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Oscillatory decay at the Rosensweig instability: Experiment and theory
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Transient patterns of the Rosensweig instability are accessed with a pulse sequence. The critical scaling
behavior of the oscillation frequency and of the propagation velocity of these patterns is experimentally
investigated by switching the magnetic induction to subcritical values. The experimental findings are in good
agreement with the linear theory, if the low viscosity and the finite thickness of the magnetic liquid layer are
taken into account. In this way we elucidate the subcritical branch of the underlying steady state bifurcation,
which is situated in the immediate vicinity of a splitting type bifurcation.
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[. INTRODUCTION The paper is organized as follows. After a sketch of the
experimental setup in Sec. Il, we present in Sec. Ill the mea-
Pattern formation has mostly been investigated in systemsurements of the oscillation frequency and the propagation
driven out of thermodynamic equilibrium, e.g., in Rayleigh- velocity of the ridges for different magnetic induction. The
Benard convection or Taylor-Couette systefrid. On the theoretical context is displayed in Sec. IV with an emphasis
contrary, examples for pattern formation in systems at equion the set of solutions of the dispersion relation for super-
librium are buckled shell structurg®,3] and the instability ~ critical and subcritical induction. Section V is devoted to the
of a horizontal fluid interface in a vertical electjé] or  discussion and the conclusion of our results.
magnetic field 5]. Here dissipation does only have an influ-
ence in the transient_process of structure formation, not at its Il. EXPERIMENTAL SETUP
final state. For sufficiently low dissipation these systems are
close to the ideal, Hamiltonian case, and thus exhibit inter- Our experimental setup is shown in Fig. 1. A cylindrical
esting bifurcation scenarios. vessel with an edge machined from Teffowith a diameter
From an experimental point of view, the normal field in- of 12 cm and a depth of 3 mif2 mm) is brimful filled with
stability in a magnetic field is conveniently accessible. Influid and is situated in the center of a pair of Helmholtz coils.
1967 Cowley and Rosensweig first investigated the influenc&he experiments are performed with the magnetic fluid EMG
of a homogeneous magnetic field on a horizontally extende809 (Ferrotec Corp. The fluid is illuminated from above by
layer of magnetic fluid(MF). When surpassing a critical 90 red light emitting diodes mounted on a ring of 30 cm
value B, of the magnetic induction, they observed a hyster-diameter. This ring is placed 105 cm above the surface. A
etic transition between the flat surface and a hexagonal pacharge-coupled-device camera is positioned in the center of
tern of liquid crestg5,6]. the ring. By this construction, a flat surface reflects no light
In the present paper we are investigating the fate of thénto the camera lens. Only an inclined surface of proper
pattern when switching to a subcritical induction. In particu-angle will reflect light into the camera. The camera is con-
lar, the oscillatory decay of magnetic liquid ridges8] to-  nected via a frame grabber to a 90-MHz Pentium PC and
wards a flat surface is observed. It turns out that the oscillaserves additionally as the fundamental clock for timing the
tion frequency and the propagation velocity of the decayingexperiment.
pattern depend sensitively on the subcritical magnetic induc-
tion. When approaching the bifurcation poBy from below,
a dramatic decrease of both observables can be measured.

computer +
D/A converter

CCD camera

We examine this bifurcation point theoretically within the ,frames + clock A
framework of a linear theory. The critical scaling behavior is (ring of LEDs
discussed particularly in the context of a perturbation of the .
so called9,10] splitting type bifurcation. Here a pair of con-  Helmholtz coils
jugated complex eigenvalues with negative real parts,
equivalent of an oscillatory decay, merges at the negative v
real axis just before the origin of the complex plane. At least o o DVM
one of the eigenvalues propagates on the positive real axis, dish with magnetic fluid
equivalent of a developing pattern. In the limit of vanishing r—_l_rl TN
viscosity the theory predicts a splitting type bifurcation. (YHa probes T H {pT™ |
) 4

*Present address: Fraunhofer Institute for Factory Operation and

Automation, D-39106 Magdeburg, Germany. FIG. 1. Scheme of the experimental setup.
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0.6 . . A . FIG. 3. Initial pattern of liquid ridgega), approximately flat
—200 0 200 400 600 800 1000 surface after a quarter of the oscillation peribgl and liquid ridges
time (ms) after half of the periodc).

