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Abstract 

A horizontal layer of magnetic fluid subjected to a vertical temperature gradient and a spatially modulated magnetic field is 

considered. For the case of symmetric modulation the initial state characterised by a nonzero flow field is identified. By 

conducting a linear stability analysis the area of stability of the initial state against small perturbations is determined. 
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1. Introduction 

Thermal convection in a plane horizontal fluid layer heated from below develops if the vertical temperature 

gradient surpasses a certain threshold. Beyond this threshold the destabilizing buoyancy force, caused by the 

temperature driven gradient in the fluid density, prevails the stabilising effect of friction and head conduction: the 

motionless initial state becomes instable. By using a magnetic fluid (MF) as working substance subjected to an 

external vertical magnetic field, an additional convection driving mechanism appears. Now the gradient in the 

temperature causes also a gradient in the magnetisation of the MF which together with the gradient of the internal 

magnetic field leads to a magnetic force. This force can generate beyond a certain threshold a convection, too, called 
thermomagnetic convection. 

Whereas this type of convection in static magnetic fields has been studied in detail theoretically [1] as well as 

experimentally [2, 3, 4], analyses for modulated magnetic fields are just starting to appear. A first work on 

parametric modulation of the thermomagnetic convection was done by Engler and Odenbach [5]. The case of a 

spatially modulated magnetic field has not been studied yet and it is therefore the aim of this work. A spatially 

modulated magnetic field can be easily realised by placing spatially modulated iron bars inside a spatially constant 

external field. In such a way many different types of modulation can be accomplished by varying the number of bars, 

their wavelengths or their phase shift. Therefore the spatial modulation of magnetic fields overcomes some of the 

restrictions of temporal modulation. 
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2. System and equations 

A horizontally infinite layer of a viscous, nonconducting magnetic fluid of thickness d  is considered, whose 

lower and upper boundary is at 2dz  and is held at the constant temperature 
bT  and 

bt TT , respectively. Under 

the assumption of translational symmetry with respect to the depth of the layer, the analysis is restricted to two 

dimensions, i.e., to the zx plane. The system is governed by the equation of continuity, 0vdiv , the Navier-

Stokes equation in the Boussinesq approximation, 

HgradMvgpgradvgradv
t
v
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   (1) 

the equation of heat conduction, 

TTgradv
t
T

       (2) 

and the relevant Maxwell equations: 0Bdiv  and 0Hrot . By introducing the scalar function  for the fluid 

velocity , xzv , the equation of continuity is automatically fulfilled. HTp ,, , and M  are the pressure, the 

temperature, the magnetic field inside the fluid, and the magnetization of the MF which follows a linear law, 

HM , with the susceptibility . The acceleration due to gravity is denoted by gg ,0 , the dynamic viscosity 

by , the permeability of vacuum by 
0

, the thermal diffusivity by , and the magnetic induction by 

)(0 HMB . The density of the fluid is a linear function of the temperature, TT10
, where  is the 

coefficient of volume expansion and 
0
 the density of the fluid at a reference temperature T .  

 

   
Figure 1: (a) Sketch of the symmetric modulation of a magnetic field by two iron bars.  

(b) (Color online) Numerical solution (solid lines) of scaled Bz versus scaled x at the heights 0z  (black)  

and 8.0z mm (red) inside the MF. The symbols indicate the analytical approximation (see text). 

By using  and combining the x(z)-component of the Navier-Stokes equation differentiated with respect to z(x), 
one yields 
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for real MFs whose Prandtl numbers 
0Pr  are much larger than 10 [6]. For the dimensionless quantities in 

Eq. (3) the lengths were scaled with d , the time with 2d , the velocities with d , the temperature with tb TT , 

and the magnetic field by tb TTK . With these scalings two dimensionless parameters appear, the Rayleigh 
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number,

 
R 3

0 dTTga tb , and the magnetic Rayleigh number, R 2
2

2

0 dTTKa tbm , 

where K  is the pyromagnetic coefficient of the MF. In order to determine analytically the stationary initial state of 

the system, one has to know the magnetic field inside the MF for the given spatial modulation of the external 

magnetic field. 

