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Abstract. The formation of oblique rolls in nematic liquid
crystals driven by dichotomous stochastic fields is investi-
gated in the frame of a one-dimensional linear theory
including the flexoeffect, and in the frame of a three-
dimensional linear theory with free boundary conditions.
In the first model the threshold for the stability of the first
moments is calculated and the angle of the oblique rolls is
determined by mode selection. It is shown that in certain
parameter ranges oblique rolls have lower thresholds than
normal rolls. As for deterministic excitation, with increas-
ing flexoeffect the formation of oblique rolls is favoured. It
is observed that at full strength the flexoeffect alone is able
to trigger the formation of rolls. In the three-dimensional
model the threshold for the stability of the first moments is
calculated again and the two wave numbers which give
the angle of the oblique rolls are determined by mode
selection. The appearance of oblique rolls is studied for
different parameters of the driving stochastic field. The
results are compared with those of the one-dimensional
model without the flexoeffect.

PACS: 02.50.!r; 05.40.#j ; 47.20.!k; 47.65.#a

1. Introduction

Electrohydrodynamic instabilities in nematic liquid crys-
tals have recently been studied both experimentally and
theoretically for deterministic as well as for stochastic
excitation [1—16]. For the superposition of a constant and
a dichotomous stochastic field [14—16] a linear analysis
testing the stability against normal rolls can qualitatively
explain (i) the discontinuous behaviour of the threshold
above a critical strength of the noise, (ii) the change from
discontinuous to continuous behaviour of the threshold
with increasing correlation time of the noise, and (iii)
the change from stabilizing to destabilizing effect of the
noise if its correlation time becomes comparable to the
relaxation time of the space charge.

Quantitatively, however, the strength of the stochastic
voltage, above which the discontinuous behaviour occurs,
is about a factor three too large if one compares the
experimental data with the thresholds for the stability of
the first moments. Since we would restrict ourself to a lin-
ear theory to extend the benefits of a previous developed
method [15] the options for a better qualitative and
quantitative agreement between theory and experiment
are limited.

One option is to test the new patterns of oblique rolls
and rhombic cells in the context of stochastic excitation.
Oblique rolls have already been tested in deterministic
square wave [17] and sinusoidal excitation [12, 18—20].
Rhombic cells can be represented as a superposition of
oblique rolls with angles #d and !d. Since in a lin-
earized theory the superposition principle holds, oblique
rolls and rhombic cells have the same threshold. Only
a nonlinear theory could discriminate the two patterns.
We therefore use the term oblique rolls as a synonym for
both patterns. We test their stability against different
types of excitation in a one-dimensional and in a three-
dimensional linearized theory. In the three-dimensional
model the patterns were described by a general ansatz
which differs from the special ones used for three-dimen-
sional calculations in [12, 21]. A three-dimensional model
is advantageous since it allows the determination of two
wave numbers of the patterns by mode selection. In con-
trast, there is no mode selection for the wave numbers in
a one-dimensional model, and only one wave number can
be determined in such a way in a two-dimensional model.
For all our calculations we assume a supercritical bifurca-
tion for the first instability, to which we are limited due to
the linearized theory.

Alternatively the flexoeffect may be included in the
calculations of the thresholds [17, 19—24]. The flexoeffect
leads to a flexoelectric polarisation, P
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balance equation and a contribution to the charge density,
respectively.

The main aim of this paper is to consider these two new
aspects in electrohydrodynamic instabilities with multipli-
cative noise. Additionally we obtained new interesting
results for non-stochastic excitation, especially for DC
excitation which has become the focus of great interest
recently [27, 28].

The rest of the paper is organized as follows: In
Sect. 2 we present the linearized electrohydrodynamic
equations for the one-dimensional theory including
the flexoeffect. We calculate the thresholds for a
constant electric field (Subsect. 2.1) as a function of
both the anisotropy of the conductivity pE/po and the
strength of the flexoeffect. In Subsect. 2.2 we analyze the
stability of the first moments for pure stochastic excita-
tion. Results are presented for a superposition of a con-
stant and a stochastic electric field (Subsect. 2.3) which
depend on the order of the correlation time of the noise
compared with the characteristic time of the system. In
Sect. 3 the full three-dimensional linear theory with free
boundary conditions neglecting the flexoeffect is for-
mulated. We calculate the thresholds for the three differ-
ent types of excitation: For a constant field (Subsect. 3.1),
for a pure stochastic field (Subsect. 3.2), and finally for
a superposition of both (Subsect. 3.3). In Sect. 4 we give
a conclusion and discuss the perspectives of nonlinear
models.

