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Thermomagnetic convection of magnetic fluids in a cylindrical geometry

Adrian Lange?®
Institut fir Theoretische Physik, Universttdagdeburg, Postfach 4120, D-39016 Magdeburg, Germany

(Received 17 January 2002; accepted 1 April 2002; published 17 May) 2002

The thermomagnetic convection of magnetic fluids in a cylindrical geometry subjected to a
homogeneous magnetic field is studied. The study is motivated by a novel thermal insfatility
Luo et al, Phys. Rev. Lett82, 4134(1999]. As model system a composite cylinder with inner
heating is considered which reflects the symmetry of the experimentally setup. The general
condition for the existence of a potentially unstable stratification in the magnetic fluid is derived.
Within a linear stability analysis the critical external induction for the onset of thermomagnetic
convection is determined for dilute and nondilute magnetic fluids. The difference between both
thresholds allows to test experimentally whether a test sample is a dilute fluid or nd®200®
American Institute of Physics[DOI: 10.1063/1.1480264

I. INTRODUCTION sons. An analysis of thphysical quantitieseveals that both
characteristic time scales are several orders of magnitude

Magnetic fluids (MFs) are superparamagnetic fluids apart (below and Ref. 1 Direct spatial temperature
formed by a stable colloidal suspension of ferromagnetianeasurementé and independent measurements of all rel-
nanoparticles dispersed in a carrier lighiihe behavior of evant material parameters for organic dispersibskowed
MFs is characterized by the complex interaction of their hy-that the ring pattern is essentially caused by the temperature
drodynamic and magnetic properties with external forcescontribution and not by the concentration contribution. The
For the phenomenon of thermomagnetic convection thesdetermination of the relevant time scales confirmed that the
forces are a temperature gradient and a magnetic field. Mosxperiment is dominated by the characteristic time for con-
studies consider the geometry of a horizontal layer which isrection. Presently there is no sound theoretical description
simultaneously subjected to a vertical temperature gradierfor the dependence of the size of the outmost of the concen-
and either to a constant vertical magnetic fiefdor to a  tric rings on the laser powesee Fig. 2 in Ref. 18

vertical magnetic field with a constant gradiérgtudies for A major hindrance of the studied system in Refs. 9 and
a cylindrical geometry are féif and focus on the thermo- 10 is that it is almost impossible to gain information about
magnetic convection under microgravity. the spatial distribution of temperature and concentration in-

The present analysis of thermomagnetic convection in side the MF layer. Due to the lack of sound internal infor-
cylindrical geometry is motivated by a recently observedmation many hypotheses can be brought forward to explain
novel convective instability. In Refs. 9 and 10 a horizontalthe experimental results. Among them is the recent discus-
layer of MF between two glass plates is locally heated by #i0n Whether the shape instability of a hot nonmagnetic
focused laser beam. It passes perpendicu'ar'y through tH@Jbble Surrounded by MF can be aCCOUnted fOI’ the Observed
layer in the presence of a homogeneous vertical magnetiléhe”C’me”é“}’15
field. The absorption of the light by the fluid generates a  This situation motivates the present work in which a
temperature gradient and subsequently a refractive index gr20del system is studied which reflects the essentials of the
dient. This gradient is optically equivalent to a diverging &XPerimental setup. These are the axis-symmetry of the heat-
lens, leading to an enhancement of the beam divergence. A3 and the finite height and width of the layer. The aim is to
result, a stationary diffraction pattern of concentric rings isd€términe the necessary conditions and the critical magnetic
observed for zero magnetic field. Above a certain thresholdlductions for the appearance of axial convection columns.
of the magnetic field, the circular rings are replaced by po-1"us the focus is on the general requirements for thermo-
lygonally shaped patterns which switch among differentMagnetic convection in an axis-symmetric heated system.
shapes alternatively. Based numericsit was stated that the This paper IS organized as follows: The system gpd the
characteristic time scales for mass and thermal diffusion argl€vant equations of the problem as well as the condition for
equal? Thus thermal conduction and thermal diffusion con-2 potentially un_stable stratlflcat|qn in the flg_|d are dlsplayed
tribute equally to the formation of the diverging lens. The N the next section. Based on a linear stability analySisc.
polygonally shaped diffraction patterns were interpreted aé_ll ), the rgsults are presented and dls_cussed in Sec. IV. In the
“fingerprints” of vertical convection column& final section, the results are summarized.

