HTML AESTRACT * LINKEES

PHYSICS OF FLUIDS VOLUME 16, NUMBER 4 APRIL 2004

Chain-induced effects in the Faraday instability on ferrofluids
in a horizontal magnetic field
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The linear stability analysis of the Faraday instability on a viscous ferrofluid in a horizontal
magnetic field is performed. Strong dipole—dipole interactions lead to the formation of chains
elongated in the field direction. The formation of chains results in a qualitative new behavior of the
ferrofluid. This new behavior is characterized by a neutral stability curve similar to that observed
earlier for Maxwell viscoelastic liquids and causes a significant weakening of the energy dissipation
at high frequencies. In the case of a ferrofluid with chains in a horizontal magnetic field, the
effective viscosity is anisotropic and depends on the field strength as well as on the wave
frequency. ©2004 American Institute of Physic§DOI: 10.1063/1.1649757

I. INTRODUCTION the polymer dynamics is given by Doi and Edwafds.
A ferrofluid with chains in a magnetic field is an aniso-

Magnetic fluids(or ferrofluidg are colloidal dispersions tropic system. This makes it similar to a nematic liquid crys-
of single domain nanoparticles in a carrier liquid. The fasci-tal (NLC), whose rheology can be described by a group of
nation of ferrofluids stems from the combination of a normalmodels usually referred as Ericksen—Leslie—Par(&lyP)
liquid behavior with the sensitivity to magnetic fields. This models. The stress tensor in Refs. 9-12 involves five inde-
enables the use of magnetic fields to control the flow of thependent viscosity coefficients, which are scalar functions of
fluid, giving rise to a great variety of new phenomena and tathe density and the temperature. ELP models are widely used
numerous technical applicatioh©ne of the peculiarities of in the hydrodynamics of NLC. These models were employed
ferrofluids is the mutual influence of the microstructure andin the analysis of a flow instability and in studying periodic
the rheological properties of the fluid. Due to strong interparpatterns:* In these papers as well as in Refs. 15 and 16 the
ticle interactions various aggregates can be formed in #nfluence of an external field was taken into account. Readers
ferrofluid?=> On the one hand, the formation of the aggre-who are interested in a deeper insight into ELP models are
gates changes the effective viscosity of the fluid. On theaeferred to the books of de GenfAéand Chandrasekh.
other hand, the motion of the fluid influences the structure of  Since the susceptibility of ferrofluids is much higher
the aggregates. than that of liquid crystals, the effects caused by external

In an applied magnetic field chains containing severafield should be more pronounced. The theoretical analysis of
particles are the favored form of an aggregate and are formegie rheology of a colloidal suspension containing ellipsoidal
by the dipolar interactions. There is a similarity between theparticles in a field was performed by Pokrovskij in Refs. 19
chains of dipoles and the macromolecular chains in polymeand 20. The model gives a constitutive equation of the ELP
solutions. In both systems a network of chains is coupledkind, where the viscosity coefficients are expressed in terms
with a viscous carrier liquid. This viscous coupling implies of the parameters of the suspension and the applied field.
that the relaxation character of the chain dynamics leads to Blectro- and magnetorheological fluids present a group of
viscoelastic behavior of the solution. The viscoelastic behavsuspensions, whose behavior is close to that of ferrofluids.
ior is reflected in a dependence of the stress tensor on thEhe viscoelastic properties of electro- end magnetorheologi-
history of the system. The theoretical treatment of the viscal fluids were studied experimentally in Refs. 21-23. Par-
coelasticity of polymer solutions is usually based on a pheticularly it was shown that external fields can influence the
nomenological model. There are three well-known modelsheological response of the fluid by changing the complex
for an isotropic linear viscoelastic liquid. In the Maxwell shear modulus and yield stress. Zubarev and Isk&Rased
model a viscoelastic element is a combination of a purelithe results of Refs. 19 and 20 to obtain a constitutive equa-
elastic spring with a purely viscous dashpot. In the Binghamion for a ferrofluid with chains for the case of a weak flow
two-component model these elements are connected parallef any kind. In the present paper the model suggested in Ref.
to each other, and the Jeffreys element is a superposition 04 is applied to the linear stability analysis of the Faraday
the two previous ones. A comprehensive review of the theoinstability.
retical basics and the existing models was done by Bird in  The Faraday instability denotes the parametric genera-
Refs. 6 and 7. An overview of the theoretical approaches teion of standing waves on the free surface of a fluid subjected
to vertical vibrations. The study of this phenomenon dates
aElectronic mail: viadik@mpipks-dresden.mpg.de back to the observations by Faradain 1831. The initially
YElectronic mail: adlange@mpipks-dresden.mpg.de flat free surface of the fluid becomes unstable at a certain
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intensity of the vertical vibrations of the whole system. As all. SYSTEM AND BASIC EQUATIONS

result of Fhe instability, a pa_ttern of standir_wg waves is fo_rm_edA_ Model

at the fluid surface. The typical response is subharmonic, i.e., ) o ) ) ) )
the wave frequency is half the frequency of the excitation. A __ A dielectric, viscous, and incompressible magnetic fluid
harmonic response can be observed on a shallow fluid at IO\XYIth constant density is considered, which contains par-