2. One-dimensional theory including the flexoeffect

We consider a quasi one-dimensional linear theory in-
cluding the flexoeffect [22—24] which tests the stability of
the homogeneous nematic state against the formation of
oblique rolls. In a sandwich cell of thickness d (we choose
100lm) the initially unperturbed director n' is oriented
parallel to the electrode plates which lie in the xy-plane.
As shown in Fig. 1 the disturbed director n' includes the
angle 0 with the xz-plane, and the angle u with the
xy-plane. In the coordinate system mgz rotated around the
z-axis by the angle d with respect to the xyz-system, the
variables are the charge density q, the angle 0, and
t"Lmu. These and the other internal quantities, the hy-
drodynamic velocity in z-direction v

z
and the electric field

in m-direction Em, depend on m and t, whereas the external
driving electric field E

t
depends on z and t. Throughout

this paper we consider E
t
as spatially homogeneous be-

tween the two electrodes.
The electrohydrodynamic equations for a nematic

liquid crystal are the torque balance equation (dynamic
equation for the director), the Navier-Stokes equation, the
Maxwell equation for the displacement, and the
continuity equation (see [29], equations (II,6), (II,9),
(II,13), and (II,19) or [30], equations (8, 14, 26, 29) ).
The resulting five non-trivial partial differential
equations for d50 allow the substitution of Lmmvzand LmEm (arising during the derivation) without any
approximation.

The linearized electrohydrodynamic equations de-
scribing the stability against an oblique roll pattern char-

acterized by a wave number km and the angle d read
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The structure of (1—3) is equivalent to deterministic square
wave excitation (confer [17], equations (1—3)). 1/¹t de-
pends on the square of the driving field E

t
as well as the

wave number km and the angle d of the oblique rolls, as
given in Appendix A. The other coefficients depend on the
material constants of the nematic liquid crystal and d,
where q0 , b, and ¹0 depend additionally on km (see appen-
dix A).

A recent review of the experimental measurements of
the flexoelectric coefficients discussed the errors for the
values of (e
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) ([31] and references there-

in). We therefore introduce two scaling factors which both
take either the value zero (no flexoeffect) or values accord-
ing to the estimated errors of 10% for (e
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The homogeneous state becomes unstable if the linear

solutions of equations (1—3) grow exponentially. This de-
fines a threshold of the driving field which depends on
material constants and on test mode parameters. Usually
the structure which gives the minimal threshold is se-
lected. In one-dimensional theories however, one sets
km"n/d [14-16, 29, 30]. (Since the threshold is propor-
tional to km the selected wavelength would tend toward
infinity, in contrast to experience.) Only the oblique roll
angle d is determined by mode selection.

For excitation with a stochastic electric field, E
t
"

E
1
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, where EDMP

t
is a dichotomous Markovian

process jumping with mean frequency a between$E, one
can derive closed equations describing the stability of
moments [14—16]. To investigate the stability of the first
moments we write (1—3) in matrix form, z5#(A#BEDMP

t
)

z"0, where z"[q, t, 0]T.
For such a form, where A and B are constant matrices,

one obtains [15] using the Shapiro-Loginov theorem [34]

(1d/dt#C) A
SzT

SEDMP
t

zTB"0, C"A
A B

E2B A#2a1B . (4)

In our case, A and B are 3]3 matrices, where A
11
"1/¹

q
,

A
12
"p

H
E

1
, A

13
"q0 /¹

q
, A

21
"aE

1
, A

22
"K

1
!K

2
(E2

1
#E2), A

23
"bE

1
, A

31
"e

q
/c

1
, A

32
"et/c1,A

33
"1/¹0 , B

11
"B

13
"B

31
"B

33
"0, B

12
"p

H
,

B
21

"a, B
22
"!2K

2
E
1
, B

23
"b, B

32
"et/c1. For

K
1

and K
2

see Appendix A. S2T denotes the average of
the enclosed expression over all possible realizations of
the stochastic process.
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Fig. 1. Illustration of the coordinate systems and angles used

2.1. Constant field

Recent experiments have confirmed that nematic liquid
crystals under DC excitation show a rich spectrum of
patterns similar to those obtained for deterministic
sinusoidal or stochastic excitation. Grid patterns (called
hexagonal patterns) have been observed above a first
threshold for the DC field [35, 36]. Beyond a second
threshold the hexagonal convective structure starts to
oscillate in coherent domains [35, 36]. Other types of
domain oscillations, which are self-organized in space as
concentric or spiral phase waves, were also found [27, 28].
The transition to turbulence has also been investigated
experimentally [28].

