) < e1(F1) < e1(v) < e1(F3).

We may choose β2 ∈ 〈Aut(Q;<) ∪ {�}〉 such that β2(F1 ∪ {v} ∪ F3) ⊆ O1 and
β1(F2 ∪ {u}) ⊆ O2. Setting e2 := − ◦ e ◦ β2 we have

e2(u) < e2(F2) < e2(F1) < e2(v) < e2(F3).

We may then choose β3 ∈ Aut(Q;<) such that β3({u} ∪ F2 ∪ F1) ⊆ O1 and β3({v} ∪
F3) ⊆ O2. Setting e3 := e ◦ β3 we have

e3(F1) < e3(v) < e3(F2) < e3(u) < e3(F3).

Moreover,

• F1 and F2 are reversed by e1, reversed by e2, and preserved by e3;
• F3 is preserved by e1, by e2, and by e3.
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So there exists γ ∈ Aut(Q;<) such that the restriction of γ ◦ e3 to F coincides with
the given transposition α.

The canonicity of e implies that e is either order-reversing on each infinite orbits,
or order-preserving on each infinite orbit. By composing e with − we therefore may
now assume that e is order-preserving on each infinite orbit.

Claim 2. If there are infinite orbits O1, O2, O3 such that O1 < O2 < O3 and
e(O2) < e(O1) < e(O3) then Aut(B) = Sym(Q). Let β1 ∈ Aut(Q;<) be such that
β1(F1) ⊆ O1, β1(u) ∈ O2, and β1(F2 ∪ {v} ∪ F3) ⊆ O3. Setting e1 := e ◦ β1 we have

e1(u) < e1(F1) < e1(F2) < e1(v) < e1(F3).

Let β2 ∈ Aut(Q;<) be such that β2(e1(u)) ⊆ O1, β2(e1(F1 ∪ F2)) ⊆ O2, and
β2(e1({v} ∪ F3)) ⊆ O3. Setting e2 := e ◦ β2 ◦ e1 we have

e2(F1) < e2(F2) < e2(u) < e2({v} ∪ F3).

Let β3 ∈ Aut(Q;<) be such that β3(e2(F1)) ⊆ O1, β3(e2(F2 ∪ {u})) ⊆ O2, and
β3(e2({v} ∪ F3)) ⊆ O3. Setting e3 := e ◦ β3 we have

e3(F2) < e3(u) < e3(F1) < e3(v) < e3(F3).

Let β4 ∈ Aut(Q;<) be such that β4(e3(F2 ∪ {u})) ⊆ O1, β4(e3(F1 ∪ {v})) ⊆ O2, and
β4(e3(F3)). Setting e4 := e ◦ β4 we have

e4(F1) < e4(v) < e4(F2) < e4(u) < e4(F3).

Moreover, e4 is order-preserving on each of F1, F2, F3, and hence we can find γ ∈
Aut(Q;<) such that the restriction of γ ◦ e4 to F equals the transposition α, which
finishes the proof of the claim.

By composing e with − if necessary, we may suppose that for any two distinct
infinite orbits O1 and O2 we have O1 < O2 if and only if e(O1) < e(O2).

Claim 3. If there are infinite orbits O1 and O2 and i ∈ {1, . . . , n} such that
O1 < ti < O2 and e(ti) < e(O1) < e(O2) or e(O1) < e(O2) < e(ti) then B is
preserved by Sym(Q). Note that 〈Aut(Q;<) ∪ {e,�}〉 contains an operation f such
that f(O2) < f(ti) < f(O1). Let β1 ∈ Aut(Q;<) be such that β1(F1) ⊆ O1, β1(u) =
ti, and β1(F2 ∪ {v} ∪ F3) ⊆ O2. Setting f1 := f ◦ β1 we have

f1(F2) < f1(v) < f1(F3) < f1(u) < f1(F1).

Let β2 ∈ Aut(Q;<) be such that β2(F2) ⊆ O1, β2(v) = ti, and β2(F3∪{u}∪F1) ⊆ O2.
Setting f2 := f ◦ β2 we have

f2(F3) < f2(u) < f2(F1) < f2(v) < f2(F2).

Let β3 ∈ Aut(Q;<) be such that β3(F3) ⊆ O1, β3(u) = ti, β3(F1 ∪ {v} ∪ F2) ⊆ O2.
Setting f3 := f ◦ β3 be have

f3(F1) < f3(v) < f3(F2) < f3(u) < f3(F3).

Since f3 is order-preserving on each of F1, F2, F3 we can find γ ∈ Aut(Q;<) such that
the restriction of γ ◦ f3 to F equals the transposition α, which finishes the proof of
the claim.

Finally we argue that the assumptions from Claim 3 must apply: otherwise, for
all infinite orbits O1 and O2 and i ∈ {1, . . . , n} such that O1 < ti < O2 we have
e(O1) < e(ti) < e(O2), and hence e(t) lies in the same orbit as t, contradicting our
assumptions. �

Note that the following theorem immediately implies Theorem 12.1.2 and hence
also implies Cameron’s theorem.
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Theorem 12.1.7. Let B be a first-order reduct of (Q;<). Then exactly one of
the following cases applies.

(1) B has a constant endomorphism;
(2) End(B) = End(Q;<);

(3) End(B) = 〈Aut(Q;<) ∪ {−}〉;
(4) End(B) = 〈Aut(Q;<) ∪ {�}〉;
(5) End(B) = 〈Aut(Q;<) ∪ {−,�}〉;
(6) End(B) equals the set of all injective unary operations.

Proof. The result is an immediate consequence of the Propositions 12.1.3, 12.1.4,
12.1.5, and 12.1.6.

We now present an alternative proof based on Cameron’s theorem. First note
that all the cases are indeed disjoint: a constant endomorphism does not preserve <,
and cannot be generated by a set of injective unary operations; this shows that the
first case is distinct from all others. Disjointness of the remaining cases follows from
Theorem 12.1.2. If B has a non-injective endomorphism, then Corollary 6.1.27 shows
that there is also a constant endomorphism. Otherwise all endomorphisms of B are
injective. We show that then all endomorphisms e of B are locally invertible: for any
a1, . . . , al ∈ Q there exists a self-embedding f of B into B such that f(e(ai)) = ai
for all i ∈ {1, . . . , l}. Because e is injective, there is an α ∈ Aut(Q;<) such that
αe({a1, . . . , al}) = {a1, . . . , al}. Then (αe)l!, i.e., the composition of (αe) . . . (αe)
with l-factorial many terms of the form (αe), maps ai to itself for all 1 ≤ i ≤ l. Then
(αe)l!−1α is also an endomorphism of B, and we have

(
(αe)l!−1α

)
(e(a1), . . . , e(al)) =

(αe)l!(a1, . . . , al) = (a1, . . . , al). This proves that e is locally invertible.
Theorem 4.5.1 (6) ⇒ (5) shows that the automorphisms of B lie dense in the

endomorphisms of B. The claim of the statement then follows directly from Theo-
rem 12.1.2. �

Note that Theorem 12.1.7 can be understood as a classification of the model-
complete cores of first-order reducts B of (Q;<), considered up to first-order inter-
definability and isomorphism: in case (1), the model-complete core of B has just one
element, and in all other cases, B is already a model-complete core.

The fact that this classification can be derived from a classification for first-order
reducts of B (Cameron’s theorem) is quite particular for (Q;<); we make essential
use of high set-transitivity of Aut(Q;<) in our proof. Already for the Random graph,
where a similar classification of the model-complete cores of the first-order reducts is
known [94], it is no longer clear how to obtain this result from a classification of the
first-order reducts of the random graph, proved much earlier by Simon Thomas [348].

12.2. Hard Temporal CSPs

In this section we show for certain fundamental first-order reducts of (Q;<) that
they can interpret all finite structures with parameters; it follows that their CSP is
NP-complete. We have already mentioned in the introduction that the Betweenness
and the Cyclic Ordering Problem in [183] can be formulated as temporal CSPs, and
that these problems are NP-complete. The corresponding relations Betw and Cycl
re-appeared in Cameron’s theorem (Theorem 12.1.1). Another important relation for
our classification is the relation T3 from Definition 3.1.8 (also see Example 9.6.3). In
fact, if B is (Q;R) for one of the relations R mentioned above, then we give primitive
positive interpretations of ({0, 1}; 1IN3) with finitely many constants in B. Thus,
hardness of temporal CSPs can always be shown with Proposition 3.1.7. We have
already seen this for Betw and T3 and complete this here by showing it for Cycl and
Sep. We thank Trung Van Pham for pointing out a simpler proof for Cycl than our
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original proof, which was inspired by the NP-hardness proof of [181] for the ‘Cyclic
ordering problem’ (see [183]).

Theorem 12.2.1. The structure (Q;<,Betw) has a primitive positive interpreta-
tion in (Q; Cycl, 0, 1). The structure ({0, 1}; 1IN3) has a primitive positive interpre-
tation with parameters in (Q; Cycl), and CSP(Q; Cycl) is NP-hard.

Proof. Our interpretation I of (Q;<,Betw) in (Q; Cycl, 0, 1) is 1-dimensional.
The domain formula >I(x) is Cycl(0, x, 1), and defines the open interval (−1, 1) ⊆ Q.
The coordinate map is any isomorphism between (Q;<) and the substructure induced
by these numbers. The interpreting relation for x < y is Cycl(0, x, y). It is easy
to verify that the relation Cycl is not preserved by any of the relations listed in
Lemma 12.6.2. Hence, Betw has a primitive positive definition in (Q; Cycl, <), which
is the interpreting formula for Betw in the interpretation.

Since (Q; Betw) can in turn interpret primitively positively ({0, 1}; 1IN3) with
parameters by Proposition 3.1.10, the desired interpretation can be obtained by com-
posing interpretations (Remark 3.1.5). We can then apply Proposition 3.1.7, and the
NP-hardness of CSP(Q; Cycl) follows from the NP-hardness of ({0, 1}; 1IN3). �

Another relation that appeared in Theorem 12.1.1 is the separation relation Sep.
The corresponding CSP is again NP-complete.

Proposition 12.2.2. There is a primitive positive interpretation of (Q; Betw) in
(Q; Sep,−1, 1, 2), and therefore also a primitive positive interpretation of ({0, 1}; 1IN3)
in (Q; Sep) with parameters. The problem CSP(Q; Sep) is NP-hard.

Proof. Our interpretation I of (Q; Betw) in (Q; Sep,−1, 1, 2) is 1-dimensional.
The domain formula >I(x) is Sep(−1, 1, x, 2), and defines the open interval (−1, 1) ⊆
Q. The coordinate map is any isomorphism between (Q;<) and the substructure of
(Q;<) induced on these numbers. Then the formula Sep(x, z, y, 1) interprets Betw:
x and y must satisfy >I , and so −1 < x, y < 1. Therefore,

Betw(I(x), I(y), I(z))⇔ −1 < x < y < z < 1 or − 1 < z < y < x < 1

⇔ Sep(x, z, y, 1)

A primitive positive interpretation of ({0, 1}; 1IN3) can be obtained as follows.
The argument above shows that the structure (Q; Sep) can interpret primitively pos-
itively (Q; Betw, 0) with parameters, which in turn can interpret primitively posi-
tively ({0, 1}; 1IN3) by Proposition 3.1.10. Then the desired interpretation can be
obtained by composing interpretations (see Section 3.4). We can then apply Propo-
sition 3.1.7, and the NP-hardness of CSP(Q; Sep) follows from the NP-hardness of
({0, 1}; 1IN3). �

12.3. Definability of the Order

As an application of our classification of the model-complete cores of first-order
reducts of (Q;<) from Theorem 12.1.7 and the hardness results in Section 12.2 we
can simplify the complexity classification task for temporal CSPs to the classification
for first-order expansions of (Q;<).

Theorem 12.3.1. Let B be a temporal constraint language. Then it satisfies at
least one of the following:

(a) There is a primitive positive definition of Cycl, Betw, or Sep in B.
(b) Pol(B) contains a constant operation.
(c) Aut(B) contains all permutations of Q.
(d) There is a primitive positive definition of < in B.
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Proof. If there is a primitive positive definition of < in B, we are in case (d).
Otherwise, Proposition 12.1.7 shows that B is preserved by a constant, −, or �. For
each of these three operations we show the claim of the statement separately in the
following three paragraphs.

If B is preserved by a constant we are in case (b), so we assume in the following
that B is not preserved by a constant.

If B is preserved by −, the relation Betw consists of only one orbit of triples. If
there is a primitive positive definition of Betw in B we are in case (a). Otherwise,
Lemma 6.1.24 shows that there is an endomorphism that does not preserve Betw.
Proposition 12.1.7 then implies that B is also preserved by �. Thus, the relation
Sep consists of only one orbit of 4-tuples. Again, either Sep has a primitive positive
definition, and we are in case (a), or there is an endomorphism that does not preserve
Sep. Proposition 12.1.7 now shows that B is preserved by all unary injections and
we are in case (c).

If B is preserved by �, then the relation Cycl consists of only one orbit of triples.
If Cycl has a pp definition in B, we are in case (a). Otherwise, Lemma 6.1.24 shows
that there is an endomorphism that does not preserve Cycl. Proposition 12.1.7 then
shows that B is also preserved by −. But the statement of the lemma has already been
shown in the case that B is preserved by both − and � in the previous paragraph,
so we are done. �

In case (a), there is a finite-signature first-order reduct B′ of B such that CSP(B′)
is NP-hard, as we have seen in Section 12.2. In case (b), for all finite-signature first-
order reducts B′ of B the problem CSP(B) is trivially in P (see Proposition 1.1.12).
In case (c) B is an equality constraint language and the complexity of the respective
CSPs has been classified in Chapter 7. In the following, we therefore study only those
temporal constraint languages where < is primitively positively definable.

12.4. Lex-closed Constraints

An important class of temporal constraint languages are the languages preserved
by the operation lex, introduced in Section 11.4.4. Recall that lex is a binary injective
operation on Q such that lex(a, b) < lex(a′, b′) if either a < a′, or a = a′ and b < b′.
Note that lex is canonical with respect to Aut(Q;<) and that the conditions above
completely describe the behaviour of lex. It follows from Lemma 11.4.12 that all
operations locally generate the same clone. We also write

• lexy,x for the operation (x, y) 7→ lex(y, x),
• lexy,−x for the operation (x, y) 7→ lex(y,−x),
• lexx,−y for the operation (x, y) 7→ lex(x,−y), and
• lexx,y for the operation (x, y) 7→ lex(x, y).

In diagrams for binary operations f as in Figure 12.1, we draw a directed edge
from (a, b) to (a′, b′) if f(a, b) < f(a′, b′). Unoriented lines in rows and columns of
picture for an operation f relate pairs of values that get the same value under f .

Figure 12.1. Illustrations of the six basic operations lexx,y, lexx,−y,
lexy,x, lexy,−x, π1, π2.
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A k-ary operation f : Qk → Q is dominated by the i-th argument if for all
a, b ∈ Qk it holds that f(a1, . . . , ak) ≤ f(b1, . . . , bk) if and only if ai ≤ bi. Ex-
amples of operations dominated by the first argument are π1, lexx,y, and lexx,−y, and
examples of operations dominated by the second argument are πy, lexy,x, lexy,−x. It
is easy to see that the relation Betw is preserved by lex, and more generally by all op-
erations that are dominated by one argument. Therefore, we are interested in further
restrictions of languages preserved by lex that imply polynomial-time tractability of
the corresponding CSPs.

12.4.1. The operations lex and ll. A large class of polynomial-time tractable
temporal CSPs has been introduced in [74]. The class is defined in terms of a binary
polymorphism, denoted by ll. We will see in Proposition 12.4.2 that this class contains
the class of Ord-Horn constraint languages (Section 1.6.9).

Definition 12.4.1. Let ll : Q2 → Q be such that ll(a, b) < ll(a′, b′) if

• a ≤ 0 and a < a′, or
• a ≤ 0 and a = a′ and b < b′, or
• a, a′ > 0 and b < b′, or
• a > 0 and b = b′ and a < a′.

All operations satisfying these conditions are by definition injective, and they all
generate the same clone. The function ll is not canonical with respect to (Q;<), but
it is canonical with respect to (Q;<, 0). Clearly, ll interpolates lex modulo Aut(Q;<).
The function ll has a dual that locally generates a different clone. For an illustration
of ll and its dual, see Figure 12.2.

xy xy

Figure 12.2. A visualization of ll (left) and dual-ll (right).

Proposition 12.4.2. All relations in Ord-Horn are preserved by ll and dual ll.

Proof. We give the argument for ll only; the argument for dual ll is analogous.
It suffices to show that every relation that can be defined by a formula φ of the form
(x1 = y1 ∧ · · · ∧ xk−1 = yk−1)→ xk O yk is preserved by ll, where O ∈ {=, <,≤, 6=}.
Let t1 and t2 be two 2k-tuples that satisfy φ. Consider a 2k-tuple t3 obtained by
applying ll componentwise to t1 and t2. Suppose first that there is an i ≤ k − 1 such
that one of the tuples does not satisfy xi = yi. Then xi = yi is not satisfied in t3
as well, by injectivity of ll, and therefore the tuple t3 satisfies φ. Now consider the
case that xi = yi holds for all i ≤ k − 1 in both tuples t1 and t2. Since t1 and t2
satisfy φ, the literal xkOyk holds in both t1 and t2. Because ll preserves all relations
in {=, <,≤, 6=}, the literal xkOyk holds in t3, and therefore t3 satisfies φ as well. �

Since the relation Rmin defined by (x > y) ∨ (x > z) (see Section 1.6.8) is
preserved by ll but not by dual ll, the class of ll-closed constraints is strictly larger
than Ord-Horn.
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12.4.2. Operations locally generating ll, dual-ll, or lex. In this section we
present conditions that imply that an operation locally generates ll, dual-ll, or lex.

Definition 12.4.3. Let f, g be from Q2 → Q. Then [f |g] denotes an arbitrary
operation from Q2 → Q with the following properties. For all x, x′, y, y′ ∈ Q,

• if x ≤ 0 and x′ > 0 then [f |g](x, y) < [f |g](x′, y′);
• [f |g] and f satisfy the same type conditions on Q−0 ×Q;
• [f |g] and g satisfy the same type conditions on Q+ ×Q.

For example, if f = lexx,y and g = lexy,x, then [f |g] and ll satisfy the same type
conditions.

Lemma 12.4.4. Let f, g ∈ {lexx,y, lexx,−y, lexy,x, lexy,−x, π1, π2}, and let f ′ (g′)
be lexx,y if f (g) is dominated by the first argument, and lexy,x otherwise. Then
{lex, [f |g]} locally generates [f ′|g′].

Proof. Let r, s ∈ Qk. Let α ∈ Aut(Q;<) be such that for each entry x of r
and for each entry y of s, the value of αlex(x, y) is negative if x ≤ 0, and positive
otherwise. We claim that

u := [f |g](αlex(r, s), lex(s, r))

lies in the same orbit as t := [f ′|g′](r, s). By the homogeneity of Aut(Q;<) it suffices
to show for i, j ∈ {1, . . . , k} that

ui ≤ uj if and only if ti ≤ tj . (43)

We can assume that ri ≤ rj by exchanging the name of i and j if necessary, and
distinguish three cases:

• ri ≤ 0 < rj . Then ti < tj by the definition of [f ′|g′]. Since for l ∈ {1, . . . , k}
the value of αlex(rl, sl) is positive if and only if rl > 0, we have ui < uj by
the definition of [f |g]. Thus, we have verified (43) in this case.
• rj ≤ 0. Note that f(lex(x, y), lex(y, x)) and f ′(x, y) have the same behavior.

Moreover, f(x, y) and f(α(x), y) have the same behaviour since f is canon-
ical with respect to (Q;<). Also, αlex(ri, si), αlex(rj , sj) < 0 and thus we
have the following equivalences.

ti ≤ tj iff f ′(ri, si) ≤ f ′(rj , sj)
iff f(lex(ri, si), lex(si, ri)) ≤ f(lex(rj , sj), lex(sj , rj))

iff f(αlex(ri, si), lex(si, ri)) ≤ f(αlex(rj , sj), lex(sj , rj))

iff ui ≤ uj
• 0 < rj . This case is analogous to the previous one and left to the reader.

Since r, s ∈ Qk were chosen arbitrarily, the claim implies that {lex, [f |g]} locally
generates [f ′|g′]. �

Lemma 12.4.5. For f, g ∈ {π2, lexy,x} the operation [f |g] locally generates [lexx,y|g].

In particular, for f = g = lexy,x the lemma shows that [f |g] generates ll. For
f = g = π2, the lemma shows that [f |g] generates [lexx,y|π2] and in particular lexx,y.
See Figure 12.3 for illustrations of those two cases.

Proof of Lemma 12.4.5. Let r, s ∈ Qk. Let l denote the number of non-
positive values in r. We take α1, . . . , αl from Aut(Q;<) such that αi maps exactly the
i smallest values in r to non-positive values. We define a sequence of tuples u1, . . . , ul
as follows: u1 = s, and for m ≥ 2

um := [f |g](αmr, um−1).
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xy y x

Figure 12.3. An illustration of the operation [π2|π2] (on the left)
and the operation [lexy,x|lexy,x] (on the right).

We claim that ul lies in the same orbit as t := [lexx,y|g](r, s). By the homogeneity of
(Q;<) it is enough to show for all i, j ∈ {1, . . . , k} with ri ≤ rj that

(ul)i ≤ (ul)j if and only if ti ≤ tj . (44)

We distinguish three cases:

• ri = rj ≤ 0. Since αmri = αmrj for all m ≤ l, we have (ul)i ≤ (ul)j if and
only if (u1)I ≤ (u1)j . Since u1 = s and ri ≤ 0, and as f is dominated by
the second argument, (u1)i ≤ (u1)j if and only if ti ≤ tj , which proves (44).
• ri < rj , ri ≤ 0. Let m ∈ l be such that αmri ≤ 0 and αmrj > 0. By

definition of [f |g] we see that (um)i < (um)j . Because αmri < αmrj , and
because [f |g] preserves <, by induction on n ≥ m we have that (un)i <
(un)j . In particular, (ul)i < (ul)j . On the other hand, ti < tj by definition
of lexx,y and [lexx,y|g], and so (44) also holds in this case.
• ri > 0. Observe that by the choice of l we have αmri > 0 for all m ≤ l.

Thus (44) holds, because both [f |g], [lexx,y|g], and g satisfy the same type
conditions on Q+ ×Q.

Since r, s ∈ Qk were chosen arbitrarily the claim implies that [f |g] locally generates
[lexx,y|g]. �

12.5. Shuffle-closed Constraints

Another important subclass of the class of all temporal constraint languages is
the class of languages that only contain shuffle-closed temporal relations. As we
will see, there are shuffle-closed temporal relations giving rise to NP-complete CSPs.
However, in this section we present three additional restrictions that imply that the
corresponding CSPs can be solved in polynomial time.

12.5.1. Shuffle closure. We define shuffle closure, and show how shuffle closure
can also be described by a certain binary operation on Q.

Definition 12.5.1. R ⊆ Qk is called shuffle-closed iff for all tuples r, s ∈ R and
every l ∈ {1, . . . , k} there is a tuple t ∈ R such that for all i, j ∈ {1, . . . , k} we have
ti ≤ tj if and only if

• ri ≤ rl and ri ≤ rj , or
• rl < ri, rl < rj , and si ≤ sj .

Let pp be an arbitrary binary operation on Q such that pp(a, b) ≤ pp(a′, b′) iff
one of the following cases applies:

• a ≤ 0 and a ≤ a′, or
• 0 < a, 0 < a′, and b ≤ b′.
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xy xy

Figure 12.4. A visualisation of pp (left) and dual-pp (right).

Clearly, such an operation exists. For an illustration, see the left diagram in Fig-
ure 12.4. The right diagram of Figure 12.4 is an illustration of the dual-pp operation.
The name of the operation pp is derived from the word ‘projection-projection’, since
the operation satisfies the same type conditions as the projection to the second ar-
gument if the first argument is positive, and satisfies the same type conditions as the
projection to the first argument otherwise.