frequencie<® Faraday waves allow one to investigate sym-t[ICIes of the .equal siz€. The strength of th? dipole—dipole
interactions is characterized by the coupling constant

metry breaking phenomena in a spz_itlally extended nor_1I|neaL M2/ (167R%T), which is the ratio of the energy of
gystem. Therefore thgy have egperlenced ? renewed 'm,ere’lﬁ{;raction between two particles at the minimal separation
in recent years. Detalled.expenmental studies 9f the variouSith head-to-tail orientation of their magnetic moments to
patterns on a viscous fluid have been perforﬁ?efll,vx{here the thermal energy. Hem=4MszS/3 is the magnetic mo-
a one-frequency as well as a two-frequency forcing Wergnent of a particleR=R,+ & is the hydrodynamic radius of
applied. Among the observed patterns are parallel folls, the particle,M. is the magnetization of the magnetic mate-
hexagons] a twelvefold quasi-patterf, triangles?® super- rial, R, is the radius of the magnetic core of a partichds
lattices formed by small and large hexagéhsquare€®=!  the thickness of the nonmagnetic laykg, is the Boltzmann
and rhomboid patter?t. constant, and is the temperature. The interaction of a par-
The comprehensive linear stability analysis of the Faraticle with the applied fieldH is measured by the Langevin
day instability on an arbitrarily deep layer of a viscous non-parameteik = uomH/(kgT). In the case of a magnetic fluid
magnetic fluid has been performed by Kumar andwith low particle volume fractione, interactions between
Tuckermarr? This analysis was tested experimentillgnd ~ chains can be neglected. Assuming that the chains are
an excellent agreement between the predicted and expefiraight and rigid, Zubarev and Iskakova determined the size
mental data was found. In Refs. 26 and 34 the low frequenc§fiStribution of chains, which minimizes the free energy of
region is studied particularly. Bicritical points, where transi- SUCh @ magnetic fluid and is given Yy

tions from one type of response to others occur, are predicted x" sinh( xn)

and experimentally confirmed.In Refs. 35 and 36 an anal- 9= e SX—e), 1)
ogy between the Faraday instability and a periodically driven

version of the Rayleigh—Taylor instability is exploited. x=[2y coshk+sinhx

Based on that analogy in Ref. 35 a scaling law is suggested, i . 5
which satisfactorily describes the behavior of the system in a —V(2y coshk+sinhx)?—4y?]/(2y),
wide range of parameters. Kum&discusses the mechanism \yherey is the volume of a particle ang= x ¢ exp). Each
of the wave number selection in the Faraday instability onchain containing particles is modeled by an uniaxial ellip-
high-viscous fluids. soid with semi-axes equal toR andR. This keeps the solid

In our previous papet, the Faraday instability on a phase volume density unchanged and allows one to use the
chain-free ferrofluid was studied. A nonmonotonic depen+esults of Pokrovski}>?°The viscous stress tensor for a sys-
dence of the stability threshold on the magnetic field is foundem of uniaxial ellipsoids consists of a symmetric and anti-
at high frequencies of the vibrations. It was revealed that théymmetric part
magnetic field can be used to select the first unstable pattern

= g9 4 g(a@s)
of Faraday waves. In particular, a rhombic pattern as a su- Tik= i+ T 2
perposition of two different oblique rolls can occur. where
The Faraday instability of a viscoelastic nhonmagnetic
liquid was studied experimentally in Ref. 38, where a har- (s) <<
’ o =210yt 20,YVik— Pl €i€s)nOik Vi
monic response was detected. In Refs. 39—41 the Maxwell ' YT ik~ Pr(€i€sndik s

model of viscoelastic liquid was used in the theoretical
analysis. The authors observed pronounced changes in the
neutral stability curves. Particularly, the tongues related to
the harmonic response became abnormal. Such a tongue has
no tip and all tongues of higher order are inside this abnor-
mal tongu_e' . . . +(Xn—2NnBn){eiexe; es>n7js} > > ,

The aim of the present paper is to investigate the role of
the chains in the Faraday instability on a ferrofluid in a hori-

. . . . KkBT

zontal magnetic field. The formation of the chains leads to @ o{F¥=—2=(((e)n— (eai))-
dramatic increase of the magnetization relaxation time, v
changes the effectlvg _v_|sc03|ty of the suspension, and inBoth parts contain the geometric factaes, Bn, Xn» An,
creases the susceptibility of the ferrofluid. A number ofy_ and¢,, which are entirely determined by the aspect ratio
model ferrofiuids are investigated in a wide range of theof an ellipsoid corresponding to anparticle chaint®20:24:42
parameters of the system to study the relative importance of is the viscosity of the carrier liquidy;,= (d,U;+ d;u,)/2
those effects. andQ;, = (dyu; — d;u,) /2 are the symmetric and antisymmet-

+(§n+,8n)\n)(<eiej>n'}’jk+<ekej>n7ji)

d
+Bn(Qij(&j€)n+ Quj(€18)n) — Bn g (€in
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ric parts of the tensor of velocity gradiensandh=H/H . z (1)
are the unit vectors along the chain axis and the magnetic H
field, and the following notations are used:

(D=3 oy,

<“'>n=f “-eyy(e)de, <--->2=f---e¢2(e)de.

