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Abstract: Three-dimensional calculations of the meniscus of a magnetic fluid placed around a
current carrying vertical and cylindrical wire are presented. Based on the material properties
of experimentally used magnetic fluids, the numerically determined menisci are compared with
the experimentally measured ones reported by May. The comparison is made for a linear law of
magnetisation as well as for the experimentally measured nonlinear magnetisation curve. Up to
moderate strengths of the applied current (I <= 45 A), i.e., up to moderate strengths of the magnetic
field close to the wire, the calculated profiles agree satisfyingly with the experimentally measured
ones for a linear as well as for a nonlinear law of magnetisation. At a great strength of the applied
current (I = 70 A), i.e., at a large strength of the magnetic field close to the wire, the agreement is
less good than in the range up to moderate strengths. Our analysis revealed that the numerically
assumed isothermal conditions are not present in the experiment, particularly at the great strength
of the applied current. A control of the temperature in the experiment and the implementation
of a coupled thermal model in the numerics are considered the most relevant future steps for an
improved agreement.
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1. Introduction

One of the most fascinating characteristics of the physics of magnetic fluids (MFs) is the fact
that the appearance of their free surface can be drastically modified under the influence of magnetic
fields. The Rosensweig instability (see [1] and references therein) can be considered as an icon of
such a behaviour, but also fluid layers subjected to nonuniform magnetic fields [2,3], fluid layers with
cylindrical rods [4–6], singular drops [7–12] or sculptures [13] fashioned from these liquids exhibit in
magnetic fields an astonishing variety and beauty in observable patterns and shapes.

A much simpler set-up to analyse is the meniscus of a horizontal layer of magnetic fluid in the
field of a vertical current-carrying cylindrical wire [14]. An early analysis of that set-up is given in [15],
where the influence of the surface tension was ignored, but leads to an analytical solution in this way.
More than two decades later, the renewed interest started with a numerical work [16] on the resulting
nonlinear differential equation describing the evolution of the surface as function of the distance from
the wire and taking the surface tension into account. The derivation of this nonlinear differential
equation is based on the assumption that isothermal conditions are present and uses the minimising of
the total energy of the system. That total energy is the sum of three parts: the gravitational, the surface
and the magnetic energy. Thus, the system is considered to be static, i.e., there is no flow field present.
A transformation regularises the problem and grants a numerical solution. It followed a publication of
experimental data [17] which allows a comparison with calculated results.
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Our approach starts with the basic dynamic equation of hydrodynamics, the Navier–Stokes
equation, extended to the case of a magnetic fluid in the presence of a magnetic field. The equation
reduces to the nonlinear differential equation from [16] if an irrotational and stationary flow field is
assumed. Therefore, dealing with that equation without assumptions forms a challenge. That is why
the aim of this paper is to present the numerical simulation of the underlying Navier–Stokes equation
without any assumption about the flow field for a three-dimensional configuration and compare the
results with the experimental data.

2. Governing Equations

The starting point for deriving the governing equations is the time-dependent Bernoulli equation
of a magnetic fluid (called medium I) in contact with a different medium II above [15] (Equation 5.5),(

−∂φ

∂t
+

v2

2
+ gξ

)
ρ + p− µ0

∫ H(ξ)

0
MdH′ = C′(t) . (1)

This equation has been derived under the assumptions that the MF is an incompressible Newtonian
fluid, that magnetostriction is negligible, that the magnetisation M and the magnetic field H are
collinear, that the flow field v is irrotational, i.e., rot v = 0, and that the temperature in the entire
system is constant. Due to the irrotational character of the flow field, it can be expressed by the
corresponding velocity potential φ, v = −grad φ . The two media are separated by an interface ξ(r, t),
where r = (x, y) is perpendicular to the normal unit vector n, pointing from medium I to medium
II. The pressure in the medium is denoted by p, ρ is the density of the MF, g the acceleration due to
gravity, µ0 the permeability of free space and C′(t) a quantity solely depending on time t. As we are
interested in the steady state of the static interface of the MF towards air as medium II, we assume that
v(I I) = M(I I) = ρ(I I) = v(I) = 0 holds. Calculating now the difference between the Bernoulli equation
of medium I and medium II, one gets