FIG. 2. Pulse sequence for the preparation of the liquid ridges. . I .
The small letters, b, ¢ mark the times when the pictures of Fig. 3 ner', F'Qure 3 ShOV_VS half of such an OSC'I_Iat',On,pe_”Od' The
have been captured. oscillation starts with a pattern of concentric liquid ridges, as

presented in Fig. @). Figure 3b) shows the approximately
In order to prepare a state of unstable liquid ridges, thdlat surface after a Quarter Of. the peri(_)d. The I_iqui(_j ridges
magnetic induction has to be switched in a jumplike manneffter half of the oscillation period are displayed in Figc)3
[7]. We start all measurements from a common subcritical
induction B,=12.75 mT. The jumplike increase of the in- A. Oscillation frequency
duction is initiated by the computer. Its digital-to-analog con-
verter is connected via an amplifi€ug Elektronik GmbH
to the Helmholtz coils(Oswald Magnetfeldtechnjk The
magnet system cannot follow the control signal instantly; it
relaxation timerg to a jumplike increase of the control sig-
nal depends on the jumAAB. For a maximal jump ofAB
=7 mT, the relaxation time mounts up t@=8.0 ms. The
other characteristic time scales of the system are the capilla
time scale,t,=o"¥(g¥*¥)=12.5ms, and the viscous
time scalef,= o/(gu)=450.3 ms. The dynamic viscosity
and surface tension with aio{) of the MF are taken from
the literaturg 11]. The densityp of the MF is measured to be
1.16 g/cmi, which is somewhat higher than the value of
1.02 g/cni given by the producer. The gravitational accel-
eration is denoted byg. For the empty Helmholtz coils, the
spatial homogeneity of the magnetic field is better tha
+1%. This grade is valid within a cylinder of 10 cm diam-
eter and 14 cm in height oriented symmetrically around the
center of the coils. Two Hall probes are positioned immedi- @
ately under the vessel. A Siemens Hall protieSY 44) E
:
-

Next we describe the extraction of the oscillation fre-

quency. Therefore we calculate the azimuthal average of the
ray level values in the vessel, as described in detail in Ref.
71, which defines a single horizontal line in the space-time
plot of Fig. 4a). These lines are displayed as a function of
the delay time—indicated by the vertical axis—after switch-
ring to the subcritical value. In order to surpass the temporal
Pesolution of the camera, the experiment has to be done re-
petitively with different delay times. Thus the space-time
plot displays the evolution of the incline@ark) and ap-
proximately horizontal(bright) parts of the surface of the
magnetic liquid. The dashed lif® denotes the start of the
oscillation, when the magnetic induction was switched to the
subcritical value. The gray value distribution is approxi-
nmately repeated at the site of lifie) in Fig. 4(a).

100

serves to measure the magnetic field during the jumplike
increase, and is connected via a digital voltmeterema
6001). For measuring a constant magnetic field and for cali-
bration purposes, we use a commercial Hall prdBeoup3-
LPT-231) connected to the digital teslametddTM 141).
Both devices are controlled via an IEEE bus by the com-
puter.

[¢]]
o

amplitude

IIl. EXPERIMENTAL RESULTS 35 40 45 50 55 60 65

In the following we demonstrate the preparation of the rading (mm)

state of liquid ridges. First the induction is increased jump-  FG. 4. (a) Space-time plot of the oscillation of the liquid ridges
like from Bo=12.75 mT up to a supercritical vali&,;, 8  in the outer region of the vessel. The dashed horizontal lindigt i
sketched in Fig. 2. Due to the supercritical induction, liquiddenotes the stathalf of the periodl of the oscillation, respectively.

ridges emerge. Before they start to develop into the hexagan (b) a sketch of the height profiles at the corresponding times is
nal state, the induction is switched back to a subcritical valugjiven. The circles and squares mark points of equal inclination. For

Bsus>Bo. Now the liquid ridges decay in an oscillatory man- clarity the height profiles have been vertically shifted.
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FIG. 6. Space-time plot of the propagation of the magnetic lig-
uid ridges in a vessel of 2 mm depth. The three solid lines denote
the ridge from which the propagation velocity has been extracted.
The whole vessel is shown with its edge at the right hand side.

