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A linear stability analysis of the free surface of a horizontally unbounded ferrofluid layer of arbitrary depth
subjected to vertical vibrations and a horizontal magnetic field is performed. A nonmonotonic dependence of
the stability threshold on the magnetic field is found at high frequencies of the vibrations. The reasons for the
decrease of the critical acceleration amplitude caused by a horizontal magnetic field are discussed. It is
revealed that the magnetic field can be used to select the first unstable pattern of Faraday waves. In particular,
a rhombic pattern as a superposition of two different oblique rolls can occur. A scaling law is presented which
maps all data into one graph for the tested range of viscosities, frequencies, magnetic fields, and layer thick-
nesses.
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I. INTRODUCTION

The Faraday instability denotes the parametric generation
of standing waves on the free surface of a fluid subjected to
vertical vibrations. The study of this phenomenon dates back
to the observations by Faraday in 1831 @1#. The initially flat
free surface of the fluid becomes unstable at a certain inten-
sity of the vertical vibrations of the whole system. As a result
of the instability, a pattern of standing waves is formed at the
fluid surface. The typical response is subharmonic, i.e., the
wave frequency is half the frequency of the excitation. The
harmonic response can be observed on a shallow fluid at low
frequencies @2#. Faraday waves allow one to investigate sym-
metry breaking phenomena in a spatially extended nonlinear
system. Therefore they experienced a renewed interest in re-
cent years. A detailed experimental study of the various pat-
terns on a viscous fluid has been performed by Edwards and
Fauve @3# who used a one-frequency as well as a two-
frequency forcing. Parallel rolls, hexagons, and a twelvefold
quasipattern were observed. Though typical Faraday waves
are subharmonic, the twelvefold quasipattern appears to be
harmonic in a certain region of parameters. Binks et al. have
shown experimentally that the depth of the layer @4# and the
excitation frequency @5# affect significantly the regions
where either rolls or hexagons or squares are observed. In
@6–9# it is revealed that a two-frequency excitation leads to a
great variety of wave patterns. In particular, the observed
patterns were triangles @6#, superlattices formed by small and
large hexagons @7#, squares @6–9#, and a rhomboid pattern
@9#.

The comprehensive linear stability analysis of the Faraday
instability on an arbitrarily deep layer of a viscous nonmag-
netic fluid has been performed by Kumar and Tuckerman
@10#. This analysis was tested experimentally in @11# and an
excellent agreement between the predicted and experimental
data was found. Weizhong and Rongjue @12# extended the

linear analysis @10# for the case of an arbitrary periodic ex-
citation. In @2,13# the low frequency region is studied in
great detail. Bicritical points, where transitions from one
type of response to others occur, are predicted and experi-
mentally confirmed in @2#. In @14,15# an analogy between the
Faraday instability and a periodically driven version of the
Rayleigh-Taylor instability is exploited. In @14# a scaling law
is suggested, which satisfactorily describes the behavior of
the system in a wide range of parameters. Kumar @15# dis-
cusses the mechanism of the wave number selection in the
Faraday instability on high-viscous fluids.

In order to solve the pattern selection problem for the
Faraday instability it is necessary to take into account non-
linear interactions between different excited modes. The non-
linear behavior of the system has been studied theoretically
in a great number of papers ~see @16–20# and references
therein!. An amplitude equation for an infinitely deep layer
of a viscous fluid is derived by Chen and Viñals @19#. A good
agreement between the predicted frequencies for the transi-
tion between regions of different symmetry @19# and the ex-
perimental observations @5# is found.

Magnetic fluids ~or ferrofluids! are colloidal dispersions
of single domain nanoparticles in a carrier liquid. The attrac-
tiveness of ferrofluids stems from the combination of a nor-
mal liquid behavior with the sensitivity to magnetic fields.
This enables the use of magnetic fields to control the flow of
the fluid, giving rise to a great variety of new phenomena
and to numerous technical applications @21#.

