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Learning rules of a forgetful memory generate their synaptic efficacies through iterative procedures that operate on the 
input data, random patterns. We analyse invariant distributions of the synaptic couplings as they arise asymptotically and 
show that they exhibit fractal or multifractal properties. We also discuss their dependence upon the learning rule and the 
parameters specifying it, and indicate how the nature of the invariant distribution is related to the network performance. 

1. Introduction 

Learning in neural networks involves an adaptation of synaptic efficacies in response to external 
stimuli-patterns or associations to be established, e.g., as attractors of a recurrent network dynamics or 
as desired input/output relations in networks of feed-forward type. 

Learning is usually called supervised, if adaptation aims at reducing observed differences between an 
actual and a desired network response. Typical examples are provided by various forms of perceptron 
learning, or learning by error back-propagation [l-5]. Alternatively, if the adaptation process is not 
mediated by an observed difference between actual and desired systems response, learning is called 
unsupervised; synapses are changed strictly in response to the newly presented stimulus. The various 
forms of Hebbian covariance learning rules [6-91 belong to this category. 

In both cases, learning generates a dynamic flow in the space .of couplings. For supervised learning, 
this flow should ideally come to a halt at what hopefully constitutes a good solution to the problem at 
hand. For unsupervised learning it does not as long as new stimuli are presented to the net. 

In the present paper, we are connected with situations where the asymptotics of the dynamic flow 
generated by learning is amenable to a statistical analysis. Such is the case, if the flow is deterministic 
but evolves on a chaotic attractor, or if it is stochastically driven by an irreducible Markov process. To 
be specific, we shall here consider only the second possibility, typically associated with learning random 
patterns, and we analyse asymptotic invariant distributions of the couplings generated by such a 
learning process (provided they exist). 

The type of learning rule we have in mind is of a general, iterative, local Hebbian form 

(1) 
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where gnew and &yew are independent identically distributed random variables (i.i.d.r.v.) taking values 
in (1, -l}. If the mnemodynamic updating function @ is such that it gives rise to synapses of bounded 
strength, the model so defined will typically exhibit the phenomenon of forgetfulness [8]. Learning rules 
proposed in connection with forgetful memories [8,10-141 will, indeed, be taken as paradigms of our 
considerations. Our main result is that invariant distributions of the couplings in these models quite 
generally exhibit fractal or multifractal properties. Similar phenomena were recently found to occur also 
in error back-propagation learning [15]. 

Formally, the learning rule (1) defines a discrete stochastic mapping on the real line. This kind of 
mapping has been studied previously in connection with the one-dimensional random field Ising model 
(RFIM) [16-21,241. Asymptotically it generates an invariant distribution of effective fields. Changes in 
the singular nature of the invariant distribution have been suggested to be at the heart of drastic 
changes in the observable behaviour of the system [16,19,20]. Accordingly, our aim here is to 
characterise the singular nature of invariant distributions generated by (l), and to see whether it can be 
related to network performance. 

The outline of the paper is as follows. In section 2, we introduce the discrete stochastic mappings 
associated with forgetful memories in more detail. In section 3, a description of their invariant 
distributions in terms of a symbolic dynamics [18,24] generated by iterative solutions of the Chapman- 
Kolmogorov equation is presented. Some qualitative aspects of the invariant measures, in particular, 
the nature of their support and their behaviour at end points of the support are analysed in section 4. 
An analysis of their singular properties in terms of an infinite set of generalized fractal (or Renyi) 
dimensions [22] is outlined in section 5. We present results for two typical cases, the linear palimpsestic 
scheme introduced by Nadal et al. [ll] and by Mezard et al. [12], and the nonlinear encoding schemes 
studied by Hopfield [8], Parisi [lo], Derrida and Nadal [ 131, and by van Hemmen et al. [14]. Finally, in 
section 6, the relation between the singular nature of an invariant Jij distribution and the network 
performance is discussed. 

