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Chain-induced effects in the Faraday instability on ferrofluids
in a horizontal magnetic field

V. V. Mekhonoshina) and Adrian Langeb)

Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany
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The linear stability analysis of the Faraday instability on a viscous ferrofluid in a horizontal
magnetic field is performed. Strong dipole–dipole interactions lead to the formation of chains
elongated in the field direction. The formation of chains results in a qualitative new behavior of the
ferrofluid. This new behavior is characterized by a neutral stability curve similar to that observed
earlier for Maxwell viscoelastic liquids and causes a significant weakening of the energy dissipation
at high frequencies. In the case of a ferrofluid with chains in a horizontal magnetic field, the
effective viscosity is anisotropic and depends on the field strength as well as on the wave
frequency. ©2004 American Institute of Physics.@DOI: 10.1063/1.1649757#
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I. INTRODUCTION

Magnetic fluids~or ferrofluids! are colloidal dispersions
of single domain nanoparticles in a carrier liquid. The fas
nation of ferrofluids stems from the combination of a norm
liquid behavior with the sensitivity to magnetic fields. Th
enables the use of magnetic fields to control the flow of
fluid, giving rise to a great variety of new phenomena and
numerous technical applications.1 One of the peculiarities o
ferrofluids is the mutual influence of the microstructure a
the rheological properties of the fluid. Due to strong interp
ticle interactions various aggregates can be formed i
ferrofluid.2–5 On the one hand, the formation of the aggr
gates changes the effective viscosity of the fluid. On
other hand, the motion of the fluid influences the structure
the aggregates.

In an applied magnetic field chains containing seve
particles are the favored form of an aggregate and are for
by the dipolar interactions. There is a similarity between
chains of dipoles and the macromolecular chains in polym
solutions. In both systems a network of chains is coup
with a viscous carrier liquid. This viscous coupling implie
that the relaxation character of the chain dynamics leads
viscoelastic behavior of the solution. The viscoelastic beh
ior is reflected in a dependence of the stress tensor on
history of the system. The theoretical treatment of the v
coelasticity of polymer solutions is usually based on a p
nomenological model. There are three well-known mod
for an isotropic linear viscoelastic liquid. In the Maxwe
model a viscoelastic element is a combination of a pur
elastic spring with a purely viscous dashpot. In the Bingh
two-component model these elements are connected pa
to each other, and the Jeffreys element is a superpositio
the two previous ones. A comprehensive review of the th
retical basics and the existing models was done by Bird
Refs. 6 and 7. An overview of the theoretical approache
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the polymer dynamics is given by Doi and Edwards.8

A ferrofluid with chains in a magnetic field is an anis
tropic system. This makes it similar to a nematic liquid cry
tal ~NLC!, whose rheology can be described by a group
models usually referred as Ericksen–Leslie–Parody~ELP!
models. The stress tensor in Refs. 9–12 involves five in
pendent viscosity coefficients, which are scalar functions
the density and the temperature. ELP models are widely u
in the hydrodynamics of NLC. These models were employ
in the analysis of a flow instability13 and in studying periodic
patterns.14 In these papers as well as in Refs. 15 and 16
influence of an external field was taken into account. Read
who are interested in a deeper insight into ELP models
referred to the books of de Gennes17 and Chandrasekhar.18

Since the susceptibility of ferrofluids is much high
than that of liquid crystals, the effects caused by exter
field should be more pronounced. The theoretical analysi
the rheology of a colloidal suspension containing ellipsoi
particles in a field was performed by Pokrovskij in Refs.
and 20. The model gives a constitutive equation of the E
kind, where the viscosity coefficients are expressed in te
of the parameters of the suspension and the applied fi
Electro- and magnetorheological fluids present a group
suspensions, whose behavior is close to that of ferroflu
The viscoelastic properties of electro- end magnetorheol
cal fluids were studied experimentally in Refs. 21–23. P
ticularly it was shown that external fields can influence t
rheological response of the fluid by changing the comp
shear modulus and yield stress. Zubarev and Iskakova24 used
the results of Refs. 19 and 20 to obtain a constitutive eq
tion for a ferrofluid with chains for the case of a weak flo
of any kind. In the present paper the model suggested in
24 is applied to the linear stability analysis of the Farad
instability.

The Faraday instability denotes the parametric gene
tion of standing waves on the free surface of a fluid subjec
to vertical vibrations. The study of this phenomenon da
back to the observations by Faraday25 in 1831. The initially
flat free surface of the fluid becomes unstable at a cer
© 2004 American Institute of Physics
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intensity of the vertical vibrations of the whole system. As
result of the instability, a pattern of standing waves is form
at the fluid surface. The typical response is subharmonic,
the wave frequency is half the frequency of the excitation
harmonic response can be observed on a shallow fluid at
frequencies.26 Faraday waves allow one to investigate sy
metry breaking phenomena in a spatially extended nonlin
system. Therefore they have experienced a renewed int
in recent years. Detailed experimental studies of the vari
patterns on a viscous fluid have been performed,27–31 where
a one-frequency as well as a two-frequency forcing w
applied. Among the observed patterns are parallel roll27

hexagons,27 a twelvefold quasi-pattern,27 triangles,28 super-
lattices formed by small and large hexagons,29 squares,28–31

and rhomboid pattern.31

The comprehensive linear stability analysis of the Fa
day instability on an arbitrarily deep layer of a viscous no
magnetic fluid has been performed by Kumar a
Tuckerman.32 This analysis was tested experimentally33 and
an excellent agreement between the predicted and ex
mental data was found. In Refs. 26 and 34 the low freque
region is studied particularly. Bicritical points, where tran
tions from one type of response to others occur, are predi
and experimentally confirmed.26 In Refs. 35 and 36 an ana
ogy between the Faraday instability and a periodically driv
version of the Rayleigh–Taylor instability is exploite
Based on that analogy in Ref. 35 a scaling law is sugges
which satisfactorily describes the behavior of the system
wide range of parameters. Kumar36 discusses the mechanis
of the wave number selection in the Faraday instability
high-viscous fluids.

