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A note on the magnetic spatial forcing of a ferrofluid layer
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We report on the response of a thin layer of ferrofluid to a spatially modulated
magnetic field. This field is generated by means of a constant current in a special ar-
rangement of aluminum wires. The full surface profile of the liquid layer is recorded by
means of the absorption of X-rays. The outcome is analyzed particularly with regard to
the magnetic self focusing effect under a deformable fluid layer.

Introduction A beautiful example of spatial forcing in a pattern forming
system was studied experimentally in electroconvection [1]. More recently, inclined
layer convection was measured under the influence of lamellar surface corrugations
[2]. In both cases, stripes are the first convection pattern beyond a threshold. The
Rosensweig instability in a layer of ferrofluid can provide a primary instability to
hexagons if a homogeneous magnetic field normal to the flat surface is applied [3, 4].
In case of a tilted magnetic field, a primary instability to stripes can be observed [5].
This system allows to study the response of both configurations to a stripe like
modulation of the magnetic induction.

As a start, here we present and characterize the influence of the modulation
on the layer of ferrofluid in the subcritical regime. One method of generating a
spatially modulated magnetic field was described in Refs. [6, 7] and uses rods of
metallic iron to modulate a homogeneous magnetic field. It lacks the possibility to
control the amplitude of modulation independently from the field offset, a nuisance
which is overcome in the experiments presented in this paper.

1. Setup To produce a spatially modulated magnetic field, we developed
an array of nonmagnetic conducting wires shown in Fig. 1(a). The array is made
of a plate of aluminum by cutting slits from opposite directions using electrical
discharge machining. Aluminum has been chosen because of its low mass absorp-
tion coefficient for X-rays. The rectangular cross section of the wires is crucial
to guarantee a spatially homogeneous absorption. By design, the current in the
aligned conductors is reversing its direction from one to the next conductor. The
resulting induction µ0Hz is depicted in Fig. 1(b). It was measured using a Hall
probe for a certain region of the array as indicated by the arrow in Fig. 1(a). To
achieve a spatial forcing with a wavelength of λc = 9.6mm, which corresponds
to the critical wavelength [4] of the used ferrofluid, the center to center distance
between adjacent conductors has to be λc/2. The components of the generated
magnetic field H can be well approximated by

Hx = −∆H cos(kx)e−kz and Hz = H0 +∆H sin(kx)e−kz, (1)

where ∆H represents the amplitude of the field modulation, k = 2π/λ is the
wave number and H0 states an offset. As Fig. 1(b) shows, a fit of Hz in Eq. (1)
to the experimental data reveals a good agreement. In addition to the spatially
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Figure 1: (a) Photograph of the field modulation array made of aluminum. Length:
14.6 cm, width: 13 cm, thickness: 2mm. (b) Blue: Magnetic induction Bz = µ0Hz

generated by the modulation array at a constant current of 10A, measured via a
Hall probe along the black arrow in (a). The distance between the array and the
Hall probe was 2mm. Red: Hz from Eq. (1) fitted to the experimental data.

modulated field from the array described above, we superimpose a homogeneous
magnetic field H0 created by a pair of Helmholtz coils. Thus, H0 and ∆H can be
controlled by two independent currents.

The described modulation array is mounted below the bottom of a container
machined from PerspexTM. It contains a block shaped cavity with a length of
120mm, a width of 100mm and a height of 25mm. This cavity is filled with 30ml
of ferrofluid EMG909 from Ferrotec Corporation (density ρ = 994.5 kg/m3, sur-
face tension 23.37mN/m). The ferrofluid EMG909 consists of magnetite particles
dispersed in kerosene. Its nonlinear magnetization curve is plotted in Fig. 2. We
measured M(H) using a commercial vibrating sample magnetometer (LakeShore
VSM 7404). To represent M(H) for modeling, we used the approximation by
Vislovich et al. for a nonlinear magnetization [8]. It describes the magnetization
as

Mvis(H) = Msat
H

H + Msat

χi

. (2)

The fit yields the two parameters Msat = 15.2 kA
m and χi = 0.99.
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Figure 2: Magnetization of the ferrofluid EMG909 as a function of the internal
magnetic field. The points denote experimental data, and the curve is a fit of
Eq. (2).
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Figure 3: (a) Measured height profile of the fluid layer under spatial forcing. The
field offset is µ0H0 = 20.8mT, while the amplitude of modulation is µ0∆H =
0.27mT. The layer thickness of the liquid is color coded as shown by the indicator
bar. The drawn isolines are equally spaced each 0.3mm. The two vertical black
lines mark the region displayed in (b). (b) Averaged fluid height of the innermost
ten columns (3.6mm) for four different values of the modulation amplitude as
nominated by the inset.

2. Experimental Results The application of the modulated magnetic
field leads to a periodic deformation of the initially flat liquid’s surface. This de-
formation is driven by the Kelvin force since the magnetized ferrofluid is subjected
to a periodically varying field gradient. To characterize the deformation, we record
X-ray transmission images of the fluid layer to measure its thickness for the whole
surface at the same time. This method has been described in detail in Refs. [9, 10].
The deformation amplitude of the ferrofluid’s free surface depends on ∆H and H0.
To resolve this dependance, the field offset is kept constant at µ0H0 = 20.8mT,
while the modulation amplitude ∆H is successively increased from zero. As the
amplitude of the field modulation increases, liquid ridges build up. Figure 3(a)
depicts the deformed surface for a modulation of µ0∆H = 0.27mT.