O N -
' marked in Fig. 5 by open squares. Again a good agreement

between experimental data and theory is found. In Fig),5
the square of the oscillation frequency has been plotted ver-
sus the induction in order to show the range of validity of the
square-root-like behavior.
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B. Propagation velocity

After a jump to a subcritical magnetic induction the ridges
do not only start to oscillate, but also have a finite propaga-
tion velocity. We have measured this behavior in a vessel of

FIG. 5. (a) Oscillation frequency of the liquid ridges versus the 2 mm. Figure 6 shows the space-time plot of the gray value
subcritical magnetic induction. The open circlesjuares denote  distribution of the whole vessel. In the right part, we observe
the measured data obtained after a pulsBgf=18 mT(17.5 mT), the oscillatory behavior of the ridges already shown above
respectively. A layer thickness of 3 mm was used. The solidand in the central part one can detect stripes with an inclina-
(dashedl lines give the theory for a viscouinviscid) MF, respec-  tion to the left, i.e., to the center of the vessel. These stripes
tively, as presented in Sec. I\Vb) Square of the oscillation fre- stem from the ridges which are propagating towards the cen-
quency of the liquid ridges as a function of the subcritical magneticer of the vessel. The three white lines denote specific
induction. maxima and minima of the gray value distribution. Each line

consists of 64 independent extrema. From a linear fit of the

The gray value is a measure of the deviation from thecentral white line, we estimate the propagation velocity of
horizontal surface. The flat surface both at the valley and théhe ridge.
crest corresponds to white areas. The interpretation of the In Fig. 7(a), the propagation velocity obtained in this way
measurement in Fig.(d) is sketched in Fig. @) in terms of  is denoted by open squares and has been plotted versus the
height profiles. It illustrates the fact that only half an oscil- subcritical induction. Each data point has been estimated
lation period elapses between liGig¢ and (ii) in Fig. 4(a). from six independent measurements. The data show a

In order to determine the oscillation period, we select twosquare-root-like behavior for a full decade of the velocity. In
radial positions with a lateral distance of a half wave length.comparison with Fig. 5, this dependency could be corrobo-
The corresponding equal intensities do appear after half ofated even in the immediate vicinity of the bifurcation point.
the oscillation period at these positions, as illustrated in FigFor comparison the open circles give the values for the
4(b) by the open circles and squares. This fairly complicatecpropagation velocity as extracted from the data of the oscil-
procedure turned out to be more practical than the simplelation frequency in Fig. 5 by division with the wave number.
method of measuring the full period because of the fast deThe solid line gives the corresponding theoretical results for
cay of the patterns. viscous fluids, a fluid layer of 3 mm, and a magnetic perme-

The oscillation period as a function of the magnetic in-ability of u,=1.94 (see Sec. IY. The dotted line gives the
duction is shown in Fig. 5. Starting with a jump to the su-theoretical results for a fluid layer of 2 mm and the same
percritical inductiorBg,;= 18 mT, the oscillation period was permeability, which does not seem to describe the measure-
measured for 12 different values of the subcritical inductionments adequately. When considering the fact that the height
Bsu- The measured data are denoted in Fi@) By open is not necessarily constant when changing the magnetic field
circles. The error bars are estimated from seven independetds discussed in detail belpwthe height of the layer can be
measurements. The data show a square-root-like dependerio&roduced as a fit parameter. The dash-dotted line represents
from the induction, and are well described by the theorythe best fit yieldingh=1.04 mm. It shows systematic devia-
(solid line), developed in Sec. IV. A second measurementions from the data. Thus in addition we use the magnetic
series has been performed Bg,,=17.5 mT. In this way, a permeability as a fit parameter, thus taking into account an
pattern of liquid ridges with a smaller wave number has beemging of the magnetic fluid. The dashed line gives the best
prepared. The data for these oscillation frequencies ariwvo-parametefit, yielding x,=1.98 andh=1.15 mm. Fig-