One of the most interesting phenomena of pattern forma-
tion in ferrofluids is the Rosensweig instability @22#. At a
certain intensity of the normal magnetic field the initially flat
surface of a horizontal ferrofluid layer becomes unstable.
Peaks appear at the fluid surface, which typically form a
static hexagonal pattern at the final stage of the pattern-
forming process @23#. By including vertical vibrations to that
setup, Müller @24# analyzed the Faraday instability on vis-
cous ferrofluids subjected to a vertical magnetic field in the
frame of a linear stability analysis. It has been found that the
joint action of the two destabilizing factors leads to a delay
of the Rosensweig instability. By an appropriate choice of
the system parameters one can observe either a normal or

*Email address: Adrian.Lange@physik.uni-magdeburg.de;
http://itp.nat.uni-magdeburg.de/;adlange

PHYSICAL REVIEW E, VOLUME 65, 061509

1063-651X/2002/65~6!/061509~7!/$20.00 ©2002 The American Physical Society65 061509-1



anomalous dispersion. The predictions of @24# were con-
firmed experimentally in @25#.

Parametric waves on the surface of a ferrofluid can be
excited using a vertical @26# or a horizontal @27,28# alternat-
ing magnetic field. This phenomenon is called the magnetic
Faraday instability. In @26# the dispersion relation was inves-
tigated experimentally and it displays two significant fea-
tures. The response of the surface waves is harmonic with
respect to the frequency of the magnetic field and the wave
vector of the resulting rolls is parallel to the field, i.e., the
crests and troughs of the rolls are perpendicular to the field.
In @28# a supercritical transition from rolls to rectangles was
observed and explained by means of a weakly nonlinear
analysis.

In the present paper the stability of the surface of a fer-
rofluid subjected to vertical vibrations and a static horizontal
magnetic field is studied in a wide range of the system pa-
rameters. The horizontal magnetic field tends to decrease the
curvature of the ferrofluid surface along the direction of the
field @29#, i.e., it tends to stabilize the flat surface. On the
other hand, vertical vibrations tend to destabilize a flat sur-
face. Thus the aim of the linear stability analysis is to study
the behavior of a ferrofluid subjected to two, in a certain
sense competing factors. It will be shown that the magnetic
field allows one to control the stability of the surface signifi-
cantly and to affect the symmetry of the linearly most un-
stable pattern. This opportunity can be used in numerous
technical applications, where magnetic fields tangential to
the fluid surface and perpendicular vibrations are typical.

II. SYSTEM AND BASIC EQUATIONS

A dielectric, viscous, and incompressible magnetic fluid
with constant density r and permeability mr is considered.
The laterally infinite ferrofluid layer of arbitrary depth h is
subjected to a homogeneous dc horizontal magnetic field and
harmonic vertical vibrations ~Fig. 1!. The plane z50 coin-
cides with the nondeformed surface of the ferrofluid. The
fluid layer is bounded from below by the bottom of the non-
magnetic container and has a free surface described by
z(t ,x ,y) with air above. A homogeneous magnetic field H0
5(H0,0,0) is applied along the x axis. Due to zero electrical
conductivity of the fluid, the static form of the Maxwell
equations is used for the strength H and the induction B of
the magnetic field in all three media

div B(i)
50, rot H(i)

50, i51,2,3, ~2.1!

where superscripts denote the different media: 1, air; 2, mag-
netic fluid; and 3, container. A linear relation between the
magnetization of the fluid M(2) and the strength of the mag-
netic field inside is assumed, M(2)

5m0(mr21)H(2).
The fluid motion is governed by the continuity equation

and the Navier-Stokes equations

div v50, ~2.2a!

]v

]t
1~v grad!v52

1

r
grad p1nDv1g~ t !. ~2.2b!

Here v5(u ,v ,w) is the fluid velocity, p is the pressure, and
n is the kinematic viscosity of the fluid. The vertical vibra-
tions add a periodic term to the gravity acceleration g0, i.e., a
modulated value g(t)5@0,0,2g02a cos(vt)# appears in the
Navier-Stokes equations. Here a is the acceleration ampli-
tude and v is the angular frequency of the vibrations. The

components of the stress tensor TJ (2) read

T i j
(2)

5H 2p2m0E
0

H

MdH82m0

H2

2 J
3d i j1H iB j1rn~] iv j1] jv i!. ~2.3!

The governing set of equations has to be supplemented by
the boundary conditions. For the magnetic field the condi-
tions are the decay of all perturbations far from the ferrofluid
(z→6`) and the continuity of the normal ~tangential! com-
ponent of the induction ~strength! of the magnetic field
across the air-fluid interface (z5z) and at the bottom of the
container (z52h),

H(1)
5H0 at z→` , ~2.4a!

