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ABSTRACT

The one-dimensional random field Ising model (1D RFIM) is related to a non-
linear discrete stochastic mapping for an effective local random field which has for
nonzero temperature a multifractal measure which may be thin or fat. By means
of symbolic dynamics we distinguish parameter regions where the measure at the
boundary of the support diverges or goes to zero with infinite or zero slope, re-
spectively. Within the thermodynamic formalism we calculate generalized fractal
dimensions as function of physical parameters.

1. Introduction

The calculation of the partition function of the one-dimensional Ising model in
a quenched random magnetic field %, can be reduced to the problem of one spin in
an effective local random field ¢51:2

N-1 N N-1
N = Z exp(ﬂ Z ansn—}-l + Z hnSn) = ZeXP [ﬂ(ENSN + Z B(En))]
{sn} n=1 n=1 SN n=1
(1.1)
by summing up the left-most spin of the chain. The effective local random field ¢,
acting on s, is governed by the discrete stochastic mapping?

En:hn+A(§n-—l)Ef(hn7£n—1), . §0=0;n=1,...,N, (12)

where
A(z) = (28)! In[cosh B(z + J)/ cosh Bz — J)],
B(z) = (28) " In[4 cosh B(z + J) cosh f(z — J)).

We consider a random field A, which can take only two values hqy = hg + h
with the same probability % and is on each lattice site independent and identically
distributed. (The generalization to correlated Markov chains is straightforward).
The mapping (1.2) induces in the nth step a probability density p,(z) for the

(1.3)
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Figure 1. Distribution of the local magnetization generated by digital simulation (kT' =1, J =1,
ho = 0). The multifractal may be fat (a) or thin (b) for & = 0.6 and 1.5, respectively.

effective random field £, governed by the Frobenius-Perron equation
pa(@) = [ d2' paca(a} Y 8 = Flhar)). (14)
o=+

The fixed point of Eq. 1.4 gives the invariant mcasure of the local random ficld
which can be used to calculate physical quantities like free energy, magnetisation,
or the Edwards-Anderson parameter?. The model allows some exact results and dis-
plays already general features of random field problems (see, e.g., Ref. 3), including
frustration.

The properties of the discrete stochastic mapping — which is interesting of its
own — depend on the nature of the driving process h, and on the shape of the
function A. :

For non-zero temperatures A(z) is infinitely differentiable and |9, A(z)| < 1. As
a consequence, the dynamics defined by Eq. 1.2 is nonchaotic in the sense that the
averaged Lyapunov exponent is negative but the map generates for a discrete driving
process an uncountable number of states and a fractal (strange) attractor. Due to
the nonlinearity of A(z) the mapping has infinitely many scales, and the invariant
measure constitutes a multifractal which may be fat (the support is continuous) or
thin (the support is fractal) depending on the physical parameters*~!!. In the latter
case the support has the topology of the Cantor set but it is not self-similar except
for small values of the magnetic field or for high temperature where A(z) is well
approximated by a linear function. For a continuous driving process (without gaps)
the support is always the continuum?S.

The multifractal properties of the effective field transfer directly to a physical
quantity like local magnetisation (cf. Fig. 1) which could be measured in M&ssbauer
or NMR experiments. It is given by? m, = tanhp[¢. + A(¢,,,)], where &/, is
generated by summing up the spins from the right end of the chain.

For zero temperature, A(z) is piecewise linear with parts where 8, A(z) = 0.
As a consequence, Eq. 1.2 generates for a discrete driving process only a countable
number of states which is finite or infinite for rational or irrational ratio of exchange
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and magnetic field, respectively8:12:13. In the former case the theory of finite Markov
chains!* can be applied to determine the invariant measure®13.

The drastic changes in the quality of the measure und its support are naturally
reflected in the behaviour of the generalized fractal dimensions D,'%1¢ which un-
dergo, as function of the physical parameters, continuous as well as discontinuous
transitions, similar to order parameters in phase transitions?7~10,

Furthermore, there is a closc rclation of the multifractal spectrum with the
fluctuations of the free energy of a finite chain!9%:!!,

In this paper we show that the parameter space is divided in regions where
the invariant measure has qualitatively different shapes (Section 2). The analysis is
based on an explicit representation of the measure®® summing up contributions for
all possible trajectories which are encoded by symbolic dynamics!®. In Section 3 we
calculate generalized fractal dimensions as function of physical parameters including
the case of nonvanishing average field. For parameters where the fractal is fat we
have to reorganize the partition to take properly into account the contribution from
overlapping bands.

