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The ferrofluid dynamics theory is applied to thermodiffusive problems in magnetic fluids in the presence of
magnetic fields. The analytical form for the magnetic part of the chemical potential and the most general
expression of the mass flux are given. By applying these results to experiments, global Soret coefficients in
agreement with measurements are determined. An estimate for a hitherto unknown transport coefficient is also
made.
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I. INTRODUCTION

Magnetic fluids(MFs) are colloidal suspensions of ferro-
magnetic nanoparticles dispersed in a nonmagnetic carrier
liquid. MFs behave superparamagnetically in a magnetic
field and have a far reaching application potential spanning
from sealants in rotary shafts to heat dissipaters in loud-
speaker coils[1] to carrier liquids for medical substances[2].
Starting in the mid-1960s, when MFs were first available,
research on these fluids was proceeding on the calm fairway
of an established and well founded field of research. In par-
ticular, the theoretical work was based on the achievements
of the two pioneers Rosensweig[3] and Shliomis[4,5]. But
ten years ago a series of papers[6–9] started to appear point-
ing specifically to the deficiencies of the microscopic ap-
proach in [4,5] and proposing “a general, strictly macro-
scopic approach relying solely on symmetry considerations,
conservation laws, and thermodynamics”[10]. This ap-
proach, called ferrofluid dynamics(FFD), sparked an impas-
sioned discussion[10,11] about which theory explains better
the experimental facts for the reduced viscosity of a MF in
an ac magnetic field[12] or for the magnetovortical reso-
nance[13,14]. The FFD theory also triggered an experiment
[15] confirming a proposed nonzero transport coefficient
which is zero in the microscopic approach[4,5]. Other pro-
posed effects such as shear-excited sound[16,17] still await
confirmation.

For the description of thermal convection in magnetic
fluid, the fluid has been considered in many studies as a
one-component fluid with effective properties(see[18–20]
and references therein). The limits of this coarse grained
view of the colloidal suspension of ferromagnetic nanopar-
ticles are just being revealed. Considering a magnetic fluid as
a binary liquid, thermal convection is found to set in at Ray-
leigh numbers well below the threshold for a MF considered
as a single-component fluid[21].

The thermodiffusive or Soret effect describes the estab-
lishment of concentration gradients in response to tempera-
ture gradients for a two-(or multi) component fluid. Since
the motion of the ferromagnetic nanoparticles in the MF can
be influenced by external magnetic fields, the Soret effect in
MFs shows a strong dependence on any nonzero magnetic
field strength[22–24]. In a vertical layer the Soret coefficient
ST dependsnonmonotonicallyon the strength of the field in

the cases where the field is either parallel or perpendicular to
the temperature gradient[22,23]. In contrast, for both orien-
tations of the magnetic field the Soret coefficient depends
monotonically on the strength of the field if the layer is hori-
zontal[24]. The changes ofST can be up to six times its zero
field value [23], and even a change of the sign ofST was
measured for strong fields[22–24].

The known theoretical approaches to the Soret effect in
magnetic fluids[25,26] need as an essential input an expres-
sion for the magnetophoretic velocity of the nanoparticles
with respect to the carrier liquid. For that purpose certain
microscopic properties are assumed, such as a dilute colloid
containing spherical particles of equal size and the applica-
bility of the Stokes hydrodynamic drag[25,26]. Also, as-
sumptions about the deformation of the temperature distribu-
tion around the particle are made if its thermal conductivity
is different from that of the surrounding carrier liquid[25]. A
comparison with the known experimental results shows great
differences: the microscopic theory[25,27] gives changes of
ST which are only about three orders of magnitude smaller
than the experimentally measured ones([23] and Fig. 23
in [22]). In the frame of a thermodynamic approach[28], it is
also not possible to describe the drastic changes ofST mea-
sured in the experiment. That means that with respect to
thermodiffusive processes in MF in the presence of magnetic
fields a wide gap between experiment and theory has to be
bridged. Therefore it is the aim of this work to present a
different approach, where in the frame of a macroscopic
theory, the FFD, the experimental results can be described
significantly better.

