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Thermal convection of magnetic fluids in a

cylindrical geometry
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Abstract

The thermal convection in a layer of magnetic fluid confined in a two-dimensional cylindrical geometry is studied.

The critical external induction for the onset of thermal convection is determined for dilute and non-dilute magnetic

fluids. The detected difference between both thresholds allows to test experimentally whether a test fluid is a dilute one

or not.
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1. Introduction

Thermal convection in magnetic fluids (MFs) is

typically studied in a geometry of a horizontally

extended layer which is simultaneously subjected to a

vertical temperature gradient and a vertical magnetic

field [1,2]. The analysis of a cylindrical geometry is

motivated by a recently observed novel convective

instability. In Refs. [3,4] a horizontal layer of MF

between two glass plates is locally heated by a focused

laser beam. The beam passes perpendicularly through

the layer in the presence of a homogeneous vertical

magnetic field. The absorption of the light by the fluid

generates a temperature gradient and subsequently a

refractive index gradient which enhances the beam

divergence. As a result, a stationary diffraction pattern

of concentric rings is observed for zero magnetic field.

Above a certain threshold of the magnetic field, the

circular rings are replaced by polygonally shaped

patterns. These patterns are interpreted as ‘fingerprints’

of vertical convection columns [4].

2. Model

If one assumes that the experimental temperature

distribution is purely axis-symmetrical and that the

influence of the upper and lower boundaries is rather

small, the setup can be modeled by the two-dimensional

configuration of two concentric rings. The inner ring of

radius R1 has the temperature T1 and the outer ring of

radius R2 is held at the temperature T0oT1: The whole

system is subjected to a homogeneous vertical magnetic

field, where the susceptibility of the MF between the

rings is matched with that of the ring material. The

susceptibility of the MF is given by w ¼ wLð1þ bwLÞ;
where wL is the susceptibility according to Langevins

theory. The coefficient of the quadratic term was

determined in different microscopic models which all

provide the same value b ¼ 1
3
:

The system is governed by the equation of continuity,

the Navier–Stokes equations, and the equation of heat

conduction for the MF which are in nondimensional

form

div %v ¼ 0; ð1Þ

q%v

qt
þ ð%v gradÞ%v ¼ Pð�grad %pþ D%vÞ

þM
w2Lf1þ b½3wLð1þ bwLÞ � 1�g

ð1þ wÞ3
grad %T

%T
; ð2Þ
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q %T

qt
þ ð%v gradÞ %T ¼ D %T; ð3Þ

where the Prandtl number P ¼ n=k characterizes the

fluid and the magnetization number M ¼ B2
extðR2 �

R1Þ
2=ðm0rk

2Þ tunes the external excitation. Denoting n as

kinematic viscosity, the velocity v ¼ ðu; nÞ is scaled with

k=ðR2 � R1Þ; time with ðR2 � R1Þ
2=k; temperature with

ðT1 � T0Þ; and pressure p with rkn=ðR2 � R1Þ
2: D and

grad are the corresponding differential operators in the

plane cylindrical coordinates %r and f: Rigid boundary

conditions are assumed for the velocity at the inner and

outer radius, %u ¼ q%r %u ¼ 0 at %r ¼ Z=ð1� ZÞ and %r ¼

1=ð1� ZÞ; where the radii ratio is given by Z ¼ R1=R2:
The temperature is assumed to be constant at each

boundary, %Tð%r ¼ Z=ð1� ZÞÞ ¼ %T1 and %Tð%r ¼

1=ð1� ZÞÞ ¼ %T0:
The particular form of the Kelvin force density (last

term in Eq. (2)) and the disregard of diffusion phenom-

ena are debated in Ref. [5]. Since the Kelvin force is the

only destabilizing force present in the system, one has to

determine which profile leads to a potentially unstable

stratification in the fluid. For heating at the inner radius,

the r-component of the Kelvin force density has to act

inwards and its absolute value has to increase with

increasing distance from the origin. These restrictions

have to be fulfilled by the quiescent conductive state

which is given by %vG ¼ 0 and %TG ¼ %T0 þ ð %T1 �
%T0Þ ln½%rð1� ZÞ�=ln Z: Applying the above condition to