2. Symbolic Dynamics and Qualitative Shape of the Invariant Measure

For non-zero temperature A(z) is infinitely differentiable. Therefore, the result
of an iteration of the mapping (1.2) and its associate Frobenius-Perron equation,
Eq. 1.4, is uniquely determined by the realization of the quenched random ficld A,,.
This allows to introduce a symbolic dynamics®®® which encodes all states generated
by Eq. 1.2 and all bands generated by Eq. 1.4 by the sequence of signs characterizing
the random field, i.e., the history of the dynamical system.

We denote the result of the nth iteration of Eq. 1.2 starting from the initial
value {y = y by

L{o}n,y — f(hn, f(hn—lv vam ,f(hlvy)r' . ))1 (21)
where {0}, = {0n,...,01} is the sequence of signs corresponding to the given
realization of the driving process {h,,,...,ho,}. The result of infinitely many

iterations is denoted by z(,) where {0} symbolizes an infinite sequence of signs.
It does not depend on the initial value y since |8; f(k,z)| < 1 — the dynamics is
nonchaotic.

The attractor of Eq. 1.2 which constitutes the support of the invariant measure
lies on the interval I = [z{_},z(4}] bounded by the fixed points for infinitely
many iterations with the upper or lower branches of the mapping, corresponding to
constant fields A4 or h_ , respectively,

(o) = ho/2+ (28) ' sinh ™' [e*T 5 0l b, ], o= (22)

For parameters for which the two branches do not overlap, (cf. Fig. 2), the
images of the interval I, = [z,({_},Z,(4}], Wwhere ¢ = £, leave a first gap in
the support A = [z_(4),z4 (-] which generates in the nth iteration 2" gaps,
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Figure 2. Mapping (1.2) for a parameter setting which gives a thin multifractal (kT =1, J = 1,
ho =0, hy = 1.2). Shown are the fixed points z{+}, the gap A and its first iterations Ay.

Ao}, = [T{o}n —{+}> T{o}n+{~}] Which are arbitrarily close to a state. (Two states
T{o}a{o} @0d T{(g}, (o'} are the closer the longer is the head {0}, which coincides).
Thus for La = z4(_y — z_4} > 0 the support is a fractal. Lo = 0 defines a
phase boundary in the parameter space (cf. Fig. 3). For hg = 0 the corresponding
critical field is8®
R = (28)7" cosh™![(e2#7 — 1)/2]. (2.3)
With increasing ho the overlapping region changes as shown in Fig. 3b.
The iteration of the Frobenius-Perron equation, starting with a normalized
initial measure po(z) which is nonzero on I, yields in the nth iteration 2" bands

which can be uniquely encoded by symbolic dynamics, too. To evaluate the first
iteration of (1.4) we exploit that z,,, = f(h,) has the monotonic inverse

Yo,z = [ (ho,z) = (28) 7" In[sinh f(J + z — h,)/sinh B(J —z+ hy)) (2.4)

so that §(z — f(ho,z")) = |0z f(R,2')|726(z' — f~'(h,z)). The prefactor of the §-
function is calculated as W(z') = |[cosh(2fz') + cosh(28J)]/ sinh(28J)| which gives

for ' =y, .
W(yo,z) = |sinh(287)/[2sinh B(J — = + hy)sinh B(J + z — h,)]]. (2.5)

Thus, Eq. 1.4 tells us that po(z) generates two bands p,(z), o = + living on the
mappings of the initial support I,

(1/2)p0(Yo,2 )W (yo,z) = po(z) forzel,, o=+,
pi(z) = { (2.6)

0 otherwise.
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Figure 3.  Parameter regions with qualitative different shape of the invariant measure (J = 1).

Fig. 3a shows for ho = 0 the regions where the measure is a thin (A) or a fat (B, C, D) multifractal.

At the boundaries of the support the measure may be infinite (A, B) or zero with infinite (C) or zero
(D) slope. For given temperature the critical magnetic fields are given by Eqs. 2.3, 2.12, and 2.15,
respectively. The dots indicate the parameters for which the measure is shown in Fig. 4. Fig. 3b
shows for several values of hg the line Ln = 0 separating the regions of fat and thin multifractals.
(For T'=0 or h = 0 the measure lives on a countable number of points).