ρ(I)gξ + p(I) − µ0

∫ H(I)(ξ)

0
M(I)dH′(I) − p(I I) = C(I) − C(I I) = C , (2)

where C denotes a constant since all dependencies on time dropped out. Equation (2) has to be
supplemented by the boundary condition which states that the normal component of the stress tensor
is continuous across the interface. This boundary condition reads finally as [15] (Equation 5.22)

p(I) − p(I I) = pc −
µ0

2

(
M(I) · n

)2
+ p(I I)

0 , (3)

where p(I I)
0 = p0 is the hydrostatic pressure on the nonmagnetic side and pc = σK describes the

capillary pressure with the surface tension σ and the curvature K. Substituting Equation (3) into
Equation (2), the Bernoulli equation of a quiescent magnetic fluid with a free surface results (omitting
the index I) in

p0 + pc + ρgξ − µ0

∫ H(ξ)

0
MdH′ − µ0

2
M2

n = C . (4)

For the case of a vertical cylindrical current-carrying wire, considered here, the free surface forms
a meniscus around the wire, as can be seen in the top part of Figure 1. In equilibrium all contributions
of pressure at point (1), close to the wire, are equal to all contributions at point (2), far away from it,
see bottom part of Figure 1. With the assumption that the free surface ξ(r) and the magnetic field
H = I/(2πr)eϕ of the wire tend to zero as r goes to infinity, Equation (4) reads

p(1)0 + p(1)c + ρgξ(1) − µ0

∫ H(ξ(1))

0
M dH′ − µ0

2

[
M(1)

n

]2
= p(2)0 + p(2)c −

µ0

2

[
M(2)

n

]2
, (5)
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where the current through the wire is denoted by I. The absolute value of the horizontal distance, r, the
magnetic field as well as the magnetisation is given by r = |r|, H = |H|, M = |M| and Mn = M · n ,
respectively. Equation (5) can be further reduced because the hydrostatic pressure is the same at both
points and p(2)c = 0 due to K(2) = 0. The latter results from the fact that for r to infinity the elevation of
ξ diminishes. With a linear law of magnetisation, M = χH, and the feature that only the azimuthal
component of the magnetic field is nonzero, one finally yields an analytical equation for the free surface
of the magnetic fluid [16],

ρgξ − σ
ξ ′ + ξ ′3 + rξ ′′

(1 + ξ ′2)3/2
1
r
− µ0χI2

8π2
1
r2 = 0 , (6)

where χ denotes the susceptibility of the MF and the primes the derivatives with respect to r.2 mm
H

magnetic fluid
 

(1)

(2)

g

current-carrying wire

r
p0

Figure 1. (top) Meniscus of the magnetic fluid EMG 909 around the wire carrying a current of 70 A.
Courtesy of K. May [17]. (bottom) Sketch of the set-up (for details see text).

An analytical solution for the simple case of σ = 0 was already given in [15] (Chap. 5.4), but an
analytical solution for the full problem (6) is not yet available. The reason is the nonlinear character
of the equation caused by the nonlinear structure of the curvature in the term of capillary pressure.
Therefore, John et al. in [16] proposed a transformation which regularises the problem and allows
a numerical solution. Nevertheless, Equation (6) is an approximation since the derivation of the
Bernoulli equation assumes isothermal conditions as well as an irrotational and stationary flow field.
Therefore, the aim of this study is to present numerical simulations of the underlying Navier–Stokes
equation [15] (Equation 5.2),