Proposition 12.5.2. Let R ⊆ Qk be a temporal relation. Then R is shuffle-closed
if and only if it is preserved by pp.

Proof. Let r, s ∈ R. We first suppose that R is shuffle-closed and prove that
t := pp(r, s) ∈ R. If r only contains positive values, then there clearly exists α ∈
Aut(Q;<) such that t = αs, and since R is preserved by Aut(Q;<) we are done.
Otherwise, let l ∈ {1, . . . , k} be such that rl is the largest non-positive entry in r.
Since R is shuffle-closed, there exists t′ ∈ R such that t′i ≤ t′j iff (ri ≤ rl and ri ≤ rj)
or (rl < ri, rl < rj , and si ≤ sj) for all i, j ∈ {1, . . . , k}. By the definition of pp,
and the choice of l, the tuple t satisfies the same property, t ∈ R follows from the
homogeneity of Aut(Q;<).

For the opposite direction, we assume that R is preserved by pp, and have to
show shuffle closure of R. Let l ∈ {1, . . . , k}. Choose γ ∈ Aut(Q;<) such that γ
maps rl to 0. Then t = pp(γr, s) is a tuple that satisfies the conditions specified in
the definition of shuffle-closure. �

Due to Proposition 12.5.2, we use the phrase ‘B is shuffle-closed’ interchangeably
with ‘B is preserved by pp’ . The following lemma states an important property of
shuffle-closed languages that will be used several times in the next sections.

Lemma 12.5.3. Let t1, . . . , tl be tuples from a k-ary shuffle-closed relation R, and

let M1, . . . ,Ml ⊂ [k] be disjoint sets of indices such that
⋃l
i=1Mi = {1, . . . , k} and

such that for all i, j ∈ [l] with i < j and for all i′ ∈ Mi, j
′ ∈ Mj it holds that

ti[i
′] < ti[j

′]. Then there is a tuple t ∈ R such that

• t[i′] < t[j′] for all i, j ∈ {1, . . . , l} with i < j and for all i′ ∈Mi, j
′ ∈Mj;

• t[i′] ≤ t[i′′] iff ti[i
′] ≤ ti[i′′] for all i ∈ {1, . . . , l} and all i′, i′′ ∈Mi.

Proof. Let β1, . . . , βl−1 ∈ Aut(Q;<) be such that βi maps max{ti[i′] | i′ ∈Mi}
to 0. We set

t := pp(β1t1,pp(β2t2, . . . ,pp(βl−1tl−1, tl) . . . )).

The tuple t clearly belongs to R.
We prove by induction on l that t satisfies the other conditions of the lemma.

Observe that β1 maps all the entries of t1 at M1 to non-positive values. Thus for
l = 2, it is easy to check from the properties of pp that for each i ∈ M1 and i′ ∈ M2
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we have t[i] < t[i′] as required by the statement of the lemma. Also the second
condition is immediate. For l > 2 let t′ be defined by

t′ := pp(β2t2,pp(β3t3, . . . ,pp(βl−1tl−1, tl) . . . )).

Then we have t = pp(β1t1, t
′). Now we apply the same argument as for l = 2. Because

the order on {1, . . . , k} \M1 is preserved by the application of pp, we know that the
conditions are satisfied for the sets M2, . . . ,Ml. The argument also shows that the
entries at M1 are smaller than the entries at {1, . . . , k} \M1 and that their order is
the same as in t1. �

We give a simple criterion for showing that certain operations generate pp; the
proof is immediate from the definitions.

Lemma 12.5.4. Let f ∈ Pol(2)(Q;<) be such that for every finite F ⊆ Q and
p ∈ F there exist α, β, γ, δ ∈ Aut(Q;<) such that f(γx, δy) = αx for all x, y ∈ F with
x ≤ p, and f(γx, δy) = βy for all x, y ∈ F with x > p. Then f interpolates pp modulo
Aut(Q;<). In particular, f locally generates pp.

It is easy to verify that the relation T3 (Definition 3.1.8) is shuffle-closed. Propo-
sition 3.1.9 shows that CSP(Q;T3) is NP-complete, and thus the property of shuffle-
closure is not strong enough to guarantee tractability.

12.5.2. Min-union closure. This section introduces and studies a stronger
property than shuffle-closure, namely preservation under the binary operation min
that maps two values x and y to the smaller of the two values; see Figure 12.5 for an
illustration of the operation min.

For constraint languages over a finite domain, min- and max-closed relations
were studied in [225]. An equivalent clausal description of such constraints is known;
however, the equivalence only holds for finite domains. The tractability of the CSP
where the constraint language has such a clausal description has also been shown for
infinite domains [141]. But the algorithm presented in [141] cannot be applied to all
min-closed constraint languages over an infinite domain; it is already not clear how
to adapt their approach to deal with the relation Rmin

< = {(x, y, z) | y < x ∨ z < x}
which is preserved by min. We give another example of a relation that is preserved
by min.

Example 12.5.5. The relation U defined below is preserved by min.

U :=
{

(x, y, z) ∈ Q3 | (x = y ∧ y < z)

∨ (x = z ∧ z < y)

∨ (x = y ∧ y = z)
}

4

In Section 12.8.3 we describe an algorithm that efficiently solves the CSP for
temporal constraint languages that are preserved by min; a fundamentally different
algorithm can be found in [79].

Definition 12.5.6. Let t ∈ Qk. The i-th entry in t ∈ Qk is called minimal if
ti ≤ tj for every j ∈ [k]. The min-set of t is the set M(t) of all indices with minimal
entries, i.e.,

M(t) := {i ∈ [k] | ti ≤ tj for every j ∈ [k]}.

Definition 12.5.7. A relation R ⊆ Qk is called min-union closed if for all r, s ∈ R
there exists t ∈ R such that M(t) = M(r) ∪M(s).

Min-union closure of a relation is linked to the existence of certain polymorphisms.
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Figure 12.5. Illustration of the operation min.

Definition 12.5.8. We say that f ∈ Pol(2)(Q;<) provides min-union closure if
f(0, 0) = f(0, x) = f(x, 0) for all positive x ∈ Q.

The operation min is an example of an operation providing min-union closure.
The following lemma connects Definition 12.5.7 and Definition 12.5.8.

Lemma 12.5.9. Let R be a temporal relation preserved by an operation f providing
min-union closure. Then R is min-union closed.

Proof. Let t1, t2 ∈ R and let a1 and a2 be the minimal values among the entries
of t1 and t2, respectively. Then there are α1, α2 ∈ Aut(Q;<) such that α1a1 =
α2a2 = 0. Observe that in the tuple t3 = f(α1t1, α2t2) all entries at indices from
M(t1)∪M(t2) have the same value. Since f preserves < this value is strictly smaller
than the values at all other entries in t3. Hence, M(t3) = M(t1) ∪M(t2). �

The following proposition implies that {f, pp} generates min for every operation
f that provides min-union closure.

Proposition 12.5.10. A temporal relation R is preserved by pp and an operation
providing min-union closure if and only if R is preserved by min.

Proof. Clearly, min provides min-union closure. Also observe that min satisfies
the conditions of Lemma 12.5.4 and thus locally generates pp.

For the opposite direction, suppose that R is k-ary and preserved by pp and an
operation f providing min-union closure. We show that for any two tuples r, s ∈ R
the tuple t = min(r, s) is in R as well. Let l be the number of distinct values in t and
v1 < v2 < · · · < vl be these values. We define Mi for i ∈ {1, . . . , l} to be the set of
indices of t with the i-th lowest value, i.e., Mi = {j ∈ {1, . . . , k} | tj = vi}.

Now let α1, . . . , αl ∈ Aut(Q;<) be such that αivi = 0. Using these automor-
phisms we define the tuples s1, . . . , sl by ui := f(αir, αis). Clearly, these tuples
belong to R. It also holds that ui is constant at Mi because for each j ∈Mi at least
one of the entries rj , sj is equal to vi (the other one can be only greater) which is
subsequently mapped to 0 by αi and f maps all such pairs to the same value. Fur-
thermore, for each j′ ∈ Mi′ for i < i′ ≤ l we have that uij′ is greater than the value

of ui at Mi, because min(rj′ , sj′) = vi′ is greater than vi and f preserves <.
Now we can apply Lemma 12.5.3 to u1, . . . , ul and M1, . . . ,Ml. The lemma gives

us some tuple u ∈ R which is constant at each set Mi for i ∈ {1, . . . , l} and such that
for each i < j ≤ l the value of u at Mi is lower than the value of u at Mj . Thus u
has the same order of entries as t which shows that t ∈ R as well. �

12.5.3. Min-intersection closure. In this section, we study a different restric-
tion of shuffle-closed constraint languages.

Definition 12.5.11. A relation R ⊆ Qk is called min-intersection closed if for all
r, s ∈ R, if M(r)∩M(s) 6= ∅, then there exists t ∈ R such that M(t) = M(r)∩M(s).
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Definition 12.5.12. We say that f ∈ Pol(2)(Q;<) provides min-intersection
closure if f(0, 0) < f(0, x) and f(0, 0) < f(x, 0) for all positive x ∈ Q.

Lemma 12.5.13. Let R be a temporal relation that is preserved by an operation f
that provides min-intersection closure. Then R is min-intersection closed.

Proof. Let r, s ∈ R be such that M(r) ∩M(s) 6= ∅; choose i ∈ M(r) ∩M(s).
Let α, β ∈ Aut(Q;<) be such that αri = βsi = 0. Consider the tuple t = f(αr, βs).
At the entries from M(r) the tuple αr equals 0 and likewise at the entries from M(s)
the tuple βs equals 0. Since f(0, 0) < f(0, x) and f(0, 0) < f(x, 0) for all positive
x it follows that in t all entries at M(r) ∩M(s) have a strictly smaller value than
all values at the symmetric difference M(r)∆M(s). As f preserves <, all entries at
M(r) ∩M(s) have a strictly smaller value than the entries not at M(r) ∪M(s). We
conclude that M(t) = M(r) ∩M(s). �

An important example of an operation that provides min-intersection closure is
given in the following definition.

Definition 12.5.14. The operation mi: Q2 → Q is defined by

mi(x, y) :=


a(x) if x < y

b(x) if x = y

c(y) if x > y

where a, b, c ∈ End(Q;<) are such that

b(x) < c(x) < a(x) < b(x+ ε)

for all x ∈ Q and all 0 < ε ∈ Q (see Figure 12.6).

Operations a, b, c with the properties described in Definition 12.5.14 can be con-
structed as follows. Let q1, q2, . . . be an enumeration of Q. Inductively assume that
we have already defined a, b, c on {q1, . . . , qn} such that b(qi) < c(qi) < a(qi) < b(qj)
whenever qi < qj , for i, j ∈ [n]. Clearly, this is possible for n = 1. If qn+1 > qi for all
i ∈ [n], let qj be the maximum of {q1, . . . , qn}, and define a(qj) < b(qn+1) < c(qn+1) <
a(qn+1). In the case that qn+1 < qi for all i ∈ [n] we proceed analogously. Otherwise,
let i, j ∈ [n] such that qi is the largest possible and qj is smallest possible such that
qi < qn+1 < qj . In this case, define a(qi) < b(qn+1) < c(qn+1) < a(qn+1) < b(qj). In
this way we define unary operations a, b, c on all of Q with the desired properties.

Figure 12.6. Illustration of the operation mi.

The operation mi will be of special importance, because the following proposi-
tion shows that pp together with any operation providing min-intersection closure
generates the operation mi.
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Proposition 12.5.15. A temporal relation R is preserved by pp and an operation
f providing min-intersection closure if and only if R is preserved by mi.

Proof. It is clear that mi provides min-intersection closure. Lemma 12.5.4 shows
that mi interpolates pp modulo Aut(Q;<).

For the opposite direction, suppose R is k-ary and preserved by pp and an oper-
ation f providing min-intersection closure. We show that for any two tuples r, s ∈ R
the tuple t = mi(r, s) is in R as well. Let a, b, c be the mappings from the definition
of the operation mi. Let v1 < · · · < vl be the minimal-length sequence of rational
numbers such that for each i′ ∈ [k] it holds that ti′ ∈

⋃
j∈[l]{a(vj), b(vj), c(vj)}. Let

Mi be {
i′ ∈ [k] | ti′ ∈ {a(vi), b(vi), c(vi)}

}
.

Observe that for each i′ ∈ Mi at least one of ri′ and si′ is equal to vi and the other
value is greater or equal to vi. Let Ma

i be the set of those i′ ∈Mi where vi = ri′ < si′ ,
M b
i the set of those i′ ∈ Mi where vi = ri′ = si′ , and M c

i the set of those i′ ∈ Mi

where vi = si′ < ri′ .
Let α1, . . . , αl ∈ Aut(Q;<) be such that αi maps vi to 0. Let β ∈ Aut(Q;<) be

such that βf(0, 0) = 0. For each i ∈ [l] we define

ui := pp
(
βf(αir, αis),pp(αis, r)

)
. (45)

We verify that for all i ∈ [l] the tuple ui is constant on each of the setsMa
i ,M

b
i ,M

c
i ,

the value at M b
i is lower than the value at M c

i which is lower than the value at Ma
i .

Furthermore, for each j ∈ [l], j > i, and each i′ ∈ Mi and j′ ∈ Mj it holds that
uii′ < uij′ . Having this, we can apply Lemma 12.5.3 and obtain a tuple from R with
the same ordering of entries as in t, which will prove the lemma.

Because αi maps vi to 0, the properties of pp imply that the tuple wi = pp(αis, r)
is constant at M b

i ∪M c
i and at Ma

i , and the value at the first set is smaller than the

value at the second set. Because the values of s at Ma
i ∪

⋃l
j=i+1Mj are greater than

vi and the values of r at
⋃l
j=i+1Mj are also greater than vi (recall that for each

j ∈ [l], j′ ∈ Mj it holds that min(rj′ , sj′) = vj) we conclude that the values of wi at⋃l
j=i+1Mj are greater than those at Mi. The application of f in (45) yields a tuple

which is constant on M b
i and its value there (which is consequently mapped to 0 by

β) is smaller than the values at Ma
i ∪M c

i ∪
⋃l
j=i+1Mj . Thus it is easy to verify from

the properties of pp that the outer application of pp in (45) yields a tuple with the
desired properties. �

A syntactic description of temporal relations preserved by mi can be found in
Section 12.7.4. An algorithm that solves temporal constraint languages preserved by
mi can be found in Section 12.8.4.

Example 12.5.16. We present a relation I ⊆ Q4 which is preserved by mi but
not by min.

I :=
{

(a, b, c, d) | (a = b ∧ b < c ∧ c = d)

∨ (a = b ∧ b > c ∧ c = d)

∨ (a = b ∧ b < c ∧ c < d)

∨ (a > b ∧ b > c ∧ c = d)
}

It can be verified that I is preserved by mi; this is tedious, but it is easy to write a
computer program that does the verification. Alternatively, note that

I(a, b, c, d)⇔
(
(a ≥ b) ∧ (b 6= c) ∧ (c ≤ d) ∧ (a = b ∨ b > c) ∧ (b < c ∨ c = d)

)
,
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Figure 12.7. Illustration of the operation mx.

and use the syntactic characterisation that we present in Section 12.7.4. The relation
I is not preserved by min because

min((0, 0, 1, 2), (2, 1, 0, 0)) = (0, 0, 0, 0) /∈ I
but (0, 0, 1, 2) ∈ I and (2, 1, 0, 0) ∈ I. 4

Example 12.5.17. The following ternary temporal relation U is preserved by min
(we omit the easy proof), but not preserved by mi.

U :=
{

(x, y, z) | (x = y ∧ y < z)

∨ (x = z ∧ z < y)

∨ (x = y ∧ y = z)
}

To see that U is not preserved by mi, note that the tuple mi((0, 0, 1), (0, 1, 0)) has
three distinct values and hence is not in U , but (0, 0, 1), (0, 1, 0) ∈ U . 4

12.5.4. Min-xor closure. We introduce the third and final closure condition
that is important when studying shuffle-closed temporal relations.

Definition 12.5.18. A relation R ⊆ Qk is called min-xor closed if for all t1, t2 ∈
R such that M(t1)∆M(t2) is non-empty there exists t3 ∈ R such that M(t3) =
M(t1)∆M(t2).

Definition 12.5.19. We say that f ∈ Pol(2)(Q;<) provides min-xor closure if
f(0, 0) > f(0, x) = f(y, 0) for all positive x, y ∈ Q.

For an example of a binary operation that provides min-xor closure, consider the
following binary operation, which we denote by mx.

mx(x, y) :=

{
a(min(x, y)) if x 6= y
b(x) if x = y

where a and b are unary operations that preserve < such that a(x) < b(x) < a(x+ ε)
for all x ∈ Q and all 0 < ε ∈ Q (see Figure 12.7). Similarly as in the definition of mi,
such operations a, b can be easily constructed. Note that the operation mx neither
preserves the relation I nor the relation U introduced in Section 12.5.3.

Lemma 12.5.20. Let R be a temporal relation that is preserved by an operation f
providing min-xor closure. Then R is min-xor closed.

Proof. Let r, s ∈ R and suppose that the symmetric difference M(t1)∆M(t2) is
non-empty. Let u and v be the minimal values of the entries of r and of s, respectively.
Then there are α, β ∈ Aut(Q;<) such that αu = 0 and βv = 0. Consider the tuple
t = f(αr, βs). Because αr is 0 for all entries at M(r), βs is 0 for all entries at M(s),
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and f(0, 0) > f(0, x) = f(y, 0) for all x, y > 0, it follows that all entries of t at
M(r) ∩M(s) have a strictly larger value than all entries at M(r)∆M(s), which all
have the same value. As f preserves <, all entries of t at M(r) ∩M(s) are smaller
than all entries not at M(r) ∪M(s). We conclude that M(t) = M(r)∆M(s). �

The following lemma implies that {f, pp} generates mx for any operation f that
provides min-xor closure.

Proposition 12.5.21. A temporal relation R is preserved by pp and an operation
f providing min-xor closure if and only if R is preserved by mx.

Proof. Clearly, mx provides min-xor closure. Lemma 12.5.4 shows that mx
locally generates pp.

For the opposite direction, suppose that R is k-ary and preserved by pp and an
operation f providing min-xor closure. We show that for any two tuples r, s ∈ R the
tuple t = mx(r, s) is in R as well. Let a, b be the mappings as in the definition of
the operation mx. Let v1 < · · · < vl be minimal set of rational numbers such that
ti ∈

⋃
j∈[l]{a(vj), b(vj)} for all i ∈ [k], and let Mi be the set of indices {i′ ∈ [k] | ti′ ∈

{a(vi), b(vi)}}. Observe that for each i′ ∈ Mi at least one of ri′ and si′ is equal to
vi and the other value is greater or equal to vi. Let Ma

i be the set of those i′ ∈ Mi

where ri′ 6= si′ and M b
i the set of those i′ ∈Mi where vi = ri′ = si′ .

Let α1, . . . , αl ∈ Aut(Q;<) be such that αi maps vi to 0. For each i ∈ [l] we
define ui := f(αir, αis). It is easy to see from the choice of αi and properties of f
that for each i ∈ [l] the tuple ui is constant at Ma

i ,M
b
i , and that the value at Ma

i is
lower than the value at M b

i . Furthermore, because f preserves <, because the values

of r at
⋃l
j=i+1Mj are greater than vi, and because the values of s at

⋃l
j=i+1Mj are

greater than vi, we see that for each j ∈ [l], j > i and each i′ ∈ Mi, j
′ ∈ Mj it holds

that uii′ < uij′ . Having this, we can apply Lemma 12.5.3 and obtain a tuple from R
with the same ordering of entries as in t, which proves the lemma. �

Example 12.5.22. An interesting example of a temporal relation that is preserved
by mx is the ternary relation X defined as follows.

X :=
{

(x, y, z) | (x = y ∧ y < z)

∨ (x = z ∧ z < y)

∨ (y = z ∧ y < x)
}

The relation X is neither preserved by min nor by mi: the tuples r := (0, 0, 1)
and s = (0, 1, 0) are in X, but min(r, s) = (0, 0, 0) /∈ R, and mi(r, s) has three distinct
entries and hence is not in X as well. 4

A syntactic description of the relations preserved by mx can be found in Sec-
tion 12.7.5, and an algorithm that solves constraint languages preserved by mx can
be found in Section 12.8.5.

12.5.5. Operations generating min, mi, and mx. As we have seen in Propo-
sition 3.1.9, if the relation T3 has a primitive positive definition in B, then CSP(B)
is NP-hard. In this section we show that if a temporal constraint language is shuffle-
closed and does not admit a primitive positive definition of T3, then it is preserved
by min, mi, or mx.

Lemma 12.5.23. Let f ∈ Pol(2)(Q;<) and u1, u2, v1, v2 ∈ Q be such that u1 < u2,
v1 < v2, and f(u1, v1) < f(u, v1) and f(u1, v1) < f(u1, v) for all u, v ∈ Q with u2 < u
and v2 < v. Then f locally generates an operation providing min-intersection closure.
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Proof. Let a ∈ End(Q;<) = Aut(Q;<) be such that a(u1) = 0 and u2 < a(Q+).
Let b ∈ End(Q;<) be such that b(v1) = 0 and v2 < b(Q+). Then the operation
(x, y) 7→ f(a(x), b(y)) provides min-union closure. �

Lemma 12.5.24. Let f ∈ Pol(2)(Q;<) and u1, u2, v1 ∈ Q be such that u1 < u2,
f(u2, v1) ≤ f(u1, v1), and for every u ∈ Q with u2 < u we have f(u2, v1) < f(u, v1).
Then f locally generates an operation providing min-intersection closure.

Proof. Note that for all u, v ∈ Q with u2 < u and v1 < v we have f(u2, v1) <
f(u, v1) and f(u2, v1) ≤ f(u1, v1) < f(u2, v) since f preserves <, so the statement
follows from Lemma 12.5.23. �

Lemma 12.5.25. Let f ∈ Pol(2)(Q;<) and u1, u2, v1, v2 ∈ Q be such that u1 < u2,
v1 < v2, and f(u1, v1) = f(u, v1) and f(u1, v1) = f(u1, v) for all u, v ∈ Q with
u1 ≤ u < u2 and v1 ≤ v < v2. Then f locally generates an operation providing
min-union closure.

Proof. Let a ∈ End(Q;<) be such that a(0) = u1 and a(Q+) < u2. Let
b ∈ End(Q;<) be such that b(0) = v1 and b(Q+) < v2. Then the operation (x, y) 7→
f(a(x), b(y)) provides min-union closure. �

Lemma 12.5.26. Let f ∈ Pol(2)(Q;<) and u1, u2, v1 ∈ Q be such that for all
u, v ∈ Q with u2 < u and v1 < v we have f(u, v1) < f(u1, v1) and f(u, v1) = f(u1, v).
Then f locally generates an operation providing min-xor closure.

Proof. Let a ∈ End(Q;<) be such that a(0) = u1 and u2 < a(Q+). Let
b ∈ Aut(Q;<) be such that b(0) = v1. Then the operation (x, y) 7→ f(a(x), b(y))
provides min-xor closure. �

Lemma 12.5.27. Let f ∈ Pol(2)(Q;<) and u1, u2, v1, v2 ∈ Q be such u1 < u2,
v1 < v2, and for all u, v ∈ Q with u2 < u and v2 < v we have f(u, v1) < f(u1, v1) and
f(u, v1) < f(u1, v1). Then f locally generates an operation providing min-intersection
closure.

Proof. Let a, b ∈ End(Q;<) be such that a(0) = u1, u2 < a(Q+), b(0) = v1,
and v2 < b(Q+). Note that (x, y) 7→ f(a(x), b(y)) satisfies the assumptions on f from
the statement so we may from now on assume that u1 = v1 = 0. Let c ∈ End(Q;<)
be such that c(Q) ⊆ Q+ and define

g(x, y) := f(c(f(x, y)), y).

It follows from the assumptions on f that for every x ∈ Q+ we have f(0, 0) > f(x, 0),
and hence

g(0, 0) = f(c(f(0, 0)), 0) < f(c(f(x, 0)), 0) = g(x, 0).