Both claims are controversial due to the following rea-
Il. MODEL AND EQUATIONS

dAuthor to whom correspondence should be addressed. Fd@-391- The model SySte.m is give_n by a composite, CirCUlé}r cyl-
6711205; electronic mail: adrian.lange@physik.uni-magdeburg.de inder of heighth which consists of three parts. The inner
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diffusivity, and D the mass diffusion coefficient. Using the
data given in Refs. 1 and 9, one gets 4x 10 ®m?s ! and
D~8x10 ?m?s 1. Except in special designed geometries
as in Ref. 21, wher& >L 4, the characteristic time for dif-
fusion is of three orders of magnitude larger than the char-
acteristic time for convection. Since in our model both length
scales are equal to the gap widRh— R, diffusion phenom-
ena can be neglected.

The system is governed by the equation of continuity,
the Navier—Stokes equations, and the equation of heat con-

FIG. 1. Required destabilizing force profile of the radial component of theduction for the MF which are in nondimensional form

magnetic force density,f, for inner heating(a). A fluid volume at the
distancer + &r [solid rectangle(b)] experiences a larger force than a fluid
volume at the distance[dashed rectangléb)]. Moving the latter volume
from r to r+ &r [dot—dashed rectangléb)] results in an effective force
which points in the direction of the displacemédbt—dashed arrowp)].

cylinder of radiusk;, constant temperatuilg;, and constant
susceptibility x(T,) is surrounded by a middle cylinder of
radiusR,. In the gapR,—R; the temperature decreases to
To<T,; and consequently is a spatially varying quantity,
x=x[T(r)]. The outer cylinder has the radi&y,;, where
in the regionR,,— R, the constant temperatufigy and con-

stant susceptibilityy(To) is present. The whole system is time with (R
subjected to a homogeneous vertical magnetic field and itﬁressurqo Witzh prevl(Ry—

effective susceptibility is given by

1
Xeff:R_(RlX(Tl)+(R2_R1)
out

Rz
x| Ad T+ (R Rax(To | (@

. L T
In the presence of a uniform external magnetic induction

Bexi» the internal field in the gap is given by
=Bex/[o(1+N,)]. The susceptibility of the MF isy
=xL(1+ B1xL), wherey, is the susceptibility according to
Langevins theory which assumes noninteracting particle
Higher-order terms iry, are included in order to determine
the magnetic(or Kelvin) force density beyond the dilute
limit x= x, . The coefficient3,; was determined in different
microscopic modef§~8 which all provide the same value
B1=1/3. The demagnetization factdl accounts for the fi-

nite size of the composite cylinder and is a function of the

height-to-diameter ratigz=h/(2R,,) and the effective sus-
ceptibility xo.*° The Kelvin force follows then &8

B2 rad
fK:_ ext XLg XL’ @)
Mo XL
where
 XEIN+ Ba[BNXL(1+ Box) — 11} .
e (1+Ny)® '

divv=0, 4
T i AT+ MEF gradT .
IJr(vgraa)v—P( gradp+Av) + W (5
i = =

—+(vgrad T=AT, (6)

ot

where the Prandtl numbé&?= v/ x characterizes the fluid and
the magnetization numberM = B2 (R,—R;)?/(uopx?)
tunes the external excitation. Denotimgas kinematic vis-
cosity, the velocityv=(u,v) is scaled withx/(R,—R),
—R;)?%/ k, temperature with T,—T,), and
R;)?. A and grad are the corre-
sponding differential operators in the plane cylindrical coor-
dinatesr and ¢. Rigid boundary conditions are assumed for
the velocity at the inner and outer radius of the gap,
=gu=0 atr=»/(1—») andr=1/(1— »), where the radii
ratio is given byn=R;/R,. The temperature is assumed to
be constant at each boundai(r=»/(1—7))=T, and
(r=1(1-7n))=T,.