These experiments have provided the motivation for
consideration of the case of a constant driving field,
E
t
"E

1
"const. We determine the thresholds for the

appearance of both normal and oblique rolls for a wide
range of the anisotropic conductivity pE/po and for differ-
ent strengths of the flexoeffect.

The eigenvalues j of the system (1—3) are determined
by a cubic equation, +3

n/0
a
n
jn"0. The Hurwitz criterion

yields that a
0
"0 gives the neutral curve E2

1
(d) for a sta-

tionary bifurcation. Below this curve ReMjN(0 holds for
all eigenvalues j, whereas above at least one eigenvalue
exists with a real part greater than zero. Minimizing
E2
1

with respect to d gives the threshold

see Fig. 2. All thresholds increase with decreasing value of
p

E
/p

o
. The threshold for normal rolls (d"0) is not affected

by the flexoeffect since all flexoelectric terms couple to
sin d (confer Appendix A) and, therefore, vanish for d"0.
For j

~
"j

`
"j

`@~
"0 (no flexoeffect) oblique rolls

have a lower threshold than normal rolls below a critical
anisotropic conductivity pE/po^1.14. Above this value
the threshold for normal rolls shows the known divergent
behaviour for pE/poP1 [37]. Following the meaning in
[19] we call such a critical point for the oblique-normal
rolls transition Lifshitz point. The corresponding #d-
branch of the pitchfork bifurcation for j

`@~
"0 is shown

by the lower picture in Fig. 2.
When the flexoeffect is included the appearence of the

patterns changes significantly. Oblique rolls have now
a lower threshold than normal rolls for all pE/po51 (see
graphs (a)—(e) in Fig. 2) . Therefore there is no oblique-
normal rolls transition for decreasing anisotropy in the
conductivity; oblique rolls are favoured by the flexoeffect.
A remarkable consequence of the flexoeffect is a finite
threshold for oblique rolls even for isotropic conductivity
pE/po"1. These features are not affected qualitatively,
and only slightly quantitatively, by an error-based vari-
ation for the values of (e

1
#e

3
) and (e

1
!e

3
) (see graphs

(b)-(e) in Fig. 2) .
Using the standard values for the material parameters

of MBBA [19] and j
`
"j

~
"j

`@~
"1 the angle d de-

creases from d"52.4° at pE/po"2 to its minimum of

d"50.8° at pE/po"1.4. For smaller values of pE/po the
angle d increases monotonically and ends with d"56.6°
at pE/po"1 (graph (a) in Fig. 2) . For pE/po"1.5 the
critical voltage is U

1
^1.72V and d"51.0° in agreement

with [21].
In three-dimensional calculations with ‘‘fully rigid’’

boundary conditions a divergent behaviour of the thre-

shold for pE/poP1 is reported [21], but a finite threshold
at pE/po"1 is mentioned, too [19]. We find a finite result
in our quasi one-dimensional model and now investigate
the underlying mechanism in more detail.

For pE/po"1 the instability is triggered by the
flexoelectric charge density
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which plays a role similar to the space charge density in
the Carr-Helfrich mechanism for pE/po"1. The g- and
z-components of the torque balance equation for isotropic
conductivity and isotropy in the dielectric constants
(eE/eo"1) are
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At the threshold the destabilizing viscous and flexoelectric
torque (left-hand side) equals the stabilizing elastic torque
(right-hand side). The lowering of the threshold is plaus-
ible since the destabilizing flexoelectric torque increases
with sin d (provided (e

1
!e

3
)O0) and dominates the

stabilizing elastic torque, which increases with sin2d.
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Fig. 2. Excitation with constant field. DC thresholds and oblique
rolls angle d against the anisotropy of the conductivity pE/po for
normal rolls (dashed line) and oblique rolls (solid line) at various
strengths of the flexoeffect. Without flexoelectric effect (j

`@~
"0)

the Lifshitz point (f) of the oblique-normal transition occurs at
pE/po^1.14. The behaviour of the threshold for the standard
strength of the flexoeffect (j

`@~
"1) is shown in graph a. An error-

based variation of the strength does not cause any qualitative
changes as the graphs b (j
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"0.7, j
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"0.7, j
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"1.1),

d (j
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"1.3, j

~
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"1.1) show. Material

parameters were taken from [21]

Exploiting the z-component of the Navier-Stokes equa-
tion we eliminate Lmvz and obtain

which reproduces the previous result (5) for
pE/po"eE/eo"1. Beyond this threshold the destabilizing

torque dominates, small director fluctuations are ampli-
fied, and the oblique rolls appear.