Moreover, for every y ∈ Q+ we have f(0, 0) < f(0, y), and as f preserves < we get

g(0, 0) = f(c(f(0, 0)), 0) < f(c(f(0, y)), y) = g(0, y)

showing that g provides min-intersection closure. �

Lemma 12.5.28. Suppose that f ∈ Pol(2)(Q;<) does not preserve ≤. Then f
locally generates an operation providing min-intersection or min-xor closure.

Proof. Without loss of generality we may assume that there are u1, u2, v1 ∈ Q
such that u1 < u2 and f(u2, v1) < f(u1, v1); otherwise, exchange f(x, y) by f(y, x).
By Theorem 11.4.17 we may suppose that the operation f is canonical with respect
to
(
((Q;<)(2), (u1, v1), (u2, v1)), (Q;<)

)
. First suppose that f(u2, v1) < f(u, v1) for

all u ∈ Q such that u2 < u. Then Lemma 12.5.24 implies that f locally generates an
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operation providing min-intersection closure. So by canonicity we may suppose that
f(u, v1) ≤ (u2, v1) for all u ∈ Q such that u2 < u. Also by canonicity, one of the
following cases must apply.

• f(u1, v) = f(u, v1) for all u, v ∈ Q such that v1 < v and u2 < u. Then
Lemma 12.5.26 implies that f locally generates an operation providing min-
xor closure.
• f(u1, v) < f(u, v1) for all u, v ∈ Q such that v1 < v and u2 < u. In this

case we can apply Lemma 12.5.27 and obtain that f locally generates an
operation providing min-intersection closure.
• f(u1, v) > f(u, v1) for all u, v ∈ Q such that v1 < v and u2 < u. In this

case we can apply Lemma 12.5.27 to (x, y) 7→ f(y, x) and again obtain that
f locally generates an operation providing min-intersection closure. �

Recall that the relation T3 was defined in Definition 3.1.8 to be

{(x, y, z) ∈ Q3 | (x = y < z) ∨ (x = z < y) } .

Lemma 12.5.29. Suppose that f ∈ Pol(2)(Q;<) does not preserve T3. Then f
locally generates an operation providing min-union, min-intersection, or min-xor clo-
sure.

Proof. If f does not preserve≤, then we are immediately done by Lemma 12.5.28.
So we assume in the following that f preserves ≤. As f preserves < and does not
preserve T3 we may assume without loss of generality (possibly after swapping argu-
ments) that there are x1, x2, y1, y2 ∈ Q such that x1 < x2, y1 < y2 and

t := (f(x1, y1), f(x2, y1), f(x1, y2)) 6∈ T3.

Because f preserves ≤ we have that f(x1, y1) ≤ f(x2, y1) and f(x1, y1) ≤ f(x1, y2).
Since t 6∈ T3, there are only two possibilities:

(1) t1 = t2 = t3. In this case Lemma 12.5.25 applied to u1 := x1, u2 := x2,
v1 := y1, and v2 := y2 shows that f locally generates an operation providing
min-union closure.

(2) t1 < t2 and t1 < t3. In this case Lemma 12.5.23 shows that f locally
generates an operation providing min-intersection closure. �

Corollary 12.5.30. Let B be a first-order expansion of (Q;<) preserved by pp
such that T3 is not primitively positively definable in B. Then B is preserved by min,
mi, or mx.

Proof. If T3 is not primitively positively definable, the by Lemma 6.1.24 there

exists an f ∈ Pol(2)(B) that does not preserve T3. Lemma 12.5.29 implies that
f locally generates an operation providing min-union, min-intersection, or min-xor
closure, and so the statement follows from Proposition 12.5.10, 12.5.15, or 12.5.21. �

12.6. The Fundamental Case Distinction

In this section we prove that every first-order expansion B of (Q;<) where Betw
is not primitively positively definable is preserved by pp, dual-pp, ll, or dual-ll.

Lemma 12.6.1. Let B be a first-order expansion of (Q;<) such that Betw is not
primitively positively definable in B. Then there exists a binary f ∈ Pol(B) and
r, s ∈ Betw such that f(r, s) has three distinct entries and f(r, s) 6∈ Betw.

Proof. If Betw is not primitively positively definable in B then Theorem 6.1.12
implies that there exists a polymorphism f of B that does not preserve Betw. We may
assume that f is binary because Betw consists of two orbits of triples under Aut(Q;<)
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(Lemma 6.1.24). Choose o, p ∈ Betw such that q := f(o, p) 6∈ Betw. Since f preserves
<, we can assume without loss of generality that o1 < o2 < o3 and p1 > p2 > p3. If q
has three distinct entries, then we are done. Otherwise we distinguish two cases:

(1) q1 = q2 = q3: in that case, choose r, s ∈ Q3 such that r1 < o1, r2 = o2,
and r3 = o3, and p2 < s1 < p1, s2 = p2, and s3 = p3. It is straightforward
to check that r1 < r2 < r3 and s1 > s2 > s3 and thus both triples belong
to Betw. Now, consider t := f(r, s). We have that t2 = q2, t3 = q3, and
t1 < q1 = t2 = t3 because f preserves <. Therefore t 6∈ Betw. Take r
instead of o, s instead of p and proceed with case (2).

(2) If exactly two entries in q have the same value, let i, j be their indices and let
k be the index of the entry with the unique value. We assume that qk > qi
(the other case is symmetric). It is straightforward to verify that there is
an entry in q such that making the value of this entry smaller would make
q injective and it would still not be in Betw. We can assume without loss of
generality that i is an index of such an entry. We choose r so that ri < oi,
rj = oj , rk = ok, and r1 < r2 < r3. We choose s such that si < pi, sj = pj ,
sk = pk, and s1 > s2 > s3.

Note that r, s ∈ Betw. The tuple t := f(r, s) satisfies ti < qi, tj = qj , and tk = qk.
By the choice of i we conclude that t is injective, t 6∈ Betw and we are done. �

We use Ramsey theory via Theorem 11.4.10 to prove the following.

Lemma 12.6.2. Let B be a first-order expansion of (Q;<) where Betw is not
primitively positively definable. Then B is preserved by ll, dual-ll, pp, or dual-pp.

Proof. If f does not preserve Betw and preserves <, then Lemma 12.6.1 as-
serts that there are r, s ∈ Betw such that t := f(r, s) 6∈ Betw and t is injec-
tive. As f preserves <, we can assume without loss of generality that r1 < r2 <
r3 and s1 > s2 > s3 (otherwise, we apply the argument to f(y, x)). By The-
orem 11.4.17 we may suppose that the operation f is canonical with respect to(
((Q;<)[2], (r1, s1), (r2, s2), (r3, s3)), (Q;<)

)
.

Note that either t1 > t2 < t3 or t1 < t2 > t3; see Figure 12.8 for an illustration.
In the first case, let

R1 := {x ∈ Q | r1 < x < r2}, S1 := {y ∈ Q | s3 < y < s2},
R2 := {x ∈ Q | r3 < x}, S2 := {y ∈ Q | s1 < y}.

In the second case, we choose

R1 := {x ∈ Q | r2 < x < r3}, S1 := {y ∈ Q | s2 < y < s1},
R2 := {x ∈ Q | x < r1}, S2 := {y ∈ Q | y < s3}.

and the proof will be similar. Since f preserves <, we have

f(R1, S1) < f(r2, s2) < f(r1, s1) < f(R1, S2)

and f(R1, S1) < f(r2, s2) < f(r3, s3) < f(R2, S1).

First suppose that f is dominated by the same argument on R1 × S1, R1 × S2, and
R2×S1. We can assume that f is dominated on these grids by the second argument;
otherwise we swap the arguments of f . Let g, h ∈ {lexy,x, lexy,−x, π2} be such that f
satisfies the same type conditions as g on R1 × S1 and the same type conditions as h
on R2 × S1. Then by the above observations f locally generates [g|h]. Moreover, we
show that f also generates lex.

• If g or h is lexx,y or lexy,x, then f clearly generates lex.
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Figure 12.8. Illustration for the proof of Lemma 12.6.2.

• If g or h is lexx,−y or lexy,−x, then f generates lex as well, because lex(x, y)
and lex(x,−lex(x,−y)) have the same behaviour.
• If g is π2 and h is π2, then f generates lex by Lemma 12.4.5.

Note that the operation [g|h] satisfies the conditions in Lemma 12.4.4, and hence
{lex, [g|h]} locally generates [lexy,x|lexy,x]. Lemma 12.4.5 implies that f locally gen-
erates ll.

Now we consider the case that f is dominated by different arguments on the grids
R1 × S1 and R1 × S2, or by different arguments on the grids R1 × S1 and R2 × S1.
We only consider the first case; the second case is symmetric under swapping the
arguments of f . Let g, h be from {lexx,y, lexx,−y, lexy,x, lexy,−x, π1, π2} such that f
satisfies the same type conditions as h on R1 × S1 and the same type conditions as g
on R2 × S1. Again, f locally generates [h|g]. If h is π2 and g is π1, then [h|g] has the
same behaviour as pp; hence f locally generates pp and we are done. Dually, if h is π1

and g is π2, then f locally generates dual-pp. In all other cases, either h or g is from
lexx,y, lexy,x, lexx,−y, or lexy,−x, and thus f locally generates lex as we have already
seen before. But then Lemma 12.4.4 shows that f locally generates ll or dual-ll. �

12.7. Syntactic Descriptions

A temporal formula is a quantifier-free formula that will be interpreted over
(Q;<). In this section we present syntactic characterisations of temporal relations
that are preserved by ll and by pp. The second characterisation will be refined to
characterisations of min-, mi-, and mx-closed relations. All of these characterisations
will be syntactical, i.e., we present a restricted class of temporal formulas that pre-
cisely define the respective relations over (Q;<). As a consequence, we also obtain
a better understanding of the clones locally generated by ll, pp, min, mi, and mx,
and their duals. This will be used in Section 12.9 to show that these clones satisfy
certain pseudo-minor conditions. We also prove that each of these clones C is finitely
related (Definition 6.1.2). The algorithms presented in the next section, however, can
be presented without knowing about the syntactic characterisations.

12.7.1. A syntactic description of ll-closed constraints. In this section
we present a family of syntactically restricted quantifier-free formulas over (Q;<)
such that the relations that are defined by these formulas are precisely the temporal
relations preserved by ll.
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Definition 12.7.1. A temporal formula is called ll-Horn if it is a conjunction of
ll-Horn clauses, which are formulas of the following form

(x1 = y1 ∧ · · · ∧ xk = yk)⇒ (z1 < z0 ∨ · · · ∨ zl < z0) , or

(x1 = y1 ∧ · · · ∧ xk = yk)⇒ (z1 < z0 ∨ · · · ∨ zl < z0 ∨ (z0 = z1 = · · · = zl))

where 0 ≤ k, l.

Note that k or l might be 0: if k = 0, we obtain a formula of the form z1 <
z0∨· · ·∨zl < z0 or (z1 < z0∨· · ·∨zl < z0∨(z0 = z1 = · · · = zl)), and if l = 0 we obtain
a disjunction of disequalities. Also note that the variables x1, . . . , xk, y1, . . . , yk, z0,
. . . , zl need not be pairwise distinct. On the other hand, the clause z1 < z2 ∨ z3 < z4

is an example of a formula that is not ll-Horn. Note that every Ord-Horn formula is
also ll-Horn. The following result is from [74], but Antoine Mottet found a mistake
in the proof presented there, and contributed ideas that lead to the proof presented
below, with further corrections by Martin Hils and Josia Pietsch.

Proposition 12.7.2. A temporal relation is preserved by ll if and only if it can
be defined by an ll-Horn formula.

Proof. The proof that every relation defined by an ll-Horn formula is ll-closed
is similar to the proof of Proposition 12.4.2. We just need to additionally check
that the relation defined by z1 < z0 ∨ · · · ∨ zl < z0 and the relation defined by
z1 < z0 ∨ · · · ∨ zl < z0 ∨ (z0 = · · · = zl) are preserved by ll. So let s and t be
two assignments that satisfy φ := z1 < z0 ∨ · · · ∨ zl < z0, and let r := ll(s, t). Let
i ∈ {1, . . . , l} be such that s(zi) = min(s(z1), . . . , s(zl)). Note that s(zi) < s(z0). Let
j ∈ {1, . . . , l} be such that t(zj) < t(z0).

• If s(zi) ≤ 0 then ll(s(zi), t(zi)) < ll(s(z0), s(z0)) since s(zi) < s(z0), and
hence r satisfies φ.

• If s(zi) > 0, then s(z0) > s(zi) > 0 and s(zj) > s(zi) > 0, and hence
ll(s(zj), t(zj)) < ll(s(z0), s(z0)) since t(zj) < t(z0), and hence r satisfies φ.

If s and t are satisfying assignments of z1 < z0 ∨ · · · ∨ zl < z0 ∨ (z0 = · · · = zl) where
one of the assignments satisfies the last clause, then the statement follows from the
fact that ll is injective and preserves ≤.

Let R be a temporal relation and let φ be a quantifier-free formula in CNF that
defines R over (Q;<). In this formula, we replace literals of the form ¬(y < x) by
x < y ∨ x = y, and we use x ≤ y as shortcut for those two literals. In the proof it
will be convenient to additionally allow that the expression on the right hand side of
the implication in an ll-Horn clause is of the form z0 = z1. This does not increase the
expressive power, because such clauses are equivalent to a conjunction of two ll-Horn
clauses. Finally, we write

min(z1, . . . , zl) < z0 as a shortcut for z1 < z0 ∨ · · · ∨ zl < z0

and min(z1, . . . , zl) ≤ z0 as a shortcut for z1 ≤ z0 ∨ · · · ∨ zl ≤ z0.

Moreover, if we use min(z1, . . . , zl) < z0 to specify literals from a clause, then z1, . . . , zl
are pairwise distinct variables, and l is chosen to be maximal with this property; i.e.,
if the clause contains a literal of the form z < z0, then the variable z must be one of
the variables from {z1, . . . , zl}. We describe four rewriting rules that yield a formula
ψ that also defines R over (Q;<) such that R is preserved by ll if and only if ψ is
ll-Horn.

(1) Suppose that φ contains a clause θ of the form

min(x1, . . . , xl) < y ∨min(u1, . . . , uk) < v ∨ θ′
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for distinct variables y and v. Let φ′ be the other clauses of φ and suppose
that

(φ′ ∧ ¬θ′ ∧min(x1, . . . , xl) < y) implies min(x1, . . . , xl, u1, . . . , uk) ≤ v
and (φ′ ∧ ¬θ′ ∧min(u1, . . . , uk) < v) implies min(x1, . . . , xl, u1, . . . , uk) ≤ y .

Then replace θ by

(min(x1, . . . , xl, u1, . . . , uk) ≤ v ∨ θ′) (46)

∧ (min(x1, . . . , xl, u1, . . . , uk) ≤ y ∨ θ′) (47)

∧
∧
i∈[k]

(ui 6= v ∨
∨

j∈[k]\{i}

uj < v ∨min(x1, . . . , xl) < y ∨ θ′) (48)

∧
∧
i∈[l]

(xi 6= y ∨
∨

j∈[l]\{i}

xj < y ∨min(u1, . . . , uk) < v ∨ θ′) . (49)

(2) Suppose that φ contains a clause θ of the form x < y∨u < v∨θ′ for distinct
variables y and v. Let φ′ be the other clauses of φ and suppose that

(φ′ ∧ ¬θ′ ∧ x < y) implies u ≤ v .

Then replace θ by

(u ≤ v ∨ θ′) ∧ (x < y ∨ u 6= v ∨ θ′).

(3) Suppose that θ is a clause of φ which is for some l > 1 of the form

x1 6= y1 ∨ · · · ∨ xk 6= yk ∨min(z1, . . . , zl) < z0 ∨ u = v.

Let φ′ be the other clauses of φ and suppose that

φ′ ∧ x1 = y1 ∧ · · · ∧ xk = yk ∧ z0 ≤ z1 ∧ · · · ∧ z0 ≤ zl ∧ u = v

implies that z0 = z1 = · · · = zl. Then replace θ by

(x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ z0 6= z1 ∨ · · · ∨ z0 6= zl ∨ u = v)

∧ (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨min(z1, . . . , zl) < z0 ∨ z0 = z1 = · · · = zl) .

These formulas are ll-Horn clauses and will not be modified further in the
proof.

(4) If φ is not an ll-Horn clause and contains a literal such that removing this
literal from φ results in an equivalent formula, then remove the literal.

We claim that for each of the four rewriting rules, the resulting formula ψ is equivalent
to φ. This is obvious for rule (4). To see that φ implies the new clauses in rule (1),
let s be a satisfying assignment to φ. If s satisfies θ′, then s also satisfies the new
clauses, so let us assume that θ′ is false. Then s satisfies min(x1, . . . , xl) < y or
min(u1, . . . , uk) < v. The two cases are symmetric, so we only treat the case that
s satisfies min(x1, . . . , xl) < y in the following. By assumption, s must then satisfy
min(x1, . . . , xl, u1, . . . , uk) ≤ v, and hence the first new clause (46) is satisfied by s.
Since min(x1, . . . , xl) < y, the other new clauses are satisfied as well.

Now suppose conversely that s is a solution to φ′ and the four new clauses. If s
satisfies θ′, then s satisfies φ and we are done, so suppose that s does not satisfy θ′.
Assume for contradiction that θ does not hold. Then (48) implies that

∧
i∈[k] ui > v.

Hence, (46) implies that min(x1, . . . , xl) ≤ v. Similarly, (49) implies that s satisfies∧
i∈[l] xi > y, and 47 implies that min(u1, . . . , uk) ≤ y. Hence, s satisfies

y < min(x1, . . . , xl) ≤ v < min(u1, . . . , uk) ≤ y,

a contradiction.
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For rule (2), let s be a solution to φ. Then s obviously satisfies the first new clause
if u < v or θ′ holds; otherwise, s must satisfy x < y because of θ. But then u ≥ v by
assumption and hence the first new clause also holds in this case. The second new
clause is weaker then θ, so it is also satisfied by s. Now suppose conversely that s
satisfies φ′ and the two new clauses, and suppose for contradiction that θ does not
hold. Then in particular v ≤ u holds and the first new clause implies that u = v, and
hence x < y because of the second new clause, contradiction to the assumption that
θ does not hold.

Finally, for rule (3), the first new clause is a weakening of θ, and the second new
clause is a consequence of φ by assumption. Conversely, suppose that s satisfies all
clauses of ψ except for θ which is not satisfied. Then the first new clause implies that
z0 < z0 ∨ · · · ∨ z0 < zl, and thus the second new clause implies that u = v, and hence
θ holds, a contradiction. Hence, ψ is indeed equivalent to φ.

Note that rules (1) and (2) strictly reduce the number of pairs of literals x < y
and u < v in the same clause where y and v are distinct variables (here we use the
assumption that l is maximal when we use the notation min(x1, . . . , xl)). Rule (3)
leaves this number invariant, but strictly reduces the number of literals of the form
u = v or of the form u < v in the clause (here, we do not count complex equations).
Rule (4) does not increase these numbers, and strictly reduces the total number of
literals. Hence, when we repeatedly apply these rules, the procedure will eventually
terminate.

Claim 1. The formula ψ cannot contain a clause θ of the form x1 < y ∨ u1 <
v ∨ θ′ where y and v are distinct variables. Write θ as min(x1, x2, . . . , xl) < y ∨
min(u1, u2, . . . , uk) < v ∨ θ′′ where we assume that θ′′ does not contain literals of
the form x < y or of the form u < v, for some variables x, u. Since rule (1) is not
applicable, there must exist a solution s to

φ′ ∧ ¬θ′′ ∧min(x1, x2, . . . , xl) < y ∧
∧
i∈[l]

xi > v ∧
∧
i∈[k]

ui > v

or to φ′ ∧ ¬θ′′ ∧min(u1, u2, . . . , uk) < v ∧
∧
i∈[l]

xi > y ∧
∧
i∈[k]

ui > y.

Suppose the former is the case, because the latter case can be treated similarly. Since
rule (2) is not applicable, there exists a solution t to φ′ ∧ ¬θ′ ∧ u1 < v ∧ y1 < x. Let
α ∈ Aut(Q;<) be such that αs(v) = 0. We claim that r = ll(αs, t) does not satisfy θ:

• we have r(y) < r(x1) since 0 < s(x1), s(y) and t(y) < t(x1);
• we have r(v) < r(u1) since αs(v) = 0 and αs(u1) > 0;
• finally, r does not satisfy θ′ since neither αs nor t satisfy θ′.

Hence, r does not satisfy ψ, in contradiction to the assumption that ll preserves R.

Claim 2. The formula ψ cannot contain a clause with two distinct literals x = y
and u = v. This is because of rule (4) and since φ is preserved by the injection ll.

Claim 3. If ψ contains a clause θ with a literal z1 < z0 and a literal of the form
u = v, then θ must be of the form

(x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ z1 < z0 ∨ z0 = z1).

To see this, note that θ must be of the form

x1 6= y1 ∨ · · · ∨ xk 6= yk ∨min(z1, . . . , zl) < z0 ∨ u = v
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because of Claim 1 and Claim 2. Since rule (3) does not apply, either l = 1 and we
are done, or there exists a solution s to

φ′ ∧ x1 = y1 ∧ · · · ∧ xk = yk ∧ z0 ≤ z1 ∧ · · · ∧ z0 ≤ zl ∧ u = v

∧ (z0 6= z1 ∨ · · · ∨ z0 6= zl) .

Hence, there exists an i ∈ {1, . . . , l} such that s(z0) 6= s(zi). Because the literal
zi < z0 cannot be removed from ψ with rule (4), there exists a solution t to φ such
that zi < z0 is the only literal in θ satisfied by t. Let α ∈ Aut(Q;<) be such that
αt(zi) = 0. Then r := ll(αt, s) does not satisfy θ:

• r satisfies θ′∧x1 = y1∧· · ·∧xk = yk since both αt and s satisfy this formula.
• r(z0) < r(zi) since 0 = αt(zi) < αt(z0) and s(z0) < s(zi).
• r(z0) ≤ r(zj) for all j ∈ {1, . . . , k}\{i} since t(z0) ≤ t(zj) and s(z0) ≤ s(zj).
• r(u) 6= r(v) since t(u) 6= t(v) and ll is injective.

The three claims imply that each of the clauses of ψ must be logically equivalent to
an implication as in Definition 12.7.1, and this concludes the proof. �

There is yet another equivalent description of the temporal relations that are
preserved by ll.

Theorem 12.7.3. Let R ⊆ Qk be a relation with a first-order definition in (Q;<).
The following are equivalent.

(1) R is preserved by ll;
(2) R has an ll-Horn definition;
(3) R has a primitive positive definition in (Q; 6=, I4, L) where

L := {(z0, z1, z2) | z1 < z0 ∨ z2 < z0 ∨ z0 = z1 = z2}.

Proof. (1) ⇔ (2) has been shown in Proposition 12.7.2. For (3) ⇒ (1) it
suffices to show that each of the relations I4, 6=, and L is preserved by ll, which is a
straightforward exercise. For a proof sketch of (2)⇒ (3), let φ be a ll-Horn formula.
It suffices to prove that each of the conjuncts of φ defines a relation which has a
primitive positive definition in (Q; I4, 6=, L). First observe that formulas of the form

z1 < z0 ∨ · · · ∨ zl < z0 ∨ (z0 = z1 = · · · = zl)

have a primitive positive definition in (Q; I4, L), using a similar idea as presented in
Section 1.6.8. Moreover, disjunctions of disqualities

z1 6= z0 ∨ · · · ∨ zl 6= z0

have a primitive positive definition in (Q; 6=, I4), and hence formulas of the form

z1 < z0 ∨ · · · ∨ zl < z0

have a primitive positive definition in (Q; 6=, I4, L). Finally, suppose that φ(z0, . . . , zl)
has a primitive positive definition ψ(z0, . . . , zl) in (Q; 6=, I4, L). Then the formula
x = y ⇒ φ(z0, z1, . . . , zl) can be defined by

ψ(z′0, . . . , z
′
l) ∧

∧
0≤i≤l

I4(x, y, z′i, zi). �

12.7.2. Syntax of shuffle-closed relations. Shuffle-closed temporal relations
can be characterised in many different ways; the equivalence between (1) and (3) is
from [59].