Bn
(1)

5Bn
(2) , Ht

(1)
5Ht

(2) at z5z , ~2.4b!

Bn
(2)

5Bn
(3) , Ht

(2)
5Ht

(3) at z52h , ~2.4c!

H(3)
5H0 at z→2` . ~2.4d!

The subscripts n and t denote the normal and tangential
components of the vector.

The hydrodynamic equations are closed by the no-slip
condition at the bottom of the container,

v50 at z52h , ~2.5!

and the kinematic boundary condition at the free surface of
the fluid

w5] tz1~v grad!z at z5z . ~2.6!

The equations for magnetic field and the fluid motion are
coupled by the continuity condition for the stress tensor
across the air-fluid interface, which completes the statement
of the problem,

FIG. 1. A horizontally unbounded ferrofluid layer ~2! is placed
in a nonmagnetic container ~3! with air ~1! above. The system is
subjected to a horizontal magnetic field H0 and harmonic vertical
vibrations a(t).
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n jH 2p (1)
1p1m0E

0

H

MdH81m0

M n
2

2 J
2rnn i~] iv j1] jv i!

5sKn j . ~2.7!

Here s is the surface tension, K5div n is the surface curva-
ture, p (1) is the atmospheric pressure above the fluid ~as-
sumed to be constant!, and n is the unit vector normal to the
surface given by

n5

grad@z2z~ t ,x ,y !#

ugrad@z2z~ t ,x ,y !#u
. ~2.8!

III. LINEAR STABILITY ANALYSIS

Following the standard procedure @10,24#, the governing
equations and the boundary conditions have been linearized
in the vicinity of the nonperturbed state

v50, z50, H(i)
5H0 , i51,2,3,

p05p (1)
2

m0

2
M 0H02g~ t !z ,

where M 05(mr21)H0 and p0 is the pressure in the unper-
turbed state. The linearized governing equations for the small
perturbations, which encompass the magnetic field strength
H1, the pressure p1, and a nonzero velocity v of the fluid,
read

m0mr div H1
(i)

50, rot H1
(i)

50, i51,2,3, ~3.1a!

div v50, ~3.1b!

]v

]t
52

1

r
grad p11nDv. ~3.1c!

Here the linear relation between the induction and the
strength of the magnetic field is used. At the first order with
respect to the perturbations, the boundary conditions are

H1
(1)

50 at z→` , ~3.2a!

H1n
(1)

5mrH1n
(2) , H1t

(1)
5H1t

(2) at z50, ~3.2b!

mrH1n
(2)

5H1n
(3) , H1t

(2)
5H1t

(3) at z52h , ~3.2c!

H1
(3)

50 at z→2` , ~3.2d!

v50 at z52h , ~3.2e!

w2] tz50 at z50, ~3.2f!

]zu1]xw50 at z50, ~3.2g!

]zv1]yw50 at z50, ~3.2h!

g~ t !z2p12m0M 0H112rn]zw5sD'z at z50,
~3.2i!

where D'5]xx1]yy . The stability of the flat surface with
respect to standing waves is analyzed by using the Floquet
ansatz for the surface deformations and the z component of
the velocity

z~ t ,x ,y !5sin~kr!e (s1iav)t (
n52`

`

zne invt, ~3.3a!

w~ t ,x ,y ,z !5sin~kr!e (s1iav)t (
n52`

`

wn~z !e invt,

~3.3b!

where k5(kx ,ky) is the two-dimensional wave vector, s is
the growth rate, and a is the parameter determining the type
of the response. For a50 the response is harmonic whereas
for a51/2 it is subharmonic. Expansions similar to Eq.
~3.3b! are made for all other small perturbations and are
inserted into the linearized governing equations ~3.1!. The
functions of the vertical coordinate in the Floquet expansion
are given by linear combinations of the exponential functions
e6kz and e6qnz with qn

2
5k2

1@s1i(a1n)v#/n and
Re(qn).0. The condition of reality for z(t ,x ,y) leads to the
equations @10#

z2n5zn* , a50, ~3.4a!

z2n5zn21* , a51/2. ~3.4b!

The boundary conditions ~3.2! allow one to express all the
perturbed quantities in terms of the coefficients zn which
satisfy the equation

(
n52`

`

~Wnzn2azn212azn11!e [s1i(a1n)v]t
50, ~3.5!

where

Wn522F n2

k@qn coth~qnh !2k coth~kh !#

3S qn@4k4
1~k2

1qn
2!2# coth~kh ! coth~qnh !

