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Abstract. The ferrofluid dynamics theory is applied to thermodiffusive problems in magnetic
fluids in the presence of magnetic fields. The most general expression of the mass flux are
given. By employing these results to experiments, global Soret coefficients in agreement with
measurements are determined. Also an estimate for so far unknown transport coefficient is
made.

1. Introduction
The thermodiffusive or Soret effect describes the establishment of concentrations gradients in
response to temperature gradients for a two- or multi-component fluid. Since the motion of the
ferromagnetic nanoparticles in magnetic fluids (MFs) can be influenced by external magnetic
fields, the Soret effect in MFs shows a strong dependence on any nonzero magnetic field strength
[1–3]. The changes of the Soret coefficient can be up to six times its zero field value [2] and even
a change of its sign was measured [2; 3]. Previous theoretical approaches [4; 5] need as input
the magnetophoretic velocity of the nanoparticles. Therefore certain microscopic properties are
assumed as e.g. spherical particles of equal size and the applicability of the Stokes hydrodynamic
drag. A comparison with the experimental results show great differences: the microscopic
approach gives changes of the Soret coefficient which are three orders of magnitude smaller than
those in the experiment. That means that concerning thermodiffusive processes in MFs there is
a wide gap between experiment and theory. Therefore as an alternative approach, a macroscopic
theory, called ferrofluid dynamics (FFD) theory, is tested to describe the measured phenomena.

2. Ferrofluid dynamics theory
The principal structure of the ferrofluid dynamics theory was laid down in [6]. It is ”... a
general, strictly macroscopic approach relying solely on symmetry considerations, conservation
laws, and thermodynamics.” [7]. An essential part of the theory is the set of material-dependent
parameters like susceptibilities and transport coefficients. They can be determined by well
design experiments [8] and used here as fit parameters to describe thermodiffusive processes in
magnetic fluids under the influence of magnetic fields.

As usual in thermodynamic theories, one starts with the thermodynamic energy density u. It
is taken as a function of the entropy density s, the density ρ(1) of the magnetic part of the fluid,
the momentum density g = ρv, the total density ρ, and the magnetic induction B = µ0(M+H)
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[6],
du = Tds + µ̃cdρ(1) + vidgi + µ(2)dρ + HidBi , (1)

where µ̃c = µ̃(1) − µ̃(2) is the difference in the chemical potentials of the two constituents
and ρ = ρ(1) + ρ(2) = φρm + (1 − φ)ρcl. The density of the magnetic particles (carrier
liquid) is denoted by ρm (ρcl) and φ is the volume fraction of magnetic particles in the
fluid. It is assumed that the magnetic part of the chemical potential can be separated,
µ̃c = µc(ρ, ρ(1), T,v) + µm

c (ρ, ρ(1), T,v,H). This assumption guarantees a nonzero chemical
potential for zero magnetic field and is confirmed by calculations for MFs, where the magnetic
part contributes additively to the total chemical potential [9]. The nonmagnetic part is given in
[10]. The dissipative mass flux jD is proportional to the gradients of the the temperature and
the chemical potential,

jD
i = ξ1∇iT + ξ∇iµ̃c + ξ‖MiMj∇jµ̃c + ξ×εijkMj∇kµ̃c . (2)

Whereas the first two terms characterize isotropic mass fluxes, the last two terms describe
anisotropic mass fluxes, namely parallel and perpendicular to the direction of M. The first two
transport coefficients, ξ1, ξ, are related to the classical equation of diffusion including the Soret
effect (see below). The last two coefficients, ξ‖, ξ×, reflect that the magnetic field may influence
the mass flux for any nonzero strength. Starting with these equations, one gets an analytical
result for the magnetic part of the chemical potential,

µm
c = −µ0

∫ H

0

∂M

∂ρ(1)
dH ′ . (3)

It allows a direct determination of µm
c if the magnetization M(H, ρ(1), T ) is known without any

assumption about the properties of the MF in contrast to [9; 11], where the knowledge of the
volume concentration of the nanoparticles [11] or the strength of the magnetodipole interaction
[9] is needed. One gets also a general expression for the mass flux,

jD

ρ
=

(
ξ1

ρ
+

ξ

ρ

∂µc

∂T

)
∇T +

ξ

ρ

∂µm
c

∂T
∇T +

∂µ̃c

∂T

[
ξ‖
ρ

M (M∇T ) +
ξ×
ρ

(M×∇T )
]

+ξ
∂µc

∂ρ(1)
∇c1 + ξ

∂µm
c

∂ρ(1)
∇c1 +

∂µ̃c

∂ρ(1)

[
ξ‖M (M∇c1) + ξ× (M×∇c1)

]

−µ0

ρ

∂M

∂ρ(1)

