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The Rosensweig instability is the phenomenon that above a certain threshold of a ver-
tical magnetic field peaks appear on the free surface of a horizontal layer of magnetic
fluid. In contrast to almost all classical hydrodynamical systems, the nonlinearities of
the Rosensweig instability are entirely triggered by the properties of a deformed and
a priori unknown surface. The resulting problems in defining an adjoint operator for
such nonlinearities are illustrated. The implications concerning amplitude equations for
pattern forming systems with a deformed surface are discussed.

PACS number(s): 02.30.Tb, 47.20.-k, 75.50.-y

1. Introduction

Magnetic fluids (MFs) are stable colloidal suspensions of ferromagnetic nanoparti-

cles dispersed in a non-magnetic carrier liquid. The nanoparticles are coated with

a layer of chemically adsorbed surfactants to avoid agglomeration. The behavior

of MFs is characterized by the intricate interaction of their hydrodynamic and

magnetic properties with external forces. This complex interaction causes many

fascinating phenomena, as the “negative viscosity” effect and the Weissenberg ef-

fect (for a review see Ref. 1) or as the labyrinthine instability and the Rosensweig

instability.2 The latter instability occurs when a horizontal layer of MF with a free

surface is subjected to a uniform and vertically oriented magnetic field. Above a

certain threshold of the magnetic field that surface becomes unstable, giving rise to

a hexagonal pattern of peaks.2,3 Despite the fact that the Rosensweig instability has

been known for many decades, some aspects have been addressed only recently: the

inclusion of the fluid viscosity4 and of a finite layer thickness,5 the hexagon-square

transition6 or the wave number selection problem.6,7

The quantitative comparison of theoretical and experimental results is presently

limited to linear aspects of the Rosensweig instability. Convincing quantitative

agreement is found for the wave number of maximal growth,7 for the parametric

stabilization of the Rosensweig instability,8 and for the wave resistance in magnetic
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fluids.9 For the nonlinear aspects, comparisons are restricted to the detection of

the same qualitative features. Stability regions for hexagons and squares are found

in the theory10–16 and in the experiment.6 The experimentally observed increase

in the wavelength of the emerging hexagonal pattern6 is detectable as well in a

theoretical analysis.16 The main reason for lacking quantitative comparisons is the

difference between the susceptibility of the experimentally used fluids and the sus-

ceptibility up to which the nonlinear analyses are valid. Finite amplitudes for all

three patterns of hexagons, squares, and rolls are given for susceptibilities χ smaller

then 0.41 for an infinitely thick layer (see Figs. 3 and 6 in Ref. 16). But the ex-

periments were performed with a magnetic fluid of χexp = 1.4.6 Pattern selection

studies with fluids of different susceptibilities have not yet been carried out.

Weakly nonlinear analyses of the Rosensweig instability were done by means of

an energy minimization principle,10,11,16 by methods of functional analysis,13–15 by

a generalized Swift–Hohenberg equation,17,18 and by a multiple-scale analysis.19,20

The first two approaches are suited only for static problems and the Swift–

Hohenberg equation lacks coefficients containing the fluid properties and the geom-

etry of the system. Consequently, amplitude equations stemming from a multiple-

scale analysis based on the fundamental hydrodynamic equations are customized

for the study of static and dynamical problems as well as for the quantitative com-

parison with the experiment. The standard route of the multiple-scale analysis is

modified in Refs. 19 and 20 to circumvent Fredholms theorem, i.e. the definition

of an adjoint operator. In the present paper a multiple-scale analysis is presented

which involves the expansion of all physical quantities at the deformed surface.

The resulting problem in defining an adjoint operator and the subsequent conse-

quences are the main purpose of this paper. It is organized as follows: the system

and the relevant equations of the problem are displayed in the next section. Based

on the governing equations and the boundary conditions the different character of

the nonlinearities of the Rosensweig instability is emphasised (Sec. 2.3). Whereas

the linear problem is shortly recapitulated in Sec. 3, the adjoint problem is ad-

dressed in detail in Sec. 4. In the final Sec. 5, the problems concerning amplitude

equations for pattern forming systems with a deformed surface are discussed as well

as open questions and further prospects are outlined.

2. System and Equations of the Problem

A horizontally unbounded layer of an incompressible, nonconducting, and viscous

magnetic fluid of finite thickness d and constant density ρ is considered. The MF is

bounded from below (z = −d) by the bottom of a container made of a magnetically

impermeable material and has a free surface described by zs = ζ(x, y, t) with air

above. The electrically insulating fluid justifies the stationary form of the Maxwell

equations, which reduce to the Laplace equation for the magnetic potentials Φ(i)

in each of the three different regions. Upper indices denote the considered media:

(1) air, (2) magnetic fluid, and (3) container (Fig. 1).
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Fig. 1. Sketch of the system.

