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A B S T R A C T   

An automated and reliable processing of bubbly flow images is highly needed to analyse large data sets of 
comprehensive experimental series. A particular difficulty arises due to overlapping bubble projections in 
recorded images, which highly complicates the identification of individual bubbles. Recent approaches focus on 
the use of deep learning algorithms for this task and have already proven the high potential of such techniques. 
The main difficulties are the capability to handle different image conditions, higher gas volume fractions and a 
proper reconstruction of the hidden segment of a partly occluded bubble. In the present work, we try to tackle 
these points by testing three different methods based on Convolutional Neural Networks (CNN’s) for the two 
former and two individual approaches that can be used subsequently to address the latter. Our focus is hereby on 
spherical, ellipsoidal and wobbling bubbles, which are typically encountered in air-water bubbly flows. To 
validate our methodology, we created test data sets with synthetic images that further demonstrate the capa-
bilities as well as limitations of our combined approach. The generated data, code and trained models are made 
accessible to facilitate the use as well as further developments in the research field of bubble recognition in 
experimental images.   

1. Introduction 

Deep neural networks have proven their superiority over traditional 
computer vision methods in various fields. Especially Convolutional 
Neural Networks (CNNs) have been shown to be very successful for 
image segmentation tasks (He et al., 2020; Ronneberger et al., 2015; 
Schmidt et al., 2018). They can achieve a high segmentation resolution, 
making the direct use of such methods interesting for investigating 
bubbly flows. 

Using cameras to investigate bubbly flows from the outside is a 
common, affordable technique. However, the images’ evaluation can be 
very complicated when bubbles start to overlap, strong turbulences are 
formed, and dense bubble swarms occur. Yucheng Fu provides an in- 
depth discussion of this problem in his dissertation (Fu, 2018). 

The task of recognizing bubbles with CNNs from images can be 
usually split up into identifying the bubble(s) in the picture, segmen-
tation of overlapping bubbles and reconstruction of bubbles that are 
partly occluded from bubbles before. A common way to solve the task of 
identifying bubbles is to find so-called anchor points inside the bubble. 
Ideally, just one point per object exists, which is usually the center point. 

With respect to machine learning approaches, Haas et al., (2020) use a 
popular Region-based CNN called Faster-RCNN that proposes anchor 
points with corresponding bounding boxes around identified bubbles. 
Poletaev et al., (2020) use a CNN-based sliding window approach to 
approximate anchor points. Another approach to solve this task together 
with the task of segmenting overlapping bubbles is to directly predict a 
segmentation mask for an image with down- and upsampling CNN’s that 
classify and assign each pixel to individual objects. Such pixel-to-pixel 
approaches have become very popular for detecting and segmenting 
cells and nuclei in biomedical microscopic images. For bubbly flows, Li 
et al., (2021) used a UNet to distinguish between foreground and 
background pixels as well as to generate centroid approximations. Kim 
and Park, (2021) used a slightly customized Mask-RCNN version that 
directly provides a segmentation mask as a result. 

For most of the above-mentioned studies on identifying bubbles, an 
ellipsoidal fit segments and reconstructs the objects solving the tasks of 
segmenting and reconstructing overlapping bubbles. Haas et al., (2020) 
used a subsequent CNN-based shape regression model that tries to fit an 
ellipse around the detected bubble. Cerqueira and Paladino, (2021) also 
used a CNN-based shape estimator to predict ellipses for given anchor 
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points and bounding boxes. From our experience, an ellipsoidal fit is, 
however, only valid in simplified bubbly flows. With flow fields 
disturbed by turbulence and swarm effects, the surface tension may not 
be strong enough in relation to deforming forces so that bubbles can take 

almost arbitrary shapes (Masuk et al., 2021). 
In this work, we also adopt the strategy to use CNN’s that provide 

pixel-to-pixel predictions in order to identify and segment bubbles. In 
particular, we test three different approaches for this. For the subsequent 

Fig. 1. UNet architecture and used parameters. Y refers to the number of filters and A to the input dimension for the respective layer, where Y increases and A 
decreases up to the basement block. Correspondingly, the Basement block of UNetL3 has Y=256 and A=128, while the UNetL5 has Y=1024 and A=32. 