13 14 15 16 17
induction (mT)
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g or where v is the cinematic viscosity of the MFu, its
2 relative permeabilityB the absolute value of the external
20T magnetic induction, ang, the permeability of the vacuum.
For dispersion relatior(4.1), the small disturbances from
; ooog the basic state were decomposed into normal modes,
\D\n\ exd —i(wt—q-r)]. Herer=(x,y) is the planar space vector,
2000 - o~ (®) | a=(ax.qy) the wave vector, andj=|q| denotes the wave
N ™ number. Withw=w;+iw,, the real part of—iw, w,, is
G 5000 | NIy | called the growth rate and defines whether the disturbances
8 e will grow (w,>0) or decay @,<0). The absolute value of
% =N the imaginary part of—iw, ||, gives the angular fre-
g Ao00r Toy, I quency of the oscillation if it is different from zero. The
i "a critical induction for the onset of the instability readsaﬁ
=000 e =2pomipt 1)Vpogl (u—1)? [5].
. . . D\ For asupecritical inductionBg ;= 1.08., the dispersion
0.3 14 15 16 17 relation (thick solid lines in Fig. 8 predicts that the linearly

induction (mT) most unstable pattern evolves most quickly. It is character-
ized by the maximal growth rates,=iw,n, (w;,,=0,

w, m>0) and its corresponding wave numlagy, marked by
thin solid lines in Fig. 83). Such features can be concluded

egrom the facts that af),, the real part ofw? has its smallest

FIG. 7. (a) The open squares mark the propagation velocity of
the liquid ridges measured as a function of the subcritical magneti
induction. For the measurements a preparing pulse Bgf,
=18 mT and a layer thickness of 2 mm were used. The open circl . . - .
give the values for the propagation velocity as calculated from th(pegatlve yalue and the 'm.agmary partis zero. .
oscillation frequencies of Fig. 5. The solidotted line indicates AC_Cord'n_g to the_ experimental prc_)c_:edu_re, the solution of
the theoretical results for viscous fluids and a layer thickness of 3N€ dispersion relatiofd.1) for a suteritical induction atgy,
mm (2 mm), respectively(see Sec. IY. The dash-dotted line gives IS the relevant solution for the comparison with the experi-
the best least squares fit by theory for keeping the permeabilitynental data. The thick dashed lines in Fig. 8 display the
fixed atu,=1.94, where the height of the fluid layer, now used as adispersion relation foB,;=0.96;. At the maximal wave
fit parameter, yields=1.04 mm. The solid line gives the best two- numberg,,, one can read the relations R&)= w%— wg
parameter fit, where both, the magnetic permeability and thickness-0 and Im@?) =2w,w,<0 (thin dashed lines in Fig.)8It
of the liquid layer have been used as fit parameters. The best fit has now difficult to conclude from these two relations whether
been obtained fop,=1.98 andh=1.15 mm. (b) Square of the the pattern decays, or grows and oscillates, respectively.
propagation velocity versus the induction. Therefore it is advantageous for a viscous MF to plot instead

the actual growth rate, Re(iw)=w,, and the oscillation
ure 7b) shows the square of the velocity versus the subcritifrequency, Im&iw)=—w;, as shown in Fig. 9.
cal induction. It has to be noted that in Fig. 8 for reasons of clarity only
one solution of the dispersion relation fd@g,, and B, is
plotted. In the reduced interval of wave numbers in Fig. 9,
, ._all solutions are displayed. A detailed analysis about the
In the first part, we present those aspects of the IInearrlumber of solutions for dispersion relatioh ) is presented

theory which are necessary to calculate the measured scalirﬂg Ref. [13]

behavior, whereas the second part focuses on the peculiari- From Fig. 9, it becomes clear that the solutiomgtin the

ties of the bifurcation scenario. subcritical case corresponds to a decaying and oscillating
pattern. The frequency of the oscillation is given by

