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In certain one-dimensional stochastic mappings a sharp drop of the Dg—spectrum of
fractal dimensions for negative values of ¢ is observed at a special value of the noise
strength. This transition is connected to the vanishing of deep valleys in the measure and
can be understood by analyzing the contribution of periodic orbits. A special example
is given by the one-dimensional Ising model in a bimodal random field.

1 Introduction

We consider the one-dimensional random field Ising model ! 7'2. Tts Hamiltonian is

given by
N

H=- Z(J5i5i+l + hisi), (1)
i=1
where s; denotes the classical spin at site ¢+ which takes values 1 or —1, J is the
exchange energy of adjacent spins and the local magnetic fields h; at the sites i are
independent and identically distributed random variables. We restrict ourself to
bimodal distributions

p(hl) = p.,.d(hi &= h+) + p-d(hi == h._) (2)

By successively summing up over the spins one arrives at the partition function of
one spin in an effective field, which depends on the realizations of the fields on the
other sites via an iterative map 2,

Tn = hn+A(/6aJ:37n——1)’ (3)

1. coshfB(z+J)
A(z) = %n(m), (4)

where [ denotes the inverse temperature.

The mapping defines a stochastic trajectory which in turn yields an invariant
probability measure dP,(x) giving the probability of the trajectory to visit the
small interval dz centered around z. The iteration has an attractor which is a
subset of the interval I = [z_,z], bounded by the fixed points of the functions
f+(z) = A(z)£h. The map is contractive (the slope of the functions f,(z) is almost
everywhere smaller than one). Therefore the first image of the interval I consist of
two smaller 'bands’ I and I_ which may or may not overlap, depending on the
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Figure 1: (a) Mapping for the case of overlapping bands f1 and f_. In (b) the first few images of
the interval I are shown. The increasing complexity of the band structure is obvious.

value of the control parameters hy and h_. In the following we restrict ourselves
to a symmetric distribution with p, = p_ = 0.5, hy = —h_ = h (cf. Figure 1). For
the case of a non-symmetric distribution see ref. 5.

We consider the integrated probability distribution (the measure) P(z) of the
interval (—oo,z). It can be iterated starting with an initial measure Py(z) and is
determined by the Frobenius-Perron equation

Pu(z) = / dhp(h) Py (A (& — b)) (5)

= Z paPn—l(fa—l(m))a
o=+

The fixed point of (5) gives the natural invariant measure Py (z) for almost all
initial measures.

To investigate the structure of the measure we consider a finite iteration of
order n of an arbitrary smooth initial measure Fy and take the limit of n going to
infinity at the end.

The iteration is realized by the 2" composite functions f{a}n

f{a}n :fcrnofﬂn-lo"'ofﬂl' (6)

{o},, denotes the symbolic sequence of n plus and minus signs {e},, = onon_y...03.
Every function maps the invariant interval onto a small band I {0}, around the fixed
point z(,} of this function. Every band carries a total weight of ( %)“ and the
measure is a superposition of these bands. In taking the limit n — oo the bands
shrink to the corresponding fixed points.

This is most clearly seen by iterating the Frobenius-Perron equation®. In the
first step Py (z) is a sum of two terms that involve Py(z). Po(x) becomes a sum
of four terms. Finally we arrive at an expression for P,(z) as a sum of 2" terms,
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involving Fy at the predecessors y(,) of z

Pyz) = Y Py (W) (7)

{o}.
Py (Y0y,) = glgpo(y{a}n), (8)
Yoy, = foy, (@). (9)

For fixed z this is a path integral in the space of the symbolic dynamics.

In general, most of the terms vanish and only a small fraction of overlapping
bands do contribute to the measure at a specific point. For certain values of the
control parameter h and for certain points z however, the sum has only one term
and the behavior of the measure around this point can be analysed.

As we will see, the map (3) generates a multifractal measure®. A quantity to
characterize these type of measures is given by the so called D,—spectrum *®. One
divides the invariant interval into N boxes of size ¢ and calculates the partition
function Z(g). This is found to scale as

N
Ze(g) = ) Pf oc ld™HPu, (10)

which defines the function D, in the limit €¢(N) — 0. P; is the measure inside box %
and only boxes with a non vanishing value of P; are taken into account. For values
of ¢ greater than zero, boxes with a higher concentration of the measure contribute
most whereas for negative values the most rarefied parts of the measure dominate.