2. Forgetful memories and discrete stochastic mappings 

Learning rules proposed to describe forgetful memories [8,10-141 are quite generally of the form 

J;;’ = N-l+(e&~; + N.$?‘) ) (2) 

where Jij” denotes the value of the coupling j --+ i, after pattern p, i.e., (57; i = 1, . . . , N}, has been 
embedded in the net. This amounts to taking 

@(u, u) = N-1$(ENU + NV) (3) 

for some real function 4 of a single variable in (1). Parisi’s choice [lo] was 

4(x) = sgn(x) min( 1, Ix I) . (4) 

It constitutes a formal variant of a proposal originally due to Hopfield [8], namely, to let the generalized 
Hebb rule AJ, m ~~ew.$~ew become operative only when the resulting Jjj does not exceed certain upper 
or lower bounds. We will refer to this case as the Hopfield-Parisi model. For a proper scaling of eN with 
system size N, viz., Ed = O(N-“‘), Parisi was able to demonstrate numerically that approximately 
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0.04 N patterns can constantly be held in store, a result which was subsequently confirmed analytically 
by van Hemmen et al. [4]. If new patterns are added, they are stored at the expense of old ones which 
are forgotten. That is, the system admits a stationary mode of operation, and does not run into the 
catastrophic forgetting of the original Hopfield model [8,9]. The Hopfield-Parisi model has also been 
studied in the highly dilute limit by Derrida and Nadal [13]. 

Different choices for 4 in (3) give rise to different models, some of which have been studied in the 
past. For example, 

with l N = 1 and A, = 1 - 6(N-‘) corresponds to the so-called marginalist scheme studied by Nadal et al. 
[ll] and by MCzard et al. [12]. Even though d(x) does not saturate in this case, it does generate 
synaptic couplings which cannot exceed N-‘A,/(1 - AN) in absolute value, due to the iterative 
prescription (3). The storage capacity for this model can be as high as 0.05 N in the large-N limit [12]. 

The choice 

4(x) = tanh(x) , (6) 

with l N = O(N-‘), provides an example of a general nonlinear iterative prescription which also gives rise 
to a working memory that allows for a stationary mode of operation. For this model, the number of 
patterns held in active memory is again approximately 0.04 N [14]. 

Finally, by taking 

4(x) =x (7) 

and Q, = 1, one recovers the original Hopfield model [8]. Unlike the other encoding schemes, this one 
can give rise to synapses of unbounded strength. Furthermore, it does not break the permutation 
invariance encoded patterns, and it acquires no statistical stationarity as more and more patterns are 
embedded in the net. Consequently it leads to a catastrophic forgetting for cr =plN beyond (Y, = 0.14 
[8,9], where p is the number of stored patterns. 

In order to study the statistical properties of the encoding processes introduced above, we 
concentrate on a single bond j-+i. Omitting bond indices, and defining x@ = NJ!jW’, and i.i.d.r.v. 
u,=t;t;=+1, /.&=1,2 )...) the encoding processes are seen to take the form 

X @L+l = 4(x, + EUJ := 4&J 7 (8) 

where, to simplify the notation, we have omitted the scaling of E = E,,, with system size N. Equation (8) 
describes a stationary Markov process, driven by the (random) patterns to be encoded in the couplings. 
The properties of the driven process {x,} -state space, invariant measure (if it exists), and so 
on - depend on the choice of the synaptic function 4 in (8), with a wide range of possibilities, as shown 
in table 1. For instance, the number of states may be finite, as in the Hopfield-Parisi model, 
denumerable as in the Hopfield model, or uncountable as in the linear marginalist and the nonlinear 
encoding schemes, (5) and (6), respectively. In these two cases, the invariant measure of the encoding 
process turns out to exhibit fractal or multifractal properties. It is these two cases which we now 
consider in more detail. 
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Table 1 
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Number of states and characteristics of the invariant measure generated by learning rule (8). 

Model 6(x). E., Number of states Invariant measure 

Hopfield [8] 

Hopfield-Parisi 

[8,10,13,14] 

Binary synapses 

Marginalist 

[ll-131 

Smooth [14] 

x,EN=l 

rG) = sgn(x) min(l, Ixl), 
EN = 0(,-1’2) 

46) = sgn(x) min(1, Ixl), 
EN > 2 

4(x) = Ax, EN = 1 

A=l-B(N_‘) 

4(x) = tanh(x), 

EN = O(lV’) 

countable 

finite 

2 

uncountable 

uncountable 

random walk on Z 

finite state Markov chain 

concentrated on -Cl 

one-scale fractal which is thin 

for A<’ fat for A>1 Z’ z 
multifractal which is thin 

for E > 0.957, fat for E IO.957 

3. Symbolic dynamics 

In the case of the marginalist encoding scheme (5) and the smooth learning rule (6), the map (8) 
generates an uncountable number of states, and a corresponding hierarchy of bands and gaps. As for 
the RFIM [18,24], these can be encoded in a unique way by a symbolic dynamics. We denote the result 
of n iterations, starting from an initial value x by 