Theorem 12.7.4. Let R ⊆ Qk be a relation with a first-order definition in (Q;<).
The following are equivalent.

(1) R is preserved by pp.
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(2) R is shuffle-closed.
(3) R can be defined by a conjunction of clauses of the form

y1 6= x ∨ · · · ∨ yk 6= x ∨ z1 ≤ x ∨ · · · ∨ zl ≤ x. (50)

(4) R has a primitive positive definition in (Q; 6=, Rmin
≤ , Smi) where

Rmin
≤ := {(x, y, z) ∈ Q3 | y ≤ x ∨ z ≤ x}

and Smi := {(x, y, z) ∈ Q3 | y 6= x ∨ z ≤ x}.

We even may require that all variables in (50) are pairwise distinct. It is permitted
that l = 0 or k = 0, in which cases the clause is a disjunction of disequalities or
contains no disequalities, respectively.

Proof. (1)⇔ (2) has already been shown in Proposition 12.5.2.
(1)⇒ (3) Let ΦR be the set containing all temporal formulas φ(v1, . . . , vn)

• that are implied by R(v1, . . . , vn),
• that are of the form

¬(x1 ◦1 x2 ∧ x2 ◦2 x3 ∧ · · · ∧ xk−1 ◦k−1 xk), (51)

where x1, . . . , xk ∈ {v1, . . . , vn} are pairwise different variables and every ◦i
is in {<,=}, and
• that satisfy the following unambiguity condition: if (vi = vj) occurs in φ,

then i < j.

For each orbit of n-tuples under Aut(Q;<) there is a formula of this form which is false
precisely on tuples from this orbit. Since every temporal relation is a union of orbits of
n-tuples, it follows that ΦR defines R. We define an order on ΦR. For φ1, φ2 ∈ ΦR of
the form ¬(x1 ◦1x2∧· · ·∧xk−1 ◦k−1xk) and ¬(y1 ◦1 y2∧· · ·∧yl−1 ◦l−1 yl), respectively,
we will say that φ1 is less than φ2, in symbols φ1 � φ2, if x1, . . . , xk is a subsequence
of y1, . . . , yl and φ1 entails φ2. It is easy to see that this relation is reflexive and
transitive. By the definition of ΦR, we have that two formulas φ1, φ2 ∈ ΦR with the
same set of variables entail each other if and only if they are the same formula. Hence,
(ΦR;�) is also antisymmetric, and we have defined a partial order on ΦR. Let ΦmR
be the set of minimal elements of (ΦR;�). Again it is clear that

∧
ΦmR defines R.

We obtain the desired definition of R by replacing every member φ of ΦmR , which
is of the form (51), with an equivalent clause of the form (50). If φ is of the form
¬(y1 = y2 ∧ · · · ∧ yk−1 = yk), then we replace it by the equivalent formula (y1 6=
y2 ∨ · · · ∨ yk−1 6= yk). Otherwise, φ contains at least one occurrence of < and hence
we can assume that φ is of the form:

¬(y1 = y2 ∧ · · · ∧ yk−1 = yk ∧ yk < z1 ∧ z1 ◦1 z2 ∧ · · · ∧ zl−1 ◦l−1 zl),

where every ◦i is in {=, <}. We consider two cases. The first is that R does not
contain a tuple t that satisfies1 the formula y1 = · · · = yk < zi for every i ∈ [l].
Observe that in this case R entails

ψ := (y2 6= y1 ∨ · · · ∨ yk 6= y1 ∨ z1 ≤ y1 ∨ · · · ∨ zl ≤ y1)

and that ψ implies φ. Hence, we can safely replace φ by ψ in ΦmR .
If R does contain a tuple t that satisfies y1 = · · · = yk < zi for every i ∈ [l], then,

as we show, R is not preserved by pp, in contradiction with the assumptions. Let θ
be the formula ¬(z1 ◦1 z2 ∧ · · · ∧ zl−1 ◦l−1 zl). We have θ � φ. Since φ is in ΦmR , it
follows that θ is not in ΦR, and hence not entailed by R. This implies that R contains
a tuple r satisfying (z1 ◦1 z2 ∧ · · · ∧ zl−1 ◦l−1 zl). Let α ∈ Aut(Q;<) be such that

1In this proof we view l-tuples of elements of Q as assignments to the variables v1, . . . , vl.
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α(t(yj)) < 0 < α(t(zi)) for all i ∈ [l] and j ∈ [k]. Then s := pp(α(t), r) satisfies ¬φ.
Since φ is entailed by R, it follows s /∈ R, and thus that R is not preserved by pp.

(3)⇒ (4). If suffices to show that every relation defined by a formula φ as in (50)
has a primitive positive definition in (Q; 6=, Rmin

≤ , Smi) We prove this by induction
on the number of disjuncts in φ. The statement is clearly true if l = 0, i.e., if φ is
a disjunction of disequalities, since I4 has a primitive positive definition in (Q;Smi)
and hence φ is primitively positively definable over (Q; 6=, Smi), too (see the proof of
Theorem 7.5.2). Now suppose inductively that for l > 0 the formula

φ := (y1 6= x ∨ · · · ∨ yk 6= x ∨ z1 ≤ x ∨ · · · ∨ zl−1 ≤ x)

defines a relation with a primitive positive definition θ(x, y1, . . . , yk, z1, . . . , zl−1) over
(Q; 6=, Rmin

≤ , Smi). Then the formula

∃h
(
θ(x, y1, . . . , yk, h, z2, . . . , zl−1) ∧ Smi(h, z1, zl)

)
(52)

defines over (Q; 6=, Rmin
≤ , Smi) the same relation as φ ∨ zl ≤ x. Suppose first that

(y1 6= x ∨ · · · ∨ yk 6= x ∨ h ≤ x ∨ z2 ≤ x ∨ · · · ∨ zl−1 ≤ x) ∧ (z1 ≤ h ∨ zl ≤ h);

then y1 6= x∨ · · · ∨ yk 6= x∨ z1 ≤ x∨ · · · ∨ zl−1 ≤ x∨ zl ≤ x. Conversely, suppose that
the latter formula holds. If y1 = · · · = yk = x and x > zi for every i ∈ [l− 1] then we
must have x ≤ zl and choose h := zl; this clearly satisfies the quantifier-free part of
the formula given in 52. If yi 6= x for some i ∈ [k] or x ≤ zi for some i ∈ [l−1] then the
first conjunct of the formula given in 52 is satisfied and we choose h := max(z0, zl−1),
which clearly satisfies the second conjunct as well.

(4) ⇒ (1). It suffices to verify that the relations Rmin
≤ and Smi are preserved by

pp, which is an easy exercise. �

12.7.3. Syntax of min-closed temporal relations. We present a syntactic
characterisation of temporal relations preserved by min from [59], and a finite set
of relations that can pp-define all of those relations. Both results have later been
generalised to the larger class of semilinear relations over Q in [82] (presented there
for max-closed rather than min-closed relations, but the results of course dualise).

Theorem 12.7.5. Let R ⊆ Qn be first-order definable in (Q;<). Then the fol-
lowing are equivalent.

(1) R is preserved by min.
(2) R can be defined as a conjunction of so-called min-clauses of the form

z1 ◦1 x ∨ · · · ∨ zl ◦l x, (53)

where for all i ∈ [l], we have that ◦i is in {≤, <}.
(3) R is primitively positively definable over (Q;<,Rmin

≤ ) where

Rmin
≤ := {(x, y, z) ∈ Q3 | y ≤ x ∨ z ≤ x}.

Proof. (1) ⇒ (2). Suppose that R is preserved by min. Since min locally
generates pp, Theorem 12.7.4 implies that R can be defined by a conjunction of
clauses of the form

y1 6= x ∨ · · · ∨ yk 6= x ∨ z1 ◦1 x ∨ · · · ∨ zl ◦l x, (54)

where ◦i ∈ {<,≤} for every i ∈ [l]. Consider the set of such definitions of R with a
minimal number of disequalities and from this set choose one with a minimal number
of literals. Denote that formula by φR.

If φR does not have any disequalities, then we are done. Suppose for contradiction
that it contains a clause C of the form (54) with at least one disequality (y1 6= x).
Since φR does not contain any unnecessary literals, there is a tuple in R that falsifies



12.7. SYNTACTIC DESCRIPTIONS 369

all literals in C except for (y1 6= x). Suppose that R contains both tuples t1, t2
that falsify all literals in C except for (y1 6= x) and satisfy (y1 > x) and (y1 < x),
respectively. Let α1 be an automorphism of (Q;<) that sends (t1(x), t1(y1)) to (0, 1),
and α2 an automorphism of (Q;<) that sends (t2(x), t2(y1)) to (1, 0). Observe that
t3 = min(α1(t1), α2(t2)) satisfies (y1 = x). Since min preserves =, ≤, and <, we have
that t3 falsifies all literals in C, hence we have a contradiction with the fact that R is
preserved by min. It follows that R does not have either t1 or t2. If R does not contain
t1, then in φR we can replace C by (y1 < x∨y2 6= x∨· · ·∨yk 6= x∨z1 ◦1x∨· · ·∨zl ◦lx)
obtaining a definition of R with a smaller number of disequalities. From now on we
can therefore assume that R contains t1.

Consider now the formula φ′R obtained from φR by replacing the clause C by the
clause C ′ := (y1 6= x ∨ y1 6= y2 ∨ · · · ∨ y1 6= yk ∨ z1 ◦1 y1 ∨ · · · ∨ zl ◦l y1). Observe
that C and C ′ entail each other. Hence, φ′R also defines R. Consider C ′ as a part of
φ′R and observe that no literal from C ′ can be removed. Indeed, the new definition
would have less disequalities or the same number of disequalities and less literals
than φR. Thus, R contains a tuple t′ that falsifies all disjuncts of C ′ except for
(y1 6= x). As in the previous paragraph, we argue that R cannot have both tuples
t′1, and t′2 that falsify all literals in C ′ except for (x 6= y1) and satisfy (y1 < x) and
(y1 > x), respectively. If R does not contain t′1, then in φ′R we can replace C ′ by
(y1 > x∨ y1 6= y2 ∨ · · · ∨ y1 6= yk ∨ z1 ◦1 y1 ∨ · · · ∨ zl ◦l y1) obtaining a definition of R
with a smaller number of disequalities. Thus, we may assume that R contains t′1.

Now, suppose towards the contradiction that R has both: t1 that falsifies all
disjuncts of C except for (x 6= y1) and satisfies (x < y1); and t′1 that falsifies all
disjuncts of C ′ except for (y1 6= x) and satisfies (y1 < x). Let α, α′ be automorphisms
of Aut(Q;<) such that α sends (t1(x), t1(y1)) to (0, 1) and α′ sends (t′1(x), t′1(y1))
to (1, 0). To complete the proof we will show that t4 = min(α(t1), α′(t′1)) falsifies
all disjuncts of C. Since both t1 and t′1 are in R, we obtain a contradiction to
the assumption that R is preserved by min. Since α(t1(x)) = α(t1(y2)) = · · · =
α(t1(yk)) = 0 and α′(t′1(y1)) = α′(t′1(y2)) = · · · = α′(t′1(yk)) = 0, it follows that
t4(x) = t4(y1) = · · · = t4(yk) = 0 and hence t4 falsifies all disequalities in C. Now,
the clause C contains a disjunct (zi ◦i x) with ◦i ∈ {<,≤} and i ∈ [k] if and only if C ′

contains (y1 ◦i zi). Assume that ◦i is <. The same argument will work for ≤. Observe
that α(t1) satisfies (x ≤ zi) and sends x to 0; and that α′(t′1) satisfies (y1 ≤ zi) and
sends y1 to 0. It follows that t4(x) ≤ 0 ≤ t4(zi). Thus, t4 falsifies (zi < x) and we are
done.

(2) ⇒ (3). Clauses of the form z1 ≤ x ∨ · · · ∨ zl ≤ x have a primitive positive
definition over (Q;Rmin

≤ ); This can be shown as in the proof of the implication (3)⇒
(4) in Theorem 12.7.4. It is straightforward to modify the primitive positive definition,
additionally using <, to define general min-clauses as in (53) primitively positively
over (Q;<,Rmin

≤ ).

(3) ⇒ (1). It suffices to verify that < and Rmin
≤ are preserved by min. This is

straightforward for < because if the arguments of min are strictly increased, then so
is the output of min. To verify that Rmin

≤ is preserved, let r, s ∈ Rmin
≤ . We want to

show that t := min(r, s) ∈ Rmin
≤ . There are i, j ∈ {2, 3} such that ri ≤ r1 and sj ≤ s1.

We assume that ri ≤ sj ; this is without loss of generality since otherwise we may
change the roles of r and s since min is symmetric. Then ri ≤ sj ≤ s1 and ri ≤ r1,
and hence ti = min(ri, si) ≤ ri ≤ min(r1, s1) = t1 showing that t ∈ Rmin

≤ . �

Example 12.7.6. According to Theorem 12.7.5, the relation U from Exam-
ple 12.5.5 can be defined by a conjunction of clauses of the form (53). Indeed, observe
that U(x, y, z) is equivalent to (y ≤ x ∨ z ≤ x) ∧ x ≤ y ∧ x ≤ z. 4
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12.7.4. Syntax of mi-closed temporal relations. We present various equiv-
alent characterisations of temporal relations preserved by mi.

Definition 12.7.7. A temporal formula is called mi-Horn if it is a conjunction
of mi-Horn clauses, i.e., formulas of the form

(y1 6= x) ∨ · · · ∨ (yk 6= x)

∨ (z0 ≤ x) (55)

∨ (z1 < x) ∨ · · · ∨ (zl < x)

where each of the disjuncts may also be omitted.

The equivalence (1) ⇔ (2) is an unpublished result of Micha l Wrona, and the
addition of item (3) is from Johannes Greiner and Jakub Rydval.

Theorem 12.7.8. Let R ⊆ Qn be first-order definable over (Q;<). Then the
following are equivalent.

(1) R is preserved by the binary operation mi.
(2) R can be defined by a mi-Horn formula.
(3) R has a primitive positive definition in (Q; 6=, Rmi, Smi) where

Rmi := {(x, z0, z1) ∈ Q3 | z0 ≤ x ∨ z1 < x}
Smi := {(x, y, z) ∈ Q3 | y 6= x ∨ z ≤ x}

Proof. For (1)⇒ (2), recall that mi generates pp, and hence R can be defined
by a conjunction φ of clauses of the form

y1 6= x ∨ · · · ∨ yk 6= x ∨ z1 ≤ x ∨ · · · ∨ zl ≤ x

for pairwise distinct variables x1, . . . , xk, y1, . . . , yl, z (Theorem 12.7.4). Replace in φ
a symbol ≤ by the symbol < if the resulting formula is logically equivalent. Continue
with such replacement steps until this is no longer possible, and let ψ be the resulting
formula. Suppose for contradiction that ψ contains a clause C with two literals z1 ≤ x
and z2 ≤ x for two distinct variables z1, z2. Write V for the set of variables that
appear in φ. Then there exists an assignment s1 : V → Q that satisfies ψ, satisfies
z1 = x, and falsifies all other literals of C. Likewise, there exists an assignment
s2 : V → Q that satisfies ψ, satisfies z2 = x and falsifies all other literals of C. Let
α ∈ (Q;<) be such that α(s1(x)) = s2(x). We claim that the map s : V → Q given
by v 7→ mi(α(s1(v)), s2(v)) does not satisfy C:

• s preserves =, ≤, and < and hence does not satisfy literals of C that are
falsified by both s1 and s2;
• s(x) < s(z2) < s(z1) and hence s satisfies neither z1 ≤ x nor z2 ≤ x.

This contradicts the assumption that R is preserves by mi.
The implication (2)⇒ (3) can be shown similarly to the implication (2)⇒ (3) in

Theorem 12.7.4, and is left to the reader.
For the implication (3)⇒ (1) is suffices to verify that Rmi and Smi are preserved

by mi. Let r, s ∈ Rmi and t := mi(r, s). The following four cases are exhaustive.

(1) r2 ≤ r1 and s2 ≤ s1. Then t2 ≤ t1.
(2) r3 < r1 and s3 < s1. Then t3 < t1.
(3) r2 ≤ r1 and s3 < s1. If s3 < r2 then we have s3 < r2 ≤ r1 and s3 < s1, so

s3 < min(r1, s1). It follows that t3 = mi(r3, s3) < mi(r1, s1) = t1. Other-
wise, r2 ≤ s3. Then r2 ≤ s3 < s1 and r2 ≤ r1. Since mi(r2, x) ≤ mi(r1, s1)
for all x ∈ Q we have in particular that t2 = mi(r1, r2) ≤ mi(r1, s1) = t1.
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(4) r3 < r1 and s2 ≤ s1. If r3 < s2 then we have r3 < s2 ≤ s1 and r3 < r1,
so r3 < min(r1, s1). It follows that t3 = mi(r3, s3) < mi(r1, s1) = t1.
Otherwise, s2 ≤ r3. Then s2 ≤ r3 < r1 and s2 ≤ s1. Since mi(x, s2) ≤
mi(r1, s1) for every x ∈ Q we have in particular that t2 = mi(r2, s2) ≤
mi(r1, s1) = t1.

In each of the cases we have that t ∈ Rmi. The verification that mi preserves Smi is
similarly straightforward and left to the reader. �

12.7.5. Characterisation of mx-closed relations. The syntactic description
of mx-closed relations is more involved than the syntactic descriptions in the previous
sections. For t ∈ {0, 1}k we write φt(x1, . . . , xk) for the temporal formula ∧

i,j:ti=tj=1

xi = xj

 ∧
 ∧
i,j:ti=1,tj=0

xi < xj

 .

A temporal formula φ(x1, . . . , xk) is called an min-affine clause if there exists I ⊆ [k]
such that φ is of the form

φkI :=
∨{

φt | t ∈ {0, 1}k \ {(0, . . . , 0)},
∑
i∈I

ti = 0 mod 2

}
.

Note that ⊥ (the empty disjunction) is permitted as a min-affine clause.

Example 12.7.9. The formula φ3
[3] defines X from Example 12.5.22. 4

Definition 12.7.10. Let t ∈ Qk. Then the min-tuple of t is the Boolean vector
χ(t) ∈ {0, 1}k such that χ(t)i = 1 if and only if ti is minimal in t, i.e., tj ≤ tj for all
j ∈ [k].

Note that the min-tuple of t ∈ Qn always contains at least one entry equal to 1.
Observe also that a tuple t ∈ Qn is in the relation defined by a min-affine clause if
and only if s := χ(t) satisfies

∑
i∈I si = 0.

The equivalence of the first two items in Theorem 12.7.11 below is from [59]. The
addition of the third item is due to Jakub Rydval, and substantially more difficult to
prove than the corresponding implications in Theorem 12.7.4, Theorem 12.7.5, and
Theorem 12.7.8.

Theorem 12.7.11. Let R ⊆ Qk be first-order definable over (Q;<). Then the
following are equivalent.

(1) R is preserved by mx.
(2) R is definable by a conjunction (possibly empty, which corresponds to >) of

min-affine clauses.
(3) R is primitively positively definable in (Q;X).

Proof. (1) ⇒ (2). We proceed by induction on the arity k of the relation
R ⊆ Qk. The case k = 0 is verified as follows: if R is non-empty, then take the
empty conjunction; if R is empty, then take ⊥, the conjunction consisting of the sin-
gle min-affine clause on no variables. In what follows, we assume that k > 0. Let φ be
the conjunction of all min-affine clauses that are implied by R(v1, . . . , vk). Suppose
that b = (b1, . . . bk) ∈ Qk satisfies φ. Our goal is to show b ∈ R. Let t ∈ {0, 1}k
be the min-tuple of b. We claim that there is a tuple c ∈ R with min-tuple t. Let
T ∈ {0, 1}k be the set of min-tuples of tuples in R. Since mx provides min-xor closure,
it follows from the observations in Section 12.5.4 that T ∪ {(0, . . . , 0)} is preserved
by the operation xor(s, t) := minority(s, s′, (0, . . . , 0)). Since for r, s, t ∈ {0, 1}k we
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have that minority(r, s, t) = minority(minority(r, s, (0, . . . , 0)), t, (0, . . . , 0)), the rela-
tion T ∪ {(0, . . . , 0)} is also preserved by minority and hence can be defined by a
system of Boolean linear equations (Proposition 6.2.3). As (0, . . . , 0) must satisfy this
system, the system is homogeneous, i.e., every linear equation in the system is of the
form

∑
i∈I ti = 0 for some I ⊆ [k]. The formula φ consists of precisely the conjuncts

of the form φ
[k]
I for such I ⊆ [k], and the min-tuple of b must satisfy all of them. This

shows that there exists c ∈ R with min-tuple t.
If t = (1, . . . , 1), then c ∈ R and both b and c are constant tuples. Since b is

equal to c under an automorphism of (Q;<), we have b ∈ R. So, we suppose that
t contains 0 as an entry; for the sake of notation, we assume that t has the form
(0, . . . , 0, 1, . . . , 1), where the first m entries are 0; here, 0 < m < k. We have that
(b1, . . . , bm) satisfies all min-affine clauses on variables from v1, . . . , vm which are im-
plied by R(v1, . . . , vk). Hence, by induction, it holds that (b1, . . . , bm) ∈ πk{1,...,m}R
(we use the notation from Definition 6.8.3), and that there exists a tuple of the form
(b1, . . . , bm, d) in R, where d is a tuple of length k − m. We can apply an auto-
morphism to the tuple (b1, . . . , bm, d) to obtain a tuple (b′1, . . . , b

′
m, d

′) ∈ R where
all entries are positive. Also, by applying an automorphism to c ∈ R, we can ob-
tain a tuple of the form (c′1, . . . , c

′
m, 0, . . . , 0) where c′i > b′i for all i ∈ {1, . . . ,m}.

Applying mx to the tuples (b′1, . . . , b
′
m, d

′) and (c′1, . . . , c
′
m, 0, . . . , 0), one obtains the

tuple
(
mx(b′1, c

′
1), . . . ,mx(b′m, c

′
m),mx(d′, (0, . . . , 0))

)
, which is equivalent to b under

an automorphism.
(2)⇒ (3). We refer to [92].
(3)⇒ (1) is straightforward to verify and has already been mentioned in Exam-

ple 12.5.22. �

12.8. Polynomial-time Algorithms

We present polynomial-time algorithms for temporal CSPs that are preserved by
at least one of ll, min, mi, mx (or their duals). All the algorithms also work for infinite
signatures if the relations are appropriately represented. For example, we may repre-
sent an n-ary temporal relation by the set of orbits of n-tuples in the relation where
each orbit is represented by the respective weak linear order induced on the entries
of the tuples in that orbit. Another possibility is to represent a temporal relation by
the first-order definition in the syntactically restricted forms that we presented in the
previous section. Note that each of the four syntactically restricted forms that we
presented may be viewed as a temporal formula in disjunctive normal form (DNF);
we therefore often work with temporal formulas in DNF in general. As always, the
representation does not matter if the signature of the template is finite.

We need an operation on conjunctions of temporal relations in DNF which is
important operation in all of our algorithms. If φ is a temporal formula, we write
V (φ) for the set of free variables of φ.

Definition 12.8.1. If φ = (φ1 ∧ · · · ∧ φm) is a conjunction of temporal formulas
with V (φ) = {x1, . . . , xn, y1, . . . , yk} then we write φ[{x1, . . . , xn}] for the formula

(∃y1, . . . , yk : φ1) ∧ · · · ∧ (∃y1, . . . , yk : φm)

(which is in general of course not equivalent to ∃y1, . . . , yk : φ).

