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We report on recent efforts to improve the understanding of the Rosensweig instability in the
linear as well as in the nonlinear regime. In the linear regime we focus on the wavenumber
of maximal growth and the oscillatory decay of metastable magnetic liquid ridges, accessible
via a new pulse technique. We compare the measurements with the predictions of the lin-
ear stability analysis. In the nonlinear regime the fully developed Rosensweig pattern was
successfully estimated by the method of finite elements, taking into account the nonlinear
magnetization law. For a comparison with these results the three-dimensional surface pro-
file is recorded by a radioscopic measurement technique. The bifurcation diagram measured
in this way can be fitted by the roots of an amplitude equation. Eventually we investigate
ferrosolitons, which were recently uncovered in the bistability interval of the Rosensweig
instability.
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1 Introduction

The formation of static liquid mountains, floating on the free surface of a magnetic fluid (MF),
when subjected to a vertical magnetic field is a fascinating phenomenon, as shown in Fig. 1.
This is mainly because it is at the first glance counterintuitively: the new surface profile has
an increased surface- and hydrostatic energy. However, this can be understood, by taking into
account all contributing energies. A horizontal layer of MF in a vertically applied magnetic
induction B is characterized by the energy density [1, 2]:

F [h(x, y)] =
ρg

2
h2(x, y) −

∫ h

0

dzB
µr − 1

2
HMF(x, y, z)

+σ
√

1 + (∂xh(x, y))2 + (∂yh(x, y))2. (1)
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172 A. Lange et al.: Linear and nonlinear approach to the Rosensweig instability

Fig. 1 Peaks of magnetic fluid at a supercritical induction B > Bc in a Teflon� vessel with a diameter
of 12 cm. Picture taken at Universität Bayreuth by B. Reimann.

Here ρ and σ are the density and surface tension of the MF, h(x, y) the local height of the
liquid layer, and HMF(x, y, z) is the magnetic field in the presence of the MF. The three
terms in Eq. (1) represent the hydrostatic, magnetic and surface energy, respectively. As the
surface profile deviates from the flat reference state, the first and last term grow whereas the
magnetic energy decreases. For sufficiently large B > Bc, this gives rise to the normal field,
or Rosensweig, instability [3, 4]. By minimizing the energy funcional of Eq. (1) the following
amplitude equation can be derived [2]

εA + γ(1 + ε)A2 − gA3 = 0, (2)

where ε = (B2 − B2
c )/B2

c is the bifurcation parameter, and γ, g are scaling parameters.
The solutions of Eq. (2) are scetched in Fig.2(a). The stable branch characterizes a subcrit-

ical bifurcation to hexagons. In addition there are two unstable solutions which are connected
to ridges and squares. Due to the subcriticality of the stable branch a quantitative description
of the Rosensweig instability is a non-trivial task, both in experiment and theory:

A linear description of the Rosensweig instability is amenable in theory, but restricted to
small amplitudes. In experiments they can be observed only for a very short time, during the
increase of the pattern, because of the supercritical bifurcation. Thus a new pulse technique,
scetched in Fig.2(b), has been developed and applied. Section 2 is devoted to the theory and
experiments of the wavenumber of maximal growth and to the decay of metastable patterns
within the linear regime.

A nonlinear description of the instability is necessary, in order to estimate the shape of
the spikes and to determine what particular final pattern (hexagons, squares) occurs due to the
complex nonlinear interactions. Despite some recent progress [2, 6] the theoretical description
is still restricted to small relative permeabilities (µr < 1.4) and a linear magnetization law.
Thus a full numerical approach to the nonlinear problem, based on the finite element method is
most welcome, as presented in section 3.1. For a comparison with experiments it is important
that this method is capable to take into account the nonlinear magnetization law. From an
experimental point of view, the nonlinear properties are difficult to access because the dark
and steep patterns are an obstacle for standard optical measurement techniques. Thus we
utilize the absorption of x-rays, in order to record the full surface profile and the bifurcation
diagram. In addition we present in 3.2 newly detected solitary surface patterns within the
bistable regime of the Rosensweig instability.
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Fig. 2 Scheme of the bifurcation diagram in the vicinity of the bifurcation point Bc, as predicted by [1]
and [2]. Figure (a) illustrates an adiabatic change of the control parameter B, (b) the consequences of a
jump-like increase. From Ref. [5].