It is assumed that the magnetization M(2) of the magnetic fluid depends lin-

early on the magnetic field H(2), M(2) = (µr − 1)H(2), where µr is the relative

permeability of the fluid. Additionally, the magnetization is considered to be a lin-

ear function of the density ρ(2) which results in the usual form of the Kelvin force

FK = µ0(M(2) grad)H(2).2 The system is governed by the equation of continuity,

the Navier–Stokes equations for the magnetic fluid,

div v(2) = 0 , (1)

ρ(2)∂tv
(2) + ρ(2)(v(2) grad)v(2) = −grad p(2) + µ(2)∆v(2)

+µ0(M(2) grad)H(2) + ρ(2)g , (2)

and the Laplace equation in each medium,

∆Φ(i) = 0 . (3)

The scalar magnetic potentials are defined by H(i) = −grad Φ(i). The velocity field

in the MF is denoted by v(2), the dynamic viscosity by µ(2), the pressure field by

p(2), and the acceleration due to gravity by g = (0, 0,−g). The first three terms on

the right-hand side of Eq. (2) result from div
↔
T

(2), where the components of the

stress tensor
↔
T

(2) read2

T
(2)
ij =

{
−p(2) − µ0

(H(2))2

2

}
δij +H

(2)
i B

(2)
j + µ(2)(∂iv

(2)
j + ∂jv

(2)
i ) . (4)

M (2), H(2), and B(2) denote the absolute value of the magnetization, the magnetic

field, and the induction B(2) in the MF. Since the final arrangement of peaks is a

static configuration, the velocity field in the MF is set to zero, v(2) = 0, and the

surface depends only on the horizontal spatial coordinates, zs = ζ(x, y). Applying

all assumptions, the static form of the Navier–Stokes equation is

0 = −grad p(2) +
µ0

2
(µr − 1) grad(H(2))2 − ρ(2)gez , (5)

where ez = (0, 0, 1) is the unit vector in z-direction. The governing equations have to

be supplemented by the appropriate boundary conditions. These are the continuity
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of the normal (tangential) component of the magnetic induction (magnetic field)

at the top and bottom interface,

n(2,1) · (B(1) −B(2)) = 0, n(2,1) × (H(1) −H(2)) = 0 at z = zs , (6)

n(3,2) · (B(2) −B(3)) = 0, n(3,2) × (H(2) −H(3)) = 0 at z = −d , (7)

and the continuity of the normal component of the stress tensor across the free

surface

(
↔
T

(1) −
↔
T

(2))n(2,1) − σKn(2,1) = 0, at z = zs . (8)

In (8) the surface tension between the magnetic fluid and air is denoted by σ, the

curvature of the surface by K = div n(2,1), and the unit vector normal to the MF

surface by

n(2,1) =
grad[z − ζ(x, y)]

|grad[z − ζ(x, y)]| =
(−∂xζ,−∂yζ, 1)√

1 + (∂xζ)2 + (∂yζ)2
. (9)

The upper index (2, 1) at the unit vector indicates that n(2,1) points from medium

2 towards medium 1; analogous for the normal vector n(3,2) = (0, 0, 1) (see Fig. 1).

The difference of the tangential components of the stress tensor is identically zero

because of the continuity of the magnetic fields and inductions in (6). Neglecting

the influence of the air pressure with respect to the fluid pressure, p(1) ' 0, and

using M(1) ≡ 0, one finally gets from Eq. (8)

µ0

2
[M(2)n(2,1)]2 + p(2) − σK = 0, at z = zs , (10)

where p(2) is the solution of Eq. (5).

2.1. Basic state

As long as the applied spatially homogeneous magnetic field perpendicular to the

surface,

H(i) = H
(i)
G = (0, 0,H

(i)
G ), B(i) = B

(i)
G = (0, 0, B

(i)
G ),

M(2) = M
(2)
G = (0, 0,M

(2)
G ) , (11)

is below a certain strength, the system is in its basic or ground state. This state is

given by the plane surface zs = 0. The corresponding solution for the fluid pressure is

p
(2)
G = −ρ(2)gz − µ0

2
(M

(2)
G )2 , (12)

where the constant resulting from (5) was determined by (10) and H
(2)
G = H

(2)
G |0

was used. Here |0 denotes the evaluation at the plane interface zs = 0. The boundary

conditions (6) and (7) are fulfilled by B
(1)
G = B

(2)
G and B

(2)
G = B

(3)
G , respectively.
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2.2. Small disturbances and their expansion