In our previous paper,37 the Faraday instability on a
chain-free ferrofluid was studied. A nonmonotonic depe
dence of the stability threshold on the magnetic field is fou
at high frequencies of the vibrations. It was revealed that
magnetic field can be used to select the first unstable pa
of Faraday waves. In particular, a rhombic pattern as a
perposition of two different oblique rolls can occur.

The Faraday instability of a viscoelastic nonmagne
liquid was studied experimentally in Ref. 38, where a h
monic response was detected. In Refs. 39–41 the Max
model of viscoelastic liquid was used in the theoreti
analysis. The authors observed pronounced changes in
neutral stability curves. Particularly, the tongues related
the harmonic response became abnormal. Such a tongu
no tip and all tongues of higher order are inside this abn
mal tongue.

The aim of the present paper is to investigate the role
the chains in the Faraday instability on a ferrofluid in a ho
zontal magnetic field. The formation of the chains leads t
dramatic increase of the magnetization relaxation tim
changes the effective viscosity of the suspension, and
creases the susceptibility of the ferrofluid. A number
model ferrofluids are investigated in a wide range of
parameters of the system to study the relative importanc
those effects.
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II. SYSTEM AND BASIC EQUATIONS

A. Model

A dielectric, viscous, and incompressible magnetic flu
with constant densityr is considered, which contains pa
ticles of the equal size. The strength of the dipole–dip
interactions is characterized by the coupling constan«
5m0m2/(16pR3kBT), which is the ratio of the energy o
interaction between two particles at the minimal separat
with head-to-tail orientation of their magnetic moments
the thermal energy. Herem54MspR0

3/3 is the magnetic mo-
ment of a particle,R5R01d is the hydrodynamic radius o
the particle,Ms is the magnetization of the magnetic mat
rial, R0 is the radius of the magnetic core of a particle,d is
the thickness of the nonmagnetic layer,kB is the Boltzmann
constant, andT is the temperature. The interaction of a pa
ticle with the applied fieldH is measured by the Langevi
parameterk5m0mH/(kBT). In the case of a magnetic fluid
with low particle volume fractionw, interactions between
chains can be neglected. Assuming that the chains
straight and rigid, Zubarev and Iskakova determined the s
distribution of chains, which minimizes the free energy
such a magnetic fluid and is given by24

gn5
xn

v
sinh~kn!

kn
exp~2«!, ~1!

x5@2y coshk1sinhk

2A~2y coshk1sinhk!224y2#/~2y!,

wherev is the volume of a particle andy5kw exp(«). Each
chain containingn particles is modeled by an uniaxial ellip
soid with semi-axes equal tonR andR. This keeps the solid
phase volume density unchanged and allows one to use
results of Pokrovskij.19,20The viscous stress tensor for a sy
tem of uniaxial ellipsoids consists of a symmetric and an
symmetric part

s ik5s ik
(s)1s ik

(as), ~2!

where

s ik
(s)52hg ik1h K K F2ang ik2rn^ejes&nd ikg js

1~zn1bnln!~^eiej&ng jk1^ekej&ng j i !

1bn~V i j ^ejek&n1Vk j^ejei&n!2bn

d

dt
^eiek&n

1~xn22lnbn!^eiekejes&ng jsG L L ,

s ik
(as)5

kkBT

2v
^^^ei&n2^ek&nhi&&.

Both parts contain the geometric factorsan , bn , xn , ln ,
rn , andzn , which are entirely determined by the aspect ra
of an ellipsoid corresponding to ann-particle chain.19,20,24,42

h is the viscosity of the carrier liquid,g ik5(]kui1] iuk)/2
andV ik5(]kui2] iuk)/2 are the symmetric and antisymme
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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927Phys. Fluids, Vol. 16, No. 4, April 2004 Chain-induced effects in the Faraday instability
ric parts of the tensor of velocity gradients,e and h5H/H
are the unit vectors along the chain axis and the magn
field, and the following notations are used:

^^¯&&5(
n

¯nvgn ,

^¯&n5E ¯ecn~e!de, ^¯&n
05E ¯ecn

0~e!de.

Here,cn
0(e) andcn(e) are the equilibrium and the nonequ

librium angular distribution functions. The former is know
due to the classical Langevin model and the latter is
solution of the Fokker–Planck equation~see Refs. 19, 20
and 24!. The exact solution for the case of an arbitrary fie
is unknown. Therefore, Zubarev and Iskakova suggested
approximation forcn(e):

cn~e!5cn
0~e!@11ai~ei2^ei&n

0!1bik~eiek2^eiek&n
0!#,

~3!

wherea andbJ are a vector and a symmetric tensor. They c
be found from the equations for the first^ek&n and the second
^eiek&n moments ofcn(e), which are derived from the
Fokker–Planck equation19,20,24 with the accuracy up to the
linear terms with respect to the velocity gradients. The m
ment equations for̂ek&n and^eiek&n involve two relaxation
times, t151/(2D) and t251/(6D), where D;1/h is the
coefficient of rotational diffusion.