2 Linear pattern formation

Most experimentalists were following the pioneers [3] by varying the magnetic induction in
a quasi static manner. By moving on the hysteretic path, sketched in Fig. 2(a), they were
focusing on the nature of the stable pattern in the nonlinear regime [7, 8]. The wavenumber
observed in this way was found to be independent from the strength of the supercritical induc-
tion [3, 7, 9]. Unfortunately this result had been compared with the predictions of the linear
theory [10]. However, the final stable pattern, resulting from nonlinear interactions, does not
generally correspond to the most unstable linear pattern. For a successful comparison with
the predictions of the linear theory [11, 12], not fully developed rigdes of small amplitude
are suitable. In accordance with the bifurcation diagram, they are the first metastable pattern
which emerge after a jump-like increase of the induction, as sketched in Fig. 2(b). In this
way different aspects of the linear part of the pattern forming process are studied experimen-
tally as well as theoretically, allowing a quantitative comparison of the corresponding results
(Sect. 2.2 and 2.3).

2.1 System and basic equations

A horizontally unbounded layer of an incompressible, nonconducting, and viscous magnetic
fluid of thickness h and constant density ρ is considered. The fluid is bounded from below by
the bottom of a container made of a magnetically impermeable material and has a free surface
with air above. The electrically insulating fluid justifies the stationary form of the Maxwell
equations, which reduce to the Laplace equation for the magnetic potentials in the region of
the container, the magnetic fluid, and the air. It is assumed that the magnetization M of the
magnetic fluid depends linearly on the applied magnetic field H, M = (µr − 1)H, where µr

is the relative permeability of the fluid.
In a linear stability analysis, all small disturbances from the basic state are decomposed

into normal modes, i.e., into components of the form exp[−i(ω t − q r)], where r = (x, y)
and the wave number is the absolute value of the wave vector, q = |q|. With ω = ω1 + iω2,
the real part of −iω, ω2, is called the growth rate und defines whether the disturbances will
grow (ω2 > 0) or decay (ω2 < 0). The absolute value of the imaginary part of −iω, |ω1|,
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gives the angular frequency of the oscillations if it is different form zero. The linear stability
analysis leads to the dispersion relation [13, 14, 15]

0 =
ν2

q̃ coth(q̃h) − q coth(qh)

{
q̃
[
4q4 + (q2 + q̃2)2

]
coth(q̃h) − q

[
4q2q̃2 +

+(q2 + q̃2)2
]
tanh(qh) − 4q2q̃(q2 + q̃2)

cosh(qh) sinh(q̃h)

}

+ tanh(qh)

[
gq +

σ

ρ
q3 − µ0µrM

2

ρ
Λ(qh) q2

]
, (3)

where ν is the kinematic viscosity, M the absolute value of the magnetisation, g = (0, 0,−g)

the acceleration due to gravity, µ0 the permeability of free space, q̃ =
√

q2 − iω/ν, and
Λ(qh) = [eqh(1 + µr) + e−qh(1 − µr)]/[eqh(1 + µr)

2 − e−qh(1 − µr)
2]. The condition of

marginal stability, ω = 0, defines the critical quantities at which the Rosensweig instability
occurs. In the limit of an infinitely thick (h → ∞) layer the critical induction and the wave
number, respectively, are

B2
c,∞ =

2µ0 µr(µr + 1)
√

ρ σ g

(µr − 1)2
qc =

√
ρ g

σ
. (4)

These critical values for the onset of the instability apply for viscous as well as for inviscid
magnetic fluids.

2.2 Growing ridges

Generally it is assumed that in the linear stage of the pattern forming process the wave number
with the largest growth rate will prevail. Therefore this mode is called linearly most unstable
mode. Due to its role in the pattern formation it is of particular interest to examine the wave
number of maximal growth, qm, and its dependence on the different parameters as supercriti-
cal induction and viscosity.