In order to study the stability of the basic state and the pattern selection problem

in the weakly nonlinear regime, small deviations from the basic state are considered

zs = 0 + ζ, H(i) = H
(i)
G + h(i), B(i) = B

(i)
G + b(i),

M(2) = M
(2)
G + m(2), Φ(i) = Φ

(i)
G + φ(i), p(2) = p

(2)
G + π(2) . (13)

Dimensionless quantities are introduced, where physical quantities are denoted by

a hat in the rest of the paper. All quantities associated with the magnetic field are

scaled by the critical magnetic induction in the limit of an infinite thickness of the

MF layer, B̂c,∞. This preference is based on the fact that magnetic inductions can

be directly measured by Hall probes. Furthermore, it is assumed that the deviations

are proportional to the applied external induction. Thus the following scaling is used

B̂
(i)
G = BextB̂c,∞, b̂(i) = b(i)BextB̂c,∞ , (14)

M̂
(i)
G = Bext

(µr − 1)

µ̂0µ
(i)
r

B̂c,∞, m̂(i) = m(i)Bext
(µr − 1)

µ̂0µ
(i)
r

B̂c,∞ , (15)

Ĥ
(i)
G = Bext

B̂c,∞

µ̂0µ
(i)
r

, ĥ(i) = h(i)Bext
B̂c,∞

µ̂0µ
(i)
r

, (16)

π̂(2) = π(2)B2
ext

2(µr + 1)

µr(µr − 1)2

√
ρ̂(2)ĝσ̂, l̂ =

l

k̂c,∞
. (17)

For an infinite thickness of the layer, the critical induction and critical wave number,

respectively, are3

B̂2
c,∞ =

2µ̂0µr(µr + 1)
√
ρ̂(2)σ̂ĝ

(µr − 1)2
, k̂c,∞ =

√
ρ̂(2)ĝ

σ̂
. (18)

The dimensionless quantity Bext in Bext = (0, 0, Bext) measures the strength of the

applied external induction in units of B̂c,∞.

With this scaling the solution of the Navier–Stokes equation (5) becomes

π(2) =
η

1− η [2h(2)
z + (h(2))2] + c , (19)

with a yet unknown constant c. The Laplace equation (3) in each medium is

∆φ(i) = 0 , (20)

and the boundary conditions (6), (7), and (10) are

at z = −d, 0 = −φ(2) + φ(3) , (21)

at z = −d, 0 = −1 + η

1− η∂zφ
(2) + ∂zφ

(3) , (22)

at z = ζ, 0 = − 2η

1− η ζ + φ(1) − φ(2) , (23)
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at z = ζ, 0 = −∂xζ
(
−∂xφ(1) +

1 + η

1− η∂xφ
(2)

)

− ∂yζ
(
−∂yφ(1) +

1 + η

1− η∂yφ
(2)

)
− ∂zφ(1) +

1 + η

1− η∂zφ
(2) , (24)

at z = ζ, 0 = − 2B2
ext

(1 + η)

[(∂xζ)
2 + (∂yζ)

2]

[1 + (∂xζ)2 + (∂yζ)2]
+

2B2
ext(1− η)

η(1 + η)

×
(

2η

(1− η)

h(2)n(2,1)√
1 + (∂xζ)2 + (∂yζ)2

+ h(2)ez

)

+
B2

ext(1− η)

η(1 + η)

[
2η(h(2)n(2,1))2

(1− η)
+ (h(2))2

]

− z −K +
B2

ext(1− η)2

η2(1 + η)
c . (25)

The curvature of the surface is

K =
−∂xxζ − ∂yyζ√

1 + (∂xζ)2 + (∂yζ)2
+

(∂xζ)
2∂xxζ + 2∂xζ∂yζ∂xyζ + (∂yζ)

2∂yyζ

[1 + (∂xζ)2 + (∂yζ)2]3/2
, (26)

and the widely used quantity

η =
µr − 1

µr + 1
(27)

was introduced (γ = (3/4)η in Refs. 11, 16 and 21).

Since the disturbances of the magnetic field are located in the vicinity of the

magnetic fluid, they have to disappear as z goes to infinity, i.e. the magnetic field

disturbances have to fulfill two more conditions:

at z = −∞, 0 = φ(3) , (28)

at z =∞, 0 = φ(1) . (29)

In summary, the system is governed by three differential equations of second or-

der (20) and the corresponding six boundary conditions (21)–(24), (28), (29) for

the magnetic potentials. The remaining equation (25) is a differential equation for

ζ(x, y) whose solution determines the shape of the surface.

To derive solutions with a finite but small amplitude, the Eqs. (20)–(25) are

solved perturbatively. The external control parameterBext and the various physical

quantities are expanded

B2
ext = B2

c + εB1 + ε2B2 + · · · , (30)

X = εX0 + ε2X1 + ε3X2 + · · · , (31)
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where X can be any of the quantities φ(i), ζ, and c. ε is an expansion parameter with

respect to the magnitude of the surface deformation (0 < ε � 1). The boundary

conditions (23)–(25) have to be evaluated at an a priori unknown surface ζ(x, y).