Since the Kelvin force is the only destabilizing force
present in the system, one has to determine which profile
leads to a potentially unstable stratification in the fluid. For
heating at the inner radius, the required profile is given in

S‘I‘—'ig. 1(a): Ther-component of the Kelvin force density has to

act inwards and its absolute value increases monotonically
outward. With such a profile a fluid volume at the distance
r + &r [solid rectangle in Fig. (b)] experiences a larger force
towards the center compared to a fluid volume at the distance
r (dashed rectangleMoving the latter fluid volume fronm

tor + &r (dot—dashed rectangleesults in an effective force
which points in the direction of the displaceméirtdicated
symbolically by the subtraction of the arrows in Figbl
bottom]. This force may enhance small displacements of
warmer fluid volumes towards cooler regions and thus mak-
ing the stratification potentially unstable.

The above argument has to be tested for the quiescent
conductive state which is given bys=0 and Tg=T,
+(T,—To)In[r(1— 5)VIn 5. Applying the condition for a de-
stabilizing force profile to the-component of the Kelvin

Considering MFs as binary mixtures, it is necessary tforce density in Eq(2) leads to the condition

evaluate the influence of temperature and concentration on
pattern phenomena by analyzing the corresponding time

scales. These are the characteristic time for convedtjon
=L2/x and for mass diffusioriy=L3/D, whereL.(Ly) is
the typical length for convectiofdiffusion), « the thermal
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TABLE |. Critical external inductionB, in dependence of the order of

3 approximation folN= 1.
N
RN
— ) unstable B. [T]
z N :
ot ~. T, [K] By K=1 K=2 K=3 K=4
o092t Y .

o \\\ 306 0 8.2527 8.2527 8.2502 8.2502
= N, 1/3 5.1952 5.1952 5.1937 5.1937
= S 320 0 04674 0.4674 0.4673 0.4673
g \~\~ ] 1/3 0.2942 0.2942 0.2942 0.2942
= 084 r RN T~ 340 0 0.1178 0.1178 0.1177 0.1177
2 stable S 13 007413 007413 007411  0.07411

] \“\~\ 370 0 0.042 30 0.042 29 0.042 28 0.042 28

. "N 1/3 0.026 63 0.026 62 0.026 62 0.026 62
0.76 ' . .
300 325 350 375 400
inner temperature T, [K]
JF XL
FIG. 2. Region of potentially unstable and stable force profiles for a fixed fo: XL XL

outer temperature of ;=300 K andy_ = 3. The four different sets arg,
=0, N=1 (long-dashed ling 8,=0, N=0.7 (dot—dashed ling 8,=1/3,
N=1 (solid line), andB,=1/3,N=0.7 (dotted ling, where the first and last
one practically coincide.

2
= TN OB o)
+ANXZB1(N—4B1)+ x (N—108,)+ 28,
—2N]. (10)

In order to satisfy the four boundary conditioms J,u=0 at
(=0, 1, the ansatz

Sinced;fy 1-is @ monotonously decreasing functionrofit is
sufficient if o;f <0 atr=7/(1—») in order to fulfill the
condition(7). Depending on the temperaturBsandT,, the
Langevin susceptibilityy, , the demagnetization factad¥,
and 3, the condition(7) entails that the radii ratig; has to
be larger than a critical value. For realistic temperatdres
above a room temperature ®f=300K, it becomes clear .
that this condition is met only in a narrow gégee Fig. 2 *Cmsin(b) + Dy codb)], (D
This is plausible because the nonlinear temperature profileith a= \/qm2 +a” andb= \/qm2 —a? is chosengy, is a root
To~In[r(1—7)] can be well approximated in a small gap by of a transcendental equation and the constBptsC,,, and
a linear profile which always satisfies the requirem@iif D, are determined by the boundary conditidifisr details
B,=0. see Ref. 22 With Eg. (11) the solution of Eq.(9) reads
T()=3K _ Pl Tm(0) +Cre%+ Cre™ %], T(£) is the so-
lution of the inhomogeneous equati@iue to its lengths not
given her¢ and the constant§,; andC, are determined by
the boundary condition§=0 at{=0, 1. Using Eq(11) and
Exploiting the smallness of the gap, in the linear stabilitythe solution forT({), Eg. (8) can be approximately solved
analysis terms ag{(dy+ 1/r) are approximated bz;’lrgand the by the Galerkin method. Due to the good convergence, all
new variable/=r— 5/(1— 7) is introduced. All small dis- presented results are based on the third approximésee
turbances from the ground state are decomposed into norm&able ). For the calculations fluid parameters of EMG 901
modes, i.e., into components of the forrfu,p,T] arg USGSP:14-523><110038|<92m*? L I_I_?]-54>< 10 °mPs™t, XLh
— " cos(A) W) PO T(D)] and v =e"sin( o), respec- and x=4.2x m°s™~.% The temperature at the
tively. The nondimensional growth rate is denotedntgndl| ouf[er radius of the ga}Bf 1 cmis f|x.ed aflo=300K. The
is the azimuthal wave number. For marginal stabilitys O, _helght of Fhe composite cylinder is given hy-1 cm and the
the differential equations to solve are inner radius byz= 1'0.177?('81.: 1/.3’N: 1). The choice of
7:(B1=1/3N=1) (solid line in Fig. 3 ensures that for all
9? 2 a? o _
| o e o