Y = +,,,“(x) = &@,J . . kr,(4 . . .)I 3 

where (v)~ = (a,, v,, _1, . . . , ~~1) is the sequence of IZ 
learning process. Similarly, the n-iteration pre-image 

x = &j)“(Y) = 4,:(+,:(. . .4Q1(Y) . . .I) 3 

signs characterizing the history of the stochastic 

x of y, will be denoted bY 

(9) 

(10) 

where as compared to (9) the Us appear in reverse order, so that +lb,,(+(,,,(x)) =x. 
Let (u) denote an infinite string of signs. The attractor of the encoding process is given by the set 

{ +(,,}, which for 4’ < 1 almost everywhere on R is uncountable and independent of the starting point x 
one might wish to choose ,” i.e., the dynamics acts transitively on {4((,,}. The attracting set {+,,,} is 
contained in the interval Z = [+,, 4(+,], where (-) and (+) denote infinite strings of minuses and 
pluses, respectively. The endpoints +(+, and $+, of Z are fixed points of 4, and +_, i.e., 

4(+)=x * = 4+(x*) = 4(x* + E) ) (11) 

and similarly for 4(_, = -+(+). It is on the set {&,} c Z where the unique invariant probability measure 
p of the stochastic encoding process lives. 

One can construct p from a sequence {~l.(~)}~~~ of iterates of the Chapman-Kolmogorov (or 
Frobenius-Perron) equation corresponding to the stochastic mapping (1). Since {+((,,} attracts the 
whole real line, there is for each initial probability measure p(O) and for arbitrary E > 0 a compact 
K, 3 {+cu,} such that SK. dp’“‘(x) 2 1 - E, uniformly for II 2 N,. By Prohorov’s theorem [23], the 
sequence {P@)}~~~ is, therefore, compact with respect to weak convergence, i.e., there are sub- 
sequences { P@~-‘}~~ having weak limits pa. As limits of iterations, the {E.L,}, form a collection of 
invariant measures sharing the same support, supp CL, = { +cc,}, on which the dynamics acts transitively. 

Hence, the CL, are ergodic and, therefore, must all be the same. That is, {pm} = {p}, and the weak limit 

p of {CL@)] nEK is unique. 

*’ This is why a starting value was left unspecified in our notation. 
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support of the invariant measure may or may not have gaps in I, depending on whether the 
I, := 4+(-x*) - 4-(x*) of the interval 

4, = (4-(x*), 4+(-x*)) (12) 

is positive or not; see fig. 1. For 1, > 0, the interval A, is not visited by the encoding process, once it has 
been attracted by I, nor are all intervals generated from A,, by successive iterations, 

A,,,, = (&,,,-,(x*)Y &j,,+,(-x*)) Y n 2 1 7 (13) 

making for 2” gaps at level n. Thus, for I, > 0 the support of the invariant measure is a fractal with 
Hausdorff dimension strictly less than one, which may be self-similar, as it is for 4(x) = Ax, or not as in 
the case 4(x) = tanh(x). For I, I 0 the support of the invariant measure is the full interval I. In this case, 
it is convenient to define, similarly to (12), the overlap Q, = (4+(-x*), 4-(x*)), which generates a 

hierarchy of overlaps .nC,+, = (&,,,+,(-x*), &,,,-,(x*)) in analogy to (13). This hierarchy of overlaps 
becomes of essential importance when computing the Renyi dimensions characterizing the invariant 
measure living on Z (see below). 

In order to obtain information about the nature of the invariant measure living on I, one iterates the 
Chapman-Kolmogorov equation [23] for the evolution of probabilities, 

P (n+1)(4 = 1 dy P’“‘(Y) 04 yz, 6(x - +(Y + (TEN 
_ R 

where we have exploited the 

(14) 

invertibility of the 4’s under consideration, and the circumstance that 

Fig. 1. Discrete stochastic mapping for the nonlinear encoding scheme (6) in the case of nonoverlapping bands. Only gaps of first 
and second generations are indicated. 
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+L(+,‘(x)) does not depend on (+ (cf. eq. (8)) and is, in fact, equal to 4’(+-l(x)), in order to obtain the 
“symmetrized” hence easier - to-iterate final expression. Starting from an arbitrary initial probability 
density p(O) with support on some compact Z(O), this iteration y’e s 1 Id 2” bands in the nth generation 

which can be encoded by a symbolic dynamics, too [18,24]. 
To wit, the first iterate of p(O) consists of two bands p,, (+ = kl, living on the images Z, of the initial 

support Z(O) under &,, u = -+l, 

I 1 1 

P,(X) = z 4c(4,‘(~)) 
p’“‘(4,‘(x)) for x EZ,, u = -Cl , 

(15) 

and 

10 

P’W = ,s*, PAX) . 