Therefore it is convenient to expand all potentials φ(i) on the surface in terms of

φ(i) at z = 0,

φ(i)(x, y, z = ζ) = φ(i)(x, y, 0) + ∂zφ
(i)(x, y, z)|0 · ζ +

1

2
∂zzφ

(i)(x, y, z)|0 · ζ2 + · · · ,

(32)

and similarly for all space derivatives of φ(i). The chosen expansion of the external

parameter follows the way as it is known from thermal convection problems of ordi-

nary fluids 22,23 or magnetic fluids24 and from the Bénard–Marangoni problem.25–27

The expansion (30) and (31) describes a situation slightly above the threshold of

the linear instability and differs from those used in Refs. 19 and 20, where the

magnetic field H, acting as external parameter, is not expanded. The consequences

of this difference will be discussed in Sec. 5.

2.3. Different nonlinearity

Before going into the details of the expansion procedure, it is illuminating to analyze

the set of Eqs. (20)–(25). The differential equations (20) and the boundary condi-

tions at the bottom of the container (21), (22) are linear equations. Only the three

remaining boundary equations (23)–(25) contain nonlinear terms. In contrast to al-

most all classical hydrodynamic systems, the nonlinearity stems from the boundary

conditions and not from the differential equations which describe phenomena in the

bulk of the system. For example in convection systems the nonlinear contributions

are caused by the advective term, i.e. by a bulk term, in the Navier–Stokes equation

and in the equation of head conduction. For the Rosensweig instability the nonlin-

earities are caused by the deformed and unknown surface ζ at which the potentials

have to be calculated. Thus each linear term in φ(1) and φ(2) in Eqs. (23)–(25) gen-

erates nonlinear terms via Eq. (32). A further nonlinear contribution comes from

the Kelvin force density in which a term quadratic in the potential φ(2) appears,

to determine again at the deformed and unknown surface. This qualitatively differ-

ent character of the Rosensweig instability makes it fascinating as well as hard to

treat the instability with the classical methods. One indicator of the essential role

of the boundaries is the fact that the external parameter Bext appears only in the

boundary condition (25).

Performing the expansion according to (30)–(32) in (20)–(25) generates a hier-

archy of linear equations for U0, U1, and U2

L0U0 = 0 , (33)

L0U1 = −L1U0 +N1(U0, U0) , (34)

L0U2 = −L1U1 − L2U0 +N(U0, U1) +N(U1, U0)

+N(U0, U0, U0) +N2(U0, U0) , (35)
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by matching the three lowest powers of ε. The vector

U = (φ(3), φ(2), φ(1), φ(1)|0, φ(2)|0, ζ)T = εU0 + ε2U1 + ε3U2 + · · · (36)

is the augmented state vector, L0, L1, and L2 are linear operators, and the vec-

tors N(·), N1(·), and N2(·) contain the nonlinear contributions. With the above

mentioned, it is clear that in each order of ε different nonhomogeneous bound-

ary problems have to be solved. This again indicates the different quality of the

problem considered here in comparison to classical convection problems. For the

boundary conditions, terms involving φ(1), φ(2), and their derivatives have to be

evaluated at z = 0 wherefore the vector U contains the potentials φ(1) and φ(2)

at z = 0 additionally to the potentials itself. Similar state vector were used for

the Bénard–Marangoni system26,27 or for the electroconvection problem in a thin

film.28

3. Linear Problem

The linear stability problem and the corresponding adjoint problem play a funda-

mental role in the nonlinear analysis. Since the linear problem has been considered

in details elsewhere4,5,7,29–31 only some of its more important aspects are recapit-

ulated here.

Inserting the ansatz (30)–(32) into (20)–(25) gives at order O(ε)

0 = ∆φ
(i)
0 , (37)

at z = −d, 0 = −φ(2)
0 + φ

(3)
0 , (38)

at z = −d, 0 = −1 + η

1− η∂zφ
(2)
0 + ∂zφ

(3)
0 , (39)

at z = 0, 0 = − 2η

1− η ζ0 + φ
(1)
0 − φ

(2)
0 , (40)

at z = 0, 0 = −∂zφ(1)
0 +

1 + η

1− η∂zφ
(2)
0 , (41)

at z = 0, 0 = −2(1− η)B2
c

η(1 + η)
∂zφ

(1)
0 − ζ0

+ (∂xx + ∂yy)ζ0 +
(1− η)2B2

c

η2(1 + η)
c0 . (42)