Usually an external temperature gradient causes both
convection and thermodiffusion in any colloidal suspension.
How these two effects are interacting with each other is
not yet finally resolved, as the discussion about the possi-
bility of a state of relaxation-oscillation convection high-
lights [21,29]. The mutual interference of convection and
thermodiffusion is even more severe if additionally an exter-
nal magnetic field is applied, as in the case of MFs
[22–24,26,30]. The problems caused by that mutual interfer-
ence for the determination of the Soret effect are outlined in
[24] and result in a different experimental setup for a hori-
zontal layer of a MF which is analyzed theoretically in this
work.
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II. FERROFLUID DYNAMICS: CHEMICAL POTENTIAL
AND MASS FLUX

The macroscopic FFD approach is presented without
magnetodissipation, i.e., the magnetizationM is always par-
allel to the magnetic fieldH, but with dissipative mass fluxes
for the two constituents of the MF. The analysis will result in
an analytical expression for the magnetic part of the chemi-
cal potential and a general expression for the mass flux with-
out any assumption about the properties of the MF and the
temperature distribution.

The principal structure of the ferrofluid dynamics theory
was given in[9]. It is based first on general principles like
symmetry considerations and conservation laws and on irre-
versible thermodynamics. The second independent compo-
nent of which a macroscopic theory is made is the set of
material-dependent parameters like susceptibilities and trans-
port coefficients. The latter can be determined by suitable
experiments which are used here to determine transport co-
efficients for thermodiffusive processes in magnetic fluids in
the presence of magnetic fields.

As usual in theories based on thermodynamical consider-
ations, one starts with the thermodynamic energy densityu.
It is taken as a function of the entropy densitys, the density
rs1d of the magnetic part of the fluid, the momentum density
g=rv, the total densityr, and the magnetic inductionB
=m0sM +Hd [9],

du= Tds+ m̃cdrs1d + vidgi + ms2ddr + HidBi , s2.1d

wherem̃c=m̃s1d−m̃s2d is the difference in the chemical poten-
tials of the two constituents. The conservation laws for the
density of the magnetic and nonmagnetic partrs2d are

]tr
s1d = − ¹isrs1dvi − j i

Dd, s2.2d

]tr
s2d = − ¹isrs2dvi + j i

Dd, s2.3d

where j i
Ds1d=−j i

Ds2d= j i
D was used to ensure the conservation

of the total densityr=rs1d+rs2d=frm+s1−fdrcl. The den-
sity of the magnetic particles(carrier liquid) is denoted byrm
srcld andf is the volume fraction of magnetic particles in the
fluid. The dissipative mass fluxj D is proportional to the gra-
dient of the chemical potential withm̃c=m̃csr ,rs1d ,T,v ,Hd
and the temperature gradient[31]. It is assumed that the
magnetic part of the chemical potential can be separated
[32],

m̃c = mcsr,rs1d,T,vd + mc
msr,rs1d,T,v,Hd. s2.4d

This assumption guarantees a nonzero chemical potential
for H =0 and is confirmed by calculations for MFs with
chains, where the magnetic part contributes additively to
the total chemical potential[33]. The nonmagnetic part of
the chemical potential is given bymc=skBT/mmd ln c1

−skBT/mcld ln c2, wheremm smcld is the mass of a magnetic
(carrier liquid) particle [31].

The experiments[22–24] show thatany nonzero strength
of the magnetic field influences the thermodiffusive pro-
cesses. Thus the general ansatz for the dissipative mass flux
is (following the notation in[9])

j i
D = j1¹iT + j¹im̃c + jiMiMj¹ jm̃c + j3«i jkMj¹km̃c.

s2.5d

Whereas the first two terms characterize isotropic mass
fluxes caused by gradients in the temperature or in the
chemical potential, the last two terms describe anisotropic
mass fluxes, namely, parallel and perpendicular to the direc-
tion of M . The last term corresponds to the one in the analo-
gous ansatz for the heat flux, where the phenomenon is
called the transverse Righi-Leduc effect[31], since the pri-
mary current is perpendicular to the effect produced.

It was emphasized in[9] that the “proliferation of trans-
port coefficients,” i.e.,j→ sj ,ji ,j3d, occurs in the case of
strong magnetic fields. But experiments show that at least for
thermodiffusive processes that general statement seems not
to be true. In the figures in[22–24] with respect to the
changes ofST it is evident that small magnetic fields on the
order of less than 50 kA/m are sufficient to generate effects,
where one can clearly distinguish between a parallel or a
perpendicular orientation between temperature gradient and
field. Therefore the coefficientsji and j3 introduced in[9]
are considered here as nonzero for all magnetic field
strengths.