For a general analysis it is advantageous to consider the dimensionless form (indicated
by the bar) of the dispersion relation (3) in the limit h → ∞ for growing disturbances, i.e.
ω = iω2 with ω2 > 0,

(
ν̄ +

ω̄2

2q̄ 2

)2

+
q̄ + q̄ 3 − 2B̄2q̄ 2

4q̄ 4
− ν̄2

√
1 +

ω̄2

ν̄ q̄ 2
= 0 . (5)

All lengths were scaled with [σ/(ρ g)]1/2, the time with σ1/4/(g3/4ρ1/4), the viscosity with
σ3/4/(g1/4ρ3/4), and the induction with Bc,∞. The solution of Eq. (5) for three different
supercritical inductions is shown in Fig. 3(a). One can clearly see that the maximum of the
curves, given by q̄m and ω̄2,m, is increasing monotonously with the induction B̄. The wave
number of maximal growth, defined by ∂ω̄2/∂q̄ = 0, is a monotonously increasing quantity
for increasing fields and all viscosities with the exception of the limit ν̄ → ∞ [Fig. 3(b)]. The
change of q̄m for a fixed difference of the supercritical induction is largest for inviscid MFs
[see upper dot-dashed line in Fig. 3(b)] and shrinks with increasing viscosity. For low viscous
MFs, q̄m depends linearly on B̄ as long as B̄ is not too large. The main result of Fig. 3(b) is
that for a quantitative analysis of real MFs, represented here by ν̄ = 0.037, the description
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Fig. 3 (a) Positive growth rate −iω̄ = ω̄2 as function of the wave number q̄ for ν̄ = 0.037, typically for
MFs in experiments [16]. (b) Maximal wave number q̄m as a function of the supercritical induction B̄
for different viscosities. q̄m is a monotonously increasing function of B̄ with the exception q̄m = 1 [10]
in the case of infinitely large viscosities (lower dot-dashed line). In the limit of an inviscid fluid (upper

dot-dashed line) the dependence of q̄m on B̄ is given by q̄m = (1/3)
“
2B̄2 +

p
4B̄4 − 3

”
[14].
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Fig. 4 Scheme of the experimental setup.

by the limit cases is insufficient. For a qualitative analysis, the limit ν̄ → 0 gives the correct
trend.

In order to test these predictions, we are measureing the wavenumber of maximal growth
with the setup shown in Fig. 4. A cylindrical Teflon� vessel with the radius 60 mm and depth
of 2 mm is filled with MF up to the brim and positioned in the center of a pair of Helmholtz
coils. The MF is illuminated from above by a ring of LEDs placed above the surface. A CCD
camera is mounted in the center of the ring. In this way only an inclined surface of proper
angle will reflect light into the camera lens, but a flat fluid surface reflects no light in this
direction. In the theory the supercritical magnetic field is assumed to be instantly increased.
In the experiment a jump-like increase could be realized within 80 ms, by utilizing a thyristor
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controlled amplifier (fug Elektronik GmbH). This is much shorter than the viscous time scale
of 450 ms. For details see Ref. [11].

(b)(a) (c)

Fig. 5 Three snapshots of the principal pattern evolution on the MF for a jump-like increase towards a
supercritical induction. The pictures are taken ∆t = 180 ms (a), 280 ms (b), 560 ms (c) after the start
of the increase of the magnetic field. Pictures from Ref. [11].

Figure 5(a) shows circular surface deformations taken ∆t = 180 ms after the start of the
experiment. These surface deformations are first created at the edge of the dish, because
of the discontinuity of the magnetic induction induced by the finite size of the container.
With increasing time more circular deformations evolve, approaching the centre of the dish
[see Fig. 5(a)]. Onto this pattern, Rosensweig peaks emerge out of the crests of the circular
surface deformation, as can be seen in Fig. 5(b). After this transient concentric arrangement,
a hexagonal pattern of Rosensweig peaks evolves [see Fig. 5(c)].