Similarly, each band p(,,,_, 

generation the two bands 

otherwise , 

(16) 

living on ZcVj,_, , the image of Z(O) under +c(‘T)n_l, generates in the next 

P,_$#G”W) 9 a, = 21 > (17) 

for x E ZcU,,, and 0 otherwise. By iteration, we obtain [l&24] 
n 

P(&> = P’“‘(4lb,,W “gl L2~6,(~(,t,,,+,,....,,(x))l-’ 7 x E z,,,, 7 (18) 

and 

P’“‘W = (? P(&) ’ 

LT. 

(19) 

Equations (18) and (19) are an analog of a path integral representation, giving p’“‘(x) as a sum of 
contributions from all 2” encoding trajectories of length n that terminate in X. 

Alternatively, instead of considering the evolution of probability densities, one may investigate a 
Chapman-Kolmogorov equation for the evolution of probability distributions 

F’“‘(x) = j- dp’“‘(y) , 
--cc 

that is, 

,(,+1)(x) = J 

R 
d#‘(y) 4 ,Fel 0(x - +(Y + me)) = : ,Fkl Z+%,‘(x)) . (20) 

Starting from an initial distribution F”‘(x) = J”, dy p’“‘(y), one obtains a representation of F’“’ as a 

sum of contributions coming from all 2” n-step pre-images of x, 

(21) 

where 
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F(,),(X) = 2-“F’“‘t4Jlvj,t4) 7 x E Z(,), 9 (22) 

in complete analogy to (18) and (19). 
Since the encoding scheme is ergodic on {+cUj}, eqs. (19) and (21) have limits as n+ m. For the 

distribution it is a pointwise limit F (in the points of continuity of F), satisfying the invariance condition 
F(x) = + C, F(c$,‘(x)), while the corresponding limit of (19) exists only in the weak sense [23]: 
lim,,, J-n dx p’“‘(x) f(x) = SIP dx p(x) f(x) for f E C( R’). The limiting distribution F defines the invariant 
measure p through dp(x) = F(x + dx) - F(x). 

4. Qualitative analysis of the invariant measure 

The most prominent feature of the invariant measure, i.e., its support {&,} c Z = [-x*, x*] has been 
considered in the previous section. As already pointed out, the size I, : = C#J+ (-x*) - 4-(x*) of the first 
gap decides whether the support is a fractal with Hausdorff dimension strictly smaller than one. 

For the nonlinear encoding scheme (6) and (8) 1, depends on E, and turns negative when E becomes 
smaller than the positive solution E = EL’) = 0.957 of E = tanh(2e). For the linear encoding scheme (5) 
and (8), the gaps in the support vanish when A increases beyond AL’) = f . 

The behaviour of the invariant measure at the fixed points 2+x* of 4, is also amenable to analytic 
investigation. Let us begin by considering the behaviour of p’“‘(x) given by (19) as x+x*. Without loss 
of generality, we generate the p’“’ starting from a p (‘) living on I. The first thing to note is that 
sufficiently close to x*, the only contribution to p’“‘(x) comes from the (+),-band 

Since the pre-image of the fixed point x* is x* itself, we obtain 

P[+,,(x*) =P’“‘(~*P#4(~*r . (24) 

Thus, as n-a, 

0, 
p’“‘(x*) + o3 

{ > 

if 4:(x*)>+ , 

if +1(x*) <+ , (25) 

and the invariant measure will be zero or diverge at x* for 4:(x*) > 4 and 4:(x*) < i, respectively. By 
symmetry, the same occurs at -x*. 

We note in passing that, starting from an arbitrary initial distribution, one arrives after a sufficiently 
large number m of pre-iterations at a distribution which is concentrated on I, except for contributions 
exponentially small in m. Hence, the result (25) is true for arbitrary initial distributions. 

For the nonlinear encoding scheme (6), we have 4:(x*) = 1 -x**, so that the “critical” xr = x*(E,) is 
given by xr = 1 Ia, corresponding to ~62) = 0.174. The linear palimpsestic scheme has 4:(x) = A so that 

(*) - ’ we get a critical A, - i. For this scheme, A = + is also the value for which the gaps of the fractal 
support of the invariant measure close. 

