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Patterns of thermomagnetic convection in magnetic fluids subjected to spatially modulated
magnetic fields
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An analysis of thermomagnetic convection in a thin horizontal layer of magnetic fluid constrained
horizontally by impermeable layers and subjected to a spatially and symmetrically modulated magnetic field is
presented. The magnetic field as well as the temperature gradient are oriented vertically. For any nonzero magnetic
field the base state is a convective one formed by a double vortex which reflects the symmetrical modulation. For
long wave modulations the linear stability analysis reveals that the critical Rayleigh number Rac for the stability
of the base state against small disturbances increases with increasing magnetic driving force. An analytical
expression for Rac is derived which shows the characteristic feature of sudden jumps of Rac at particular values
of the magnetic driving force.
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I. INTRODUCTION

Fluidic systems which are driven out of equilibrium by
the temperature dependence of the density of the fluid have
been long studied with respect to the emerging patterns and
their stability and belong now to the set of classical pattern
forming systems [1,2]. By using a magnetic fluid (MF),
also called a ferrofluid, as the working substance instead
of classical fluids such as ethanol [3], CO2 gas [4,5], or
liquid normal 4He [6], additionally ways open up to generate
patterns. Magnetic fluids—stable colloidal suspensions of
ferromagnetic nanoparticles (typically magnetite or cobalt)
dispersed in a carrier liquid (typically oil or water)—are
superparamagnetic fluids. Their magnetization generates a
magnetic force in a complex interaction with an applied
magnetic field of moderate strength. That force can drive the
system out of equilibrium, too. Thus, in a horizontal layer
of MF subjected to a vertical gradient of temperature and
a vertical magnetic field, convection can be initiated in two
different ways.

Besides density-driven convection, the temperature-
dependent magnetization, whose gradient is antiparallel to
the temperature gradient, is the other cause for triggering
convective motion. As a consequence of the gradient of
magnetization ∇M , the inner magnetic field within the fluid
has also a gradient being antiparallel to ∇M . If now a
fluid element with magnetization M is adiabatically moved
from the hot bottom to the cold top of the layer, where
the magnetization M − �M is present, a difference in the
magnetization between the fluid element and the surrounding
fluid exists. This difference interacts with the gradient of the
inner field to a resulting magnetic force, which points in
the same direction as the initial adiabatic movement [7].
Thus the magnetic force can generate a destabilization of
the fluid layer which leads to a convective motion, called
thermomagnetic convection. The strength of the force is
controlled by the strength of the magnetic field.
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The phenomenon of thermomagnetic convection is well
studied in the case of static external magnetic fields [8–10].
Special attention was paid to the interaction of the thermo-
magnetic convection with the density driven one [8]. The
resulting flow patterns of aligned as well as hexagonal and
irregularly oriented convection rolls were visualized in [9,10].
Also the limits of stability and the critical wave number
were determined experimentally [11] and later theoretically
confirmed [12].

Widening the focus of interest, the first modulations of
the magnetic field were made with respect to time and led to
parametrically driven convection [7]. For this type of excitation
it was found that the critical temperature difference for the
onset of convection is frequency dependent. A drawback of
this type of excitation is that frequencies of the magnetic field
above 5 Hz are difficult to implement. Thus the prospects of
variable stimulation are limited.

Therefore the idea of a spatially modulated field appeals.
Such a modulation is easy to accomplish by placing, for
instance, sinus-shaped iron bars in a constant magnetic field.
A sketch of such an arrangement is shown in Fig. 1 for the case
of an asymmetrical modulation by a bar beneath the ferrofluid
layer. With such a way of implementation, several different
types of spatial modulations are possible. One can use one or
two bars, the bars may have the same or a different wavelength,
or even a phase shift between both modulations is possible. Of
these different types, here one generic spatial modulation is
chosen and studied in detail.

The direction of this work is to determine the base state
and its stability by a linear analysis in a layer of magnetic
fluid which is subjected to a spatial symmetrical modulation
of the magnetic field. The paper is therefore organized as
follows. Numerical calculations and an analytical approxi-
mation of the modulated field is presented in Sec. II. The
governing equations of the considered system are presented in
Sec. III A. In Sec. III B the base state is determined, followed
by a linear analysis of its stability in Sec. III C. The results of
that analysis as well as the discussion of the results make
up the content of Sec. IV. Section V contains concluding
remarks.
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Hext

iron bar

FIG. 1. Sketch of an asymmetric modulation of a constant
external magnetic field Hext by one iron bar beneath a ferrofluid
layer (black filled rectangle).

