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Abstract. Macroscopic surface patterns of magnetic fluids are experimentally in-
vestigated for four different configurations of the liquid layer, and the orientation,
homogeneity and temporal evolution of the magnetic field. Firstly the formation of
surface undulations after a pulse-like application of the magnetic induction is ex-
amined. The wavenumbers measured for different magnetic induction are compared
with the wavenumber of maximal growth predicted by linear stability analysis for
the Rosensweig instability. Secondly, the formation of twin-peak patterns at the
magnetic Faraday instability in an annular trough is reported. Thirdly, a ring of
magnetic liquid spikes in a gradient magnetic field is periodically excited by an
alternating magnetic field. The transition to spatiotemporal intermittency found in
this way is characterized by power laws and their critical exponents. Eventually, we
record the pinch—off of a magnetic liquid bridge by a high—speed camera. The tem-
poral evolution of the neck radius is compared with results obtained theoretically
via universal scaling functions.”

Molecules of liquids have in general an electric and magnetic dipole moment.
Whereas these moments are of paramount importance for the chemical prop-
erties of the fluid, they are generically to tiny to have visible influence onto
their fluid dynamical behaviour. This is different for liquids with artificially
amplified magnetic moments. They have been synthesized for technical ap-
plications since the early 1960s [1]. These magnetic fluids (MFs) are colloidal
suspensions of magnetic particles (e.g. from magnetite) in a carrier fluid like
water or oil. They are protected from agglomeration due to van der Waals
and magnetic forces by a layer of surfactants, or by ionic charges. The di-
ameter of the suspended magnetic particles is in the range of 10 nm. Due to
brownian motion the suspensions are then kept in a thermodynamically sta-
ble state. Their magnetic susceptibility ranges up to x = 10, which is much
larger than the largest susceptibility for a natural fluid, liquid Oxygen. It has
a y of only 107°. Because of their huge susceptibility MFs are said to show
super-paramagnetic behaviour. MF's offer the unique advantage to influence
or even control their behaviour via an external magnetic field. E.g. they are
drawn into an inhomogeneous magnetic field and thus can withstand gravity

* B. Kramer (Ed.): Adv. in Solid State Phys. 43, pp. 789-799, 2003, Springer—
Verlag, Berlin, Heidelberg 2003.



2 Reinhard Richter et al.

or forces due to pressure drop. In this way they have found widespread tech-
nical applications, ranging from rotary feed throughs in hard disc drives, to
loud speakers (see Ref [2] e.g.).

From a scientific point of view MFs are attracting more and more interest
essentially because of three reasons. Firstly, they serve as test liquids for
electric and magnetic interactions, which are present also in common fluids.
However, because they are difficult to measure they have also not taken into
account in standard theory. These interactions are presently incorporated in
a theory of electromagnetic fields in liquids, see e.g. Refs. [3] [4] [5]. Secondly,
because the magnetic particles are rather large in comparison with atoms or
even molecules, their suspension displays some granular character. Here the
reversible formation of chains is one of several interesting subjects [6].

Thirdly the surface of MFs reacts to impressed magnetic fields by the
spontaneous formation of macroscopic patterns. For static magnetic fields
these structures are stable without any dissipation of energy. This is an
important difference to the celebrated paradigms of pattern formation, like
Rayleigh-Bénard convection, where the dissipation of energy is essential [7].
However, by modulation of the external field, dissipation and interesting
spatio-temporal dynamics can be introduced to measure. In this article we
will present some examples for surface structures in magnetic liquids, fol-
lowing a course from conservative to dissipative pattern forming systems.
We start with the (static) Rosenswei instability, investigate its response to
pulse-like and periodic modulation of parameters, observe spatiotemporal in-
termittency, and finally the disintegration of magnetic liquid bridges.

1 The Rosensweig Instability

In 1967 Cowley and Rosensweig first investigated the influence of a homo-
geneous magnetic field to a horizontally extended layer of magnetic fluid.
When surpassing a critical value B, of the magnetic induction, they ob-
served a sudden transition between the flat surface and a hexagonal pattern
of liquid crests [8,1]. Figure 1 gives a surface profile of this pattern by means
of radioscopy [9].