Here,lpg(e) and ¢,(e) are the equilibrium and the nonequi- FIG. LA horizgntally u_nbou_nded ferrofluid lay€2) is pl_aced i_n a non-

librium angular distribution functions. The former is known Magnetic containe(3) with air (1) above. The system is subjected to a
. . . horizontal magnetic fieldH, and harmonic vertical vibratiore(t).

due to the classical Langevin model and the latter is the

solution of the Fokker—Planck equatidsee Refs. 19, 20,

and 24. The exact solution for the case of an arbitrary field

is unknown. Therefore, Zubarev and Iskakova suggested an

approximation fory,(€): il +(ugradu
—_— i

p =g, T@—pg(t) 85, =123,
Un(8) = Yn()[1+a(e—(e)p) +bi(eiey—(eiedm ], at !
3) (6b)
Wherea andb are a vector and a symmetric tensor. They canThe vertical vibrations add a periodic term to the gravity

. ' accelerationgy, i.e., a modulated valug(t)=(0,0,—g
be found from the equations for the fi and the second 0 : . . 0
(e/6,), moments o?zpn(e), which afszjnerived from the —acost)) appears in the equations of the fluid motion.

Fokker—Planck equatiofi?®2*with the accuracy up to the Here a is the acceleration amplitude andlis the angular

linear terms with respect to the velocity gradients. The mo_frequency of the vibrations. The governing set of equations

ment equations fofe,), and(ee,), involve two relaxation has to be supple_mented by the boundary conditions, which
times, r,=1/(2D) and r,=1/(6D), whereD~1/» is the '€ the same as in Ref. 37.
coefficient of rotational diffusion.
One can easily see that the magnetization of the ferroHl. LINEAR STABILITY ANALYSIS
fluid is

divu=0, (6a)

Following the standard procedute?® the governing

Rg equations and the boundary conditions have been linearized
M= Ms$<<<e>n>>' (4) in the vicinity of the nonperturbed state,
u=0, ¢=0, HO=H,, =123,

If aandb are known one can relate the viscous stress tensor
o and the magnetization to the tensor of velocity gradients (1) Mo
for the given value of magnetic field strength The total Po=P"'— 5 MoHo—0(D)z,

stress tensof reads N .
whereM, andp, are the magnetization and the pressure in

the unperturbed state. In order to construct the linearized
governing equations for the small perturbations, which en-
(5) compass the magnetic field strendth, the pressure.,
and a nonzero velocity of the fluid, it is necessary to ex-
pand all quantities in Taylor series.

The above-defined distribution functiogg and ¢,, are
affected by the small perturbations. Since the formation and
the dissociation of chains are connected with the diffusion of

The above model is used to analyze the stability of theparticles in the suspension, they are rather slow processes. It
free surface of a ferrofluid in the following setup. The later-can be estimated by the Schmidt number=Sg(pD,)
ally infinite ferrofluid layer of arbitrary deptld is subjected which relates the characteristic time for mass transport by
to a homogeneous dc horizontal magnetic fieldy,  flow to the characteristic time for mass transport by diffu-
=(Hg, 0, 0) and harmonic vertical vibration&ig. ). The  sion. For a typical ferrofluid the Schmidt number is about
planez=0 coincides with the nondeformed surface of the5x 10 with =0.1 kg/ms,p=1020 kg/ni, and the Brown-
ferrofluid. The fluid layer is bounded from below by the ian diffusion coefficientDo=2x10"*' m?/s.** Therefore
bottom of the nonmagnetic container and has a free surfacse neglect the changes m, caused by the perturbations.
described by&(t,x,y) with air above. This implies that the size distribution of chains does not

Due to zero electrical conductivity of the fluid, the static depend either on the spatial coordinates or on time. In Refs.
form of the Maxwell equations is used for the magnetic field19, 20, and 24 only spatially homogeneous systems are con-
in all three media. The fluid motion is governed by the con-sidered. An extension to the case of a spatially inhomoge-
tinuity equation and the conservation law of the linear mo-neous system results in additional convective terms in the
mentum dynamic equations for, [Eq. (12) in Ref. 24. Since

H
p+,u0f MdH’ + 22 H2
0

Tik=— >

Sik T HiBy+ iy

whereB= uqo(H+ M), p is the pressure, arl the induction
of the magnetic field.

B. The system
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these terms are of the formu grad)y, ., i.e., they are of The stability of the flat surface with respect to standing
second order with respect to the perturbations, they can b&aves is analyzed by using the Floquet ansatz for the surface
neglected in a linear stability analysis. As long as the typicafeformations and the component of the velocity

length scale of a chain~10"8-107 m) is smaller than

that of the spatial variation of the perturbatiotigpically £(t,x,y) =sin(kr)elstiaat 3 ¢ ginot (93)

~103-10 2 m), Zubarev’s model can be applied in the n=—c

present setup. Our resulisee Sec. 1Y suggest that this con- ®

dition is always fulfilled. U,(t,x,y,2)=sin(kr)etieat 3\ (z)ginet, (9b)
The symmetry of the system possesses a humber of re- n=—o

strictions ona andb. The change of to —y andz 10 =z \herek= (k,k,,0) is the wave vectos is the growth rate,

should not change the componeats, by, byy, andb,,,  anda is the parameter determining the type of the response.