2.2. Pure stochastic excitation

For pure stochastic excitation, E
t
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t
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istic equation which determines the eigenvalues j of !C
given by (4) is a product of two cubic equations
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The threshold E2"min [infdE2
n,1

(d), infdE2
n,2

(d )] and the
corresponding angle d of the oblique rolls are shown in
Fig. 3 as functions of the mean frequency a for j

`@~
"0

and 1. The critical frequency a
c

separating ‘‘conductive’’
and ‘‘dielectric’’ regimes is defined by infdE2

n,1
(d)"

infdE2
n,2

(d) .
The gross behaviour of the threshold is similar to that

obtained for deterministic square wave excitation [17, Fig.
1] and for deterministic sinusoidal excitation [19, Fig. 3;
20, Fig. 1]. Practically independent from the strength of
flexoeffect we find for a(a

L
oblique rolls and for

a
L
(a(a

C
normal rolls (a

L
is the Lifshitz frequency

indicating the oblique-normal rolls transition). For a'a
cand j

`@~
"1 we find again oblique rolls. (In the range

from a"5 · 102 s~12 104 s~1 the angle d of the oblique
rolls decreases by only 8.7 · 10~3 deg.)

In the experiment, hitherto, oblique rolls have been
observed only for deterministic (sinusoidal) excitation
in the conductive regime [9]. We therefore propose
a careful inspection of the first pattern against which
the homogeneous state becomes unstable for pure
stochastic excitation.

2.3. Superposition

For the superposition of a constant and a stochastic field,
E
t
"E

1
#EDMP

t
, the eigenvalues of !C given by (4) are
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Fig. 3. Pure stochastic excitation. Thresholds for normal rolls and
oblique rolls (dashed and solid lines, respectively) and characteristic
angle d of the oblique rolls for different strengths of the flexoeffect
against mean frequency a. Without flexoeffect, oblique rolls appear
only for small a. In this region (with the exception of very small a, see
also insertion) the threshold curves and Lifshitz points (f) practically
coincide for j

`@~
"0 and 1. Material parameters were taken from

[21] and pE"1.5 · 10~10X~1cm~1

Fig. 4a, b. Superposition of constant and stochastic field at
a"102 s~1 where the noise is always destabilizing. Thresholds for
normal rolls and oblique rolls are shown as the dashed and solid
lines, respectively and oblique rolls angle d for different strengths of
the flexoeffect against stochastic voltage. f denotes the Lifshitz
points. Material parameters were taken from [21] with
pE"6.0 · 10~11X~1cm~1 a and pE"1.5 · 10~10X~1cm~1 b

Fig. 5. Superposition of constant and stochastic field at a"103s~1.
Thresholds for normal rolls and oblique rolls are shown as the
dashed and solid lines, respectively and oblique rolls angle d for
different strengths of the flexoeffect against stochastic voltage. f de-
notes the Lifshitz points. Material parameters were taken from [22]
with pE"6.0 · 10~11X~1cm~1

determined by a sixth order equation. The Hurwitz cri-
terion shows that a

0
"0 determines the neutral curve

E2
1
(E2, d).
The behaviour of the threshold E2

1
"infdE2

1
(E2, d ) de-

pends on the order of the correlation time of the noise,
q
450#)

"1/2a, compared with the relaxation time of the
space charge ¹

q
.

For q
450#)

B¹
q

the stochastic field always destabilizes
the homogeneous state. For q

450#)
;¹

q
the stochastic field

stabilizes the homogeneous state as long as its magnitude
is not too large. The effect of such a (‘‘fast’’) stochastic field
changes from stabilizing to destabilizing if the field is
strong enough. The behaviour of the threshold for E

1
can

be smooth or discontinuous. Above a critical strength of
the stochastic field the threshold condition may have two
solutions for the deterministic field. In this case the thre-
shold curve appears discontinuous if first the stochastic
field is applied and then the deterministic field is increased
until the structure is established. This general behaviour
found in previous work testing the stability only against
normal rolls [14—16] remains true if we allow the forma-
tion of oblique rolls. Some new aspects are now discussed
in detail, see Figs. 4 and 5.