K
u(9)= X Plsinh(aZ)+ By coshas)

Ill. LINEAR STABILITY ANALYSIS

following parameter sets the conditi@n) is fulfilled.

IV. RESULTS AND DISCUSSION

:_azﬂf l‘ﬂ__@ ®) Solving Eq.(8) with the Galerkin method and subse-

P XLTé g’ guently minimization with respect to the azimuthal wave
number determines the critical external induct®nand the
92 = —— = corresponding wave numbkr(Figs. 3 and 4 Four different
((9_4“2_ @ )T:“(TO_Tl)' ©) parameter sets were chosen: A dilug, €0) and a nondi-

lute (B,=1/3) MF with Ry,= (N=1) and Ry

wherea=(1—- n)!l/7 and =3.33cm, respectively. The demagnetization fadtbfor
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FIG. 5. f,, a measure for the strength of the magnetic force, versus the

X0
Langevin ;usceptibility(l_ . The four different sets ar8,=0, N=1 (long-
dashed ling B,;=1/3, N=1 (solid ling), B;=0, N(y=0.15y.¢) (dot—
dashed ling and 8;=1/3, N(y=0.15y.4) (dotted ling. The vertical solid
line at y, =3 is a guide for the eye.

FIG. 3. Critical external inductiol, vs inner temperaturd&, for a room
temperature off ;=300 K. For a horizontally infinitely extended layer, i.e.,
Rou=, the inclusion of a quadratic term in the susceptibility wjsh
=1/3 (solid line) results in a lower threshold for the onset of convection
than in the dilute caseB;=0 (long-dashed line Contrary for Ry
=3.33 cm, the critical induction for the dilute fluidot—dashed lineis
lower than for the nondilute fluiddotted ling. The fluid parameters of the  Fjrst the two thresholds for the case of an infinitely extended
magnetic fluid EMG 901 and the size of the cylinder are given in the text.layer' Rou=, are compared. The inclusion of a quadratic
term in the susceptibility with3;=1/3 results in a lower
threshold for the onset of convection than in the dilute case

the resulting height-to-diameter ratig=0.15 and the effec- . At i
B1=0 (solid and long-dashed line in Fig).3The difference

tive susceptibilityy+ of the composite cylinder accordingly '
between the thresholds is nearly the same vaBg8;

to Eq. (1) is taken from the data given in Ref. 19. n o >
Decreasing the temperature difference fraii=70K =1/3N=1)=0.6B(B,=0N=1), for all tested tempera-
tures 304 K<T;<370K.

to AT=4 K causes a dramatic increase in the critical induc- . .
Now the thresholds for the case of a finite layer with

tion of nearly three orders of magnitudgig. 3). With de- :
creasing temperature difference the critical radii ratio growsRou=3-33 cm are compared. Contrary to the previous case,

i.e., the allowed gap becomes more narrow. Since the cofhe threshold for a dilute fluiddot—dashed line in Fig.)3s
vection rolls prefer the same length scale in and lower than for a nondilute fluiddotted ling. Again the
¢-direction, much more rolls have to be driven in a Verydifference is almost constant over the entire temperature

small gap. The energy for this effort comes from the external@n9€,  Bol B1=1/3N(y=0.15xer)]=1.18[ S1=0N(y

induction which is why it amplifies drastically for smallT =0.15xer) . , . .
(Fig. 3. The relation of the different thresholds is caused by the