ρ

[
∂v
∂t

+ (v grad) v
]
= −grad p + η∆v + ρg + µ0 (M grad)H , (7)

in three dimensions, where η denotes the dynamical viscosity of the magnetic fluid and g = (0, 0,−g).
No assumptions will be made about the flow field. The isothermal condition is kept for the simulations,
but will be discussed separately in Section 4.2. In the three-dimensional r-ϕ-ξ coordinate system,
the Kelvin force density is given by fK = µ0(M grad)H = µ0M(∂H/∂r, 0, 0), where it was exploited
that H and M are co-linear. For the simulations, either a linear law of magnetisation is used or the
experimental data of the nonlinear behaviour of the magnetisation (Figure 2). The experiments were
performed with the magnetic fluid EMG 909 (APG S21) having the material parameters ρ = 1020 kg/m3
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(1140 kg/m3), σ = 0.0258 N/m (0.0331 N/m) and χ = 0.61 (0.65) [17]. The dynamical viscosity is
set to η = 10−3 kg/(m·s) since all tested values of η including the values given by the producer [18]
lead to identical menisci [19]. The magnetic fluid EMG 909 (APG S21) is a light hydrocarbon oil-based
(synthetic ester oil based) ferrofluid [18] with a saturation magnetisation of Msat ' 13.4 kA/m (Msat '
16.4 kA/m) and particles with a mean diameter of d̄ ' 7.1 nm (d̄ ' 7.0 nm) [20]. The experimental
set-up uses a wire with a radius of R = 0.95 mm and a welding transformer for the generation of the
current which can achieve 100 Ampere in maximum [17]. Three different strengths (small, moderate
and large) of the current were applied: I = 20 A, I = 45 A and I = 70 A.

0 3 6 9 12 15

H (kA/m)

0

2

4

6

M
 (

k
A

/m
)

Figure 2. Experimentally measured magnetisation curve of EMG 909 (black solid line) and APG S21
(blue solid line), respectively, in the relevant range of H. Courtesy of K. May [17]. The black long-dashed
(blue long-dashed) line indicates a linear law of magnetisation with χ = 0.61 (χ = 0.65) for EMG 909
(APG S21). The vertical arrows indicate the strength of the magnetic field at the rim of the wire at
R = 0.95 mm for I = 20 A, 45 A and 70 A (from left to right).

3. Numerical Methods

Extending the simulations in [19], the numerics here is done in three dimensions. The numerical
calculations were conducted with the commercial software package ANSYS FLUENT 13.0 using
the finite volume method for the two phases fluid and air. The domain of calculation is a torus of
rectangular cross-section with a width of 16 mm and a height of 7 mm according to the experimental
set-up in [17], where the origin is shifted by 2 mm in the vertical direction by the thickness of the
layer of magnetic fluid, see Figure 3 (top). No-slip boundary conditions (wall b. c.) are imposed at all
boundaries, with the exception of the upper horizontal boundary, where a so called open boundary
condition is present. This condition allows an unconstrained flow of air in or out of the system.
By using a finite volume method the numerical results are affected by the so called “flotsam” generated
during the reconstruction of the phase boundary between the MF and air. The flotsam is considerably
reduced by the use of FLUENT’s GEO-Reconstruct method which is based on Youngs’ technique [21].
That technique is superior to other approaches as a comparing study [22] shows. Only in the column
nearest to the wire a few cells of flotsam remain. As beyond a simulation time of t = 2.5 s in all tested
cases this last flotsam does not move any more and does not influence the shape of the surface, it was
removed. The change of the total mass of MF due to that removal can be neglected as the amount of
flotsam is less than 0.05% of the total mass of fluid.

FLUENT’s numerical method for modelling the surface tension is based on the continuum surface
force (CSF) model proposed in [23]. The CSF model uses the static angle of contact, established when
the fluid is at rest. In agreement with this definition, the angle of contact of the MF with the wire
was measured in [17,20]. By contrast, neither information about a change of this angle during the
rise of the fluid at the wire nor any measurements of the angle of contact at the wall of the vessel are
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available [17,20]. Thus, the conducted numerics utilises static angles of contact only, where one of
them is experimentally known.