For q
450#)

B¹
q

we consider two parameter settings
with different magnitudes of pE but pE/po"const. For
small pE and for stochastic voltages below a Lifshitz point
(Fig. 4a) oblique rolls have the lower threshold, whereas
for larger pE the oblique rolls always have the lowest
threshold (Fig. 4b). When reaching the Lifshitz point the
angle d of the oblique rolls tends to zero as expected.
Oblique rolls are again favoured by the flexoeffect.

For q
450#)

;¹
q

and j
`@~

"0 oblique rolls have only
a lower threshold for stochastic voltages below the Lif-
shitz point . The difference between the thresholds for

normal and oblique rolls is, however, very small,
*º

1
^0.005 V. For strong flexoeffect, j

`@~
"1, oblique

rolls always give the lowest threshold. In Fig. 5 we have
chosen a parameter setting which leads to a discontinuous
behaviour of the normal rolls threshold in the absence of
the flexoeffect. A detailed investigation of the pE/po—eE/eo-
plane shows that the discontinuous behaviour can be
considered as typical [38]. Changing sligthly only the
anisotropy of the dielectric constants from eE/eo"0.9 to
^0.874 in the material parameters of [22], the threshold
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for oblique rolls exhibits a discontinuous behaviour for
the standard values of (e

1
#e

3
) and (e

1
!e

3
), too.

3. Three-dimensional theory

We consider a three-dimensional linear theory which
allows the stability of the homogeneous nematic state to
be tested against normal rolls as well as oblique rolls, and
to determine two wave numbers by mode selection. Thus
the influence of fixing a wave number, as in the one-
dimensional model, can be estimated. The thresholds were
calculated for all three types of excitation to realize a com-
plete comparision with the results of the one-dimensional
model without the flexoeffect. Oblique rolls are character-
ized by two wave numbers, k

x
and k

y
, whereas the normal

rolls are described by only one wave number k
x

(k
y
,0).

The disturbed director n' includes the angle u with the
xy-plane and the angle 0 with the xz-plane (see Fig. 1). In
the coordinate system xyz the variables are the charge
density q, and the angles u and 0.

We start with the same set of electrohydrodynamic
equations for a nematic liquid crystal as in the one-dimen-
sional description (confer Chap. 2, second paragraph). To
simplify the calculations we use unrealistic ‘‘fully free’’
(torque- and stress-free) boundary conditions [12]
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where v
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(i"x , y, z) is the i-component of the hy-
drodynamic velocity for the moving fluid. From experi-
ence with deterministic excitation (confer [12], Fig. 3) one
expects only a small quantitative change for realistic
boundary conditions. From the geometric constraints we
see that
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We further exploit incompressibility
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We insert into the full set of hydrodynamic equations
a test mode describing an oblique roll with wave numbers
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and E
z

are choosen such that the conditions (14) and
(15) are fulfilled. An oblique roll with (k

x
, !k

y
) gives the

same threshold. A superposition of rolls with (k
x
, k

y
) and

(k
x
, !k

y
) can be considered as an ansatz for a rhombic

cell (see Appendix B). As before we use oblique rolls as
a synonym for both patterns. The chosen ansatz is more
general in the z-dependence of the quantities than those in
[12, 21]. This general form prevents the inclusion of the
flexoeffect in our three-dimensional calculations in a way
which ends with coupled ordinary differential equations
as in the case of the one-dimensional model (see equations
(1—3)). Therefore we compare only the three-dimensional
results and the one-dimensional results without the flexo-
effect.

From the continuity equation, qR #div j"0, one ob-
tains with (16, 17, 19—21) a linearized differential equation
for qJR where EI

*/$
(t) is eliminated with the help of Maxwell’s

equation divD"4nq. Inserting equations (17, 18, 22-25)
the x-, y-, and z-components of the Navier-Stokes equa-
tion represent a linear inhomogeneous system for pJ (t) ,
vJ
y
(t), and vJ

z
(t) . The resulting terms for vJ

y
(t) , vJ

z
(t) , and

EI
*/$

(t) (from Maxwell’s equation), substituted in the y- and
z-component of the torque balance equation, yield a linear
inhomogeneous system of equations for uJQ and 0IQ .