One can easily see that the magnetization of the fe
fluid is

M5Ms

R0
3

R3 ^^^e&n&&. ~4!

If a andbJ are known one can relate the viscous stress ten
sJ and the magnetization to the tensor of velocity gradie
for the given value of magnetic field strengthH. The total
stress tensorTJ reads

Tik52S p1m0E
0

H

MdH81
m0

2
H2D d ik1HiBk1s ik ,

~5!

whereB5m0(H1M ), p is the pressure, andB the induction
of the magnetic field.

B. The system

The above model is used to analyze the stability of
free surface of a ferrofluid in the following setup. The late
ally infinite ferrofluid layer of arbitrary depthd is subjected
to a homogeneous dc horizontal magnetic fieldH0

5(H0, 0, 0) and harmonic vertical vibrations~Fig. 1!. The
plane z50 coincides with the nondeformed surface of t
ferrofluid. The fluid layer is bounded from below by th
bottom of the nonmagnetic container and has a free sur
described byj(t,x,y) with air above.

Due to zero electrical conductivity of the fluid, the sta
form of the Maxwell equations is used for the magnetic fie
in all three media. The fluid motion is governed by the co
tinuity equation and the conservation law of the linear m
mentum
Downloaded 06 Apr 2004 to 193.174.246.168. Redistribution subject to AI
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div u50, ~6a!

rF]ui

]t
1~u grad!ui G5] jTi j

(2)2rg~ t !d i ,3 , i 51,2,3.

~6b!

The vertical vibrations add a periodic term to the grav
accelerationg0 , i.e., a modulated valueg(t)5(0, 0,2g0

2a cos(vt)) appears in the equations of the fluid motio
Here a is the acceleration amplitude andv is the angular
frequency of the vibrations. The governing set of equatio
has to be supplemented by the boundary conditions, wh
are the same as in Ref. 37.

III. LINEAR STABILITY ANALYSIS

Following the standard procedure,32,43 the governing
equations and the boundary conditions have been linear
in the vicinity of the nonperturbed state,

u50, j50, H( i )5H0 , i 51,2,3,

p05p(1)2
m0

2
M0H02g~ t !z,

whereM0 and p0 are the magnetization and the pressure
the unperturbed state. In order to construct the lineari
governing equations for the small perturbations, which
compass the magnetic field strengthH1 , the pressurep1 ,
and a nonzero velocityu of the fluid, it is necessary to ex
pand all quantities in Taylor series.

The above-defined distribution functionsgn and cn are
affected by the small perturbations. Since the formation a
the dissociation of chains are connected with the diffusion
particles in the suspension, they are rather slow processe
can be estimated by the Schmidt number Sc5h/(rD0)
which relates the characteristic time for mass transport
flow to the characteristic time for mass transport by diff
sion. For a typical ferrofluid the Schmidt number is abo
53106 with h50.1 kg/ms,r51020 kg/m3, and the Brown-
ian diffusion coefficientD052310211 m2/s.44 Therefore
we neglect the changes ingn caused by the perturbations
This implies that the size distribution of chains does n
depend either on the spatial coordinates or on time. In R
19, 20, and 24 only spatially homogeneous systems are
sidered. An extension to the case of a spatially inhomo
neous system results in additional convective terms in
dynamic equations forcn @Eq. ~12! in Ref. 24#. Since

FIG. 1. A horizontally unbounded ferrofluid layer~2! is placed in a non-
magnetic container~3! with air ~1! above. The system is subjected to
horizontal magnetic fieldH0 and harmonic vertical vibrationsa(t).
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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928 Phys. Fluids, Vol. 16, No. 4, April 2004 V. V. Mekhonoshin and A. Lange
these terms are of the form (u grad)cn,1 , i.e., they are of
second order with respect to the perturbations, they can
neglected in a linear stability analysis. As long as the typi
length scale of a chain (;1028– 1027 m) is smaller than
that of the spatial variation of the perturbations~typically
;1023– 1022 m), Zubarev’s model can be applied in th
present setup. Our results~see Sec. IV! suggest that this con
dition is always fulfilled.

The symmetry of the system possesses a number o
strictions ona and bJ. The change ofy to 2y andz to 2z
should not change the componentsax , bxx , byy , and bzz,
whereas this transformation leads to the change of a sig
the componentsay , az , bxy , andbxz . This completes the se
of the moment equations derived from the Fokker–Pla
equation,19,20,24and gives us the values ofa and bJ.

After a and bJ are found, we have for the perturbation
M1 of the magnetization and those of the total stress ten
TJ1

(2) :

M1x5A1gxx1A2H1x
(2) ,

M1y5A3gxy1A4Vxy1A5H1y
(2) ,

M1z5A3gxz1A4Vxz1A5H1z
(2) ,

T1xx
(2) 52p11A6gxx1A7H1x

(2) ,

T1xy
(2) 5T1yx

(2) 5A8gxy1A9Vxy1A10H1y
(2) ,

T1xz
(2) 5T1zx

(2) 5A8gxz1A9Vxz1A10H1z
(2) ,

T1yy
(2) 52p11A11gxx1A12gyy1A13H1x

(2) ,

T1yz
(2) 5T1zy

(2) 5A12gyz ,

T1zz
(2)52p11A11gxx1A12gzz1A13H1x

(2) ,

where A1 ,A2 , . . . ,A13 are known functions of the applie
magnetic field, the frequency of the vibrations, as well as
the parameters of the ferrofluid, and the equation of conti
ity in the form gxx1gyy1gzz50 has been used. The func
tions Ai are obtained by means of averaging@with function
cn(e)] over the orientations of chains and averaging over
sizes of the chains~with function gn).