Next, we investigate the scaling behaviour of the invariant measure at the boundaries of the support, 
i.e., the behaviour of 
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x* 

P(1) =)lim P’“‘(l) =!lim I dx P’W 2 (26) 
x*-I 

as 1+ 0, which is expected to behave as P(l) -la, with a scaling exponent (Y that is to be determined. 
To this end, we first consider P’“‘(l) at fixed (large) n, in the small 1 limit. If 1 is chosen so small that 
X* - 1 is larger than the right boundary of the band encoded by ((+)n_l, - ), only the (+), band will 
contribute to P’“‘(l), 

x* 

P’“‘(l) = / dx P(,),(X) . 
x*-i 

Using (18) for (u)~ = (+),, we get 

Expanding the 4FijV(x) in (28) about x*, we obtain 

c$;Qx* - E) =x* - 5 + o( (g2) ) 
where A : = 4:(x*) < 1. Under the condition e/h” <c 1, we can expand further 

In order to apply this to (28), we require 

lIA”SnG1. 

To lowest nontrivial order in E then, (28) reads 

P’“‘(l) = 1 de J+~)(~(:),(x* - c))(2A)-“( 1 + A”h - 
0 

Finally, due to (29) and (31), we can exploit the mean value theorem to obtain 

f,‘“‘(l) =p’0’(5)(2h)“(l +;;vi%) , 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

where 5 = +I,!, (x* - l O) for some 0 5 l o 5 1. To study the scaling behaviour of (26), we investigate (33) 
in the scaling&nit, I* 0 as n + 00 according to 

1 = l(n) = vA”Q(n) , (34) 

where 0 < Q(n) I 1 is some non-increasing algebraic function of n. For large 12, we then get 

[rlQ(n)l'-" 1 [vQ(n)12-” 4:(x*) 1 - A” 
+wwl(n)a - (2A”)” +z (2A”)” A---- l-h (35) 
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As IZ + 00 this goes to zero or infinity, unless 

log 2 
ff = -1og f$;(X*) ’ 

no matter what Q. The scaling limit (35) achieves that (36) represents the true scaling exponent of the 
rightmost (leftmost) band. 

We conjecture that the scaling behaviour of the full invariant measure at the boundaries of the 
support is dominated by the scaling behavior of the right- and leftmost bands. This conjecture is 
supported by numerical investigations (both numerical solutions of Chapman-Kolmogorov equations 
and box-counting simulations) of the coarse grained measure. At the boundaries of the support, one 
expects the coarse grained density P(1)lI to scale according to P(l)/1 - Ia -‘, and qualitative changes of 
such scaling behaviour at LY = 1 and (Y = 2 are correctly predicted by (36). See figs. 2a-c. Namely, as 
1+0 

P(l)ll+ ;’ { 
if (Y < 1, i.e., 4:(x*) < + , 

3 if (Y > 1, i.e., +;(x*)>+ . (37) 

Note that this behaviour is consistent with our previous analysis (25). Moreover, considering the “left 
derivative” of the coarse grained density at x*, viz. -a,(P(I)lI), one observes 

P(X) 

0.002 

-0.25 0.25 -0.3 0.3 

(4 

Fig. 2. Qualitatively different shapes of invariant measures. In (a)-(d) we have c = 0.05, 0.1, 0.4, and 1.0, respectively. The 

measure at the boundaries of the support is either zero, (a) and (b), or infinite, (c) and (d). The former case is further 

distinguished by the derivative of the outmost bands at the boundaries of the support, which either vanishes (a) or diverges (b). It 

is clearly visible that the multifractal measure in (a)-(c) covers the whole interval (fat fractal), whereas in (d) it is a thin fractal. 

The critical eC separating regions of qualitatively different behaviour are given in the main text. The histograms are calculated by a 

digital simulation of a trajectory of length 109. Note the different scales on both axes. 
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0, if (Y > 2, i.e., +:(x*) > l/V? , 

- ~,(W /I) - -(a - lya-5 

1 

-03 ) if 2> (Y > 1, i.e., l/V?> c#J~(x*) >+ , (38) 

CQ, if 1 > (Y, i.e., 3 > +:(.a~*) , 

as I--, 0. By symmetry, analogous behaviour occurs at --x*. The changes in the qualitative behaviour of 

the measure are clearly seen in fig. 2. If parameters are such that P(1) /I-+ 0 as I+ 0, then for the linear 
palimpsestic scheme the change in derivatives occurs at A, (3) = l/%!% For the nonlinear encoding 

scheme, the corresponding critical values are xc - * - da, or equivalently l i3) = 0.064. 