II. MAGNETIC FIELD

According to the aim of the work, we concentrate on
the symmetrical modulation of an external magnetic field by
two iron bars placed beneath and above a ferrofluid layer
with a chosen thickness of d = 2 mm. For further systematic
analysis it is of immediate importance to address an analytical
description of the magnetic fields inside and outside the fer-
rofluid layer. Since to the best of our knowledge no analytical
solution is known, the problem is numerically tackled and
that solution approximated afterward. Figure 2 shows the
central part of the setup for the two-dimensional numerical
simulation because the setup will be lateral invariant in the y

direction. With the assumption that the magnetization M of
the magnetic fluid depends linearly on the applied magnetic
field H, M = (μr − 1)H, the magnetic induction is given by
B = μ0 (M + H) = μ0μrH. The relative permeability of the
MF is denoted by μr , and μ0 is the permeability of free space.
The permeabilities are μr = 1.2 for the MF and μr = 4000 for
iron, the wavelength of the sinus-shaped iron bar is λ � 3.14
cm, its thickness averages to 1.16 cm, and the amplitude of
the sinusoidal part is � 1.25 mm. This setup is subjected to a
vertical magnetic induction of 1 T.
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FIG. 2. (Color online) Symmetric arrangement of two sinus-
shaped iron bars (gray, λ � 3.14 cm) beneath and above a centered
ferrofluid layer (black). The white area indicates air.

The calculations were performed by COMSOL
Multiphysics R© on a triangular grid with nearly 1 44 000
elements. The ferrofluid layer and the bars with a horizontal
extension between x = −0.16 m and x = 0.16 m are centrally
placed in a computational region with a lateral length of
0.5 m. At all boundaries of the computational region, a
vertical induction of 1 T was imposed, thus the entire setup
of ferrofluid layer and iron bars is imbedded in a vertically
oriented, constant external magnetic induction.

Figure 3 presents the color-coded numerical values of Bz

in the area between the two sinus-shaped boundaries of the
iron bars. In the middle of the graph, the ferrofluid layer
is indicated by two long horizontal black lines. The spatial
modulations are clearly visible between the high [yellow
(light gray)] and low [turquoise (dark gray)] values of Bz. To
study this modulation in more detail, the short black (lower)
and red (upper) horizontal lines at z = 0 and z = 0.8 mm,
respectively, as well as the purple (vertical) line at x = 1.4 mm
indicate the range from which data were collected for further
inspection, particularly for a comparison with an analytical
approximation.

For that purpose, it is advantageous to introduce dimen-
sionless quantities (indicated by a bar): the components of the
magnetic induction are scaled with the mean value of Bz(x)
at z = 0, Bz,mean(x) � 1.13 T, and all lengths with d. The
black [red (dark gray)] line in Figs. 4(a) and 4(b) shows the
excellent sinus-like variation of B̄z(x̄) at z = 0 [z = 0.8 mm],
i.e., across the entire thickness of the layer. As can be seen
in Fig. 4(a), both lines overlap so well which means that
B̄z is nearly constant over the width of the layer, see also
Fig. 4(c). The variation is less than 0.2 %. In contrast to the
strength of B̄z(x̄), B̄x(x̄) is about two orders of magnitude
smaller, compare Figs. 4(a) and 4(c) with Figs. 4(b) and 4(d),
respectively. Thus a nearly perfect vertical and oscillating
magnetic field is generated.
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FIG. 3. (Color online) Plot of the z component of B for a
symmetrical modulation of the magnetic field by iron bars (indicated
at the top and bottom of the graph, see also Fig. 2). Yellow (light
gray) [turquoise (dark gray)] indicates a high [low] value of Bz. The
short black (lower) and red (upper) horizontal lines inside the layer
at z = 0 (z = 0.8 mm) indicate the range of data for Figs. 4 (a) and
4(b); the purple (vertical) line at x = 1.4 mm the range of data for
Figs. 4 (c) and 4(d).
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FIG. 4. (Color online) Plot of
B̄z (a) and B̄x (b) at z = 0 (black)
and z = 0.8 mm [red (gray)] vs
the horizontal coordinate x̄ with
x̄ = x/d − 8.26 for −1.35 � x �
4.65 cm. The lines show the re-
sults of the numerical evaluation,
the symbols the analytical approx-
imation. The excellent sinusoidal
variation across the layer can be
seen from graph (a), where a com-
parison of the order of magnitude
between (a) and (b) reveals that
the field is nearly perfectly ver-
tically oriented. Graphs (c) and
(d) are plots of B̄z (c) and B̄x