Thus, the set of governing equation for the first order
the perturbations can be written:

div B1
( i )50, rotH1

( i )50, i 51,2,3, ~7a!

div u50, ~7b!

r
]ui

]t
5] jT1i j

(2) . ~7c!

HereB1 is the perturbation of the induction of the magne
field.

The linearized boundary conditions differ from those
Ref. 37 by the condition for continuation of the stress ten
across the free surface of the fluid,

nj~T1i j
(1)2T1i j

(2)!2d i ,3sD'j50 i 51,2,3 at z50, ~8!

whereD'5]xx1]yy . In contrast to the previous case,37 the
first two equations in~8! are independent of each other.
Downloaded 06 Apr 2004 to 193.174.246.168. Redistribution subject to AI
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The stability of the flat surface with respect to standi
waves is analyzed by using the Floquet ansatz for the sur
deformations and thez component of the velocity

j~ t,x,y!5sin~kr !e(s1 iav)t (
n52`

`

jneinvt, ~9a!

uz~ t,x,y,z!5sin~kr !e(s1 iav)t (
n52`

`

wn~z!einvt, ~9b!

wherek5(kx ,ky,0) is the wave vector,s is the growth rate,
anda is the parameter determining the type of the respon
For a50 the response is harmonic whereas fora51/2 it is
subharmonic. Expansions similar to~9b! are made for all
other small perturbations and are inserted into the lineari
governing equations~7!. The functions of the vertical coor
dinate in the Floquet expansion are of the formwn(z)
5Cwe6qz, whereCw is a complex amplitude of the corre
sponding quantity. The condition of reality forj(t,x,y) leads
to32

2j2n5jn* , a50, ~10a!

j2n5jn21* , a51/2. ~10b!

Inserting the ansatz into the governing equations~7!, we
obtain a set of algebraic equations for the amplitudes of
perturbed quantities. The solvability condition for this s
gives us four values of the modified wave vectorq. Hence,
the general solution of the set of governing equations in
ferrofluid contains eight arbitrary constants. Two more ar
trary constants are the amplitudes of the perturbations of
field in the air above and below the fluid after applying t
boundary conditions atz→6`. Ten of the boundary condi
tions @Eqs. ~8! and ~3.2a!–~3.2f! in Ref. 37# allow one to
express all the perturbed quantities in terms of the coe
cientsjn which satisfy

(
n52`

`

~Wnjn2ajn212ajn11!e[s1 i (a1n)v] t50, ~11!

where Wn are rather complicated functions of the appli
field, the frequency of vibrations, the depth of the fluid lay
and of the parameters of the ferrofluid. Here the functio
Wn depend additionally on the coupling constant« in con-
trast to the corresponding functions in the previous pape37

Equation~11! has to be satisfied for all times which im
plies that each term of the sum equals zero. Using the r
tions betweenjn with positive and negative numbers~10!,
one gets the set of equations

W0j02aj1* 2aj150, a50, ~12a!

W0j02aj0* 2aj150, a51/2, ~12b!

Wnjn2ajn212ajn1150, n51,... ,̀ . ~12c!

A cutoff at n5N ~in the present workN5100) leads to a
self-consistent equation for the acceleration amplitudea,45,46

a5uF~a,k,v,H0 ,h,s,r,k,«!u, ~13!

whereF is a complex function expressed in terms of cont
ued fractions. Equation~13! can be solved numerically an
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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gives the dependence ofa on k at fixed parameters. Th
critical values of the acceleration amplitudeac and the wave
numberkc correspond to the absolute minimum of the cur
a(k) at zero growth rate (s50).

IV. RESULTS AND DISCUSSION

Figure 2 presents marginal stability curves for a visco
ferrofluid at high frequency for two cases. The dashed li
are calculated with neglect of the magnetization relaxat
time, a50 andbJ50, i.e., the average orientation of chai
immediately follows the field perturbations. The solid lin
depict the neutral stability curves for the system out of eq
librium. The dependence of the acceleration amplitude on
wave number fors50 divides the phase space into region
where the surface of the ferrofluid is stable or unstable w
respect to parametrically driven standing waves. The prin
pal data, which can be extracted, are the critical accelera
amplitude~scaled withg0), the critical wave number~scaled
with the capillary wave numberks5Arg/s), and the num-
ber of the tongue to which they belong. The number o
tonguel ~from left to right! is the order of response: the bas
wave frequency related to thel th tongue isv l5 lv/2. The
odd and even tongues are the regions, where either a su
monic or a harmonic instability develops. That relation f
the different instability types holds for Newtonia
ferrofluids37 but experiences significant changes if the fer
fluid contains chains.