IV. THEORY

A. Scaling behavior of the measured quantities

For the sake of clarity in the presentation, the details of
the method to calculate the above measured quantities are
explained for an infinitely thick layer of magnetic fluid. A
viscous MF of horizontally infinite extent subjected to a ver- ; ; ;
tical magnetic induction is considered. The MF has a freeand the experimentally measured propagation velocity by
surface with air above, where the basic state is that of a
nondeformed surface. The dispersion relation for small dis-
turbances from the basic state is given[tg]

lod
21

f 4.2

|w1|

T O

v 4.3
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FIG. 8. Dependence of Ref) (a) and Im(?) (b) on the wave FIG. 9. Dependence of the growth raig (a) and the oscillation

numberq for a supercritical (1.08, thick solid ling and a sub-  frequency—w; (b) on the wave numbeq for the case of a super-
critical (0.9, , thick dashed linginduction. The wave numbe;, critical (thick solid line and a subcriticafthick dashed linginduc-

of the linearly most unstable pattern and the corresponding valuion. The solutions aty,, for both cases are indicated by the corre-
w2, are indicated by thin solid lines. The solution in the subcritical SPonding thin lines. Parameters are the same as in Fig. 8.

case forq,, is indicated by the thin dashed lines. The material pa-

rameters for the calculations amne=5.17x10 ® m?/s, p=1.16 For a viscous fluidsolid lines in Fig. 10 the behavior is
X10° kg/m®,  0=2.65<10°kg/¥, w,=194, and B.  more complex. A first critical inductioB. ,, occurs, where
=16.84 mT. the set of solutions for dispersion relatih1) changes from

With the two formulas(4.2), (4.3), the frequency and the two complex solgtlons_to two negatlve_r_eal ;oluuons. Both
real solutions exist until at a second critical inductiBg,,

propagation velocity of the decaying pattern can be calcu- ) .
lated and then compared with the experimental results. Fop® of them abruptly ends, as explained below. At a third

this purpose, the dispersion relation in the case of a ﬁnité:ritical inductionB, o, one of the two negative real solutions
’ : . hanges its sign and becomes positive. Note Byat does
layer has to be appliesee Eq.(4.3) in Ref. [7]]. chan - - ;
y ppliets a(4.3 711 not give the onset of the Rosensweig instability from the flat

surface, which takes place B{<B.,. RatherB., charac-

o ) terizes the onset of growth of the preset pattern with wave
Whereas in Fig. 9 the behavior of the growth rate and theyumberq,,,.

B. Bifurcation

oscillation frequency aroundy, at a fixed subcritical induc- ~ To understand this complex behavior, dispersion relation
tion is shown, the plot ofv, and —w, versus the control (4.1) is analyzed in dimensionless uniisdicated by a bar
parameteB, as shown in Fig. 10, reveals the influence of thejn the rearranged form
finite viscosity on the bifurcation scenario.

For the limiting case of an inviscid fluid, the bifurcation —iw\? —iw —q—-qg3+2B%?
diagram is given in Fig. 10 by dashed lines. The pattern 1+ —2) —\/1t == = .
oscillates below a certain threshold for the subcritical induc- 2vq v 4vq
tion, B.ddm(»=0),0,=0] [see Eq.(4.7)]. Above that (4.4
threshold the pattern can either decay according to the solu-
tion w,<0 or can develop towards the most unstable lineaAll lengths were scaled with o/(pg)]Y? the time with
pattern belonging t®,;>B. sincew,>0 is also a solution o/ (g¥*p¥, the viscosity witha®%(g4p®4, and the in-
[14]. duction withB.. Equation(4.4) reveals that whatever value
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with g min= oD = (vq2/36)[ — 60+ (108+ 12,/93)?3
+144(108+ 12y/93)~??]. Finally, the third critical induction
is defined byw,=0 which leads to

— — — — 11 —
Bed Om(v),w,=0]= 5 a—+qm . 4.7

m

growth rate o, H)

'
wn

-10
12

The three threshold$4.5—(4.7) follow the relation §c,1
<B. =B, where the equal sign applies to=0. With

increasing viscosity the differences between the thresholds
increase.