With the above given dependences of the chemical poten-
tial in Eq. (2.4), its gradient is

¹im̃c =
] m̃c

] r
¹ir +

] m̃c

] rs1d¹ir
s1d +

] m̃c

] T
¹iT +

] m̃c

] v j
¹iv j

+
] mc

m

] Hj
¹iHj . s2.6d

The first expression in Eq.(2.6) will become later the term
for the barodiffusion and can be neglected in an incompress-
ible fluid not subjected to any pressure gradient. For the
fourth and fifth terms we have[28,34]

] m̃c

] v j
= −

] srv jd
] rs1d ; 0, s2.7d

] mc
m

] Hj
= − m0

]

] rs1d sHj + Mjd = − m0
] Mj

] rs1d . s2.8d

The transformationũ=u−v jgj −HjBj was made in order to
match the dependences of the energy density and the chemi-
cal potential and to use the fact that derivatives of quantities
that are independent of each other are zero. From the last
equality the analytical result for the magnetic part of the
chemical potential follows:

mc
m = − m0E

0

H ] M

] rs1ddH8, s2.9d

whereM andH denote the absolute values of the magnetic
field and the magnetization. Equation(2.9) allows a direct
determination ofmc

m if the magnetizationMsH ,rs1d ,Td is
known without any assumption about the properties of the
MF, in contrast to[27,28,33,34]. According to these refer-
ences the determination of the chemical potential needs
knowledge of quantities like the volume concentration of the
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nanoparticles[27,33] or the strength of the magnetodipole
interaction[33] or the effective field experienced by a single
particle in the MF[27,28,34]. Compared with the effort to
evaluate these microscopic details, the advantage of the mac-
roscopic approach of the FFD is apparent. A measurement of
the magnetization as a function of the magnetic field and the
density is sufficient to determine the chemical potential for
any magnetic fluid.

Inserting Eq.(2.6) into Eq. (2.5) and using Eqs.(2.7) and
(2.8) an expression for the mass flux results,

j D

r
= S j1

r
+

j

r

] mc

] T
D ¹ T +

j

r

] mc
m

] T
¹ T +

] m̃c

] T
F ji

r
M sM ¹ Td

+
j3

r
sM 3 ¹ TdG + j

] mc

] rs1d ¹ c1 + j
] mc

m

] rs1d ¹ c1

+
] m̃c

] rs1d fjiM sM ¹ c1d + j3sM 3 ¹ c1dg

−
m0

r

] M

] rs1d fj ¹ H + jiM sM ¹ Hd + j3sM 3 ¹ Hdg,

s2.10d

which is generally valid, independent of the size distribution
of the magnetic particles, concentration inhomogeneities in
the suspension, or the form of the temperature gradient.
Therefore Eq.(2.10) is a generalization of the mass flux
given in [25]. The concentration of the magnetic particles
c1=rs1d /r is defined by means of the mass fraction of the
total densityr [31]. The first four terms describe mass flow
caused by thermophoresiss,¹Td, the second four terms that
by diffusiophoresiss,¹c1d, and the last three that by mag-
netophoresiss,¹Hd. There are two unknown transport co-
efficientsji andj3, since for zero magnetic field Eq.(2.10)
reduces to the classical result[see Eq.(227), Chap. XI in
[31]]

j D

r
= S j1

r
+

j

r

] mc

] T
D ¹ T + j

] mc

] rs1d ¹ c1 = c1c2DT ¹ T + Dc ¹ c1

s2.11d

with sDTd Dc the (thermal) diffusion coefficient known for
MFs from previous experiments[35] andc2=1−c1. Accord-
ing to the philosophy of the FFD approach, the determination
of the unknown transport coefficientsji and j3 needs suit-
able experiments, which were conducted just recently[24].

III. APPLICATION TO EXPERIMENTS AND
DISCUSSION

According to the experiments for a horizontal layer of MF
of thicknessh [24], a horizontally unbounded layer of a di-
electric, viscous, and incompressible MF sandwiched be-
tween two perfectly conducting plates is considered. The
lower plate is cooled toT1 and the upper one is heated toT2.
The resulting temperature gradient stabilizes the quiescent
conductive state. From the equation of heat conduction

] T

] t
= kDT s3.1d

and the boundary conditions

Tsz= h/2d = T2, Tsz= − h/2d = T1, s3.2d

the temperature profile of the conductive state

T = T0 +
sT2 − T1d

h
z s3.3d

follows whereT0=sT1+T2d /2 andk denotes the thermal dif-
fusivity. Since the plates are impenetrable, the diffusion
equation

] c1

] t
= divS j D

r
D s3.4d

has to be supplemented by the boundary condition

jz
Dsz= ± h/2d = 0. s3.5d

Rearranging this boundary condition with the help of Eq.
(2.11),

U − h

c1c2sT2 − T1d
] c1

] z
U

z=±h/2
=

DT

Dc
= ST, s3.6d

the Soret coefficient in the zero field case can be expressed.
In the same way the global Soret coefficient, measured in
[24], in the presence of a magnetic field can be determined
by using Eq.(2.10).