Note that if φi for i ∈ {1, . . . ,m} is represented by a quantifier-free formula in
DNF, then a quantifier-free DNF representation of ∃y1, . . . , yk : φi can be computed
in linear time in the representation size of φi. Another important concept for all of
the algorithms in this section are min-sets.
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Definition 12.8.2. Let ψ(x1, . . . , xk) be a temporal formula. A min-set of
ψ(x1, . . . , xk) is a set L ⊆ {x1, . . . , xk} such that there exists a tuple t ∈ Qk sat-
isfying ψ with M(t) = {i ∈ [k] | xi ∈ L}. For S ⊆ {x1, . . . , xk}, we write ↑ψ(S) for
the set of all min-sets of ψ which contain S, and ↓ψ(S) for the set of all min-sets of
ψ which are contained in S.

Note that if ψ is preserved by an operation providing min-intersection closure
then

⋂
↑ψ(S) is itself a min-set that contains S, and if ψ is preserved by an operation

providing min-union closure then
⋃
↓ψ(S) is itself a min-set that is contained in S.

12.8.1. An algorithm for ll-closed constraints. In this section we present
an algorithm to decide the satisfiability of a conjunction of temporal formulas that
are preserved by ll and given in DNF. One of the underlying ideas of the algorithm is
to use a subroutine that tries to find a solution where every variable has a different
value. If this is impossible, the subroutine must return a set of at least two variables
that denote the same value in all solutions – since the constraints are preserved by a
binary injective operation, such a set must exist (Proposition 7.1.6).

Let ψ(x1, . . . , xk) be a temporal formula preserved by ll, and hence in particular
by lex. Note that lex is an operation providing min-intersection closure, and thus,
as we have mentioned in the previous section, for any i ∈ [k] the set

⋂
↑ψ({xi}) is a

min-set of ψ.

Lemma 12.8.3. Let ψ(x1, . . . , xk) be a temporal relation preserved by lex. Let

i ∈ [k] and S :=
⋂
↑ψ({xi}), i.e., S is the minimal min-set that contains xi. Then

ψ ∧
∧
x∈S

xi ≤ x implies
∧
x∈S

xi = x.

Proof. We prove the contraposition. Suppose that r ∈ Qk satisfies ψ ∧ xi 6= x`
for some x` ∈ S. Since S is a min-set of ψ there exists s ∈ Qk satisfying ψ such that
S = {xj | j ∈ M(s)} =: P . Consider the tuple t := lex(s, r) which satisfies ψ, too.
Then ti < tj for every j ∈ [k] \ P , because lex preserves <. If ri < r` then ti < tl
because si = s`, which is in contradiction to the minimality of S. Hence, ri > r` and
thus ti > t`. �

To develop our algorithm, we use a specific notion of constraint graph of a con-
junction of temporal formulas, defined as follows.

Definition 12.8.4. The constraint graph Gφ of a conjunction φ of temporal
formulas is a directed graph (V ;E) defined on the variables V of φ. For each conjunct
ψ(x1, . . . , xk) of φ we add a directed edge (xi, xj) to E if in every satisfying assignment
for ψ where xi is minimal, xj is minimal as well.

Definition 12.8.5. If a conjunction of temporal formulas contains a conjunct φ
such that φ does not admit a solution where the variable y denotes the minimal value,
the we say that y ∈ V (φ) is blocked (by φ).

Note that if a temporal formula φ is represented as a list of orbits or even by a
formula in disjunctive normal form then we can efficiently determine which variables
are blocked by φ. Thus, by inspecting all the constraints in an instance it is possible
to compute the blocked variables in linear time in the input size. We want to use
the constraint graph to identify variables that have to denote the same value in all
solutions, and therefore introduce the following concepts.

Definition 12.8.6. A strongly connected component K of the constraint graph
Gφ for a conjunction φ of temporal formulas is called a sink component if no edge in
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Gφ leaves K. We call K unblocked if all elements of K are unblocked. A vertex of G
that belongs to a sink component of size one is called a sink.

Lemma 12.8.7. Let φ(x1, . . . , xn) be a conjunction of temporal formulas that are
preserved by lex and let K ⊆ {x1, . . . , xn} be an unblocked sink component of Gφ.
Then in every satisfying assignment to φ all variables from K must have equal values.

Proof. Let s : V → Q be a satisfying assignment to φ. Suppose that K has at
least two vertices; otherwise the statement is trivial. Define

M := {x ∈ K | s(x) ≤ s(y) for all y ∈ K}.
We want to show thatM = K. Otherwise, sinceK is a strongly connected component,
there is an edge in Gφ from some variable u ∈M to some variable v ∈ K \M . By the
definition of Gφ there is a conjunct ψ of φ such that if u denotes the minimal value in
a satisfying assignment for ψ, then v has to denote the minimal value as well. Note
that

S :=
⋂
↑ψ({u})

is non-empty, because u ∈ K is by assumption unblocked. Also note that Gφ contains
an edge from u to w for all w ∈ S. Since K is a sink component, all these variables
w are in K. There is no variable w ∈ S such that s(w) < s(u), because s(u) ≤ s(y)
for all y ∈ K. This contradicts Lemma 12.8.3, because s(u) 6= s(v). �

Lemma 12.8.7 immediately implies that for checking satisfiability we may replace
φ by the conjunction of temporal formulas obtained from φ where all the variables in
K are contracted, i.e., where all variables from K are replaced by the same variable.

Lemma 12.8.8. Let φ be a conjunction of temporal formulas that are preserved by
ll and let x ∈ V := V (φ) be an unblocked sink in Gφ. If φ[V \ {x}] has an injective
solution, then φ has an injective solution as well.

Proof. Let s : V → Q be an injective solution to φ[V \ {x}]. We claim that
any extension s′ of s to x such that s′(x) < s(y) for all y ∈ V \ {x} is injective
and satisfies φ. If x does not appear in φ, then the statement is trivial. Consider
a constraint ψ(x1, . . . , xk) from φ that is imposed on x; without loss of generality,
x = x1. By the definition of φ[V \ {x}] there exists t ∈ Qk satisfying ψ such that
ti = s(xi) for all i ∈ {2, . . . , k}. Because x is unblocked,

⋂
↑ψ({x}) is non-empty,

and hence there exists a t′ satisfying ψ such that M(t′) = {i ∈ [k] | xi ∈ S}. Let
α ∈ Aut(Q;<) be such that αt′1 = 0. Then r := ll(αt′, t) satisfies ψ. Note that for
all i, j ∈ [k] we have that ri ≤ rj if and only if s′(xi) ≤ s′(xj). Hence, s′ satisfies all
constraints from φ, which is what we had to show. �

Our algorithm for ll-closed constraints can be found in Figure 12.10; we are now
ready to prove its correctness.

Theorem 12.8.9. The procedure Solve in Algorithm 12.10 decides satisfiability
of a conjunction of ll-closed temporal formulas φ given in disjunctive normal form.
There is an implementation of the algorithm that runs in time O(nm) where n is the
number of variables of φ and m is the size of the input.

Proof. The correctness of the procedure Spec immediately implies the correct-
ness of the procedure Solve. In the procedure Spec, after iterated deletion of sinks in
Gφ, we have to distinguish three cases.

First, consider the case V (φ) = X. In this case it follows from Lemma 12.8.8 by
a straightforward induction that φ has an injective solution. Otherwise, consider the
case that Gφ contains an unblocked sink component S with |S| ≥ 2. Lemma 12.8.7
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Spec(φ)
// Input: A conjunction φ of ll-closed temporal formulas in DNF.
// Output: If Spec returns false then φ has no solution.
// If φ has an injective solution, then Spec returns true.
// Otherwise return S ⊆ V (φ), |S| ≥ 2, such that
// for all x, y ∈ S we have x = y in all solutions to φ.
Set X := ∅;
While Gφ contains an unblocked sink s
X := X ∪ {s};
If X = V (φ) then return true
else φ := φ[V (φ) \X].

If Gφ has an unblocked sink component S then return S
else return false.

Figure 12.9. A polynomial-time algorithm to decide satisfiability
of conjunctions of temporal formulas each preserved by ll: the sub-
procedure Spec.

Solve(φ)
// Input: A conjunction φ of ll-closed temporal formulas in DNF.
// Output: accept if φ is satisfiable in (Q;<), reject otherwise.
S := Spec(φ)
If S = false then reject
else if S = true then accept
else

Let φ′ be contraction of S in φ.
Return Solve(φ′).

end if

Figure 12.10. The main procedure to decide satisfiability of con-
junctions of temporal formulas preserved by ll in polynomial time.

applied to φ[V (φ) \ X] implies that all variables in S must have the same value in
every solution, and hence the output is correct in this case as well.

In the third case we have X 6= V (φ) but Gφ does not contain an unblocked sink
component. Note that in every solution to φ some variable must take the minimal
value. However, since each strongly connected component without outgoing edges
contains a blocked vertex, there is no variable that can denote the minimal element,
and hence φ has no solution. Because φ is at all times of the execution of the algorithm
implied by the original input constraints, the algorithm correctly rejects.

In each recursive call of Solve the instance in the argument has at least one
variable less, and therefore Solve is executed at most n times. It is not difficult to
implement the algorithm such that the total running time is cubic in the input size.
However, it is possible to implicitly represent the constraint graph and to implement
all sub-procedures such that the total running time is in O(nm); for the details, we
refer to [74]. �

Corollary 12.8.10. If B is a finite-signature first-order reduct of (Q;<) which
is preserved by ll then there is an algorithm that solves CSP(B) in time O(nm) where
n is the number of variables and m is the number of constraints.

12.8.2. Algorithms for shuffle-closed languages. In the following we present
three algorithms for shuffle-closed temporal relations, namely for constraints preserved
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by mi, by min, and by mx, respectively. All three algorithms follow a common strat-
egy. They are searching for a subset of the variables that can have the minimal value
in a solution. If they have found such a subset S, the algorithms add equalities and
inequalities that are implied by all constraints under the assumption that the variables
in S denote the minimal value in all solutions. Next, the algorithms recursively solve
the instance consisting of the projections of all constraints to the variables that do
not denote the minimal value in all solutions. We later show that if the instance has
a solution and all constraints are shuffle-closed, then the instance also has a solution
that satisfies all the additional constraints.

Definition 12.8.11. Let φ be a conjunction of temporal formulas. Then F ⊆
V (φ) is called free if it is non-empty and for every conjunct ψ(x1, . . . , xk) of φ the set
F ∩ {x1, . . . , xk} is either empty or a min-set of the temporal relation defined by ψ
(Definition 12.8.2).

Free sets can be used to decide the satisfiability of conjunctions of shuffle-closed
temporal formulas. The following is a strengthening of a lemma from [73] due to
Jakub Rydval [92], which allows a simplification in the later presentation.

Lemma 12.8.12. Let φ be a conjunction of shuffle-closed temporal formulas and
let F ⊆ V := V (φ) be a union of free sets. Then φ has a solution if and only if
φ[V \ F ] has a solution.

Proof. Let F1, . . . , Fk be free sets of φ and let F := F1∪· · ·∪Fk. Clearly, if φ has
a solution then so has φ[V \F ]. For the converse, suppose that φ[V \F ] has a solution
s. Let Si := Fi \ (F1∪· · ·∪Fi−1) for every i ∈ {1, . . . , k} (so S1 = F1). We claim that
any extension s′ of s is a solution to φ if s′(S1) < s′(S2) < · · · < s′(Sk) < s′(V \ F )
and s′(x) = s′(y) whenever there exists i ∈ {1, . . . , k} such that x, y ∈ Si.

To verify this, let ψ(x1, . . . , xm) be a conjunct of φ such that, without loss of
generality,

{x1, . . . , xm} ∩ F = {x1, . . . , x`} 6= ∅.
By the definition of φ[V \ F ] there is a tuple t ∈ Qm that satisfies ψ and such that
tj = s(xj) for every j ∈ {` + 1, . . . ,m}. Since F1, . . . , Fk are free, there are tuples
t1, . . . , tk ∈ Qm such that for every i ∈ {1, . . . , k} the tuple ti satisfies ψ(x1, . . . , xm)
and for every j ∈ {1, . . . ,m}

j ∈M(ti) if and only if xj ∈ Fi.

For every i ∈ {1, . . . , k} let αi ∈ Aut(Q;<) be such that αi maps the minimal
entry of ti to 0. The tuple ri := pp(αiti, t) satisfies ψ, because ψ is preserved by
pp. It follows from the definition of pp that j ∈ M(ri) if and only if xj ∈ Fi for all
j ∈ {1, . . . ,m}. Moreover, (ri`+1, . . . , r

i
m) and (t`+1, . . . , tm) lie in the same orbit under

Aut(Q;<). Define pk, pk−1, . . . , p1 ∈ Qm in this order as follows. Define pk := rk and
for i ∈ {1, . . . , k − 1}

pi := pp(βiri, pi+1)

where βi ∈ Aut(Q;<) is chosen such that βi(rij) = 0 for all j ∈M(ri). We verify by
induction that for all i ∈ {1, . . . , k}

(1) pi satisfies ψ;
(2) (pi`+1, . . . , p

i
m) and (t`+1, . . . , tm) lie in the same orbit under Aut(Q;<);

(3) j ∈M(pi) if and only if xj ∈ Fi for all j ∈ {1, . . . ,m};
(4) piu = piv for all u, v ∈ {1, . . . ,m} with xu, xv ∈ Sa for some a ∈ {i+1, . . . , k};
(5) piu < piv for all a, b ∈ {i, i+ 1, . . . , k} with a < b and xu ∈ Sa, xv ∈ Sb.
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For i = k the items (1), (2), and (3) follow from the respective property of rk and
items (4) and (5) are trivial. For the induction step and i ∈ {1, . . . , k − 1} we have
that pi = pp(βiri, pi+1) satisfies item (1) and (2) because pi+1 satisfies item (1) and
(2) by inductive assumption. For item (3), note that M(pi) = M(ri). Finally, if
xu, xv ∈ Si+1 ∪ · · · ∪ Sk then piu ≤ piv if and only if pi+1

u ≤ pi+1
v . This implies items

(4) and (5) by induction. Finally, note that (s′(x1), . . . , s′(xm)) lies in the same orbit
as p1 and hence satisfies ψ. �

Solve(φ)
// Input: A conjunction φ of shuffle-closed temporal formulas given in DNF.
// Output: A solution s to φ, or false if there is no solution.
i := 0;
While V (φ) 6= ∅ do

F := FindFreeSets(φ);
If F = ∅ then return false;
For each x ∈ F do s(x) := i
i := i+ 1;
φ := φ[V (φ) \ F ].

Return s.

Figure 12.11. A polynomial-time algorithm that decides satisfia-
bility of conjunctions of shuffle-closed temporal formulas if free sets
can be computed efficiently.

The above lemma implies that if we are able to identify a union of free sets for
conjunctions φ of shuffle-closed temporal formulas in polynomial time, then we also
have a polynomial-time algorithm that decides the satisfiability of φ in polynomial
time, namely the algorithm shown in Figure 12.11. The running time of the algorithm
is O(n · (m+ t(n,m))), where n = |V | is the number of variables, m is the size of the
input formula φ, and t(n,m) is the running time of the procedure that computes a
free set.

12.8.3. An algorithm for languages preserved by min. In order to show
that temporal CSPs for min-closed constrains are in P, it suffices to find a polynomial-
time algorithm that computes a free set for a given conjunction of temporal formulas
that are preserved by min and given in DNF, by the results of the previous section.

Let ψ(x1, . . . , xk) be a conjunct of φ and let L be a subset of {x1, . . . , xk}. Note
that if ↓ψ(L) is non-empty, i.e., if ψ has a min-set contained in L, then

⋃
↓ψ(L) is a

min-set contained in L, too, because ψ is preserved by min, which provides min-union
closure by Lemma 12.5.9. We call this min-set the maximal min-set of ψ contained
in L.

Figure 12.12 shows our procedure for finding a free set for conjunctions φ of min-
closed temporal formulas. The procedure FindFreeSetsMin can be implemented so
that its running time is in O(m) where m is the length of the formula φ.

Lemma 12.8.13. Let φ be a conjunction of temporal formulas preserved by mx and
given in DNF or as affine clauses. Then the procedure FindFreeSetMin in Figure 12.12
returns a free set of φ or rejects. If it rejects, then φ is unsatisfiable.

Proof. Suppose that the algorithm returns a non-empty set S. Therefore, for
all conjuncts ψ(x1, . . . , xk) of φ such that S ∩ {x1, . . . , xk} 6= ∅ the maximal min-set
of ψ contained in S equals S ∩ {x1, . . . , xk}. We conclude that S is free.
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FindFreeSetMin(φ)
// Input: A conjunction φ of min-closed temporal formulas given in DNF.
// Output: ∅ or a free subset S of the variables of φ.
// If the algorithm returns ∅, then φ is unsatisfiable.
S := V (φ);
Do

For every conjunct ψ of φ do
If S ∩ V (ψ) 6= ∅ then

S := (S \ V (ψ)) ∪
⋃
↓ψ(S ∩ V (ψ));

Loop while S does not change.
Return S.

Figure 12.12. A polynomial-time algorithm that computes a free
set for a satisfiable conjunction of min-closed temporal formulas in
DNF.

We now have to argue that if φ returns ∅, then φ is unsatisfiable. We show the
contraposition, and suppose that φ has a solution. Then there is S′ ⊆ V (φ) that have
the minimal value in this solution. At the beginning of the procedure, S = V (φ) and
therefore S′ ⊆ S. We show that S′ ⊆ S during the entire execution of the procedure.
Let ψ(x1, . . . , xk) be a conjunct of φ. Because S′ ∩ {x1, . . . , xk} is a min-set of ψ
that is contained in S, the maximal min-set of ψ added to S \ {x1, . . . , xk} certainly
contains S′ ∩ {x1, . . . , xk}. Therefore, after the modification to S it still holds that
S ⊇ S′ 6= ∅ and hence the algorithm does not return ∅. �

Theorem 12.8.14. There is an algorithm that decides the satisfiability of con-
junctions φ of temporal formulas, each preserved by min and given in DNF, in time
O(nm), where n is the number of variables of φ and m the size of φ.

Proof. We use the procedure FindFreeSetMin in Figure 12.12 for the subroutine
FindFreeSets in Figure 12.11. Then Lemma 12.8.12 and Lemma 12.8.13 imply the
correctness of the resulting algorithm. �

Corollary 12.8.15. If B is a finite-signature first-order reduct of (Q;<) which
is preserved by min then there is an algorithm that solves CSP(B) in time O(nm)
where n is the number of variables and m the number of constraints.

12.8.4. An algorithm for languages preserved by mi. In order to show
that temporal CSPs for mi-closed constrains are in P, it suffices to find a polynomial-
time algorithm that computes a free set for a given conjunction of temporal formulas
that are preserved by mi and given in DNF, by the results of Section 12.8.2.

Let ψ(x1, . . . , xk) be a conjunct of φ and let L ⊆ {x1, . . . , xk}. Note that if ↑ψ(L)
is non-empty then

⋂
↑ψ(L) is a min-set that contains, L, too, because ψ is preserved

by mi, which provides min-intersection closure by Lemma 12.5.13. We call this min-
set the minimal min-set of R containing L. A procedure for finding a union of free
sets is given in Figure 12.13. It is straightforward to verify that the algorithm runs
in time O(n2m) where n is the number of variables of φ and m is the size of φ.

Lemma 12.8.16. Let φ be a conjunction of temporal formulas preserved by mi and
given in DNF. Then the procedure FindFreeSetsMi in Figure 12.13 returns a union
of free set S of φ. If it returns ∅, then φ is unsatisfiable.

Proof. Suppose that y is an element of the set S returned by the algorithm.
Then for some x ∈ V (φ), the set T computed by the inner loop must contain y. So
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FindFreeSetsMi(φ)
// Input: a conjunction φ of mi-closed temporal formulas given in DNF.
// Output: a union of free sets of φ.
// If the algorithm returns ∅, then φ is unsatisfiable.
S := ∅;
For every x ∈ V (φ) do

T := {x};
Do

For all conjuncts ψ(x1, . . . , xk) of φ such that {x1, . . . , xk} ∩ T 6= ∅ do

If ↑ψ(S ∩ {x1, . . . , xk}) = ∅ then T := ∅;
else T := T ∪

⋂
↑ψ(S ∩ {x1, . . . , xk}).

Loop until T does not change.
S := S ∪ T .

Return S.

Figure 12.13. A polynomial-time algorithm that computes a union
of free sets for a satisfiable conjunction of temporal formulas pre-
served by mi.

for all conjuncts ψ of φ such that V (ψ)∩T 6= ∅ the set T did not change. This implies
that for all these constraints the minimal min-set of ψ containing T ∩ V (ψ) is equal
to T ∩ V (ψ). Hence, T is a free set of φ; it follows that S is a union of free sets.

To show that if the set S returned by the algorithm is empty, then φ is unsat-
isfiable, we prove the contraposition. Suppose that φ has a solution. Then there is
some set S′ of variables that have the minimal value in this solution. Consider a run
of the while loop in the procedure FindFreeSetsMi for some variable x ∈ S′. In the
beginning, it holds that T = {x} ⊆ S′. For each constraint ψ from Φ we have that
S′ ∩V (ψ) is a min-set of ψ if S′ ∩V (ψ) is non-empty. Because we always only add to
T variables of the minimal min-set of ψ containing T ∩ V (ψ), all the variables in T
are contained in S′. Therefore, T remains a subset of S′ all the time, and the output
S of the algorithm is non-empty. �

Theorem 12.8.17. There is an algorithm that decides the satisfiability of a given
conjunction φ of temporal formulas, each preserved by mi and given in DNF, in time
O(n3m), where n = |V (φ)| and m is the size of φ.

Proof. We use the procedure FindFreeSetsMi in Figure 12.13 for the sub-routine
FindFreeSet in Figure 12.11. Lemma 12.8.12 and Lemma 12.8.16 imply the correctness
of these algorithms. �

Corollary 12.8.18. If B is a finite-signature first-order reduct of (Q;<) which
is preserved by mi, then there is an algorithm solving CSP(B) in time O(n3m) where
n is the number of variables and m the number of constraints in an instance.

12.8.5. An algorithm for languages preserved by mx. Finally, we consider
the satisfiability problem for conjunctions φ of temporal formulas that are preserved
by mx and given in DNF; alternatively (and even more succinctly), we also allow that
the input is a finite conjunction of min-affine clauses (Section 12.7.5; note that the
size of a temporal formula in DNF which is equivalent to φkI has exponential size in
k).

Let ψ(x1, . . . , xk) be a conjunct of φ. We define

χ(ψ) := {χ(t) | t ∈ Qk satisfies ψ}.
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FindFreeSetsMx(φ)
// Input: a conjunction φ of mx-closed temporal formulas,
// given in DNF or as min-affine clauses.
// Output: ∅ or a free set of φ.
// If the algorithm returns ∅, then φ is unsatisfiable.
Let E = ∅, S = ∅.
For every ψ = φkI (x1, . . . , xk) ∈ φ do

E := E ∪ {
∑
I xi = 0}.

If there exists a nontrivial s : V (φ)→ {0, 1} satisfying E
return {x ∈ V (φ) | s(x) = 1}

else return ∅.

Figure 12.14. A polynomial-time algorithm that computes a free
set for a satisfiable conjunction of mx-closed temporal formulas.

Since ψ is preserved by mx and mx provides min-xor-closure by Lemma 12.5.20, the set
χ(ψ) ∪ {(0, . . . , 0)} is closed under componentwise addition of vectors modulo 2, and
hence in particular closed under the Boolean minority operation minority(x, y, z) =
x ⊕ y ⊕ z. By Theorem 6.2.7, the Boolean relation χ(ψ) ∪ {0k} is exactly the set of
solutions of a system of linear equations over {0, 1}.

Lemma 12.8.19. Let φ be a conjunction of temporal formulas preserved by mx and
given in DNF or as affine clauses. Then the procedure FindFreeSetsMx in Figure 12.14
returns ∅ or a free set of φ. If it returns ∅, then φ is unsatisfiable.