(d) at x = 1.4 mm [purple (gray)]
vs the vertical coordinate z̄ and
indicate that both components are
almost constant across the fluid
layer bounded at z̄ = ±0.5.

For an analytical approximation, the dependence with
respect to x̄ is modeled by trigonometric functions and with
respect to z̄ with terms which are in maximum quadratic in z̄,

B̄x = sin(k̄x̄) (Bz̄), (2.1)

B̄z = 1 + cos(k̄x̄)(E + Gz̄2) , (2.2)

with

k̄ = 2πd

λ
, B = −k̄E, G = k̄2E

2
. (2.3)

The dimensionless wave number is denoted by k̄ and two of
the three constants in Eqs. (2.1) and (2.2) were determined by
the condition that the divergence as well as the vorticity of B
is zero and by the assumption that Gz̄2 � E holds. The third,
E, is a fit parameter which yields for E = 0.091 a very good
agreement for components in both the x̄ and z̄ directions, as
the symbols in Fig. 4 show.

III. SYSTEM

A. Basic equations

A laterally infinite horizontal layer of an incompressible
layer of magnetic fluid (density ρ, dynamic viscosity η)
of thickness d in the x-y plane is bounded by two rigid
impermeable boundaries in the planes z = ±d/2. The setup
is heated from below with a temperature of Tb for the
bottom impermeable boundary which results in a temper-
ature difference of δT = Tb − Tt with respect to the top
impermeable boundary with the temperature Tt < Tb. The

layer is sandwiched between two sinus-shaped iron bars, see
Fig. 2, and the entire system is subjected to a constant external
magnetic field Hext = (0,0,Hext). The system is governed by
the equation of continuity

div v = 0, (3.1)

the Navier-Stokes equation in the Boussinesq approximation,

ρ0

[
∂v
∂t

+ (v grad) v
]

= −grad p + ρ g

+μ0 (M grad) H + η �v,

(3.2)

and the equation of heat conduction,

∂T

∂t
+ (v grad) T = κ �T . (3.3)

The density at the mean temperature T0 = (Tb + Tt )/2 is
denoted by ρ0, the thermal diffusivity by κ , and the ac-
celeration due to gravity by g = (0,0, − g) and a linear
dependence of the density on the temperature is assumed,
ρ = ρ0 [1 − α (T − T0)], where α is the thermal expansion
coefficient.

Since we assume that the system is laterally invariant
in the y direction, only the x and z components are con-
sidered. It leads to the following dimensionless equations
for the corresponding components of v = (u,0,w) and the
temperature T :

∂ū

∂x̄
+ ∂w̄

∂z̄
= 0, (3.4)
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1

Pr

[
∂ū

∂t̄
+

(
ū

∂

∂x̄
+ w̄

∂

∂z̄

)
ū

]
= −∂p̄

∂x̄
+ �ū + Ram(μr − 1)Ek̄ sin(k̄x̄)[E cos(k̄x̄)(k̄2z̄2 − 2) − 2]

2μ2
r

, (3.5)

1

Pr

[
∂w̄

∂t̄
+

(
ū

∂

∂x̄
+ w̄

∂

∂z̄

)
w̄

]
= −∂p̄

∂z̄
+ �w̄ + Ram(μr − 1)Ek̄2z̄[E(2 + k̄2z̄2) + 2 cos(k̄x̄)]

2μ2
r

+ Ra(T̄ − T̄0) − ρ0gd3

κη
,

(3.6)

∂T̄

∂t̄
+

(
ū

∂

∂x̄
+ w̄

∂

∂z̄

)
T̄ = �T̄ . (3.7)

The Prandtl number Pr = η/(ρ0 κ) characterizes the fluid,
where the Rayleigh number,