The linearized electrohydrodynamic equations in 3 di-
mensions describing the stability against 3-dimensional
structures formed by normal or oblique rolls read (from
now tildes are omitted)

qR #
1

¹
q

q#p
H
k
x
E

t
u"0, (26)

u5 #aE
t
q#

1

¹r
u#b0"0, (27)

0Q #cE
t
q#du#

1

¹0

0"0. (28)

1/¹r depends on the square of the driving field E
t
as well

as on the wave numbers k
x
, k

y
, and k

z
, as given in Appen-

dix C. The other coefficients (see Appendix C) contain
material constants and depend on the characteristic para-
meters k

x
, k

y
, and k

z
of the test mode. The boundary

conditions (12, 13) are fulfilled by k
z
"(2n#1) n/d, n"0,

1, 2 . Since n"0 leads to the lowest threshold we choose
k
z
"n/d. The wave numbers k

x
and k

y
are determined

numerically. The oblique rolls include the angle d"arc-
tan(k

y
/k

x
) with the y-axis.

For the derivation of (26—28) we have neglected the
diffusion currents. This is allowed as long as (k/¹

q
D)2;1

holds [29] which we checked numerically for all para-
meter sets used (D is the diffusion constant of the liquid
crystal and k the wave number perpendicular to the re-
spective roll pattern).
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Fig. 6a–c. Excitation with constant field for different pE/po.
a shows the thresholds for normal rolls (dashed line) and oblique
rolls (solid line). The characteristic angle d of the oblique rolls
structure is plotted in b. In c the selected wave numbers k

x
, k

y
for

oblique rolls (solid line), k
x

for normal rolls (dashed line), and the
wave number perpendicular to the oblique rolls ko (dotted line) are
shown. f denotes the Lifshitz point. Material parameters were taken
from [22]

E2
n,1

(k
x
, k

y
)"

(K
1
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3
b¹0) (2a¹
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#1)

2a¹
q
(K

2
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4
b¹0 )#ak

x
¹

q
p
H
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bc¹

q
¹0 p

H
#K

2
!K

4
b¹0

, (30)

E2
n,2

(k
x
, k

y
)"

4a2¹0#2a(K
1
¹0#1)#K

1
!K

3
b¹0

2a¹0 (ak
x
¹

q
p
H
#K

2
)#ak

x
¹

q
p
H
!k

x
bc¹

q
¹0p

H
#K

2
#K

4
b¹0

. (31)

To investigate the stability of the first moments ac-
cording to (4) we write (26—28) in matrix form,
zQ#(A#BEDMP

t
) z"0, with z"[q, u, 0]T. Here, A and

B are constant 3]3 matrices, where A
11
"1/¹

q
,

A
12
"p

H
k
x
E
1
, A

13
"0, A

21
"aE

1
, A

22
"K

1
!K

2(E2
1
#E2), A

23
"b, A

31
"cE

1
, A

32
"K

3
#K

4
(E2

1
#E2),

A
33
"1/¹0 , B

11
"0, B

12
"p

H
k
x
, B

13
"0, B

21
"a,

B
22

"!2K
2
E
1
, B

23
"0, B

31
"c, B

32
"2K

4
E
1
,

B
33

"0. For K
1
, K

2
, K

3
, and K

4
see Appendix C.

3.1. Constant field

We first consider the case of a constant driving field,
E
t
"E

1
"const., and determine the threshold for

the appearance of both normal and oblique rolls
for different strengths of the anisotropy of conductivity
pE/po.

The eigenvalues j of the system (26—28) are determined
by a cubic equation, +3

n/0
a
n
jn "0. The Hurwitz criterion

shows that the neutral surface over the k
x
-k

y
-plane

E2
1
(k

x
, k

y
) is given by a

0
"0, the condition for a stationary

bifurcation. The global minimum of the surface gives the
threshold

E2
1
" inf

k
x
,k
y

K
1
!K

3
¹0 b

ak
x
p
H
¹

q
!b¹0 [ck

x
¹

q
p
H
!K

4
]#K

2

, (29)

see Fig. 6.
The thresholds for normal and oblique rolls increase

with decreasing anisotropy of conductivity. For stronger
anisotropy oblique rolls are favoured and the correspond-
ing angle d increases monotonically for pE/po beyond the
Lifshitz point. For the same parameters, the distance
between oblique rolls is smaller than between normal
rolls, as a comparison of k

x
with ko (wave number perpen-

dicular to the oblique rolls) shows. This is observed for all
three kinds of excitation. At the Lifshitz point (dP#0)
ko becomes equal to k

x
(see Fig. 6c), i.e. there is a change

from the homogeneous state-oblique rolls transition to
the homogeneous state-normal rolls transition.