Whereas the critical azimuthal wave numbgis inde- ~ value off, for the given combinations dfl, 5;, and .
pendent ofy(x,) andN (Fig. 4), the critical induction varies. f,, can be considered as a measure for the strength of the
magnetic force in the gap: As higher the value f(}[ as

lower the critical external induction necessary to trigger the

. convection. Figure 5 shows the value bf for the four
B 300 considered parameter sets. At =3 the reIatioanL(ﬁl
E =0,N=1)<fXL(,81=1/3,N=1) (see cross sections of the
; long-dashed and the solid line with the vertical solid Jirse
g 200 the reason that the threshold for the dilute fluid is higher than
= for the nondilute fluid. The opposite relatiorleL[Bl
é =0N(y=0.15xer)]>f, [B1=1/3N(y=0.15xcq)] (see
& 100t cross sections of the dot—dashed and the dotted line with the
§ vertical solid ling causes the opposite relation for the thresh-
5 olds in the case of a finite layer.
o . ) - The physical reasons which cause theses differences are
300 320 340 360 the following. The Kelvin force is proportional to the mag-

inner temperature T, [K] netization in the magnetic fluid. Thus as higher the magneti-

__ , _ zation is, as lower the external induction can be in order to

FIG. 4. Critical azimuthal wave numbég vs inner temperatur&, for T, enerate the same strenath of the maanetic force. In the in-
=300 K. With decreasing temperature difference the wave number, i.e., thg 9 9 ’

number of convection rolls, increases dramatically frome14 for AT finite case, Where\l:_l is iqdepe_ndent Of_(’ a higher con-
=70K tol =315 forAT=6 K (@). centration of magnetic particles in the fluid leads to a higher
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magnetization, and therefore, to a lower threshold. In thevhereas in the experiment the fluid layer boundary is free.
finite case, the demagnetization factor dependg’Srand is  For thermal convection in a rotating layer of magnetic fluid
smaller for higher concentrations of magnetic particles tharthe influence of rigid and free boundaries on the threshold
for lower concentrations. A higher demagnetization factorwas studied in Ref. 4. Considering the case of zero rotation,
means a lower inner field and a higher magnetization, respethe thresholds differ by not more than 20%ee Figs. 3 and
tively. Therefore, in the finite case an increase in the concerd in Ref. 4 for rotation number—0). With respect to the
tration results in two counteracting effects with respect to theabove mentioned major obstacle, these differences may alter
magnetization. In the studied exampleygf=3 the influence the results only marginally.
of the demagnetization effect wins: The dilute fluid has the
lower threshold. But fory, >3.2 the direct influence of the v SUMMARY
concentration succeeds over the demagnetization effect. The ) . L .
nondilute fluid has the lower thresholthe dotted line is A model system of a composite cylinder of finite size
then above the dot—dashed line, see Fig. 5 W't.h axs—symmetncal tempgrature distribution is presented.
In the infinite and finite case the clear and measurablé’Sing the Kelvin force density2,3) a general conditior7)
difference between the thresholds opens a very good oppolS de_rlved _for Whlch a po_tenUaIIy unstable s_trat|f|cat|on ex-
tunity to decide whether a test sample is a dilute fluid or not!Sts if the inner cylinder is heated. Depending on the tem-
Just by measuring the threshold for the onset of convectioferature difference, the size of the composite cylinder and
in the proposed model system the answer can be given. THB?, dilute or nondﬂute character of the magnetic fqu, the
critical induction depends on the fluid and system parameter&itical gap sizes are calculated. The general result is that
asB.~ «\p/(R,—R;). By choosing fluids with low(high) only in a narrow gap the requwement fpr a potent|a||y un-
density and thermal conductivity and a largenall radius stab!g stratlflca}thn is met. Explomng this property, a I|ne.a.r
R,, the threshold can be lowerdthised corresponding to stability analysns |s.performed in order to determine thg criti-
the experimentally available magnetic fields. cal gxterna}l mductlon.for the onset of thermomagnetlc con-
The major obstacle in order to compare the results witpvection. With decreasing temperature difference, the critical

the experimental data in Ref. 10 is the lack of an experimeniduction increases dramatically. The reason is that for
tally determined spatial profile of the temperature inside themaller temperature differences which demand smaller gaps
sample. Therefore, it is not possible to extract an estimatiol! ©rder to fulfill condition(7), much more convection rolls

what might be the values @&, andR, in the experiment. have to be driven. The driving of these many rolls causes the