2k@4k2qn
2
1~k2

1qn
2!2#2

4qnk2~k2
1qn

2!

sinh~kh ! sinh~qnh !
D

1g01

sk2

r
1

k~mr21 !2L~kh !

rm0
S kxB0

k D 2G ~3.6!

and

L~kh !5

ekh~mr11 !1e2kh~mr21 !

ekh~mr11 !2
2e2kh~mr21 !2

. ~3.7!

Here B05m0H0 is the induction of the applied magnetic
field.
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The essential differences of Eqs. ~3.5!–~3.7! in compari-
son with the dispersion relation for the surface instability in
a vertical magnetic field @24,30,31# are the following: First,
the term proportional to B0

2 has the same sign as the terms
related to surface tension and gravity. This implies that a
horizontal magnetic field alone cannot induce any instability.
Second, in the same term the factor kx appears instead of k in
the case of the normal magnetic field. This allows one to
introduce the effective field

Beff5
~kB0!

k2
k5B0 cos~u !

k

k
, ~3.8!

where u is the angle between k and B0. Hence, the influence
of a magnetic field with induction B0 on a wave propagating
along an arbitrary direction k is equivalent to the influence of
a field with induction Beff , which is parallel to k.

Equation ~3.5! has to be satisfied for all times which im-
plies that each term of the sum equals to zero. Using the
relations between zn with positive and negative numbers
~3.4!, one gets the set of equations

W0z02az1*2az150, a50, ~3.9a!

W0z02az0*2az150, a51/2, ~3.9b!

Wnzn2azn212azn1150, n51, . . . ,` . ~3.9c!

A cutoff at n5N ~in the present work N5100) leads to a
self-consistent equation for the acceleration amplitude a
@19,18#,

a5uF~a ,k ,v ,Beff ,n ,s ,r ,mr!u, ~3.10!

where F is a complex function expressed in terms of contin-
ued fractions. Equation ~3.10! can be solved numerically and
gives the dependence of a on k at fixed parameters. The
critical values of the acceleration amplitude ac and the wave
number kc correspond to an absolute minimum of the curve
a(k) at zero growth rate (s50).

IV. RESULTS AND DISCUSSION

In the following the effective field is given in units of the
critical induction BcR for the Rosensweig instability on an
infinitely deep layer of ferrofluid @22#. Figure 2 presents mar-
ginal stability curves for a viscous ferrofluid at low fre-
quency. The dependence of acceleration amplitude on the
wave number for s50 divides the phase space into regions,
where the surface of the ferrofluid is stable or unstable with
respect to parametrically driven standing waves. The princi-
pal data which can be extracted are the critical acceleration
amplitude, the wave number, and the number of the tongue
to which they belong. The number of a tongue , ~from left to
right! is the order of response: the basic wave frequency
related to the ,th tongue is V5,v/2. The odd and even
tongues are the regions, where either a subharmonic or a
harmonic instability develops. It can be seen that all tongues
shift towards smaller wave numbers under the influence of
an applied magnetic field. In the case presented in Fig. 2 the

field also causes a transition from a subharmonic to a har-
monic response.

The dependencies of the critical acceleration amplitude
and the critical wave number on the excitation frequency f
5v/2p are presented in Fig. 3. In the high frequency region,
the instability is subharmonic, i.e., ,51. In the small fre-
quency region bicritical points appear, which is why the de-

FIG. 2. Neutral stability curves for the excitation frequency f
510 Hz and layer depth h52 mm. Dashed ~solid! lines corre-
spond to Beff50 (BcR). Filled and unfilled tongues represent re-
gions of subharmonic and harmonic responses. ac and kc (ac8 and
kc8) are the critical acceleration amplitude and critical wave number
for Beff5BcR (Beff50). The parameters of the fluid are n
51024 m2/s, s50.0265 N/m, r51020 kg/m3, mr51.85, and
BcR517.28 mT.