 

3. Magnetic field and initial state 
 

A simple and symmetrical modulation is considered, where two iron bars are placed symmetrically above and 

beneath a layer of MF ( 2d mm) in an vertical external homogenous field, see Fig. 1(a). One horizontal boundary 

of the bar is sinusoidal ( 03.0 m) shaped. The numerical solution of the corresponding magnetic problem results 

in a sinusoidal modulation of Bz(x), Fig. 1(b), and |Bx(x)/Bz(x)|  10 2. These numerical results can be well fitted by 

Bx = Bzsin(kx) and Bz = 1 + (E + Gz2) cos(kx) with 2 dk , B = kE, and G = k2E/2. With the remaining fit 

parameter, here E = 0.091, an excellent agreement with the numerical data can be achieved, see symbols in Fig. 1(b). 

By using this analytical approximation, the solution of 
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fulfilling the boundary conditions 

210 zatz       (6) 
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gives the stationary initial state. By the fact of long wavelength modulations, 1k , the perturbational ansatz 
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is employed. Solving the hierarchy of equations with respect to powers of k, the initial state up to k3 is given by 
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Whereas the temperature profile (11) is the classical vertical one found in conventional Rayleigh-Bénard setup [7], 

the initial flow field is not any longer the quiescent state. Instead, as Fig. 2 shows, the initial state is characterized by 
a double vortex structure. An initial state in motion is unknown in classical Rayleigh-Bénard configuration and 

shows the potential of spatial modulations of the external driving to open new horizons in the field of pattern 

formation with soft magnetic matter. 

 

 
Figure 2: Flow field 

initxinitzinitv ,  according to Eq (12)  

for the fluid parameter mKAK 35  , KTT tb 10  , sPa15.0  , sm28105  , and 20. . 

 

4. Stability analysis and results 

 

To examine the stability of the initial state, a linear stability analysis against small perturbations, tzx ,,  and 

tzx ,, , is conducted, 

tzxzTT init ,,       
(13) 

tzxzxinit ,,,       (14) 

which leads to the following two differential equations for the perturbations (restricted to terms up to 3k ) 

xzxt
init

 
,     

 (15) 

x
Ra2

 .      
 (16) 

By differentiating Eq. (15) with respect to x and using the expression for x from Eq. (16), the temperature field 

can be eliminated. The resulting linear equation for may be solved by a separation ansatz, (x, z, t) 1(x) 2(z)e t, 

where is the complex-valued growth rate. To simplify the analysis considerably, homogeneous stress-free 

boundary conditions are assumed and only the first member of the appropriate series, cos( z), is used. Following the 
procedure outlined in [8], one ends up with a homogenous system of equations, where the condition = 0 gives the 

so-called neutral stability curve. It is an implicit relation for the determination of the Rayleigh number in 

dependence of the wave number q (stemming from the Floquet ansatz for 1(x), see [8]) and the parameter for the 

strength of the magnetic excitation Ram. The lowest value of Ra presents the critical Rayleigh number Rac for the 

onset of instability of the initial state. 

Fig. 3 shows the behaviour of Rac as function of the magnetic Rayleigh number Ram, where both parameters are 

scaled with the critical Rayleigh number for pure thermal driving, Rac(Ram = 0) = 27 4/4, in the case of stress-free 

boundary conditions [7]. It can be seen that with increasing magnetic Rayleigh number, Rac increases as well, but 

only slightly. The increase of Rac is accompanied by an increase of qc (not shown here) which causes the growth of 

Rac. A larger wave number corresponds to more flow vortices per length for which more energy is necessary which 

means a higher thermal driving, i.e. an increase of Rac. 

The appearance of spatially modulated external driving generates a neutral stability curve which is formed by 
many interwoven tongues. With increasing Ram some of these tongues degenerate towards shrinking islands, a 
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phenomenon also known from the Faraday instability [9]. The disappearance of such an island causes the jump in 

the stability curve, see Fig. 3, because the lowest value of Ra jumps to another tongue. That tongue will shrink to an 
island with further increase of Ram and will at its disappearance cause the next jump of Rac. A detailed analysis of 

the neutral stability curve will presented in a forthcoming publication. 

 

 
 

Figure 3: Stability curve for the initial state of the two vortex flow as shown in 

Fig 2 in dependence of the magnetic Rayleigh number Ram. 

 

5. Conclusions 
 

In summary, the initial state and its stability of the thermomagnetic convection in a horizontal fluid layer of MF 

subjected to a spatially modulated magnetic field was analysed. In contrast to the purely thermal driven system, the 

nonzero flow field of the initial state is characterised by a two vortex structure. With the possible options for the 

spatial modulation of magnetic fields, a new scope of research on thermomagnetic convection starts to emerge. 
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