whereas this transformation leads to the change of a sign qfgr =0 the response is harmonic whereas dor 1/2 it is

the componentay , a,, by, andby,. This completes the set sypharmonic. Expansions similar t8b) are made for all

of the moment equations derived from the Fokker—Planclyther small perturbations and are inserted into the linearized

equation->2?*and gives us the values afand b. governing equationg§?). The functions of the vertical coor-
After a and b are found, we have for the perturbations dinate in the Floquet expansion are of the foum(2)

M of the magnetization and those of the total stress tensor Ce~ 9% whereC,, is a complex amplitude of the corre-

-F(12): sponding quantity. The condition of reality fé(t,x,y) leads
{032
M 1= A1 Yt AHE
1x 17/xx 20 11x o ngnzfz , a:O' (106)
M1y =Ag v+ A+ AsH P |
ly Xy 43 Exy 5 (12); ffnzngl’ a=1/2. (10b)
Mi,=A +A,Q,,+AHY, . . . .
127 A3 ¥z Aathxa ™ Az Inserting the ansatz into the governing equatiGhswe
T = =Pt As vt AHEY, obtain a set of algebraic equations for the amplitudes of all
_— 2 perturbed quantities. The solvability condition for this set
Tiy= Tiyx=AgYxy T AgQyy+ArgH1y gives us four values of the modified wave vecatprHence,

the general solution of the set of governing equations in the
T2~ TB=Agyt Agly+ AHP X coetants. T

Ixz— Tz ferrofluid contains eight arbitrary constants. Two more arbi-
-|-(12y ) = = P1+ Arr vt Arayyy+ AgH @ trary constants are the amplitudes of the perturbatlorjs of the
field in the air above and below the fluid after applying the
T =T =Arn:, boundary conditions @— =+ . Ten of the boundary condi-

tions [Egs. (8) and (3.29—(3.2f) in Ref. 37] allow one to

()= _ (2 . )
Ti7z= = Prt Anyuct AraYzo+ At express all the perturbed quantities in terms of the coeffi-

whereA;,A,, ... A3 are known functions of the applied cients¢, which satisfy

magnetic field, the frequency of the vibrations, as well as of o

.the. parameters of the ferrofiuid, and the equation of continu- > (W, ¢,—ag,_,—a&, . )elsTil@rmelt=q (1)
ity in the form y,,+ yyy+ v,,=0 has been used. The func- n=-—

tions A; are obtained by means of averagingth function  \here W, are rather complicated functions of the applied
¢n(€)] over the orientations of chains and averaging over thje|q, the frequency of vibrations, the depth of the fluid layer,

sizes of the chainéwith functiong,). _ and of the parameters of the ferrofluid. Here the functions
Thus, thg set of governing equation for the first order oan depend additionally on the coupling constanin con-
the perturbations can be written: trast to the corresponding functions in the previous paper.
divB{’=0, rotH{’=0, =123, (78 Equation(11) has to be satisfied for all times which im-
plies that each term of the sum equals zero. Using the rela-
divu=0, (7b)  tions betweerg,, with positive and negative numbe(s0),
Y one gets the set of equations
i 2
P T 9 Woto-agi—a&=0, a=0, (128
Here B, is the perturbation of the induction of the magnetic Woéo—aéy —ag =0, a=1/2, (12b)
field.

The linearized boundary conditions differ from those in ~ Wnén~8&n-178&n+1=0, n=1,...0. (129
Ref. 37 by the condition for continuation of the stress tensol cutoff at n=N (in the present workN=100) leads to a

across the free surface of the fluid, self-consistent equation for the acceleration amplimd&*®
n(TH-TE) -8 308, 6=0 =123 atz=0, (8 a=|F(a,k,w,Hg,7,0,p,5,8)], (13

whereA | = dy,+dyy. In contrast to the previous ca¥ethe  whereF is a complex function expressed in terms of contin-

first two equations ir(8) are independent of each other. ued fractions. Equatioil3) can be solved numerically and
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FIG. 2. Neutral stability curves for the excitation frequeriey100 Hz and 4k ]
layer depthd=5 mm. Dashedsolid) lines are calculated witliwithout) S 4 i
taking into account deviations of the magnetization from equilibrium. The 00
parameters of the fluid arg=0.1 kg/ms,e=5, k=0.5, c=0.0265 N/m, s 3r N
p=1020 kg/nt, R=10.5 nm, k,=614.5 m*, and the particle volume _ -
fraction ¢=0.082. - oL 2 © 4
S
. 1 . 1 . 1 . 1 .
gives the dependence @f on k at fixed parameters. The 0 2 4 6 {
critical values of the acceleration amplitudgand the wave klk
numberk. correspond to the absolute minimum of the curve °
a(k) at zero growth rateg=0). FIG. 3. The second and the fourth tongues of the neutral stability curves for

the viscosities of the carrier liquig=0.136 kg/mga), =0.138 kg/mgb),
and = 0.14 kg/ms(c). The remaining parameters are the same as in Fig. 2.