Ra = gρ0 αδT d3

κ η
, (3.8)

and its magnetic counterpart [7],

Ram = μ0K
2δT 2d2

κ η
, (3.9)

relate the destabilizing effects of buoyancy and magnetic force,
respectively, to the stabilizing effects of viscous friction and
head conduction. The velocity was scaled with κ/d, the time
with d2/κ , the temperature with δT , the pressure with (κ η)/d2,
and the magnetic field with KδT , where K = −(∂M/∂T )H is
the pyromagnetic coefficient. After the scaling of H and M, the
corresponding dimensionless expressions which follow from
Eqs. (2.1) and (2.2) were used for Eqs. (3.5) and (3.6). As a
first step of a systematic analysis, a solution describing the
base state is searched for where realistic material parameters
are taken into account.

B. Base state

Since the Prandtl number of real magnetic fluids is large
compared to 1 [13,14], the left-hand side of Eqs. (3.5) and (3.6)
is set to zero. As the base state is a stationary one, a solution
has to be determined for the equations

0 = −∂p̄

∂x̄
+ �ū + Ram(μr − 1)Ek̄ sin(k̄x̄)

× [E cos(k̄x̄)(k̄2z̄2 − 2) − 2]

2μ2
r

, (3.10)

0 = −∂p̄

∂z̄
+ �w̄ + Ra(T̄ − T̄0) − ρ0gd3

κη

+ Ram(μr − 1)Ek̄2z̄[E(2 + k̄2z̄2) + 2 cos(k̄x̄)]

2μ2
r

,

(3.11)

0 = −
(

ū
∂

∂x̄
+ w̄

∂

∂z̄

)
T̄ + �T̄ , (3.12)

augmented by Eq. (3.4). This set of equations has to be
supplemented by rigid boundary conditions for the velocity,

ū = w̄ = 0 at z̄ = ±1/2 , (3.13)

and a constant temperature at the bottom and upper boundary,
respectively,

T̄ = T̄t at z̄ = 1/2 ,

T̄ = T̄b at z̄ = −1/2 . (3.14)

By restricting the analysis to modulations with a long wave-
length, k d � 1, a perturbational ansatz of the kind

X̄(x̄,z̄) = X0(z̄) + k̄X1(z̄) + · · · + k̄4X4(z̄)

+ cos(k̄x̄)
[
X0

k (z̄) + k̄X1
k (z̄) + · · · + k̄4X4

k (z̄)
]

+ cos(2k̄x̄)
[
X0

2k(z̄) + k̄X1
2k(z̄) + · · · + k̄4X4

2k(z̄)
]

+O(k̄5) (3.15)

can be employed, where X̄ stands for ū, w̄, T̄ , and p̄. For ū the
cosine functions have to be substituted by the corresponding
sine functions. The trigonometric functions with the double
argument are caused by the particular form of the magnetic
force term in Eq. (3.10).

Inserting the ansatz (3.15) into Eqs. (3.4), (3.10)–(3.14),
a hierarchy of equations follows sorted by the power of k̄

and all possible combinations of the employed trigonometric
functions. The principal way to determine the solution is
exemplarily shown in the lowest order of k̄.

At the orders O[k̄0 sin(k̄x̄)], O[k̄0 sin(2k̄x̄)] from
Eqs. (3.10) and (3.13) and at the orders O[k̄0 cos(k̄x̄)] and
O[k̄0 cos(2k̄x̄)] from Eqs. (3.4) and (3.13) one get

∂2u0
k

∂z̄2
= 0 u0

k(1/2) = u0
k(−1/2) = 0, (3.16)

∂2u0
2k

∂z̄2
= 0 u0

2k(1/2) = u0
2k(−1/2) = 0, (3.17)

∂2w0
k

∂z̄2
= 0 w0

k (1/2) = w0
k (−1/2) = 0, (3.18)

∂2w0
2k

∂z̄2
= 0 w0

2k(1/2) = w0
2k(−1/2) = 0, (3.19)

with the solution u0
k = u0

2k = w0
k = w0

2k = 0. At the or-
der O(k̄0) in Eqs. (3.4) and (3.10)–(3.14), the classical
Rayleigh-Bénard problem is recovered with its solution of
a quiescent fluid in a vertical temperature gradient,

u0 = w0 = 0, (3.20)