Fig. 2. Marked internal edges the UNetL5 is trained on, which are used to segment overlapping bubbles.  
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reconstruction task, we compare two individual approaches, one also 
based on fitting an ellipse and one based on a simple Neural Network. 
The latter aims to capture the hidden part of a partially occluded bubble 
even with more irregular shapes, allowing a more universal use of this 
approach. Finally, we test the accuracy of our combined approach on 
synthetic images with known gas volume fraction and bubble sizes to 
evaluate strength and weaknesses. 

2. Methods & materials 

2.1. Bubble segmentation 

2.1.1. Double UNet 
In the following, the methods tested in this work for bubble identi-

fication and segmentation are described. The first method is based on so- 
called UNet’s. A UNet describes a specific CNN architecture that allows a 
pixel-to-pixel prediction, which is commonly used in segmentation tasks 
for cell structures and medical images (Ronneberger et al., 2015). The 
name originates from the U-like shape of the CNN, consisting of an 
encoder and a decoder structure that have cross-connections between 
them. The encoder structure reduces the width and height of an array 
but increases the depth (channels), to extract features from an image, 
while the decoder structure does the opposite in order to obtain local 
information in the image. The general UNet architecture together with 
the parameters used in this work are shown inFig. 1. 

In order to segment bubbles in images, we use two individual UNet’s 
with slight modifications in comparison to the original one by Ronne-
berger et al., (2015). The first UNet (UNetL3) consists of three down- 
and upsampling levels and is trained to distinguish between foreground 
and background, in other words to classify all pixels whether they 
belong to the gas phase or to the liquid phase. The second UNet 
(UNetL5) is trained to classify all pixels that belong to interSections of 
overlapping bubbles. Since this task is more difficult, a deeper net with 
five down- and upsampling levels is used. For this UNetL5, we use 
manually annotated edges (Fig. 2) to calculate the loss function of the 
output of the network. In the context of machine learning, the loss 
function determines the error of the algorithm with respect to the target 
result, which is then minimized in the training step. For the UNetL5, the 
target is the correct classification of all pixels marked in red in Fig. 2 as 
intersecting pixels. We use a log softmax cross entropy loss function to 
achieve this classification. Since the edge pixels are under-represented 
compared to the background pixels, we weight the background pixels’ 
loss, so that the training focuses on the interSection pixels the network is 
intended to find. Finally, we calculate the weighted average of the loss of 
all pixels. We tested networks with fewer layers, with however limited 
success, the sigmoid cross entropy loss function with one output, which 
performs similar to the log softmax cross entropy and different weight 
factors for the background loss. For the latter, a value of 0.05 provided 
the best results. 

For the UNetL3 the loss function is similar to the one we use for the 

Fig. 3. Weight map for the loss function to train the segmentation between bubbles and background (UNetL3) for the example given in Fig. 2.  

Fig. 4. Star-convex polygons with radial distances applied on a bubbly flow image.  
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edges; however, instead of just applying a weighting-factor, a weight 
map is used to focus the learning on specific structures. Using a weight- 
map is necessary so that the network training is focused on separating 
bubbles that have only a small gap of background pixels in between 
them. The weight map is calculated as follows: 

w =

⎧
⎨

⎩

10, d1and d2 < 10
1, inside bubble

0.05, else  

where d1 and d2 are the distances between one interface and another 
interface. The weight map to train the segmentation between bubbles 
and background for the example given in Fig. 2 is shown in Fig. 3. 

A further advantage of having two individual UNet’s is that the mask 
generated by the smaller and hence faster UNetL3 can also be used in 

PIV/PSV investigations to exclude bubbles in the liquid velocity inter-
rogation step (Cerqueira et al., 2018; Hessenkemper and Ziegenhein, 
2018). 

2.1.2. StarDist 
The second method tested is called StarDist. It was also initially 

developed for segmenting cell nuclei in biomedical images by proposing 
star-convex polygons as object candidates (Schmidt et al., 2018). Since 
the shape of many bubbles can be well approximated with such 
star-convex polygons, we adopt this method without further modifica-
tion. As for the first method, StarDist is also based on a UNet architecture 
for pixel-to-pixel predictions, but with a more sophisticated strategy. In 
particular, StarDist generates two arrays, both having the dimension of 
the input image. The first output is an object probability di,j for each 

Fig. 5. Principles of the tested methods to reconstruct hidden bubble parts. From left to right: Segmentation mask, fitted ellipse, radial distances and ground truth 
radial distances. 