FIG. 3. Frequency dependencies of the critical acceleration am-
plitude ac ~a! and the critical wave number kc ~b! for h52 mm.
Insets: low-frequency behavior of the quantities. The effective field
is Beff51.5BcR ~curve A), BcR (B), 0.5BcR (C), 0 (D). The fluid
parameters are mr51.85, s50.0265 N/m, n55.8831026 m2/s,
r51020 kg/m3, and BcR517.28 mT.
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pendence of ac( f ) is not smooth and the dependence of
kc( f ) is discontinuous ~see the insets in Fig. 3!. Bicritical
points are those points in the parameter space where the ab-
solute minima of a(k) is equal to the local minima of two
neighboring tongues. In the zero field case, for instance, such
an overlap happens between the first subharmonic tongue
(,51) and the first harmonic tongue (,52) at f bc,1
.1.86 Hz. For frequencies below f bc,1 , the tongue of sec-
ond order gives the critical acceleration until the next bicriti-
cal point at f bc,2.1.55 Hz. Below f bc,2 the tongue of third
order gives there the lowest threshold until the third bicritical
point and so on. Thus with decreasing frequency subsequent
transitions from a tongue of the order , to a tongue of the
order ,11 occur.

It is seen in the inset in Fig. 3~b! that the magnetic field
shifts the bicritical points. If the fluid viscosity is low ~as in
Fig. 3!, then the magnetic field decreases the frequencies of
the transitions. For higher viscosities, e.g., n51024 m2/s,
the bicritical points are shifted towards higher frequencies.
This is exemplarily shown in Fig. 4 for the frequency of the
first bicritical point, f bc,1 , for a high-viscous fluid ~curve 1!
and a low-viscous fluid ~curve 2!. For frequencies above ~be-
low! the curves the response of the system is subharmonic
~harmonic!. Thus for a high-viscous fluid and an excitation
frequency of f 510 Hz at zero applied field a subharmonic
response (V5v/2) is expected, whereas at Beff5BcR a har-
monic response (V5v) precedes. For ordinary ~nonmag-
netic! fluids bicritical points were also found in the case of
both low-viscous fluids @2# and high-viscous fluids @13#.

A feature of the dependence of ac( f ) @Fig. 3~a!# is the
appearance of a pronounced minimum for all tested fields. To
explain this behavior, one has to recall that viscous damping
is the reason for the finite ~nonzero! value of the critical
acceleration amplitude. The damping occurs due to the
stresses in the bottom layer and in the bulk fluid. The dimen-
sionless quantity d5kch can be used to determine which part
of the damping is predominant. For a shallow fluid layer the
inequality d&1 holds and therefore the damping in the bot-
tom layer is predominant ~first regime!. For a deep layer,
where the relation d@1 is fulfilled, the damping in the bot-
tom layer is of no importance and the damping in the bulk
fluid is predominant ~second regime!.

The first regime occurs at the low frequency region in Fig.
3, where kc&500 m21. Inside this region, as the frequency
increases the effective depth d of the fluid is increasing, too.
Therefore the viscous stress in the bottom layer is weakening
and consequently the critical acceleration amplitude de-
creases. The second damping regime is typical for waves
with kc above 500 m21. Since dissipation in the bulk fluid is
proportional to kc

2 @32#, the damping becomes stronger and as
a result the critical acceleration amplitude increases with fre-
quency. The transition from the first to the second damping
regime leads to the nonmonotonic dependence of the critical
acceleration amplitude on the excitation frequency.

The most pronounced effect caused by the magnetic field
is the decrease of the critical wave number @cf. curves D –A
in Fig. 3~b!# as already observed in @29#. The reduction of the
critical wave number affects the critical acceleration ampli-
tude. This influence is different at low and high frequencies
due to the following reason. The decrease of kc results in ~i!
the reduction of the effective fluid depth d, which intensifies
the stress in the bottom layer and ~ii! the weakening of the
dissipation in the bulk fluid. Therefore in the case of the first
damping regime the viscous dissipation is intensified,
whereas in the case of the second regime it is reduced by the
magnetic field.

In the low frequency region (d5kch&1), the first damp-
ing regime occurs independent of the magnetic field. There-
fore the critical acceleration amplitude increases with the
growth of the effective field.

At high frequencies the dependence of the critical accel-
eration amplitude on the effective field is more intricate. In
Fig. 5~a! the dependence of ac(Beff) is presented for a fre-
quency f 5100 Hz. It is seen that for an infinitely deep fluid
the critical acceleration amplitude decreases monotonicly
with the increase of the magnetic field. In the case of a finite
depth of the layer, there are two different forms of the de-
pendence of ac on Beff . In the case of h>1.14 mm a mini-
mum in the critical acceleration amplitude is observed. It
implies that a moderate magnetic field lowers the threshold
value of the acceleration amplitude whereas a strong mag-
netic field stabilizes the surface, i.e., the critical acceleration
amplitude is increasing. With the decrease of the layer depth
@from curve D to A in Fig. 5~a!#, the observed minimum
shifts to the lower fields and becomes less pronounced. At
h<1.13 mm the critical acceleration amplitude monotonicly
increases with the effective field.