The wave number of the concentric deformed region in Fig. 5(a) is determined from the
experiment (for details see [11]) and compared with the theoretical calculation of the wave
number with maximal growth. For the calculations we used a layer thickness of h = 2 mm
and the material parameters of the magnetic fluid EMG 909, namely ρ = 1.02 · 103 kg m−3,
ν = 5.88 · 10−6 m2 s−1, σ = 2.65 · 10−2 kg s−2, µr = 1.8, (dashed line in Fig. 6). The
comparison with the experimental data (open squares) shows that the correct linear slope
starting at the critical wave number qc is reproduced, but the critical induction is too large.
Since qc depends on the fluid density and the surface tension [see Eq. (4)] and the viscosity
does not influence the critical quantities, the relative permeability µr is the only remaining fit
parameter. Using µr � 1.85 (solid line), a rather good agreement between the experimental
results and the theoretical graph is achieved. The fitted value for µr differs by 2.8% from
the value given by the producer, a deviation which is well within the tolerance specified by
producer. In this way, the most unstable linear pattern could be detected in the experiment and
the theoretically predicted linear dependence of qm on the magnetic induction was confirmed.

2.3 Decaying ridges

In this section we are studying the fate of the linear most unstable pattern when switching to a
subcritical induction. Particularly, the oscillatory decay of magnetic liquid ridges [11] towards
a flat surface is observed. It turns out that the oscillation frequency and the propagation veloc-
ity of the decaying pattern depends sensitively on the subcritical magnetic induction. When
approaching the bifurcation point Bc from below, a dramatic decrease of both observable can
be measured.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 30, No. 1 (2007) 177

Fig. 6 Plot of the wave number q versus the magnetic induction B. The open squares give the exper-
imental values, the dashed line displays the theoretical results for the material parameters of EMG 909
(see text). Using µr as a fit parameter gives the solid line. From Ref. [11].

Fig. 7 Pulse sequence of the preparation of the liquid ridges. The small letters a, b, and c mark the
times when the pictures of Fig. 8 were taken. From Ref. [12].

In order to prepare a state of unstable liquid ridges, the magnetic induction has to be
switched in a jump-like manner to a supercritical value Bsup, as sketched in Fig. 7. Be-
fore they start to develop into the hexagonal arrangement of peaks, the induction is switched
back to a subcritical value Bsub (see Fig. 7). Now the liquid ridges decay in an oscillatory
manner. Figure 8 shows half of such an oscillation period. The oscillation starts with a pattern
of concentric liquid ridges, as presented in Fig. 8(a). Figure 8(b) shows the approximately flat
surface after a quarter of the period. The liquid ridges after half of the period are displayed in
Fig. 8(c).
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Fig. 8 Initial pattern of liquid ridges (a), approximately flat surface after a quarter of the oscillation
period (b), and liquid ridges after half of the oscillation period (c).

From these pictures the oscillation frequency and the propagation velocity were extracted
(for details see [12]). The square of the oscillation period as a function of the magnetic
induction is shown in Fig. 9(a). Starting with a jump to the supercritical induction Bsup = 18
mT, the oscillation period was measured for 12 different values of the subcritical induction.
The measured data are denoted in Fig. 9(a) by open circles. The error bars are estimated
from seven independent measurements. The data proof a square root like dependence from
the induction, and are well described by the theory (solid line). A second measurement series
has been performed for Bsup = 17.5 mT. In this way a pattern of liquid ridges with a smaller
wave number has been prepared. The data for these oscillation frequencies are marked in
Fig. 9(a) by open squares. Again a good agreement between experimental data and theory
is found. In a certain range of the vessel we observe propagating waves. The propagation

Fig. 9 (a) Square of the oscillation frequency of the liquid ridges versus the subcritical magnetic in-
duction. The open circles (squares) denote the measured data obtained after a pulse of Bsup = 18 mT
(17.5 mT), respectively. A layer thickness of 3 mm was used. The solid (dashed) lines give the theoret-
ical results for a viscous (inviscid) MF, respectively. (b) Square of the propagation velocity versus the
subcritical magnetic induction. A preparing pulse of Bsup = 18 mT and a layer thickness of 2 mm were
used. The dashes line gives the best two-parameter fit for µr = 1.98 and h = 1.15. From Ref. [12].

velocity has been extracted from the recorded pictures, as reported in Ref. [12]. In Fig. 9(b),
the square of the propagation velocity is denoted by open squares and has been plotted versus
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the subcritical induction. The data proof a square-root like scaling behaviour for a full decade
of the velocity. In comparison with Fig. 9(a), this dependency could be corroborated even in
the immediate vicinity of the bifurcation point. The dashed line gives the best two-parameter
fit, yielding µr = 1.98 and h = 1.15.