Fig. 6. Results of the tested methods applied on the validation data set.  
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pixel defined as the normalized Euclidean distance to the nearest 
background pixel. Hence, this output is similar to distinguishing 
foreground-background like it is done with the UNetL3, but with 
continuous values that reach higher values in the center of the mask, 
which then have a higher probability to serve as object centers. The 
second output represents the Euclidean distance rk

i,j to the background 
for every pixel belonging to an object along a fixed set of k radial di-
rections. In other words, for every object pixel a star-convex polygon 
with k points is proposed. Finally, by applying non-maximum suppres-
sion (NMS), only pixels with a high object probability are considered to 
avoid detecting a single instance multiple times. Fig. 4 shows examples 
of star-convex polygons representing the outline of a bubble with a fixed 

number of k = 64 radial directions. We tested different hyperparameters 
such as more UNet layers, different subsampling resolutions to increase 
computation efficiency as well as different number of radial directions. 
By comparing the obtained results (see Section 3.1 for the evaluation 
strategy) we found that a three layer UNet with k = 64 radial directions 
provided the best results for our task, while keeping all other hyper-
parameters as in the original version of Schmidt et al.,(2018). 

2.1.3. Mask R-CNN 
The third method is called Mask R-CNN. It has been used for 

numerous image segmentation tasks including also the segmentation of 
overlapping bubbles as done recently by Kim and Park, (2021). Mask 
R-CNN consists of an object detector based on the Faster R-CNN method 
(Ren et al., 2017), which predicts bounding boxes around found objects. 
In parallel, Mask R-CNN creates individual segmentation masks for each 
region of interest (ROI) with a Fully Convolutional Network, which 
again gives pixel-to-pixel results. As Kim and Park, (2021) already tested 
this method for the task of segmenting overlapping bubbles and ob-
tained quite good results with some modifications in comparison to the 
original Mask R-CNN version by He et al., (2020), we adopt their version 
of Mask R-CNN with only minor parameter changes. Here we only 
increased the minimum detection confidence to 0.9, which is the 

Table 1 
Computational aspects regarding training and inference of the different models.  

Name No. of training epochs 
[-] 

Time per epoch 
[s] 

Inference time CPU 
[s] 

UNetL3 100 212 1.6 
UNetL5 100 370 4.12 
StarDist 400 29.9 0.51 
Mask R- 

CNN 
40 696 6.5  

Fig. 7. Results of the tested methods applied on the additional test data set.  
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probability threshold for detected instances and increased the number of 
training epochs to 40. For the reason stated above, the Mask R-CNN 
results are only used for comparison and are not discussed in detail. 

2.1.4. Training 
The training data set consists of roughly 800 manually annotated 

training images with dimensions of 512 × 512 (width x height). Since 
our goal is to obtain a rather universal model that can be applied to 
different kinds of bubbly flow images, we have conducted experiments 
with various flow and imaging conditions, i.e. different cameras, lenses, 
camera distances and illuminations. Most of the experiments consider 
air-water flows in buoyancy driven bubbly flows with gas flow rates in 
the range of 0.5 - 2 l/min and a corresponding gas fraction in the range 
of 1 – 5 %, together with some experiments in water-glycerol mixtures 
with a logarithmic Morton number of -6.6. The dataset consists of about 
24,400 individual annotated bubbles in the size range of 1 – 10 mm with 
dominantly spherical, ellipsoidal and wobbling bubble shapes. More 
information on the facilities in which the experiments were conducted 
can be found in (Liu et al., 2019; Ziegenhein and Lucas, 2019). 