3.2. Pure stochastic excitation

For pure stochastic excitation, E
t
"EDMP

t
, the character-

istic equation determining the eigenvalues of !C separ-
ates into a product of two cubic equations
P(1)(j) ·P(2)(j)"0. As before a(1,2)

0
"0 gives two neutral

surfaces,
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Fig. 7a, b. Pure stochastic excitation with dichotomous noise of
different mean frequencies a. In a thresholds for normal rolls and
oblique rolls (dashed and solid line, respectively) and the oblique
rolls angle d (insertion) are shown. Oblique rolls appear only for
small a; the oblique rolls angle d decreases monotonically with
increasing a. In b the wave numbers k

x
, k

y
(solid lines), and ko (dotted

line) for oblique rolls and k
x
for normal rolls (dashed line) are given.

The insertion shows the behaviour for small a. The wave number for
normal rolls k

x
increases drastically at the transition frequency from

‘‘conductive’’ to ‘‘dielectric’’ regime. f denotes the Lifshitz point.
Material parameters were taken from [21] with exception of
pE/po"3.0 where pE"6.0 · 10~11X~1cm~1

The threshold E2"min [inf
k
x
,k
y

E2
n,1

(k
x
, k

y
) , inf

k
x
,k
y

E2
n,2(k

x
, k

y
)] , the selected angle d, and the wave numbers k

x
, k

y
,

and ko are shown in Fig. 7 as functions of the mean
frequency a. The critical frequency a

c
separating ‘‘conduc-

tive’’ and ‘‘dielectric’’ regimes is defined by
inf

k
x
,k

y

E2
n,1

(k
x
, k

y
)"inf

k
x
,k
y

E2
n,2

(k
x
, k

y
) .

For small a the behaviour of the threshold is similar
(slowly increasing linearly) to that for deterministic
sinusoidal excitation (confer [12], Fig. 3). Oblique rolls
are favoured for noise frequencies smaller than the Lifshitz
frequency. The difference to the threshold for normal rolls
is smaller than in the one-dimensional model caused by
k
x
-wave numbers which are larger than n/d. For instance

for a"0.7 s~1 the difference drops from
*º

0/%~$*..
"382 mV to *º

5)3%%~$*..
"108 mV. Higher

k
x
-wave numbers also yield higher thresholds in the

‘‘dielectric’’ regime with a difference of about 4V to
the one-dimensional threshold. At a

c
the wave number

for normal rolls k
x

increases drastically as in the

two-dimensionl theory for pure stochastic excitation [16,
Fig. 4] and there is a similiar behaviour for deterministic
sinusoidal excitation [19, Fig. 3].

3.3. Superposition

For the superposition of a constant and a stochastic field,
E
t
"E

1
#EDMP

t
, the eigenvalues of !C are determined

by a sixth order equation. The Hurwitz criterion shows
again that a

0
"0 gives the neutral surface E2

1
(E2, k

x
, k

y
).

The threshold E2
1
"inf

k
x
,k
y

E2
1
(E2, k

x
, k

y
) behaves in

a characteristic way depending on the order of the correla-
tion time of the noise q

450#)
compared with the character-

istic time ¹
q
.

For q
450#)

B¹
q

oblique rolls always have the lowest
threshold below the Lifshitz point (Fig. 8a) which exists
for all parameter settings used. For increasing strength of
the stochastic voltage the oblique rolls angle d decreases
monotonically and becomes zero at the Lifshitz point
(Fig. 8b).

For q
450#)

;¹
q

we have chosen a parameter setting
which leads to a discontinuous behaviour of the threshold
for normal rolls. Oblique rolls have a lower threshold for
stochastic voltages below the Lifshitz point (Fig. 9a). The
difference between the thresholds for normal and oblique
rolls is very small, *º40.06V. In contrast to the one-
dimensional model (see Fig. 5) the selected angle d reaches
a maximum for increasing strength of stochastic field, and
then tends to zero (Fig. 9b).

4. Concluding remarks

We found that in the frame of a quasi one-dimensional
theory, for a certain parameter range of the stochastic
field, oblique rolls have a lower threshold than normal
rolls. The flexoeffect favours the formation of oblique
rolls. There are, however, no experimental reports about
oblique rolls for stochastically driven nematics [1—7].