T 0 = T̄0 − z̄. (3.21)
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With this partial solution, the orders O[k̄0 cos(k̄x̄)] and
O[k̄0 cos(2k̄x̄)] from Eqs. (3.12) and (3.14) yield

∂2T 0
k

∂z̄2
= 0, T 0

k (1/2) = T 0
k (−1/2) = 0, (3.22)

∂2T 0
2k

∂z̄2
= 0, T 0

2k(1/2) = T 0
2 k(−1/2) = 0. (3.23)

Solving this set of equations generates the remaining solution,

T 0
k = T 0

2k = 0.
Repeating that procedure up to O(k̄4), the base state is

finally given by

ūb(x̄,z̄) = −
[

sin(k̄x̄) + E

2
sin(2k̄x̄)

]
RamE(μr − 1)

× (4z̄2 − 1)(20z̄2 − 1)k̄3

1920μ2
r

, (3.24)

w̄b(x̄,z̄) = [cos(k̄x̄) + E cos(2k̄x̄)] RamE(μr − 1)

× z̄(4z̄2 − 1)2k̄4

1920μ2
r

, (3.25)

T̄b(x̄,z̄) = T̄0 − z̄ − [cos(k̄x̄) + E cos(2k̄x̄)] RamE

× (μr − 1)z̄(4z̄2 − 1)[16z̄2(5z̄2 − 4) + 19]k̄4

1612800μ2
r

.

(3.26)

For a vanishing magnetic Rayleigh number, i.e., for a vanishing
external magnetic field, the motionless base state with a linear
temperature profile inside the layer is recovered. If the spatially
modulated magnetic field is turned on, the temperature field is
modified. But the real qualitatively different feature compared
to the classical Rayleigh-Bénard problem is the nonzero
flow field [Eqs. (3.24) and (3.25)] for any nonzero magnetic
Rayleigh number. A similar phenomenon was observed at
the onset of the Marangoni-Bénard convection over a heated
substrate with grooves [15]. As in our system, no distinct
transition from a pure conductive to a convective state
occurred. Instead, the fluid convects for all nonzero values
of the external magnetic driving force.

Therefore the base state is not the quiescent one any
longer. In fact, Fig. 5 shows a structured flow field: it
is given by a double vortex. (The material parameters
ρ0 = 1.356 × 103 kg/m3, α = 4.5 × 10−4 K−1, η = 150 ×
10−3 kg/(m s), κ = 5 × 10−8 m2/s, and K = 35 A/(m K)
of APG 513A were used with Tb = 30 ◦C and Tt = 20 ◦C.)
That means that for a symmetrical arrangement of bars not only
does a nonzero flow field exist, but also it has the nonsimple
structure of a double vortex. Considering the shape of a single
vortex, it is stretched in the x direction due to the modulation
with a long wavelength in order to fulfill k d � 1. Thus the
wavelength of the sinusoidal variation of the magnetic field
strongly influences the x extension of the vortex. For too large
wavelengths it is expected that the system will hardly form
an elongated eddy which will stretch for several tens of
layer thicknesses. In contrast, for rather small wavelengths
of the modulation the system will “see” only a mean value,

z

0.4

-0.2

-0.4

0.2

0

x
0-8 -4 4 8

FIG. 5. Plot of the flow field for a scaled temperature difference
of δT̄ = 1 which gives together with the other material parameters
(see text) Ra � 63.8 and Ram � 82.1.

obliterating the effect of a spatial variation. In which interval
of intermediate wavelengths the vortex will match the length
scale of the external excitation is a question to be answered in
experiments.

In these a practical procedure to reach the base state would
consist of two steps. First, a small temperature gradient is
applied across the layer, which results in an undercritical
Rayleigh number, e.g., only heat conduction is present.
Second, the magnetic field is switched on and the convective
base state will form.