Due to the finite relaxation time the tongues are d
formed. All tongues but one are now shaped by a low
boundary, a pronounced tip, and a upper boundary. For
chosen set of parameters in Fig. 2 the fourth tongue beco
exceptionally deformed, since it has no tip and no up
boundary in the way all other tongues have. It is caused
the fact that the self-consistent equation for the accelera
amplitude~13! has always a solution ask goes to infinity. To
note the difference to all other deformed tongues, we ca
an abnormal tongue because this tongue lacks two esse

FIG. 2. Neutral stability curves for the excitation frequencyf 5100 Hz and
layer depthd55 mm. Dashed~solid! lines are calculated with~without!
taking into account deviations of the magnetization from equilibrium. T
parameters of the fluid areh50.1 kg/ms,«55, k50.5, s50.0265 N/m,
r51020 kg/m3, R510.5 nm, ks5614.5 m21, and the particle volume
fraction w50.082.
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features in comparison with all other tongues.47 The typical
arrangement of tongues in Fig. 2 can be generalized as
lows: it is always an even tongue,l abno52N, N51,2,...,
which becomes abnormal~here l abno54). All tongues with
l . l abno form separated pairs of two overlapping tongu
~here l 55,6 and l 57,8) inside the abnormal tongue. A
tongues corresponding to a higher order harmonic respo
l 5 l abno12L, L51,2,..., are ‘‘islands’’ of stability with re-
spect to a response of the system with the frequencyvabno.
In the domains, where the subharmonic tongues overlap w
the regions of the harmonic type of instability~gray regions
in Fig. 2!, both types of instability can occur.

Figure 3 illustrates the scenario of the transition betwe
the neutral stability curves withl abno54 andl abno52 with an
increase of the viscosity of the carrier liquid. At the poin
where two tongues touch each other, the amplitudes for
corresponding terms in the Floquet ansatz~9! become equal.
The number of the abnormal tonguel abno depends on the
mean relaxation time of a chaint051/̂ ^2D&&. The latter can
be varied by changing the viscosity of the carrier liquidh. In
Fig. 4, the productvabnot0 is presented as a function ofh. As
the relaxation time increases with the viscosity, the cor
sponding numberl abno decreases: froml abno560 for h
50.001 kg/ms tol abno54 for h50.1 kg/ms. Therefore se
quential changes of the number of the abnormal tongue
cur. The corresponding value ofvabnot0 shows a jump-like
decrease at those points, wherel abno drops tol abno22.

Both the overlapping of tongues and the appearance
an abnormal one were also observed for the Maxwell v

FIG. 3. The second and the fourth tongues of the neutral stability curves
the viscosities of the carrier liquidh50.136 kg/ms~a!, h50.138 kg/ms~b!,
andh50.14 kg/ms~c!. The remaining parameters are the same as in Fig
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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coelastic liquid,39,40and it seems that these features are si
of a viscoelastic behavior. One has to note that if the ang
distribution of chains is assumed to be in equilibriu
~dashed lines in Fig. 2!, i.e., t050, the neutral stability
curves are standard tongues without any qualitative chan
in comparison with the case of a Newtonian ferrofluid~stud-
ied in Ref. 37!. It shows that it is the combination of chain
and their nonzero mean relaxation time which causes
new features in the neutral stability curve.

The dependencies of the critical wave number and
critical acceleration amplitude on theexcitation frequency f
5v/2p are presented in Fig. 5. The curves denoted byA are
calculated for a nonequilibrium magnetization and the cur
B present the case where the chains follow the field per
bations immediately. The solid lines correspond to the fer

FIG. 4. Dependence of the productvabnot0 ~see the text! on the viscosity of
the carrier liquid. The remaining parameters are«55, k50.3, s
50.0265 N/m,r51020 kg/m3, R510.5 nm, andw50.082.

FIG. 5. Frequency dependencies of the critical wave numberkc ~a! and the
critical acceleration amplitudeac ~b! for d55 mm ~solid lines! and d5`
~dashed lines!. The magnetization is assumed to be out of equilibrium
curvesA and in equilibrium for curvesB. The remaining parameters are th
same as in Fig. 2.
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fluid layer with depthd55 mm, and the dashed lines a
calculated for an infinitely deep layer. It is seen that at h
frequencies the critical acceleration in the system out
equilibrium is lower than that in a model system, where t
relaxation time is neglected. It is clear that with a decreas
the frequency the deviations of the magnetization from
equilibrium and their importance become smaller. Therefo
one can expect that curvesA andB coincide at low frequen-
cies. However, this is observed only in the case of the i
nitely deep fluid layer. In the case ofd55 mm, the finiteness
of the layer and consequently the influence of the visc
stresses in the bottom fluid layer become stronger in the c
of the system out of equilibrium, and the critical accelerati
increases more rapidly with a decrease of the freque
With the further decrease of the frequency, transitions
higher order response occur,26,34,37and the frequency of the
Faraday waves remains high enough to leave the orienta
of chains in nonequilibrium.

Figure 6 presents the relative differences between
critical parameterskc

(free) andac
(free) for a chain-free ferrofluid

and those for a ferrofluid with chains as functions of t
Langevin parameter, i.e., of the dimensionless magn
field. The magnetization, chordxc5M /H, and differential
susceptibility xd5]M /]H of the chain-free ferrofluid are
chosen the same as in the ferrofluid with chains at e
point. The magnetization is out of equilibrium in the ferr
fluid with chains and is in equilibrium in the chain-free on
It is seen that atf 520 Hz the formation of the chains de
creases the critical wave number@curveA in Fig. 6~a!#. Since
the stresses at the bottom layer are essential at this frequ
andd52 mm, this leads to the increase of the critical acc
eration amplitude@curve A in Fig. 6~b!#. At the higher fre-

FIG. 6. The relative differences between the critical wave numbers~a! and
the critical acceleration amplitudes~b! as functions of the Langevin param
eter. The quantities with the superscript ‘‘~free!’’ belong to the chain-free
ferrofluid (gn5dn,1w/v), the quantities without a superscript belong to t
ferrofluid with chains@gn is given by Eq.~1!#. CurveA: f 520 Hz, curveB:
f 5100 Hz. The layer depth isd52 mm and the remaining parameters a
the same as in Fig. 2.
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quency, f 5100 Hz, the changes ofkc are nonmonotonic.
There is a range of the parameters, where the critical w
number on the ferrofluid with chains is larger than that on
chain-free ferrofluid. The critical acceleration amplitude
decreased by the formation of chains@curveB in Fig. 6~b!#.
Note that the susceptibility of the ferrofluid changes stron
with the increase of the field, therefore the relative imp
tance of the influences of the magnetic field, the fluid mic
structure, and the viscous stresses depends on the field