The 3-dimensional theory predicts the appearance of
oblique rolls for a certain parameter range of the driving
field, as well. In addition it is found that the roll cell
pattern becomes narrower both with increasing strength
of the stochastic field and with increasing mean frequency
a, as found for normal rolls in a two-dimensional theory
[16].

For stochastically driven systems there exist different
stability criteria: the bifurcation of the most probable value
[39], the stability of the first and higher moments [40] or
the sample stability [41]. It is not clear a priori which
criterion best applies to the experimental measurements.
We have addressed this problem in other publications [16,
42] and it turns out that the different stability criteria give
similar results if the characteristic times of the system and
the noise are well separated. According to this result we
chose the stability criterion of the first moments since it is
much less laborious and reflects sufficiently the behaviour
of the threshold for the homogeneous nematic state.

To achieve a description of other experimentally ob-
served noise induced phenomena, such as the alteration of
the bifurcation sequence and a noise induced hysteresis it
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Fig. 8a–c. Superposition of constant and stochastic field at
a"102s~1 where the noise is always destabilizing. Thresholds and
oblique rolls angle are shown in a and b. Wave numbers k

x
, k

y
(solid

lines), and ko (dotted line) for oblique rolls and k
x

for normal rolls
(dashed line) are plotted in c. For small stochastic fields the oblique
rolls (solid line) are favoured which merge at the Lifshitz point (f)
into the normal rolls (dashed line). Material parameters were taken
from [22] with exception of pE/po"3.0 where pE"6.0 · 10~11
X~1cm~1

Fig. 9a–c. Superposition of constant and stochastic field at
a"103s~1. Thresholds for normal rolls and oblique rolls (dashed
and solid lines, respectively) are shown in a. The oblique roll’s angle
d is plotted in b. c shows the wave numbers k

x
, k

y
(solid lines), and

ko (dotted line) for oblique rolls and k
x

for normal rolls above the
Lifshitz point (dashed line). f denotes the Lifshitz point. Material
parameters were taken from [21] with exception of pE/po"1.8
where pE"1.5 · 10~10X~1cm~1, eE"3.95, and eo"5.25

is essential to consider a nonlinear theory. We conjec-
ture that the alteration of the bifurcation sequence
(which means that the threshold towards, e.g., grid
pattern is lower than towards rolls) could be caused
by a noise induced change from supercritical to
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subcritical bifurcation (confer [6] p. 1149 and [7]
p. 64).

In a different context, in the frame of a generalized
Swift-Hohenberg model, a noise induced change from
supercritical to subcritical bifurcation has been reported
[43]. The same phenomenon was found in an extended
Stratonovich model, where the noise couples to both the
linear and the cubic term [44].

Whereas an analysis of the full nonlinear electrohyd-
rodynamic equations does not seem to be feasible,
one could consider a phenomenological description by
Ginzburg-Landau equations with ad hoc stochastic
coefficients. This is appropriate since the derivation of
amplitude equations from the basic electrohydrodynamic
equations with a stochastic electric field is a more subtle
problem.

We are grateful to Agnes Buka, Lorenz Kramer, Adolf Kühnel, and
Walter Zimmermann for valuable discussions. This work was par-
tially supported by the Deutsche Forschungsgemeinschaft in the
frame of the Schwerpunktprogramm ‘‘Strukturbildung in dissi-
pativen kontinuierlichen Systemen’’ under grant Be1417/3.

Appendix A

In the following we give the explicit form of the coeffi-
cients of system (1—3). Note the dependence of the effective
material parameters and characteristic times on both ob-
lique rolls angle d and wave number km . For
e
1
"e

3
"d"0 the one-dimensional theory describing

normal rolls [29] is reproduced. K
1

and K
2

are defined in
(A4).
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Appendix B

The test mode for rhombic cells resulting from a super-
position of two oblique rolls with wave numbers (k

x
, k

y
)

and (k
x
, !k

y
) is given by

q(x, y, z, t)"qJ (t) sin k
x
x cos k

y
y cos k

z
z , (B1)
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v
x
and E

z
are chosen such that the conditions (14) and (15)

are fulfilled.

Appendix C

The coefficients in the system (26—28) read explicitly
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The K
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, K

2
, K

3
, and K

4
are defined in (C4) and (C7). In

(C3—C8) we use the shorthand
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