Equations (37)–(41) are solved by

φ
(3)
0 = −η(1 + η)ek(d+z)

ekd − η2e−kd
ζ̄0e

ik·r, (43)

φ
(2)
0 = −η[ek(d+z) + ηe−k(d+z)]

ekd − η2e−kd
ζ̄0e

ik·r, (44)
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φ
(1)
0 =

η(1 + η)[ek(d−z) − ηe−k(d+z)]

(1− η)[ekd − η2e−kd]
ζ̄0e

ik·r, (45)

ζ0 = ζ̄0e
ik·r , (46)

with k = (kx, ky), k =
√
k2
x + k2

y, r = (x, y), and ζ̄0 the amplitude of the surface

deformation. Inserting this solution into (42) leads to the known dispersion relation

for an inviscid magnetic fluid of finite thickness in dimensionless quantities5,7,29,30

1 + k2 − 2B2
ck

(
ekd − ηe−kd
ekd − η2e−kd

)
= 0 , (47)

providing that the unknown constant c0 is set to zero. By solving Eq. (47) numer-

ically for a given thickness d, one gets the height dependent critical values Bc(d)

and kc(d) at the onset of the instability.

The linear operator L0 together with the corresponding augmented state vector

U0 of Eq. (33) are defined on the basis of Eqs. (37), (40)–(42):

L0U0 = 0 =



∆ 0 0 0 0 0

0 ∆ 0 0 0 0

0 0 ∆ 0 0 0

0 0 0 1 −1 − 2η

1− η

0
1 + η

1− η ∂z|0 −∂z|0 0 0 0

0 0 −2(1− η)

η(1 + η)
B2

c∂z|0 0 0 ∂xx + ∂yy − 1





φ
(3)
0

φ
(2)
0

φ
(1)
0

φ
(1)
0 |0
φ

(2)
0 |0
ζ0


.

(48)

4. Adjoint Problem

To proceed with the derivation towards an amplitude equation, one has to solve

the linear inhomogeneous equations for U1 and U2, Eqs. (34), (35). According to

Fredholms theorem,32 they have a solution if and only if the right hand side is

orthogonal to the zero space of the linear operator L0. If Ū0 is an eigenvector of

the adjoint linear operator L†0 with zero eigenvalue, then multiplying Eq. (34) from

left with Ū0 reads (analogous for Eq. (35))

−〈Ū0, L1U0〉+ 〈Ū0, N1(U0, U0)〉 = 〈Ū0, L0U1〉 = 〈L†0Ū0, U1〉 = 0 . (49)

The scalar product is denoted by 〈 , 〉, where the explicit form depends on the

considered problem. Applying these solvability conditions, by which B1 and B2

(see Eq. (30)) can be expressed, leads to the general amplitude equation for a

pattern selection problem.

In Sec. 2.3 the different character is described of the pure “surface-

nonlinearities” occuring in the Rosensweig instability. The question arises whether
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the established methods for “bulk-nonlinearities”, as for example for the Rayleigh–

Bénard convection, will work here as well. Motivated by Refs. 26–28 where non-

linearities triggered by the bulk and the plain surface appear, the following scalar

product

〈Ū0, U〉 = lim
l→∞

1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

[∫ −d
−∞

dzφ̄
(3)∗
0 φ(3) +

1 + η

1− η

∫ 0

−d
dzφ̄

(2)∗
0 φ(2)

+

∫ ∞
0

dzφ̄
(1)∗
0 φ(1) + dū∗0,4|0φ(1)|0 + eū∗0,5|0φ(2)|0 + fū∗0,6|0ζ

]
(50)

is used. Ū0 is chosen since Eqs. (34) and (35) have to be multiplied by Ū0. The first

three terms in the square brackets in Eq. (50) are contributions from the volume,

whereas the last three terms are contributions from the surface. The possible pref-

actors d, e, and f as well as the surface components of the adjoint vector Ū0, ū0,4,

ū0,5, and ū0,6, have yet to be determined. From Refs. 26 and 27 it is known that

the surface components of the adjoint state vector are not just simply the adjoint

components of the state vector. Using the identity

φ̄
(i)∗
0 ∆φ(i) = ∂x[φ̄

(i)∗
0 ∂xφ

(i) − ∂xφ̄(i)∗
0 φ(i)] + ∂y[φ̄

(i)∗
0 ∂yφ

(i) − ∂yφ̄(i)∗
0 φ(i)]