The above results were obtained for the particular c
kiH0 . The typical size and orientation of chains depend
the applied field. Therefore, the threshold of the instabi
depends on the strength of the field and the angleu between
k andH0 separately. It is not possible to introduce a sing
parameter like the effective field,37 which would incorporate
those two dependencies. This fact is illustrated in Fig. 7. T
product H0 cosu was varied in two ways. For the curve
indicated byA, the field strength was changed from zero
H0max51.46 kA/m withu50. In the second case~curvesB),
u was changed from zero top/2 at the constant fieldH0max.
In contrast to the chain-free ferrofluid studied in Ref. 3
where both curves would be identical, there are now t
different graphs. Whereas the critical wave numbers h
similar values for the two ways of variation, the critical a
celeration shows greater differences: for instance
H0 cosu/H0max50.5 the difference inkc is 0.4% against
2.5% forac . Thus it makes a notable difference for the s
bility of the free surface whether the system is subjected
(u50, H05H0max/2) or to (u560°, H05H0max). This fact
suggests a simple method to test the presence of chains
sample. If the ferrofluid is chain-free both ways of excitati
lead to the same value ofac , if it contains chains one get
two different values.

FIG. 7. The dependencies of the critical wave number~a! and the critical
acceleration amplitude on the projection ofH0 on the direction ofk for f
5100 Hz andd51 mm. The curveA is obtained by varying the field
strength withu50, whereas the curveB was calculated by varyingu with
H05H0 max51.46 kA/m. Remaining parameters are the same as in Fig
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The dependencies are less pronounced than in the p
ous case, whereH0max526.6 kA/m,37 due to the fact that the
range of rather weak fields is studied here. Such a choic
fields ensures that̂n&<« and that the head-to-tail orienta
tion of the moments in a chain is still preferable which
needed to apply the model.

The nonmonotonic dependence ofac(H0) for u50
@curve A in Fig. 7~b!# is caused by the joint action of the tw
mechanisms of the viscous damping:~i! the dissipation in the
bulk fluid and ~ii ! the viscous stresses in the bottom flu
layer. The first mechanism is dominant for large wave nu
bers and causes a decrease ofac . The second becomes im
portant with the decrease of the wave number and result
an increase ofac with field strength. A detailed discussion o
this nonmonotonic behavior ofac(H) is given in Ref. 37.

There are three effects caused by the formation
chains. Since a chain has a magnetic moment larger than
of a single particle, the formation of chains leads to the
crease of the magnetization of the system at the given fiel
comparison with a homogeneous ferrofluid. This strength
the field influence on the fluid motion. The effect can
formally taken into account by adjusting the magnetizat
and susceptibility of the chain-free ferrofluid in such a w
as it is done in Fig. 6. The two other effects are more int
esting. The chains increase the magnetization relaxation
and change the effective viscosity of the suspension both
steady and in a periodical flow.19,20,24

In order to investigate the role of these two effects
number of model ferrofluids are considered. The first sam
is a ferrofluid with chains. It is characterized by the me
relaxation time of a chaint0 and unperturbed values of th
magnetizationM0 as well as the chordxc and the differential
susceptibility xd . The second model ferrofluid contain
chains as well, but in this case the relaxation time is
glected@cn(e)5cn

0(e)#. The third and the fourth ferrofluids
are chain free (gn5dn,1w/v) with the same unperturbed va
ues ofM0 , xc , andxd . The magnetization relaxation tim
for the third ferrofluid is equal tot0 , and for the fourth
sample the relaxation time is neglected, i.e., the last sam
is the ferrofluid, which was studied in Ref. 37. The pred
tions of the Zubarev model for the case of a chain-free f
rofluid with a finite relaxation time were compared with th
results of a model using the effective field theory develop
by Martsenyuk, Raikher, and Shliomis in 1974.48 In both
cases, the Langevin parameterkadj involved in the model
was adjusted to obeymw/vL(kadj)5M0 , where L(k)
5coth(k)21/k denotes the Langevin function. A fairly goo
agreement between the threshold parameters predicte
both models is observed. In Fig. 8 the coupling constant« is
varied by changing the temperature. The intensity of the
plied magnetic fieldH0 is changed in such a way that th
Langevin parameter is equal tok50.5.

The comparison of the presented dependencies rev
that the finiteness of the magnetization relaxation time le
to an increase of the critical wave number@compare the pairs
of the curvesA–C andB–D in Fig. 8~a!#. At the same time,
the changes in the slow-flow rheological properties of
suspension caused by the formation of the chains decr
strongly the critical wave number~compare curvesC–D and

.
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A–B). The net effect of those two influences gives the b
havior that is presented by the curvesB in Fig. 8.

The critical acceleration amplitude for a ferrofluid wi
nonequilibrium chains@curveB in Fig. 8~b!# has the lowest
value among all the tested model ferrofluids. This can
interpreted as a sign of an elastic behavior, which is typ
for viscoelastic liquids at high frequencies. This fact is co
firmed in Fig. 9, where the real and the imaginary parts
the effective viscosityheff5@sik /(2gikh)21#/w of a ferrofluid
are presented as functions of the frequency of surface w
f l5v l /(2p) with l 51. The caseH050 is considered,
where the system is isotropic and the influence of the ch
on the rheological properties of the suspension can be c
acterized by the single complex parameterheff .