Thus, our scaling analysis has allowed us to examine the behaviour of the invariant measure at the 
boundaries of its support. On the other hand, it is known that the scaling behaviour of the invariant 
measure on the whole support can be characterised by an infinite sequence of generalized fractal 
dimensions. This will be the subject of the next section. 

5. Generalized fractal dimensions 

As just announced, further quantitative characterization of the invariant measures is possible by 
determining their generalized fractal (or Renyi) dimensions [22] 

Dq=l-. 
In CY’ P? 

q - 1 !Z 
l-1 I 
1nI ’ 

In (39), the sum is over all N(I) nonoverlapping cells on length 1 used to cover {c&,,}, and Pi denotes 

% I 
3 

1 

0 

Fig. 3. Generalized fractal dimensions D, of the invariant measure corresponding to the encoding scheme (6), for q = 0, *l, *2. 
The most remarkable feature is that the width of the multifractal spectrum becomes narrow near l y’ where the measure at the 
boundaries of the support jumps from zero to infinity. A higher resolution would reveal, that the drastic increase of D_, and D_, 
near E = 0.6 is continuous, and that the apparent cusps are smooth. The D, are calculated in the thermodynamic formalism for a 
natural partition of the interval, comparing partition functions of generations n = 13 and n = 14. For c <CL”, D_%(e) is also 
displayed. For c > ey’, the dashed line shows the scaling exponent u of the right(left)most band, which approaches D=(e) as E 
becomes large. For E + 0, we have drawn D,(E) + 0 only schematically. 
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the total weight of the measure on cell i. The parameter q can take on any real value but is usually 
considered only for the integers Z. For q = 0, eq. (39) gives the so-called fractal or Hausdorff 
dimension of the support. By taking the limit q+ 1 in (39), one obtains the information dimension D,, 
for q = 2 the correlation dimension D,, and so on. The D, can be shown to be monotone non-increasing 
functions of q. The limiting values D_, and D, characterise contributions to the invariant measure 
originating from the most rare and the most dominant events, respectively; cf. eq. (39). 

In cases, where the cells ar the boundary of the support correspond to the most rare or most dominant 
events, our scaling analysis of the previous section would entail that D_, = (Y or D,, = a, respectively, 
with (Y given by (36). Namely, if 4:(x*) > i so that LY > 1, then the cells at the boundary of the support 
correspond to the most rare events, hence D_, = CY. On the other hand, as 4:(x*)40, entailing that 
(Y +O, then the cells at the boundary of the support represent the most dominant events, so that 
D +.W-a. 

For a one-scale fractal, with a measure which is homogeneous on a self-similar fractal support, all D, 
are equal. Such is the case for the linear palimpsestic encoding scheme (5) when the gaps are open, 
Ali. Then 

In 2 
D,=-ln* ’ (40) 

whatever q. Thus all D, are equal to the Hausdorff dimension D, = D, of the support, which is a 
self-similar Cantor-set contained in I. If the support is not self-similar, or if bands are overlapping, this 
need no longer be the case. 

To proceed with the computation of fractal dimensions in general, it is advantageous to drop the 
equipartition of the support in identical cells of size 1 as in (39) and use a natural partition {Zi} 
generated by the mapping itself instead. In the thermodynamic formalism [22], one introduces a 
partition function 

(41) 

and studies its scaling with increasing resolution, i.e., for li I 1, with I+ 0. With increasing resolution, 
r(q, T, {li}) will tend to zero or to infinity, unless T = (q - l)D,. This observation is used to determine 
the D,. It can be shown [25] that the generalized fractal dimensions so obtained agree with those 
determined from (39). 

For parameters for which the support of the invariant measure is itself a fractal (with Hausdorff 
dimension strictly smaller than l), the natural partition in the nth generation is given by the 2” 
nonoverlapping images I,,,, of the initial interval I, each carrying the same total measure 2-“. On the 
other hand, for parameters for which the I,,, overlap, so that the support of the invariant measure is 
the whole interval I, this interval has to be r;partitioned [24]. Here we use the 2”+l endpoints of the 
I(,,,, i.e., the images &J+x*) of the end points +x* of Z to construct 2”+l- 1 nonoverlapping new 
intervals covering I. Each of these new intervals will generally carry weight coming from several bands 
p(,,.. Explicit knowledge of the p(,,,( x from (18) allows to take these contributions correctly into ) 
account. We determined the D, by solving c(r) - Z,_l(r) = 0 as an eigenvalue equation [26] for 
T = (q - l)D,, where it denotes the generation used to determine ZY In practice, IZ = 10, . . . ,15 gives 
reasonably accurate results. 