IV. RESULTS AND DISCUSSION

Figure 2 presents marginal stability curves for a viscous
ferrofluid at high frequency for two cases. The dashed lines
are calculated XVlth neglect of the magnetization relaxatiorfeatures in Comparison with all other tongdég'he typ|ca|
time,a=0 andb=0, i.e., the average orientation of chains arrangement of tongues in Fig. 2 can be generalized as fol-
immediately follows the field perturbations. The solid lineslows: it is always an even tongué&,,,.=2N, N=1,2,..,
depict the neutral stability curves for the system out of equiwhich becomes abnorméherel 4,,=4). All tongues with
librium. The dependence of the acceleration amplitude on the>1 ., form separated pairs of two overlapping tongues
wave number fos=0 divides the phase space into regions,(herel=5,6 andl=7,8) inside the abnormal tongue. All
where the surface of the ferrofluid is stable or unstable wittongues corresponding to a higher order harmonic response,
respect to parametrically driven standing waves. The princit=1_4,,;+2L, L=1,2,.., are ‘islands” of stability with re-
pal data, which can be extracted, are the critical acceleratiospect to a response of the system with the frequengy,,.
amplitude(scaled withgg), the critical wave numbeiscaled In the domains, where the subharmonic tongues overlap with
with the capillary wave numbeét,= \pg/o), and the num- the regions of the harmonic type of instabilityray regions
ber of the tongue to which they belong. The number of an Fig. 2), both types of instability can occur.
tonguel (from left to right is the order of response: the basic Figure 3 illustrates the scenario of the transition between
wave frequency related to tHéh tongue isw;=Iw/2. The the neutral stability curves withy,,;=4 andl ;=2 with an
odd and even tongues are the regions, where either a subh@merease of the viscosity of the carrier liquid. At the point,
monic or a harmonic instability develops. That relation forwhere two tongues touch each other, the amplitudes for the
the different instability types holds for Newtonian corresponding terms in the Floquet ans@zbecome equal.
ferrofluids’’ but experiences significant changes if the ferro-The number of the abnormal tonglig,,, depends on the
fluid contains chains. mean relaxation time of a chaig=1/(2D)). The latter can

Due to the finite relaxation time the tongues are de-be varied by changing the viscosity of the carrier liqgidn
formed. All tongues but one are now shaped by a lowelFig. 4, the produci 4o IS presented as a function gf As
boundary, a pronounced tip, and a upper boundary. For thihe relaxation time increases with the viscosity, the corre-
chosen set of parameters in Fig. 2 the fourth tongue becomeponding numberl 4, decreases: from ,,,~60 for 7
exceptionally deformed, since it has no tip and no upper=0.001 kg/ms td ,,,—~4 for »=0.1 kg/ms. Therefore se-
boundary in the way all other tongues have. It is caused byguential changes of the number of the abnormal tongue oc-
the fact that the self-consistent equation for the acceleratioour. The corresponding value af,,,so0 Shows a jump-like
amplitude(13) has always a solution d&sgoes to infinity. To  decrease at those points, whégg,, drops tol ypng— 2.
note the difference to all other deformed tongues, we call it  Both the overlapping of tongues and the appearance of
an abnormal tongue because this tongue lacks two essent@h abnormal one were also observed for the Maxwell vis-
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FIG. 4. Dependence of the produsety,,¢ (see the texton the viscosity of u@u 016
the carrier liquid. The remaining parameters ate=5, x=0.3, o ~ ’
=0.0265 N/m,p=1020 kg/ni, R=10.5 nm, andp=0.082.

-0.18
0.

coelastic liquic®*°and it seems that these features are signs o 3

of a viscoelastic behavior. One has to note that if the anguIq'ﬂg'Cﬁt'icgl]Zggﬁg;’aeﬁg:fzﬁgﬁﬁfdgsgzizggﬁoﬁgt'gﬁlrgat’gng‘;u?g?gm_
distribution of chains is assumed to be in equilibrium gter. The quantities with the superscriptfree)” belong to the chain-free
(dashed lines in Fig. )2 i.e., 7o=0, the neutral stability ferrofluid (g,= 8,1¢/v), the quantities without a superscript belong to the
curves are standard tongues without any qualitative changdgrofluid with chaing g, is given by Eq(1)]. CurveA: f=20 Hz, curveB:

in comparison with the case of a Newtonian ferrofl(stlid- tfh:elf;m'lzé;';e':'%yezr depth id=2 mm and the remaining parameters are
ied in Ref. 37. It shows that it is the combination of chains o

and their nonzero mean relaxation time which causes the

new features in the neutral stability curve.

The dependencies of the critical wave number and thdluid layer with depthd=5mm, and the dashed lines are

critical acceleration amplitude on thexcitation frequency f calculated for an infinitely deep layer. It is seen that at high
= w/27 are presented in Fig. 5. The curves denoted\lare frequencies the critical acceleration in the system out of
calculated for a nonequilibrium magnetization and the curve§duilibrium is lower than that in a model system, where the