A basic understanding of this instability can best be achieved via the
dispersion relation for an semi-infinitely extended layer of inviscid MF [8,10]:

2
w? :gk—uM1H2k2+gk3. (1)
pr+1 p p

Here w denotes the frequency, k& the wave number, H the strength of the
external magnetic field, u, the relative magnetic permeability, 4 = p,puo the
magnetic permeability, and uo the magnetic field constant. Moreover, p stands
for the density and o for the surface tension of the MF. Whereas the first and
third term at the r.h.s. are due to gravity and capillary waves, respectively,
which are common to all fluids, the second term is specific for MFs. By
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Fig. 1. Surface profile of the Rosensweig pattern at a magnetic induction of
B =22.95 mT (a) in a hexagonal shaped Teflon container of depth 4 mm for the MF
EMG 909 from Ferrotec. Figure (b) displays a zoom of the center of the structure.

increasing H the dispersion relation can be tuned. At H =~ 0.93 H. Eq. (1)
becomes non-monotonic, and at H. = [2 (u, + 1)/(u(pr — 1)?)/pgo]'/? the
curve touches the w = 0 — line at the critical wave number k. = \/pg/o. For
H > H, Eq. (1) has a negative solution for a band of wavenumbers around
k.. Here S(w) > 0 and small disturbances from the basic state, which are
proportional to exp[—i(wt — kr)], begin to grow. It is important to stress,
that with growing amplitude the range of validity of linear stability analysis
is left.

The emerging stable hexagonal pattern and an unstable square pattern
has been characterized in the vicinity of the bifurcation point by means of an
energy minimization principle [11]. Figure 2 gives a scheme of the subcritical
bifurcation diagram obtained in this way. In a recent and improved theoretical
treatment a further unstable branch of liquid ridges has been predicted in the
neighbourhood of the bifurcation point [12].

(a) hexagons (b) hexagons
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Fig. 2. Scheme of the bifurcation diagram in the vicinity of the bifurcation point
B., as predicted by [11] and [12]. Figure (a) illustrates an adiabatic change of the
control parameter B, (b) the consequences of a jump-like increase
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Most experimentalists followed the pioneers [8] by varying the magnetic
induction in a quasi static manner. By moving on the hysteretic course,
sketched in Fig. 2(a), they were focusing on the nature of the stable pat-
tern in the nonlinear regime [13,14]. The wavenumber observed in this way
was found to be independent from the magnetic induction [8,13]. Unfortu-
nately this result has been compared with the predictions of linear theory
[15]. However, the final stable pattern, resulting from nonlinear interactions,
does not generally correspond to the most unstable linear pattern.
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Fig. 3. Plot of the wavenumber k versus the magnetic induction B measured in a
circular container of 120 mm diameter and 2 mm depth. The open squares give the
experimental values extracted from the circular deformations, examples of which
are given in the insets (a) , (c). The solid line displays the theoretical results for the
material parameters of the MF EMG 909 using p» = 1.85 as a fit-parameter. The
open circles denote the wavenumber of the final hexagonal patterns, example of
which are shown in (b), (d), calculated via a fit of the central hexagonal structure.
Figure taken from [16].

For a successful comparison with the predictions of linear theory [17], not
fully developed crests of small amplitude are suitable. Due to the subcriti-
cality of the prevailing bifurcation these are only accessible via a jump-like
increase of the magnetic induction, as sketched in Fig.2(b). The emerging
transient magnetic liquid ridges of appropriate small amplitude are displayed
in the insets (a) and (c) of Fig.3. After this circular transient structures a
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stable hexagonal pattern of Rosensweig crests evolves, as shown by the insets
(b) and (d).

Next we focus on the quantitative experimental results displayed in Fig. 3,
where the wavenumber k is plotted versus the magnetic induction B. Each
open square denotes the wavenumber extracted from a picture taken 180 ms
after the jump-like increase of the induction to B > B,.. The solid line gives
the prediction of linear stability analysis, taking into account the viscosity
and finite thickness of the layer of the fluid. Here the magnetic permeability
it has been used as the only fit parameter. The fitted value for pu, differs by
2.8 % from the value given by the manufacturer. The almost linear increase
both in experiment and theory is the main result. The inclination is predicted
to depend on the viscosity of the MF, approximating zero only in the limit of
infinite viscosity [17]. In contrast to this linear wavenumber dependence we
find a constant behaviour for the wavenumber of the final hexagonal pattern,
which is marked by the open circles. This measured constant value confirms
the qualitative observations for the final pattern in [8,13]. The experimen-
tal data in Fig.3 show convincingly the difference between the linear and
nonlinear stages of the pattern forming process.

So far the viscous dissipation has been found to have measurable influence
on the transient dynamics, but not on the final stable pattern. Increasing
the role of dissipation can be done at will by combining MFs and periodic
excitation. Depending on the range of the magnetic induction the product
may be regarded as a periodically driven Rosensweig instability or a magnetic
Faraday instability.