To prevent overfitting, we apply image normalization and further 
random image augmentation steps to the training images, including 
adding Gaussian noise, intensity changes and horizontal flipping. We 
excluded 15 % of the training data from the training as validation data, 
for which the performance details will be discussed in Section 3.1. For 
the Mask R-CNN approach, we used the ImageNet pre-trained weights, 
while no pre-trained weights were used for the other models. The 
training was performed on a NVIDIA Tesla V100. Additionally, the 
following Table 1 lists the computational aspects regarding training and 
inference of the tested models. 

2.2. Hidden part reconstruction 

As will be shown and discussed in the result Section, all of the above 
described methods can be used to segment overlapping bubbles, but are 
not able to reconstruct the hidden part of a partly occluded bubble. In 
other words, with such a segmentation it is only possible to separate the 
visible parts, which would result in an underprediction of the partly 
occluded bubble. Based on a given segmentation mask we test two 
different methods to overcome this shortcoming. 

2.2.1. Ellipse fitting 
The first method is comparably simple and follows the often used 

approach to fit an ellipse around the contour of a detected bubble. This, 
however, does not help to reconstruct the hidden part of a bubble when 
using only the detected segments. For this reason, only the contour 
points of a segment that do not exhibit a neighboring contour point of 
another segment are used for the ellipse fitting step. The two left images 
of Fig. 5 show an example for this method. In cases of highly occluded 
bubbles, with only a few contour points that do not touch neighboring 
segments, this can lead to very small ellipses that are smaller than the 
actual segment. Then an ellipse is fitted around the complete segment to 
ensure that the fitted ellipse is at least as large as the detected segment. 

2.2.2. Radial distance correction (RDC) 
The second method follows the algorithm idea of StarDist to repre-

sent the contour of an object through a fixed number of K radial dis-
tances r = (r1, …, rK) from the object center to the boundary. In 
particular, the radial distances of a partly occluded bubble rH = (rH

1 ,…,

rH
K ) are ending at the segmentation boundary and are hence shorter than 

for the actual object: rH
i ≤ ri, i = 1,…, K. It therefore requires a function 

to properly extend those directions rH
i that touch a neighboring bubble 

based on the information given by the image segment, in other words 
based on the not hidden radial distances. In particular, we want a 
function that is able to predict the correct distances of the occluded 
bubble part to the center of the detected segment, which will be called 
radial distance correction (RDC) in the following. This idea is illustrated 
in the two right images of Fig. 5, where the red colored radial distances 
are the shortened ones that need to be corrected. 

To solve this regression task, we again make use of a Neural Network, 
but this time we use a feedforward artificial neural network. The input 
and output layer represent the fixed number of radial distances r, in our 
case K = 64. Hence, both layers consist of 64 neurons. We use three 
hidden layers with the same number of neurons as the input and output 
layer, both with a ReLu activation function. Furthermore, we use an 
Adam optimizer with a learning rate of 10− 4. 

2.2.3. Training 
In order to train the RDC method, it is necessary to know the actual 

contour of a partly occluded bubble as ground truth. This is only possible 
with synthetic images, in other words images where bubbles are artifi-

Fig. 8. Generated example image for gas volume fraction of 5 % (right) with the segmentation mask from StarDist+UNet (top left) and the overlapping outlines 
corrected with the RDC method (bottom left). 
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cially placed on top of each other with respect to the view direction. 
Although this is possible with a generative adversarial network (GAN) 
(Fu and Liu, 2019), we use images of single bubbles that are cut out 
along their contour as done in our previous investigation (Hessenkem-
per et al., 2021). About 14,000 single bubble images in the size range of 
2 – 7 mm were used to create the synthetic images, where either two or 
three bubbles were placed randomly on top of each other in an empty 
image with dimensions of 256 × 256. In total, about 150,000 training 
samples were created, where the radial distances r are generated with 
the ideal segmentation mask (Fig. 5, leftmost image). Ideal segmentation 
refers hereby to the correct assignment of each individual pixel to the 
correct bubble instance, which is given due to the synthetic nature of the 
data. The visible r values of each bubble (Fig. 5, third image from left) as 
well as the corresponding ground truth r values (Fig. 5, rightmost image) 
were extracted for the training. Care was taken that the bubbles overlap 
each other with at least 10 % but not more than 90 % of their area to 
avoid a complete occlusion. To be able to learn whether rH belongs to an 
occluded bubble that needs correction or whether rH belongs to a bubble 
in front that does not need correction, also the rH distances that do not 
need correction are included in the training. A further important point is 
that we do not use the initial pixel distances, but scale them with the 
known physical pixel size to obtain real distances. The advantage is that 
the model implicitly incorporates the size dependent shape of the bubble 
and is furthermore independent of the resolution of the image. Training 
was performed on 32 CPU cores with 2000 epochs and a batch size of 
1400. Again, a small part of the data were split up before the training as 
validation data. Due to the larger data set size, we use only 6.67 % (10, 
000 samples) as validation data. 