According to the experimental procedure, the solution of the dispersion relation (3) for
a supercritical induction has to be determined in order to calculate qm, the wave number
with maximal growth. Afterwards one has to solve the dispersion relation for a subcritical
induction at that qm which gives the relevant solution ω(qm) = ω1(qm) + iω2(qm) for the
comparison with the experiment. Knowing ω1(qm), the frequency of the oscillation is given
by f = |ω1|/(2π) and the experimentally measured propagation velocity by v = |ω1|/qm,
respectively. The results of these calculations produce the theoretical graphs plotted in Fig. 9.

3 Nonlinear pattern formation

This paragraph is devoted to new numerical and experimental approaches to the fully devel-
oped patterns. We start with the numerics.

3.1 Numerical approach

First we scetch the basic equations, next we focus on the boundary conditions together with
modeling aspects, eventually we discuss results for static and dynamic surface profiles.

3.1.1 System and basic equations

The Maxwell equations for a nonconducting fluid are given by

curl H = 0, div B = 0 in R
3, (6)

with the magnetic field strength H and the magnetic induction B satisfying the constitutive
relation

B =

{
µ0(M + H) in Ωf (t),

µ0H outside Ωf (t),

where Ωf (t) is the time-dependent subdomain of R
3 filled with the magnetic fluid at time

t. The magnetization M is assumed to be parallel to the magnetic field and to follow the
Langevin law,

M = |M| = Ms

(
coth(γ|H|) − 1

γ|H|
)

H

|H| ,

with the saturation magnetization Ms, the Langevin parameter γ = 3χ0/Ms, and the initial
susceptibility χ0. As usual, instead of solving (6) numerically, we look for a magnetostatic
potenial ϕ with H = −∇ϕ satisfying a nonlinear elliptic equation of the form

−div (µ(x, |∇ϕ|)∇ϕ) = 0. (7)

Note that the different magnetic properties of the magnetic fluid and the surrounding air causes
a discontinuity of µ(·, |∇ϕ|) across the interface between fluid and air which has to be taken
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into account in designing an accurate numerical method. The hydrodynamic behaviour is
described by the incompressible Navier-Stokes equations,

ρ (u + (u · ∇)u) = div T(u, p,H) + f in Ωf (t) , (8)

div u = 0 in Ωf (t) , (9)

where T(u, p,H) is the stress tensor with

T(u, p,H) = η
(∇u + ∇uT

) − (
p +

µ0

2
|H|2

)
+ BH .

Here, η denotes the dynamic viscosity, u the velocity, and p the pressure. The coupled system
of partial differential equations has to be completed by appropriate boundary conditions, in
particular the force balance and the kinematic condition at the free surface Γf (t), i.e.,

[T · n] = σKn, u · n = VΓ, on Γf (t)

with the surface tension σ, the unit outer normal vector n, the curvature of the free surface
K = div n, and the normal velocity VΓ of the free surface Γf . Often the air flow around the
MF is neglected such that the force balance on the free surface simplifies to

σK = [n · T · n] ≈ −2ηn · D(u)n + p − p0 +
µ0

2
(M · n)2 , (10)

(I − n ⊗ n) · D(u)n = 0 , (11)

where D(u) denotes the velocity deformation tensor given by

D(u)ij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
i, j = 1, . . . , 3,

I − n ⊗ n the perpendicular projection into the tangential plane to the interface, p0 the outer
atmospheric pressure, and I the unit tensor.

3.1.2 Boundary conditions and modeling aspects

In the numerical study of surface instabilities it would be desirable to restrict the computa-
tional domain to the region of the magnetic fluid. However, we do not know the boundary
conditions for the magnetostatic potential at the interface. Thus, we have to determine the
potential inside and outside of the MF region by a discretization method, e.g. a finite element
method. For this we need a finite computational domain. In case of the Rosensweig instabil-
ity we can consider two different situations of an incompressible, nonconducting, and viscous
fluid:

• a horizontally unbounded layer of infinite or finite thickness or

• a finite volume in a container.