A band p(,},_,(z) living on Iy} _, generates in the next iteration the two bands

P(o}n(2) = 3P(0)n s V(o) 2D W Wor z), T € I(o}s (2.7

where y(,}, . denotes a branch of the nth inverse:

Y(o}mz = F (A1, f T (h2y ooy fTH (Bny2) .. 0)). (2.8)

From Egs. 2.6 and 2.7 we obtain the closed expression8?

p(a}n(m) = pO(y{a}n,r) H[%I/V(y(d}.,,r)]y zTE I{o}..- (2'9)
v=1

The measure in the nth generation consists of 2" bands py,}, (z) labeled by the
2™ possible configurations {o}, which contribute only if the argument z lies in the
corresponding image of the initial support I{,), = (Z{o}n{=)>T{o}n+)]

Pa(2) =) ploya(@)- (2.10)
{o}n

This is the analogue of a functional integral representation of the measure summing
up contributions for all possible trajectories. The explicit expression (2.9) is helpful
to investigate the qualitative behaviour of the measure and to calculate generalized

scaling exponents.
The behaviour of the measure at the boundary of its support can be analyzed
by exploiting that the preimage of the fixed point is the fixed point itself. For
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example we consider the right boundary z(4)- In the nth iteration we obtain from

Eq. 2.9 for the rightmost band

P4} (@ (4y) o< W ()™ (2.11)

In the limit n— co the condition W(z(4y) = 2 separates two parameter regions in
which the invariant measure at its right boundary diverges or goes to zero, respec-
tively, (cf. Fig. 3a). The corresponding critical magnetic field is

h$?) = Lsinh ™! [273/2(9¢ 487 4 o7 _ 10)1/2(¢487 _ 1)=1/7), (2.12)

In a similar way, for the derivative of the rightmost band at the right boundary
we calculate from Eq. 2.9

Oepi)a (@) | _, <[ W@ 0. W) [[(Bevso)"] (2.13)
I:I(+) =1 I:I(+}

which gives in the limit n — co the condition W(z)0:y4+,. = 2, where z = T(4+},

separating two parameter regions in which the derivative of the invariant measure

at its right boundary diverges or goes to zero, respectively, (cf. Fig. 3a). With
Eq. 2.5 and

Ozy+,z = sinh(28J)/{cosh(287) — cosh[28(z — hy)]} (2.14)
we obtain the corresponding critical magnetic field
h{Y = L sinh™![3-275/2 _1/2 — (3.275/2 1 1/9)~187)1/2, (2.15)

These qualitative changes of the invariant measure are illustrated for typical
parameters in Fig. 4.

3. Generalized Fractal Dimensions

The multifractal invariant measure may be characterized by generalized fractal
dimensions!® (
1 ln "N ps
D, = i L L 3.1
-1 50 Inl 7 (3.1)

where [ is the size of the N(I) bins and P; the total weight of the measure on bin
. (It is tacitely assumed to restrict the sum to non-empty bins). The parameter
¢ can take continuous values, Dy is the Hausdorff dimension of the support, D;
and D, are the information and the correlation dimension, respectively. D_., and
Do, characterize the most rarified (non-empty) part of the measure and give (Dg 1s
monotonously decreasing with increasing ¢) the width of the multifractal spectrum
which is for the 1D RFIM directly related to the fluctuations of the free energy!°e,
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Figure 4.  Qualitative different shape of the invariant measure. In Figs. 4a-e we have kT = 1,
ho =0, J =1 and in consecutive order h = 0.02, 0.25, 0.3177,0.6 and 1.2. For small A and 7T not
too large (Fig. 4a) the singularities of the measure gradually die out and it is near to a Gaussian,
cf. also Ref. 4a. Fig. 4f where k7= 0.15, hg = 1/4, h = 1, J = 15/16 is already very near to the
result for the groundstate (cf. Fig. 2 in Ref. 8b). The histograms are generated by digital simulation
of 10°...107 trajectories. (Note the different scales on both abscissas and ordinates).

In a one-scale approximation all D, are equal and can be analytically calcu-
lated. It is justified for weak disorder or high temperature and reproduces — in a
mean slope approximation— the correct size of the first gap8e .