In this article we are going to investigate the dependence of the measure on
the parameter h. For large values of h the support of the measure is topologically
equivalent to a multi-scale Cantor set ®. The first bands I, and I_ are well sepa-
rated, leaving a gap between them. By iteration, this gap has multiple images of
ever decreasing width. The bands carrying the measure shrink to a set of Lebesgue-
measure zero as it is typical for the Cantor construction. If h decreases beyond the
value hgl) however, the bands start overlapping each other. The gaps close in every
order of the iteration procedure and the attractor becomes a closed set, the whole
interval [z_,zy].

Beside this very drastic change there are other transitions that occur if we
decrease h still further. As long as h is greater than h£2) the coarse grained density
has deep valleys on every scale as is shown in Figure (3). These valleys correspond to

large values in the D,—spectrum for negative g. If h crosses A the valleys vanish
all of a sudden and the D,—spectrum shows a sharp drop as is seen in Figure (2)
where D(q) for certain fixed ¢ is plotted as a function of h.

The plotted spectrum was obtained by using the method of the new natural
partition 1213 since the method using an equipartition of the interval converges too
slowly. The same remarkable behaviour has been previously found 4 in a model
of learning in neural networks !® and is in fact a very general feature of bimodal
stochastic maps. The main objective of this article will be the explanation of this
type of transition.



98

h=11 h>hn h=055 A <h<nl® h=045 A <h<p®
a) b) c)
2 —
0.5 - 0.5 -|
T — :L‘+ 4 :E+ T _— I+

-1.5 0 1.5 -0.8 0 0.8 —-0.8 0 0.8

Figure 2: Qualitative changes in the shape of the measure (7). P is obtained by stochastic
iteration of the trajectory for different values of h. (a) thin fractal, (b) fat fractal with deep
valleys, (c) without deep valleys. (=1, J = 1 for all graphs).
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Figure 3: Generalized dimensions Dg (¢ = —2,-1,0, 1, 2) versus the strength of the local magnetic
field h for the random field ising model with J = 1, B = 1. The open symbols indicate the results
from the digital simulation with 101° iterations. The solid lines and filled symbols (o for g = —35
and # for ¢ = 35) show the results obtained from the thermodynamic formalism. The meaning of

the critical values h{™, n = 1,...,4, is explained in the text.
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Figure 4: Qualitative changes of the behaviour of the invariant density p(z) at the boundaries of
the support. (a) p(z+) = oo, (b) p(z+) = 0 but p’(z+) = oo, (¢) p(z+) = 0 and p'(z+) = 0.
(8 =1, J =1 for all graphs).

The measure undergoes further changes that determine the shape of the
Dg—spectrum and are explained elsewhere!2. There the behaviour of the invariant
density at the end points zy of the interval is analysed. Since these points, the
fixed points of the functions f.(z), are their own predecessors under the mapping
(3), the Frobenius-Perron equation for the density has in the limit of n — oo only

one term 1
Pn(zs) = mpn—l(ma)- (11)

Therefore, the density at z is either zero or infinity, depending on the slope of the
function fi at these points. The derivative does not depend explicitely on h. The
location of the fixed points however does. If h drops below h£3) the density at the
fixed points changes from infinity to zero. Since, as we will see, the density is not
singular anymore inside the interval at this value of A, the behavior of the measure
at these points completely determines the D,—spectrum.

The measure is found to scale exponentially near the end points: if we iterate
a point, e.g., in the vicinity of z, we arrive at

Peol@r) = Prolty =€) = 3(Poo(e4) = Prolf (24 — )

L Pae) - Poles — 7" @), (1)

1

which leads, supposing the scaling law Py, (74 — €) oc €2+7! to the exponent

__In(2)
In(fi (zy)

The deeper reason for this simple scaling behavior at the points zy lies in the fact
that at these points only the rightmost respectively leftmost band contributes to
the measure. How fast these bands shrinks under the mapping of fy determines the
strength of the singularity. The total measure on this outmost bands diminishes
like (1/2)". The size of the bands however scales like (fL (xi))n. A small slope

ap = — (13)
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of the function fi at its fixed point therefore results in a narrow band and in a
strong positive singularity. The functions fy have the least slope at the points z.
Therefore the singularities at these points are the strongest.