[
ξ∇H + ξ‖M (M∇H) + ξ× (M×∇H)

]
, (4)

which contains terms proportional to thermophoresis (∼∇T ), to diffusiophoresis (∼∇c1), and
to magnetophoresis (∼∇H). For zero magnetic field, Eq. (4) reduces to the classical result (see
Eq. (227), Chapt. XI in [10])

jD

ρ
=

(
ξ1

ρ
+

ξ

ρ

∂µc

∂T

)
∇T + ξ

∂µc

∂ρ(1)
∇c1 = c1c2DT∇T + Dc∇c1 (5)

with (DT ) Dc the (thermal) diffusion coefficient and c2 = 1 − c1. The concentration of the
magnetic particles c1 = ρ(1)/ρ is defined by the mass fraction of the total density ρ.

3. Application to experiments
According to the experiments [3], a horizontal unbounded layer of MF of thickness h sandwiched
between two plates is considered, where the lower one is cooled to T1 and the upper one is heated
to T2 > T1 (Fig. 1). These boundary conditions together with the equation of head conduction
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yield the temperature profile of the quiescent conductive state, T (z) = T0 +(T2−T1)(z/h), with
T0 = (T1 + T2)/2. The diffusion equation, ∂c1/∂t = div

(
jD/ρ

)
, and the boundary condition for

impenetrable plates, jD
z (z = ±h/2) = 0, in rearranged form,

−h

c1c2(T2 − T1)
∂c1

∂z

∣∣∣∣
z=±h/2

=
DT

Dc
= ST , (6)

allow the determination of the Soret coefficient in the zero field case. In the same way the
global Soret coefficient in the presence of a magnetic field can be determined by using Eq. (4).
Depending on the orientation of the magnetic field H to the temperature gradient ∇T (see
Fig. 1), the global Soret coefficients S

‖
T and S⊥T are functions of the material parameters Dc, ξ,

ξ‖, and ξ⊥ if M(H), µc, ST , and ρ(1) is known [12].

Figure 1. Sketch of the experimental
setup with the vertical temperature gradient
∇T inside the ferrofluid layer and the
external field H which is either parallel or
perpendicular to ∇T . Courtesy of [3].

To fit S
‖
T to the experimental data, the combined quantities ξ/Dc and ξ‖/Dc are used as

fit parameters, since ST = 0.15 K−1 was measured in the zero field case [3] but not Dc.
The blue solid line in Fig. 2 gives the best two parameter fit, yielding ξ/Dc = 8.2 kg s2/m5

and ξ‖/Dc = −1.41 · 10−7 kg s2/(m3 A2). To underline the relevance of ξ‖/Dc even for small

fields, the cyan dot-dashed line in Fig. 2 displays S
‖
T for ξ‖/Dc =0 and all other parameters as

before. Now the theoretical curve misses the measured data (¤) clearly. That underlines that
the transport coefficients of the anisotropic terms in Eq. (2) are necessary and nonzero for all
magnetic strengths.

In contrast to the parallel setup, in the perpendicular setup the following coarse
approximation is made: (∂c1/∂y)z=±h/2 shall be a constant C for all H-values tested here. Then
the global Soret coefficient S⊥T depends solely on F =(ξ⊥C)/Dc since ξ/Dc was determined in
the parallel setup. The best fit yields F =3.75 · 10−2 kg s2/(m5A). The inferior match with the
experimental data (see 4 and blue dashed line in Fig. 2) in comparison with the parallel setup
is due to the approximation that (∂c1/∂y)z=±h/2 is constant. In the real system it will depend
on the magnetic field since the solution for c1 depends on the magnetic field.

4. Conclusion
The ferrofluid dynamics theory is applied to thermodiffusive problems in magnetic fluids in the
presence of magnetic fields. A general expression for the mass flux is given which is independent
of the fluid properties, temperature distribution and assumptions about the concentration of the
nanoparticles. Applying these results to the experiments [3], it is shown that for thermodiffusive
problems in magnetic fluids anisotropic mass fluxes are relevant and no small contributions for
any nonzero strengths of the magnetic field. To elucidate this insight, more well designed
experiments and further theoretical as well as numerical analyses are needed.
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Figure 2. Global Soret coefficients S
‖
T and S⊥T against the magnetic field strength. The

blue solid line shows the best fit of S
‖
T with ξ/Dc = 8.2 kg s2/m5 and ξ‖/Dc = −1.41 · 10−7

kg s2/(m3 A2) to the experimental data (¤). The cyan dot-dashed line displays S
‖
T for the same

parameters but ξ‖/Dc = 0. The blue dashed line indicates the best fit of S⊥T with ξ/Dc = 8.2
kg s2/m5 and F =3.75 · 10−2 kg s2/(m5A) to the experimental data (4) taken from [3].
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