Proof. It is well known that a solution of S that is not constant to 0 can be
computed in cubic time (by Gaussian elimination). If there is such a solution, then
the set of variables mapped to 1 is a free set of φ. If the system has no such solution,
then there is no free set of variables, and there is no solution for φ. �

Theorem 12.8.20. There is an algorithm that decides the satisfiability of a given
conjunction φ(x1, . . . , xn) of temporal formulas, each mx-closed and given in DNF or
as min-affine clauses, in time O(n4).

Proof. The statement follows from Lemma 12.8.12 and Lemma 12.8.19. �

Corollary 12.8.21. If B is a finite-signature first-order reduct of B preserved
by mx then there is an algorithm solving CSP(B) in time O(n4).

12.9. Equational Descriptions

The complexity classification for temporal CSPs from Theorem 12.0.1 (which
we have not yet proved) states that the existence of an at most ternary pseudo
weak near-unanimity (PWNU) polymorphism implies polynomial-time tractability.
The operations min and mx are binary symmetric polymorphisms and hence weak
near-unanimity operations. On the other hand, both ll and mi do not locally gener-
ate symmetric operations, not even modulo endomorphisms (Section 12.9.1). How-
ever, we show that they locally generate ternary PWNU operations (Sections 12.9.2
and 12.9.3).

12.9.1. Pseudo-cyclic polymorphisms. The clone locally generated by ll does
not contain cyclic polymorphisms modulo endomorphisms. In fact, this holds for all
clones C over the domain Q that preserve < and the relation

I4 := {(x, y, u, v) ∈ Q4 | x = y ⇒ u = v}.
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Recall from Lemma 7.5.1 that every operation f ∈ C that depends on all arguments
is injective. Let f be such an operation of arity n ≥ 2, and consider

d0 := f(1, 0, . . . , 0), d1 := f(0, 1, 0, . . . , 0), . . . , dn−1 := f(0, . . . , 0, 1).

We claim that there is no ∈ End(Q;<) such that di = α(di+1) for all indices i ∈ Z/nZ.
If d0 < d1, we would obtain that d0 < d1 < d2 < · · · < dn−1, a contradiction.
Similarly, we obtain a contradiction if d0 > d1.

12.9.2. An injective ternary pseudo weak near-unanimity operation.
We introduce the shortcut

lexn(x1, . . . , xn) := lex(x1, lex(x2, . . . lex(xn−1, xn) . . . )).

Also recall from Example 8.5.5 the definition of the median operation

median(x, y, z) := max(min(x, y),min(x, z),min(y, z)).

Finally, define ll3 : Q3 → Q by

ll3(x, y, z) := lex5(min(x, y, z),median(x, y, z), x, y, z).

Note that ll3 is injective and preserves the relation ≤.

Proposition 12.9.1. There are a, b, c ∈ End(Q;<) such that for all x, y ∈ Q
a(ll3(x, x, y)) = b(ll3(x, y, x)) = c(ll3(y, x, x)).

That is, ll3 is a weak near-unanimity modulo endomorphisms of (Q;<).

Proof. By Lemma 10.1.5, it suffices to show that for every finite S ⊂ Q there
are α, β ∈ Aut(Q;<) such that for all x, y ∈ S

ll3(y, x, x) = α1ll3(x, y, x) = α2ll3(x, x, y).

By the properties of f we have that ll3(y, x, x) ≤ ll3(y′, x′, x′) if and only if one of the
following holds:

• min(x, y) < min(x′, y′);
• min(x, y) = min(x′, y′) and x < x′;
• min(x, y) = min(x′, y′), x = x′, and y < y′;
• x = x′ and y = y′.

Note that this is the case if and only if ll3(x, y, x) < ll3(x′, y′, x′), and if and only
if ll3(x, x, y) < ll3(x′, x′, y′). Hence, the existence of α1 and α2 follows from the
homogeneity of (Q;<). �

Theorem 12.9.2. Let R ⊆ Qn be first-order definable over (Q;<). Then the
following are equivalent.

(1) R is preserved by the ternary pseudo weak near-unanimity operation ll3.
(2) R is preserved by ll.
(3) R has an ll-Horn definition.

Proof. The implication from (1) to (2) follows from the observation that ll3(x, x, y)
interpolates ll modulo Aut(Q;<). The implication from (2) to (3) has already been
shown in Lemma 12.7.2. For the implication from (3) to (1), it suffices to verify that
ll3 preserves all ll-Horn formulas. Since ll3 is injective, it suffices to show that ll3
preserves formulas φ of the form

(z1 < z0) ∨ · · · ∨ (zl < z0)

and of the form

(z1 < z0) ∨ · · · ∨ (zl < z0) ∨ (z0 = z1 = · · · = zl).
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Suppose that s1, s2, s3 are assignments that satisfy φ; we have to show that the
assignment s defined by s(x) := ll3(s1(x), s2(x), s3(x)) satisfies φ. Let j ∈ {1, 2, 3} be
such that sj(z0) = min(s1(z0), s2(z0), s3(z0)).

Suppose first that sj satisfies z1 < z0 ∨ · · · ∨ zl < z0. Let i be such that sj(zi) =
min(sj(z1), . . . , sj(zl)). Then sj(zi) < sj(z0) by assumption, and hence

min(s1(zi), s2(zi), s3(zi)) < min(s1(z0), s2(z0), s3(z0)).

Therefore, ll3(s1(zi), s2(zi), s3(zi)) < ll3(s1(z0), s2(z0), s3(z0)) by the properties of ll3,
and s satisfies z1 < z0 ∨ · · · ∨ zl < z0.

Otherwise, sj must satisfy z0 = z1 = · · · = zl. We next consider the case
that there exists c ∈ {1, 2, 3} and p ∈ {1, . . . , l} such that sc(zp) < sj(z0). Then
min(s1(zp), s2(zp), s3(zp)) ≤ sc(zp) < sj(z0) = min(s1(z0), s2(z0), s3(z0)) and hence,
by the definition of ll3, we have s(zp) < s(z0) and s satisfies φ. Otherwise, sc(zp) ≥
sj(z0) for all c ∈ {1, 2, 3} and p ∈ {1, . . . , l}. Let a, b ∈ {1, 2, 3} be such that a < b
and {a, b} = {1, 2, 3}\{j}. The definition of ll3 then implies for all i ∈ {1, . . . , l} that
ll3(s1(zi), s2(zi), s3(zi)) < ll3(s1(z0), s2(z0), s3(z0)) if and only if sa(zi) < sa(z0). If
there exists an i ∈ {1, . . . , l} such that sa(zi) < sa(z0), we therefore have s(zi) < s(z0)
and s satisfies z1 < z0 ∨ · · · ∨ zl < z0. Otherwise, we must have that

sa(z0) = sa(z1) = · · · = sa(zl).

If also sb(z0) = sb(z1) = · · · = sb(zl) then s satisfies z0 = z1 = · · · = zl, too. So
suppose that there exists p ∈ [l] such that sb(zp) < sb(z0). Since sj(zp) = sj(z0) and
sa(zp) = sa(z0) we then have s(zp) < s(z0) as s is injective and preserves ≤. Hence,
s satisfies φ also in this case. �

12.9.3. A non-injective ternary pseudo weak near-unanimity operation.
In this section we present an equivalent description of the temporal relations preserved
by mi in terms of a certain ternary pseudo weak near-unanimity mi3; the way we
introduce mi3 is taken from [92]. Let mi3 : Q3 → Q be the operation defined by

mi3(x, y, z) := lex5

(
min(x, y, z),median(−χ(x, y, z)),−χ(x, y, z)

)
(where χ(t) denotes the min-tuple of t introduced in Definition 12.7.10). We first
present an equivalent description of mi3. Recall that if A,B ⊆ Q3 and f : Q3 → Q,
then we write f(A) < f(B) if for all (x, y, z) ∈ A and (x′, y′, z′) ∈ B we have that
f(x, y, z) < f(x′, y′, z′).

1 2

3

4

5

6

7

Figure 12.15. Illustration of the function mi3; see Proposition 12.9.3.

Proposition 12.9.3. There kernel of mi3 has the following classes: for each
u ∈ Q



12.9. EQUATIONAL DESCRIPTIONS 383

(1) x(u) := {(a, b, c) | u = b = c, a > u};
(2) y(u) := {(a, b, c) | u = a = c, b > u};
(3) z(u) := {(a, b, c) | u = a = b, c > u};
(4) X(u) := {(a, b, c) | u = a, b > u, c > u};
(5) Y (u) := {(a, b, c) | u = b, a > u, c > u};
(6) Z(u) := {(a, b, c) | u = c, a > u, b > u};
(7) D(u) := {(u, u, u)}.

Moreover, for u < v, we have

mi3(D(u)) < mi3(x(u)) < mi3(y(u)) < mi3(z(u))

< mi3(Z(u)) < mi3(Y (u)) < mi3(X(u)) < mi3(D(v)).

Proof. The specified countable family of subsets of Q3 indeed forms a partition
of Q3. To see this, note that we distinguish which entries of the tuple are equal to
the minimum u of the entries of the tuple. This splits Q3 into seven different classes
for a given u, all of them pairwise disjoint. It is then straightforward to verify that
the images of mi3 are ordered as specified; see Figure 12.15. �

Proposition 12.9.4. There are a, b, c ∈ End(Q;<) such that for all x, y ∈ Q

a(mi3(y, x, x)) = b(mi3(x, y, x)) = c(mi3(x, x, y)) .

That is, mi3 is a weak near-unanimity modulo endomorphisms of (Q;<).

Proof. By Lemma 10.1.5, it suffices to show that for all finite S ⊂ Q there are
α, β ∈ Aut(Q;<) such that for all x, y ∈ S

mi3(y, x, x) = α(mi(y, x)) (56)

mi3(x, y, x) = β(mi(y, x)) (57)

mi3(x, x, y) = γ(mi(y, x)) (58)

Observe that for all u, v, u′, v′ ∈ Q we have mi3(v, u, u) ≤ mi3(v′, u′, u′) iff one of the
following cases applies:

• min(u, v) < min(u′, v′);
• u = v = min(u′, v′);
• u < v and u = min(u′, v′) < max(u′, v′);
• v < u and v = v′ < u′.

This in turn is the case if and only if mi(v, u) ≤ mi(v′, u′). Then the statement for (56)
follows from homogeneity of (Q;<). The proof for (57) and for (58) is analogous. �

Theorem 12.9.5. Let R ⊆ Qn be first-order definable over (Q;<). Then the
following are equivalent.

(1) R is preserved by the ternary pseudo weak near-unanimity operation mi3.
(2) R is preserved by mi.
(3) R is primitively positively definable over (Q;Rmi, Smi).

Proof. The implication from (1) to (2) follows from the observation that (x, y) 7→
mi3(x, x, y) interpolates mi modulo Aut(Q;<). The implication from (2) to (3) fol-
lows from Theorem 12.7.8. For the implication from (3) to (1) it suffices to verify
that mi3 preserves Rmi and Smi. Let t1, t2, t3 ∈ Rmi = {(x, z0, z1) | z0 ≤ x ∨ z1 < x}
and suppose for contradiction that s := mi3(t1, t2, t3) /∈ Rmi.

Let i ∈ {1, 2, 3} be such that min(t11, t
2
1, t

3
1) = ti1. Suppose that there exists

j ∈ {1, 2, 3} such that tj3 < ti1. Then

min(tj3, t
j
3, t

j
3) ≤ tj3 < ti1 = min(t11, t

2
1, t

3
1)
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and hence s3 < s1. Thus, s ∈ Rmi contrary to our assumptions. So suppose that
ti1 ≤ t

j
3 for every j ∈ {1, 2, 3}.

Since s /∈ Rmi we have s1 > s2. Then by the definition of mi3 there are three
cases to consider.

• ti1 < min(t2). Then ti1 ≤ ti3 and ti1 < ti3 and hence ti /∈ Rmi contrary to our
assumptions.
• ti1 = min(t2) and median(−χ(t1)) < median(−χ(t2)). Then there must exist
` ∈ [3] such that tk1 is minimal in t1 and t`3 is not minimal in t3. But then
t`1 = ti1 ≤ t`3 and t`1 = ti1 = min(t2) < t`2, in contradiction to t` ∈ Rmi.
• ti1 = min(t12, t

2
2, t

3
2), median(−χ(t1)) = median(−χ(t2)), and lex3(−χ(t1)) <

lex3(−χ(t2)). In this case there must again exist ` ∈ [3] such that t`1 is
minimal in t1 and t`3 is not minimal in t3, and the argument is as in the
previous case.

This concludes the proof that mi3 preserves Rmi.
Suppose for contradiction that a, b, c ∈ Smi = {(x, y, z) ∈ Q3 | y 6= x ∨ z ≤ x}

and d := f(a, b, c) /∈ Smi. In particular, d1 = d2. By the definition of f , there exists
a u ∈ Q such that

I :=
{

(a1, b1, c1), (a2, b2, c2)
}

is contained in one of the sets x(u), y(u), z(u), X(u), Y (u), Z(u), or D(u) from the
definition of f . It follows that a1 = a2 = u or b1 = b2 = u or c1 = c2 = u. Suppose
without loss of generality that the first case applies (the argument in the other cases
is symmetric), and hence I is contained in either y(u), z(u), X(u), or D(u).

• If I ⊆ D(u) then we must have a3 ≤ a1 = u, b3 ≤ b1 = u, and c3 ≤ c1 = u
because a, b, c ∈ Smi. Since f preserves ≤ we have that d3 ≤ d1.

• If I ⊆ y(u) then we must have az ≤ a1 = u and c3 ≤ c1 = u. Then

f(a3, b3, c3) ≤ f(u, b3, u) (since f preserves ≤)

≤ f(u, b1, u) (by the properties of f)

= f(a1, b1, c1)

and hence d3 ≤ d1.
• The case that I ⊆ z(u) is similar to the previous one.
• If I ⊆ X(u) then a3 ≤ a1 = u, and

f(a3, b3, c3) ≤ f(u, b3, c3) (since f preserves ≤)

≤ f(u, b1, c1) (by the properties of f)

= f(a1, b1, c1)

and hence d3 ≤ d1.

In each of the cases we have that d ∈ Smi, a contradiction. �

12.10. The Classification

This section combines the previous results to show that every finite temporal
constraint language has a constraint satisfaction problem which can be solved in
polynomial time or is NP-complete.

Theorem 12.10.1. Let B be a first-order reduct of (Q;<). Then one of the
following applies.

• B is preserved by at least one of the following nine operations: ll, min, mi,
mx, their duals, or a constant operation.

• Betw, Cycl, Sep, T3, −T3, or P 4
B is primitively positively definable in B.
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Proof. Theorem 12.3.1 asserts that one of the following cases holds:

(1) There is a primitive positive definition of Cycl, Betw, or Sep in B.
(2) Pol(B) contains a constant operation.
(3) Pol(B) contains all permutations of Q. In this case, Theorem 7.4.2 shows

that B either has a binary injective polymorphism g, or the relation P 4
B has

a primitive positive definition in B. In the first case, by composing g with
a permutation, we see that all binary injective operations preserve B, and
hence in particular the operation ll is a polymorphism of B.

(4) all f ∈ Pol(B) preserve <.

We are done in all cases except the fourth. Also, we can assume that B has a
polymorphism f that does not preserve Betw. By Lemma 6.1.29, we can assume
that f is binary. Then Lemma 12.6.2 implies that the operation f generates pp,
dual-pp, ll, or dual-ll. If f generates ll or dual-ll we are done. If f generates pp then
Corollary 12.5.30 shows that either T3 has a primitive positive definition in B, or B
is preserved by min, mi, or mx. Dually, if f generates dual-pp then either −T3 has a
primitive positive definition in B, or B is preserved by one of the duals of min, mi,
or mx, which completes the proof. �

With the previous theorem it is easy to obtain the full complexity classification
for temporal constraint satisfcation problems, and finally show Theorem 12.0.1.

Proof of Theorem 12.0.1. If B is preserved by ll, min, mi, mx, one of their
duals, or the constant operation, then B has an at most ternary weak near-unanimity
polymorphism modulo endomorphisms; this is immediate for the commutative binary
functions mx, min, their duals, and for the constant function. For ll, this has been
shown in Theorem 12.9.2, and for mi in Theorem 12.9.5. For dual mi and dual ll the
dual argument works.

Now let B′ be a finite signature reduct of B. If B′ is preserved by a constant
operation, then tractability of CSP(B′) follows from Proposition 1.1.12. For the case
that B′ is preserved by ll or dual-ll we have presented a polynomial-time algorithm
for CSP(B′) in Theorem 12.8.9. If B′ is preserved by min, mi, mx, or one of their
duals, tractability of CSP(B′) is shown in Section 12.8.2.

Now suppose that B is not preserved by one of the listed operations. Then by
Theorem 12.10.1 we know that one of the relations Betw, Cycl, Sep, T3, −T3, or P 4

B

has a primitive positive definition in B. Each of those relations together with finitely
many constants primitively positively interprets all finite structures, each time using
Theorem 3.2.2:

• For (Q; Betw, 0) a primitive positive interpretation of ({0, 1}; NAE) has been
shown in Proposition 3.1.10 via Theorem 3.2.2.

• a primitive positive interpretation of ({0, 1}; 1IN3) in (Q; Cycl) with param-
eters has been given in Theorem 12.2.1.

• The structure (Q; Sep, 0, 1) primitively positively interprets ({0, 1}; 1IN3) by
Proposition 12.2.2.

• The structure (Q;T3, 0) primitively positively interprets ({0, 1}; 1IN3) by
Proposition 3.1.9; the proof for −T is dual.

• The structure (Q;P 4
B , 6=) primitively positively interprets ({0, 1}; 1IN3) by

Theorem 7.4.1.

Finally, recall from Theorem 12.1.7 that if B does not have a constant endomorphism,
then it is a model-complete core, and hence Theorem 10.3.5 shows that the two cases
in the statement of Theorem 12.0.1 are distinct. �
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See Figure 12.16 for an overview over the nine largest tractable temporal con-
straint languages; the first four rows in the table list the classes that have a dual
class which is not listed in the table. The second column of the table shows relations
that can be used to primitively positively define all other relations in the respective
language; these relations and their polymorphisms can also be used to show that all
the listed classes are distinct.

Polymorphism Relational Generators Complexity
min <,Rmin

≤ (12.7.5) O(nm) (12.8.14)
mi Rmi, Smi (12.7.8) O(n3m) (12.8.17)
mx X (12.7.11) O(n4) (12.8.20)
ll 6=, I4, L (12.7.3) O(nm) (12.8.9)
constant ≤,Betw= O(m) (1.1.12)

Figure 12.16. Overview of the polynomial-time tractable temporal CSPs.

12.10.1. Decidability of tractability. We want to remark that the so-called
meta-problem for tractability is decidable; this is formally stated in the following
corollary.

Corollary 12.10.2. There is an algorithm that, given quantifier-free first-order
formulas φ1, . . . , φn that define over (Q;<) the relations R1, . . . , Rn, decides whether
CSP(Q;R1, . . . , Rn) is tractable or NP-complete.

Proof. We can use Theorem 11.6.4 to test the primitive positive definability
of one of the relations given in Theorem 12.10.1. Alternatively, we can algorithmi-
cally test the existence of a pseudo-Siggers polymorphism (Theorem 11.6.7), which
characterises polynomial-time tractability by Theorem 12.0.1. �

12.10.2. Discrete Temporal CSPs. We close this section with some remarks
on a related classification for discrete temporal constraint satisfaction problems, i.e.,
CSPs for first-order reducts of (Z;<). The computational complexity of CSP(B)
for first-order reducts of (Z;<) has been classified [84]; every such problem is either
in P or NP-complete. Note that in particular the structure (Z; Succ) with Succ =
{(x, y) | x = y + 1} is first-order definable in (Z;<). Clearly, first-order reducts of
(Z;<) are in general not ω-categorical. However, polymorphisms (either of B, or of
elementarily equivalent structures) still play a central role in the classification proof.

The complexity classification for discrete temporal CSPs depends on the di-
chotomy for finite-domain CSPs: Note that a first-order reduct B of (Z;<) may
be homomorphically equivalent to a finite structure. For instance, the undirected
graph

(
Z;
{

(x, y)
∣∣ |x − y| ∈ {1, 2}}) is is a first-order reduct of (Z;<) and homo-

morphically equivalent to K3. Finite cores that arise in this way have a transitive
automorphism group; this follows easily from the fact that Aut(Z; Succ) is transitive.
The only proofs of the dichotomy conjecture for CSPs whose template is finite and
has a transitive automorphism group are the proofs for the full dichotomy conjecture
for finite templates from [116,358].



CHAPTER 13

Non-Dichotomies

There are basically two methods for proving that a subclass of NP does not have
a complexity dichotomy. The first is to show that for every problem in NP there is a
polynomial-time equivalent problem in the subclass. By polynomial-time equivalent
we mean that there are polynomial-time Turing reductions between the two problems.
The non-dichotomy result then follows from Ladner’s theorem [260], which asserts
that there are problems in NP that are neither in P nor NP-complete, unless P = NP
(and if P = NP, there is of course also no dichotomy). This method has been applied
to show that, for example, the class of monotone SNP does not exhibit a complexity
dichotomy [177]. We will apply this technique in Section 13.1 and in Section 13.2

387
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to give two different proofs of the fact that the class of all constraint satisfaction
problems with infinite domains does not have a complexity dichotomy.

The second technique to show a non-dichotomy is to directly use Ladner’s proof
technique, which is sometimes called delayed diagonalisation. We will use this method
in Section 13.3 to show that there are ω-categorical structures B such that CSP(B)
is in coNP, but neither in P nor coNP-complete (unless P=coNP). The question
whether there are ω-categorical structures B such that CSP(B) is in NP \ P but not
NP-complete is still open (Question 49).

13.1. Arithmetical Templates

In this section we show that for every decision problem there exists a polynomial-
time equivalent constraint satisfaction problem with an infinite template B. This
result was first shown in [63]. Here we present a new proof that uses Matiyasevich’s
theorem. In fact, we prove a stronger result, namely the existence of a single structure
C such that for every recursively enumerable problem P there is a structure B with
a first-order definition in C such that CSP(B) is polynomial-time equivalent to P. A
second proof, based on the results in Section 1.4.2, can be found in the next section.

Previously, Bauslaugh [32] showed that for every recursive function f there exists
an infinite structure B such that CSP(B) is decidable, but has time complexity at
least f . Later, Schwandtner gave upper and lower bounds in the exponential time
hierarchy for some infinite-domain CSPs [336]; but these bounds leave an exponential
gap.

We make essential use of the following theorem, which is due to Davis, Matiya-
sevich, Putnam, and Robinson.

Theorem 13.1.1 (see e.g. [291]). A subset of Z is recursively enumerable if and
only if it has a primitive positive definition in (Z; ∗,+, 1).

Theorem 13.1.2 (Theorem 57 in [81]). For every recursively enumerable lan-
guage L there exists a relational structure B with a first-order (in fact, a primitive
positive) definition in (Z; ∗,+, 1) such that CSP(B) is polynomial-time Turing equiv-
alent to L.

Proof. We code L as a set L of natural numbers, viewing the binary encodings
of natural numbers as bit strings. More precisely, s ∈ L if and only if the number
represented in binary by the string 1s is in L. That is, we prepend the symbol 1 at
the front so that for instance 00 ∈ L and 01 ∈ L correspond to different numbers in
L. Now consider the structure B := (Z;S,D,L′, N) where

S := {(x, y) ∈ Z2 | (y = x+ 1 ∧ x ≥ 0) ∨ (x = y = −1)},
D := {(x, y) ∈ Z2 | (y = 2x ∧ x ≥ 0) ∨ (x = y = −1)},
L′ := L ∪ {−1}, and

N := {0}.
Clearly, if L is recursively enumerable, then L and L′ are recursively enumerable as
well.