To explain these qualitative changes in the dependence of
ac(Beff) it is useful to consider d(Beff) @see Fig. 5~b!#. The
analysis shows that in the region d@1 ~the second damping
regime! the decrease of the critical wave number caused by
the magnetic field leads to a weakening of the viscous damp-
ing. Therefore the critical acceleration amplitude is decreas-
ing with the increase of the field until the effective depth d of
the fluid becomes of the order of unity. A further decrease of
d caused by the magnetic field increases the viscous damping
in the bottom layer and consequently the critical acceleration
amplitude. Thus, the transition from the second damping re-
gime to the first one results in the nonmonotonic dependence
of ac(Beff) @Fig. 5~a!#. The effective field, where the transi-
tion occurs, is decreasing with decrease of h, and in the case

FIG. 4. Frequency of the first bicritical point f bc,1 versus the
effective magnetic induction. For a high-viscous fluid (n
51024 m2/s, curve 1! an increasing induction increases f bc,1 ,
whereas for a low-viscous fluid (n55.8831026 m2/s, curve 2!

f bc,1 is decreasing.
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of a very shallow fluid ~here, h<1.13 mm), the second
damping regime is not observed at all.

The nonmonotonic dependence of ac(Beff) allows one to
select the type of the linearly most unstable pattern ~corre-
sponding to a minimal ac) by applying a horizontal magnetic
field. When the induction B0 of the applied field is smaller
than Beff* @ac(Beff) is minimal at Beff* # Faraday waves with
kuuB0 are favorable. In this case Beff5B0 @see Eq. ~3.8!#, i.e.,
Beff has a maximal possible value at given B0. It implies that
the first unstable pattern are rolls perpendicular to the mag-
netic field. If B0>Beff* then the angle between the favorable
wave vector of perturbation and the applied magnetic field
satisfies the relation cos u56Beff* /B0. Thus, for B0.Beff* Þ0
rolls with an angle 1u or an angle 2u or a rhombic pattern
as a superposition of both is most probable. If the layer depth
is small enough Beff* becomes zero @see curve A in Fig. 5~a!#.
That is equivalent to cos u50, i.e., rolls parallel to the mag-
netic field are expected.

The parametrical generation of surface waves by a hori-
zontal alternating magnetic field was observed in @27,28#. In
these studies the driving force is the magnetic field and it is
anisotropic. Only perturbations with a wave vector parallel to
the field can be unstable in the linear approximation. There-
fore the first unstable pattern observed in the experiments
were always rolls perpendicular to the field. In @28# a super-
critical transition was observed from rolls to a rectangular
pattern. This transition is caused by nonlinear interactions of
the different modes. In the present study there is no aniso-

tropic driving and therefore Faraday waves along an arbitrary
direction can be excited. As a consequence, different patterns
can be generated ~rolls along an arbitrary direction or a
rhombic pattern as discussed above!.

In the case of low viscosity the obtained results for the
critical acceleration amplitude are in the very good agree-
ment with an approximation suggested by Müller et al. @Eq.
~9! in @2# and Eq. ~4.1! in @24# #. It should be noted that the
influence of a normal magnetic field ~studied in @24,26#! and
a horizontal field ~studied in the present paper! on Faraday
waves are different. The normal magnetic field increases the
critical wave number of the Faraday waves @26#, whereas the
horizontal magnetic field decreases the wave number. Thus,
the sensitivity of ferrofluids to magnetic fields allows one
both to increase and to decrease the critical wave number. In
this way the relative importance of the stress in the bottom
layer and the dissipation in the bulk fluid can be changed.
Therefore magnetic fields are a convenient way to control the
stability of the surface.