To reduce the computing time only a quarter of the torus, supplemented with suitable conditions
on the symmetry, was actually calculated. The area of calculation is divided in vertical direction into
50 cells, in radial direction into 480 cells and in azimutal direction at the outer rim into 250 cells. That
sums totally up to approximately 2× 106 cells. That quarter was divided into three parts automatically
by FLUENT, see Figure 3 (bottom), to allow a parallel calculation in each of them. The final computing
time of a quarter of the torus summed up to two and a half days which corresponds to a real time of
t = 2.5 s.

The system calculated numerically here constitutes a model system with respect to geometry and
the analytically known magnetic field. With such a model system, the quality of the numerics can be
tested, particularly if experimental results are available. In that way, one receives knowledge about
the strengths and weaknesses of the numerics of free surfaces of magnetic fluids which is helpful for
the numerics of non-model systems as in the case of magnetic field concentrators [24] or locomotion
systems [25]. 15.05r 0.9552 open b. c.wall b. c. wall b. c.

Figure 3. (top) Geometry and boundary conditions (b. c.) of the used numerical region (two-dimensional
cross-section). The grey (shaded) region indicates the area of the magnetic fluid (wire). All measures
are in millimetres. (bottom) Perspective view onto a quarter of the three-dimensional torus with an
indication of its three subparts generated by FLUENT. The wall boundary conditions apply to the
inner black curved area representing the rim of the wire, to the bottom of the torus (not visible in this
perspective view), and to the outer black curved area (visible only as outer black line).
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4. Results

4.1. Menisci of the Magnetic Fluids

The presentation of the results starts with the menisci of the fluid EMG 909, where, first, the
numerical results using a linear law of magnetisation are compared with the experimental data.
Figure 4 shows the shape of the final free surface for three different strengths (small, moderate and
large) of the magnetic field, calculated at the rim of the wire at R = 0.95 mm: H = 3.35 kA/m
(equivalent to I = 20 A), H = 7.54 kA/m (equivalent to I = 45 A), and H = 11.73 kA/m (equivalent
to I = 70 A).

For small magnetic fields, see Figure 4a, linear laws with χ = 0.61 (blue solid line) but also
with χ = 0.8 (green circles), given by the producer [18], lead to a really good agreement with the
experimental data. For an intermediate value of H, see Figure 4b, the graph generated by χ = 0.8
gives a better agreement than the one by χ = 0.61. At a high value of H, the calculated meniscus for
χ = 0.8 overestimates the real hight, whereas the meniscus for χ = 0.61 slightly underestimates it.
That analysis for all three strengths of the magnetic field is clearer visible by means of the relative error
δξ, defined in Equation (8), which is plotted in Figure 5.

Second, Figure 6 presents the results based upon the linear and the nonlinear law of magnetisation,
respectively, both compared with the experimentally measured menisci. Up to intermediate values of
the strength of the magnetic field, see Figure 6a,b, the agreement is fine; the maximal deviation numbers
−12.2% (linear magnetisation) and −15.8% (nonlinear magnetisation), respectively, see Figure 7a,b.
Only for the highest value of H in Figure 6c, both calculated curves differ from the experimental one,
where the deviation is slightly larger for the nonlinear law (at most −25.8%) than for the linear one (at
most −22.6%), see Figure 7c.