An efficient tool to calculate the fractal dimensions is to consider an associ-
ated repeller problem!”. Compensation of the local escape rate (depending on the
fractal dimension) leads to a generalized Frobenius-Perron equation which becomes
stationary if the fractal dimension was correctly chosen. This was applied to cal-
culate Dy for the 1D RFIM both numerically and by perturbation theory”, and
later elaborated to obtain the full spectrum of D,°. The idea to make a generalized
Frobenius-Perron equation stationary works also for attractors’®=2° and is used to
study multifractal characteristics of a random map in the contribution by C. van
den Broeck and T. Tél in this volume. Another method conceives the stochastic
mapping (1.2) as the backward iteration of a deterministic map and relates Dy to
non-natural measures!.

It is advantageous to use instead of the equipartition of the support in identical
bins of size [ as in Eq. 3.1 a natural partition {/;} generated by the mapping itself.
In the thermodynamic formalism'® one introduces a partition function

(i) = 2, (3:2)

{u}y * .
which goes with increasing resolution of the partition to infinity or to zero unless
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T = (¢ — 1)D;. This can be used to determine D,. It can be shown that the
dimensions in Egs. 3.1 and 3.2 are the same!®.

For parameters where the multifractal is thin the intervals of the natural par-
tition in the nth iteration of Eq. 1.2 are the 2™ images I, of the initial interval I
which are disjoint and carry each the same measure (1/2)®. A naive extrapolation
of this partition into the region where the two branches of the map do overlap would
give spurious results, e.g., D, for ¢ > 0 could increase its upper bound 1.

For parameters where the multifractal is fat the I{,), overlap. The support is
now the whole interval I which is naturally partitioned by the 27*! images {4}, (+}
of the fixed points z(4} in (2"*! — 1) non-intersecting new intervals. Each of the
new intervals may carry weight coming partially from several bands p(o}, (z). These
bands are explicitly given by Eq. 2.9 so that their contribution can be properly taken
into account.

There exist several concepts to characterize fat fractals?!, a detailed comparison
is however beyond the scope of this paper. Very recently, the standard multifractal
formalism was modified to describe multi-affine functions?2.

We calculated the partition function, Eq. 3.2, for the natural partitions de-
scribed above generated in the nth and (n + 1)st iteration and used T'pyy — T, =0,
(n =8...13) as eigenvalue equation to determine D, (¢ = —1, 0, 1, 2) as function
of physical parameters allowing ho # 0 (cf. Fig. 5).

We also looked for Do, The kneading sequences leading to the most rarified
and most concentrated part of the measure, which are for hg = 0 {—+} and {+},
respectively®, depend for hy > 0 on the value of h. We found for instance for
kT = 3.5 and ho = .8 that the most rarified region for large h is generated by {—+}
and for small A by {—}. This may announce some transition which deserves further
investigation.

4. Concluding Remarks

Symbolic dynamics turns out to be also useful for the study of correlation
functions. The decay rates are given by local Lyapunov exponents.

Especially interesting is the limit of zero temperature where the uncountable
number of states collapses to a countable number®®*!3, The groundstate of the
1D RFIM may be macroscopically degenerated even for a continuous range of
parameters!®. The lines in the parameter space where the bands overlap end at
T =0 in critical parameters where the residual entropy has spikes and spin clusters
ﬂip4a,86,c_

The discrete mapping can be slightly modified to study the RFIM on a Bethe
lattice?®. For certain parameter ranges the measure is also fractal.

Mappings similar to Eq. 1.2 appear naturally also in different context, e.g.,
for a Schrodinger equation with random potential?#?, in cellular automata?*?, or as
learning rules for forgetful memories?*¢. For the latter problem an analysis similar
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Figure 5. Generalized fractal dimensions of the invariant measure. The solid arrows in (a) and (c)
indicate the parameters for which the gap vanishes (cf. Fig. 3b). For kT = 0 or h = 0 the measure
lives on a countable set of points for which Dy = 0. There are discontinuous, (2) and (b), as well
as smooth (c) transitions. For small field (b) or high temperature (c) the width of the multifractal
spectrum shrinks to zero and a one-scale approximation is appropriate. Near the critical parameter
where the measure at the boundary of the support changes from infinity to zero (open arrow in (a),
cf. Fig. 3a) the spectrum also becomes narrow. The parameters are: J = 1 (always); kT = 1, hg = 0
in (a); kT =1, ho = 0.8 in (b); ho = 0.4, h = 0.35 in (c).

to the one presented here can be performed?®.
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