As long as fi (z4) < 5 (h > h£3)) the density at the fixed point z, has a
positive singularity o < 0. If 1 < filzy) < % (h£4) < h< h§3)) the density
is finite but the first derivative of the density at z is singular, 0 < ay < 1. For
fi(zy) > %, that is beyond h£4), the derivative is zero and the exponent oy is
greater than one. As we will show in the next paragraph, analogous considerations
apply to every fixed point in the case of non-overlapping bands and to a certain

subset of fixed points related to periodic orbits, even in the case of overlapping
bands.

2 Periodic Orbits and their Contribution to the Invariant Measure

We have seen that as long as the bands do not overlap (that is A > hgl)), the attrac-
tor has the topology of a Cantor set and therefore the measure is purely singular.
The bands being disjoint mean that any point = belonging to the attractor has only
one predecessor and the Frobenius-Perron equation for the integrated probability
density at this point has only one term. The above considerations apply in any or-
der of the iteration to any of the 2" fixed points. The measure has either a negative
(a > 0) or positive (a < 0) singularity in the vicinity of the fixed point, depending
on how fast the corresponding band shrinks, as was the case at the end points Ty
of the interval. These singularities can be calculated in principle at any order. The
Frobenius-Perron equation for a point in the vicinity of a fixed point leads to an
expression for the singularity

Poo(T(s), +€) — Poo(z(sy, ) o eModntl (14)

In(2)
agr, = -1- ” . (15)
ok %ln(f{a}n(w{a}n)

This can be seen as follows: Since Tio}, = J1o1,(T(e}.) = for, 0 fso_,0...0
h (m{a}n) is a fixed point, we can write down a sequence of predecessors y; =

Jo; 0 fo'-i—l ©...0 fal (37{0},1)

L{s}, = fan(yn—l)a (16)
Yn—-1 = fan_1(yn—2)u

v = fo (x{o}n ).

For every step in this sequence we find due to the Frobenius-Perron equation and
the fact that all points of the sequence have only one predecessor:

1 —u
Poo(yi + 5) - Poo(yi) ja *(Poo(yi—l + fa ! (yz’)f) - Poo(yi—l))
2
’1::0,...,71, yozyn:x{a}n’ (17)



101

Since the sequence is closed we obtain for the singularity at the fixed point expression
(15).

If h is decreased and the bands overlap, most of this order is lost. But there are
certain fixed points that are not affected immediately, the end points z4 being an
example. To find these points we need to introduce the concept of periodic orbits
of the map. As before, we first consider a finite order n of the iteration procedure
where we have 2™ composite functions fio}, -

We call a periodic orbit of a function f{g}n the sequence {yn_1,...,v1,%,, }
of the predecessors of its fixed point under consecutive iteration of the function as
given in (16).

As one easily confirms, a periodic orbit consists, besides the fixed-point of the
function f{oy, itself, of fixed points of all the other functions that are obtained from
the function f(;3 by cyclic permutation of the symbolic sequence {c},. This is
illustrated by the example of an orbit of period three, see Figure (5).

f+ I+
T{++-} T{+-+} T{—++}
f-

Figure 5: Period three orbit. The composite function is taken as S{—++} which is made up of f_,
f+ and fy. Cyclic permutation yields the functions J{4—+) and J{++—3- The mapping of the
fixed point z(_ 1y by the function f; leads to the point Z{4_4}), the repeated application of f
to the point (4, _} and the further mapping by f_ back to T{_ 44}

Now, if we are in a parameter region of h where the bands do not overlap, all
points of a periodic orbit are equivalent, since eq. (15) is invariant under cyclic
permutation of the functions.