+ ∂xxφ̄
(i)∗
0 φ(i) + ∂yyφ̄

(i)∗
0 φ(i) + φ̄

(i)∗
0 ∂zzφ

(i) , (51)

and the conditions (21), (22), (28), and (29) one has after partial integration

〈Ū0, L0U〉 = lim
l→∞

1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

[ ∫ −d
−∞

dz∆φ̄
(3)∗
0 φ(3) +

1 + η

1− η

×
∫ 0

−d
dz∆φ̄

(2)∗
0 φ(2) +

∫ ∞
0

dz∆φ̄
(1)∗
0 φ(1) − φ̄(3)∗

0 |−∞∂zφ(3)|−∞

+ (φ̄
(3)∗
0 − φ̄(2)∗

0 )|−d∂zφ(3)|−d −
(
∂zφ̄

(3)∗
0 − 1 + η

1− η∂zφ̄
(2)∗
0

) ∣∣∣∣
−d
φ(3)|−d

+ φ̄
(1)∗
0 |∞∂zφ(1)|∞ +R

]
. (52)

From Eq. (52) it is concluded that the linear adjoint system is governed by three

differential equations of second order for the adjoint potentials φ̄
(i)
0 . According to

Eq. (52) the four conditions to be fulfilled by these adjoint potentials are

at z = −∞, 0 = φ̄
(3)
0 , (53)

at z = −d, 0 = −φ̄(2)
0 + φ̄

(3)
0 , (54)

at z = −d, 0 = −1 + η

1− η∂zφ̄
(2)
0 + ∂zφ̄

(3)
0 , (55)

at z =∞, 0 = φ̄
(1)
0 , (56)
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since only terms on the surface should remain. The residual terms

R = ∂zφ
(2)|0

(
1 + η

1− η φ̄
(2)∗
0 +

1 + η

1− η eū
∗
0,5

) ∣∣∣∣
0

+ φ(2)|0
(
−1 + η

1− η∂zφ̄
(2)∗
0 − dū∗0,4

) ∣∣∣∣
0

+ ∂zφ
(1)|0

[
−φ̄(1)∗

0 − eū∗0,5 −
2(1− η)

η(1 + η)
B2

cfū
∗
0,6

] ∣∣∣∣
0

+ φ(1)|0(∂zφ̄
(1)∗
0 + dū∗0,4)|0

+ ζ

[
2η

1− ηdū
∗
0,4 + (∂xx + ∂yy − 1)fū∗0,6

] ∣∣∣∣
0

(57)

are bounded to contain only the two remaining boundary conditions and one further

term, all to be determined at z = 0, for a proper definition of L†0. Comparing the

terms in R and the surface components of U (see Eq. (36)), one realizes that the

first and third term in Eq. (57) have to vanish. As a consequence of the immediate

choice eū0,5 = −φ̄(2)
0 , the sixth component of the adjoint vector Ū0, ū0,6, is a linear

combination of φ̄
(1)
0 and φ̄

(2)
0 , i.e. a linear combination of φ̄

(1)
0 and ū0,5. Certainly a

result contrary to the condition that the set of variables in Ū0 have to be linearly

independent. Testing the choice

dū0,4 = kφ̄
(1)
0 , eū0,5 = −φ̄(2)

0 , f ū0,6 =
−η2(1 + η)

(1− η)2B2
c

ζ̄0 (58)

results in

〈Ū0, L0U〉 = lim
L→∞

1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

[ ∫ −d
−∞

dz∆φ̄
(3)∗
0 φ(3)

+
1 + η

1− η

∫ 0

−d
dz∆φ̄

(2)∗
0 φ(2) +

∫ ∞
0

dz∆φ̄
(1)∗
0 φ(1)

−
(
−∂zφ̄(1)∗

0 +
1 + η

1− η∂zφ̄
(2)∗
0

) ∣∣∣∣
0

φ(2)|0

− η2(1 + η)

(1− η)2B2
c

(
−2(1− η)B2

c

η(1 + η)
∂zφ̄

(1)∗
0 + (∂xx + ∂yy − 1)ζ̄∗0

) ∣∣∣∣
0

ζ

−
(
− 2η

(1− η)
ζ∗0 + φ̄

(1)∗
0 − φ̄(2)∗

0

) ∣∣∣∣
0

∂zφ
(1)|0

]
, (59)

where ∂zφ̄
(1)
0 |0 = −kφ̄(1)

0 |0 was used. This identity is justified because of the Laplace

equation for φ̄
(1)
0 (see last z-integral in Eq. (52)) and the condition (56). After

inserting (58) into Eq. (50), it becomes clear that Eq. (59) has almost the proper

form in order to define the adjoint operator L†0 via 〈Ū0, L0U〉 = 〈L†0Ū0, U〉. The

last remaining but unsolved problem is posed by the third surface term in Eq. (59).