3. Results 

3.1. Bubble segmentation 

3.1.1. Validation results 
In order to evaluate the performance of the segmentation task, we 

use the Average Precision (AP) value at InterSection over Union (IoU) 
thresholds from 0.5 to 0.9. The Average Precision is commonly used 
when evaluating classification tasks and combines the metrics Precision 
and Recall, where the former focuses on the proportion of predictions 
that are actually correct, while the latter focuses on the proportion of 
actual instances that were correctly determined (Zhang and Su, 2012). 

The IoU thresholds determine how much of a segment needs to be 
captured correctly, i.e. for high IoU thresholds the predicted pixel area 
of an segment needs to be close to the area of the actual segment (in size 
and position) to be counted as correctly predicted and vice versa for low 
IoU thresholds. 

We first test the different methods on the validation data, which is a 
subset of the training data that has not been used in the training. All 
three methods show good results, which demonstrates the general 
capability to detect and segment overlapping bubbles (Fig. 6). For all 
IoU thresholds the UNet method shows the best result, followed by the 
StarDist method. This is further illustrated with the example images in 
Appendix A. As can be seen, the main advantage of the UNet method is 
that it is especially good in catching the whole bubble area, while 
StarDist misses some of the outer bubble regions. In Fig. 6 this is re-
flected in higher AP scores of the UNet method at higher IoU thresholds. 
The Mask R-CNN results are close to the StarDist results, with slightly 
lower AP scores at higher IoU thresholds. 

3.1.2. Validation for different image conditions 
For more rigorous testing of the methods and to test the general-

ization ability a further performance evaluation with additional vali-
dation data is conducted in the following. Here we use images where the 
bubble projections show substantial differences to the training data as 
well as some more challenging cases, where more and also more 
deformed bubbles are present. Examples are shown in Appendix B. As 
can be seen, the UNet method fails to correctly predict the interSections 
here, with many incomplete and spurious interSections. This shows a 
conceptual drawback of the Double UNet method, as such interSections 
of overlapping bubbles are in some cases hardly visible or may look very 
similar to other internal edges due to distortions. However, the bubble 
masks provided by the UNetL3 still accurately catch the outline of the 
bubbles. On the other hand, the StarDist method is able to detect most of 
the bubbles but again misses the correct outline especially for larger 
bubbles. For both methods the described strengths and weaknesses are 
reflected in corresponding AP scores at given IoU thresholds, which are 
shown in Fig. 7. To use the advantages of both methods, we combine the 
prediction results and dilate the StarDist results until it fits the bubble 
mask of the UNetL3. With this combination, we obtain better results 
than with the three other methods, which is reflected in the best AP 
scores in Fig. 7 and can be further seen in Appendix B. Again, the Mask 
R-CNN achieves similar results as StarDist. 

Fig. 9. Gas volume fraction results with respect to the ground truth gas volume fraction using ideal segmentation (left) and the combined SD+UNet segmenta-
tion (right). 
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3.2. Hidden part reconstruction and combined validation 

To compare the results of fitting ellipses to the RDC method, we 
evaluate the captured area by each method with respect to the actual 
area of the ground truth bubble. Specifically, we calculate the root mean 
squared error (RMSE) of all bubbles in the validation data set. With 
respect to the average ground truth area, we get a relative error of 17 % 
with the ellipse fitting method and 11 % relative error with the RDC 
method. Although both methods provide similar results for the majority 
of the tested samples, the ellipse fitting method sometimes creates way 
too large predictions, which at the end cause the worse result in com-
parison to the RDC method. In order to further quantify the accuracy of 
our methods in practical situations, we generated test data sets with 
different gas volume fractions and applied the StarDist+UNet 