24 The real
part of the effective viscosity determines the dissipation
the energy in the system, and a nonzero imaginary part le
to a phase shift between the tensor of velocity gradients
the stress tensor, i.e., to a viscoelastic behavior. It is seen
the imaginary part of the effective viscosity is nonzero a
has a maximum at a frequency off l.5 Hz @solid line in Fig.
9~b!#, where therefore a maximal phase shift~viscoelastic
behavior! can be expected. At the same time, the real par
the effective viscosity decreases@solid line in Fig. 9~a!#. The
effective viscosity for a stationary flow~with neglect of the
relaxation time! is plotted as dashed line. It is seen that t
deviations of the orientational distribution from equilibriu
result in a decrease of the real part of the effective viscos
This implies that the energy is dissipated weaker, and
consequentlyac is lower than in the case of zero relaxatio
time. The comparison of the solid curve with the dotted on
in Fig. 9~b! shows that the maximum of the imaginary part
the effective viscosity is caused by the long chains.

A comparison of the contributions of chains of differe

FIG. 8. The dependencies of the critical wave number~a! and the critical
acceleration amplitude for the infinitely deep layer of the ferrofluid cons
ing of A: single particles with the Brownian relaxation timetB5t0 ; B:
chains with orientations out of equilibrium@Eq. ~3!#; C: single particles with
zero relaxation time;D: chains with the equilibrium orientations@cn(e)
5cn

0(e)#. The remaining parameters are the same as before.
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size is done in Fig. 10 for three values of the wave frequen
The size distribution of chains~1! is presented with closed
circles in Fig. 10~a!. It is seen that at low frequencies (f
51 Hz) the viscoelastic effect is mainly caused by very lo
chains with small values ofgn @see maximum of2Im(heff n)
at n516 in Fig. 10~b!#. For f 55 Hz the maximum of
2Im(heff n) is shifted to long chains (n511) and the value of
the maximum increases. Together with the larger values

-FIG. 9. The dependencies of the real~a! and the imaginary~b! part of the
effective viscosity on the wave frequency. The dashed line denotes th
fective viscosity, which is calculated with neglect of the relaxation time
«55. The solid lines denote the effective viscosity calculated using the
distribution of chains~1!, and the dotted curves present the real and ima
nary parts of the effective viscosity for model ferrofluids containing cha
of n particles only.H050, the remaining parameters are the same as bef

FIG. 10. Contributions of chains containingn particles in the real~a! and in
the imaginary part~b! of the effective viscosity atf l51 Hz ~s!, 5 Hz ~h!,
and 100 Hz~L!; and~d! the size distribution of chains~1!. The remaining
parameters are the same as in Fig. 9.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



ge
n

h

d
es
ec
ve

00

-
e

f

f
th

in
,
hu
m
x-
th
th
o

be
o

us
u

s
u

er
a

u

r i
e
-

e
o
e

s
is
g
n

ita
la
th
w
in

by
nal

d,
g

liq-
ids
es

-
the

ng
r to
ui-
le

on

ted
his

re-
b-

m

m

a

f
-
f De

e
evin

933Phys. Fluids, Vol. 16, No. 4, April 2004 Chain-induced effects in the Faraday instability
gn for those long chains, the total viscoelastic effect is lar
than for f 51 Hz @compare the area under the open circle a
open square curve in Fig. 10~b!#. For high frequencies suc
as f 5100 Hz the maximum of2Im(heff n) is at short chains
(n55) and the value of the maximum decreases. This
crease cannot be compensated by the even larger valu
gn for those short chains. Thus the total viscoelastic eff
decreases again: the area under the open diamond cur
smaller than the area under the open square curve.

In summary, by increasing the frequency from 1 to 1
Hz the viscoelastic effect passes at maximum atf 55 Hz
@solid curve in Fig. 9~b!#. The maximal contribution to
2Im(heff n) comes forf &100 Hz from chains off the maxi
mum ofgn . Comparing the area under the open circle, op
square, and open diamond curve in Fig. 10~a!, one can see
that the area is continuously shrinking withf . It results in the
solid line in Fig. 9~a! describing the weaker dissipation o
energy in the system.

The origin of the viscoelasticity~i.e., the dependence o
the relation between the tensors of velocity gradients and
stress tensor on the history! in a ferrofluid with chains can be
explain in the following way. When the orientation of a cha
is changed from the equilibrium by the velocity gradients
restraining moment is generated by the applied field. T
the network of chains is an ‘‘elastic’’ element of the syste
which interacts with the viscous carrier liquid. If the rela
ation time of a chain is much shorter than the period of
vibrations, the orientation of chains and consequently
rheological properties of the suspension do not depend
history, and there is no viscoelastic properties. This fact
comes more obvious if one notes that the relaxation time
a chain is proportional to the carrier liquid viscosity. Th
the negligible relaxation time of a chain implies a weak co
pling between the chain and the carrier.