Instead of kφ(1)|0, the expression −∂zφ(1)|0 appears. Both terms are only equally in

the first order of the expansion, where φ
(1)
0 ∼ e−kz (see Eq. (45)). In higher orders of

the expansion, the functions φ
(1)
1 and φ

(1)
2 containing wave vectors which are linear
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combinations of two and three, respectively, wave vectors of the basic modes. As a

result z-dependences will appear as φ
(1)
1 ∼ e−|kn±km|z and φ

(1)
2 ∼ e−|kn±km±kl|z,

respectively. The absolute value of the resulting wave vector is usually not equal

to k. Thus the task remains that for a nonlinear analysis a linear adjoint operator

should be definable which is valid for a wider set of function as e−kz .

The generic problem of a nonzero, deformed surface is illustrated by calculating

the scalar product of the augmented state U vector and its adjoint one Ū

〈Ū , U〉 = ε2〈Ū0, U0〉+ ε3(〈Ū0, U1〉+ 〈Ū1, U0〉) +O(ε4),

= lim
l→∞

1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

[∫ −d
−∞

dzφ̄(3)∗φ(3)

+
1 + η

1− η

∫ ζ

−d
dzφ̄(2)∗φ(2) +

∫ ∞
ζ

dzφ̄(1)∗φ(1)

+ dū∗4|ζφ(1)|ζ + eū∗5|ζφ(2)|ζ + fū∗6|ζζ
]
. (60)

Since U and Ū contain the complete information of the disturbed state, the unknown

and deformed surface ζ appears as a bound at two integrals and at the surface

contributions. Whereas the expansion of the three surface contributions can be

performed accordingly to Eq. (32), the expansion of the two integrals involving the

deformed surface ζ is accomplished as∫ ζ

−d
dzφ̄(2)∗φ(2) = ε2

∫ 0

−d
dzφ

(2)∗
0 φ

(2)
0 + ε3

[
ζ0φ̄

(2)∗
0 |0φ(2)

0 |0

+

∫ 0

−d
dz(φ̄

(2)∗
0 φ

(2)
1 + φ̄

(2)∗
1 φ

(2)
0 )

]
+O(ε4) . (61)

The analogous expansion can be applied to the second integral involving ζ. Match-

ing the two lowest powers of ε in Eq. (60), one gets

〈Ū0, U0〉 = lim
l→∞

1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

[∫ −d
−∞

dzφ̄
(3)∗
0 φ

(3)
0 +

1 + η

1− η

∫ 0

−d
dzφ̄

(2)∗
0 φ

(2)
0

+

∫ ∞
0

dzφ̄
(1)∗
0 φ

(1)
0 + dū∗0,4|0φ

(1)
0 |0 + eū∗0,5|0φ

(2)
0 |0 + fū∗0,6|0ζ0

]
(62)

and

〈Ū0, U1〉+ 〈Ū1, U0〉

= lim
l→∞

1

l2

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy

{∫ −d
−∞

dz(φ̄
(3)∗
0 φ

(3)
1 + φ̄

(3)∗
1 φ

(3)
0 )
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+
1 + η

1− η

∫ 0

−d
dz(φ̄

(2)∗
0 φ

(2)
1 + φ̄

(2)∗
1 φ

(2)
0 ) +

∫ ∞
0

dz(φ̄
(1)∗
0 φ

(1)
1 + φ̄

(1)∗
1 φ

(1)
0 )

+ d(ū∗0,4φ
(1)
1 + ū∗1,4φ

(1)
0 )|0 + e(ū∗0,5φ

(2)
1 + ū∗1,5φ

(2)
0 )|0

+ f(ū∗0,6|0ζ1 + ū∗1,6|0ζ0) + ζ0

[
φ̄

(2)∗
0 φ

(2)
0 − φ̄

(1)∗
0 φ

(1)
0

+ d(ū∗0,4∂zφ
(1)
0 + ∂zū

∗
0,4φ

(1)
0 ) + e(ū∗0,5∂zφ

(2)
0 + ∂zū

∗
0,5φ

(2)
0 )

]∣∣∣∣
0

+ f∂zū
∗
0,6|0ζ2

0

}
. (63)

As discussed for Eq. (59), the problems are appearing beyond the first order of ex-

pansion. The form for the scalar product of 〈Ū0, U0〉 is the expected one (Eq. (62)).

In the second order expansion, the left hand side of Eq. (63) lets await only prod-

ucts of functions which belong to the first and second order of expansion. But

the expansion on the deformed surface generates additional terms, where each one

is formed by three functions of the first order expansion. These additional terms

can neither be assigned to 〈Ū0, U1〉 nor to 〈Ū1, U0〉 by simple arguments. Similar

dilemmas are present for the third and any higher expansion order with many more

not-assignable terms. Neglecting surface deformations is certainly not an option for

the solution of this problem.