If a spatially homogeneous static magnetic field is applied
perpendicular to the layer, the resulting magnetic field gradi-
ent inside the fluid is parallel to the temperature gradient.
Therefore this setup is called parallel and is analyzed first.

Taking diffusion processes into account, the magnetiza-
tion in the fluid can be written in the form

M = FM0 + xsH − H0d − KsT − T0d +
] M

] f
sf − f0dGez,

s3.7d

whereM0=M0sH0,T0,f0d is the reference magnetization be-
longing to the reference valuesH0, T0, andf0 for the mag-
netic field, the temperature, and the volume fraction. Extend-
ing the expressions given in[18], the magnetization and
magnetic field for the conductive state are

M = M0 +
KsT1 − T2d
hs1 + xd

z+ Nsc1 − c1,0d, s3.8d

H = H0 −
KsT1 − T2d
hs1 + xd

z− Nsc1 − c1,0d, s3.9d

with the susceptibilityx=]M /]H, the pyromagnetic coeffi-
cient K=−]M /]T, the densomagnetic coefficientN
=]M /]c1=sr /rmds]M /]fd, and c1,0=c1sT0d. Inserting Eqs.
(3.8) and (3.9) into Eq. (2.10) and rearranging the boundary
condition(3.5) in the same manner as in the zero field case,
the global Soret coefficient in the parallel setup reads
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ST
i =

ST +
1

c1,0 c2,0 r
F j

Dc

] mc
m

] T
+

ji

Dc

] mc

] T
M2 − m0

] M

] rs1dS j

Dc
+

ji

Dc
M2D K

s1 + xdG
1 +

j

Dc

] mc
m

] rs1d +
ji

Dc

] mc

] rs1d M
2 +

m0

r

] M

] rs1dS j

Dc
+

ji

Dc
M2DN

. s3.10d

Knowing MsH ,rs1d ,Td in analytical form allows one to
calculatemc

m and its derivatives. The measured magnetization
curve (from Fig. 57 in [22]) could be nicely fitted withM
=MblffLsldad, where Lsldad=cothsldad−1/sldad is the
Langevin function,a=m0mH/ skBTd the Langevin parameter,
m=Mbpd3/6 the magnetic moment of a particle, andkB the
Boltzmann constant.ld and lf are two geometrical fit pa-
rameters. They reflect small deviations from the volume frac-
tion f=0.2 and thed-shaped size distribution(Fig. 59 in
[22]). Using ld=0.99, lf=0.84, and the material dataMb
=450 kA/m (magnetization of the magnetic bulk solid), d
=9 nm, rm=5.15 g/cm−3 from [22], the solid line in Fig. 1
shows a very good agreement with the measured magnetiza-
tion s+d. Considering the chosen values forld and lf, only
the volume fractionf had to be adjusted to the measured
data. Variations inf are likely caused by a nonmagnetic
surface layer of the nanoparticles[36] and its solubility in
the carrier liquid. According to the statement at the begin-
ning of this paragraph, one has

mc
m =

lf

ld

Mb kBT

2rmm
hlnfcoth2sldad − 1g + 2 lnsldadj,

s3.11d

from which one can calculate the derivatives with respect to
T andrs1d=frm.

With the pyromagnetic coefficientK taken from Fig. 4 in
[22], there remain the four unknownsST, Dc, j, andji in Eq.
(3.10). To fit ST

i to the experiment, the combined quantities

j /Dc and ji /Dc are used as fit parameters, sinceST
=0.15 K−1 was measured in the zero field case[24] but not
Dc. The solid line in Fig. 2 gives the best two-parameter fit,
yielding j /Dc=8.2 kg s2/m5 and ji /Dc=−1.41
310−7 kg s2/ sm3 A2d. The difference in the absolute values
of about eight orders of magnitude is not surprising, since
one would assume such a relation according to the argument
that anisotropic fluxes in the mass flux(2.5) are relevant only
for strong fields[9]. Inspecting Eq.(3.10) more closely, it is
revealed thatji /Dc is multiplied byM2 which already gives
for small magnetic fields a factor of,106. The two other
terms are not so relevant because 0ø]mc/]T
ø0.016 J/sK kgd and 0ø]mc/]rs1dø0.35 J m3/kg2 for 0
øHø350 kA/m. To underline the relevance ofji /Dc even
for small fields, the dot-dashed line in Fig. 2 displaysST