Eventually, we focus on the type of the prevailing bifur-
cation. In Fig. 11, the eigenvaluei w is plotted in the com-
plex plane for both the viscous) and the inviscidb) fluid.

For the viscous fluid, the complex eigenvalues merge on the
real axis atB;; and are real for all inductions larger than
B. 1, as presented in Fig. (&). The crossing towards the
positive real axis of one of the real eigenvalues occurs at

-1 | 1 1 H H _
26.95 17 17.05 171 Bco. That defines the steady state character of the bifurca

induction B (mT) tion. i o ) ) ) )
With vanishing viscosity the character of the bifurcation

FIG. 10. Dependence aé, (a) and — w, (b) on the subcritical approaches the splitting tyd®,10] where two pure imagi-
inductionBg,, for an inviscid MF (#=0, dashed lineand a viscous  nary eigenvalues split into two real ones, as shown in Fig.
MF (»=5.17x10"® m¥s, solid ling. The three critical inductions  11(b).

B¢o, B¢ 1, andB,, are explained in the text. The remaining mate-

rial parameters for the calculations are those from Fig. 8 wijtfv) V. DISCUSSION AND CONCLUSION
determined foBg,,~18 mT. '

< =)}

oscillation frequency -, (s'l)
&

Comparing the theoretical curves in Fig. 5 and the mea-

weC has, the left hand side of E¢4.4) has to be real be- sured results, we find an excellent agreement for the fre-

; ; ; ; f the oscillating liquid ridges. Such an agreement is
cause the right hand side of E@t.4) is alwaysreal since duency o uiaric ar
(9.7.B) < B. This condition together with the mixing of real based on the fact that the viscosity and the finite depth of the

e . . fluid layer are taken into account. The only fit parameter is
and complex quantities in E¢4.4) is essential to understand the permeability of the magnetic fluid. We obtaingd

the above described appearance of different sets of solutions. o . :
As long asB.,= Bk, all solutions of the dispersion rela- 1.94, which is slightly higher than the value 1.8 given by

tion with q=g,. are real, i.e.—iw=w,< R (see Fig. 10 the produger. This is WQII justified by the increqsed mass
Using this I’eSnL]Ht i fO||O;NS. f,rom Eq(fl 4)\that theré < a density: It is nearly 8% higher than the one given in the data
- = ) A sheets of the producer, probably through evaporation of the
value w,= — v, beyond which the radicand becomes negaterosene. Therefore the contribution of the magnetite nano-
tive. Since a complex value for the left hand side of Ea4)  particles to the properties of the whole fluid becomes larger
is not allowed, the solution does not exist beyownd= and the relative permeability increases.
_ﬁfn_ This corresponds to the point in Fig. 10, where one  The comparison of theorgtical an(_j e_xperimental results
of the solutions suddenly terminates B¢ ,. Therefore the foOr the case of the propagation velocity in a layer of 2 mm
second critical induction yields depth as presented in Fig. 7 is less successful. The measured
values, which are denoted by open squares, are about 10%
smaller than the theoretical prediction given by the dotted
_i+am+jza§1 _ line. However, a convincing fit is presented by the dashed
line, which gives the theoretical curve for a permeability of
(4.5  u,=1.98 and a layer thickness bf=1.15 mm. The perme-
ability has slightly increased by 2% compared to the mea-
The first critical induction is the minimal induction for which surements in Fig. 5, probably due to evaporation during two
real solutions exist, thus months of measurements.