The Faraday instability on nonmagnetic fluids with high
viscosity has been investigated in @14#. The authors suggest a
scale for the acceleration based on an analogy between the
Faraday instability and a periodically driven version of the
Rayleigh-Taylor instability. They observe a data collapse in
the range of the dissipation parameter (d/h)2 from 0.1 to 0.3,
where d5An/v is the dissipative length scale. In this param-
eter range our results are in a good agreement with the sug-
gested scaling law. However, at low frequencies the scaling

FIG. 5. Critical acceleration amplitude ac ~a! and the dimen-
sionless depth d5kch of the fluid ~b! versus the induction of mag-
netic field for f 5100 Hz. The layer depth is 1 mm ~curve A), 1.5
mm (B), 2 mm (C), 5 mm (D), and the curve ~E! is obtained for an
infinitely deep layer. The fluid parameters are those of Fig. 3.

FIG. 6. Scaled critical acceleration amplitude versus the dimen-
sionless depth of the layer. Data are plotted for seven different sets
with various combinations of the fluid viscosity, excitation fre-
quency, effective field, and the layer thickness ~see Table I!. The
remaining parameters are those of Fig. 3.

TABLE I. Sets of the parameters for data plotted in Fig. 6.

Set n (m2/s) f ~Hz! Beff (BcR) h ~mm! Symbol

1 5.8831026 5 1 0.5–600 1

2 1023 10 0 5–100 ¹

3 1024 100 0 1–100 h

4 5.8831026 100 0–3 2 n

5 5.8831026 1–100 1 5 v

6 1023 5–100 1 2 x

7 1026 –1023 48 1 2 L
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behavior suggested in @14# strongly underestimates ac . Ad-
ditionally, the remaining parameters neglected in @14# be-
come essential at kch&1. Therefore, the scaling propagated
in @14# is of limited use for ferrofluids in magnetic fields.

The aim now is to reveal a scaling law for the threshold
values of the Faraday instability. The behavior of the critical
acceleration amplitude as a function of the parameters of the
system is determined by the dimensionless depth d of the
fluid ~see Figs. 3 and 5!. Therefore, it is natural to look for a
scaling law of the form āc5 āc(d), where āc is the scaled
acceleration. As h→` the required function should approach
an asymptotic value. Thus, the appropriate scale for the ac-
celeration amplitude is the value ac ,` of the critical accelera-
tion for an infinitely deep fluid. The quantity kcVn is a rea-
sonable estimation for ac ,` @14#. Introducing this scale for
the acceleration amplitude āc5ac /(nVkc), it is possible to
map all the above presented dependencies in a single plot as
it has been done in Fig. 6.

Figure 6 presents the dimensionless amplitude as a func-
tion of the effective depth d5kch of the fluid. The latter can
be varied by means of changing the physical depth of the
layer ~pluses, down triangles, and squares in Fig. 6!, varying
the applied magnetic field ~up triangles!, excitation fre-
quency ~left and right triangles!, and the viscosity of the fluid
~diamonds!. It is seen that for a wide range of parameters the
dependencies of āc related to different fluids and varying
parameters are in a rather good agreement with each other.
The only deviation from the common behavior appears for a
low frequency ~plusses! at intermediate d. For d up to unity
the dimensionless acceleration amplitude can be reasonable
approximated by āc'21d22.6 ~solid line in Fig. 6!. For d

@1 an estimation āc ,`'7 approximates the exact results
with a maximal error of about 12%. It is worth noting that
the dependencies of the critical acceleration amplitude on the
surface tension and the fluid density follow the same com-
mon behavior as shown in Fig. 6.

V. CONCLUSION

The linear analysis of the Faraday instability on a viscous
ferrofluid subjected to a horizontal magnetic field has been
performed. A horizontally unbounded ferrofluid layer of a
finite depth has been considered. The dependencies of the
critical acceleration amplitude ac and the critical wave vec-
tor on the excitation frequency f and the induction Beff of the
magnetic field have been obtained for different depths of the
layer in a wide range of fluid viscosities. The regions have
been found, where the viscous stress either in the bottom
layer ~the first regime! or in the bulk fluid ~second regime!
are predominant. A transition from the second damping re-
gime to the first one can be caused by decreasing the excita-
tion frequency or by applying a horizontal magnetic field.
The transition results in the nonmonotonic dependencies of
ac( f ) and ac(Beff). It is shown that one can select the first
unstable pattern of Faraday waves by the appropriate choice
of the depth of the ferrofluid and the induction of the mag-
netic field. A scaling law is suggested, which describes the
behavior of the system in a wide range of the system param-
eters.
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