(SD+UNet) as well as the two hidden part reconstructions methods on 
them. We again use synthetic images for this to know the actual size of 
partly occluded bubbles, but this time we tried to design some more 
realistic images. Specifically, we use an image from a single bubble 
study without a bubble in it as background and then successively place 
single bubbles at random positions on it. The only constraint is that for 
every bubble at least 10 % of its area has to be visible, otherwise they can 
not be detected. Note that we use bubbles from another experimental 
series, which means the RDC training has not seen any of these bubbles. 
An example synthetic image is given in Fig. 8 together with the seg-
mentation mask predicted by SD+UNet and the RDC corrected bubble 
outline. To compare parameters relevant for practical uses of the 
methods, we calculate the volume of each bubble in order to determine a 
total gas fraction for every generated image. We set the dimensions of 

Fig. 10. Bubble size histograms for the test case at 2.5 % gas volume fraction. Note that a different abscissa is used for the ellipse fitting method due to some much 
larger prediction. 
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Fig. 11. Examples from the validation data set. First row: Original images; Second row: Double UNet prediction; Third row: StarDist prediction. Different colors 
indicate different detected bubble instances. 
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Fig. 12. Examples from the test data set. First row: Original images; Second row: Double UNet prediction; Third row: StarDist prediction; Fourth row: Com-
bined prediction. 
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our artificial domain to have the height and width of our image and a 
depth of 3 cm. This depth was chosen because it allows the assumption 
that enough space is available for the overlapping bubbles, but no longer 
enough to allow a large number of fully occluded bubbles behind the 
visible bubbles. Furthermore, it reflects a typical depth dimension for 
experimental bubble columns or pipes (Ferreira et al., 2012; Hosokawa 
and Tomiyama, 2004; Lau et al., 2013; Pfleger et al., 1999). With this 
procedure, we generate test data for gas volume fractions of about 2.5 %, 
5 %, 7.5 % and 10 %, where 50 images are generated for each case. 

Fig. 9 shows the error of the predicted gas volume fractions, where 
αrel error =

αpredicted
αreference

, using the known ideal segmentation (left), i.e. the 
visible bubble parts, and using the segmentation predicted by SD+UNet 
(right) as well as the results when combined with the two hidden part 
reconstruction methods. The error bars denote the standard deviation 
for the 50 images of each case. As expected, using only the segmentation 
mask underpredicts the gas volume fraction due to the missing volume 

of the hidden parts. Already for the lowest tested gas volume fraction 
this results in an underprediction of about 9 %. When using the 
SD+UNet prediction, this error is only slightly higher with about 12 %. 
With increasing gas volume fraction, this difference even decreases. 
However, some bubbles are still incorrectly predicted with the SD+UNet 
method, e.g. some bubbles are missed or multiple bubbles are predicted 
where only one exists. This becomes important for the hidden part 
reconstruction. While the RDC method underestimates the gas volume 
fraction of about 3 % using the ideal segmentation, the error increases to 
about 9 % when using the SD+UNet prediction. With increasing gas 
volume fraction, this discrepancy increases showing that the RDC 
method strongly relies on a correct segmentation. The ellipse fitting 
method is not that dependent on the segmentation and shows the 
smallest deviation to the ground truth when combined with the 
SD+UNet prediction, while, however, showing the highest standard 
deviation. A deeper look into the underlying bubble size histograms for 

Fig. 13. Bubble size histograms for the test case at 5 % gas fraction.  
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all images of this first case (shown in Fig. 10) reveals that the RDC 
method better predicts the correct bubble size than without correction as 
well as with the ellipse fitting method. Note that for the ellipse fitting 
method a different abscissa is used due to the mentioned fact, that some 
much larger bubbles are predicted. This is also the reason for the smaller 
deviation to the ground truth gas volume fraction, as these false larger 
bubbles correspondingly increase the gas volume fraction. However, the 
RDC method works better on regular (ellipsoidal) shaped bubbles than 
on irregular (wobbling) shaped bubbles. This trend continuous for the 
test cases with higher gas volume fractions as can be seen in the corre-
sponding bubble size histograms shown in Appendix C. 