2 The Magnetic Faraday Instability

The Faraday instability belongs already to the most popular experimental
configurations for the investigation of parametrically excited instabilities,
structure formation and spatio-temporal chaos [7]. Operating the experiment
with magnetic fluid instead of the commonly used water or silicon oil is adding
further interesting aspects. Firstly, instead of shaking the container, the in-
stability can also be driven by periodic modulation of the applied magnetic
field (see Ref. [10,18-20], e.g.). Secondly, different orientations of the mag-
netic field with respect to the surface layer permit the realization of various
symmetries [21,22]. Finally, the dispersion relation of MFs (1) can be tuned
by the external magnetic field.

Experimentally, the non-monotonic dispersion relation was investigated
by means of locally excited travelling waves in an annular channel [23], and
in a circular container [24]. Due to the non-monotonicity up to three differ-
ent wavenumbers can be excited with one single driving frequency. Which
of the wavenumbers can actually be realized depends on the viscous dissi-
pation in the bulk and in the bottom layer of the fluid [25]. For surface
waves excited in a spatially homogeneous manner, the competition of the
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different wavenumbers was predicted to result in the spontaneous forma-
tion of domain structures [26]. This symmetry—breaking process could be
experimentally demonstrated in an annular channel excited by vertical vi-
bration [27]. In the annulus a domain of standing subharmonic waves with
the wavenumber k; = 34 and another domain with ks = 46 evolved. In ad-
dition to the predicted domain formation in space, for different parameters
a domain formation in time could also be detected [27]: A standing wave
pattern of wavenumber k; collapses spontaneously in the whole annulus, and
gives way to a pattern with wavenumber k2. The latter however is not stable
and forms a slowly shrinking domain, which finally vanishes in favour of k.
This cycle is repeated in an irregular manner.

Fig.4. Twin peak
pattern in the non—
monotonic regime
of the dispersion
relation. The time
elapsed between pic-
ture (a) and (b) is
one driving period

Recently, the competition between two different wavenumbers was found
to be solved in a third way [28]. In the non—monotonic regime, for a magnetic
field of H = 0.98H. and a driving frequency wp = 9.615Hz a novel pattern
of twin peaks has been detected. Figure 4 displays two snapshots taken one
driving period apart. One clearly unveils a subharmonic standing wave. Ap-
parently, instead of two separated domains, a bi—periodic structure in space
has been established. Both dominant wavenumbers of the twin—peak pattern
are found to be situated on the non—monotonic dispersion curve [28].

3 Spatiotemporal Intermittency

Low dimensional chaotic dynamics of a single spike of MF has been investi-
gated in experiment [29] and theory [30,31]. The next step is to tackle the
problem of spatiotemporal complexity. In order to do so, a quasi one dimen-
sional array of spike-oscillators is a natural choice. It can be realized by the
magnetic Faraday instability in an annular trough filled with MF [27]. To
fa ciliate a meaningful statistical evaluation of spatiotemporal complexity a
high number of oscillators is most desire able. For a given circumference of the
annulus the number of spike-oscillators is limited by the wavenumber of the
nonlinear pattern. In case of a homogeneous magnetic field the wavenumber
of the final nonlinear pattern was found to be independent from the magnetic
induction, in agreement with Fig. 3.
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Fig.5. The MF EMG901 trapped
by the gradient magnetic field at the
sharp edge of a pole shoe of an electro
magnet. The diameter of the pole shoe
is 40 mm

The number of oscillators could be increased by a decade, when utilizing
an inhomogeneous magnetic field [32] and a MF with permeability u, = 4.
For this aim the flat ground state and the homogeneous field was sacrificed.
Figure 5 presents a picture of the new ground state. A ring of up to 130 spikes
is trapped by the field at the edge of a soft iron pole shoe of an electromagnet
supplied by direct current of 1 A. The spikes can be excited periodically by
applying in addition an alternating current Io. A CCD-camera takes pictures
of the spatiotemporal dynamics phase-locked to the driving frequency. The
2D images are extracted in real time to 1D azimuthal scans along the ring
of spikes. In Fig.6(a) 500 of such scans of a laminar state are shown in
space and time, where dark regions correspond to high amplitudes. Due to
the stroboscopic recording the oscillations of the spikes can not be seen. For
higher excitation amplitudes the laminar state becomes intermittent in space
and time (Fig.6(a) ) and eventually chaotic (Fig.6(c) ).