Nevertheless the calculated values indicate that really higqrastic increasing of the critical induction. The distinct dif-

critical external inductions are necessary to trigger verticafer?nce .between the threshold for Q|Iute and nondilute mag-
netic fluids allows to use the considered system for an ex-

convections rolls by @ure radialtemperature gradient. The . | o heth fuid i i
threshold for the induction reaches extremely high values iPe"imental determination whether a test fluid is a dilute or

one extrapolates towards radii in the range of hundreds dfondilute one.

micrometers, not unlikely due to the focused laser beam used | N€ rather high external induction, needed to stimulate
in the experimen?:° This leads to the conclusion that verti- the convection flow, leads to the conclusion that vertical con-
cal convections rolls due to a pure radial temperature gradi'€ctions rolls due to a pure radial temperature gradient are
ent are unlikely to account for the observed phenomena Olehkely to account for the observed diffraction patterns. The
polygonally shaped diffraction patterns consideration of a vertical temperature gradient entails that

Due to the lack of information from inside the sample, it concentration gradients may become relevant. To answer this

is not clear whether the temperature profile in the experimengueStion the charactgristic time for the d.iffusion with respect
tal sample is purely radial. There are hints in Ref. 24 that dud® Whose for convection has to be re-estimated. Because they

to the absorption along the way of the laser beam a vertical/lll "ot bé necessarily apart by orders of magnitude as in the
temperature distribution exists as well. A further cause for arf@Se ©of a pure radial tet;nperature gfad;]e”;- Also d|fferer;t
axial temperature gradient is the heat loss through the gla$@nVection patterns can be expected with the presence of a
plates by which the MF layer is sandwiched. If such a Vem_vertmal temperature grad|§nt.. In order to come to a cor_rect
cal temperature gradient comes into play, concentration graxatement about the contribution of mass and thermal diffu-
dients due to the Soret effect may become important. Thaion to the diffraction patterns in magnetic fluids, spatial
relative influence of temperature and concentration gradien fmﬁerallture measu_relments and mdelpendtf-:‘nt r;eazurerr;ents
is strongly effected by the relation of the characteristic timed' all e e'vag.t matgrla parﬂ_mﬁ;[erj as ITJIRe s. 12 and 13 for
t. andty which depend quadratically on the lengthsand 2" ©rganic dispersion are highly desirable.
Ly, respectively. With a radial and a vertical temperature
gradient present, it becomes even more important to haver. E. RosenswgigFerrohydrodynamiCS(Cambridge University Press,
; ; ; ; Cambridge, 198)
reliable da.ta of the internal proflles to estimate these I.eng.thS‘B. A. Finlayson, “Convective instability of ferromagnetic fluids,” J. Fluid
Two differences between the model and the motivating yech. 40, 753(1970.

experiment should be noted. The constant temperdtufer 3L. Schwab, U. Hildebrandt, and K. Stierstadt, “Magneticraed convec-
the inner cylinder is not given in the experiment. How much ti'(:m.l’;jl '\élagnc-i Magn. MateI39,|113(19i3: L. Schwat;;:dd K. Stierstadt,

: ; o ; “Field-induced wavevector-selection by magnetic -convection,”
the temperature V.anes. in this inner area IS. not known. The ibid. 65, 315(1987); L. Schwab, “Thermal convection in ferrofluids under
numerical calculations in Ref. 9 suggest a difference of about 4 free surface, Ibid. 85, 199 (1990.

15 K. The thresholds were calculated for rigid boundaries*G. K. Auernhammer and H. R. Brand, “Thermal convection in a rotating
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