B present the case where the chains follow the field perturr_elaxation time is neglected. It is clear that with a decrease of

bations immediately. The solid lines correspond to the ferroth€ frequency the deviations of the magnetization from an
equilibrium and their importance become smaller. Therefore,

one can expect that curvédsandB coincide at low frequen-
— . — cies. However, this is observed only in the case of the infi-
nitely deep fluid layer. In the case d&=5 mm, the finiteness
of the layer and consequently the influence of the viscous
stresses in the bottom fluid layer become stronger in the case
of the system out of equilibrium, and the critical acceleration
increases more rapidly with a decrease of the frequency.
With the further decrease of the frequency, transitions to
higher order response ocdir**”and the frequency of the
Faraday waves remains high enough to leave the orientation
of chains in nonequilibrium.
Figure 6 presents the relative differences between the
critical parameter&{™® anda({"™® for a chain-free ferrofluid
e and those for a ferrofluid with chains as functions of the
Langevin parameter, i.e., of the dimensionless magnetic
field. The magnetization, chorg.=M/H, and differential
0.1 PR susceptibility yq=JdM/dH of the chain-free ferrofluid are
, chosen the same as in the ferrofluid with chains at each
10 100 point. The magnetization is out of equilibrium in the ferro-
f(Hz) fluid with chains and is in equilibrium in the chain-free one.
It is seen that af =20 Hz the formation of the chains de-
FI_Q. 5. Frequenf:y dependencies of the critical wave ngrhp(aa) andthe  creases the critical wave numbeurveA in Fig. 6a)]. Since
critical acceleration amplituda, (b) for d=5mm (solid line§ andd== 0 gresses at the bottom layer are essential at this frequency
(dashed lines The magnetization is assumed to be out of equilibrium for . . .
curvesA and in equilibrium for curve8. The remaining parameters are the andd=2 mm, this leads to the increase of the critical accel-
same as in Fig. 2. eration amplitudgcurve A in Fig. 6b)]. At the higher fre-
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The dependencies are less pronounced than in the previ-
ous case, wher g,,=26.6 kA/m3’ due to the fact that the
range of rather weak fields is studied here. Such a choice of
fields ensures thain)<e and that the head-to-tail orienta-
tion of the moments in a chain is still preferable which is
needed to apply the model.

The nonmonotonic dependence af(H,) for =0
[curve Ain Fig. Tb)] is caused by the joint action of the two
mechanisms of the viscous dampii(ig:the dissipation in the
bulk fluid and (ii) the viscous stresses in the bottom fluid
layer. The first mechanism is dominant for large wave num-
bers and causes a decreaseof The second becomes im-
portant with the decrease of the wave number and results in
an increase o with field strength. A detailed discussion of
this nonmonotonic behavior @f.(H) is given in Ref. 37.

There are three effects caused by the formation of

65 : . : chains. Since a chain has a magnetic moment larger than that
0 0.5 1 of a single particle, the formation of chains leads to the in-
Hycosb/H, crease of the magnetization of the system at the given field in
FIG. 7. The dependencies of the critical wave num{arand the critical ComF’a”S‘?” with & homogenepus ferroflwd. This strengthens
acceleration amplitude on the projectiontéf on the direction ofk for f the field influence on the fluid motion. The effect can be
=100 Hz andd=1mm. The curveA is obtained by varying the field formally taken into account by adjusting the magnetization
strength withd=0, whereas the curvB was calculated by varying with and susceptibility of the chain-free ferrofluid in such a way
Ho=Ho ma=1.46 kA/m. Remaining parameters are the same as in Fig. 2. 55 it js done in Fig. 6. The two other effects are more inter-
esting. The chains increase the magnetization relaxation time
and change the effective viscosity of the suspension both in a
quency, f=100 Hz, the changes df, are nonmonotonic. steady and in a periodical flot¥:2%%*
There is a range of the parameters, where the critical wave In order to investigate the role of these two effects, a
number on the ferrofluid with chains is larger than that on thenumber of model ferrofluids are considered. The first sample
chain-free ferrofluid. The critical acceleration amplitude isis a ferrofluid with chains. It is characterized by the mean
decreased by the formation of chaisirve B in Fig. 6b)]. relaxation time of a chainy and unperturbed values of the
Note that the susceptibility of the ferrofluid changes stronglymagnetizatiorM ; as well as the chorg. and the differential
with the increase of the field, therefore the relative impor-susceptibility y4. The second model ferrofluid contains
tance of the influences of the magnetic field, the fluid micro-chains as well, but in this case the relaxation time is ne-
structure, and the viscous stresses depends on the field. glected ¢,(€)= wﬂ(e)]. The third and the fourth ferrofluids

The above results were obtained for the particular casare chain freed,= &, 1¢/v) with the same unperturbed val-
k|Ho. The typical size and orientation of chains depend orues ofMg, x., andxq. The magnetization relaxation time
the applied field. Therefore, the threshold of the instabilityfor the third ferrofluid is equal tory, and for the fourth
depends on the strength of the field and the afiddetween sample the relaxation time is neglected, i.e., the last sample
k andH, separately. It is not possible to introduce a singleis the ferrofluid, which was studied in Ref. 37. The predic-
parameter like the effective fiefd,which would incorporate tions of the Zubarev model for the case of a chain-free fer-
those two dependencies. This fact is illustrated in Fig. 7. Theofluid with a finite relaxation time were compared with the
product Hy cosé was varied in two ways. For the curves results of a model using the effective field theory developed
indicated byA, the field strength was changed from zero toby Martsenyuk, Raikher, and Shliomis in 19%4In both
Homax=1.46 KA/m with #=0. In the second cageurvesB), cases, the Langevin parameteyy involved in the model
¢ was changed from zero to/2 at the constant fielthyn,. ~ was adjusted to obeyne/vL(k,q)=Mg, where L(«)

In contrast to the chain-free ferrofluid studied in Ref. 37,=coth(x)—1/k denotes the Langevin function. A fairly good
where both curves would be identical, there are now twoagreement between the threshold parameters predicted by
different graphs. Whereas the critical wave numbers havéoth models is observed. In Fig. 8 the coupling constaist
similar values for the two ways of variation, the critical ac- varied by changing the temperature. The intensity of the ap-
celeration shows greater differences: for instance foplied magnetic fieldH, is changed in such a way that the
Ho cost/Hpma=0.5 the difference ink. is 0.4% against Langevin parameter is equal to=0.5.