_ 1
Bod v, 0(¥), o= = veip] = \/5

m
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10 - - observed in the center of the dish. Thus, a reduction of the
o~ (a) fluid depth by a factor of 0.58, as sugggsted by the fit, is
) reasonable. Such a drawdown has drastic consequences for

g st | the already shallow depth of 2 mm. The influence is less
' important for a reduction from 3 mm to 2 mm, as demon-
2 o strated in Fig. 7a) by the solid and dotted lines, respectively.
8 Figures %b) and 7b) display the square of the measured
% or quantities against the subcritical induction. It can be seen
H that the square-root-like dependence describes the frequency
g behavior with a precision of better than 10% within a range
g st 1 down to 80% of the critical induction.
% The theoretical analysis of the bifurcation scenario makes
2 it clear that oscillations almost up to the critical induction for
10 . . . . the onset of the surface instability are to be expected. In fact,
10 the interval fromB,; to B o, where theory predicts a mo-

I notonous decay instead of an oscillatory decay, is estimated
(b) ? for our experimental parameters to be 0.003 mT apart. This
: subtle difference betweeB,, o andB, ; cannot be resolved in
I 7 our experiment. For the current experimental resolution, the
\{ viscosity of the magnetic fluid would have to be in the range
I of 1x10 % m? s~ %, but the viscosity of the used magnetic
o b= e —_——— fluid EMG 909 is about two orders of magnitude smaller.
The closeness to the inviscid case is further illustrated by the
curves of oscillation frequency for the viscous and inviscid
case, as displayed in Fig. 5, which can hardly be discrimi-
nated. Thus the experimental resolution in the studied system
suggests a splitting type bifurcation, where the theoretical
analysis unveils the true steady state character of the bifur-
cation.

1 According to the similar bifurcation scenario in the Fara-
growthrate o, (s) day experimen{16,17, a similar scaling behavior should
also be observable for the natural frequency of periodic
driven capillary-gravity waves. In close analogy, it can be
initiated by a jump from supercritical to subcritical driving

St

oscillation frequency -®, (s)

ola———————

-10 ! 1 1
-4 -3 -2 -1

FIG. 11. Plot of the imaginary versus the real part of the com-
plex eigenvalues-iw=w,—iw, from Fig. 10 for the viscousa)
and inviscid(b) MF. (a) With increasing subcritical induction the

complex eigenvalues pass througk=16.960 mT @) and merge amplitude. . . .
at B;;=17.006 mT. From there one negative real eigenvalue de- To conclude, we have experimentally investigated the de-

creases until it terminates Bt ,~17.014 mT. The other real nega- Cay Of transient magnetic liquid ridges emerging after a jum-
tive eigenvalue increases and changes its sign Ba,  Plike increase of the magnetic induction with the help of a
=17.009 mT.(b) The two imaginary eigenvalues pass throigh Pulse sequence. It was possible to observe a dramatic de-
=17.033 mT @) and split aB. ;= 17.059 mT into one decreasing Crease of the oscillation frequency and the propagation ve-
negative and one increasing positive real eigenvalue. locity in the vicinity of the bifurcation point. The scaling of
both quantities agree in an excellent manner with the theo-
retical predictions, if the viscosity and the finite thickness of
the magnetic liquid layer are taken into account. In quintes-
sence, we have uncovered the subcritical part of the bifurca-

More puzzling is the drawdown of the fluid level to on di i th iahborhood of litti bif
=1.15 mm, compared to the filling level of 2 mm. Due to tion diagram in the neighborhood of a splitting type bifurca-

the inevitable field gradient at the edge of the vessel, somion-

fluid is. pulled from the centgr tpwa(ds this edge. In this way ACKNOWLEDGMENTS
the fluid level in the center is diminished, the area where the
propagation velocity has been measured. The authors would like to thank Andreas Engel, Rene

This behavior has been checked in independent measur€riedrichs, Edgar Knobloch, Konstantin Morozov, Wim van
ments of the surface height of the static Rosensweig instabilSaarloos, and Mark Shliomis for interesting and clarifying
ity by means of a radioscopic methptb]. For the same type discussions. The work was supported by Breutsche Fors-
of MF, the same supercritical induction and a vessel depth ofhungsgemeinschafinder Grants Nos. Ri 1054/1-2 and La
4 mm, a drawdown of the fluid level by a factor of 0.6, was 1182/2-2.
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