As summary of this set of results, one can say, that up to field strengths of ~7 kA/m, a linear law
of magnetisation is a satisfying approximation, resulting in a good agreement with the experimentally
measured menisci. For larger field strengths detectable deviations appear, where a linear law works
better than a nonlinear one. An analysis regarding the reasons for this surprising outcome is presented
in Section 4.2.
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Figure 4. Calculated menisci of the magnetic fluid EMG 909 for a linear law of magnetisation with
χ = 0.61 ( ) and χ = 0.8 (◦) versus the experimentally determined surfaces ( ). (a) H = 3.35 kA/m,
(b) H = 7.54 kA/m , and (c) H = 11.73 kA/m at R = 0.95 mm.
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Figure 5. Relative deviation δξ, see Equation (8), of the numerically calculated menisci of the magnetic
fluid EMG 909 using a linear law of magnetisation with χ = 0.61 (•) and χ = 0.8 (�). (a) H = 3.35 kA/m,
(b) H = 7.54 kA/m and (c) H = 11.73 kA/m at R = 0.95 mm. The lines are guides for the eye. Note
the different scales at the axes of ordinates.
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Figure 6. Calculated menisci of the magnetic fluid EMG 909 for a nonlinear law ( ) and linear
law of magnetisation with χ = 0.61 (◦) versus the experimentally determined surfaces ( ). (a)
H = 3.35 kA/m, (b) H = 7.54 kA/m and (c) H = 11.73 kA/m at R = 0.95 mm.
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Figure 7. Relative deviation δξ, see Equation (8), of the numerically calculated menisci of the
magnetic fluid EMG 909 using a nonlinear law of magnetisation (•) and a linear law with χ = 0.61
(�). (a) H = 3.35 kA/m, (b) H = 7.54 kA/m and (c) H = 11.73 kA/m at R = 0.95 mm. The lines are
guides for the eye. Note the different scales at the axes of ordinates.
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One motivation to perform three-dimensional simulations is the expectation that three-dimensional
numerics result in a better agreement with the experimental data. To confirm this expectation,
the relative deviation with respect to the experimentally determined meniscus

δξ(r) =
ξnum(r)− ξexp(r)

ξexp(r)
(8)

is calculated and plotted in Figure 8 for the three different strengths of the magnetic field using a
nonlinear law of magnetisation. The upper limit of the considered range of r is determined by the fact
that ξ(r ≈ 5 mm) ' 0.2 mm for the largest strength of the magnetic field. Such an elevation is given
in [20] as the error in the experimental determination of vertical elevations. The overall picture is that
three-dimensional calculations generate a clear smaller relative deviation, i.e., the experimental menisci
are better matched. For r > 4 mm, the deviation of two-dimensional calculations [19] starts to become
rather large. This is because these calculations are much less able to fashion tiny surface elevations
compared to three-dimensional calculations. Those deviations increase for r > 4 mm compared to the
range 1 mm ≤ r ≤ 4 mm [best seen in Figure 8a,b], but keep clear smaller than the corresponding
deviations for two-dimensional calculations.
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Figure 8. Relative deviation δξ using a nonlinear law of magnetisation in two-dimensional (• from [19])
and three-dimensional (J) simulations, respectively: (a) H = 3.35 kA/m, (b) H = 7.54 kA/m and (c)
H = 11.73 kA/m at R = 0.95 mm. The long dashed lines are guides for the eye. Note the different
scales at the axes of ordinates.

We point to a cautious handling of the numerical data with respect to the experimental ones.
The absolute experimental error ∆ξexp of the measured hight ξexp = ξexp(r) of the surface is equal to
∆ξexp = 0.2 mm over the entire range of r independent of the measured value of ξexp(r) [20]. (There are
no information about the experimental error of ξexp(r) in [17].) Its leads to the situation that the relative
error ∆ξexp/ξexp(r) reaches values of 1 and beyond for r ≥ 2.9 mm at H = 3.35 kA/m, for r ≥ 4.0 mm
at H = 7.54 kA/m and for r ≥ 5.4 mm at H = 11.73 kA/m. That circumstance is clearly related to the
experimental set-up and the resolution of the used camera in [20]. Nevertheless the experimental data
of the surveyed surface are the only reasonable set of data the numerical ones can be compared with.

The second set of results contains the numerically calculated menisci of the magnetic fluid
APG S21, see Figures 9 and 10. The reason for the test of the second MF, which has a similar density,
surface tension and initial susceptibility as EMG 909, is that the rate of evaporation of APG S21 is
considerably smaller than the one of EMG 909. That difference will come into play in the analysis in
Section 4.2.