the Kelvin force density in Eq. (2) entails that the radii

ratio Z has to be larger than the critical value Zc ¼
%T0= %T1: For realistic temperatures T1 above a room

temperature of T0 ¼ 300K, this condition is met only in

a narrow gap (see Fig. 1). Therefore, terms as q%rðq%r þ

1=%rÞ are approximated by q
2
%r and the new variable z ¼

%r� Z=ð1� ZÞ is introduced.

3. Results and discussion

In the frame of a linear stability analysis, all small

disturbances from the ground state are decomposed into

normal modes, i.e. into components of the form

½ %u; %p; %T� ¼ en%t cosðlfÞ½ %uðzÞ; %pðzÞ; %TðzÞ� and %v ¼

en%t sinðlfÞ%vðzÞ; respectively. The nondimensional growth

rate is denoted by n and l is the azimuthal wave number.

For marginal stability, n 
 0; the resulting differential

equation for the temperature %T and the %r-component of

the velocity, %u; are

q
2

qz2
� a2

� �2

%u�
a2

l2
q
2

qz2
� a2

� �

%u ¼ �a2
M

P
fw

%T

%T2
G

q %TG

qz
; ð4Þ

q
2

qz2
� a2

� �

%T ¼ %uð %T0 � %T1Þ; ð5Þ

where

a ¼ ð1� ZÞl=Z

and

fw ¼ w2L½6b
2w3Lð1þ bwLÞ þ 4w2Lbð1� 4bÞ

þ wLð1� 10bÞ þ 2b� 2�=ð1þ wÞ4:

Eq. (5) can be solved analytically, whereas Eq. (4) can

only be approximately solved by the Galerkin method

(for details see Ref. [6]). For the calculations fluid

parameters of EMG 901 are used: r ¼ 1:53�
103 kgm�3; n ¼ 6:54� 1026 m2 s–1, wL ¼ 3; and

k ¼ 4:2� 1028 m2 s–1. The temperature at the outer

radius of R2 ¼ 5 cm is fixed at T0 ¼ 300K. The inner

radius is given by Z ¼ 1:01Zc: With these data the critical
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Fig. 1. Region of potentially unstable and stable force profiles

for a fixed outer temperature of T0 ¼ 300K.
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Fig. 2. Critical external induction Bc versus inner temperature

T1 for a room temperature of T0 ¼ 300K. The inclusion of a

quadratic term in the susceptibility with b ¼ 1
3
(solid line) results

in a lower threshold for the onset of convection than in the

dilute case, b ¼ 0 (long-dashed line). Fluid parameters of the

magnetic fluid EMG 901 (see text) were used.
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external induction Bc is calculated in dependence of the

inner temperature T1 (Fig. 2).

Decreasing the temperature difference from DT ¼ 70

to 4K causes a dramatic increase in the critical

induction of about three orders of magnitude. With

decreasing temperature difference the critical radii ratio

grows, i.e. the allowed gap becomes more narrow. Since

the convection rolls prefer the same length scale in r and

f-direction, much more rolls have to be driven in a very

small gap. The energy for this effort comes from the

external induction which is why it amplifies drastically

for small DT (Fig. 2).

The inclusion of a quadratic term in the susceptibility

with b ¼ 1
3
results in a lower threshold for the onset of

convection than in the dilute case, b ¼ 0 (Fig. 2). The

difference between the thresholds is nearly the same

value, Bcðb ¼ 1
3
ÞC0:63Bcðb ¼ 0Þ; for all tested tempera-

tures 304KpT1p370K. This clear and measurable

difference opens a very good opportunity to decide

whether a test sample is a dilute fluid or not. Just by

measuring the threshold for the onset of convection in

the proposed model system the answer can be given.
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