2.5% fora;. Thus it makes a notable difference for the sta-  The comparison of the presented dependencies reveals
bility of the free surface whether the system is subjected tdhat the finiteness of the magnetization relaxation time leads
(=0, Hy=Hgmal2) or to (#=60°, Hy=Hmay. This fact  to an increase of the critical wave numlpeompare the pairs
suggests a simple method to test the presence of chains inodthe curvesA—C andB-D in Fig. 8@)]. At the same time,
sample. If the ferrofluid is chain-free both ways of excitationthe changes in the slow-flow rheological properties of the
lead to the same value @t;, if it contains chains one gets suspension caused by the formation of the chains decrease
two different values. strongly the critical wave numbécompare curve€—-D and
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FIG. 8. The dependencies of the critical wave numtagrand the critical

acceleration amplitude for the infinitely deep layer of the ferrofluid consist-F'C- 9- The dependencies of the réal and the imaginaryb) part of the
ing of A: single particles with the Brownian relaxation timg=r,: B: effective viscosity on the wave frequency. The dashed line denotes the ef-

chains with orientations out of equilibriufiq. (3)]; C: single particles with feft'sveT\r’]'scosl,'(?’i,Wh'C: IS ?altchulattfafd V;’_'th ngglegtt o tTe Iretlagathn t'{ﬂe fqr
zero relaxation timeD: chains with the equilibrium orientatior{s/,(€) &=>. 1Ne Solid ines denote the efiective viScosity calculated using the size
0 o distribution of chaing1), and the dotted curves present the real and imagi-
=y,(e)]. The remaining parameters are the same as before. : - - . - :
nary parts of the effective viscosity for model ferrofluids containing chains
of n particles onlyH,= 0, the remaining parameters are the same as before.

A-B). The net effect of those two influences gives the be-
havior that is presented by the curvgsn Fig. 8. size is done in Fig. 10 for three values of the wave frequency.

The critical acceleration amplitude for a ferrofluid with The size distribution of chainl) is presented with closed
nonequilibrium chaingcurveB in Fig. 8b)] has the lowest circles in Fig. 10a). It is seen that at low frequencies (
value among all the tested model ferrofluids. This can be=1 Hz) the viscoelastic effect is mainly caused by very long
interpreted as a sign of an elastic behavior, which is typicathains with small values df, [see maximum of- Im(7 )
for viscoelastic liquids at high frequencies. This fact is con-at N=16 in Fig. 1@b)]. For f=5Hz the maximum of
firmed in Fig. 9, where the real and the imaginary parts of— IM(7 ) is shifted to long chainsn(=11) and the value of
the effective viscositypes=[ 0w /(2vi)— 1]/ of a ferrofluid ~ the maximum increases. Together with the larger values of
are presented as functions of the frequency of surface waves
fi=w,/(27) with 1=1. The caseHy=0 is considered, :

where the system is isotropic and the influence of the chains _ 0o

on the rheological properties of the suspension can be char- % 04 QQBDDOOO @) 7]
acterized by the single complex parameigg.?* The real £ | g o ° ]
part of the effective viscosity determines the dissipation of # o o °

the energy in the system, and a nonzero imaginary part leads & 0.2 _uzs%o DD ooo 7]

to a phase shift between the tensor of velocity gradients and go‘ 5 '"'228 O o, |
the stress tensor, i.e., to a viscoelastic behavior. It is seen that
the imaginary part of the effective viscosity is nonzero and
has a maximum at a frequency pf=5 Hz [solid line in Fig. 0.2 ' T ' T '
9(b)], where therefore a maximal phase shifiscoelastic oo
behavioj can be expected. At the same time, the real part of ~,
the effective viscosity decreasesolid line in Fig. 9a)]. The
effective viscosity for a stationary flowvith neglect of the
relaxation time is plotted as dashed line. It is seen that the
deviations of the orientational distribution from equilibrium 0 0% o5 %
. . . . o LD O Op
result in a decrease of the real part of the effective viscosity. 0 Legadel | ©%000060b000dd0a88
This implies that the energy is dissipated weaker, and that 0 10 20 30
consequentha, is lower than in the case of zero relaxation n
time. The comparison of the solid curve with the dotted ones - _ o S _
in Fig. 90 shows that the maximum of the imaginary part of {19, 0. CO0btins s coneniogariios e et ava
the effective viscosity is caused by the long chains. and 100 Hz ¢ ); and (@) the size distribution of chaind). The remaining
A comparison of the contributions of chains of different parameters are the same as in Fig. 9.