It becomes now apparent why the derivation of an amplitude equation in

Refs. 26–28 with the approximation of a plane surface succeeded. The first order

expansion on a deformed surface is equivalent to that approximation of a plane sur-

face. Therefore the problems of not-assignable terms stemming from higher orders

in the expansion do not occur.

5. Discussion

The detailed analysis of the last section showed that the definition of a linear

adjoint operator for pure surface-nonlinearities has not yet been accomplished. Two

attempts which led to unsatisfactory consequences were described here. They point

to the fact that in the known literature no derivation can be traced in which an

expansion on the deformed surface was taken into account and a linear adjoint

operator was defined. The latter is necessary to determine higher order terms of

the external parameter; for the system considered here these are B1 and B2, see

Eq. (32). This fact is surprisingly since pattern forming systems with a deformed

surface belong to the set of classical hydrodynamical systems.

For the nonlinear analysis of instabilities in MF, a very similar expansion route

was followed in Refs. 19, 20 and 33. Remarkably, only very shortly the existence

of an adjoint problem is mentioned in Refs. 20, 33. No details with respect to the

definition of a scalar product and a linear adjoint operator were published. The
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same expansion as in Eq. (31) is used, but the external parameter, the magnetic

field H, is not expanded accordingly to Eq. (30). The latter step is a inconsistency

since the multiple-scale expansion comes along with the expansion of the physical

quantities and the external driving parameters as the Rayleigh number22–24 or

the Marangoni number.25–27 The gain of the lacking expansion is that higher order

terms of the external parameter have not to be determined. The solvability condition

in second order postulated in Refs. 19 and 20 demands that the amplitude has to

have a nonvanishing derivative everywhere with respect to the slow spatial variable.

That means that the amplitude is a strictly monotonously increasing or decreasing

function which is a very special type of solution. Selection problems between regular

patterns can not be tackled with such a type of solution.

The problems caused by a deformed surface for the derivation of an ampli-

tude equation are not unique to instabilities of magnetic fluids. The analysis of

the Bénard–Marangoni convection or of parametric surface (Faraday) waves is con-

fronted with similar difficulties. For the Bénard–Marangoni convection the surface

deformation is often disregarded in fluid-gas systems26,34 and two-fluid systems.27

In Refs. 35 and 36 a surface deflection was imitated by a nonzero Crispation num-

ber, thus avoiding the expansion of any quantity on a deformed surface. In Ref. 25

the expansion of the layer thickness was tuned in such a way that eigenfunctions

could be used which correspond to the case of an undeformed interface.

In the nonlinear analysis of Faraday waves an explicit evaluation of quantities

on the free surface is rare. In Ref. 37 the driving parameter is not expanded, similar

to Refs. 19, 20 and 33. No expansion on the surface is performed, but two different

amplitudes are introduced for the solution of first and third order. The adjoint

operator is circumvented in this way. The two different amplitudes are just the two

quantities needed to attach use to the solvability conditions. Under the constrains

of an inviscid fluid and an irrotational flow field, Milner38 derived an amplitude

equation for parametrically driven capillary waves. An expansion of the velocity

potential on the surface was included, but an adjoint problem was not formulated.

The overall picture is that several circumventing routes were used in order to

avoid the explicit evaluation of quantities on a deformed surface and the formula-

tion of a linear adjoint operator. The used alternatives were hardly motivated which

is why the real reasons behind the search for alternatives are not publicly known.

Instead of using the solvability conditions to determine higher order terms of the

external parameters, they were converted to constraining conditions for the am-

plitudes of the expanded physical quantities. This presents a rather unsatisfactory

situation.

The deeper reasons for this unsatisfactory situation are disclosed in this article.

The adjoint problem is presented in detail for nonlinearities purely triggered by a

deformed surface as in the case of the Rosensweig instability. By expanding the

physical quantities and the external parameter, the knowledge of the linear adjoint

operator is essentially to proceed towards the nonlinear amplitude equation. The
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main and still unsolved problem is the proper definition of the linear adjoint opera-

tor. Since this problem mounts a principal barrier and is not mentioned as a reason

for the search of alternative approaches, it is presented here even if no solution can

presently be offered. This situation entails one foremost question: Is it possible to

apply the concept of Fredholms theorem to pure surface-nonlinearities? If yes, what

is the adapted route for defining a linear adjoint operator. If not, what is a generic

and mathematically proven alternative since the hitherto used routes are lacking

these features. Therefore further analyses need to be done in order to solve this

problem and to clarify the open questions.

If these problems for the Rosensweig instability, caused by the single external

excitation of a magnetic field, are solved, other instabilities caused by different

external excitations can be fruitful tackled. Phenomena as standing twin peaks39 or

domain structures40 for parametrically excited MF under the influence of a magnetic

field are designated future examples for an analysis by amplitude equations derived

from the basic hydrodynamic equations.
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