C. Linear stability

To determine the stability of this base state, a linear stability
analysis is performed. Since the components of the flow field
of the base state can be expressed with the help of a stream
function,

�b(x̄,z̄) = −
[

sin(k̄x̄) + E

2
sin(2k̄x̄)

]

× RamE(μr − 1)
z̄(4z̄2 − 1)2k̄3

1920μ2
r

, (3.27)

i.e., vb = (∂�b/∂z̄,0, − ∂�b/∂x̄), small two-dimensional
disturbances

�b → �b + �(x̄,z̄,t̄), (3.28)

Tb → Tb + 
(x̄,z̄,t̄), (3.29)

expand the base state. With the introduction of �b, the govern-
ing equations are restricted to O(k̄3) for the disturbances. With
the ansatz [Eqs. (3.28) and (3.29)], the Navier-Stokes equation
and the equation of heat conduction, respectively, have the
form

0 = �2� − Ra
∂


∂x̄
, (3.30)

0 = −�
 + ∂


∂t̄
+ ∂�

∂x̄
+ ∂�b

∂z̄

∂


∂x̄
. (3.31)
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After differentiating Eq. (3.31) with respect to x̄ and using
Eq. (3.30) to substitute (∂
/∂x̄), the final linear equation for
�(x̄,z̄,t̄) is

∂

∂t̄
�2� + Ra

∂2�

∂2x̄
+ ∂�b

∂z̄

∂

∂x̄
�2� = �3� (3.32)

under the condition that Ra �= 0 holds. To solve this equation,
the separation ansatz for small disturbances

�(x̄,z̄,t̄) = eiq̄x̄ cos(πz̄)eσ̄ t̄

N∑
l=−N

fl e
ilk̄x̄ (3.33)

decomposed them as follows. The exponential function with
the growth rate σ̄ describes the exponential growth (σ̄ > 0) or
decay (σ̄ < 0) of the disturbances. The term cos(πz̄) fulfills
automatically the stress-free boundary conditions at the plates
and approximates the exact z dependence which would require
the entire sum

∑N
m=1 cos(mπz̄). With respect to x̄ a Floquet

ansatz is made which is typical for modulated problems [16],
where q̄ denotes the dimensionless wave number of the
disturbances.

By inserting the ansatz (3.33) into Eq. (3.32), the appearing
explicit dependence on z is eliminated by multiplying the
resulting equation with cos(πz̄) and integrating over z from
−1/2 to 1/2. Arranging all terms which are proportional to
eilk̄x̄ , an eigenvalue problem of the sort

σ̄ f = Af, f = (f−N, . . . ,fN), (3.34)

appears, where A is a band matrix with the elements

Al,l = Ra(q̄ + k̄l)2

[(q̄ + k̄l)2 + π2]
− (q̄ + k̄l)2 − π2, (3.35)

Al,l±1 = ∓ P̃[q̄ + k̄(l ± 1)]{[q̄ + k̄(l ± 1)]2 + π2}
2[(q̄ + lk̄)2 + π2]2

,

(3.36)

Al,l±2 = ∓ P̃[q̄ + k̄(l ± 2)]{[q̄ + k̄(l ± 2)]2 + π2}
2[(q̄ + lk̄)2 + π2]2

,

(3.37)

with

P̃ = Ram

(μr − 1)E(15 − π2)k̄3

240μ2
rπ

4
(3.38)

containing the magnetic force. By determining the marginal
stability (σ̄ = 0), the threshold of stability for the base state
can be determined. The results of these calculations will be
presented in the next section.

IV. RESULTS AND DISCUSSION

As a step of validation, the threshold for vanishing magnetic
force, Ram = 0, is determined. Solving the eigenvalue problem
(3.34) with this constraint, a minimal threshold of

Rac(Ram = 0,q̄c,0) = Rac,0 = 27

4
π4 (4.1)
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FIG. 6. Plots of the critical Rayleigh number Rac (a) and the
critical wave number q̄c (b) scaled with the corresponding values for
a purely thermal driving mode against the strength of the magnetic
driving force. By increasing Ram, the critical Rayleigh number
increases slightly. That rise is accompanied by an increase of the
critical wave number. For the sudden jumps in both quantities, see
text.

at

q̄c (Ram = 0) = q̄c,0 = π√
2

(4.2)

results, which is known from the classical Rayleigh-Bénard
problem for stress-free boundary conditions [2].

By minimizing Ra with respect to q̄ at a given nonzero value
of Ram, the threshold between the stable and unstable region
for the base state is determined. The critical Rayleigh number
Rac and the critical wave numbers q̄c, respectively, scaled
with the corresponding values for a purely thermal driving
mode, are plotted in Fig. 6. The stability chart shows that
with increasing magnetic Rayleigh number Ram, the critical
Rayleigh number Rac increased slightly. That increase is
accompanied by an increase of the critical wave number q̄c. A
larger wave number means more convection rolls per length,
which requires more energy which is reflected by the growing
critical Rayleigh number which on its part is equivalent to a
stronger external driving force.