For a field strength of H = 3.35 kA/m and H = 7.54 kA/m, in Figure 9a,b, the calculated menisci
agree rather well with the experimentally determined surfaces, where the maximal deviation amounts
to −10.5% (linear magnetisation) and −12.1% (nonlinear magnetisation). The agreement becomes a bit
inferior for the largest value of H with 11.73 kA/m, in Figure 9c, again the deviation is larger for the
nonlinear law (maximal −18.0%) than for the linear one (maximal −15.3%).
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Figure 9. Calculated menisci of the magnetic fluid APG S21 for a nonlinear law ( ) and linear
law of magnetisation with χ = 0.65 (◦) versus the experimentally determined surfaces ( ). (a)
H = 3.35 kA/m, (b) H = 7.54 kA/m and (c) H = 11.73 kA/m at R = 0.95 mm.
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Figure 10. Relative deviation δξ, see Equation (8), of the numerically calculated menisci of the
magnetic fluid APG S21 using a nonlinear law of magnetisation (•) and a linear law with χ = 0.65
(�). (a) H = 3.35 kA/m, (b) H = 7.54 kA/m and (c) H = 11.73 kA/m at R = 0.95 mm. The lines are
guides for the eye.

For all calculated menisci of Figures 6 and 9, it is noticeable that the numerical values underestimate
the experimental data. In principle, higher calculated surfaces would appear for smaller angles of contact
at the wire, but a test in [19] showed that the effect of angles smaller than the measured ones is negligible.
Therefore, the assumption of isothermal condition deserves a consideration in more detail.

4.2. Temperature Distribution and Its Dynamics

To determine the temperature distribution in the magnetic fluid caused by the heat generation
due to the current flowing through the wire, made out of copper, the three-dimensional torus with
an even surface at ξ = 2 mm is used. Besides the standard value for the density, ρCu = 8700 kg/m3,
the specific heat capacity, cp,Cu = 385 J/(kg·K), the electrical conductivity, σele,Cu = 5.9× 107 V/(A·m)
and the thermal conductivity, λCu = 400 W/(m·K), of copper, one needs essentially the value of the
thermal diffusivity κ of the tested fluid in order to solve the equation of heat conduction. Besides
the density of the magnetic fluid, κ = λ/(cp ρ) involves its thermal conductivity and specific heat
capacity. As no particular measurements of these quantities for EMG 909 are available, an estimation
to κ = 7.5× 10−8 m2/s from [26] was used. As boundary condition room temperature is assumed at
the rim of the vessel. At the wire the temperature of the wire is given as boundary condition for the
fluid. At t = 0 the entire system has room temperature.
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The radial distribution of temperature (the problem is axis-symmetric) shows Figure 11 for the
case of the largest strength of the current, I = 70 A, used in the experiments. The distribution towards
the rim of the vessel follows an exponential decrease as the fits (see red lines) indicate. If one considers
the temperature of the fluid just at the wire, it becomes clear that a significant increment happens.
After an application of I = 70 A over a span of time of t = 5 s, the former room temperature of 20 ◦C
reaches nearly 34.3 ◦C. Inspecting the case of t = 2 s, the calculated temperature of 25.8 ◦C is close to
the temperature of 27 ◦C measured with an infrared camera after 2 s in the experiment (see Figure 2
in [17]).
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Figure 11. Radial distribution of the temperature of the magnetic fluid EMG 909 for a strength of the
current of I = 70 A applied over different spans of time. The blue stars (∗) denote the numerical results,
and the red solid lines ( ) are exponential fits as a guide for the eye.

As at r ' 3 mm (equivalent to approximately three times the radius of the wire) the entire increase
of the temperature disappears, also significant gradients in the temperature are present. Altogether,
the temperature itself and its gradient show that isothermal conditions are not present in a strict
interpretation. Particularly, the surface tension, as a temperature-dependent quantity, will vary with
time and in space contrary to the overall assumption that the surface tension is a constant.