As the black symbols in Fig. 3(b) indicate, the surface already shows some
periodic deformation in the absence of a spatial modulation of the applied magnetic
field. In order to measure the amplitude of the deformation, the data are fitted
by a phase shifted sine with two higher harmonics (wave numbers k, 2k and 3k)
and a constant offset. As a measure for the amplitude of deformation, only the
amplitude of the fundamental mode k is taken into account. The resulting dataset
is depicted in Fig. 4a.

3. The self focusing effect Under the deformed surface of a polarizable
fluid, a self focusing of the magnetic field occurs. To characterize this effect with a
convenient parameter, we first calculate the field Hflat under the artificial assump-
tion of a flat surface. The parameter is then defined as the dimensionless ratio
between the realistic field and Hflat.

To derive a relation between the amplitude of the surface deformation and the
modulation of the realistic field we use the static form of the ferrohydrodynamic
Bernoulli equation. The free surface must then be in an equilibrium of pressures
and the thickness of the ferrofluid layer is given by ζ(x). Thus, the Bernoulli
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equation reads

C = ρgζ(x)− µ0

∫ H(ζ)

0

MdH ′ + σK − µ0

2
(Mn)

2
. (3)

Here, C is a constant, g represents the gravitational acceleration and σ is the
surface tension. The normal vector to the surface and the associated curvature
read

n =
1√

1 + (∂xζ)
2

(
−∂xζ
1

)
and K = div (n) . (4)

Equation (3) has to be fulfilled for all points along the surface. In approximation,
the surface shape shall be given by

ζ(x) = h+∆h sin(kx) , (5)

where h denotes the thickness of the undisturbed fluid layer, and ∆h its amplitude
of modulation. Now ∆h can be numerically determined as a function of ∆H. The
results are depicted in Fig. 4(a). The dashed red line gives the result for a linear
magnetization law of the form M = χH, the dotted blue line shows the same
for the nonlinear Vislovich approximation given by Eq. (2). Clearly this does
not describe the observed amplitudes as the deformation of the magnetic liquid’s
surface causes a focusing of the magnetic field towards the maxima of the fluid
height and accordingly a decrease of the field strength at the minima

fconc =
Hreal(ζmax)

Hflat(ζmax)
, freduc = f−1

conc . (6)

Here, Hreal denotes the field strength obtained from the pressure equilibrium in
order to get to the experimentally measured deformation amplitude. To make a
proper model, this focusing has to be taken into account. Without solving the
magnetostatic problem together with the hydrodynamics, we can estimate the
influence of the deformed surface on the magnetic field. Therefore we calculate
the dimensionless parameters fconc and freduc from the experimental data via the
pressure equilibrium. The outcome is shown in Fig. 4(b).

The focusing of the magnetic field has earlier been investigated for fully grown
Rosensweig cusps in Ref. [11]. There, a factor of 1.5 in the alteration of the field
has been found. As our deformations are about one order of magnitude smaller, a
change in the magnetic field of about 3% seems realistic.

Experimentally, we observe a deformation of the surface even without any
field modulation. This can be understood as a spatial oscillatory decay induced
by the meniscus at the walls of the fluid container in the advent of the Rosensweig
instability. Such an effect has been measured previously [9, 10]. The wave number
kc is favored by the nonmonotonous dispersion relation for surface waves on a
ferrofluid in a magnetic field. Note, that the width of the container is close to ten
times the critical wavelength (λc = 9.6mm) of the used ferrofluid.

4. Conclusion and Outlook The described experiment could success-
fully produce a well controlled spatially modulated magnetic field and allowed to
study the response of a layer of ferrofluid to this field. Using radioscopy, accurate
data about the deformed surface could be gathered. The measured amplitude of
the resulting deformation serves to estimate the amount of field focusing. This
gives a conception of the impact of this effect, as in this case the focusing ampli-
fies the field modulation by almost one order of magnitude compared to the case
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Figure 4: (a) Solid squares: Measured amplitude of the surface deformation for
∆B = µ0∆H (measured in absence of the ferrofluid) and µ0H0 = 20.8mT. The
red dashed (blue dotted) line shows the calculated amplitudes without focusing for
a linear (nonlinear) magnetization law. The overlapping red solid and blue dot-
dashed lines underneath the data points are calculated by using the values of f
shown in (b) for a linear magnetization and nonlinear magnetization, respectively.
(b) Values of f needed to fit the measured amplitudes in (a) for linear (red solid
lines) and nonlinear (blue dash-dotted lines) magnetization. The red dashed and
blue dotted lines at fconc = freduc = 1 correspond to the case where the focusing
by a deformed surface was not taken into account.

of a flat fluid layer. The question how this amplification depends on H0 is to be
investigated. Since the presented calculation uses experimental data to determine
the influence of the deformed surface on the magnetic field further studies are
necessary in order to calculate the equilibrium shape of the fluid ab initio. The
modulation device described in this paper is ideally suited to force Rosensweig
patterns which will be exploited in forthcoming investigations.
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