What happens if the bands start overlapping each other? In the middle of the
invariant interval there is now a region, bounded by f_(z4) and fy(z_), where
the mapping is no longer one to one and onto. A point z in this overlap region
has two predecessors and the Frobenius-Perron equation has two terms. If however
all the points of a periodic orbit lie outside this domain, they are not affected at
all (cf. Figure 6). In this case all the above considerations remain valid for this
specific orbit. If the parameter A is tuned, the extent of the overlap region changes
as well as the location of the orbits. If at least on point z of an orbit gets into
the overlap region, this has only little influence on the D,—spectrum as long as
the singularity at the points of the orbit is positive (a; < 0). The second term of
the Frobenius-Perron equation might contribute a singularity eventually thereby
replacing the old singularity on the whole orbit if the one at the new predecessor y
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Figure 6: Orbits of period three for different values of h. (a) shows the case where no point of the
orbit falls into the overlap region, whereas in (b) the point Zy_ 44y lies in the overlap region and
has therefore two predecessors. (6=1,J =1 for all graphs).

is stronger (@, < a,). This however changes the D,—spectrum only slightly. But if
the singularity at « is negative, it is replaced by a positive singularity whenever the
density at y is greater than zero. So the number of positive singularities increases
at the extent of the number of negative singularities.

A very special role is played by the fixed points z4 as period-one orbits—
because they are never reached by the overlap region—and by the period-two or-
bit {:c{+_},:c{_+}}. Since T{+-} is mapped under application of f_ onto T{_4},
all points to the right of z{y_) are mapped onto the interval (x{+_},z{_+}) as
well as are all points to the left of z{_4) under application of f.. The interval
(Z{+-},T{—4}) in turn is mapped to the right of T4y (to the left of z;_1y ) by
f+ (f-), see Figure (7).

I I1 111
I+ f-
fo

f+

Figure 7: Mapping of the interval I elucidating the importance of the interval I=[z_4+,z4_]. II
is mapped onto parts of I and IIT under f_ ( f+ ) which are itself preimages of II.

This means that every periodic orbit of period greater than three has at least one
point in the interval (z(;_},z{_1}) and at least one point outside since the orbits
are closed and the trajectory has to come back to the point where it started from.

This topology explains the transition found in the D,—spectrum. As h is
decreased, the overlap region grows whereas the location of the orbits changes
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only slightly. Gradually all the orbits are reached and the negative singularities
are destroyed. The remaining orbits with negative singularity gather more and
more weight in their influence on the D,—spectrum. When the period-two orbit
is reached, that is fi(z_) = z_,, the last negative singularity vanishes because
at the points z4 the slope of the functions fy is a minimum and the probability
density has the strongest, and for this value of h, positive singularity there. The
Dg—spectrum for ¢ < 0, which measures exactly the negative singularities, shows a
sharp drop to one. Since all the negative singularities have vanished, the right part
of the f(a)-spectrum has now collapsed, a behaviour that has also been observed
in the case of the superposition of equal-scale!” and multi-scale !® Cantor sets.

3 Concluding Remarks

The scenario explained in this article is found in other applications of stochastic
maps 4. In fact the only necessary conditions for this mechanism to work are:

1. A stochastic map with two smooth monotonous functions f (z, h), depending
on a control parameter h.

2. A nonchaotic dynamics f (z) < 1 —a finite invariant interval T = [z4,z_].
3. f+(z) > f-(z) Vz € I.

4. The dependence on the control parameter i need to be such that the condi-
tions fi(z-) =z_, and f_(z4) = z4_ can be reached by tuning h.

5. If the overlap reaches one of the points z, _,z_,, the slope at the end points
fi(z+) need to be greater than %

The last condition ensures that there are no negative singularities left since the
period one orbits x4 are not reached by the overlap and their singularity therefore
remains untouched.

There are still open questions. For ones the D,—spectrum of the 1d random
field Ising model shows another slight drop for negative ¢ at a value of h of about
0.8. This seems to be a predecessor of the explained transition and is not yet
understood. Further all the above explanations are not given with full mathemat-
ical rigour. Is there a similar behaviour for discrete stochastic mappings in higher
dimensions or for discrete distributions of the noise with more than two possible
values? Finally there are interesting mathematical questions that should be an-
swered: Is the measure absolutely continuous whenever the bands overlap or are
there parameter values for which the measure becomes absolutely singular as is the
case for the problem of the Bernoulli convolutions? Can the functional dependence
of the D,—spectrum in terms of h right at the transition point be stated?

This paper is dedicated to Professor Adolf Kiihnel on the occasion of his 60th
birthday.
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