i for
ji /Dc=0 and all other parameters as before. Now the theo-
retical curve clearly misses the measured datashd. Taking a
typical value for the diffusion coefficient,Dc,10−11 m2/s
[35], the new transport coefficient can be estimated asji ,
−10−18 kg s/sm A2d for the MF in [22,24]. Thus those ex-
periments deliver the necessary input for determining the
material-dependent transport coefficients which area priori
unknown in a macroscopic theory like the FFD. Another ex-
ample for the experimental determination of diffusion and

FIG. 1. Experimental datas+d from Fig. 57 in [22] and theory
(solid line) for the magnetization at room temperatureT=293 K.
The details of the Langevin function used are given in the text.

FIG. 2. Global Soret coefficientsST
i andST

' against the magnetic
field strength for the parallelsH i ¹Td and perpendicular(H' ¹T)
setup. The solid line shows the best fit ofST

i [see Eq.(3.10)] with
j /Dc=8.2 kg s2/m5 and ji /Dc=−1.41310−7 kg s2/ sm3A2d to the
experimental datashd. The dot-dashed line displaysST

i for the same
parameters butji /Dc=0. The dashed line indicates the best fit ofST

'

[see Eq. (3.14)] with j /Dc=8.2 kg s2/m5 and F=3.75
310−2 kg s2/ sm5 Ad to the experimental datasnd. For F and all
other values see text.
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thermodiffusion coefficients is presented in[35], whereas in
[37] these coefficients were calculated on the basis of a mi-
croscopic theory.

In contrast to the parallel setup, in the perpendicular setup
the spatially homogeneous static magnetic field is applied
perpendicular to the temperature gradient, i.e., the magnetic
field is parallel to the layer. The diffusion equation now gets
the form

] c1

] t
=

] m̃

] rs1dFsj + jiM2d
]2c1

] x2 + jS ]2c1

] y2 +
]2c1

] z2 DG .

s3.12d

The boundary condition for thez component of the mass flux
yields

] c1

] z
= −

j'M

j

] c1

] y
−

c1c2DT +
j

r

] mc
m

] T

Dc + j
] mc

m

] rs1d

at z= ± h/2 .

s3.13d

Since no analytical solution for that boundary value problem
is known, the following coarse approximation is made:
s]c1/]ydz=±h/2 will be a constantC for all H values tested
here. The global Soret coefficient in the perpendicular setup
can then be approximated by

ST
' =

h

sT2 − T1dc1c2
F

M

j

Dc

+

ST +
j

Dc

1

c1c2r

] mc
m

] T

1 +
j

Dc

] mc
m

] rs1d

,

s3.14d

whereF=sj'Cd /Dc will be used as the only fit parameter
since j /Dc was determined in the parallel setup. WithT2

−T1=1 K, f=0.2, andh=1 mm [24], the best fit yieldsF
=3.75310−2 kg s2/ sm5 Ad. The inferior match with the ex-
perimental data(seen and dashed line in Fig. 2) in com-
parison with the parallel setup is due to the approximation
that s]c1/]ydz=±h/2 is constant. In a real system it will depend
on the magnetic field since the solution forc1 depends on the
magnetic field.

IV. CONCLUSION

The ferrofluid dynamics theory is applied to thermodiffu-
sive problems in magnetic fluids in the presence of magnetic
fields, where the MF is considered as a binary mixture. In the
framework of this theory the chemical potential could be
determined analytically. Also a general expression for the
mass flux is given which is independent of the fluid proper-
ties, temperature distribution, and assumptions about the
concentration of the nanoparticles. Applying these results to
the experiments[24], their data could be interpreted better
(see Fig. 2) than with the previous theory[25], which gave
values about three orders of magnitude too small. Three
transport coefficients, which are inherent parts of the macro-
scopic ferrofluid dynamics theory[9], had to be used to fit
this theory with the only sets of experiments available at
present. In general, it is shown that for thermodiffusive prob-
lems in magnetic fluids, i.e., in colloidal suspensions sensi-
tive to external fields, anisotropic mass fluxes are relevant
and make non-negligible contributions for any nonzero
strengths of the magnetic field. To elucidate this insight,
more well designed experiments and further theoretical
analyses are needed to improve the knowledge about ther-
modiffusive processes in magnetic fluids.
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