We have to verify that CSP(B) is polynomial-time equivalent to L. We first show
that there is a polynomial-time reduction from L to CSP(B). View an instance of
L as a number n ≥ 0 as above, and let η(x) be a primitive positive definition for
x = n in B. It is possible to find such a definition in polynomial time by repeatedly
doubling (y = x+ x) and incrementing (y = x+ 1) the value 0 (this also follows from
the more general Lemma 1.6.1). It is clear that n codes a yes-instance of L if and
only if ∃x(η(x) ∧ L′(x)) is true in B.
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To reduce CSP(B) to L, we present a polynomial-time algorithm for CSP(B) that
uses an oracle for L (so our reduction will be a polynomial-time Turing reduction).
Let φ be an instance of CSP(B), and let H be the undirected graph whose vertices
are the variables W of φ, and which has an edge between x and y if φ contains the
constraint S(x, y) or the constraint D(x, y). Compute the connected components of
H. If a connected component does not contain x with a constraint N(x) in φ, then
we can set all variables of that component to −1 and satisfy all constraints involving
those variables.

Otherwise, suppose that we have a component C that does contain x0 with a
constraint N(x0). Observe that by connectivity, if there exists a solution, then all
variables in C must take non-negative values. Consider the following linear system:
for each constraint of the form S(x, y) for x, y ∈ C we add y = x+ 1 and x ≥ 0 to the
system, and for each constraint of the form D(x, y) for x, y ∈ D we add z = 2x and
x ≥ 0. Subject to x0 = 0 this system has either one or no solution. We can check
in polynomial time whether a linear system with 2 variables per constraint has no
integer solution [91], and if there is no solution, the algorithm rejects. Otherwise, the
algorithm assigns to each variable x ∈ C its unique integer value, and if φ contains a
constraint L′(x), we call the oracle for L with the binary encoding of this value. If
any of those oracle calls has a negative result, reject. Otherwise, we have found an
assignment that satisfies all constraints, and accept. �

The universal-algebraic approach fails badly when it comes to analyzing the com-
putational complexity of CSP(B): the semilattice operation (x, y) 7→ max<(x, y)
preserves B for all structures B considered in the previous proof, and we cannot
draw any consequences for the computational complexity of CSP(B).

13.2. CSPs in SNP

Another proof that shows that every problem in NP is polynomial-time Turing
equivalent to an infinite-domain CSP is based on a result by Feder and Vardi, and
the results from Section 1.4.3.

Theorem 13.2.1 (Theorem 3 in [177]). Every problem in NP is equivalent to a
problem in monotone SNP under polynomial-time reductions.

We show the following.

Proposition 13.2.2. Every problem in monotone SNP is equivalent to a problem
in monotone connected SNP under polynomial-time Turing reductions.

Proof. Let Φ be a monotone SNP sentence of the form ∃R1, . . . , Rk ∀x1, . . . , xl : φ
for φ quantifier-free and in conjunctive normal form. The sentence Ψ that we are go-
ing to construct from Φ has an additional free relation symbol E, and an existentially
quantified relation symbol T , and is defined by

∃R1, . . . , Rk, T ∀x1, . . . , xl : ψ

where ψ is the quantifier-free first-order formula with the following clauses.

(1) ¬E(x1, x2) ∨ T (x1, x2);
(2) ¬T (x1, x2) ∨ ¬T (x2, x3) ∨ T (x1, x3);
(3) ¬T (x1, x2) ∨ T (x2, x1);
(4) for each clause φ′ of φ with variables x1, . . . , xq, the clause

φ′ ∨
∨

i<j<q

¬T (xi, xj) .
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The sentence Ψ is clearly connected and monotone. We are therefore left with the
task to verify that Φ and Ψ are equivalent under polynomial-time Turing reductions.

We start with the reduction from Φ to Ψ. When A is a finite τ -structure, we
expand A to a (τ ∪{E})-structure A′ by choosing for E the full binary relation. Then
also T must denote the full binary relation (so that the clauses from item (1), (2),
and (3) above are satisfied), and the clauses introduced in (4) are equivalent to φ′.
Hence, Φ holds on A if and only if Ψ holds on A′.

For the reduction from Ψ to Φ, let A be an instance of Ψ. We can compute the
connected components C1, . . . , Ck of the {E}-reduct of A in polynomial time in the
size A. For each of those connected components C, we evaluate Φ on the τ -reduct AC
of A[C]. If for one component this evaluation is negative, then A[C] and consequently
A do not satisfy Ψ. Otherwise, for each C there exists a (τ ∪{R1, . . . , Rk})-expansion
of AC that satisfies φ. Let A′ be the expansion of the disjoint union of all those
(τ ∪ {R1, . . . , Rk})-structures by the relation T that denotes the equivalence relation
with equivalence classes C1, . . . , Ck. Clearly, all clauses from items (1), (2), and (3) in
the definition of Ψ are satisfied by A′. Each q-tuple (a1, . . . , aq) from elements of A′

either contains entries from different components, and hence satisfies the disjunctions
from item (4), or contains only entries from the same component C, but in this case
the tuple also satisfies the disjunctions from item (4) since AC satisfies Φ. �

Corollary 13.2.3. For every problem in NP there is a structure B such that
the problem is polynomial-time Turing equivalent to CSP(B).

Proof. By Theorem 13.2.1, every problem in NP is equivalent to a monotone
SNP sentence Φ under polynomial-time reductions. We have shown in Proposi-
tion 13.2.2 that Φ is equivalent to a monotone connected SNP sentence Ψ, and by
Theorem 1.4.12 there exists an infinite structure B such that Ψ describes CSP(B). �

In Figure 13.1 the diagram about the fragments of SNP from Section 1.4 has been
decorated with information about the complexity classification status.

13.3. coNP-intermediate Countably Categorical Templates

In this section we show that there exists an ω-categorical directed graph B such
that CSP(B) is in coNP, but neither coNP-complete nor in P (unless coNP=P). All
structures in this section will be Fräıssé limits of classes of directed graphs.

Let N be a class of finite tournaments, and recall that Forbemb(N ∪ {L}), the
class of all finite loopless digraphs that does not embed a tournament from N , is
an amalgamation class (Example 2.3.12). We write BN for the Fräıssé-limit of
Forbemb(N ∪ {L}). Observe that for finite N the problem CSP(BN ) can be solved
in deterministic polynomial time, because for a given instance A of this problem an
algorithm simply has to check whether there is a homomorphism from one of the
structures in N ∪ {L} to A, which is the case if and only if there is a homomorphism
from A to BN .

When proving that there are uncountably many homogeneous digraphs, Henson
specified an infinite set T of tournaments T3,T4, . . . with the property that Ti does
not embed into Tj if i 6= j. The tournament Tn, for n ≥ 3, in Henson’s set T has
vertices 0, . . . , n+ 1, and the following edges:

• (i, i+ 1) for 0 ≤ i ≤ n;
• (0, n+ 1);
• (j, i) for j > i+ 1 and (i, j) 6= (0, n+ 1).

Proposition 13.3.1. The problem CSP(BT ) is coNP-complete.
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Dichotomy

No Dichotomy CSPs in SNP

connected 
SNP
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finite-domain 
CSPs
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monotone 

SNP

Dichotomy
unknown

connected 
guarded 

monotone 
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Figure 13.1. Dichotomies and non-dichotomies for fragments of SNP.

Proof. The problem is contained in coNP, because we can efficiently test whether
a sequence v1, . . . , vk of distinct vertices of a given directed graph A induces Tk in
A, i.e., whether (vi, vj) is an arc in A if and only if (i, j) is an arc in Tk, for all
i, j ∈ {1, . . . , k}. If for all such sequences of vertices this test is negative, we can
be sure that A is from Forbemb(T ∪ {L}), and hence maps homomorphically to BT .
Otherwise, A embeds a structure from T , and hence does not map homomorphically
to BT .

The proof of coNP-hardness goes by reduction from the complement of the NP-
complete 3SAT problem (see Example 1.2.2), and is inspired by a classical reduction
from 3SAT to the clique problem. For a given 3SAT instance, we create an instance
A of CSP(BT ) as follows: If

(`10 ∨ `20 ∨ `30), . . . , (`1k+1 ∨ `2k+1 ∨ `3k+1)

are all the clauses of the 3SAT formula for some positive or negative literals `ij (we
assume without loss of generality that the 3SAT instance has at least three clauses
and that each clause has exactly three literals), then the vertex set of A is

{(0, 1), (0, 2), (0, 3), . . . , (k + 1, 1), (k + 1, 2), (k + 1, 3)} ,

and the arc set of A consists of all pairs ((i, j), (p, q)) of vertices such that `ji 6= ¬`qp
(where we identify literals of the form x and of the form ¬¬x) and such that (i, p) is
an arc in Tk.

We claim that a 3SAT instance is unsatisfiable if and only if the created instance A
maps homomorphically to BT . The 3SAT instance is satisfiable iff there is a mapping
from the variables to true and false such that in each clause at least one literal, say

`j00 , . . . , `
jk+1

k+1 , is true. This is the case if and only if the vertices (0, j1), . . . , (k+1, jk+1)
induce Tk in A, i.e., ((i, ji), (p, jp)) is an edge if and only if (i, p) is an edge in Tk.
This is the case if and only if Tk embeds into A. To conclude, it suffices to prove that
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Tk embeds into A if and only if A does not map homomorphically to BT . It is clear
that if Tk embeds into A, then A does not map homomorphically to BT . Conversely,
if A does not homomorphically embed to BT , then there exists a j such that there
is an embedding e of Tj into A. Then for any (i, j), (p, q) in the image of e we have
that (i, p) is an edge of Tk. Therefore, the mapping that sends an element u of Tj
to the first component of e(u) is an embedding of Tj into Tk. Since Tj and Tk are
homomorphically inequivalent for all distinct j, k ≥ 3 we obtain that j = k and that
Tk embeds into A, which finishes the proof. �

We now modify the proof of Ladner’s theorem given in [307] (which is basically
Ladner’s original proof) to create a subset T0 of T such that CSP(BT0) is in coNP, but
neither in P nor coNP-complete (unless coNP=P). One of the ideas in Ladner’s proof
is to ‘blow holes into SAT’, so that the positive instances of the resulting problem are
too sparse to be NP-complete and too dense to be in P. Our modification is that we
do not blow holes into a computational problem itself, but that we ‘blow holes into
the obstruction set T of CSP(BT )’.

In the following, we fix one of the standard encodings of graphs as strings over the
alphabet {0, 1}. Let M1,M2, . . . be an enumeration of all polynomial-time bounded
Turing machines, and letR1, R2, . . . be an enumeration of all polynomial-time bounded
reductions. We assume that these enumerations are effective; it is well known that
such enumerations exist.

The definition of T0 uses a Turing machine F that computes a function f : N→ N,
which is defined below. The set T0 is then defined as follows.

T0 = {Tn | f(n) is even}
The input number n is given to the machine F in unary representation. The compu-
tation of F proceeds in two phases. In the first phase, F simulates itself1 on input
1, then on input 2, 3, and so on, until the number of computation steps of F in this
phase exceeds n (we can always maintain a counter during the simulation to recognise
when to stop). Let k be the value f(i) for the last input i for which the simulation
was completely performed by F .

In the second phase, the machine stops if phase two takes more than n compu-
tation steps, and F returns k. We distinguish whether k is even or odd. If k is even,
all isomorphism types of directed graphs A on s = 1, 2, 3, . . . vertices are enumerated.
For each directed graph A in the enumeration the machine F simulates Mk/2 on the
encoding of A. Moreover, F computes whether A maps homomorphically to BT0 .
This is the case if for all structures Tl ∈ T that embed into A the value of f(l) is
even. So F tests for l = 1, 2, . . . , s whether Tl embeds to A (F uses any straightfor-
ward exponential time algorithm for this purpose), and if it does, simulates itself on
input l to find out whether f(l) is even. If

(1) Mk/2 rejects and A maps homomorphically to BT0 , or
(2) Mk/2 accepts and A does not map homomorphically to BT0 ,

then F returns k + 1 (and f(n) = k + 1).
The other case of the second phase is that k is odd. Again, F enumerates all

isomorphism types of directed graphs A with s = 1, 2, 3, . . . vertices, and simulates
the computation of Rbk/2c on the encoding of A. Then F computes whether the
output of Rbk/2c encodes a directed graph A′ that maps homomorphically to BT0 .
The digraph A′ maps homomorphically to BT0 if and only if for all tournaments Tl
that embed into A′ the value f(l) is even. Whether Tl embeds into A′ is tested with a

1Note that by the fixpoint theorem of recursion theory we can assume that F has access to its
own description.
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straightforward exponential-time algorithm. To test whether f(l) is even, F simulates
itself on input l. Finally, F tests with a straightforward exponential-time algorithm
whether A maps homomorphically to BT . If

(3) A maps homomorphically to BT and A′ does not map homomorphically to
BT0 , or

(4) A does not map homomorphically to BT and A′ maps homomorphically to
BT0 ,

then F returns k + 1.

Lemma 13.3.2. The function f is a non-decreasing function, that is, for all n we
have f(n) ≤ f(n+ 1).

Proof. We inductively assume that f(s − 1) ≤ f(s) for all s ≤ n, and have to
show that f(n) ≤ f(n+ 1). Since F has more time to simulate itself when we run it
on n + 1 instead of n, the value i computed in the first phase of F cannot become
smaller. By inductive assumption, k = f(i) cannot become smaller as well. In the
second phase, we either return k or k + 1. Hence, if k becomes larger in the first
phase, the output of F cannot become smaller. If k does not become larger, then the
only difference between the second phase of F for input n + 1 compared to input n
is that there is more time for the computations. Hence, if the machine F on input n
verifies condition (1),(2),(3),(4) for some digraph A (and hence returns k+1), then F
also verifies this condition for A on input n+ 1, and returns k+ 1 as well. Otherwise,
f(n) = k, and also here f(n+ 1) ≥ f(n) holds. �

Lemma 13.3.3. For every n0 ∈ N there exists an n > n0 such that f(n) > f(n0)
(unless coNP 6= P).

Proof. Assume for contradiction that there exists an n0 such that f(n) equals
a constant k0 for all n ≥ n0. Then there also exists an n1 such that for all n ≥ n1

the value of k computed by the first phase of F on input n is k0.
If k0 is even, then on all inputs n ≥ n1 the second phase of F simulates Mk0/2 on

encodings of an enumeration of digraphs. Since the output of F must be k0, for all
digraphs neither (1) nor (2) can apply. Since this holds for all n ≥ n1, the polynomial-
time bounded machine Mk0/2 correctly decides CSP(BT0), and hence CSP(BT0) is in
P. But then there is the following polynomial-time algorithm that solves CSP(BT ),
a contradiction to coNP-completeness of CSP(BT ) (Proposition 13.3.1) and our as-
sumption that coNP 6= P.

// Input: A finite digraph A.
If A maps homomorphically to BT0 then accept.
Test whether one of the finitely many digraphs in T \ T0 embeds into A.
Accept if none of them embeds into A.
Reject otherwise.

If k0 is odd, then on all inputs n ≥ n1 the second phase of F does not find a
digraph A for which (3) or (4) applies, because the output of F must be k0. Hence,
Rbk0/2c is a polynomial-time reduction from CSP(BT ) to CSP(BT0), and by Propo-
sition 13.3.1 the problem CSP(BT0) is coNP-hard. But note that because f(n) equals
the odd number k0 for all but finitely many n, the set T0 is finite. Therefore, CSP(BT0)
can be solved in polynomial time, contradicting our assumption that coNP 6= P. �

Theorem 13.3.4. CSP(BT0) is in coNP, but neither in P nor coNP-complete
(unless coNP=P).
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Proof. It is easy to see that CSP(BT0) is in coNP. On input A the algorithm
non-deterministically chooses a sequence of l vertices, and checks in polynomial time
whether this sequence induces a copy of Tl. If yes, the algorithm computes f(l), which
can be done in linear time by executing F on the unary representation of l. If f(l)
is even, the algorithm accepts. Recall that A does not map homomorphically to BT0
iff a tournament Tl ∈ T0 embeds into A, which is the case if and only if there is an
accepting computation path for the above non-deterministic algorithm.

Suppose that CSP(BT0) is in P . Then for some i the machine Mi decides
CSP(BT0). By Lemma 13.3.2 and Lemma 13.3.3 there exists an n0 such that f(n0) =
2i. Then there must also be an n1 > n2 such that the value k computed during the
first phase of F on input n1 equals 2i. Since Mi correctly decides CSP(BT0), the
machine F returns 2i on input n1. By Lemma 13.3.2, the machine F also returns 2i
for all inputs from n1 to n2, and by induction it follows that it F returns 2i for all
inputs larger than n ≥ n0, in contradiction to Lemma 13.3.3.

Finally, suppose that CSP(BT0) is coNP-complete. Then for some i the machine
Ri is a valid reduction from CSP(BT ) to CSP(BT0). Again, by Lemma 13.3.2 and
Lemma 13.3.3 there exists an n1 such that the value k computed during the first phase
of F on input n1 equals 2i. Since the reduction Ri is correct, the machine F returns
2i on input n1, and in fact returns 2i on all inputs greater than n1. This contradicts
Lemma 13.3.3. �

The same technique has been applied to prove several other non-dichotomy re-
sults, e.g. for infinite constraint languages [63], in the parameterised complexity set-
ting [229], and for the complexity of planning in AI [133].



CHAPTER 14

Conclusion and Outlook

Constraint satisfaction problems provide a common framework for a variety of
computational problems that appeared in temporal reasoning (Sections 1.6.1 and 1.6.3),
phylogenetic analysis (Section 1.6.2), computational linguistics (Section 1.6.4), spatial
reasoning (Section 1.6.6), scheduling (Section 1.6.8), and verification (Section 1.6.5).
They generalise graph and digraph homomorphism problems that have been studied
in combinatorics (see Section 1.1) and have strong links with complexity classification
problems in finite model theory, e.g., for the complexity class MMSNP (see Sec-
tion 1.4). CSPs also generalise network satisfaction problems that have been studied
for finite relation algebras (see Section 1.5).

In spite of the diversity of the computational problems from these areas, they
can all be formulated as constraint satisfaction problems for an appropriately chosen
infinite-domain template structure. This common framework has the advantage that
the same tools can be applied to study their computational complexity, for instance

395
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the concepts of primitive positive interpretability and homomorphic equivalence, in-
troduced in Chapter 3. Very often, we can even find templates that satisfy strong
model-theoretic assumptions; the reader has learned the relevant model theory in
Chapters 2 and 4.

If the template B of a CSP can be chosen to be ω-categorical, then we have addi-
tional methods to study definability and interpretability in B via the automorphism
group of B. In Chapter 4 we have presented a beautiful dictionary to translate back-
and-forth between concepts and results from model theory and from permutation
groups. This dictionary can be extended to primitive positive definability and inter-
pretability if we replace the automorphism group of B by the polymorphism clone
of B, which takes us into universal algebra in Chapter 6. The universal-algebraic
perspective is also very fruitful for example to better understand one of the main
algorithmic approach to infinite-domain CSPs, which is local consistency. Local con-
sistency algorithms can often be formulated using Datalog programs from finite model
theory; pebble games can be used to prove Datalog inexpressibility results; all this
can be found in Chapter 8.

Operation clones carry a natural topology, the topology of pointwise convergence,
which makes them topological clones, similarly as permutation groups may be viewed
as topological groups. Chapter 9 shows that the computational complexity of the CSP
of an ω-categorical structure only depends on the polymorphism clone, viewed as a
topological clone. The most recent developments concerning polymorphism clones
of ω-categorical structures have been presented in Chapter 10. Finally, one of the
strongest combinatorial tools for obtaining complexity classification results with the
universal-algebraic approach is Ramsey theory, via canonical functions, presented in
Chapter 11; all this is used for the complexity classification of temporal constraint
languages in Chapter 12.

The relations among the research areas mentioned are illustrated in Figure 14.1.

14.1. Future Research Directions

Infinite-domain constraint satisfaction, even when restricted to ω-categorical tem-
plates, is still in its infancy. The infinite-domain tractability conjecture for reducts
of finitely bounded homogeneous structures remains wide open. There are several
important directions for future research.

14.1.1. Universal algebra. Some of the important results that hold for oper-
ation clones on finite domains have not yet been generalised to oligomorphic clones;
outstanding examples are the equivalence of the existence of a Siggers operation, the
existence of a weak near-unanimity operation, and the existence of a 4-ary Siggers op-
eration mentioned in Section 6.9 (cf. Questions 21 and 22). A main obstruction seems
to be that absorption theory [26] has only been developed for finite-domain algebras.
See Section 14.2.6 for a list of concrete open research questions in this direction.

14.1.2. Polynomial-time tractability. We already know that ω-categorical
model-complete cores B without a pseudo-Siggers polymorphism have an NP-hard
CSP. Therefore, if the infinite-domain tractability conjecture (Conjecture 3.7.1) is
true, then what is left to classify the computational complexity of all finite-signature
first-order reducts of finitely bounded homogeneous structures is to prove polynomial-
time tractability of CSP(B) if B has a pseudo-Siggers polymorphism. The main
challenges here are

• finding suitable polynomial-time algorithms, and
• proving that if B has a pseudo-Siggers polymorphism then one of these

algorithms applies.
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Figure 14.1. Landscape of CSP-relevant research areas around
the year 2003: universal algebra and model theory had long sepa-
rated into different research communities [213]; the Kechris-Pestov-
Todorčević connection [237] had just been announced, creating the
intersection of topological dynamics and structural Ramsey theory
for homogeneous structures. The intersection of model theory and
infinite permutation groups for ω-categorical structures was recog-
nised as a fruitful field of research already since the 80s [234]. Ho-
mogeneous structures had been used to construct representations of
relation algebras [209,211], and relation algebras had been used to
model CSPs [210,259]. The finite-domain CSP research community
with its big intersection of universal algebra, finite model theory, and
graph homomorphisms [149] had not yet been fully formed; however,
the connection between CSPs and universal algebra was already dis-
covered in the late 90s [224], and the field of CSPs as a common
topic in graph homomorphisms and finite model theory was basically
created by Feder and Vardi [177].

This suggests a bottom-up approach: prove that if the polymorphism clone of B
satisfies identities that are stronger than the pseudo-Siggers identity, CSP(B) can
be solved in polynomial time. Examples of such identities for which this has been
successful are

• quasi near-unanimity identities from Section 8.5.2, in which case we can use
Datalog to solve CSP(B) in polynomial time;
• canonical pseudo-Siggers polymorphisms from Section 10.5.5, in which case

we can reduce CSP(B) to a polynomial-time tractable finite-domain CSP.

A next step might be to find stronger conditions that imply that CSP(B) can be
expressed in fixed-point logic (Section 8.7). Some strong polymorphism conditions
that should imply polynomial-time tractability can be found in the open problem list,
Section 14.2.6.

14.1.3. Classification results. With the techniques developed in this text, sev-
eral complexity classification projects now appear to be feasible. We expect interest-
ing polynomial-time tractable CSPs for the class of first-order reducts of ω-categorical
semilinear orders (these were classified by Droste [162]), so classifying the CSP for
finite-signature first-order reducts of the structure (S;≤) from Section 5.2 appears to
be an attractive goal. Another challenge would be a full classification for guarded
monotone SNP (Section 5.6.3). Several other promising concrete classification tasks
are listed in Section 14.2.9.

14.1.4. CSPs over numerical domains. Many constraint satisfaction prob-
lems cannot be formulated with ω-categorical templates; this is typically the case if the
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CSP involves some sort of numeric reasoning, e.g., if it can express addition over some
infinite set. These problems often occur in practice. Some of the techniques developed
here for ω-categorical structures can be applied by working with sufficiently saturated
templates [65]. In this way, a complete complexity classification for CSPs of first-
order reducts of (Z;<) has been obtained [84]. However, even the CSPs for first-order
reducts of (Q;<, {(x, y) | x = y + 1}) or of (Z; {(x, y) | x = 2y}, {(x, y) | x = y + 1})
have not yet been fully classified. Unlike ω-categorical templates, there are even con-
crete structures over numerical domains whose CSP is neither known to be in P nor
known to be NP-hard, such as

• CSP(Z; {(x, y) | x = 2y}, {(x, y) | x = y + 1}, <),
• CSP(Q; {(x, y) | x = 2y}, {(x, y) | x = y + 1}, Rmin),
• CSP(R; {(x, y, z) | x = y + z}, {1}, {(x, y) | y ≥ x2}).

A survey article about the complexity of numeric CSPs is available [81].

