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In different fields of statistical physics, such as 1d random field Ising models (RFIM )
and neural networks, there appear discrete stochastic mappings of the form

Tn =fn(xn.-—l) (1)

where f,(z) is chosen with equal probability from two functions f,(z), ¢ = + or —, and
0 < f,(z) < 1. The dynamics is nonchaotic and, in a region of physical parameters,
converges to a strange (fractal) attractor as may be visualized in Fig. 1. The mapping
generates an invariant measure which undergoes, as parameters are changed, qualitative
transitions, for instance, a transition from thin to fat multifractal.

To be specific, for the 1d RFIM!~7 with random field k, on lattice site n taking
the values h, = ho £ h, the effective local random field is generated by (1) choosing
fa(z) = ha + A(z), where A(z) = (28)7" In [cosh B(z + J)/ cosh B(z — J)]. B and J are
inverse temperature and exchange, respectively. In neural networks (1) is the learning
rule for a forgetful memory™® choosing f.(z) = tanh(e, + z). Here z,_, is the synaptic
coupling between two neurons, say ¢ and j, and €, = *¢ is the weight added through
the learning of the nth random pattern. The analytic formalism for both models is
the same. In presenting numerical results we restrict ourselfes here to the case of the
learning rule which has only one parameter €. For details the reader is referred to Refs.

6 and 8.
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tanh(e+x)

tanh(-€+x)

Figure 1. Discrete stochastic mapping in the case of nonover-
lapping bands. Only gaps of first (A) and second (A,) gene-
rations are indicated.

The Frobenius-Perron equation corresponding to (1) reads

pu(e) = [ dypua()y 3 6(c - fula). @

o=+

The fixed point of (2) gives the invariant measure which is a multifractal. To evaluate
(2) it is advantageous to introduce a symbolic dynamics which encodes the result of
the mapping (1) by the sequence of signs characterizing the history of the dynamical
system. We denote the result of the nth iteration of (1) by

Zotaw = foulfours(--- for(y) -..)), ®)

where {c'}, is the sequence of n signs + or — corresponding to the given realization of
the random sequences {A,} or {e,}. The result of infinitely many iterations is denoted
by z(,j where {0} symbolizes an infinite sequence of signs. Infinitely many iterations
with the same function, say f,, leads to a fixed point denoted by z{4). It is easy to
see that z(4) and z(_} are the boundaries of the support of the invariant measure. For
the learning rule and the RFIM in the case ho = 0 the measure is symmetric so that
T(+} = —z(-). The iteration of (2) starting with the initial measure Po(z) generates
a probability measure which may be also encoded by symbolic dynamics. In the first
step we obtain two bands p,(z) living on the intervals I, = [::,{_},z‘,“_}]

pa(I) = pO(ya.z) [2f;(ya,,)]—l for z € [a ’ o=+ (4)

where y,,. = f;!(z) denotes the preimage of z for the mapping f,. Each band generates

o

in the next step two new bands so that in the nth generation the measure consists of
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2" bands,

n

Pioya(z) = Po(Wioyae) [ ] 200, (Wior.0)] ™' forz € Iy, (5)
v=1
labeled by the 2" possible configurations {o}a. The notations Y{o}nx and [(,}, are obvi-
ous. Thus the measure in the nth iteration may be represented as p,(z) = Z(a)" Plo}a ().
This explicit representation is helpful to investigate the qualitative behaviour of the
measure and to calculate generalized scaling exponents.

The two bands in the first step may overlap or not and correspondingly the support
of the measure is the whole interval / = [1(_),1{”] or a fractal with the topology of
a Cantor set. The measure constitutes in the former case a fat multifractal (Fig. 2a-c)
and in the latter case a thin multifractal (Fig. 2d). In the case of the learning rule the
condition of zero overlap defines the critical parameter e{!) ~ 0.957.

The histograms generated by numerical simulation of (1) (or alternatively by
numerical solution of (2)) reveal that, depending on physical parameters, there are
qualitative changes in the behaviour of the measure at the boundaries of the support,
cf. Fig. 2. The invariant measure for the membrane potential in a single-neuron model
shows a similar behaviour. These changes can be analyzed exploiting that the preimage
of the fixed point is the fixed point itself. For example we consider the right boundary
z(4) = z". In the nth iteration we obtain from (5) for the rightmost band

Pi4ya(27) ~ [2f1 (z7)] 7" (6)

which goes in the limit n — 0o to oo or 0, unless fi(z*) = 1/2. The latter condition
separates two parameter regions in which the invariant measure at its right boundary
diverges (Fig. 2c, d) or goes to zero (Fig. 2a,b), respectively.

To investigate the scaling behaviour of the coarse grained measure at the bound-
aries of the support we consider

P(l) = lim P.(l) = lim/ dz p,(z) (7)
n—oo n—oo J .,

which is expected to behave like P(l) ~ [ as | — 0 with the scaling exponent « to be
determined. In the scaling limit we chose | = I, ~ [fjr(z‘)]" — 0 as n — oo which
ensures that only the righmost band P{+}.(z) contributes to (7). Application of (5) and
expansion near the fixed point leads to the scaling law®

= In2
= [ depp ()1, ol (3)
z°— +

The coarse grained density at the boundaries of the support p(l) = P(I)/I scales as
[*=1 je., it goes to co or 0 unless fi(z") = 1/2 as already found from (6). The left
derivative of the coarse grained density at z* scales as | — 0 like

=0 p(l) ~ —(a —1)1°"2 (9)