4. Conclusion 

In this work, we tested the use of different AI-based methods for the 

task of segmenting and reconstructing overlapping bubbles in bubbly 
flow images. In particular, we have implemented and tested three 
different CNN’s, namely a combination of two slightly adapted UNet’s as 
well as the two open-source methods StarDist and Mask-RCNN. In 
general, all three methods are capable to detect bubbles under eased 
conditions, namely a proper illumination that clearly reveals in-
terSections of overlapping bubbles, rather regular bubble shape and a 
manageable number of overlapping bubble segments. When these con-
ditions are not met, the Double UNet approach fails to correctly detect 
the bubbles, while the StarDist and Mask R-CNN methods are more 
robust under conditions that are more difficult. The StarDist method 
performs best in identifying bubbles under various image conditions, but 
slightly misses the correct outline of the bubbles. We were able to 
improve the latter drawback by combining the StarDist results with the 
general foreground-background mask provided by one of the two UNets 

Fig. 14. Bubble size histograms for the test case at 7.5 % gas fraction.  
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in a postprocessing step. The Mask R-CNN shows an equally good per-
formance as the StarDist method, which underlines the capability of 
both methods to detect overlapping bubbles in images. However, 
StarDist shows better computational performance with respect tin terms 
of a faster training and inference time in comparison to Mask R-CNN. 

In order to further increase the accuracy with respect to determining 
correct bubble sizes and gas volume fractions, we tested two methods to 
reconstruct the hidden part of partly occluded bubbles. The first method 
tries to fit an ellipse with the boundary pixels of a segmentation instance, 
while the second method, called Radial Distance Correction (RDC), is 
based on a Neural Network that corrects radial distances from the center 
of the instance to the occluded part. Here, the second method provides 
more robust results, as the ellipse fitting method occasionally generates 
far too large predictions. This is further demonstrated in a final com-
bined validation, in which we apply the StarDist+UNet method together 

with the two methods to reconstruct the hidden bubble part on synthetic 
images with known ground truth bubbles. 

Even though we demonstrate that satisfactory results with respect to 
bubble size distribution and gas volume fraction can be achieved, the 
relative error for the latter is still not in a reasonable range when 
investigating cases with gas fraction above 5 %. This can be improved by 
generating more training data of such cases. Since labelling images with 
a high number of overlapping bubbles is cumbersome, the use of 
generative models like GAN’s might be beneficial for this. Furthermore, 
a CNN model that already proposes overlapping instances could be ad-
vantageous for the task of identifying overlapping bubbles, i.e. the 
multistar approach, which is an extension of the StarDist approach that 
focuses on the topic of overlapping instances (Walter et al., 2020). Also 
the use of image sequences could potentially improve the segmentation 
performance, as hidden bubbles may be better visible at an earlier or 

Fig. 15. Bubble size histograms for the test case at 10 % gas fraction.  
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later moment of a sequence. 
Although only bubble column experiments without an imposed 

liquid flow are considered in the present work, the training data still 
should reflect cases with background flow to some extent. Specifically 
the bubble appearance in the images defines the detectability with a 
trained algorithm, where the appearance depends on the image condi-
tion (e.g. illumination, pixel size, blurriness) as well as on the bubble 
shape. In this context, a liquid flow field can modify the latter, but only 
for higher turbulence intensities (Masuk et al., 2021), so that also low to 
moderate liquid background flows should be reflected in the training 
data. This, however, needs further investigation and otherwise an 
adaption of the training data set. 

In order to use our data and/or models, we provide two different 
open-access repositories. The labelled training data and the synthetic 
test images for the combined validation can be found under (Hes-
senkemper et al., 2022a). The code to train the UNet’s and to apply the 
combined methods on bubbly flow images as well as the trained UNet, 
StarDist and RDC models can be accessed under (Hessenkemper et al., 
2022b). To train custom StarDist models we propose to access the 
well-documented original StarDist repository (https://github.com/st 
ardist/stardist). The same applies for the Mask R-CNN algorithm, for 
which we propose to use the BubMask repository (https://github.co 
m/ywflow/BubMask) as introduced by Kim and Park, 2021. 
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