As an order parameter for the transition to spatiotemporal intermittency
(STI) we take the mean chaotic fraction 7, i.e. the ratio of chaotic regions to
the length of the system. Its variation with the control parameter Iy is shown
in Fig. 7. Close to the onset of STI the mean chaotic fraction is expected to
grow with a power law

v~ (lex — IC)’B- (2)

The solid line in Fig. 7 is a fit to our data, using I., 3, and an offset represent-
ing background noise as adjustable parameters. The threshold value deter-
mined in this way is I, = 3.04+0.05 A. The exponent 8 = 0.3+£0.05 is in agree-
ment with the exponent predicted for directed percolation, 8 = 0.276486(8)
[33], and thus corroborates the conjecture by Pomeau, that the transition to
STT might be analogous to directed percolation [34]. To prove this conjec-
ture more thoroughly we have investigated four further power laws, namely
for the correlation length, the correlation time, the critical distribution of
the laminar lengths and times. Three of four exponents turned out to be in
agreement with the interpretation that chaotic domains spread within the
laminar state according to the rules of directed percolation.
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Fig. 6. Transition
to  spatio-temporal
intermittency in a
ring of 108 magnetic
liquid spikes situated
at the edge of a pole
shoe. The Figure
gives a series of
stroboscopic azimutal
scans (a) in the
laminar regime at
Ix =28A, (b) in
the spatio-temporal
intermittent regime
at Tex =3.0A, and
(c) in the chaotic
regime at Iox =3.8A.
The driving period
1s/12.5 is used
to scale the time.
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Figure taken from
32]
Fig.7. The mean

chaotic fraction ~ vs.
excitation amplitude
Iox. v was exctracted
from 2000 excitation
periods 7. The solid
line is a power law fit.
The error bars rep-
resent the statistical
errors. Figure taken
from [32]
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4 Liquid Bridge Pinch-off

Liquid bridges in between a rotating shaft and a housing are one of the mayor
industrial applications of MFs. Their stability and disintegration is apart
from these applications also of fundamental interest for the investigation of
drop formation. The early stage of the developing instability is described by
classical linear stability analysis first conducted by Rayleigh [35]. In the last
stage of the surface tension driven instability drop formation occurs. The
surface- and flow structures immediately before drop pinch—off are described
by universal scaling functions [36]. We have investigated whether this scaling
laws for standard Newtonian liquids survive for the case of magnetic liquids
subject to an axial magnetic field [37]. A magnetic liquid bridge is suspended
in between the pole shoes of two electric magnets. Upon increase of the static
magnetic field the bridge disintegrates. Figure 8 displays a sequence of frames
during the rupture of the bridge.

Fig.8. Decay of a
liquid bridge of mag-
netic fluid (APG J12
from  Ferrofluidics)
recorded by means of
a high speed CCD-
camera. The frames
are taken at ¢=0ms
(a), 2ms (b), and
3ms (c). From [37].

During the last 3 ms before the rupture the measured neck radius is found
to follow the equation

hmin = u(a)s U(VQ)_l(tO - t) (3)

Here wu(,), denotes the predicted dimensionless shrink velocities for the case
of a symmetric or asymmetric solution, respectively, i.e. for Stokes- or Navier-
Stokes flow. Moreover, ty denotes the time of pinch—off, o the surface ten-
sion, v the cinematic viscosity, and p the density. The measured value for u
amounts to 0.068, which is close to the value ug = 0.071 predicted by Papa-
georgiou for the case of a viscosity dominated flow [38]. This is in agreement
with the relatively large viscosity of the investigated magnetic fluid.

With decreasing neck radius, the flow is accelerated in the liquid thread.
Eventually the Stokes approximation brakes down, and inertial terms become
important. Such a transition is shown in Fig.9 and could be observed for a
glycerin-water mixture. It remains to be investigated, whether this transition
can be observed as well for the case of MF. Tuning the magnetic field should
shift the transition point, in analogy to recent findings for different viscosity
of the glycerin-water mixture [40].
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Fig. 9. The neck radius for the drop pinch—off of a glycerin-water mixture versus
time. The dotted and the dashed line represent the theoretical prediction and a
linear fit to the viscous dominated flow regime. The theoretical prediction and the
linear fit for the Navier-Stokes flow are marked by the dash-doted line and the
solid line. From [39]

5 Conclusion

We have presented recent experimental efforts for a quantitative understand-
ing of macroscopic surface patterns of magnetic fluids. Our three main out-
comes are: For the two dimensional structures in a normal magnetic field, an
almost linear dependence of the wavenumber of maximal growth on the mag-
netic induction. For a quasi one dimensional array of magnetic liquid spikes
in a gradient magnetic field driven periodically we uncovered a transition to
spatiotemporal intermittency. This transition yields some critical exponents
known from directed percolation. For the decay of a magnetic liquid bridge
the minimal neck radius was found to shrink with the velocity predicted for
Stokes flow. — In this way pattern formation in 2D, 1D, and in the vicinity
of a point of pinch—off has been investigated.

The projects have been supported in part by the ‘Deutsche Forschungs-
gemeinschaft’ under Grants En278/2, Re888/12 and Ril054/1.
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