To study the dynamics of the temperature distribution as a consequence of consecutive
measurements with increasing strength of the current, the following procedure was implemented
and simulated. Starting with an initial value of I = 5 A, the current was increased step by step by
∆I = 5 A up to the final value of I = 70 A. Between each step a waiting time of ∆t = 300 s is engrafted
modelling the experimental procedure described in [20]. The application of a waiting time aims for
letting the fluid cool down again before the next strength of current is employed.

Figure 12 shows the development of the maximal temperature (present at the rim of the wire at
R = 0.95 mm) of the fluid for two different scenarios: in one case the holding time ∆thold for each
strength of current amounts to 5 s (red solid line), whereas the second case involves ∆thold = 2 s (blue
dot-dashed line). For the latter one, one can see that up to I = 45 A, a waiting time of 300 s is enough
that the fluid cools down to room temperature. Only beyond that strength of current, a slight but
steady increase of the temperature during the waiting time is observable. For such a slight increase
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an evaporation rate of 9% per hour, as given by the producer for EMG 909 [18], there should not be
a severe problem. The situation becomes different for ∆thold = 5 s (red solid line). Already beyond
I = 25 A the cooling time of 5 min is not enough to reach room temperature. The final temperature at
the end of the procedure is ∼ 39 ◦C. Considering the total time over which the temperature of the fluid
is now above room temperature, the given evaporation rate of EMG 909 poses a problem.
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Figure 12. Maximal temperature of the ferrofluid EMG 909 for a consecutive increase of the current
from I = 5 A to I = 70 A by ∆I = 5 A. The waiting time between each increasing step counts to 300 s.
The red solid line indicates the development of the temperature for a holding time of ∆thold = 5 s at
each strength of the current, and the blue dot-dashed one for ∆thold = 2 s.

That conclusion is considered as a main reason for the larger deviation between the numerically
calculated surface via a nonlinear law of magnetisation and the experimentally measured surface at a
large strength of current. The higher temperature causes a certain evaporation of the carrier liquid,
which increases the volume concentration of the magnetic nanoparticles during the experiments.
Therefore, the measured nonlinear magnetisation curve before the experiments underestimates the
magnetisation present during the experiments. By contrast, the linear law of magnetisation tends to
higher values of M at the given strengths of the magnetic fields (see Figure 2), which is the reason why
these deviations are smaller than the ones for a nonlinear law of magnetisation.

If one compares the results between the two fluids, the underestimation for APG S21 is
approximately 25% smaller than the underestimation for EMG 909, valid for the linear and the
nonlinear law of magnetisation, respectively. The cause for this reduced deviations results from
the lower evaporation rate for APG S21. Thus the selection of a magnetic fluid with a rather low
evaporation rate is desirable.

5. Discussion

In this section, the consequences of the absence of isothermal conditions are discussed in detail.
An increase of the temperature, particularly close to the wire, will generate a raised evaporation.
The resulting increase of the volume concentration of magnetic particles and the increase of the
temperature itself cause different consequences for magnetisation and surface tension.

The strength of the magnetisation depends on two contrary dependencies: the increased volume
concentration would increase the magnetisation, whereas the increase of the temperature would
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decrease the magnetisation; which dependency wins over the other is not clear, as measurements of
the magnetisation as a function of the temperature, as in [27], did not determine in parallel the volume
concentration. A similar behaviour applies to the density: an increase of the density by an increase in
the volume concentration stays contrary to a decrease due to a higher temperature.