Figure 3 gives the multifractal spectrum D, for the smooth nonlinear encoding scheme (6). 
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Qualitatively, the behaviour of the generalized dimensions can be understood as follows. The tails of 
the measure at the boundaries of the support determine D_JE) for E -=c E, (*) as discussed in section 5. In 
particular, Rrn(e) diverges, as E + 0. In the same limit, the mass of the distribution concentrates at the 
center of the support in a 6-function like fashion, so that DJE) decreases to zero as E+O. In the 
opposite limit, E+ w, the invariant measure is a thin fractal, collapsing into two &functions at the 
endpoints of the support. This means that all fractal dimensions approach zero, implying that the width 
of the spectrum of fractal dimensions approaches zero, too. 

Now we look at the fate of the multifractal as E decreases from large to small values. For still very 
large E, the fractal is thin and most bins are empty at any resolution. With decreasing E, the fractal 
becomes more dense, and all fractal dimensions increase. If the gaps close, the fractal becomes fat, and 
D, = 1 for all E < .fzl). However there are still very deep valleys and high peaks on all scales that cause 
D, for q > 0 or q < 0 to be smaller or larger than D,, respectively. Upon further decrease of E the D, 
for q < 0 decrease drastically and reach values close to 1, which announces that a dense nonfractal 
“background” on the whole support has emerged. Still, superimposed on this background, there are 
peaks on all scales, so that D, < 1 for q > 0. At ~6*), the behaviour of the measure at the boundaries of 
the support changes qualitatively, p(+x*) jumps from m to zero as E is decreased through this critical 
value, and D_, = 1. For eL3) < E < E:), there are tails decreasing to zero with infinite slope as x-+ LX*. 
At E, (3) there is yet an other qualitative change, the slope jumps from 00 to zero, i.e., D_, = 2. The 
scaling behaviour of this slope determines D_, as discussed earlier. 

6. Concluding remarks 

In the previous sections, we have investigated invariant distributions of synaptic efficacies resulting 
from learning in forgetful memories. For two such learning rules, viz., (5) and (6), it has been 
demonstrated that invariant distributions generated by learning exhibit fractal of multifractal properties. 
As the parameters A or E characterizing the learning rules are varied, the invariant measures have been 
seen to undergo three “transitions”, qualitative changes of their properties. One is associated with a 
closing of gaps in the support, the other two with changes of the measures at boundaries of their 
support. 

Of course, it seems natural to ask whether properties of the invariant measures can be related to 
network performance, and, specifically, whether the transitions correspond to equally sharp transitions 
in network performance as measured, e.g., by the storage capacity. The answer to the first question, 
perhaps not too surprisingly, is “yes”, whereas that to the more specific second question turns out to be 
“no”. We now discuss why. 

In a neural network storing a set of patterns { 57)) as encoded in its synaptic matrix Jlj, the retrieval 
quality of any one of them depends on its embedding strength [27,28] 

In forgetful memories [8,10-14,281, the embedding strength of a given pattern depends on its storage 
ancestry. That is, if Jij = J/i’ encodes patterns up to the one labeled 7, and if 5” was encoded IZ steps 
before 5’ in the iterative scheme (2), then e, = e,_, = e(n). The decay of the embedding strengths with 
storage ancestry n determines how fast a pattern is forgotten. The reason is that the retrieval quality 
degrades with decaying e(n), and it will vanish once e(n) falls below some level of noise present in the 
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system. This may be either thermal noise or static noise generated by interference between stored 
patterns due to nonzero mutual overlaps. The decay of e(n) with n is always exponentially fast. The 
decay race is determined by the average Lyapunov exponent y of the stochastic mapping (8) associated 
with the learning rule (l), 

e(n) - expW T (43) 

as IZ + 00. Now y depends on both C#J and the invariant measure Z.L created by the map with a given 4 
through 