The first case is closer to the theoretical setup of linear and nonlinear stability analysis
whereas the second one mimics better the experimental setup. Let us discuss the first case.
Taking into consideration that the applied field is perturbed by the pattern only locally in
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a neighbourhood of the interface we can use in a sufficiently large distance z = z±∞ the
boundary conditions for the undistorted case. For bounding the computational domain in the
x − y plane we consider only one cell of an developed pattern and use the corresponding
wavelength as a characteristic length scale for the dimensionless computation. This approach
has been successfully applied in [17, 18]. However, in this way it is impossible to find the
preferred pattern, like hexagons, squares, or the newly observed solitons (see section 3.2 and
Ref. [19]), respectively. The dynamics of growing ridges, as studied in section 2.2, can also
not be handled in such a framework.

In the case of a finite volume in a container a combined finite element/ boundary element
(BEM/FEM) approach can be applied for the calculation of the magnetostatic potential. The
far field boundary conditions of the external field can be directly used in the BEM and non-
linear magnetization laws are taken into consideration by the FEM. For the study of shape
deformation of a single axisymmetric droplet this technique has been used in [20]. However,
the structure of developed pattern in the Rosensweig instability needs a much higher resolu-
tion of the computational domain and the use of adaptivity concepts seems to be compulsory.

3.1.3 Static and dynamic case

In the static case the magnetic fluid is in rest, u = 0, and the Navier-Stokes equation (for the
unknown pressure) can be solved analytically. Using this in (10) we get

σK + ρgz = µ0

∫ H

0

M(H ′)dH ′ +
µ0

2
(M · n)2 − p0. (12)

Thus, in the static case it remains to solve the coupled system (7), (12), which means we
solve the magnetostatic potential for a given domain, calculate the magnetic forces on the free
boundary, and use (12) to determine a new update for the domain. For this a parametrization of
the free surface is needed. The 2d axisymmetric case in a parametric setting has been studied
in [17], for the full 3d case and surfaces of graph type see [18]. From an algorithmic point
of view, the big challenge in this approach is the coupling of 3d field calculations with the 2d
free surface equation (12) on one cell of the developed pattern. In Fig. 10 the height of the
peak over the magnetic fieldstrength for a magnetic liquid with relatively small permeability
of µr = 1.9 is shown. Note that also the relatively small hysteresis effect, characteristic for
the weak permeability, can be resolved.

The convergence of the iterative procedure has been established only numerically, it may
depend from the initial shape of the unknown interface. Thus, there is some hope to calculate
a single soliton by this approach over a larger domain which covers a multiple of one wave
length.

Most experimentially observed phenomena of pattern formation concern the dynamic case
in which the solution of the 3d Navier-Stokes equations in a time-dependent domain is needed.
Now, the equations (8) and (9) are solved under the boundary conditions (10) and (11). The
kinematic condition is used to find the new position of the free surface, as a consequence
the nonstandard coupling of 2d/ 3d problems can be circumvented. In [21] for a single cell
of an developed hexagonal pattern the dynamic into the equilibrium state is studied. It is
numerically shown that the height of the peak converges if the time goes to infinity to the
height of the peak of the corresponding static cases. Since both calculations are based on
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Fig. 10 Hysteresis behaviour for the magnetic fluid APG512a. The open circles (stars) mark the results
for increasing (decreasing) the magnetic induction, respectively. From Ref. [18].

completely different algorithmic approaches this result is promising and gives hope for the
dynamic simulation of more complicated pattern formation phenomena in the future.

3.2 Experiment

The fully developed crests of the Rosensweig pattern are much to steep to be recorded with
the standard optical shadowgraphy, as used in Ref. [22] for shallow surface waves. The
straightforward technique, namely the lateral observation, is only possible for zero- or one-
dimensional systems [7, 23]. However, there the true profile is distorted by the meniscus at
the container edges and by the field gradient induced by them. Thus we have developed a
radioscopic technique which is capable to record the full surface relief with a resolution of
abot 10 µm in the center of the vessel [24]. The experimental setup is sketched in Fig. 11(a).
A Teflon� vessel with the radius of 60 mm and depth of 3 mm [12] is filled with MF up to
the brim and placed on the common axis midway between two Helmholtz coils. An x-ray
tube is mounted above the center of the vessel at a distance of 1606 mm. The radiation trans-
mitted through the fluid layer and the bottom of the vessel is recorded by an x-ray sensitive
photodiode array detector (16 bit). The full surface relief, as presented in Fig. 11(b) is then
reconstructed from the calibrated radioscopic images. The experiments were performed with
the magnetic fluid EMG 901 from Ferrotec. Its material parameters have been measured to
µr = 3.2, ρ = 1.406 g cm−3, and σ = 25 ± 0.7 mN/m.