The behavior of both quantities is different from that in a
Rayleigh-Bénard system, where the temperature of the bottom
plate is spatially modulated [16]. There the threshold shows
a slight decrease at an almost constant critical wave number.
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FIG. 7. Plot of the solution
σ̄ = 0 (solid lines) in the scaled
q̄-Ra plane for two different
strengths of magnetic force
with Ram/Rac,0 = 1750 (a) and
Ram/Rac,0 = 2500 (b). The filled
(empty) symbols denote the lowest
(second lowest) local minimum.

Compared to that, the excitation by a spatially modulated field
offers apparently a greater freedom for the system to choose its
wave number. As already described in [16], the neutral curve
Ra(q̄), where the growth rate is zero, possesses several local
minima that are separated by k̄. No absolute minimum with
respect to q̄ could be determined here despite the selection of
N = 11 in Eq. (3.33). For this choice, the numerical accuracy
is such that no difference between consecutive local minima
up to O(10−8) could be found with Rac ∼ O(103).

The sudden jumps in both critical quantities are the most
remarkable property of the stability curve in Fig. 6. To
understand this behavior, one has to envision that the neutral
curve, i.e., σ̄ = 0, has not a unique solution at a fixed value of q̄

as the two examples for Ram/Rac,0 = 1750 and Ram/Rac,0 =
2500 in Fig. 7 show. Depending on the magnetic driving force,
the solution forms tongues and islands, as it is known from the
Faraday instability [17,18]. The similarity stems from the fact
that the systems are periodically modulated: in one case with
respect to time, in the other with respect to space.

For the lower value of the magnetic force, see Fig. 7(a), a
lowest minimum (filled circle) at an island and a second lowest
(empty square) at a tongue exist. As the magnetic Rayleigh
number increases, the island part of the neutral curve shrinks
until it disappears completely. That is shown in Fig. 7(b) for
a second value of the magnetic Rayleigh number. At that
condition the second lowest minimum from Fig. 7(a) becomes
the lowest one in Fig. 7(b) (filled square) and the stability
curves make a jump.

That is the reason for the drastic changes in the stability
chart at some particular values of the magnetic Rayleigh
number, where the first jump is shown in a zoom of Fig. 6
in Fig. 8. The lowest and second lowest minimum at selected
values of the scaled magnetic Rayleigh number are again
indicated by the corresponding filled and empty symbols,
respectively. The solid line shows the threshold between
stability and instability. The black long-dashed line is a guide
for the eye for the second lowest minimum before the first
jump of Rac. A similar behavior with less pronounced jumps
for a critical quantity with respect to the onset of patterns was
measured for the Faraday instability by Douady [19].

For a better understanding of the diverging increase of Rac

close to the first jump, an analytical approach is chosen. For
that purpose it is assumed that the critical wave number is equal
to the one without a magnetic force, q̄c = q̄c,0 [the deviation is
less than 1.5% according to Fig. 6(b)], and an approximation
by selecting N = 1 is made. The eigenvalue problem (3.34)

reduces now to a cubic equation for Ra which can be solved
analytically. Exploiting that k̄/π is small compared to 1, the
critical Rayleigh number is given by

Rac = −12πk̄2

√
1 − E2 + 8

9830400
Ã

× cos

⎧⎪⎨
⎪⎩

1

3
arccos

⎡
⎢⎣ 1 + E2−4

3276800 Ã(
1 − E2+8

9830400 Ã
)3/2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

+ 27π4

4

(
1 − 20

9
k̄2

π2 + 76
81

k̄4

π4 + 160
81

k̄6

π6 + 32
81

k̄8

π8

)
(

1 − 2 k̄2

π2

)2 ,

(4.3)