Y= 1 d&X) + WFe, ln &Xx) = 1 d&) ln K(x) . (4) 
I I 

In this way, the invariant measure does have its effect on network performance in that the decay rate of 
embedding strengths and thereby the number of patterns that can be kept above noise levels (and thus 
retrievable) is determined by Z_L through (44). The average Lyapunov exponent does, in fact, also 
determine the decay rate of the static noise generated by each pattern, and a decrease of the decay rate 
of the embedding strengths implies a corresponding decrease of the decay rate of the noise. The optimal 
choice of these rates - i.e., that maximizing the storage capacity - through appropriate scaling of 
network parameters is, therefore, the outcome of a subtle compromise between two antagonistic 
optimization criteria, viz., letting the embedding strength of a pattern (but with it unavoidably also the 
“noise” it creates) decay as slowly as possible, versus letting the noise created by a pattern (but with it 
also the “signal”) decay as quickly as possible [lo-14,281. 

For the linear encoding scheme (5), y is easily evaluated. One has 

y= d&)lnh,=lnA,. 
I (45) 

Here we have used the fact that ZJ is normalized. Thus, for the decay rate to be small enough to 
guarantee extensive storage capacities, i.e., good retrieval for n = aN patterns with u > 0 (here, (I! is 
roof the scaling exponent introduced in sections 4 and 5), one must have -In A, = B(N-‘) or, 
equivalently A, = 1 - 6(N-i), which confirms the choice of MCzard et al. [12]. Note that with this 
choice the embedding strengths are slowly decaying functions on the a-scale. Note also that this scaling 
of h, with system size N entails that y+ 0 as the thermodynamic limit is taken, implying that - in this 
limit - the memory is working just at the border of chaos. 

For the nonlinear encoding scheme generated by the hyperbolic tangent in (6), a first rough estimate 
of y, exploiting +:(x*)S+:(x)Sl for xEZ=[-X*,X*] gives 

y = 
I 

dZ.+) ln( 1 - c$+(x)‘) 5 ln(1 -x**) , (46) 
I 

where x* depends on E through (11). For sufficiently small E, x* itself will be small so that (11) can be 
written x* -x* + E - f(x* + l )‘. Hence x* = O(E”~), and thus y = O’(E*‘~). This rough estimate, 
however, fails to take into account that, for small E, the invariant measure is actually concentrated near 
the center of I, i.e., the origin, and therefore fails to produce the correct scaling of y with E. A sounder 
procedure is to exploit the smallness of x*, hence x, to expand ln[l - ++(x)“] in (46). This gives 

y-(x’) =]Id& x x2 as E, and thereby x*, go to zero. Detailed analysis [14] reveals (x2) 0: E, as ~40. ) 
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Thus, in order to guarantee extensive storage capacities for this model, the scaling E = Ed = O(N-‘) has 
been adopted [14]. Thus, for this system too, y-0 in the thermodynamic limit. 

The transitions undergone by invariant measures occur for too large values of Q, and 1 - A\N as to be 
of any significance, however, for storage capacities in the (thermodynamic) large-system limit. The 
average Lyapunov exponents vary continuously across the transitions, so that the decay of embedding 
strengths is not significantly affected by the occurrence of these transitions. 

To summarize, in the present paper, we have investigated invariant distributions of synaptic efficacies 
resulting from learning in forgetful memories. For two such learning rules, it was demonstrated that 
invariant distributions generated by learning in a stationary environment exhibit fractal or multifractal 
properties. Previous analyses have shown [lo-141 that in order to ensure extensive storage capacities in 
the thermodynamic limit, the stochastic mappings associated with forgetful memories are of interest 
only in the smooth limits Ed-, 0 or A,+= 1, where (multi) fractality of the invariant distributions - while 
still present and pronounced - has in some sense a trivial origin [25]: virtually all mass of the invariant 
measures is concentrated near the center of the support, and there are exponential tails exhibiting 
essential singularities at the boundaries of the support. Nevertheless, for large but finite systems, there 
are always optimal nonzero values of the parameters l N and A,, respectively which ensure the largest 
capacity for the given rule and system size N, so non-trivial (multi) fractality of J,,-distributions is a 
feature of memories which forget. It remains an open question, though, whether there is a direct 

connection between characteristics of the (multi) fractal properties of the measure, such as the 
information dimension or the width of the spectrum of fractal dimensions, and the performance of the 
memory. This question is under investigation. 

Very recently, in a different context, the invariant measure for the membrane potential in a 
single-neuron model [29] has been numerically generated, and a similar behaviour as in fig. 2 can be 
observed. 
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