We measured the top-to-bottom amplitude A of the fluid pattern in the center of the vessel.
Figure 12(a) displays the hysteretic behaviour of A(B) for the adiabatic increase and decrease
of B, depicted by crosses and dots, respectively. The solid and dashed lines display a fit to the
roots of the amplitude equation (2), which is convincing. In comparison with the numerical
results, presented in Fig. 10, we find an extended hysteretic range of about 1 mT. This is due
to the higher permeability selected intentionally for the above experiments. Measurements for
the fluid of Fig. 10, which allow a direct comparison are conducted in Ref. [25].
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Fig. 11 Measureing the surface relief via radioscopy: (a) principle of the experimental setup (b) recon-
structed surface relief. The height lines have a width of 1 mm. From Ref. [19].

Here we have realized a large hysteretic regime in order to investigate the stability of the
flat surface against local perturbations within this regime. For that purpose a small air coil
was placed under the center of the vessel, as depicted in Fig. 11(a). This allows to increase,
locally, the magnetic induction. A local pulse of B+ = 0.68mT added to the uniform field of
B = 8.91mT, produces a single stationary spike of fluid, surrounded by a circular dip, which
does not disperse after B+ has been turned off. The inset of Fig. 12(a) gives a picture of this
radially-symmetric state which will be referred to as the soliton. A movie demonstrating the
birth of these solitons can be accessed at Ref. [26]. The range of stability of a soliton is
limited to the hysteretic regime, as marked in Fig. 12(a) by full squares and full circles.

The soliton is a stable nondecaying structure; it remained intact for days. In contrast to
previously detected dissipative 2d-solitons, like oscillons [27], it is a static object without any
dissipation of energy. Thus the stabilization mechanism discussed for dissipative 2d-solitons,
a balance of dissipation versus nonlinearity, can not be valid here. In order to shed some light

Fig. 12 (a) The amplitude of the pattern versus the magnetic induction. The crosses (dots) mark the
values for increasing (decreasing) induction respectively. The solid (dashed) lines display the least
square fit to the roots A± = [γ(1 + ε) ±

p
γ2(1 + ε)2 + 4 εg]/(2g), of the amplitude equation (2)

with γ = 0.281 and g = 0.062. The full circles (squares) give the amplitude of the localized spike
initiated at B = 8.91mT for increasing (decreasing) induction respectively. (b) Hight profiles for one
periode of the hexagonal pattern (filled squares), and for two different solitons (marked by open symbols
and a dashed line). From Ref. [19].
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at its mechanism of stabilization we compare in Fig. 12(b) the azimuthally averaged hight
profile of solitons with the one of regular Rosensweig peaks. In agreement with Fig. 12(a)
the soliton is about 1 mm taller than the spike of the lattice. This may be attributed to the
fact, that the spikes emerge simultaneously, and thus have to share the liquid available. Most
importantly, the width of the soliton is equal to the period of the lattice. Therefore there
is a preferred wavelength in the system, defined by the lattice, and the soliton locks to this
wavelength. Utilizing a conservative analogue of the Swift-Hohenberg equation we have been
able to show in Ref. [19] that this width locking is the central part of the solitons stabilization
mechanism.

To conclude, we have demonstrated, that a quantitative comparsion of results generated by
clean experiments, suitable numerical simulations and the analytical theory, opens a way for
a deeper understanding of the physical phenomena in surface instabilities.
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[24] R. Richter and J. Bläsing, Rev. Sci. Instrum. 72, 1729 (2001).
[25] C. Gollwitzer, G. Matthies, R. Richter, I. Rehberg, and L. Tobiska, J. Fluid Mech. 571, 455 (2007).
[26] D. Castellvecchi, Physical Review Focus, http://focus.aps.org/story/v15/st18 , (2005).
[27] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature (London) 382, 793 (1996).

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