Furthermore, the surface tension is a critical factor in several respects, where two of them are
related to changes of the temperature. First, an evaporation of the carrier liquid leads to a higher
volume concentration of the magnetic particles which causes an increase of the surface tension as
measured in [28]. Second, and simultaneously, a higher temperature brings forth a reduction of
the surface tension. As no particular measurements of the temperature dependence of the surface
tension of magnetic fluids are known, to the best knowledge of the authors, we are referring to recent
measurements for binary mixtures [29], which confirm this dependence. With respect to magnetic
fluids, it is an open question which of the two effects dominates the other one. Third, there is the size
of the angle of contact at the wire. That angle is related to the surface tension between magnetic fluid
and air by Young’s equation [30] expressing a necessary boundary condition for the fluid. Therefore
a measurement of this angle during the experiments constitutes a vital information and would be
an additional input for future numerical simulations, supported by the findings in [17] about the
ferrofluid–air interface.

6. Summary and Future Work

Three-dimensional calculations of the meniscus of a magnetic fluid around a current carrying
vertical and cylindrical wire are presented. Based on the material properties of experimentally used
magnetic fluids, the numerically determined menisci are compared with the experimentally measured
one. The comparison is made for a linear law of magnetisation as well as for the experimentally
measured nonlinear magnetisation curve.

For a linear law of magnetisation, and for low as well as for moderate strengths of the current, the
profiles agree satisfyingly up to 2 mm to the wire. Closer to the wire, and for high values of the current,
the agreement is not so satisfying. Therefore, a nonlinear law of magnetisation was tested. The overall
picture is that the maximal deviation for the nonlinear law of magnetisation is somehow larger than
for the linear law. That is at first view counterintuitive since the nonlinear law of magnetisation is
closer to the real properties of a magnetic fluid than a linear law. To resolve that puzzle, the thermal
conditions in the experiment and in the simulations, respectively, come into play. For isothermal
conditions, as present in the simulations, the linear law of magnetisation yields larger magnetisations
than the nonlinear law with the exception of rather small magnetic fields. In the real experiment,
the temperature is higher close to the wire than further away. An increase in the temperature causes
two contrary dependencies: on the one hand, an increase of the magnetisation by an increased volume
concentration of magnetic particles caused by evaporation, and on the other hand, a decrease of the
magnetisation by the increased temperature itself. If the first dependency wins for the used magnetic
fluids, the real magnetisation close to the wire is higher than the magnetisation further away, and
higher magnetisations close to the wire generate a better agreement as the simulations with the less
realistic linear law of magnetisation show. The fact that evaporation has a relevant influence on the
results shows the better agreement for the fluid APG S21 with a lower evaporation rate in comparison
with the fluid EMG 909.

The thermal aspects of the system turn out to be the most relevant ones in order to bridge the
remaining gap between the real experiment and the model used for the calculations. A rising of the
temperature modifies magnetisation as well as surface tension. In which way the modification takes
place is not yet finally clarified. On the one hand, the increased temperature leads to a decrease of
magnetisation and surface tension, whereas the increased volume concentration of magnetic particles,
due to the raised evaporation, leads to an increase of both quantities. This situation directs the future
work in several aspects.
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From a numerical point of view, it would be desirable to implement a coupled thermal model
since the present numerical model is limited to an isothermal situation. An essential requirement are
reliable measurements of the dependence of the surface tension on temperature, as such measurements
are not available presently. A parallel determination of the volume concentration of magnetic particles
would deepen the understanding of the temperature effects. The same kind of measurements should
be applied on the magnetisation. In this way, the magnetic liquids are suitable characterised if used for
this type of experiments.

From an experimental point of view, a control of the temperature is considered essential. The aim
should be to keep the temperature as best as possible constant, particularly in the vicinity of the wire.
Therefore, a cooling of the wire as well as a tempering of the entire set-up would be advantageous in
order to keep the differences in temperature as small as possible. To quantity the temperature control,
measurements of the temperature of the wire and the fluid, the latter at different distances to the wire
and different circumferential positions, should be implemented. Also, a measurement of the angle
of contact of the magnetic fluid at the wire would add vital information about the behaviour of the
surface at and close to the wire.

That all should lead to a better characterisation of the system and an improved agreement between
experiment and numerics.
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