To estimate the importance of the relaxation processe
a ferrofluid with chains, the Deborah number De is calc
lated for the subharmonic response. The Deborah numb
the product of the angular wave frequency with the me
relaxation time of a chain, De5v lt0 . In the case of polymer
solutions, the most pronounced viscoelastic behavior sho
be expected in the range of De'1, whereas at De@1 a re-
covery of the Newtonian behavior was observed.41 In the
case of ferrofluids with chains, the viscoelastic behavio
present over a much wider De range. The frequency rang
Fig. 9 gives 0.033<De<3.3 for which a viscoelastic behav
ior is present since2Im(heff)Þ0. That fact is supported by
the range of appearance for the abnormal tongues consid
to be a characteristic feature of viscoelastic behavior. Fr
Fig. 4 one can read that viscoelastic properties can be
pected even for De beyond 10.

Obviously the viscoelasticity of a ferrofluid with chain
differs from that of a polymer solution. The reason for th
difference is the following. The relaxation time of a lon
polymer chain involved in the polymer dynamics is the co
formational relaxation time. As soon as the period of exc
tion becomes much shorter than the conformational re
ation time, the polymer chain does not participate in
movement of the solution. Therefore a motion of the Ne
tonian solvent through the rigid obstacles of polymer cha
Downloaded 06 Apr 2004 to 193.174.246.168. Redistribution subject to AI
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is observed. In the case of the rather short chains formed
magnetic particles, the relaxation time is the orientatio
relaxation time of a chain49 in the viscous carrier liquid.
Since it is proportional to the viscosity of the carrier liqui
the high values oft0 and De, respectively, mean a stron
coupling between the motion of a chain and the carrier
uid, which ensures the viscoelastic behavior. Thus ferroflu
widen significantly the range in which viscoelastic featur
can be observed in contrast to polymer solutions.

In a real ferrofluid, any variation of the system param
eters not only varies the Deborah number but also affects
critical parameters either directly or indirectly by changi
other properties such as permeability or viscosity. In orde
investigate the role of the deviations of the chains from eq
librium in greater detail, a model ferrofluid with a tunab
coefficient of rotational diffusion for all chainsD tune,n

5DnDscaleis studied. Via that coefficient the mean relaxati
time t0 , i.e., the Deborah number, can be varied.

Dscaleis a phenomenological parameter, which is rela
neither to the chain size nor to the fluid properties. Using t
phenomenological parameter, a smooth transition can be
alized from a model ferrofluid with chains almost in equili
rium (Dscale@1 gives De!1) to the real ferrofluid (Dscale

51), and further to a model ferrofluid with chains far fro
the equilibrium (Dscale!1 gives De@1).

It is seen in Fig. 11 that even small deviations fro
equilibrium are significant as the variation ofkc andac in the
range from De;0.001 to De;0.01 show. In the case of
system with long chains («55.5), a pronounced minimum
in the dependence ofac(De) and a maximum in that o
kc(De) are observed. As« and the mean chain length de
crease, these extrema are shifted toward higher values o
and become less pronounced and disappear for«54.5. Be-
yond De;O(1) one observes a saturation ofkc andac close

FIG. 11. Dependency of the critical wave number~a! and the critical accel-
eration amplitude~b! on the Deborah number for a model ferrofluid with th
tunable relaxation time of a chain. The coupling constant and the Lang
parameter are: curvesA: «55.5, k50.39, B: «55, k50.5, andC: «
54.5, k50.63. The remaining parameters are the same as before.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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to the corresponding extremal values. That means that
yond a certain deviation from equilibrium, viscoelastic e
fects can neither be enhanced nor diminished. The latter
firms that there is no recovery to a Newtonian behavior
high De numbers.

V. CONCLUSION

The rheological properties of a ferrofluid caused by
formation of chains is investigated by the linear analysis
the Faraday instability in a horizontal magnetic field. A ho
zontally unbounded ferrofluid layer of a finite depth has be
considered. The dependencies of the critical acceleration
plitude ac and the critical wave vector on the excitation fr
quency f , the magnetic fieldH0 , and the dipolar coupling
constant« have been obtained for different depths of t
layer in a wide range of fluid viscosities. A viscoelastic b
havior is predicted, which is indicated by the qualitati
changes in the neutral stability curve: an abnormal ton
appears which has no tip and upper boundary in contras
all other tongues~Fig. 2!. Besides its existence it is reveale
how this abnormal tongue is formed by the merging of ot
tongues as the viscosity of the carrier liquid is changed~Fig.
3!.

The threshold of the instability depends on the appl
field and on the angleu between the wave vector and th
applied field separately~Fig. 7!. Therefore one can easily te
whether or not a ferrofluid contains chains by choosing d
ferent combinations ofu and H0 but the same value fo
H0 cosu. If the ferrofluid contains chains one get differe
thresholds whereas the surface of a chain-free ferroflui
destabilized at a unique value ofac .

A ferrofluid with chains whose orientation is out of equ
librium compared with other model ferrofluids~Figs. 6 and
8! has the lowest threshold of all. This is caused by a
crease of the real part of the effective viscosity@Fig. 9~a!#
which corresponds to a weaker dissipation of energy
thus to a lower value ofac . The nonzero imaginary part o
the effective viscosity@Fig. 9~b!# also indicates the viscoelas
tic behavior of the studied ferrofluid. By analyzing the d
pendence of the critical parameters on the Deborah num
it is found that a viscoelastic behavior occurs over a mu
wider range than in viscoelastic polymer solutions. Parti
larly no recovery to a Newtonian behavior at high Debor
numbers is found.

The present model is restricted to the case of a mono
perse ferrofluid. An account of the polydispersity will b
necessary to compare the predictions with future experim
using real ferrofluids. The dipolar interactions betwe
chains and their flexibility will influence the properties of
real ferrofluid. Nevertheless, the above-discussed eff
should be detectable, at least qualitatively, in a real exp
ment.
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