0%o0 000890
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g, for those long chains, the total viscoelastic effect is larger 1.8

than forf =1 Hz[compare the area under the open circle and

open square curve in Fig. @)]. For high frequencies such 1.6 .
asf=100 Hz the maximum of-Im(7 ) is at short chains <

~

(n=5) and the value of the maximum decreases. This de- - 14
crease cannot be compensated by the even larger values of

g, for those short chains. Thus the total viscoelastic effect 12
decreases again: the area under the open diamond curve is
smaller than the area under the open square curve.

In summary, by increasing the frequency from 1 to 100
Hz the viscoelastic effect passes at maximumf at5 Hz
[solid curve in Fig. ®)]. The maximal contribution to
—Im(7eg,,) comes forf <100 Hz from chains off the maxi-
mum ofg, . Comparing the area under the open circle, open
square, and open diamond curve in Fig(@lQone can see
that the area is continuously shrinking withlt results in the B
solid line in Fig. 9a) describing the weaker dissipation of
energy in the system.

The origin of the viscoelasticityi.e., the dependence of
the relation between the tensors of velocity gradients and theic. 11. Dependency of the critical wave numki@rand the critical accel-
stress tensor on the hist()riy| a ferrofluid with chains can be eration amplitudéb) on the Deborah number for a model ferrofluid with the
explain in the following way. When the orientation of a chain tunable relaxation time of a chain. The coupling constant and the Langevin
. L . . parameter are: curvel: ¢=5.5, k=0.39, B: ¢=5, k=0.5, andC: ¢
IS Cha_”ged from the _equmbrlum by the VelOCIt_y grgdlents, 8_45, k=0.63. The remaining parameters are the same as before.
restraining moment is generated by the applied field. Thus
the network of chains is an “elastic” element of the system,
which interacts with the viscous carrier liquid. If the relax- is observed. In the case of the rather short chains formed by
ation time of a chain is much shorter than the period of thenagnetic particles, the relaxation time is the orientational
vibrations, the orientation of chains and consequently theelaxation time of a chafll in the viscous carrier liquid.
rheological properties of the suspension do not depend oSince it is proportional to the viscosity of the carrier liquid,
history, and there is no viscoelastic properties. This fact bethe high values ofr, and De, respectively, mean a strong
comes more obvious if one notes that the relaxation time otoupling between the motion of a chain and the carrier lig-
a chain is proportional to the carrier liquid viscosity. Thusuid, which ensures the viscoelastic behavior. Thus ferrofluids
the negligible relaxation time of a chain implies a weak cou-widen significantly the range in which viscoelastic features
pling between the chain and the carrier. can be observed in contrast to polymer solutions.

To estimate the importance of the relaxation processes in  In a real ferrofluid, any variation of the system param-

a ferrofluid with chains, the Deborah number De is calcu-eters not only varies the Deborah number but also affects the
lated for the subharmonic response. The Deborah number gitical parameters either directly or indirectly by changing
the product of the angular wave frequency with the mearother properties such as permeability or viscosity. In order to
relaxation time of a chain, Dew, 7y. In the case of polymer investigate the role of the deviations of the chains from equi-
solutions, the most pronounced viscoelastic behavior shoullibrium in greater detail, a model ferrofluid with a tunable
be expected in the range of Bd, whereas at Del are- coefficient of rotational diffusion for all chain®nep,
covery of the Newtonian behavior was obserffedn the =D, Dg.pis studied. Via that coefficient the mean relaxation
case of ferrofluids with chains, the viscoelastic behavior igime 7y, i.e., the Deborah number, can be varied.

present over a much wider De range. The frequency range of Dg,ciS @ phenomenological parameter, which is related
Fig. 9 gives 0.033:De<3.3 for which a viscoelastic behav- neither to the chain size nor to the fluid properties. Using this
ior is present since-Im(7.x)#0. That fact is supported by phenomenological parameter, a smooth transition can be re-
the range of appearance for the abnormal tongues consideratized from a model ferrofluid with chains almost in equilib-
to be a characteristic feature of viscoelastic behavior. Fromium (Dg.5&>1 gives De<l) to the real ferrofluid Dqqe

Fig. 4 one can read that viscoelastic properties can be ex=1), and further to a model ferrofluid with chains far from
pected even for De beyond 10. the equilibrium Dg.4e<1 gives De>1).

Obviously the viscoelasticity of a ferrofluid with chains It is seen in Fig. 11 that even small deviations from
differs from that of a polymer solution. The reason for this equilibrium are significant as the variationlqfanda, in the
difference is the following. The relaxation time of a long range from De-0.001 to De-0.01 show. In the case of a
polymer chain involved in the polymer dynamics is the con-system with long chainse(=5.5), a pronounced minimum
formational relaxation time. As soon as the period of excitain the dependence ddi;(De) and a maximum in that of
tion becomes much shorter than the conformational relaxk.(De) are observed. As and the mean chain length de-
ation time, the polymer chain does not participate in thecrease, these extrema are shifted toward higher values of De
movement of the solution. Therefore a motion of the New-and become less pronounced and disappeat fo4.5. Be-
tonian solvent through the rigid obstacles of polymer chaingyond De~O(1) one observes a saturationkgfanda, close

(a)

ac/gO

0.001 0.01 0.1 1 10 100
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