14.2. Open Problem List

We list concrete open research questions whose answer would help to improve our
understanding of the infinite-domain tractability conjecture. Luckily, solving all of
these problems might not be necessary to prove the conjecture.

14.2.1. Classical model theory.

(1) (Cherlin [137], Problem D) Let B be countably infinite and homogeneous
in a finite binary relational signature. If B has a primitive automorphism
group, is acl(A) = A for all finite A? Addition: Can we show this under the
additional assumption that B is finitely bounded?

(2) Does every primitive oligomorphic permutation group have the orbital ex-
tension property (Definition 6.1.28)? No [286]. The authors show that an
example found by Cherlin [135] has the required properties [286, Proposi-
tion 3.22].

(3) (Macpherson [278], Question 2.2.7 (4)) Is the age of a homogeneous struc-
ture well-quasi-ordered by embeddings if and only if the growth of the num-
ber of orbits of n-element subsets is bounded from above by an exponential
function in n?

14.2.2. Existential positive model theory.

(4) Thomas’ conjecture [348] states that every countable homogeneous structure
with finite relational signature B has only finitely many first-order reducts,
up to first-order interdefinability. We ask the following strengthening: under
the same assumptions on B, are there only finitely many endomorphism
monoids of model-complete cores of first-order reducts of B?

(5) If B is a reduct of a finitely bounded homogeneous structure, is the model-
complete core of B also the reduct of a finitely bounded homogeneous struc-
ture?

14.2.3. Automorphism groups.

(6) (Macpherson and Praeger [280]) If B is a countable homogeneous structure
B with a finite relational signature, does Aut(B) have just finitely many
closed normal subgroups?

(7) Is the property to be a first-order reduct of a finitely bounded homogeneous
structure a property of the topological group?
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(8) We have seen that the property of an oligomorphic clone to be finitely related
is a property of the topological clone (Proposition 9.5.19). There is an
analogous statement for groups instead of clones. Can this property be
expressed naturally in terms of the topological group? We mention that the
decision question to decide whether a given finite algebra is finitely related
(Definition 6.1.2) is undecidable [295].

14.2.4. Polymorphism clones.

(9) (Question 9.5.1) Does there exist a reduct of a finitely bounded homogeneous
structure B such that Pol(B) has a homomorphism to the clone projections
Proj, but no continuous one?

(10) Let ξ be an isomorphism between the polymorphism clones of two (reducts
of) finitely bounded homogeneous structures. Is ξ always a homeomorphism?

(11) Suppose that there exists an isomorphism between the polymorphism clones
of two (reducts of) finitely bounded homogeneous structures. Does there
also exist an isomorphism which is additionally a homeomorphism?

(12) Is it consistent with ZF that every homomorphism from an oligomorphic
clone to Proj is continuous?

(13) Is it consistent with ZF that every isomorphism between polymorphism
clones of countably infinite structures is a homeomorphism?

14.2.5. Ramsey theory.

(14) Can every finitely bounded homogeneous structure be expanded to a ho-
mogeneous finitely bounded structure with the Ramsey property? (Conjec-
ture 11.1.1).

(15) Can every homogeneous structure with finite relational signature be ex-
panded to a homogeneous structure with finite relational signature and ad-
ditionally the Ramsey property?

(16) Can the model-complete core of a reduct of a finitely bounded homogeneous
Ramsey structure be expanded to a finitely bounded homogeneous Ramsey
structure? Yes [296].

14.2.6. Universal algebra.

(17) Is every algebra with few subpowers (see Section 6.9.2) finitely related (Def-
inition 6.1.2)?

(18) Does every ω-categorical structure with finite relational signature and a
quasi Jónsson polymorphism (Section 6.9.3) also have a quasi near-unanimity
polymorphism?

(19) Does every ω-categorical structure with a quasi Jónsson polymorphism also
have a quasi directed Jónsson operation?

(20) Does every ω-categorical structure with finite relational signature and an
(idempotent) Jónsson polymorphism also have a near-unanimity polymor-
phism?

(21) Does every ω-categorical model-complete core with a 6-ary pseudo-Siggers
polymorphism also have some pseudo weak near-unanimity polymorphism?
No [21].

(22) Does every ω-categorical model-complete core with a 6-ary pseudo-Siggers
polymorphism also have a 4-ary pseudo-Siggers polymorphism? This would
follow from a positive answer to the following question of Barto and Pinsker.

(23) If B is an ω-categorical digraph without sources and sinks of algebraic
length 1, it it true that either K3 ∈ HI(B) or B contains a pseudo-loop?
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(Conjecture 3.7 in [30]; it generalises Theorem 6.9.4 in the same way as
Lemma 10.2.3 generalises Lemma 10.2.2.)

(24) Does every countably infinite ω-categorical model-complete core with an es-
sential polymorphism also have a binary essential polymorphism? No [286].
However, if the assumption of having an essential polymorphism is replaced
by the assumption of not pp-constructing K3, the answer is yes [286, Theo-
rem 3.14]. The answer is also yes if the automorphism group of the structure
is transitive [286, Corollary 3.7].

(25) Consider the following equivalence relation on finite structures [103]: put
A ∼ B if A ∈ HI(B) and B ∈ HI(A). Does this equivalence relation have
countably many equivalence classes? Note that there are uncountably many
structures with the domain {0, 1, 2} up to primitive positive interdefinabil-
ity [355,357]; however, the equivalence relation defined above is coarser. It
is already open whether the restriction of the equivalence relation described
above to three-element structures has countably many equivalence classes.

(26) Does the poset from the previous question have uncountably many equiv-
alence classes for countable structures that are preserved by all permuta-
tions? (This would be a strengthening of the result from [58] which states
that there are uncountably many closed clones over N that are preserved by
all permutations.)

(27) Does every ω-categorical structure without algebraicity that can be solved
by Datalog also have a binary injective polymorphism? No [286, Corollary
8.10]. See [314] for positive results about the existence of binary injective
polymorphisms.

(28) Is every oligomorphic clone whose invertible unary operations lie dense in
the unary part are locally generated by its diagonally canonical operations?
Equivalently, is it true that a relation R is primitively positively definable
in an ω-categorical model-complete core structure B if and only if B is
preserved by all diagonally canonical polymorphisms of B?

(29) Can expressibility in fixed point logic of the CSP for a model-complete core
first-order reduct B of a finitely bounded homogeneous structure be charac-
terised by a pseudo height-one condition that must hold in the polymorphism
clone of B? A candidate for such a condition is proposed in [92].

14.2.7. Finite model theory.

(30) Is there a Henson digraph (Example 2.3.12) whose CSP is in monotone SNP
(Section 1.4.3) but not in FO?

(31) Is every CSP in existential MSO also in SNP?
(32) Is every CSP which is both in SNP (and hence in monotone SNP, see Sec-

tion 5.6.2) and in USO (universal second-order logic) in P?
(33) Is every CSP in MSO the CSP for an ω-categorical structure? Yes [75].
(34) Is every problem in SNP equivalent to a finite disjunction of connected SNP

queries? That is, can we replace MMSNP by monotone SNP in Proposi-
tion 1.4.13? No [75].

14.2.8. Polynomial-time tractability.

(35) Suppose that B is a reduct of a finitely bounded homogeneous structure
with a quasi edge polymorphism. Is CSP(B) in P? The same question is
open even if B has an (idempotent) edge polymorphism.

(36) Suppose that B is a reduct of a finitely bounded homogeneous structure with
a chain of quasi Pixley polymorphisms (cf. Section 8.5.5). Can CSP(B) be
solved in Datalog? The question is already open for chains of (idempotent)
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Pixley polymorphisms. Note that a positive answer to Question 18 also
implies a positive answer to this question, because chains of quasi Pixley
operations provide chains of quasi Jonsson operations (Proposition 6.9.12).

(37) Suppose that B is a reduct of a finitely bounded homogeneous structure and
B is preserved by totally symmetric operations of all arities. Can CSP(B)
be expressed in fixed point logic?

14.2.9. Open classifications. In each of the following questions we describe
classes of computational problems that can be formulated as CSPs for reducts of
finitely bounded homogeneous structures where the computational complexity has
not yet been classified. Does Conjecture 3.7.1 hold for all

(38) CSPs for first-order reducts of RCC5 (Section 5.4; [66])?
(39) CSPs for first-order reducts of Allen’s Interval Algebra [66]?
(40) CSPs for first-order reducts of finitely bounded homogeneous structures

whose age has free amalgamation (this has also been raised in [85])?
(41) CSPs for structures with a first-order interpretation over (N; 6=)? This ques-

tion was also posed in [86].
(42) CSPs for structures where the number of orbits of n-element subsets grows

at most polynomially? For some partial results in this direction, see [52,79,
176].

(43) CSPs for structures with a first-order interpretation over (Q;<) (harder than
the previous two, mentioned already in [47])?

(44) CSPs for finite-signature structures that are first-order reducts of finitely
bounded homogeneous structures that are additionally ω-stable [346]1.

(45) general network satisfaction problems for finite relational algebras with a
normal representation (see [51])?

(46) CSPs that can be expressed in guarded monotone SNP (Section 5.6.3)?

Moreover, in each of the classes above, we might ask for classifications whether the
respective problems can be solved by Datalog or expressed in fixed point logic. We
pick out two of the resulting classification problems that appear to be particularly
interesting.

(47) For which structures B with a first-order interpretation over (Q;<) can
CSP(B) be expressed in fixed point logic?

(48) Is it true that a problem in connected MMSNP can be expressed in Datalog
if and only if the ω-categorical model-complete core template of the corre-
sponding CSP (see Section 5.6.2) has polymorphisms satisfying the pseudo-
variants (cf. Section 10.1) of the identities presented in Theorem 8.8.2 (which
capture Datalog expressibility over finite domains; this question has already
been asked in [80], aiming at a solution to an open problem from [44])?

14.2.10. Complexity theory.

(49) Are there ω-categorical structures whose CSP is in NP, but neither NP-hard
nor in P?

(50) Is there a complexity non-dichotomy for ω-categorical structures B if CSP(B)
is in SNP?

(51) Is every ω-categorical CSP equivalent to the CSP of an ω-categorical (di-
rected or even undirected) graph? The answer for digraphs is positive [122].

1Note that ω-stability alone is not strong enough to hope for a complexity classification:

Bodirsky and Grohe [63] constructed for every computational problem a constraint satisfaction prob-
lem which is equivalent under polynomial-time Turing reductions and whose template is ω-stable.
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14.2.11. Decidability of meta questions.

(52) Given a first-order reduct B of a finitely bounded homogeneous structure
(represented as discussed in Section 11.6), can we decide whether Pol(B) has
a uniformly continuous minor-preserving map to the projections? Equiva-
lently, can we decide whether the model-complete core of B has a pseudo-
Siggers polymorphism?

(53) Given a first-order reduct B of a finitely bounded homogeneous structure,
is the following decidable: Is CSP(B) in Datalog? Is it in (`, k)-Datalog for
some fixed `, k ∈ N?

(54) Can we effectively decide for a given finite set of finite τ -structures whether
Forbemb(F) is an amalgamation class (a positive answer is known if all sym-
bols in τ are binary; see Proposition 2.3.19)?

(55) Can we effectively decide first-order definability in first-order reducts of ho-
mogeneous finitely bounded Ramsey structures?

14.2.12. Theory of relation algebras.

(56) Is there a finite relation algebra with a fully universal square representation,
but without an ω-categorical fully universal square representation?

(57) Is there a finite relation algebra with an ω-categorical fully universal square
representation but without a fully universal square representation which is
not a first-order reduct of a finitely bounded homogeneous structure?

(58) Find a finite relation algebra A such that there is no ω-categorical structure
B such that the general network satisfaction problem for A equals the con-
straint satisfaction problem for B (note that we do not insist on B being a
representation of A).

(59) Find a finite relation algebra with an ω-categorical fully universal square
representation which is not the orbital relation algebra of an ω-categorical
structure.

14.2.13. Other.

(60) Let τ be a finite relational signature. Is there for all countable ω-categorical
τ -structures A,B a countable ω-categorical structure C such that for all
finite (equivalently, for all countable) H

A× H→ B ⇔ H→ C ?

This would turn the lattice arising from ordering ω-categorical τ -structures
by the existence of homomorphisms (Remark 4.2.21) into a Heyting algebra.
The corresponding statement is true for the class of all finite τ -structures;
the so-called A-th power of B satisfies the given condition for C and is finite
if A and B are finite; see [204,262].
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order. Advances in Mathematics, 267:94–120, 2014.

[307] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[308] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.

[309] C. Pech and M. Pech. Towards a Ryll-Nardzewski-type theorem for weakly oligomorphic struc-

tures. Math. Log. Q., 62(1-2):25–34, 2016.
[310] C. Pech and M. Pech. Reconstructing the topology of the elementary self-embedding monoids

of countable saturated structures. Studia Logica, 106(3):595–613, 2018.

[311] M. Pinsker. Rosenberg’s characterization of maximal clones. Diploma thesis, 2002.
[312] M. Pinsker. Maximal clones on uncountable sets that include all permutations. Algebra Uni-

versalis, 54(2):129–148, 2005.

[313] M. Pinsker. The number of unary clones containing the permutations on an infinite set. Acta
Scientiarum Mathematicarum (Szeged), 71:461–467, 2005.
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[347] J. Thapper and S. Živný. The complexity of finite-valued CSPs. In Proceedings of the Sym-

posium on Theory of Computing Conference (STOC), Palo Alto, CA, USA, June 1-4, 2013,

pages 695–704, 2013.
[348] S. Thomas. Reducts of the random graph. Journal of Symbolic Logic, 56(1):176–181, 1991.

[349] B. Trakhtenbrot. The impossibility of an algorithm for the decidability problem on finite classes.

Proceedings of the USSR Academy of Sciences, 70(4):569–572, 1950. (in Russian).
[350] J. K. Truss. Infinite permutation groups. II. Subgroups of small index. Journal of Algebra,

120(2):494–515, 1989.

[351] T. Tsankov. Unitary representations of oligomorphic groups. Geometric and Functional Anal-
ysis, 22(2):528–555, 2012.

[352] R. Willard. Testing expressibility is hard. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming (CP), pages 9–23, 2010.

[353] S. Willard. General Topology. Dover Publications, 2004.
[354] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of semidefinite programming:

theory, algorithms, and applications. Springer, 2000.
[355] Y. I. Yanov and A. A. Muchnik. On the existence of k-valued closed classes without a finite

basis. Dokl. Akad. Nauk SSSR, 127:44–46, 1959. in Russian.
[356] D. Zhuk. Strong subalgebras and the constraint satisfaction problem. CoRR, abs/2005.00593,

2020.
[357] D. N. Zhuk. The lattice of all clones of self-dual functions in three-valued logic. Multiple-Valued

Logic and Soft Computing, 24(1-4):251–316, 2015.
[358] D. N. Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, pages
331–342, 2017. https://arxiv.org/abs/1704.01914.



418 BIBLIOGRAPHY

[359] A. Zucker. Topological dynamics of automorphism groups, ultrafilter combinatorics, and the
generic point problem. Transactions of the AMS, 368(9):6715–6740, 2016.



Index

(`, k)-consistency procedure, 217

(`, k)-tree, 218

H-colouring problem, 12

Kn-free, 62

F-free, 12

KH, 80

NAE, 16, 18, 164, 165

1IN3, 16, 163

KH+, 78

Proj, 180, 185, 275, 277

Sym(X), 103–105, 107, 252

Sym(N), 253–255, 258, 262, 263

ℵ0, 50

ℵ0-categorical, 98

G -set, 270

`-bounded conjunction, 219

`-decomposable relation, 232

`-decomposable structure, 232

∀∃+, 55

ifp, 242

κ-saturated, 60

JΦK, 139

F-free, 112

LO, 316, 323

ω, 50

ω-categorical, 8, 98

τ -formula, 54

τ -reduct, 17

τ -theory, 19, 54

Succ, 42, 143, 216

c-colouring, 312

h-inductive, 55

h-universal, 55

k-clique, 12

k-colorability problem, 12

k-set transitive, 106

k-transitive, 106

n-type, 59

1-in-3-3SAT, 15

2-set-transitive, 156

3-transitive, 206

3SAT, 15

4-ary Siggers operation, 197

abelian group, 241

absorption, 52

abstract

clone, 175

group, 52, 107

AC, 226

action, 107

by left translation, 257

product, 108

affine combination, 163

age of a structure, 62

algebra, 51, 166

polymorphism, 166

algebraic

approach, 7

closure, 111

length, 198

power, 109, 328

product, 109

algebraicity, 111

Allen’s Interval Algebra, 34, 67, 86, 89, 139,
318

amalgam, 62

amalgamation class, 62

amalgamation diagram, 62

amalgamation property, 62

1-point, 65

strong 1-point, 65

ambiguity degree, 297

and/or precedence constraints, 40

arc consistency procedure, 226

arity, 10

associativity, 52, 175, 189

atomic

formula, 15

atomic structure, 60

atomless, 99

atomless Boolean algebra, 99

automatic continuity, 262

automatic homeomorphicity, 262, 269

automorphism, 18, 54

axiom of choice, 50

back-and-forth argument, 60, 98

Baire space, 252, 253

base set, 10, 147

basic relation, 28

Basic Set Constraint Satisfiability, 135

basis, 250

basis at s, 250

419



420 INDEX

behaviour, 327

Betweenness Problem, 11

bi-interpretable, 277

bijunctive, 164

binary branching, 131

binary structure, 89

binary tree, 130

blocked variable, 371

body, 214

Boolean algebra, 52

Boolean satisfiability problem, 15

bound, 64

bounded treewidth duality, 219

bounded width, 215

box metric, 253, 267

branching time, 36

branching-time satisfiability problem, 36, 37,

132, 133

C-relation, 131

countable universal homogeneous binary
branching, 339

dense, 131

proper, 131

universal homogeneous, 155

C-set, 131

canonical

conjunctive query, 17

database, 17

function, 301, 324

operation, 302

subclone, 302

canonisation lemma, 326

Cantor space, 252

cardinal, 50

categorical product, 53

Cauchy continuous, 253

Cauchy sequence, 253

chain, 150

of directed Jónsson operations, 200

of Jónsson operations, 199

of Pixley operations, 201

of quasi directed Jónsson operations, 200

of quasi Jónsson operations, 199

of quasi Pixley operations, 201

clique, 12

clone, 147, 175

abstract, 175

formula, 177

homomorphism, 175

isomorphism, 175

of projections, 180

polymorphism, 147

term, 176

closed, 116

closure, 117

CNF, 23

colouring, 312

colours, 312

commutative, 158

commutativity, 52

compact, 255

compact space, 254

compatibility relation, 303

compatible metric, 253

complete

type, 59

complete lattice, 149

complete metric, 253

completely metrisable, 254

composition

of operations, 147

of relations, 28

composition of relations, 29

congruence, 106, 166

conjunctive normal form, 23

conjunctive query, 15

connected, 12

component, 12

primitive positive formula, 113

constraint, 15

constraint graph, 371

continuous, 250

contiunuous action, 256

controlled set, 239

convergence, 250

converse of relation, 29

core, 14, 74

core companion, 79

core theory, 74

coset, 257

left, 257

right, 257

countable, 50

countable random graph, 99

countably categorical, 8, 98

cover, 254

cubic graph, 238

cyclic operation, 196

Cyclic-ordering Problem, 11

D-relation, 132

Datalog, 213

program, 214

rule, 214

width, 214

Datalog program, 217

definable, 55

definable subset structure, 226

degree, 35

dense, 250

C-relation, 131

deterministic log-space, 18

diamond, 192

diamond-free, 192

dichotomy conjecture, 7, 14

digraph, 11

direct product, 53

of topological groups, 318

directed cycle, 231

directed graph, 11

discontinuous homomorphism, 276

discrete topological space, 250

disjoint union, 12



INDEX 421

disjunctive normal form, 370

distributive, 52

DNF, 370

domain, 10, 147

domain formula, 67

dominated operation, 347

dual, 339

dual-Horn formula, 164

duality

treewidth, 222

EDB, 214

edge operation, 198

elementary, 56

extension, 56

polymorphism, 153

polymorphism clone, 153

substructure, 56

embedding, 14, 53

endomorphism, 14, 54

entails, 20, 54

EP-Def, 333

equality constraint language, 203

equality constraint satisfaction problem, 203

equivalence class, 53

equivalence modulo a theory, 70

ESO, 21

ESO-sentence, 21

essential, 152

essentially

infinite signature, 87

injective operation, 210

unary, 152

establishing strong path consistency, 217

evaluation of a Datalog program, 216

EX-Def, 333

existential, 55

pebble game, 217

positive, 55

second-order logic, 21

theory, 55

existential positive, 55

definition, 116

sentence, 139

type, 59

existential positive n-type, 61

existentially closed, 78

existentially positively κ-saturated, 61

existentially positively closed, 76

expansion, 17, 51

extension, 51

extension property, 99, 218

extensional database predicate, 214

extremely amenable, 315

faithful group action, 107

few subpowers property, 199

fictitious argument, 152, 287

finite-domain dichotomy conjecture, 14

finitely bounded, 64, 109, 133

finitely generated, 51

finitely related operation clone, 147

first-countable, 250

first-order

definable, 55

expansion, 51

interdefinable, 55, 106

interpretation, 67

logic, 54

reduct, 51

theory, 19, 54

fixed point, 215, 242

fixed-point logic with counting, 245

FO, 139

FO-Def, 333

forall-exists, 55

formula, 54

atomic, 15

primitive positive, 15

quantifier-free, 54

FP+C, 245

free amalgam, 62

free amalgamation property, 62

free set of variables, 373

full interpretation, 69

full power, 89

full primitive positive interpretation, 81, 168

fully universal, 31, 138

function symbol, 50

Gaifman graph, 53

Galois connection, 104, 116, 148, 151

general network satisfaction problem, 30

generated

clone, 147

permutation group, 105

pseudo-variety, 167

subalgebra, 51

substructure, 51

variety, 167

generic superposition, 124, 317, 322

girth (of a graph), 238

girth (of a structure), 238

globally consistent instance, 229

graph, 12, 13

greatest lower bound, 52

group, 51

abstract, 52, 107

permutation, 52

group action, 107

guarded monotone SNP, 141

HA-homogeneous, 110

Hausdorff, 250

height-one identity, 189

Henson

digraph, 64, 339, 388

graph, 63, 339

HI-homogeneous, 110

homeomorphism, 250

homogeneous, 63, 109

directed graph, 63

poset, 63, 263

universal partial order, 63



422 INDEX

homomorphic, 11

equivalence, 14

image, 53

homomorphism, 11, 53

strong, 53

homotopic, 69

Horn, 55

Horn clause, 39

Horn clone, 210

Horn formula, 39, 164

Horn-3SAT, 39

Horn-SAT problem, 39

IDB, 214

idempotence, 52

idempotency, 52

idempotent clone, 160, 181

idempotent operation, 158

identity, 173

IFP, 242, 243

incidence graph, 238

independence, 204

index

of equivalence relation, 121

index of subgroup, 257

induced subgraph, 192

infinitary primitive positive formula, 149

infinite conjunction, 149

infinite signature, 44

infinite-domain

dichotomy conjecture, 65

tractability conjecture, 94

inflationary, 242

fixed point, 242

fixed-point formula, 243

injective in one direction, 211

instance of a CSP, 15

Integer Program Feasibility, 43

intensional database predicate, 214

interdefinable, 55

interpretation, 67

intersection of structures, 12

intersection-closed relation, 204

intransitive action, 108

invariant, 53, 147

invertible, 150

isolating formula, 60

isomorphism, 53

Jónsson chain, 199

Jónsson operations, 199, 200

join-semilattice, 52

joint embedding property, 62, 123

Kaiser hull, 78, 80

kernel, 53

lattice, 52, 106, 110, 117, 149, 151, 199, 200,

203, 231, 247, 400

leaf, 35, 130

leaf structure, 130

least fixed-point logic, 242

least upper bound, 52

left

coset, 257

invariant, 258

non-expansive, 267

translation, 257

left-linear point algebra, 36
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