with

Ã = Ra2
m

(μr − 1)2(15 − π2)2E2k̄2

μ4
rπ

6
. (4.4)
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1.05

R
a c/R

a c,
0

Ram,c

FIG. 8. (Color online) Plot of the scaled critical Rayleigh number
(black solid line) vs the scaled strength of the magnetic driving
force. The lowest and second lowest minimum of the neutral curve
is indicated by the filled and empty symbols, respectively. The
black long-dashed line is a guide for the eye for the second lowest
minimum before the first jump of Rac/Rac,0. The red (gray) solid and
long-dashed lines indicate analytical results with the assumptions
q̄c = q̄c,0 and N = 1 in Eq. (3.33), see text.
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The solid red (gray) line in Fig. 8 shows the numerical
evaluation of the analytical result (4.3). Despite the approx-
imations, the data of the full eigenvalue problem are nicely
fitted including the divergence of the threshold near a critical
value of the magnetic Rayleigh number. That number can
be approximately determined, too, by the condition that the
absolute value of the argument of the arccos function has to
be smaller than 1. The limit [· · ·] = 1 in Eq. (4.3) yields

Ram,c = 3840
√

2π3μ2
r

Ek̄(μr − 1)(15 − π2)

×

√√√√E2(20 − E2) + 8
[
1 +

√
(1 − E2)3

]
(E2 + 8)3

,

(4.5)

which is indicated by the vertical red (long-dashed) line in
Fig. 8. Thus the lowest order in the Floquet ansatz generates
analytical results for both Ra and Ram which shed light on the
deeper reasons for the behavior of the threshold.

Figures 6 and 8 reveal that for small changes of the
critical Rayleigh number of about a few percent, the scaled
magnetic Rayleigh number has to be large. Nevertheless it is
expected that the flow field is well structured and not turbulent.
Such a behavior was detected by Yamaguchi et al. [20] with
their experimental and numerical investigation of convectional
phenomena in a similar setup. For a scaled Rayleigh number
of 1.4 and a scaled magnetic Rayleigh number of 3 × 105,
only “weak flow roll” occurred, as the authors noted [20].
A second aspect of the large magnetic Rayleigh numbers is
their experimental feasibility. With an upper bond of Kmax =
50 A/(m K) and δTmax = 65 K [7], one can achieve for a 2
mm layer of APG 513A a maximal scaled magnetic Rayleigh
number of (Ram/Rac,0)max � 10. That is too small to explore
the wide range of the stability threshold plotted in Fig. 8.

To extend the testing area, an alternative approach comes
into play. That approach is a combination of the inner gradient
of the magnetic field, reflected by the pyromagnetic coefficient
K , and an external gradient, ∇Hext, which results in a different
definition of the magnetic Rayleigh number,

Ram = μ0KδT ∇Hextd
3

κ η
. (4.6)

The exploitation of such a concept for thermomagnetic con-
vection was already shown in [21]. To reach a scaled magnetic
Rayleigh number of 2000, necessary to cover the first jump

in the stability curve [see Figs. 6(a) and 8], an external field
gradient of ∇Hext = 3 × 108 A/m2 is needed. The realization
of such a gradient is the subject of current research. With strong
external gradients of the applied magnetic field, the presented
base flow will experience a modification whose extent will be
examined in a future study.

V. CONCLUSION

A detailed analysis of the thermomagnetic convection in
a horizontal layer of magnetic fluid subjected to a spatially
and symmetrical modulated magnetic field is presented. For
any nonzero magnetic field the base state is a convective one
in contrast to the classical Rayleigh-Bénard system which
is purely thermally driven. The nonzero flow field of the
base state is formed by a double vortex which reflects the
symmetrical modulation from above and beneath the layer
of magnetic fluid. The linear stability analysis reveals that
the threshold for the stability of the base state increases with
increasing magnetic driving force. In the lowest order of the
chosen Floquet ansatz it is possible to derive an analytical
expression for the threshold showing the characteristic feature
of sudden jumps of the threshold at particular values of the
magnetic driving force.

The easy and modular variation of the external modulation
of the magnetic field triggers new tasks from the theoretical
point of view. It would be of high interest to determine the
base state and its stability if only one iron bar is used, if
two iron bars of the same wavelength but with a phase shift
are employed, or if two iron bars with different wavelengths
are applied. For all types of modulations, the influence of
its wavelength on the size of the vortex of the base flow is
of particular interest, because this influence competes with
the geometrical constraints which determine also the size of
convection patterns as known from the classical Rayleigh-
Bénard setup. These questions are deferred to a forthcoming
publication, as well as objectives which are of importance from
an experimental point of view. These objectives comprise, for
instance, the realization of such systems, the measurement
of the stability threshold, and particularly the detection of a
convective base state formed by a double vortex.
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