Correspondingly, there are parameter regions in which the left derivative of the
density goes to zero (for @ > 2, i.e., fi(z7) > 1/V?2), to —c0 (for 2 > a > 1, ie.,
1/V2 > fi(z*) > 1/2), or to oo (for 1 > a, i.e, 1/2 > fi(z")). This explains
analytically the qualitative changes found in the numerical simulations, cf. Fig. 2a-c.
In the case of the learning rule the above conditions for qualitative changes define the
critical parameters e ~0.174 and e ~ 0.064.
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Figure 2. Qualitatively different shapes of invariant maesures. In (a)-(d) we have € = 0.05,
0.1, 0.4, and 1.0, respectively. The measure at the boundaries of the support is either zero,
(2) and (b), or infinite, (c) and (d). The former case is further distinguished by the derivative
of the outmost bands at the boundaries of the support, which either vanishes (a) or diverges
(b). The multifractal measure in (2)-(c) covers the whole interval (fat fractal), whereas in (d)
it is a thin fractal. The histograms are calculated by a digital simulation of a trajectory of
length 10°. Note the different scales on both axes.

After examining the behaviour of the invariant measure at the boundaries of its
support we turn to characterize the scaling behaviour of the invariant measure on the
whole support by generalized fractal dimensions,

N(I) pe
D, = Llimw .

qg—11i-0 Ini (10)

Here the sum runs over all N(l) nonoverlapping cells of length / used to cover the
support, and P; denotes the total weight of the measure on cell ;. For qg=20,1,2
(10) gives the Hausdorff, information, and correlation dimension, respectively. The
limiting values Do, and D_,, characterize the most dominating and most rare parts of
the multifractal, respectively.

In cases, where the cells at the boundary of the support correspond to the most rare
or most dominant events, our previous scaling analysis leads to D__, = a or Do = a
with a given in (8).

To compute the fractal dimensions in general, it is advantageous to use instead of
the equipartion of the support the natural partition generated by the mapping itself. In
the thermodynamic formalism'®, the partition function Fa(g,7) =3, P?/I7 calculated
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Figure 3. Generalized fractal dimensions D, of the invariant
measure corresponding to the learning rule, for ¢ = 0, 1, +2.
The most remarkable feature is that the width of the multifrac-
tal spectrum becomes narrow near %) where the measure at
the boundaries of the support jumps from zero to infinity. For
€< 6,(;2), D_(€) is also displayed. For ¢ > egz), the dashed
line shows the scaling exponent a of the right(left)most band,
which approaches D,(¢) as ¢ becomes large. For ¢ — 0, we
have drawn D, () — 0 only schematically.

with the natural partition in a given generation of the hierarchy goes to zero or to
infinity as n — oo unless 7 = (¢ — 1) D,. This can be used to determine the D, which
can be shown'! to agree with those determined from (10).

The natural partition is for the case of nonoverlapping bands given by the 2"
images (5}, of the initial interval I, each carrying the same total measure 2-". For
overlapping bands I(,}, where the support of the measure is the whole interval we
use the 2"*! endpoints of the Iy,}, for repartioning into 2"*! — 1 nonoverlapping new
intervals®®. Each of these new intervals in general carries weight from several bands.
We determined the D, by solving 'y (7)—T',_y(7) = 0 (n = 10, . .. , 15) as an eigenvalue
equation'? for 7.

Qualitatively, the behaviour of the generalized dimensions shown in Fig. 3 can
be understood as follows. The tails of the measure at the boundaries of the support
determine D_(€) for € < e In particular, D_,(c) diverges, as ¢ — 0. In the
same limit, the mass of the distribution concentrates at the center of the support in
a 6-function like fashion, so that D, (e) decreases to zero as € — 0. In the opposite
limit, € — oo, the invariant measure is a thin fractal, collapsing into two é-functions
at the endpoints of the support. This means that all fractal dimensions approach zero,
implying that the width of the spectrum of fractal dimensions approaches zero, too.

Now we look at the fate of the multifractal as ¢ decreases from large to small
values. For still large €, the fractal is thin and most bins are empty at any resolution.
With decreasing €, the fractal becomes more dense, and all fractal dimensions increase.
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If the gaps close, the fractal becomes fat, and Do =1 forall e < 6.(;”. However there

are still very decp valleys and high peaks on all scales that cause Dy forg>0o0rq<y
to be smaller or larger than D, respectively. Upon further decrease of ¢ the D, for
q < 0 decrease drastically and reach values close to 1, which announces that a dense
nonfractal "background” on the whole support has emerged. Still, superimposed on
this background, there are peaks on all scales, so that D, < 1 for ¢ > 0. At EEZ), the
behaviour of the measure at the boundaries of the support changes qualitatively, p(+z")
jumps from oo to zero as ¢ is decreased through this critical value, and D_o = 1. For
e ce< el there are tails decreasing to zero with infinite slope as = — +z°. At el?
there is yet another qualitative change, the slope jumps from oo to zero, i.e., D_, = 2.
The scaling behaviour of this slope determines D_,, as discussed earlier.

The 1d RFIM shows a similar behaviour of the invariant measure varying h for
suitably choosen nonzero temperature and homogeneous field. Since there the para-
meter space is three dimensional the behaviour of fractal dimensions exhibits a richer
phenomenology including discontinuous transitions®.

Transitions in the behaviour of invariant measures (or their projections) generated
by iterated function systems have been recently discussed in a different context!3.
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